JP2011021881A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2011021881A
JP2011021881A JP2010243557A JP2010243557A JP2011021881A JP 2011021881 A JP2011021881 A JP 2011021881A JP 2010243557 A JP2010243557 A JP 2010243557A JP 2010243557 A JP2010243557 A JP 2010243557A JP 2011021881 A JP2011021881 A JP 2011021881A
Authority
JP
Japan
Prior art keywords
air
temperature
humidity
indoor
outside air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010243557A
Other languages
Japanese (ja)
Other versions
JP5110152B2 (en
Inventor
So Nomoto
宗 野本
Fumio Matsuoka
文雄 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010243557A priority Critical patent/JP5110152B2/en
Publication of JP2011021881A publication Critical patent/JP2011021881A/en
Application granted granted Critical
Publication of JP5110152B2 publication Critical patent/JP5110152B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein simultaneous operation of an air conditioner and a ventilator consumes wasteful energy not only by ventilation simply based on outside air temperature but also by individual control of temperature and humidity, and cannot provide comfortable indoor air conditioning with efficiency. <P>SOLUTION: A target temperature or humidity is set as a fixed width zone, and when the target temperature or humidity zone or a predetermined value in the target temperature or humidity zone is reached, the operation of an air conditioning means, a ventilation means and a refrigeration cycle is switched for energy saving operation. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、空調装置の省エネルギー運転の技術に関するもので、例えば室内の空調に外気を積極的に導入して、外気の状態に応じて最適な運転を行い、新鮮外気による健康と、外気の温度と湿度を利用したエネルギー消費の低減を図る技術に関するものである。   The present invention relates to a technology for energy-saving operation of an air conditioner, for example, actively introducing outside air into an indoor air conditioner and performing optimum operation according to the state of the outside air, health by fresh outside air, and temperature of the outside air And technology for reducing energy consumption using humidity.

図32は例えば特開平8−145432号に記載の従来の空気調和機の技術を示すものであり、111は空気調和機であり、1は部屋2の天井に取り付けられた室内ユニット1を有する。3はチューブの内部を流れる冷媒と室内ファン5により送風されるチューブの外部を流れる空気との熱交換を行う室内熱交換器、100は室内ユニット1の内部へ直接空気を導入する換気扇の換気ファン、7は室外ユニット8の内部に収納された室外熱交換器25と室内熱交換器3との間に冷媒を循環させる冷媒配管、18は室外ユニット8の中に収納され室外温度を計測する外気温センサー、19は室内を循環してきた空気を吸込む吸込みグリル35の近傍に設けられ吸込み温度である室内空気温度を計測する室温センサー、21は床面とともに部屋を形成する壁面、34は室内ユニット1から空気を吹出す吹出しグリル、110はダクトダンパーにより開閉され室内ユニットへの換気を行うダクトである。   FIG. 32 shows the technology of a conventional air conditioner described in, for example, JP-A-8-145432, where 111 is an air conditioner, and 1 has an indoor unit 1 attached to the ceiling of the room 2. 3 is an indoor heat exchanger for exchanging heat between the refrigerant flowing inside the tube and the air flowing outside the tube blown by the indoor fan 5, and 100 is a ventilation fan for the ventilation fan that introduces air directly into the interior of the indoor unit 1. , 7 is a refrigerant pipe for circulating the refrigerant between the outdoor heat exchanger 25 and the indoor heat exchanger 3 housed in the outdoor unit 8, and 18 is an outside housed in the outdoor unit 8 for measuring the outdoor temperature. An air temperature sensor 19 is provided in the vicinity of a suction grille 35 for sucking in air that has circulated through the room, and measures a room air temperature that is the suction temperature, 21 is a wall surface that forms a room together with the floor surface, 34 is an indoor unit 1 A blow-out grill 110 for blowing air from the duct 110 is a duct that is opened and closed by a duct damper to ventilate the indoor unit.

図32の構成では天井埋め込み型空気調和機の室内ユニット1が天井などに埋設してあり、この内部には横流ファンなどの室内ファン5と熱交換器3が取り付けられ、部屋2に面した部分に設けられた化粧パネルの室内熱交換器3の上流側と下流側において吸込みグリル35と吹出しグリル34をそれぞれ開口している。室内ファン5の回転により室内には循環風が形成される。室内熱交換器3の上流側通風路には換気ファン100が設けられたダクト110が屋外と連通可能に接続されており、この換気ファンのオンオフ制御とこれに連動して開閉するダクトダンパーにより外気を選択的に導入している。   In the configuration of FIG. 32, the indoor unit 1 of the ceiling-embedded air conditioner is embedded in a ceiling or the like, and an indoor fan 5 such as a cross-flow fan and a heat exchanger 3 are attached to the interior unit 1 and face the room 2 A suction grille 35 and a blowout grille 34 are respectively opened on the upstream side and the downstream side of the indoor heat exchanger 3 of the decorative panel provided in. Circulation wind is formed in the room by the rotation of the indoor fan 5. A duct 110 provided with a ventilation fan 100 is connected to the outdoor side air passage of the indoor heat exchanger 3 so as to be able to communicate with the outdoors, and the outside air is controlled by a duct damper that opens and closes in conjunction with the on / off control of the ventilation fan. Has been introduced selectively.

従来の天井埋め込み式の空気調和機の室内ユニット1は、その内部に室温を検出する室温センサー19と、マイコンなどの制御装置を内蔵した室内制御器を取り付けてある。室内制御器では室温センサー19により検出された室温検出値と、あらかじめリモコンなどの室温設定器により設定された室温設定値とをそれぞれ読み込み、この室温検出値を室温設定値にするために必要な運転周波数信号を室外ユニット8へ与えられる。室外ユニット8の中では例えばマイクロプロセッサなどによりなる室外制御器にこの信号が与えられ、同様に内蔵された圧縮機の運転がこの室外制御器により制御されて行われ室外熱交換器25から冷媒が配管7を介して室内熱交換器3へ送られる。また室内制御器はリモコンなどにより換気運転が選択されたときにオン信号を換気ファン31とダクトダンパーに与えて動作させて新鮮な外気を室内ユニット1の中に導入させている。   A conventional indoor unit 1 of a ceiling-embedded air conditioner has a room temperature sensor 19 for detecting the room temperature and an indoor controller incorporating a control device such as a microcomputer installed therein. The indoor controller reads the room temperature detection value detected by the room temperature sensor 19 and the room temperature setting value set in advance by a room temperature setting device such as a remote controller, and performs an operation necessary for setting the room temperature detection value to the room temperature setting value. A frequency signal is supplied to the outdoor unit 8. In the outdoor unit 8, this signal is given to an outdoor controller composed of, for example, a microprocessor, and the operation of the built-in compressor is controlled by this outdoor controller, and the refrigerant is supplied from the outdoor heat exchanger 25. It is sent to the indoor heat exchanger 3 through the pipe 7. Further, the indoor controller is operated by applying an ON signal to the ventilation fan 31 and the duct damper when the ventilation operation is selected by a remote controller or the like to introduce fresh outside air into the indoor unit 1.

導入する外気の温度は外気温センサー18により計測しており、この外気温センサー18の検出した外気温に応じて室温検出センサー19の検出した値を補正する。空気調和機の暖房や冷房などの運転は検出した室温により行われるので外気により補正された室温を使用することにより外気温度の変動に応じた運転が行える。この温度補正は室内送風量に室温検出値を乗じ、これに外気導入量に外気温度の検出値を乗じたものを各風量の合計で除したもの補正した温度としている。   The temperature of the outside air to be introduced is measured by the outside air temperature sensor 18, and the value detected by the room temperature detection sensor 19 is corrected according to the outside air temperature detected by the outside air temperature sensor 18. Since operations such as heating and cooling of the air conditioner are performed at the detected room temperature, operation according to fluctuations in the outside air temperature can be performed by using the room temperature corrected by the outside air. This temperature correction is a corrected temperature obtained by multiplying the indoor air flow rate by the room temperature detection value and multiplying the outside air introduction amount by the outside air temperature detection value and dividing the sum by the total air volume.

一方、外気の温度と湿度、室内の温度と湿度を計測して空調を行う従来の技術として特開昭60−232445号公報のような技術が知られている。これはエアコンと換気扇をそれぞれ別個に設けておいて、まず室内の温度が設定値より高いかで判断して、すなわち室温制御が必要かを判断してエアコンを冷房運転する。但し室内の温度が設定値より高い状態の場合、エアコンで除湿運転させるか、あるいは、室内の絶対湿度が外気の湿度より高ければエアコンは運転させずに換気扇を動作させる。絶対湿度は入力された湿度センサーからの相対湿度を検出された温度とともに空気線図上で換算して絶対湿度を得ている。   On the other hand, a technique as disclosed in Japanese Patent Application Laid-Open No. 60-232445 is known as a conventional technique for air conditioning by measuring the temperature and humidity of the outside air and the temperature and humidity of the room. In this case, an air conditioner and a ventilation fan are provided separately, and it is first determined whether the room temperature is higher than a set value, that is, it is determined whether room temperature control is necessary, and the air conditioner is cooled. However, when the indoor temperature is higher than the set value, the dehumidifying operation is performed by the air conditioner, or the ventilation fan is operated without operating the air conditioner if the indoor absolute humidity is higher than the outside air humidity. The absolute humidity is obtained by converting the relative humidity from the input humidity sensor together with the detected temperature on the air diagram.

特開平8−145432号JP-A-8-145432 特開昭60−232445号公報Japanese Patent Laid-Open No. 60-232445

しかしながら、空気調和例えば加熱加湿を行う場合、温度のみを上げようとする顕熱に対する処理と湿度のみを上げようとする潜熱に対する処理が同時に行われる。これに付いては例えば上記の文献養賢堂から昭和62年4月20日発行の著書、冷凍および空気調和第17版210頁、に加熱加湿の前と後の状態を線図上に示す図が顕熱潜熱とともに記載されている。従って、換気の導入の制御が空気温度だけで行われる場合、室内温度より外気温度が低いが室内湿度よりも外気湿度が低い場合には、室内の湿度が上がってしまい、その湿度を下げるために冷凍サイクルが室内の水蒸気成分を減らそうとして空気調和機で無駄な仕事が行われると言う問題を生ずる。叉温度と湿度を検出して空気調和機と換気扇を個別に検出値に応じて制御する場合、すなわち、温度は室内の温度と設定値との比較でエアコンで調整し、湿度は外部と内部を比較し湿度制御だけは換気扇で行うことは、新鮮な外気の取り入れに大幅な制限を受けるとともに外気のエネルギーを効果的に生かすことができずエアコンに無駄な動作をさせるという問題があった。また、換気ファンの風量を固定したり、絶対湿度だけの比較で運転するとすると冷凍サイクルの運転にたいし、上記と同様に無駄な仕事が行われると言う問題があった。さらに従来のごとく結果として生ずる温度や湿度の個別の数字をフォローしていく制御では使用機器が特定されたものだけにとどまり、他の種類の冷熱温熱加湿徐湿等を調整する他の機器の制御とは全く関係無くなり様々な特性を有する他の機器の影響を考慮できず、また、多くの部屋を同時に空気調和を行ったり、さらに、エネルギー効率を考えて空気の質を改善することが出来ないと言う問題があった。   However, when performing air conditioning, for example, heating and humidification, a process for sensible heat for increasing only the temperature and a process for latent heat for increasing only the humidity are simultaneously performed. As for this, for example, the above-mentioned literature published on April 20, 1987 from Ref. Kenken, Refrigeration and Air Conditioning 17th Edition, page 210, shows the state before and after heating and humidification on a diagram. Are described with sensible heat latent heat. Therefore, when the introduction control of ventilation is performed only with the air temperature, if the outside air temperature is lower than the room temperature but the outside air humidity is lower than the room humidity, the indoor humidity will rise and the humidity will be lowered. The refrigeration cycle causes a problem that wasteful work is performed in the air conditioner in an attempt to reduce the water vapor component in the room. Fork temperature and humidity are detected and the air conditioner and ventilation fan are individually controlled according to the detected value.In other words, the temperature is adjusted by the air conditioner by comparing the indoor temperature with the set value, and the humidity is adjusted between the outside and inside. In comparison, performing only humidity control with a ventilation fan has a problem in that the intake of fresh outside air is significantly restricted and the energy of the outside air cannot be effectively utilized, causing the air conditioner to perform a wasteful operation. Further, if the air volume of the ventilation fan is fixed or the operation is performed only by comparison with the absolute humidity, there is a problem that wasteful work is performed in the same manner as described above for the operation of the refrigeration cycle. Furthermore, as in the conventional control, the control of following individual numbers of the resulting temperature and humidity is limited to those for which the equipment used is specified, and the control of other equipment that adjusts other types of cooling, heating, heating, humidification and dehumidification etc. It has nothing to do with it and cannot take into account the effects of other equipment with various characteristics, and it is not possible to air-condition many rooms at the same time, and to improve the air quality considering energy efficiency. There was a problem.

この発明は上記のような問題点を解決するためになされたもので換気により新鮮な外気を導入しつつ快適な空気調和を行うものである。またこの発明はエネルギー効率を考えて空気の質を向上する装置および方法に関するものである。さらにまたこの発明は温度と湿度を一体に制御する簡単な制御方法に関するものである。   The present invention has been made to solve the above-described problems, and performs comfortable air conditioning while introducing fresh outside air by ventilation. The present invention also relates to an apparatus and method for improving air quality in view of energy efficiency. Furthermore, the present invention relates to a simple control method for integrally controlling temperature and humidity.

この発明は、外気のエンタルピーと空気調和装置へ室内から吸込む空気のエンタルピーを求め両方のエンタルピーを比較するステップと、外気のエンタルピーが空気調和装置へ室内から吸込む空気のエンタルピーより低い場合は換気手段にて外気を室内に導入するとともに冷凍サイクルを所定の条件で運転させるステップと、を備えたものである。   The present invention provides a step of obtaining the enthalpy of the outside air and the enthalpy of the air sucked into the air conditioner from the room and comparing both enthalpies, and if the enthalpy of the outside air is lower than the enthalpy of the air sucked from the room into the air conditioner, the ventilation means. And introducing the outside air into the room and operating the refrigeration cycle under predetermined conditions.

この発明は、室内に循環する空気のエンタルピと空気調和装置へ室内から吸込む空気のエンタルピを求め両方のエンタルピから室内負荷を求めるステップと、この室内負荷と室内空気の温度と湿度の目標値と空気調和装置へ室内から吸込む空気の温度と湿度から、目標とする室内に循環する空気の温度と湿度を求めるステップと、換気手段にて外気を室内に導入するステップと、を備えたものである。   The present invention relates to a step of obtaining an enthalpy of air circulating indoors and an enthalpy of air sucked into the air conditioner from the room to obtain an indoor load from both enthalpies, a target value of the indoor load, the temperature and humidity of the indoor air, and the air A step of obtaining the temperature and humidity of the air circulating in the target room from the temperature and humidity of the air sucked into the harmony device from the room, and a step of introducing outside air into the room by the ventilation means.

この発明は、室内に吸入口有し、送風機により室内空気を前記吸入口から吸込んで空気調和を行う空調機の吸込んだ空気の温度と湿度を検出するステップと、空調機の室内への吹出し口から吹出させ室内に循環させる空気の温度と湿度を検出するステップと、室外から室内に外気を導入する外気の温度と湿度を検出するステップと、室内空気の目標値である温度と湿度を設定するステップと、室内空気の目標値を達成させ、且つ、冷凍サイクルのエネルギーを小さくするため、室内熱交換器に直接吸込む室内空気と外気が混合された空気の温湿度の目標値を設定するステップと、を備えたものである。   The present invention includes a step of detecting the temperature and humidity of an air conditioner that has an air intake port in the room and sucks room air from the air intake port by a blower to perform air conditioning, and an air outlet port of the air conditioner Detecting the temperature and humidity of the air that is blown out and circulated into the room, detecting the temperature and humidity of the outside air that introduces the outside air from the outside into the room, and setting the temperature and humidity that are target values of the room air And setting a target value for the temperature and humidity of the air mixed with the indoor air and the outside air directly sucked into the indoor heat exchanger in order to achieve the target value of the indoor air and reduce the energy of the refrigeration cycle; , With.

この発明は、室内に吸入口有し、送風機により室内空気を前記吸入口から吸込んで空気調和を行う空調機の吸込んだ空気の温度と湿度を検出するステップと、空調機の室内への吹出し口から吹出させ室内に循環させる空気の温度と湿度と風量を検出するステップと、室外から室内に外気を導入する外気の温度と湿度と風量を検出するステップと、室内空気の目標値である温度と湿度を設定するステップと、室内空気の目標値を達成させ、且つ、冷凍サイクルのエネルギーを小さくするため、室内熱交換器から直接吹出す空気の温湿度の目標値を設定するステップと、を備えたものである。   The present invention includes a step of detecting the temperature and humidity of an air conditioner that has an air intake port in the room and sucks room air from the air intake port by a blower to perform air conditioning, and an air outlet port of the air conditioner Detecting the temperature, humidity, and air volume of the air that is blown out and circulated into the room, detecting the temperature, humidity, and air volume of the outside air that introduces the outside air from the outside into the room, and the temperature that is the target value of the room air; A step of setting the humidity, and a step of setting a target value of the temperature and humidity of the air directly blown from the indoor heat exchanger in order to achieve the target value of the indoor air and reduce the energy of the refrigeration cycle. It is a thing.

この発明は、室内に吸入口と吹出し口を有し、送風機の回転により室内空気を吸入口から吸込んで吹出し口から吹出させ、室内の温度および湿度を熱交換器の能力により変化させて冷房や暖房などの運転を行う空気調和手段と、空気調和手段に接続され、送風機の回転および前記熱交換器の能力を調整して室内の温度および湿度を目標値である温度および湿度の少なくとも一つに接近させるように設定する目標値設定手段と、目標値設定手段の設定する目標値を複数の帯域からなるゾーンとし、空気調和手段の運転の状態に応じて目標値の複数の帯域からゾーンの幅を選択可能とするものである。   This invention has a suction port and a blowout port in the room, sucks room air from the suction port by the rotation of the blower and blows it out from the blowout port, and changes the temperature and humidity in the room according to the capacity of the heat exchanger. An air conditioner that performs an operation such as heating, and an air conditioner that is connected to the air conditioner and adjusts the rotation of the blower and the capacity of the heat exchanger so that the room temperature and humidity become at least one of the target values of temperature and humidity. The target value setting means that is set to approach, and the target value that is set by the target value setting means is a zone composed of a plurality of bands, and the zone width from the plurality of bands of the target value according to the operating state of the air conditioning means Can be selected.

この発明の空気調和方法は、簡単な方法でエネルギーの少ない空気調和方法が得られる。また、外気を利用して効果的な省エネルギー運転が可能で、更に、使い勝手が良く無駄なエネルギーを利用しない空気調和方法が得られる。 またこの発明の空気調和装置は、目標値を複数の帯域からなるゾーンとし、目標値の複数の帯域からゾーンの幅を選択可能とするので、快適な室内の空気調和が得られる。   The air conditioning method of the present invention can provide an air conditioning method with less energy by a simple method. In addition, an effective energy-saving operation can be performed using the outside air, and an air conditioning method that is convenient and does not use wasteful energy can be obtained. In addition, the air conditioning apparatus of the present invention makes it possible to select a zone having a plurality of bands as the target value and select a zone width from the plurality of bands of the target value, so that comfortable indoor air conditioning can be obtained.

本発明の実施の形態1による空気調和装置を示す全体構成図である。It is a whole lineblock diagram showing the air harmony device by Embodiment 1 of the present invention. 本発明の実施の形態1に係わる冷凍サイクルを示す冷媒回路図である。It is a refrigerant circuit diagram which shows the refrigerating cycle concerning Embodiment 1 of this invention. 本発明の一般的な湿り空気線図を示す説明図である。It is explanatory drawing which shows the general wet air diagram of this invention. 本発明の実施の形態1による空気調和装置を示す全体構成図である。It is a whole lineblock diagram showing the air harmony device by Embodiment 1 of the present invention. 本発明の実施の形態1に係わる室内の空気の流れを示す説明図である。It is explanatory drawing which shows the flow of the indoor air concerning Embodiment 1 of this invention. 本発明の実施の形態1に係わる制御の流れを示すブロック図である。It is a block diagram which shows the flow of control concerning Embodiment 1 of this invention. 本発明の実施の形態1に係わる湿り空気線図で空気状態の変化を示す説明図である。It is explanatory drawing which shows the change of an air state by the humid air line figure concerning Embodiment 1 of this invention. 本発明の実施の形態1に係わり、湿り空気線図上での外気状態による外気利用方法のゾーン分けを説明する説明図である。It is explanatory drawing related to Embodiment 1 of this invention, and zoning of the external air utilization method by the external air state on a wet air diagram. 本発明の実施の形態1に係わり、外気状態による外気利用方法のゾーン分け処理の手順を示すフローチャートである。It is a flowchart which concerns on Embodiment 1 of this invention, and shows the procedure of the zoning process of the external air utilization method by an external air state. 本発明の実施の形態1に係わる外気状態がゾーン(1)である場合の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence in case the external air state concerning Embodiment 1 of this invention is a zone (1). 本発明の実施の形態1に係わる外気状態がゾーン(2)である場合の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence in case the external air state concerning Embodiment 1 of this invention is a zone (2). 本発明の実施の形態1に係わり、外気状態がゾーン(2)である場合の湿り空気線図上での制御ベクトルを説明する説明図である。It is explanatory drawing explaining the control vector on a wet air diagram in connection with Embodiment 1 of this invention when an external air state is a zone (2). 本発明の実施の形態1に係わり、外気状態がゾーン(2)であり、ヒータを用いる場合の湿り空気線図上での制御ベクトルを説明する説明図である。It is explanatory drawing explaining the control vector on a wet air diagram in connection with Embodiment 1 of this invention, when an external air state is a zone (2) and using a heater. 本発明の実施の形態1に係わる外気状態がゾーン(3)である場合の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence in case the external air state concerning Embodiment 1 of this invention is a zone (3). 本発明の実施の形態1に係わり、外気状態がゾーン(3)である場合の湿り空気線図上での制御ベクトルを説明する説明図である。It is explanatory drawing explaining the control vector on a wet air diagram in connection with Embodiment 1 of this invention when an external air state is a zone (3). 本発明の実施の形態1に係わり、外気状態がゾーン(3)である場合の湿り空気線図上での制御ベクトルを説明する説明図である。It is explanatory drawing explaining the control vector on a wet air diagram in connection with Embodiment 1 of this invention when an external air state is a zone (3). 本発明の実施の形態1に係わり、外気状態がゾーン(3)であり、ヒータを用いる場合の湿り空気線図上での制御ベクトルを説明する説明図である。It is explanatory drawing explaining the control vector on a wet air diagram in connection with Embodiment 1 of this invention, when an external air state is a zone (3) and using a heater. 本発明の実施の形態1における外気温湿度分布説明図である。It is outside temperature humidity distribution explanatory drawing in Embodiment 1 of this invention. 本発明の実施の形態2による空気調和装置に係わる室内ユニット近傍の構成を示す説明図である。It is explanatory drawing which shows the structure of the indoor unit vicinity concerning the air conditioning apparatus by Embodiment 2 of this invention. 本発明の実施の形態2に係わる室内の空気の流れを示す説明図である。It is explanatory drawing which shows the flow of the indoor air concerning Embodiment 2 of this invention. 本発明の実施の形態2に係わり、湿り空気線図で空気状態の変化を示す説明図である。It is explanatory drawing which concerns on Embodiment 2 of this invention and shows the change of an air state with a wet air diagram. 本発明の実施の形態2に係わり、湿り空気線図で空気状態の変化を示す説明図である。It is explanatory drawing which concerns on Embodiment 2 of this invention and shows the change of an air state with a wet air diagram. 本発明の実施の形態2に係わり、湿り空気線図で空気状態の変化を示す説明図である。It is explanatory drawing which concerns on Embodiment 2 of this invention and shows the change of an air state with a wet air diagram. 本発明の実施の形態2に係わり、湿り空気線図で空気状態の変化を示す説明図である。It is explanatory drawing which concerns on Embodiment 2 of this invention and shows the change of an air state with a wet air diagram. 本発明の実施の形態2による空気調和装置に係わる室内ユニット近傍の構成を示す説明図である。It is explanatory drawing which shows the structure of the indoor unit vicinity concerning the air conditioning apparatus by Embodiment 2 of this invention. 本発明の実施の形態2による空気調和装置に係わる室内ユニット近傍の構成を示す説明図である。It is explanatory drawing which shows the structure of the indoor unit vicinity concerning the air conditioning apparatus by Embodiment 2 of this invention. 本発明の実施の形態2による空気調和装置に係わる湿り空気線図で空気状態の変化を示す説明図である。It is explanatory drawing which shows the change of an air state by the wet air diagram regarding the air conditioning apparatus by Embodiment 2 of this invention. 本発明の実施の形態2による空気調和装置に係わる室内熱交換器温度に対する特性図である。It is a characteristic view with respect to the indoor heat exchanger temperature concerning the air conditioning apparatus by Embodiment 2 of this invention. 本発明の実施の形態2による空気調和装置に係わる湿り空気線図で空気状態の変化を示す説明図である。It is explanatory drawing which shows the change of an air state by the wet air diagram regarding the air conditioning apparatus by Embodiment 2 of this invention. 本発明の実施の形態2による空気調和装置に係わる室内ユニット近傍の構成を示す説明図である。It is explanatory drawing which shows the structure of the indoor unit vicinity concerning the air conditioning apparatus by Embodiment 2 of this invention. 本発明の実施の形態2に係わる室内の配置を示す説明図である。It is explanatory drawing which shows the indoor arrangement | positioning concerning Embodiment 2 of this invention. 従来の空気調和装置を示す構成図である。It is a block diagram which shows the conventional air conditioning apparatus.

実施の形態1.
以下、本発明の実施の形態1による空気調和装置および空気調和方法について説明する。図1は本発明の実施の形態1に係る空気調和装置を示す全体構成図であり、図2は、冷熱または温熱を得るための既存のエネルギー効率の高い蒸気圧縮式冷凍サイクルの構成の一例を示す冷媒回路図である。本発明は、室内空気の温度または湿度を、目標値である温度および湿度に接近するように空気調和を行って室内空気を冷房または暖房する空気調和装置で、新鮮な室外空気を導入しこれを効果的に利用して快適な室内空間が得られるように空気調和を行うものである。特に、外気を積極的に利用する際の空気調和装置の動作および制御に際し、空気温度と共に空気湿度を考慮することを特徴としている。この空気温度と空気湿度を関連させながら制御する際の基本となるものは、一般によく知られている湿り空気線図である。以下、この湿り空気線図について簡単に記載する。図3は、文献(「冷凍および空気調和」第17版、昭和62年4月20日、養賢堂発行)の第199頁に記載されている湿り空気線図の骨子を示す図である。湿り空気線図は一般の空気である湿り空気の状態を示す図で、湿り空気のエンタルピiと絶対湿度xを斜交軸にとり、温度などの関連するデータを、大気圧が760mmHg一定としてまとめたものものである。乾球温度を一定とすればiとxとは直線関係で表すことができ、等温度線(t線)は直線となる。等エンタルピー線(i線)がx線となす角度は、iとxとのメモリを適当に選んでt=0℃の線がx線に直交するように定めてある。絶対湿度と相対湿度の関係や、顕熱と潜熱の関係、等も記載されている。なお横軸は温度を取り、縦軸の絶対湿度とはほぼ直交する関係にある。曲線Hは飽和線と称するもので、相対湿度が100%のときの絶対湿度と温度を示している。この飽和線から右の領域では水蒸気は過熱蒸気の状態にあり、空気の温度が下がって過熱蒸気が冷却されると、飽和線にいたって凝縮をはじめることが解る。このように湿り空気線図では湿り空気の状態変化を簡単に知ることができるので、これに基づいて実際に検知した外気状態と室内空気状態から、外気を積極的に室内に導入して室内の空気調和に効果的に利用する。
Embodiment 1 FIG.
Hereinafter, the air conditioning apparatus and the air conditioning method according to Embodiment 1 of the present invention will be described. FIG. 1 is an overall configuration diagram showing an air-conditioning apparatus according to Embodiment 1 of the present invention, and FIG. 2 is an example of a configuration of an existing energy-efficient vapor compression refrigeration cycle for obtaining cold energy or thermal energy. It is a refrigerant circuit figure shown. The present invention is an air conditioner that cools or heats indoor air by adjusting the temperature or humidity of the indoor air so as to approach the target temperature and humidity, and introduces fresh outdoor air. Air conditioning is performed so that a comfortable indoor space can be obtained effectively. In particular, in the operation and control of the air conditioner when actively using outside air, the air humidity is considered together with the air temperature. The basis for controlling air temperature and air humidity in relation to each other is a generally well-known wet air diagram. Hereinafter, the wet air diagram will be briefly described. FIG. 3 is a diagram showing the gist of the wet air diagram described on page 199 of the literature (“Refrigeration and Air Conditioning”, 17th edition, April 20, 1987, published by Yokendo). The humid air diagram is a diagram showing the state of humid air, which is general air. The enthalpy i and the absolute humidity x of the humid air are taken on the oblique axis, and related data such as temperature is summarized as the atmospheric pressure is constant at 760 mmHg Is a thing. If the dry bulb temperature is constant, i and x can be expressed by a linear relationship, and the isothermal line (t line) is a straight line. The angle formed by the isenthalpy line (i-line) and the x-ray is determined so that the line of t = 0 ° C. is orthogonal to the x-ray by appropriately selecting the memory of i and x. The relationship between absolute humidity and relative humidity and the relationship between sensible heat and latent heat are also described. The horizontal axis represents temperature, and the vertical axis has a relationship that is substantially orthogonal to the absolute humidity. Curve H is called a saturation line and shows the absolute humidity and temperature when the relative humidity is 100%. It can be seen that in the region to the right of the saturation line, the water vapor is in the state of superheated steam, and when the temperature of the air decreases and the superheated steam is cooled, condensation reaches the saturation line. In this way, the wet air diagram makes it easy to know the change in the state of the humid air. Based on this, the outside air is positively introduced into the room from the actually detected outside air condition and the room air condition. Use it effectively for air conditioning.

図1において、1は部屋の壁面に取り付けられた空気調和装置の室内ユニット、2は空調の対象となる部屋で以下では室内と称する。また、3は室内熱交換器、4は加熱手段、5は室内ファン、6は外気を室内の例えば室内ユニット1内に導入する外気導入手段であり、例えば部屋の壁面に貫通された開口に取り付けられ、外気を吸入するファン31と外気導入口開閉機構としてダンパ67を有する。室内ユニット1には室内熱交換器3、加熱手段4、室内ファン5、外気導入手段6を内蔵している。加熱手段4は、本実施の形態では例えばヒータであり、図1に示すように室内熱交換器3の出口と室内ファン5の入口の間の空気流路に配設されている。室内熱交換器3の下流側の空気流路に設けられたヒータ4によって、室内熱交換器3で熱交換された空気の温度が低すぎる場合にその空気を加熱する。また外気導入手段6は、所定の時間間隔でダンパ67の開閉を行ったり、電気的にダンパ67の開度を段階的または連続的に変えて調節したり、ファン31の回転数を変化させてファンの速度を変えることで、外気導入量を可変に調整制御できる。   In FIG. 1, 1 is an indoor unit of an air conditioner attached to a wall surface of a room, and 2 is a room to be air-conditioned, which will be referred to as a room below. Further, 3 is an indoor heat exchanger, 4 is a heating means, 5 is an indoor fan, and 6 is an outside air introduction means for introducing outside air into the indoor unit 1, for example, indoors. In addition, a fan 31 for sucking outside air and a damper 67 as an outside air inlet opening / closing mechanism are provided. The indoor unit 1 includes an indoor heat exchanger 3, a heating means 4, an indoor fan 5, and an outside air introducing means 6. The heating means 4 is, for example, a heater in the present embodiment, and is disposed in an air flow path between the outlet of the indoor heat exchanger 3 and the inlet of the indoor fan 5 as shown in FIG. When the temperature of the air heat-exchanged by the indoor heat exchanger 3 is too low by the heater 4 provided in the air flow path on the downstream side of the indoor heat exchanger 3, the air is heated. The outside air introduction means 6 opens and closes the damper 67 at predetermined time intervals, electrically adjusts the opening degree of the damper 67 stepwise or continuously, or changes the rotational speed of the fan 31. By changing the fan speed, the outside air introduction amount can be variably adjusted and controlled.

また、7は冷媒配管、8は室外ユニットで、室外ユニット8で得た冷熱または温熱を冷媒配管7で室内熱交換器3に輸送する。ここでは例えば冷媒配管7、室外ユニット8、室内熱交換器3を含めて蒸気圧縮式冷凍サイクルで構成している。   In addition, 7 is a refrigerant pipe, 8 is an outdoor unit, and cold heat or hot heat obtained by the outdoor unit 8 is transported to the indoor heat exchanger 3 through the refrigerant pipe 7. Here, for example, the refrigerant pipe 7, the outdoor unit 8, and the indoor heat exchanger 3 are configured by a vapor compression refrigeration cycle.

図2に示すように、室外ユニット8には、圧縮機22、流路切換手段である四方弁23、室外熱交換器25、室外ファン41、減圧手段である膨張弁26などが格納され、室外ユニット8と室内熱交換器3は冷媒配管7で接続されている。冷媒としては例えばHCFC冷媒であるR22を冷媒配管内に循環させる。以下、この蒸気圧縮式冷凍サイクルで室内熱交換器3において室内の冷房を行う場合の冷媒流通の動作について説明する。室内を冷房する場合には室外熱交換器25を凝縮器、室内熱交換器3を蒸発器として動作させ、四方弁23は実線のように接続する。圧縮機22で圧縮された高圧ガス冷媒は、圧縮機71の吐出口から四方弁23を介して室外熱交換器25へ流通し、ここで室外ファン41で吹きつけられる外気に放熱する。そして冷媒は凝縮し、高圧液冷媒となって室外熱交換器25から流出する。その後膨張弁26へ流通して断熱膨張され、低圧二相冷媒となる。さらに低圧二相冷媒は冷媒配管7を循環して室内熱交換器3へ流通し、ここで採熱して蒸発する際に室内空気と熱交換することによって室内を冷房する。そして冷媒は、室内熱交換器3から低圧ガス冷媒となって流出した後、冷媒配管7を通って室外ユニット8に流通し、四方弁23を介して圧縮機22の吸入口へと戻る。このような動作によって室内熱交換器3では冷熱が得られる。この室内熱交換器3での冷媒の蒸発温度と室内空気の温度および湿度によって、室内空気の温度および湿度変化量が決まるのであるが、空気調和装置それぞれの構成や冷凍サイクルの能力によって、冷媒の蒸発温度には実現し得る温度の許容範囲がある。一般的に空気調和を行うための冷凍サイクルでは各機器の耐熱性や露対策などから蒸発温度の下限を10℃程度とし、この温度以上で信頼性のよい運転を行う。   As shown in FIG. 2, the outdoor unit 8 stores a compressor 22, a four-way valve 23 as a flow path switching unit, an outdoor heat exchanger 25, an outdoor fan 41, an expansion valve 26 as a decompression unit, and the like. The unit 8 and the indoor heat exchanger 3 are connected by a refrigerant pipe 7. As the refrigerant, for example, R22 which is an HCFC refrigerant is circulated in the refrigerant pipe. Hereinafter, the refrigerant circulation operation when the indoor heat exchanger 3 performs indoor cooling in this vapor compression refrigeration cycle will be described. When the room is cooled, the outdoor heat exchanger 25 is operated as a condenser and the indoor heat exchanger 3 is operated as an evaporator, and the four-way valve 23 is connected as shown by a solid line. The high-pressure gas refrigerant compressed by the compressor 22 circulates from the discharge port of the compressor 71 to the outdoor heat exchanger 25 through the four-way valve 23 and dissipates heat to the outside air blown by the outdoor fan 41 here. The refrigerant condenses and becomes high-pressure liquid refrigerant and flows out of the outdoor heat exchanger 25. Thereafter, the refrigerant flows into the expansion valve 26 and is adiabatically expanded to become a low-pressure two-phase refrigerant. Further, the low-pressure two-phase refrigerant circulates through the refrigerant pipe 7 and flows to the indoor heat exchanger 3, where it cools the room by exchanging heat with room air when the heat is collected and evaporated. The refrigerant flows out from the indoor heat exchanger 3 as a low-pressure gas refrigerant, then flows through the refrigerant pipe 7 to the outdoor unit 8, and returns to the suction port of the compressor 22 through the four-way valve 23. With such an operation, cold heat is obtained in the indoor heat exchanger 3. The temperature of the indoor air and the amount of humidity change are determined by the evaporating temperature of the refrigerant in the indoor heat exchanger 3 and the temperature and humidity of the indoor air. The evaporation temperature has an acceptable temperature tolerance. In general, in a refrigeration cycle for performing air conditioning, the lower limit of the evaporation temperature is set to about 10 ° C. for heat resistance of each device and countermeasures against dew, and a reliable operation is performed above this temperature.

また、室内熱交換器3によって室内の暖房を行う場合の運転時の冷媒流通の動作について説明する。室内を暖房する場合には室外熱交換器25を蒸発器、室内熱交換器3を凝縮器として動作させ、四方弁23は冷房運転での冷媒回路を切換えて点線のように接続する。圧縮機22で圧縮された高圧ガス冷媒は、圧縮機22の吐出口から四方弁23を介して冷媒配管7を通って室内ユニット1の室内熱交換器3へ流通し、ここで放熱して凝縮する際に室内空気と熱交換することによって室内を暖房する。そして冷媒は、室内熱交換器3から高圧液冷媒となって流出し、室外ユニット8の膨張弁26で断熱膨張されて低圧二相冷媒となり室外熱交換器25へ流入する。さらに冷媒は室外熱交換器25で室外ファン41によって吹きつけられる外気から採熱して蒸発し、低圧ガス冷媒となって流出した後、四方弁23を介して圧縮機22の吸入口へと戻る。このような動作によって室内熱交換器3で温熱が得られる。   Moreover, the refrigerant | coolant circulation operation | movement at the time of an operation | movement in the case of heating an indoor with the indoor heat exchanger 3 is demonstrated. When the room is heated, the outdoor heat exchanger 25 is operated as an evaporator and the indoor heat exchanger 3 is operated as a condenser, and the four-way valve 23 is connected as indicated by a dotted line by switching the refrigerant circuit in the cooling operation. The high-pressure gas refrigerant compressed by the compressor 22 circulates from the discharge port of the compressor 22 through the refrigerant pipe 7 through the four-way valve 23 to the indoor heat exchanger 3 of the indoor unit 1 where heat is dissipated and condensed. When heating, the room is heated by exchanging heat with room air. The refrigerant flows out from the indoor heat exchanger 3 as high-pressure liquid refrigerant, is adiabatically expanded by the expansion valve 26 of the outdoor unit 8, becomes low-pressure two-phase refrigerant, and flows into the outdoor heat exchanger 25. Further, the refrigerant collects heat from the outdoor air blown by the outdoor fan 41 in the outdoor heat exchanger 25 and evaporates to flow out as a low-pressure gas refrigerant, and then returns to the suction port of the compressor 22 through the four-way valve 23. With such an operation, warm heat is obtained in the indoor heat exchanger 3.

また、図1に示した空気調和装置には、外気、室内空気の空気状態を検知する手段が設けられている。9は吸込み温度検知手段である室内空気温度検知手段、10は吸込み湿度検知手段である室内空気湿度検知手段で、それぞれ例えば室内ユニット1での室内空気の取込口に設けられており、室内2から室内ユニット1に取込まれた室内空気であるリターン空気の温度を室内空気温度検知手段9で検知し、室内2から室内ユニット1に取込まれた室内空気であるリターン空気の湿度を室内空気湿度検知手段10で検知する。11は外気温度検知手段、12は外気湿度検知手段で、それぞれ例えば室外で外気導入手段6への吸気口周辺に設けられており、外気温度検知手段11で室内ユニット1に取込まれる外気の温度を検知し、外気湿度検知手段12で室内ユニット1に取込まれる外気の湿度を検知する。13は空調装置から吹出され室内に循環する空気の温度を検知する吹出し空気温度検知手段、14は同様に室内に循環する空気の湿度を検知する吹出し空気湿度検知手段で、それぞれ例えば室内ユニット1から室内への空気吹出口に設けられており、吹出し空気温度検知手段13で室内ユニット1から室内2へ吹出す空気の温度を検知し、吹出し空気湿度検知手段14で室内ユニット1から室内2へ吹出す空気の湿度を検知する。また、室内熱交換器3の冷媒配管に設けた室内熱交換器配管温度検知手段18によって室内熱交換器温度、即ち冷媒の蒸発温度を計測している。また、32は室内ユニット1内に設けた室内制御装置である電子箱で、例えば1つまたは複数のマイクロプロセッサが格納され、室内空調負荷検知手段と運転動作設定手段と外気量制御手段と運転動作制御手段の動作を行う。この動作については後で詳しく述べる。   Further, the air conditioner shown in FIG. 1 is provided with means for detecting the air state of the outside air and the room air. Reference numeral 9 denotes indoor air temperature detecting means which is a suction temperature detecting means, and reference numeral 10 denotes indoor air humidity detecting means which is a suction humidity detecting means, which are provided, for example, at a room air intake port in the indoor unit 1. The indoor air temperature detecting means 9 detects the temperature of the return air that is the indoor air taken into the indoor unit 1 from the room 2 and the humidity of the return air that is the indoor air taken into the indoor unit 1 from the indoor 2 is the room air. It is detected by the humidity detection means 10. Reference numeral 11 denotes an outside air temperature detection means, and reference numeral 12 denotes an outside air humidity detection means. The outside air temperature detection means is provided, for example, in the vicinity of the intake port to the outside air introduction means 6 outside the room. The outside air temperature detection means 11 is the temperature of the outside air taken into the indoor unit 1. And the humidity of the outside air taken into the indoor unit 1 is detected by the outside air humidity detecting means 12. 13 is a blown air temperature detecting means for detecting the temperature of the air blown out from the air conditioner and circulated in the room, and 14 is a blown air humidity detecting means for detecting the humidity of the air circulated in the room. It is provided at the air outlet to the room, and the temperature of the air blown from the indoor unit 1 to the room 2 is detected by the blown air temperature detecting means 13 and blown from the indoor unit 1 to the room 2 by the blown air humidity detecting means 14. Detect the humidity of the air. The indoor heat exchanger pipe temperature detecting means 18 provided in the refrigerant pipe of the indoor heat exchanger 3 measures the indoor heat exchanger temperature, that is, the refrigerant evaporation temperature. Reference numeral 32 denotes an electronic box which is an indoor control device provided in the indoor unit 1. For example, one or a plurality of microprocessors are stored, and an indoor air-conditioning load detection means, an operation setting means, an outside air amount control means, and an operation operation are stored. The control means operates. This operation will be described in detail later.

図4は本発明の一実施例であるシステム系統の冷媒の流れと空気の流れの関係を説明する図で、1は室内2の壁面21に取り付けられた空気調和を行うエアコンの室内ユニットで、室内熱交換器3、加熱手段であるヒーター4、室内ファン5を内蔵している。32は図示されていないリモコン装置の指令により運転開始や停止、温度調整や設定値の変更などとともに室外制御装置33との情報伝達他を行う室内制御装置である。34は吹出しグリル、35は吸込みグリル、39は室内フィルターである。6は壁面21に貫通された開口より外気を取り入れる外気導入手段で、換気ファン31、室外フィルター40、シャッター15より構成されている。8は冷媒配管7により室内熱交換器3と接続されている室外ユニットで、冷凍サイクルを構成する圧縮機22、四方弁23、室外熱交換器25、膨張弁26、アキュムレーター24、室外ファン41を内蔵している。33は冷媒配管7の中を流れる冷媒16の物理状態を圧縮機2の回転数、四方弁23の切り替え、室外ファン41の回転数、膨張弁26の開度調整などを組み合わせて調整する制御装置である。9は吸込み口温度検知手段、10は吸込み口湿度検知手段、11は外気温度検知手段、12は外気湿度検知手段、13は吹出し口温度検知手段、14は吹出し口湿度検知手段である。 FIG. 4 is a diagram for explaining the relationship between the refrigerant flow and the air flow in the system system according to one embodiment of the present invention. 1 is an indoor unit of an air conditioner that is attached to the wall surface 21 of the room 2 and performs air conditioning. The indoor heat exchanger 3, the heater 4 which is a heating means, and the indoor fan 5 are incorporated. Reference numeral 32 denotes an indoor control device that performs information transmission and the like with the outdoor control device 33 as well as start / stop operation, temperature adjustment, change of set values, and the like according to commands from a remote control device (not shown). 34 is a blow-out grill, 35 is a suction grille, and 39 is an indoor filter. Reference numeral 6 denotes outside air introduction means for taking in outside air from an opening penetrating the wall surface 21, and is constituted by a ventilation fan 31, an outdoor filter 40, and a shutter 15. 8 is an outdoor unit connected to the indoor heat exchanger 3 by the refrigerant pipe 7, and includes a compressor 22, a four-way valve 23, an outdoor heat exchanger 25, an expansion valve 26, an accumulator 24, and an outdoor fan 41 constituting the refrigeration cycle. Built in. A control device 33 adjusts the physical state of the refrigerant 16 flowing in the refrigerant pipe 7 by combining the rotational speed of the compressor 2, the switching of the four-way valve 23, the rotational speed of the outdoor fan 41, the opening degree adjustment of the expansion valve 26, and the like. It is. Reference numeral 9 is an inlet temperature detecting means, 10 is an inlet humidity detecting means, 11 is an outside air temperature detecting means, 12 is an outside air humidity detecting means, 13 is an outlet temperature detecting means, and 14 is an outlet humidity detecting means.

この構成において室外から外気である新鮮外気量x*Voを室内ユニット1の吸気側に換気扇である外気導入手段6の換気ファン31により取り入れている。この外気量x*Voと室内を循環して室内ユニット1の室内ファン5により吸込みグリル35に吸込まれるリターンされる空気であるリターンエアの室内リターンエア風量VRが室内ユニット1の吸気された空気の量である。吸気された空気は室内熱交換器3で冷却される。すなわち冷凍サイクルの圧縮機22で圧縮された冷媒が室外熱交換器25で凝縮して外部の空気で冷却され膨張弁26により圧力を下げられ室内熱交換器3により冷媒が蒸発して熱交換器のチューブを低温にする。この冷媒は再び圧縮機に戻されると言う冷凍サイクルを循環する。蒸発器である室内熱交換器はこれを通過する外気量x*Voと室内リターンエア風量VRとを冷却することにより室内を冷房することが出来る。なお冷凍サイクルに設けた四方弁23を切り替えて室内を暖房にすることも可能である。加熱手段4は暖房時など必要なときに動作させるもので、電気入力によるヒーターを示すが別の方式例えば冷媒再熱により空気を加熱しても良い。室外フィルター40は外気を処理するフィルターで塵埃などの除去のみならず花粉やNOX等の有害なガスも除去できる。これにより新鮮な、かつ、清浄な外気を取り入れることが出来る。室内フィルター39は室内からリターンする空気の汚れを除去するもので、塵埃やウィルス、煙草の匂いなど、室内で発生する汚れを除去可能である。   In this configuration, fresh outside air amount x * Vo that is outside air from outside the room is taken into the intake side of the indoor unit 1 by the ventilation fan 31 of the outside air introduction means 6 that is a ventilation fan. This outdoor air volume x * Vo and the indoor return air volume VR of return air, which is returned air sucked into the suction grille 35 by the indoor fan 5 of the indoor unit 1 through the room, is the air sucked into the indoor unit 1. Is the amount. The sucked air is cooled by the indoor heat exchanger 3. That is, the refrigerant compressed by the compressor 22 of the refrigeration cycle is condensed by the outdoor heat exchanger 25 and cooled by the external air, the pressure is lowered by the expansion valve 26, and the refrigerant is evaporated by the indoor heat exchanger 3 to heat the heat exchanger. Let the tube cool. This refrigerant circulates in a refrigeration cycle that is returned to the compressor. The indoor heat exchanger, which is an evaporator, can cool the room by cooling the outside air amount x * Vo passing through the indoor heat exchanger and the indoor return air volume VR. It is also possible to heat the room by switching the four-way valve 23 provided in the refrigeration cycle. The heating means 4 is operated when necessary, such as during heating, and shows a heater by electric input. The outdoor filter 40 is a filter that treats the outside air and can remove not only dust but also harmful gases such as pollen and NOX. As a result, fresh and clean outside air can be taken in. The indoor filter 39 removes dirt from the air returning from the room, and can remove dirt generated in the room, such as dust, viruses, and the smell of cigarettes.

なお図中に示すTo,Xo等のTやXの記号は図に記載されているように温度や湿度を示すものである。但し湿度は絶対湿度で表している。Qeは冷却と除湿を含めた室内熱交換器の冷房能力、ETは蒸発器である室内熱交換器のチューブの温度である蒸発温度である。温度の計測は温度センサーで直接計測する構造を示しているが、特に室内温度と吹出し温度に付いてはいずれか一方を直接計測し他方は冷房能力や風量すなわち回転数等から演算して求める形でも良いことは当然である。湿度に関しては湿度センサーで計測するが、この場合はたいてい相対湿度を計測することになる。従って、相対湿度を計測した値と温度とで絶対湿度に制御装置に設けたマイコンで換算する必要がある。また室内や吹出しの温度、湿度を室内ユニットの内部に設けたセンサーで計測する説明をしているが室内ユニットの外部でもその役割が果たせる位置なら良いし、特に吹出し温度は室内に配置した別の温度計からデータを取ってもよい。   In the figure, T and X symbols such as To and Xo indicate temperature and humidity as shown in the figure. However, humidity is expressed in absolute humidity. Qe is the cooling capacity of the indoor heat exchanger including cooling and dehumidification, and ET is the evaporation temperature that is the temperature of the tube of the indoor heat exchanger that is the evaporator. The temperature measurement shows a structure that directly measures with a temperature sensor, but in particular, one of the indoor temperature and the blowout temperature is directly measured, and the other is calculated from the cooling capacity and the air volume, that is, the rotation speed, etc. But of course it is good. Humidity is measured by a humidity sensor, but in this case, relative humidity is usually measured. Therefore, it is necessary to convert the absolute humidity from the measured value and temperature of the relative humidity with a microcomputer provided in the control device. In addition, the explanation is given that the temperature and humidity of the room and the blowout are measured by a sensor provided inside the indoor unit. However, the position where the role can also be played outside the indoor unit is good. Data may be taken from a thermometer.

目標温度T*はゾーンとして設定する。但し目標温度のゾーン幅は使用するマイコンの分解能力から決まる±0.3−0.5゜C程度の領域を複数連続して設けたゾーンとして、±1−3゜Cぐらいの幅とする。すなわち一般に人の場合は外気温度が低くなると室内が同じ温度でもより温度が低いと感じるので、目標温度帯幅を切り替えられる様にする。あるいは目標値を広い幅のゾーンとする。これは、女性は男性より同じ温度でも低く感ずるし、年齢が高くなると同じ温度でも低く感ずる。この温度差の感覚は場合によっては3゜Cぐらいの差が存在するので、例えばこの目標温度帯に入ることで直ちにエネルギーをあまり要しない温度を維持する動作に圧縮機やファンなどの動作を切り替えることにより様々な人に対し快適感を与えながら効率の良い運転を行うことが出来る。あるいは常に目標温度帯のうちでの高い温度に到達してから温度を維持する動作に圧縮機などの動作を切り替えることにより特に女性や老人などの多い家庭内の空気調和に対し快適感を与える運転を行うことが出来る。このような温度帯幅を切り替えたり、温度帯幅に到達したときに冷凍サイクルや室内ファンの動作を切り替えることは、リモコンで設定を行う構成でも良いし、室内および室外のいずれかまたは両方の制御装置に設けたマイコンに記憶させ運転パターンや運転モードにより切り替えさせる。   The target temperature T * is set as a zone. However, the zone width of the target temperature is set to a width of about ± 1 to 3 ° C as a zone in which a plurality of regions of about ± 0.3 to 0.5 ° C determined by the decomposition ability of the microcomputer to be used are continuously provided. That is, in general, in the case of a person, when the outside air temperature becomes low, it is felt that the temperature is lower even at the same temperature in the room. Alternatively, the target value is a wide zone. This is because women feel lower at the same temperature than men, and lower at the same temperature as they get older. Since there is a difference of about 3 ° C in some senses of this temperature difference, for example, the operation of the compressor, the fan, etc. is switched to the operation that immediately maintains the temperature that does not require much energy by entering the target temperature range. Thus, efficient driving can be performed while giving a comfortable feeling to various people. Or, by switching the operation of the compressor, etc. to the operation that always maintains the temperature after reaching a high temperature in the target temperature range, driving that gives comfort to the air conditioning in the home, especially where there are many women and elderly people Can be done. Switching between such temperature zones and switching the operation of the refrigeration cycle and indoor fan when the temperature zone is reached may be configured with a remote controller, or control of either or both indoors and outdoors It is stored in a microcomputer provided in the apparatus, and is switched according to the operation pattern or operation mode.

目標湿度X*も同様にゾーンとして設定する。但し目標湿度のゾーン幅は使用するセンサーなどの精度から決まる範囲で区分けした複数の領域を連続させたゾーンとする。ここの例では相対湿度50−65%として設定する。すなわち季節により、例えば外気の湿度が非常に高い梅雨時期などでは外部との差を極端に大きくしなくとも快適に感じるので、目標ゾーンに到達したときに除湿動作を停止し効率の良い装置とすることが出来る。なお後で詳細に説明するごとく冷房動作との関係で温度と湿度を目標値にいれる運転の制御を一体で行うため相対湿度が65%に到達したからといって冷房動作が停止しない場合はさらに湿度は低下する。さらにこの湿度目標帯の幅を切り替えて使用するようにしても良い。例えば室内で洗濯物を乾燥させるときや冬場の露点対策などの時はさらに低い設定が出来るようにしたり、あるいは幅を小さくしても良いことは当然である。このような湿度目標ゾーン幅を切り替えたり、湿度目標帯幅に到達したときに冷凍サイクルや室内ファンの動作を切り替えることは、リモコン他の設定や室内および室外のいずれかまたは両方の制御装置に設けたマイコンに記憶させた運転パターンで容易に実施できる。   The target humidity X * is similarly set as a zone. However, the zone width of the target humidity is a zone in which a plurality of regions divided in a range determined by the accuracy of the sensor to be used are continuous. In this example, the relative humidity is set to 50-65%. In other words, depending on the season, for example, in the rainy season when the outside air humidity is very high, it feels comfortable without making the difference from the outside extremely large, so when the target zone is reached, the dehumidification operation is stopped and the device becomes efficient. I can do it. In addition, as will be described in detail later, since the operation of controlling the temperature and humidity to the target values is integrally performed in relation to the cooling operation, if the relative humidity reaches 65%, the cooling operation does not stop. Humidity decreases. Further, the width of the humidity target band may be switched and used. For example, when drying laundry in the room or taking measures against the dew point in winter, it is natural that a lower setting can be made or the width can be made smaller. Switching the humidity target zone width or switching the operation of the refrigeration cycle or indoor fan when the humidity target bandwidth is reached is provided in other settings of the remote control or in indoor and outdoor control devices or both. The operation pattern stored in the microcomputer can be easily implemented.

なお湿度センサーとして絶対湿度信号を出力する湿度センサーも存在するが一般には相対湿度を計測する。有機高分子タイプ湿度センサーは雰囲気の湿分が増加すると電離作用が容易と成り、可動イオン濃度が増大する。従って電圧を加える事により可動イオンの動きをインピーダンスの変化量として捉え湿度を検出する。セラミックスタイプの湿度センサーは水分子が表面に化学吸着しこの表面状態の変化を捉える。サーミスタ素子を湿度センサーとする場合は空気中の水蒸気の量に対応して湿り空気の熱伝導度が変化し、それによって加熱状態にあるサーミスタが冷却される度合いが変化しこれを利用して湿度を測定する。   There is a humidity sensor that outputs an absolute humidity signal as a humidity sensor, but generally the relative humidity is measured. The organic polymer type humidity sensor becomes easy to ionize when the humidity of the atmosphere increases, and the mobile ion concentration increases. Therefore, by applying voltage, the movement of mobile ions is regarded as the amount of change in impedance, and the humidity is detected. A ceramic type humidity sensor captures changes in the surface state by the chemical adsorption of water molecules on the surface. When the thermistor element is a humidity sensor, the thermal conductivity of the humid air changes according to the amount of water vapor in the air, which changes the degree to which the heated thermistor is cooled and uses this to change the humidity. Measure.

図5は、本実施の形態による空気調和装置に係わる室内熱交換器3付近の空気の流れを示す説明図である。ここで、Tは温度[℃]、Xは絶対湿度[kg/kg']、Vは風量[m3 /h]を表している。外気OA(温度TOA、湿度XOA、風量VOA)が室内ユニット1の吸込み側に導入され、室内空気である吸い込み空気のリターン空気RA(温度TRA、湿度XRA、風量VRA)と混合されて混合空気KA(温度TKA、湿度XKA、風量VRA+VOA)として室内熱交換器3に流入している。室内熱交換器3には熱輸送手段である冷媒配管7を通る冷媒によって、温熱または冷熱が輸送され、室内熱交換器3内の冷媒配管の周囲を空気が流れる際に熱交換される。室内熱交換器3で蒸発温度ET[℃]の冷媒と熱交換した混合された吸込み空気KAは、その温度または湿度の少なくともどちらか一方が変化し、場合によってはヒータ4で加熱されてまたはそのままの温度で室内ユニット1から吹出し空気SA(温度TSA、湿度XSA、風量VRA+VOA)として室内に流出する。この吹出し空気SAは室内2を循環する間に室内負荷の顕熱SH[kcal/h]、即ち温度を変化させるものと、潜熱LH[kcal/h]、即ち絶対湿度を変化させるものとによって、負荷を受けて再びリターン空気RAとなり、外気OAと混ざって室内熱交換器3に流入する。 FIG. 5 is an explanatory diagram showing the air flow in the vicinity of the indoor heat exchanger 3 related to the air conditioner according to the present embodiment. Here, T represents temperature [° C.], X represents absolute humidity [kg / kg ′], and V represents air volume [m 3 / h]. The outside air OA (temperature TOA, humidity XOA, air volume VOA) is introduced into the intake side of the indoor unit 1 and mixed with the return air RA (temperature TRA, humidity XRA, air volume VRA) of the intake air, which is room air, and mixed air KA It flows into the indoor heat exchanger 3 as (temperature TKA, humidity XKA, air volume VRA + VOA). Heat or cold is transported to the indoor heat exchanger 3 by the refrigerant passing through the refrigerant pipe 7 serving as a heat transport means, and heat exchange is performed when air flows around the refrigerant pipe in the indoor heat exchanger 3. The mixed intake air KA heat-exchanged with the refrigerant having the evaporation temperature ET [° C.] in the indoor heat exchanger 3 changes in at least one of its temperature and humidity, and in some cases is heated by the heater 4 or as it is. The air flows out from the indoor unit 1 into the room as air SA (temperature TSA, humidity XSA, air volume VRA + VOA). This blown air SA is sensible heat SH [kcal / h] of the indoor load while circulating through the room 2, that is, changing the temperature, and latent heat LH [kcal / h], that is, changing the absolute humidity, Upon receiving the load, the air becomes return air RA again, mixes with the outside air OA, and flows into the indoor heat exchanger 3.

即ち図5は外気を室内ユニットの吸気側に導入する換気をエアコン内部に導入する構造でエアコンの室内ユニットと換気扇を一体にした構造の空調装置における温度と湿度を一体で制御して目標値に近づける制御の内容を説明する図で、まず室内の温度と湿度である吸込み口に吸込まれる温度と湿度に対する目標ゾーンとして温度を26゜C±1゜C、湿度を50−65%とし、梅雨の時期を想定して上限値は温度26゜C、湿度65%に設定する。この設定は事前に季節カレンダーを記憶させておいて制御装置内のタイマーで切り替えても良いし、リモコンの設定で行っても良い。例えばこの制御装置に記憶させたカレンダー機能と検出した外気温度によりマイコンにて既設の区分けを判断する。この1ポイントをねらう恒温恒湿制御を説明する。ヒーター4は冷やしすぎが無い限り動作しておらず、湿度は相対湿度を換算して絶対湿度で表す。室内から空調機へのリターンエアRAの温度TRAと湿度XRA,外気OAの温度TOAと湿度XOA,空調機から室内へのサプライエアSAの温度TSAと湿度XSAは各温度と湿度の検出手段により求める。今まで各温度、湿度の検出は各センサーにより説明を行って来たが、ほかの量から間接的に、例えば一部の温度に付いては冷凍サイクル等のデータなどから演算で間接的に求めても良いし、データを固定、例えば季節による天候が比較的一定している地方に採用する場合は、季節カレンダーを内蔵したマイコンを使う場合外気の温度と湿度の一方はその季節と他方のデータから、例えば乾燥した高温の時期に計測した湿度があがれば雨が降っているとして温度をマイコンに記憶されている平均温度より3゜C下げた値を検出値とするなど、推定して間接的にマイコンで演算した求めかたを検出手段としても良い。   That is, FIG. 5 shows a structure in which ventilation for introducing outside air into the intake side of the indoor unit is introduced into the air conditioner, and the temperature and humidity in the air conditioner having a structure in which the indoor unit of the air conditioner and the ventilation fan are integrated are controlled to a target value. In the figure explaining the contents of the control approaching, first, the temperature is set to 26 ° C ± 1 ° C and the humidity is set to 50-65% as a target zone for the temperature and humidity sucked into the suction port which is the indoor temperature and humidity. The upper limit is set at a temperature of 26 ° C and a humidity of 65%. This setting may be made by storing a seasonal calendar in advance and switching by a timer in the control device, or by setting a remote controller. For example, the existing classification is determined by the microcomputer based on the calendar function stored in the control device and the detected outside air temperature. The constant temperature and humidity control aiming at this one point will be described. The heater 4 does not operate unless it is overcooled, and the humidity is expressed in absolute humidity by converting relative humidity. The temperature TRA and humidity XRA of return air RA from the room to the air conditioner, the temperature TOA and humidity XOA of the outside air OA, and the temperature TSA and humidity XSA of the supply air SA from the air conditioner to the room are obtained by means of detecting each temperature and humidity. . Until now, the detection of each temperature and humidity has been explained by each sensor, but indirectly from other quantities, for example, some temperatures are indirectly obtained by calculation from data such as the refrigeration cycle. However, when the data is fixed, for example, in a region where the weather due to the season is relatively constant, when using a microcomputer with a built-in seasonal calendar, one of the temperature and humidity of the outside air is the data of the season and the other. For example, if the measured humidity rises during the dry high temperature period, it is assumed that it is raining, and the temperature is 3 ° C lower than the average temperature stored in the microcomputer as the detection value. It is also possible to use the calculation method calculated by the microcomputer as the detection means.

図5で示すように、室内から空調機へのリターンエアRAの温度TRAと湿度XRA,外気OAの温度TOAと湿度XOA,混合空気KAの温度TKAと湿度XKA、空調機から室内へのサプライエアSAの温度TSAと湿度XSAの各温度と湿度の8データが必要であるが、外気の温度と湿度、吸込み、即ちリターンエアーの温度と湿度、吹出し、即ち室内へのサプライエアーであって室内空気の温度と湿度を検出する検出手段のようにセンサー6個で計測する事により、混合エアーの温度TKAと相対湿度φKAはリターンエアの風量VRAと外気風量VOAから計算で求めることが出来る。またこれとは逆に混合エアーの温度TKAと湿度XKAを計測し、リターンエアの風量VRAと外気風量VOAから外気OAの温度TOAと湿度XOAを求める方法も存在するが、後者より前者が望ましい。前者は、即ち外気を計測する方が、外気導入を判断する際に直接検出したデータを使用出来る。後者は一旦外気を導入し運転した後で外気の温度と湿度を求める形になる。しかも外気の温度の計測は例えば室外機に設けるケースがあり、この外気温度センサーで求めた検出値を使うことになる。サプライエアー温度TSAは室内熱交換器温度ETとほぼ同一とみなせる。従って、室内熱交換器温度を計測している場合はサプライエアー温度の計測はそれで代用するし、また、逆も言えることになる。更にサプライエアー湿度XSAにたいし、100%と仮定しても良い。日本の場合、これより下がることはより良い方向に向かうのでこの仮定を設けることにより計測を省くことが出来る。吸込み空気、即ちリターンエアーの湿度XRAは目標値を40−65%とすればこの数値を家庭することにより計測を省いても良い。しかしながら外気湿度XOAはこの発明では必ず必要になる。従って、マイコンなどに数字を記憶させるなどにより、最小必要な計測センサーはリターンエアー温度TRA、外気温度TOA、室内熱交換器温度Eまたはサプライエアー温度TSA、外気湿度センサーφOAの4つのデータを必要とする。   As shown in FIG. 5, the temperature TRA and humidity XRA of the return air RA from the room to the air conditioner, the temperature TOA and humidity XOA of the outside air OA, the temperature TKA and humidity XKA of the mixed air KA, and the supply air from the air conditioner to the room 8 data of each temperature and humidity of SA temperature TSA and humidity XSA are required, but the temperature and humidity of the outside air, that is, the temperature and humidity of the return air, the blowout, that is, the supply air to the room and the room air The temperature TKA and the relative humidity φKA of the mixed air can be obtained by calculation from the air volume VRA of the return air and the outside air volume VOA by measuring with six sensors like the detecting means for detecting the temperature and humidity of the air. On the other hand, there is a method of measuring the temperature TKA and humidity XKA of the mixed air and obtaining the temperature TOA and humidity XOA of the outside air OA from the return air volume VRA and the outside air volume VOA, but the former is preferable to the latter. In the former case, that is, when the outside air is measured, the directly detected data can be used when judging the introduction of the outside air. In the latter case, the temperature and humidity of the outside air are obtained after the outside air is once introduced and operated. In addition, there are cases where the temperature of the outside air is measured, for example, in an outdoor unit, and the detection value obtained by this outside temperature sensor is used. The supply air temperature TSA can be regarded as almost the same as the indoor heat exchanger temperature ET. Therefore, if the indoor heat exchanger temperature is measured, the measurement of the supply air temperature can be used instead, and vice versa. Further, it may be assumed that the supply air humidity XSA is 100%. In Japan, going down is better, so making this assumption can save the measurement. The humidity XRA of the intake air, that is, the return air may be omitted by setting this value at home if the target value is 40-65%. However, outside air humidity XOA is absolutely necessary in the present invention. Therefore, by storing numbers in a microcomputer or the like, the minimum required measurement sensors require four data: return air temperature TRA, outside air temperature TOA, indoor heat exchanger temperature E or supply air temperature TSA, and outside air humidity sensor φOA. To do.

ここで、室内熱交換器3で熱交換して流出してくる空気を出口側空気と称し、吹出し空気とは室内ユニット1から室内2に吹出される空気のことで、例えばヒータ4を備えこれで加熱している場合には出口側空気と吹出し空気の温度は異なる。また、室内は通常密閉されているわけではなく、余分な室内空気は部屋の隙間や排気口などから自然に室外へ流出する。その場合には室内2は加圧となるため、隣接している他の部屋からの匂いや塵埃などが流入するのを防止できる。また、外気を導入すると共に室内空気を換気扇などで機械的に排出するように部屋2を構成してもよい。その場合には室内圧のバランスを保つことができ、外気の導入もスムーズかつ確実に行うことができる。   Here, the air that flows out after exchanging heat in the indoor heat exchanger 3 is referred to as outlet-side air. The blown air is air that is blown from the indoor unit 1 into the room 2 and includes, for example, a heater 4. In the case of heating with, the temperature of the outlet side air and the blown air are different. In addition, the room is not normally sealed, and excess room air naturally flows out of the room through a gap or an exhaust port of the room. In that case, since the room 2 is pressurized, it is possible to prevent inflow of odors, dust, and the like from other adjacent rooms. Further, the room 2 may be configured such that outside air is introduced and room air is mechanically discharged by a ventilation fan or the like. In that case, the balance of the indoor pressure can be maintained, and the introduction of outside air can be performed smoothly and reliably.

図6は制御装置を説明する図であり、電子箱15のマイクロプロセッサには図6のブロック図に示すように、室内空調負荷検知手段81と運転動作設定手段82と外気量制御手段83と運転動作制御手段84がソフトウェアプログラムとして格納されている。室内空調負荷検知手段81は室内空調負荷QLを検知するもので、例えばリターン空気の温度TRAとリターン空気の湿度XRAからリターン空気のエンタルピーiRAを求め、同様に吹出し空気の温度TSAと吹出し空気の湿度XSAから吹出し空気のエンタルピーiSAを求め、下記に示す式1に基づいて、室内空調負荷QL(SH、LH)、QL=SH+LHを検知する。例えば冷房時には室内空調負荷QLは式1によって演算で求められる。
QL=(VRA+VOA)・ρ・(iRA−iSA) …(1)
VRA:リターン空気風量
VOA:外気風量
ρ:密度
iRA:リターン空気のエンタルピ−
iSA:吹出し空気のエンタルピー
FIG. 6 is a diagram for explaining the control device. As shown in the block diagram of FIG. 6, the microprocessor of the electronic box 15 includes an indoor air conditioning load detection means 81, an operation setting means 82, an outside air amount control means 83, and an operation. The operation control means 84 is stored as a software program. The indoor air-conditioning load detection means 81 detects the indoor air-conditioning load QL. For example, the return air enthalpy iRA is obtained from the return air temperature TRA and the return air humidity XRA. Similarly, the blowout air temperature TSA and the blowout air humidity are obtained. The enthalpy iSA of the blown air is obtained from XSA, and the indoor air conditioning load QL (SH, LH), QL = SH + LH is detected based on Equation 1 shown below. For example, at the time of cooling, the indoor air conditioning load QL is obtained by calculation using Equation 1.
QL = (VRA + VOA) .rho. (IRA-iSA) (1)
VRA: Return air volume
VOA: Outside air volume
ρ: Density
iRA: Return air enthalpy
iSA: Enthalpy of blowing air

運転動作設定手段82は外気温度検知手段11および外気湿度検知手段12で検知した外気状態として外気温度および外気湿度(TOA、XOA)、室内空気温度検知手段9および室内空気湿度検知手段10で検知した室内空気状態としてリターン空気温度およびリターン空気湿度(TRA、XRA)、室内のリモートコントロールスイッチなどで設定されている目標室内空気状態として目標室内空気温度および目標室内空気湿度(Tt、Xt)、室内空調負荷検知手段81で検知した室内空調負荷QLなどを入力し、外気導入量VOAと空調能力Qeおよび蒸発温度ET、必要に応じて加熱手段であるヒータ4の加熱量W、室内熱交換器3を通過する空気の総風量VRA+VOAなどの情報を設定する。外気導入量VOAは、例えばリターン空気の風量VRAと外気の風量VOAの混合比x:y(x+y=1)を考慮して設定する。このときの設定の仕方は、後でフローチャートを基に詳しく記載する。また、吸込み空気と吹出し空気との温度および湿度の変化を示す空気線図上の制御ベクトルから室内熱交換器3を流れる冷媒の蒸発温度ETと空調能力Qeが設定される。   The driving operation setting unit 82 detects the outside air temperature and the outside air humidity (TOA, XOA), the indoor air temperature detecting unit 9 and the indoor air humidity detecting unit 10 as the outside air state detected by the outside air temperature detecting unit 11 and the outside air humidity detecting unit 12. Return air temperature and return air humidity (TRA, XRA) as indoor air conditions, target indoor air temperature and target indoor air humidity (Tt, Xt), indoor air conditioning as target indoor air conditions set by a remote control switch etc. in the room The indoor air-conditioning load QL detected by the load detecting means 81 is input, the outside air introduction amount VOA, the air-conditioning capability Qe and the evaporation temperature ET, the heating amount W of the heater 4 as the heating means, and the indoor heat exchanger 3 as necessary. Information such as the total air volume VRA + VOA of the passing air is set. The outside air introduction amount VOA is set in consideration of, for example, the mixing ratio x: y (x + y = 1) of the return air volume VRA and the outside air volume VOA. The setting method at this time will be described in detail later based on a flowchart. Further, the evaporating temperature ET and the air conditioning capability Qe of the refrigerant flowing through the indoor heat exchanger 3 are set from the control vector on the air diagram showing the temperature and humidity changes between the intake air and the blown air.

外気量制御手段83は、運転動作設定手段82で設定された外気導入量VOAになるように外気導入手段6の動作を制御する。具体的には、外気導入口開閉機構として例えばダンパ67の開閉制御、開度制御、または外気導入手段6に備えられているファン31の回転数を制御することで外気導入量を可変にできる。外気導入量は、例えばリターン空気RAと外気OAの給気量の比率x:yとして設定され、この比率になるように外気導入手段6での外気導入量VOAと室内ユニット1からの総風量VRA+VOAとを制御する。このとき、外気を総風量の100%、即ち外気のみを室内ユニット1に吸込む場合には、例えば外気導入手段のファン31を最大の高速運転、室内ファン5を超微風の低速運転とすることで、外気を100%の割合で室内に取り込むことができる。外気の取り込み量が100%以下の時には、外気導入量と室内ユニットから吹出す総風量を調整することで、余分な室内空気は部屋の隙間から自然に室外へ流出し、総風量に対する外気の割合を制御できる。室内ユニット1から吹出す総風量は、室内ファン5の回転数を変化させて制御できる。   The outside air amount control unit 83 controls the operation of the outside air introduction unit 6 so that the outside air introduction amount VOA set by the driving operation setting unit 82 is obtained. Specifically, the outside air introduction amount can be varied by controlling the opening / closing control of the damper 67, the opening degree control, or the rotational speed of the fan 31 provided in the outside air introduction means 6 as the outside air inlet opening / closing mechanism. The outside air introduction amount is set, for example, as a ratio x: y of the supply amount of the return air RA and the outside air OA, and the outside air introduction amount VOA in the outside air introduction means 6 and the total air amount VRA + VOA from the indoor unit 1 are set to this ratio. And control. At this time, when the outside air is 100% of the total air volume, that is, when only the outside air is sucked into the indoor unit 1, for example, the fan 31 of the outside air introducing means is set to the maximum high speed operation and the indoor fan 5 is set to the low speed operation of the super-fine wind. The outside air can be taken into the room at a rate of 100%. When the outside air intake amount is 100% or less, adjusting the outside air introduction amount and the total air volume blown out from the indoor unit allows the excess indoor air to naturally flow out of the gap between the rooms, and the ratio of the outside air to the total air volume Can be controlled. The total air volume blown out from the indoor unit 1 can be controlled by changing the rotational speed of the indoor fan 5.

運転動作制御手段84は、運転動作設定手段82で設定された空調能力Qeと蒸発温度ETになるように熱輸送手段である冷凍サイクルの動作を制御して、室内熱交換器3での所望の冷媒温度ETと空調能力Qeを得る。冷凍サイクルの動作は、具体的には室内側では室内ファン5の回転数制御であり、室外側では膨張弁75の開度制御や圧縮機71の周波数制御や室外ファン74の回転数制御などである。さらに設定された運転動作がヒータ4による加熱を含むとき、ヒータ4のオン/オフ制御を行う。下記に示す式2は冷凍サイクルの動作を制御する方法の一例として、冷凍サイクルの目標空調能力変更量ΔQe*と冷媒の目標蒸発温度変更量ΔET*から、圧縮機周波数変更量Δfzと室内ファン5の回転数変更量ΔNiを求める式である。この式の係数a,b,c,dは、実験データや理論値を加味して予めシミュレーションで求めてデータとして記憶させておけばよい。この制御は一般に行われているVPM(vector pattern maching)制御であり、圧縮機71の周波数fz、室内ファン5回転数Ni、空調能力Qe、蒸発温度ETの増加または減少の関係を示している。例えば周波数を上げると(Δfz>0)、空調能力は増加し(ΔQe*>0)、蒸発温度は下がる(ΔET*<0)。また、例えば冷房運転時に室内ファンの回転数を上げると(ΔNi>0)、空調能力は増加し(ΔQe*>0)、蒸発温度は上がる(ΔET*>0)。   The operation operation control means 84 controls the operation of the refrigeration cycle as the heat transport means so that the air conditioning capacity Qe and the evaporation temperature ET set by the operation operation setting means 82 are obtained, and a desired operation in the indoor heat exchanger 3 is achieved. The refrigerant temperature ET and the air conditioning capability Qe are obtained. Specifically, the operation of the refrigeration cycle is the rotation speed control of the indoor fan 5 on the indoor side, and the opening control of the expansion valve 75, the frequency control of the compressor 71, the rotation speed control of the outdoor fan 74, etc. on the outdoor side. is there. Further, when the set operation includes heating by the heater 4, the heater 4 is turned on / off. Expression 2 shown below is an example of a method for controlling the operation of the refrigeration cycle. From the target air conditioning capacity change amount ΔQe * of the refrigeration cycle and the target evaporation temperature change amount ΔET * of the refrigerant, the compressor frequency change amount Δfz and the indoor fan 5 Is a formula for obtaining the rotation speed change amount ΔNi. The coefficients a, b, c, and d in this equation may be obtained in advance by simulation in consideration of experimental data and theoretical values and stored as data. This control is VPM (vector pattern matching) control that is generally performed, and shows the relationship between the frequency fz of the compressor 71, the indoor fan 5 rotation speed Ni, the air conditioning capability Qe, and the evaporation temperature ET. For example, when the frequency is increased (Δfz> 0), the air conditioning capacity increases (ΔQe *> 0), and the evaporation temperature decreases (ΔET * <0). Further, for example, when the rotational speed of the indoor fan is increased during the cooling operation (ΔNi> 0), the air conditioning capability increases (ΔQe *> 0), and the evaporation temperature increases (ΔET *> 0).

Figure 2011021881
Figure 2011021881

上記説明を定性的に表現すると、下記に示す式3で表され、A>0,B>0,C>0,D>0となる。このA,B,C,Dの定量的な値は実験やシミュレーションで求められ、求めた後で式3を式2のように変形することにより、係数a,b,c,dの値が得られる。   When the above description is expressed qualitatively, it is expressed by the following Expression 3, and A> 0, B> 0, C> 0, D> 0. The quantitative values of A, B, C, and D are obtained by experiments and simulations, and after obtaining the values, the values of coefficients a, b, c, and d are obtained by transforming Equation 3 as Equation 2. It is done.

Figure 2011021881
Figure 2011021881

上記の室内空調負荷検知手段81、運転動作設定手段82、外気量制御手段83、運転動作制御手段は84のそれぞれは、コンピュータプログラムとして全て1つのマイクロプロセッサに内蔵されていてもよいし、それぞれ別のマイクロプロセッサに内蔵されていてもよい。   The indoor air-conditioning load detection means 81, the operation operation setting means 82, the outside air amount control means 83, and the operation operation control means 84 may all be incorporated in one microprocessor as a computer program, or may be different from each other. It may be built in the microprocessor.

本発明の特徴は、外気と室内空気の温度および湿度を検知し、湿り空気線図上に描いた温湿度をベクトルの状態として把握し、室内の空気温度や湿度を目標である温度や湿度に接近させる様に、冷凍サイクルや室内ファン等の空調装置、ヒーター、循環送風装置や換気装置を制御することにある。例えば外気を室内の空気調和に利用できる場合には外気導入手段6によって積極的に外気を室内に導入したりすることにある。   The feature of the present invention is that it detects the temperature and humidity of the outside air and room air, grasps the temperature and humidity drawn on the humid air diagram as a vector state, and sets the indoor air temperature and humidity to the target temperature and humidity. It is to control an air conditioner such as a refrigeration cycle and an indoor fan, a heater, a circulating air blower, and a ventilator so as to approach each other. For example, when the outside air can be used for indoor air conditioning, the outside air introduction means 6 actively introduces the outside air into the room.

図7は、湿り空気線図上において、空気調和装置で室内空気の冷却および除湿を行った場合の室内空気の空気状態の変化の一例を示す説明図である。この図7前記の一般的な湿り空気線図を示すもので、縦軸は絶対湿度X[kg/kg´]、横軸は乾球温度T[℃]を示す。空気状態は、温度と湿度から湿り空気線図上では1点で表わされるが、ここではこの空気状態をその空気の温湿度と称する。外気温度検知手段11と外気湿度検知手段12で検知した外気温度と外気湿度から外気エンタルピーを算出し、室内温度検知手段9と室内湿度検知手段10で検知したリターン空気温度とリターン空気湿度からリターン空気エンタルピーを算出する。そして、外気エンタルピーとリターン空気エンタルピーとを比較し、外気エンタルピーの方がリターン空気エンタルピーよりも小さい場合には、外気導入手段6から外気(外気温湿度OA)を導入する。なお、本実施の形態において外気を導入するかどうかは、エンタルピーと利用者の換気要求によって決まるのであるが、ここでは外気を導入した場合の基本的な室内空気の温湿度の変化の様子について図5とともに説明する。   FIG. 7 is an explanatory diagram showing an example of a change in the air state of the room air when the room air is cooled and dehumidified by the air conditioner on the wet air diagram. FIG. 7 shows the above-described general wet air diagram, wherein the vertical axis represents absolute humidity X [kg / kg ′], and the horizontal axis represents dry bulb temperature T [° C.]. The air state is represented by one point on the wet air diagram from the temperature and humidity. Here, this air state is referred to as the temperature and humidity of the air. The outside air enthalpy is calculated from the outside air temperature and the outside air humidity detected by the outside air temperature detecting means 11 and the outside air humidity detecting means 12, and the return air is obtained from the return air temperature and the return air humidity detected by the room temperature detecting means 9 and the room humidity detecting means 10. Calculate the enthalpy. Then, the outside air enthalpy is compared with the return air enthalpy. When the outside air enthalpy is smaller than the return air enthalpy, outside air (outside temperature humidity OA) is introduced from the outside air introduction means 6. In this embodiment, whether or not to introduce outside air is determined by enthalpy and the user's ventilation request, but here is a diagram of the change in temperature and humidity of the basic indoor air when outside air is introduced 5 and will be described.

室内2から室内ユニット1に導入されるリターン空気(リターン空気温湿度RA)と外気(外気温湿度OA)が混合する混合空気である吸込み空気温湿度KAは、リターン空気温湿度RAと外気温湿度OAを結ぶ直線上の温湿度となり、外気の導入量に応じてその温湿度は変化する。リターン空気の給気量:外気の給気量=x:yとなるように外気を導入して吸込み空気温湿度KAとなった混合空気は、室内熱交換器3で冷媒と熱交換することにより冷却除湿される。室内熱交換器3の蒸発温度(室内熱交換器配管温度検知手段68で計測される冷媒配管の温度即ち管温)がETであるときには吸込み空気温湿度KAと蒸発温度ETを結ぶ直線上にある温湿度の空気である空気温湿度が室内熱交換器3の出口側空気として流出される。本実施の形態では室内熱交換器3の空気の出口側の空気流路にヒータ4を設けており、室内熱交換器3で除湿を行うために空気を冷却しすぎた場合には、このヒータ4で暖めることができる。ヒータ4を通過した空気は、吹出し空気(吹出し空気温湿度SA)となって室内ユニット1から室内へ吹出される。この後、室内ユニット1から吹出した空気には室内空調負荷QL(SH、LH)が加わり、再び室内ユニット1にリターン空気(リターン空気温湿度RA)として取り込まれる。なお、このリターン空気温湿度RAは初めのリターン空気温湿度とは多少状態が変化し、目標室内空気温湿度tに近づいているはずである。   The intake air temperature / humidity KA, which is a mixed air mixture of return air (return air temperature / humidity RA) and outside air (outside air temperature / humidity OA) introduced from the room 2 into the indoor unit 1, is the return air temperature / humidity RA and the outside air temperature / humidity. It becomes the temperature and humidity on a straight line connecting OA, and the temperature and humidity change according to the amount of outside air introduced. Return air supply amount: outside air supply amount = x: y The mixed air that has been brought into the intake air temperature and humidity KA by introducing the outside air is heat-exchanged with the refrigerant in the indoor heat exchanger 3. Cooled and dehumidified. When the evaporation temperature of the indoor heat exchanger 3 (the temperature of the refrigerant pipe measured by the indoor heat exchanger pipe temperature detecting means 68, that is, the pipe temperature) is ET, it is on a straight line connecting the intake air temperature / humidity KA and the evaporation temperature ET. Air temperature and humidity, which is air of temperature and humidity, flows out as the outlet side air of the indoor heat exchanger 3. In the present embodiment, the heater 4 is provided in the air flow path on the air outlet side of the indoor heat exchanger 3, and when the air is cooled excessively in order to dehumidify the indoor heat exchanger 3, this heater is used. 4 can warm up. The air that has passed through the heater 4 becomes blown air (blow air temperature and humidity SA) and is blown out from the indoor unit 1 into the room. Thereafter, an air-conditioning load QL (SH, LH) is added to the air blown out from the indoor unit 1, and is taken into the indoor unit 1 as return air (return air temperature / humidity RA) again. The return air temperature / humidity RA changes slightly from the initial return air temperature / humidity, and should approach the target indoor air temperature / humidity t.

ここで、初期運転で外気を導入せずにリターン空気のみを吸込み空気とし、冷媒の蒸発温度ETで運転したとき、吹出し空気温度と吹出し空気湿度から算出される吹出し空気エンタルピーと、リターン空気温度とリターン空気湿度から算出されるリターン空気のエンタルピー、即ち吸込み側のリターン空気エンタルピーとから室内空調負荷QLが推定される。この室内負荷の横軸方向変化分が顕熱負荷SHであり、縦軸方向変化分が潜熱負荷LHである。   Here, in the initial operation, only the return air is sucked in without introducing outside air, and when operating at the refrigerant evaporation temperature ET, the blown air enthalpy calculated from the blown air temperature and the blown air humidity, the return air temperature, The indoor air conditioning load QL is estimated from the enthalpy of return air calculated from the return air humidity, that is, the return air enthalpy on the suction side. The change in the horizontal axis direction of the indoor load is the sensible heat load SH, and the change in the vertical axis direction is the latent heat load LH.

最終的には、リターン空気温湿度RAを図7の目標室内空気温湿度tとするために、目標室内空気温湿度tと室内空調負荷QLから目標吹出し空気温湿度SA*が算出される。そして、空調能力Qeをできるだけ小さくしながら、この目標吹出し温湿度SA*を実現するように、吸込み空気温湿度KA、目標蒸発温度ET*を決定する。吸込み空気温湿度KAが決定されることで、室内2から室内ユニット1に取り込まれるリターン空気温湿度RAと外気温湿度OAの混合比が決定され、外気導入量が決定される。この外気導入量の制御は、外気導入手段6にて外気導入量を制御する。例えば蒸発温度ET*で目標吹出し温湿度SA*を実現するために、外気温湿度OAとリターン空気温湿度RAを混合して吸込み空気温湿度KAとする場合、室内熱交換器3への吸込み空気の総量(室内ユニットから室内へ吹出す総風量と一致)に対する外気導入量の割合は、
|KA―RA|/|OA−RA|=y/(x+y)
=VOA/(VOA+VRA)
で得られる。またこのときの蒸発温度ET*、空調能力Qeに従って冷凍サイクルを運転制御する。ここで、空調能力Qeをできるだけ小さくしているので、空気調和装置への入力を最小にでき、省エネルギーとなる。
Finally, in order to set the return air temperature / humidity RA to the target indoor air temperature / humidity t in FIG. 7, the target blown air temperature / humidity SA * is calculated from the target indoor air temperature / humidity t and the indoor air conditioning load QL. Then, the intake air temperature / humidity KA and the target evaporation temperature ET * are determined so as to realize the target blowing temperature / humidity SA * while reducing the air conditioning capability Qe as much as possible. By determining the intake air temperature / humidity KA, the mixing ratio of the return air temperature / humidity RA taken into the indoor unit 1 from the room 2 and the outside air temperature / humidity OA is determined, and the outside air introduction amount is determined. This outside air introduction amount is controlled by the outside air introduction means 6. For example, when the outside air temperature humidity OA and the return air temperature / humidity RA are mixed to obtain the target air temperature / humidity SA * at the evaporation temperature ET *, the intake air to the indoor heat exchanger 3 is obtained. The ratio of the amount of outside air introduced to the total amount of air (corresponding to the total air volume blown indoors from the indoor unit)
| KA-RA | / | OA-RA | = y / (x + y)
= VOA / (VOA + VRA)
It is obtained with. Further, the refrigeration cycle is operated and controlled according to the evaporation temperature ET * and the air conditioning capability Qe at this time. Here, since the air conditioning capability Qe is made as small as possible, the input to the air conditioner can be minimized, resulting in energy saving.

ここで室内熱交換器3前後の空気状態を考え、吸込み空気温湿度KAの吸込み空気が室内熱交換器3に流入し、室内熱交換器3内で冷媒配管の外部を流れるあいだに、冷媒配管内を流れる蒸発温度ET*の冷媒と熱交換して、出口側空気温湿度SAとして室内熱交換器3から流出する。湿り空気線図上では、温湿度KAの点と飽和線上の温度ET*である点とを結ぶ直線上の点の温湿度SAの空気が室内熱交換器3の出口側空気として流出する。逆に言えば、温湿度KAの吸込み空気を室内熱交換器3に流入して温湿度SAの出口側空気を流出させたい場合には、湿り空気線図上で温湿度KAから温湿度SAへ変化するように、制御ベクトルの長さである空調能力Qeと、制御ベクトルを延長した直線と飽和線が交わる点の温度の冷媒を室内熱交換器3に循環させればよい。本発明では室内熱交換器3での運転動作を制御しやすくするため、目標室内空気温湿度tと室内空調負荷QLから吹出し空気の目標である目標吹出し空気温湿度SA*を設定し、室内熱交換器3からの吹出し空気温湿度が目標吹出し空気温湿度SA*に接近するように制御する。   Here, considering the air condition before and after the indoor heat exchanger 3, while the intake air having the intake air temperature and humidity KA flows into the indoor heat exchanger 3 and flows outside the refrigerant pipe in the indoor heat exchanger 3, the refrigerant pipe Heat exchange with the refrigerant having the evaporating temperature ET * flowing in the interior flows out from the indoor heat exchanger 3 as the outlet side air temperature and humidity SA. On the wet air diagram, the air of temperature and humidity SA at a point on the straight line connecting the point of temperature and humidity KA and the point of temperature ET * on the saturation line flows out as the outlet side air of the indoor heat exchanger 3. In other words, when the intake air of temperature / humidity KA flows into the indoor heat exchanger 3 and the outlet side air of temperature / humidity SA flows out, the temperature / humidity KA is changed to temperature / humidity SA on the wet air diagram. The air conditioning capacity Qe, which is the length of the control vector, and the refrigerant at the temperature at which the straight line extending from the control vector and the saturation line intersect may be circulated in the indoor heat exchanger 3 so as to change. In the present invention, in order to easily control the operation in the indoor heat exchanger 3, the target indoor air temperature / humidity t and the target blown air temperature / humidity SA *, which is the target of the blown air, are set from the indoor air conditioning load QL. Control is performed so that the air temperature / humidity blown from the exchanger 3 approaches the target air temperature / humidity SA *.

ただし、実現できる制御ベクトルの傾きには限界があり、冷凍サイクルの顕熱比(SHF)の許容範囲内、SHFmin≦SHF≦SHFmax(最大1)でなければならない。ここで、顕熱比(SHF)とは、式4で表わされ、空気の温度を下げるために使われる全熱量Q[kcal/h](顕熱+潜熱)のうち、気体のH2Oを液体H2Oに凝縮させるのに使われる熱量QLH[kcal/h](潜熱)を差し引いたものの割合である。
SHF=(Q−QLH)/Q =顕熱/(顕熱+潜熱) …(4)
従って、SHFmaxでの運転は高顕熱運転、SHFminでの運転は最大除湿運転となる。例えば、除湿量が0ならSHF=1(高顕熱運転)であり、室温を全く下げないで除湿だけできればSHF=0(最大除湿運転)である。実際には除湿能力には限界があり、湿り空気線図で言えば、制御ベクトルの延長線と飽和線とが交わらない場合、除湿能力の限界を越えており、実現できない状態である。即ち、湿り空気線図上で室内熱交換器3への吸込み空気温湿度KAと出口側空気温湿度SAとを結ぶ直線を延長したとき、この直線と飽和線とが交差しない。このときには冷媒と熱交換しても室内熱交換器3の出口側では温湿度SAの空気は得られないことになる。また前にも記載したが一般的に空気調和を行うための冷凍サイクルでは各機器の耐熱性や露対策などから蒸発温度の下限を10℃程度とすることで、SHFの下限が制限されることもある。
However, there is a limit to the slope of the control vector that can be realized, and it must be within the allowable range of the sensible heat ratio (SHF) of the refrigeration cycle, and SHFmin ≦ SHF ≦ SHFmax (maximum 1). Here, the sensible heat ratio (SHF) is expressed by Equation 4, and out of the total amount of heat Q [kcal / h] (sensible heat + latent heat) used to lower the temperature of the air, it is gaseous H 2 O. Is the ratio of the amount of heat QLH [kcal / h] (latent heat) used to condense the water into liquid H 2 O.
SHF = (Q−QLH) / Q = sensible heat / (sensible heat + latent heat) (4)
Therefore, the operation at SHFmax is the high sensible heat operation, and the operation at SHFmin is the maximum dehumidification operation. For example, if the dehumidification amount is 0, SHF = 1 (high sensible heat operation), and if dehumidification can be performed without lowering the room temperature at all, SHF = 0 (maximum dehumidification operation). Actually, there is a limit to the dehumidifying capacity. In the wet air diagram, when the extension line of the control vector and the saturation line do not intersect, the dehumidifying capacity is exceeded and it cannot be realized. That is, when the straight line connecting the intake air temperature / humidity KA to the indoor heat exchanger 3 and the outlet-side air temperature / humidity SA is extended on the wet air diagram, the straight line does not intersect the saturation line. At this time, even if heat is exchanged with the refrigerant, air of temperature and humidity SA cannot be obtained on the outlet side of the indoor heat exchanger 3. As described above, in general, in the refrigeration cycle for air conditioning, the lower limit of the SHF is limited by setting the lower limit of the evaporation temperature to about 10 ° C. from the heat resistance of each device and countermeasures against dew. There is also.

以上のように空気の流れはリターンエアRAの風量VRAと外気OAの風量VOAが混合し、この混合比x:y(x+y=1)である混合エアの温湿度KAとなり、この混合エアの温湿度KAが蒸発器である室内熱交換器で冷却及び除湿されてサプライエアの温湿度SAとなる。この温度と湿度はエアコン吹出し口の吹出しグリル34付近に設けた吹出し口温度検出手段と吹出し口湿度検出手段にて計測できる。この現象の状態を空気線図の上で説明したものが図7の現象説明図である。図7においてリターンエアの温湿度RAと外気の温湿度OAとサプライエアの温湿度SAの状態を、横軸が温度、縦軸が絶対湿度として線図の上に取ることが出来る。図3の空気線図にエンタルピーiの軸が記載されているように、温度と絶対湿度とは次の関係でエンタルピーiの斜交軸が一義的に決められている。すなわち、i=0.24*温度+(597.5+0.441*温度)*絶対湿度である。従って温度と湿度を検出すればマイコンにてエンタルピーやエネルギーである負荷の大きさを演算することが出来る。逆に電算機室の様に負荷がコンピュータと照明が主体であれば、負荷の消費電力からマイコンに記憶させたデータを使用してエンタルピーを計算し温度とすることも出来る。この様に室内空気のエンタルピーが外部空気のエンタルピーより大きいこの例では、外気導入手段6から外気を導入する。   As described above, the air flow mixes the air volume VRA of the return air RA and the air volume VOA of the outside air OA. The humidity KA is cooled and dehumidified by the indoor heat exchanger, which is an evaporator, and becomes the temperature and humidity SA of the supply air. The temperature and humidity can be measured by the outlet temperature detecting means and the outlet humidity detecting means provided near the outlet grill 34 of the air conditioner outlet. FIG. 7 is a phenomenon explanatory diagram illustrating the state of this phenomenon on the air diagram. In FIG. 7, the temperature and humidity RA of return air, the temperature and humidity OA of outside air, and the temperature and humidity SA of supply air can be plotted on the diagram with the horizontal axis representing temperature and the vertical axis representing absolute humidity. As the axis of enthalpy i is described in the air diagram of FIG. 3, the oblique axis of enthalpy i is uniquely determined by the following relationship between temperature and absolute humidity. That is, i = 0.24 * temperature + (597.5 + 0.441 * temperature) * absolute humidity. Therefore, if the temperature and humidity are detected, the microcomputer can calculate the magnitude of the load, which is enthalpy and energy. Conversely, if the load is mainly a computer and lighting as in the computer room, the enthalpy can be calculated from the power consumption of the load using the data stored in the microcomputer to obtain the temperature. Thus, in this example where the enthalpy of the room air is larger than the enthalpy of the outside air, the outside air is introduced from the outside air introduction means 6.

図7ではエンタルピーは図示していないがリターンエアの温湿度RAとサプライエアの温湿度SAの間は室内の負荷の顕熱SH、すなわち温度を変化させるものと、潜熱LH、すなわち絶対湿度を変化させるものにより、言い換えるとエネルギーであるエンタルピーの成分により図のように表されるとともに演算にて求めることが出来る。なお図7において空気線図のデータは相関性のある物理量であり、図表としてまたは式としてデータが記憶されているためこれらの演算はマイコンを使用した制御装置で簡単に行われる。この状態から換気手段や冷凍サイクル他を調整して室内温度と湿度を目標温湿度tにしなければならない。この目標温湿度の点をtとすると、リターンエアの温湿度RAを目標値の温湿度tにしなければならないので、図7の様に顕熱と潜熱で形成される破線で形成された形状を目標に合わせて並行移動することにより、目標サプライ温湿度SA*が得られる。   Although the enthalpy is not shown in FIG. 7, the sensible heat SH of the indoor load, that is, the temperature, and the latent heat LH, that is, the absolute humidity, are changed between the return air temperature and humidity RA and the supply air temperature and humidity SA. In other words, it is expressed as shown in the figure by the enthalpy component, which is energy, and can be obtained by calculation. In FIG. 7, the data of the air diagram is a physical quantity having a correlation, and since the data is stored as a chart or an expression, these calculations are easily performed by a control device using a microcomputer. From this state, the room temperature and humidity must be set to the target temperature and humidity t by adjusting the ventilation means, the refrigeration cycle, and the like. If the target temperature / humidity point is t, the temperature / humidity RA of the return air must be set to the target temperature / humidity t. By moving in parallel to the target, the target supply temperature and humidity SA * can be obtained.

本発明の空気調和装置において、外気を積極的に導入して効果的に利用し、快適な室内空間を得るための運転方法の基本的な考え方についてここで記載する。
リターン空気温湿度RAと外気温湿度OAを混合した混合空気である吸込み空気温湿度KAは、吸込み空気温湿度KAと目標吹出し空気温湿度SA*のエンタルピー差が小さくなるように選ぶ。
吸込み空気温湿度KAから目標吹出し空気温湿度SA*への制御ベクトルの傾きが、冷凍サイクルの顕熱比(SHF)の許容範囲内で、上記1.のエンタルピー差の小さいものを選ぶ。
冷凍サイクルの最大除湿運転SHFminでも除湿が足りず制御ベクトルを実現できない時には、目標吹出し空気の温度を下げて湿度は満足するように運転し、室内熱交換器3から流出する出口側空気を加熱手段で加熱して目標吹出し空気温湿度SA*になるように制御する。即ち、目標吹出し空気の湿度となるように室内熱交換器3の冷媒温度を設定し、室内熱交換器3でその温度の冷媒と熱交換した出口側空気が目標吹出し空気の温度よりも低温である場合に目標吹出し空気の温度まで加熱する。
In the air conditioner of the present invention, a basic concept of an operation method for obtaining a comfortable indoor space by actively introducing outside air and effectively using it will be described here.
The intake air temperature / humidity KA, which is a mixture of the return air temperature / humidity RA and the outside air temperature / humidity OA, is selected so that the enthalpy difference between the intake air temperature / humidity KA and the target blowout air temperature / humidity SA * is reduced.
The inclination of the control vector from the intake air temperature / humidity KA to the target blown air temperature / humidity SA * is within the allowable range of the sensible heat ratio (SHF) of the refrigeration cycle. Select one with a small enthalpy difference.
When the maximum dehumidification operation SHFmin in the refrigeration cycle does not provide sufficient dehumidification and the control vector cannot be realized, the temperature of the target blown air is lowered so that the humidity is satisfied, and the outlet side air flowing out from the indoor heat exchanger 3 is heated. To control the target air temperature and humidity SA *. That is, the refrigerant temperature of the indoor heat exchanger 3 is set so that the humidity of the target blown air becomes equal, and the outlet side air heat exchanged with the refrigerant at that temperature in the indoor heat exchanger 3 is lower than the temperature of the target blown air. In some cases, it is heated to the target blown air temperature.

上記の考え方の1.でエンタルピー差ができるだけ小さくなるように設定しているので、空気調和装置の圧縮機71や室外ファン74や室内ファン5などへの入力の総和を最小にでき、無駄な動作を行うことなく省エネルギーとなる。さらに、上記の考え方の3.で加熱手段を用いる場合には、室内熱交換器で熱交換した空気を加熱手段で加熱する場合、室内熱交換器3での冷媒温度を得るための熱輸送能力と加熱量とのエネルギー総量が小さくなるように外気導入量を設定し、省エネルギーを図って運転制御を行う。即ち、空調能力Qeとヒータ4での入力エネルギーの総量が小さくなるように運転制御する。   1 of the above concept. Since the enthalpy difference is set to be as small as possible, the sum of the inputs to the compressor 71, the outdoor fan 74, the indoor fan 5 and the like of the air conditioner can be minimized, and energy can be saved without performing unnecessary operations. Become. Further, in the above concept 3. In the case of using the heating means, when the air heat-exchanged by the indoor heat exchanger is heated by the heating means, the total energy amount of the heat transport capacity and the heating amount for obtaining the refrigerant temperature in the indoor heat exchanger 3 is The outside air introduction amount is set so as to decrease, and the operation control is performed for energy saving. That is, operation control is performed so that the total amount of input energy at the air conditioning capability Qe and the heater 4 is reduced.

このために、外気を室内の空気調和に利用できるかどうかの判断や、その判断に基づいて運転動作を設定するものが運転動作設定手段82で行う運転動作設定動作であり、この設定に従い、外気導入量制御手段83と運転動作制御手段84で行う運転制御動作によって実際に空気調和装置の各機器を動作させる。湿り空気線図上で外気状態に応じて3つの領域に分け、それぞれの領域に対して処理し、外気導入量と空調能力と加熱量を設定する。図8は湿り空気線図での各ゾーンの領域を示す説明図、図9は外気状態による外気利用方法のゾーン分けの部分の処理手順を示すフローチャートである。図8に示すように、リターン空気温湿度RAと、目標吹出し空気温湿度SA*と、外気温湿度OAx(x=1〜3)の状態により外気をどう使うかについて、空気線図が3つのゾーンに分けられる。ゾーン(1)は、リターン空気温湿度RAを通る等エンタルピー線(直線A)よりも上の領域で、外気温湿度OA1がリターン空気温湿度RAより高エンタルピーのときである。ゾーン(2)は、外気温湿度OA2がリターン空気温湿度RAより低エンタルピー、かつ、外気温度がリターン空気温度より低い領域で、リターン空気温湿度RAと目標吹き出し温湿度SA*を結ぶ線(直線B)より低温側の領域である。ゾーン(3)は、外気温湿度OA3がリターン空気温湿度RAより低エンタルピー、かつ、外気湿度がリターン空気湿度より低い領域で、RAとSA*を結ぶ線(直線B)より低湿側の領域である。   For this reason, it is the driving operation setting operation performed by the driving operation setting means 82 that determines whether or not the outside air can be used for indoor air conditioning, and sets the driving operation based on the determination. Each device of the air conditioner is actually operated by an operation control operation performed by the introduction amount control means 83 and the operation operation control means 84. The wet air diagram is divided into three regions according to the outside air state, and each region is processed to set the outside air introduction amount, the air conditioning capacity, and the heating amount. FIG. 8 is an explanatory diagram showing regions of each zone in the wet air diagram, and FIG. 9 is a flowchart showing a processing procedure of a zone division part of the outside air utilization method according to the outside air state. As shown in FIG. 8, there are three air diagrams regarding how to use outside air depending on the state of return air temperature / humidity RA, target blowing air temperature / humidity SA *, and outside air temperature / humidity OAx (x = 1 to 3). Divided into zones. Zone (1) is a region above the isoenthalpy line (straight line A) passing through the return air temperature and humidity RA, and is when the outside air temperature humidity OA1 is higher than the return air temperature and humidity RA. The zone (2) is a line (straight line) connecting the return air temperature / humidity RA and the target blowing temperature / humidity SA * in a region where the outside air temperature / humidity OA2 is lower than the return air temperature / humidity RA and the outside air temperature is lower than the return air temperature. B) A region on a lower temperature side. Zone (3) is an area where the outside air temperature humidity OA3 is lower than the return air temperature humidity RA, and the outside air humidity is lower than the return air humidity, and is on the lower humidity side than the line connecting RA and SA * (straight line B). is there.

図9のフローチャートでは、室内温度である吸込み検知手段9と室内湿度である吸込み湿度検知手段10で検知したリターン空気の温度と湿度からリターン空気温湿度RAとリターン空気エンタルピーを算出し(ST1、ST2:室内空気温湿度検知ステップ)、外気温度検知手段11と外気湿度検知手段12で検知した外気の温度と湿度から外気温湿度OAと外気エンタルピーを算出する(ST3、ST4:外気温湿度検知ステップ)。次に目標温度および目標湿度から目標室内空気温湿度を算出する(ST5:目標室内空気温湿度設定ステップ)。次にST6(室内空調負荷検知ステップ)では、リターン空気温湿度RAと予め検知した室内空調負荷QLとから目標吹出し空気温湿度SA*を設定する。室内空調負荷は先に説明したように吹出し温湿度とリターン温湿度から簡単に求めることが出来る。ST7で外気エンタルピーとリターン空気エンタルピーとを比較し、外気エンタルピーの方がリターン空気エンタルピーよりも大きい場合には、ゾーン(1)の運転となる(ST9)。ST7で外気エンタルピーとリターン空気エンタルピーとを比較した結果、外気エンタルピーの方がリターン空気エンタルピーよりも小さいまたは同じ場合には、リターン空気温湿度RAと目標吹出し空気温湿度SA*を結ぶベクトルである直線Bを引き、外気温湿度OAがこの直線Bの上側か下側になるかを判断する(ST8)。外気温湿度OAが、直線Bの上側即ちリターン空気温湿度RAより低温側の領域にあるときにはゾーン(2)(ST10)、直線Bの下側即ちリターン空気温湿度RAより低湿側の領域にあるときにはゾーン(3)(ST11)とする。   In the flowchart of FIG. 9, the return air temperature / humidity RA and the return air enthalpy are calculated from the temperature and humidity of the return air detected by the suction detection means 9 which is the room temperature and the suction humidity detection means 10 which is the room humidity (ST1, ST2). : Outside air temperature / humidity detection step), the outside air temperature humidity OA and the outside air enthalpy are calculated from the outside air temperature and humidity detected by the outside air temperature detecting means 11 and the outside air humidity detecting means 12 (ST3, ST4: outside air temperature humidity detecting step). . Next, target indoor air temperature and humidity are calculated from the target temperature and target humidity (ST5: target indoor air temperature and humidity setting step). Next, in ST6 (indoor air conditioning load detection step), a target blowing air temperature / humidity SA * is set from the return air temperature / humidity RA and the indoor air conditioning load QL detected in advance. As described above, the indoor air conditioning load can be easily obtained from the blowing temperature and humidity and the return temperature and humidity. In ST7, the outside air enthalpy is compared with the return air enthalpy. If the outside air enthalpy is larger than the return air enthalpy, the operation of the zone (1) is performed (ST9). If the outside air enthalpy is smaller than or equal to the return air enthalpy as a result of comparing the outside air enthalpy and the return air enthalpy in ST7, a straight line that is a vector connecting the return air temperature / humidity RA and the target blown air temperature / humidity SA *. B is subtracted to determine whether the outside air temperature humidity OA is above or below the straight line B (ST8). When the outside air temperature / humidity OA is on the upper side of the straight line B, that is, in the region lower than the return air temperature / humidity RA, it is in the zone (2) (ST10). In some cases, zone (3) (ST11) is used.

実際には例えば平面上で2つの点の位置関係を知るにはその2点の外積を計算してその結果の符合で判断できる。外積とは、2つのベクトル、C(c1,c2)、D(d1、d2)において、
C x D = c1xd2 − d1xc2
の式で算出できる。これを利用して、外気温湿度OAが3つのどのゾーンに位置しているかを簡単に知ることができる。なお、C,Dはベクトルであり、大きさと方向を有する量である。なお、C*D>0の時はCがDより右回りに存在している。
Actually, for example, in order to know the positional relationship between two points on a plane, the outer product of the two points can be calculated and the result can be determined by the sign of the result. The outer product is the two vectors C (c1, c2), D (d1, d2)
C x D = c1xd2-d1xc2
It can be calculated by the following formula. Using this, it is possible to easily know in which of the three zones the outside air temperature humidity OA is located. C and D are vectors, which are quantities having a magnitude and a direction. When C * D> 0, C exists clockwise from D.

次に、3つの領域のそれぞれにおける外気導入量と空調能力と加熱量を設定する処理について説明する。図10は図7の外気温湿度OA1がゾーン(1)の領域、即ち外気温湿度OA1がリターン空気温湿度RAより高エンタルピーであるときの処理手順を示すフローチャートである。この場合には、外気を導入することにより、空調負荷が増加してしまうため、省エネルギー効果を重視する場合は外気を導入しない。例えばダンパ67を閉止し、ファン31を停止することで、外気導入手段6を閉止して室内からのリターン空気のみを循環させる。ただし、利用者の要求などにより換気が必要な場合には外気を導入してもよい。また、外気を導入しないように設定しても、実際には壁の隙間などで外気導入量が0にならない場合もあり、外気導入手段6で外気導入量が最小になるように運転すればよい。   Next, processing for setting the outside air introduction amount, the air conditioning capability, and the heating amount in each of the three regions will be described. FIG. 10 is a flowchart showing a processing procedure when the outside air temperature humidity OA1 in FIG. 7 is in the zone (1) region, that is, when the outside air temperature humidity OA1 is higher in enthalpy than the return air temperature humidity RA. In this case, since the air conditioning load is increased by introducing the outside air, the outside air is not introduced when the energy saving effect is important. For example, by closing the damper 67 and stopping the fan 31, the outside air introduction means 6 is closed and only the return air from the room is circulated. However, outside air may be introduced when ventilation is required due to user requirements. Even if the setting is made so that the outside air is not introduced, the outside air introduction amount may not actually become zero due to a gap between the walls, and the outside air introduction means 6 may be operated so that the outside air introduction amount is minimized. .

処理フローでは、ST21で換気が要求されているかどうかを判断し、換気が要求されている場合には、外気導入量を換気のための所定量、例えば外気導入手段6のダンパ17を全開としたりファン16の回転を高速にする(ST22)。そして室内熱交換器3の吸込み空気温湿度KAはリターン空気と外気が混合された混合空気の温湿度を設定する(ST23)。一方、換気が要求されていない場合には、外気導入手段6を閉として外気導入量を0とし(ST24)、室内熱交換器3の吸込み空気温湿度KAはリターン空気温湿度RAを設定する(ST25)。ST26では、制御ベクトルが実現できるかどうか、即ち冷凍サイクルのSHFの許容範囲かどうかを判断している。吸込み空気温湿度KAと目標吹出し空気温湿度SA*への制御ベクトルの延長線が飽和線と交差し蒸発温度の許容範囲内であれば、ST27の処理を行う。ST27では、湿り空気線図上で、吸込み空気温湿度KAと目標吹出し空気温湿度SA*から空調能力を決定する制御ベクトルを設定する。即ち吸込み空気温湿度KAと目標吹出し空気温湿度SA*を結ぶベクトルを設定すると共に、このベクトルの延長線と飽和線の交点の温度を室内熱交換器3の冷媒温度とする。ST26の判断で、制御ベクトルの延長線が飽和線と交差しない場合には許容範囲外であり、ST28でSHFmin運転で室内熱交換器3から目標湿度と同レベルの湿度の出口側空気を流出し、ヒータ4で目標温度にまで加熱して目標吹出し空気温湿度SA*を得るように空調能力や冷媒温度やヒータの加熱量を設定する。ST61(運転制御ステップ)は、外気量制御手段83によって設定された外気量の外気を室内ユニット1に導入し、運転動作制御手段84によって設定された制御ベクトルに基づいて冷凍サイクルを運転する。また必要に応じてヒータ4を動作させる。実際には、圧縮機71の運転周波数、膨張弁75の開度、室内ファン5および室外ファン24の回転数、ヒータ4、外気導入手段6など、空気調和装置を構成する各機器部品が運転される。ST21〜ST28、ST61を一定時間、例えば1分程度のサイクルで繰り返すことで、室内の空気状態は徐々に目標室内空気温湿度tになり、室内2の空気調和が行われる。   In the processing flow, it is determined whether or not ventilation is required in ST21. If ventilation is required, the outside air introduction amount is set to a predetermined amount for ventilation, for example, the damper 17 of the outside air introduction means 6 is fully opened. The fan 16 is rotated at a high speed (ST22). The intake air temperature / humidity KA of the indoor heat exchanger 3 sets the temperature / humidity of the mixed air in which the return air and the outside air are mixed (ST23). On the other hand, if ventilation is not required, the outside air introduction means 6 is closed and the outside air introduction amount is set to 0 (ST24), and the return air temperature humidity RA is set as the intake air temperature humidity KA of the indoor heat exchanger 3 ( ST25). In ST26, it is determined whether or not the control vector can be realized, that is, whether or not the SHF allowable range of the refrigeration cycle. If the extension line of the control vector to the intake air temperature / humidity KA and the target blown air temperature / humidity SA * intersects the saturation line and is within the allowable range of the evaporation temperature, the process of ST27 is performed. In ST27, on the wet air diagram, a control vector for determining the air conditioning capacity from the intake air temperature / humidity KA and the target blown air temperature / humidity SA * is set. That is, a vector connecting the intake air temperature / humidity KA and the target blown air temperature / humidity SA * is set, and the temperature at the intersection of the extension line of this vector and the saturation line is set as the refrigerant temperature of the indoor heat exchanger 3. If the extension line of the control vector does not intersect with the saturation line in the determination of ST26, it is out of the allowable range. In ST28, the outlet side air having the same level as the target humidity is discharged from the indoor heat exchanger 3 in the SHFmin operation. The air conditioning capacity, the refrigerant temperature, and the heating amount of the heater are set so that the heater 4 is heated to the target temperature to obtain the target blown air temperature and humidity SA *. In ST61 (operation control step), the outside air amount set by the outside air amount control means 83 is introduced into the indoor unit 1, and the refrigeration cycle is operated based on the control vector set by the operation operation control means 84. Further, the heater 4 is operated as necessary. Actually, each component of the air conditioner, such as the operating frequency of the compressor 71, the opening degree of the expansion valve 75, the rotational speed of the indoor fan 5 and the outdoor fan 24, the heater 4, and the outside air introducing means 6, is operated. The By repeating ST21 to ST28 and ST61 in a cycle of a certain time, for example, about 1 minute, the indoor air condition gradually becomes the target indoor air temperature and humidity t, and the air conditioning of the indoor 2 is performed.

ゾーン(2)は、リターン空気温湿度RAより低エンタルピー、かつ、リターン空気温湿度RAと目標吹出し空気温湿度SA*を結ぶ線Bより低温側の領域、即ち直線Bより上側の領域であり、外気温湿度OA2がこのゾーン(2)に存在するときの制御について説明する。このゾーン(2)の領域は言いかえれば、外気エンタルピーがリターン空気エンタルピーよりも小さく、かつ外気の温度がリターン空気の温度よりも低い領域のうちで、外気とリターン空気の温度差に対する湿度差の変化率が、目標吹出し空気とリターン空気の温度差に対する湿度差の変化率よりも大きくなる外気温湿度を除く領域である。外気がゾーン(2)にあるときには外気の低温特性を利用して、外気を導入して主に室内空気の温度低下に利用し、冷凍サイクルを用いて室内熱交換器3での冷媒との熱交換によって主に室内空気の湿度を低下させる制御を行う。外気で下げる温度が足りない場合には、冷凍サイクルで温度を下げる。   Zone (2) is a region lower in enthalpy than return air temperature / humidity RA and lower than line B connecting return air temperature / humidity RA and target blowing air temperature / humidity SA *, that is, a region above line B. The control when the outside air temperature humidity OA2 exists in this zone (2) will be described. In other words, the zone (2) is an area where the outside air enthalpy is smaller than the return air enthalpy and the outside air temperature is lower than the return air temperature. This is a region excluding the outside air temperature humidity in which the rate of change is larger than the rate of change of the humidity difference with respect to the temperature difference between the target blown air and the return air. When the outside air is in the zone (2), the outside air is introduced to mainly use it for lowering the temperature of the indoor air by utilizing the low temperature characteristic of the outside air, and the heat with the refrigerant in the indoor heat exchanger 3 using the refrigeration cycle. The control mainly reduces the humidity of the room air by replacement. When the temperature to be lowered by outside air is insufficient, the temperature is lowered by a refrigeration cycle.

図11は外気温湿度OA2がゾーン(2)の領域にあるときの処理手順を示すフローチャートであり、図12と図13はそれぞれ制御ベクトルの決め方を示す説明図である。ST31で、リターン空気温湿度RAと目標吹出し空気温湿度SA*とを結んで延長した線が飽和線と交わるかどうか、即ちこの延長線が許容範囲の冷媒温度を示す飽和線に至るかどうかを判断し、交わる場合の制御ベクトルの決め方をST32、ST33、図12で示している。交わる場合には除湿能力が最大である顕熱比SHFminで運転するように飽和線Hと延長線が接する点、或いは冷凍サイクルの許容範囲の下限値であるETを探し、この点に対応する延長線上で混合空気の温湿度KA2を設定し、吸込み空気温湿度KAとする(ST32)。外気を導入して室内空気と混合した吸込み空気の温湿度は、外気温湿度OA2とリターン空気温湿度RA間で外気の導入量に応じて温度と湿度とが関連して変化し、図12に示すように湿り空気線図でOA2とRAとを結ぶ直線上の温湿度になる。そこでこのOA2−RA上の点と、目標吹出し空気温湿度SA*と、飽和線上の許容範囲内の蒸発温度とを結ぶ制御ベクトルを考慮し、室内熱交換器温度が許す範囲で低い温度になるように、除湿能力が最大、即ち温度の変化に対する湿度の変化の大きい制御ベクトル、即ち飽和線Hと延長線が接する方向である延長線を選択すると、吸込み空気温湿度はKA2となる。このとき、RAとOA2の内分点KA2の比率で外気導入量を設定し(ST33)、その後ST39の処理を行う。   FIG. 11 is a flowchart showing a processing procedure when the outside air temperature humidity OA2 is in the zone (2) region, and FIGS. 12 and 13 are explanatory diagrams showing how control vectors are determined. In ST31, it is determined whether or not a line extending by connecting the return air temperature / humidity RA and the target blowing air temperature / humidity SA * intersects with a saturation line, that is, whether or not the extension line reaches a saturation line indicating an allowable refrigerant temperature. ST32, ST33, and FIG. 12 show how to determine the control vector when judging and crossing. In the case of crossing, look for the point where the saturation line H and the extension line touch so as to operate at the sensible heat ratio SHFmin where the dehumidification capacity is maximum, or find the ET which is the lower limit of the allowable range of the refrigeration cycle, and the extension corresponding to this point The temperature / humidity KA2 of the mixed air is set on the line, and is set as the intake air temperature / humidity KA (ST32). The temperature and humidity of the intake air mixed with the room air by introducing the outside air changes in relation to the temperature and humidity depending on the amount of outside air introduced between the outside air temperature humidity OA2 and the return air temperature humidity RA. As shown in the diagram, the temperature and humidity on the straight line connecting OA2 and RA are shown in the wet air diagram. Therefore, in consideration of a control vector connecting the point on the OA2-RA, the target blowing air temperature / humidity SA *, and the evaporation temperature within the allowable range on the saturation line, the temperature becomes as low as the indoor heat exchanger temperature allows. As described above, when a control vector having the maximum dehumidifying capacity, that is, a control vector having a large change in humidity with respect to a change in temperature, that is, an extension line in which the saturation line H and the extension line are in contact, is selected, the intake air temperature and humidity becomes KA2. At this time, the outside air introduction amount is set by the ratio of the internal dividing point KA2 between RA and OA2 (ST33), and then the process of ST39 is performed.

ここで、温度の変化量に対する湿度の変化量の大きい制御ベクトルを選択するということは、吸込み空気の温度が目標吹出し空気の温度に接近するように、または制御ベクトルの傾斜が大きくなるように選択することで、このとき外気の低温特性を最大限に利用することになる。   Here, selecting a control vector having a large amount of change in humidity relative to the amount of change in temperature means selecting so that the temperature of the intake air approaches the temperature of the target blown air, or the slope of the control vector becomes large. By doing this, the low temperature characteristics of the outside air are utilized to the maximum.

ST31で飽和線と交わらなかった場合の制御ベクトルの決め方を、ST34〜ST38、図13で示している。この場合にはリターン空気温湿度RAから目標吹出し空気温湿度SA*への延長線が許容範囲の冷媒温度を示す飽和線から外れた場合であり、リターン空気温湿度RAから目標吹出し空気温湿度SA*へ直接冷却除湿することができないため、冷凍サイクルのSHFの許容範囲内で冷却除湿を行なう。即ちOA2とRAを含むOA2−RA上の点と、目標吹出し空気温湿度SA*の湿度と同レベルの湿度(SA*を通り、横軸に平行な線上)と、飽和線上の許容範囲内の蒸発温度とを結んで制御ベクトルとして冷凍サイクルを運転し、冷却しすぎた場合にヒータ4によって室内熱交換器3から流出する出口側空気を加熱し、目標吹出し空気温湿度SA*を得る。このとき省エネルギーを重視する場合には、リターン空気温湿度RAを冷却して再熱するときと、外気温湿度OA2を冷却して再熱するときにおいて、空気調和装置への入力である空調能力と再熱時のヒータ4への入力の和を比較して、入力エネルギー総量が少ない方で運転する。ここで外気導入量が吸込み空気量の0%または100%に設定されることになるが、例えば外気導入量を0%または100%に設定しても実際には外気導入手段6の構成または設置状態によって完全に0%または100%にならないこともある。この場合には、外気導入手段6で外気を導入できる最小または最大になるように運転すればよい。   ST34 to ST38 and FIG. 13 show how to determine the control vector when it does not intersect with the saturation line in ST31. In this case, the extension line from the return air temperature / humidity RA to the target blown air temperature / humidity SA * deviates from the saturation line indicating the allowable refrigerant temperature, and the target blown air temperature / humidity SA from the return air temperature / humidity RA. Since it is not possible to cool and dehumidify directly to *, cool and dehumidify within the allowable range of SHF of the refrigeration cycle. That is, a point on OA2-RA including OA2 and RA, a humidity of the same level as the target blowing air temperature humidity SA * (on a line passing through SA * and parallel to the horizontal axis), and within an allowable range on the saturation line The refrigeration cycle is operated as a control vector by connecting the evaporation temperature, and when it is cooled too much, the outlet side air flowing out from the indoor heat exchanger 3 is heated by the heater 4 to obtain the target blown air temperature and humidity SA *. In this case, when energy saving is important, when the return air temperature / humidity RA is cooled and reheated, and when the outside air temperature / humidity OA2 is cooled and reheated, the air conditioning capacity that is an input to the air conditioner The sum of the inputs to the heater 4 at the time of reheating is compared, and the operation is performed with the smaller total input energy. Here, the outside air introduction amount is set to 0% or 100% of the intake air amount. For example, even if the outside air introduction amount is set to 0% or 100%, the configuration or installation of the outside air introduction means 6 is actually performed. Depending on the condition, it may not be completely 0% or 100%. In this case, what is necessary is just to drive | operate so that the outside air introduction means 6 may become the minimum or the maximum which can introduce outside air.

処理フローではST34でリターン空気温湿度RAを冷却除湿して再熱し目標吹出し空気温湿度SA*とするときの空調能力とヒータ4への入力エネルギーを計算してE(RA)とし、ST35で外気OA2を冷却除湿して再熱し目標吹出し空気温湿度SA*とするときの空調能力とヒータ4への入力エネルギーを計算してE(OA2)とする。ST36でE(RA)とE(OA2)を比較して、ST37、ST38で入力エネルギー総量の小さい方を選択し、外気導入量(0または100%:最小または最大)を設定すると共に、吸込み空気温湿度KA、ヒータ入力量などを設定する。   In the process flow, the return air temperature / humidity RA is dehumidified and reheated in ST34 and reheated to obtain the target blown air temperature / humidity SA * and the input energy to the heater 4 is calculated as E (RA). The air conditioning capacity and the input energy to the heater 4 when the OA2 is cooled and dehumidified and reheated to obtain the target blown air temperature and humidity SA * are calculated as E (OA2). In ST36, E (RA) and E (OA2) are compared, and the smaller input energy amount is selected in ST37 and ST38, the outside air introduction amount (0 or 100%: minimum or maximum) is set, and the suction air The temperature / humidity KA, the heater input amount, etc. are set.

ST39では吸込み空気温湿度KAと目標吹出し温湿度SA*から運転制御を決定する制御ベクトルを得る。ST61(運転制御ステップ)は、外気量制御手段83と運転動作制御手段84で、決定した制御ベクトルに基づいて冷凍サイクルを運転する。また、必要に応じて加熱を行う。実際には、圧縮機の運転周波数、室内および室外ファンの回転数、ヒータ4の入力、外気導入量に応じて、空気調和装置を構成する各機器部品が運転される。ST31〜ST39、ST61を一定時間、例えば1分程度のサイクルで繰り返すことで、室内の空気状態は徐々に目標室内空気温湿度tになり、室内2の空気調和が行われる。   In ST39, a control vector for determining operation control is obtained from the intake air temperature / humidity KA and the target blowing temperature / humidity SA *. In ST61 (operation control step), the outside air amount control means 83 and the operation operation control means 84 operate the refrigeration cycle based on the determined control vector. Moreover, it heats as needed. Actually, each component constituting the air conditioner is operated according to the operating frequency of the compressor, the rotational speeds of the indoor and outdoor fans, the input of the heater 4, and the amount of outside air introduced. By repeating ST31 to ST39 and ST61 in a cycle of a certain time, for example, about 1 minute, the indoor air condition gradually becomes the target indoor air temperature and humidity t, and the air conditioning of the indoor 2 is performed.

ゾーン(3)は、リターン空気温湿度RAより低エンタルピーで低湿度、かつ、リターン空気温湿度RAと目標吹出し空気温湿度SA*を結ぶ線Bより低湿側の領域、即ち直線Bより下側の領域であり、外気温湿度OA3がこのゾーン(3)に存在するときの制御について説明する。このゾーン(3)の領域は言いかえれば、外気エンタルピーがリターン空気エンタルピーよりも小さく、かつ外気の湿度がリターン空気の湿度よりも低い領域のうちで、外気とリターン空気の温度に対する湿度の変化率が、目標吹出し空気とリターン空気の温度に対する湿度の変化率よりも小さくなる外気温湿度を除く領域である。外気がゾーン(3)にあるときには外気の低湿特性を利用して、外気を導入して主に室内空気の湿度低下に利用し、冷凍サイクルを用いて室内熱交換器3での冷媒との熱交換によって主に室内空気の温度を低下させる制御を行う。外気で下げる湿度が足りない場合には、冷凍サイクルで湿度を下げる。   Zone (3) has a lower enthalpy and lower humidity than the return air temperature / humidity RA, and a region on the lower humidity side than the line B connecting the return air temperature / humidity RA and the target blowing air temperature / humidity SA *, that is, lower than the straight line B. The control when the outside air temperature humidity OA3 is in the zone (3) will be described. In other words, the area of this zone (3) is the rate of change of humidity with respect to the temperature of the outside air and the return air in the area where the outside air enthalpy is smaller than the return air enthalpy and the outside air humidity is lower than the return air humidity. However, it is an area | region except the external temperature humidity which becomes smaller than the change rate of the humidity with respect to the temperature of target blowing air and return air. When the outside air is in the zone (3), the low humidity characteristic of the outside air is used, the outside air is introduced and mainly used for lowering the humidity of the indoor air, and the heat with the refrigerant in the indoor heat exchanger 3 using the refrigeration cycle. Control is performed mainly to reduce the temperature of room air by replacement. If the humidity is low due to the outside air, the humidity is lowered by the refrigeration cycle.

図14は外気温湿度OA3がゾーン(3)の領域にあるときの処理手順を示すフローチャートであり、図15と図16と図17はそれぞれ制御ベクトルの決め方を示す説明図である。この場合に吸込み空気温湿度KAは外気温湿度OA3と同一の時が最もエンタルピーが小さい。そこでST41で、外気温湿度OA3と目標吹出し空気温湿度SA*とを結んで延長した線が飽和線と交わるかどうか、即ちこの延長線が許容範囲の冷媒温度を示す飽和線に至るかどうかを判断し、交わる場合の制御ベクトルの決め方をST42〜ST45、図15、図16で示している。この場合には外気の低湿特性を利用し、冷凍サイクルは顕熱比SHFmaxで運転するように設定する。外気を導入して室内空気と混合した吸込み空気の温湿度は、外気温湿度OA3とリターン空気温湿度RA間で外気の導入量に応じて温度と湿度とが関連して変化し、図15,図16に示す湿り空気線図でOA3とRAとを結ぶ直線上の温湿度になる。そこでこのOA3−RA上の点と、目標吹出し空気温湿度SA*と、飽和線上の許容範囲内の蒸発温度とを結ぶ制御ベクトルを考慮し、除湿能力が最小、即ち温度の変化に対する湿度の変化の小さい制御ベクトルを選択すると、図15の場合にはOA3、図16の場合にはSA*と同じ湿度であるKA3が吸込み空気温湿度KAとなる。   FIG. 14 is a flowchart showing a processing procedure when the outside air temperature humidity OA3 is in the zone (3) region, and FIGS. 15, 16, and 17 are explanatory diagrams showing how to determine the control vector. In this case, the enthalpy is the smallest when the intake air temperature / humidity KA is the same as the outside air temperature / humidity OA3. Therefore, in ST41, whether or not a line extending by connecting the outside air temperature humidity OA3 and the target blowing air temperature and humidity SA * intersects the saturation line, that is, whether or not this extension line reaches a saturation line indicating the allowable refrigerant temperature. ST42 to ST45 and FIGS. 15 and 16 show how to determine the control vector when making a judgment and crossing. In this case, the low humidity characteristic of the outside air is used, and the refrigeration cycle is set to operate at the sensible heat ratio SHFmax. The temperature and humidity of the intake air mixed with the indoor air by introducing the outside air changes in relation to the temperature and humidity depending on the amount of outside air introduced between the outside air temperature humidity OA3 and the return air temperature humidity RA, as shown in FIG. In the wet air diagram shown in FIG. 16, the temperature and humidity are on a straight line connecting OA3 and RA. Therefore, considering a control vector connecting the point on the OA3-RA, the target blown air temperature / humidity SA *, and the evaporation temperature within the allowable range on the saturation line, the dehumidification capacity is minimized, that is, the change in humidity with respect to the change in temperature. 15 is selected, OA3 in the case of FIG. 15 and KA3 having the same humidity as SA * in the case of FIG. 16 become the intake air temperature / humidity KA.

処理フローでは、ST42で外気の絶対湿度と目標吹出し空気の絶対湿度とを比較し、外気の絶対湿度の方が大きい場合には、図15に示すように外気導入量を100%とし、吸込み空気温湿度KAに外気温湿度OA3を設定する(ST43)。このとき外気導入量を実際に100%にできない場合には、外気導入手段6で導入できる最大導入量とする。即ち出来るだけ多くの外気を導入する。ST42の比較で目標吹出し空気の絶対湿度のほうが外気よりも大きい場合には、図16に示すように、顕熱比SHFmax、この場合には湿り空気線図上で規定されているほぼ1となる温湿度KA3を吸込み空気温湿度KAに設定する(ST44)。このときRAとOA3の内分点KA3の比率で外気導入量を設定し(ST45)、その後ST51の処理を行う。   In the processing flow, the absolute humidity of the outside air and the absolute humidity of the target blown air are compared in ST42. If the absolute humidity of the outside air is larger, the outside air introduction amount is set to 100% as shown in FIG. The outside air temperature humidity OA3 is set to the air temperature humidity KA (ST43). At this time, if the outside air introduction amount cannot actually be 100%, the maximum introduction amount that can be introduced by the outside air introduction means 6 is set. That is, introduce as much outside air as possible. When the absolute humidity of the target blown air is greater than the outside air in the comparison of ST42, as shown in FIG. 16, the sensible heat ratio SHFmax, in this case, approximately 1 defined on the wet air diagram. The temperature / humidity KA3 is set to the suction air temperature / humidity KA (ST44). At this time, the outside air introduction amount is set at the ratio of the internal dividing point KA3 between RA and OA3 (ST45), and then the process of ST51 is performed.

ここで、温度の変化量に対する湿度の変化量の小さい制御ベクトルを選択するということは、吸込み空気の湿度が目標吹出し空気の湿度に接近するように、または制御ベクトルの傾斜が小さくなるように選択することで、このとき外気の低湿特性を最大限に利用することになる。   Here, selecting a control vector with a small amount of change in humidity relative to the amount of change in temperature means selecting so that the humidity of the intake air approaches the humidity of the target blown air, or the slope of the control vector becomes small By doing so, the low-humidity characteristics of the outside air are utilized to the maximum.

ST41で飽和線と交わらなかった場合の制御ベクトルの決め方を、ST46〜ST50、図17で示している。この場合には外気温湿度OA3から目標吹出し空気温湿度SA*への延長線が許容範囲の冷媒温度を示す飽和線から外れた場合であり、外気温湿度OA3から目標吹出し空気温湿度SA*へ直接冷却除湿することができないため、冷凍サイクルのSHFの許容範囲内で冷却除湿を行なう。即ちOA3とRAを含むOA3−RA上の点と、目標吹出し空気温湿度SA*の湿度と同レベルの湿度(SA*を通り、横軸に平行な線上)と、飽和線上の許容範囲内の蒸発温度とを結んで制御ベクトルとして冷凍サイクルを運転し、冷却しすぎた場合にヒータ4によって室内熱交換器3から流出する出口側空気を加熱し、目標吹出し空気温湿度SA*を得る。このとき省エネルギーを重視する場合には、リターン空気温湿度RAを冷却して再熱するときと、外気温湿度OA3を冷却して再熱するときにおいて、空気調和装置への入力である空調能力と再熱時のヒータ4への入力の和を比較して、入力エネルギー総量が少ない方で運転する。   ST46 to ST50 and FIG. 17 show how to determine the control vector when it does not intersect with the saturation line in ST41. In this case, the extension line from the outside air temperature humidity OA3 to the target blown air temperature humidity SA * deviates from the saturation line indicating the allowable refrigerant temperature, and from the outside air temperature humidity OA3 to the target blown air temperature humidity SA *. Since cooling and dehumidification cannot be performed directly, cooling and dehumidification are performed within the allowable range of SHF of the refrigeration cycle. That is, a point on OA3-RA including OA3 and RA, a humidity of the same level as the target blown air temperature and humidity SA * (on a line passing through SA * and parallel to the horizontal axis), and within an allowable range on the saturation line The refrigeration cycle is operated as a control vector by connecting the evaporation temperature, and when it is cooled too much, the outlet side air flowing out from the indoor heat exchanger 3 is heated by the heater 4 to obtain the target blown air temperature and humidity SA *. In this case, when energy saving is regarded as important, when the return air temperature / humidity RA is cooled and reheated, and when the outside air temperature / humidity OA3 is cooled and reheated, the air conditioning capacity that is an input to the air conditioner The sum of the inputs to the heater 4 at the time of reheating is compared, and operation is performed with the smaller total input energy.

処理フローではST46でリターン空気温湿度RAを冷却除湿して再熱し目標吹出し空気温湿度SA*とするときの空調能力とヒータ4への入力エネルギーを計算してE(RA)とし、ST47で外気OA3を冷却除湿して再熱し目標吹出し空気温湿度SA*とするときの空調能力とヒータ4への入力エネルギーを計算してE(OA3)とする。ST48でE(RA)とE(OA3)を比較して、ST49、ST50で入力エネルギー総量の小さい方を選択し、外気導入量(0または100%:最小または最大)を設定すると共に、吸込み空気温湿度KA、ヒータ入力量などを設定する。   In the processing flow, the return air temperature / humidity RA is dehumidified and reheated in ST46, and the air conditioning capacity and the input energy to the heater 4 when calculating the target blown air temperature / humidity SA * are calculated as E (RA). The air conditioning capacity and the input energy to the heater 4 when the OA3 is cooled and dehumidified and reheated to obtain the target blown air temperature and humidity SA * are calculated as E (OA3). In ST48, E (RA) and E (OA3) are compared, and in ST49 and ST50, the smaller input energy amount is selected, the outside air introduction amount (0 or 100%: minimum or maximum) is set, and the suction air The temperature / humidity KA, the heater input amount, etc. are set.

ST51では吸込み空気温湿度KAと目標吹出し温湿度SA*から運転制御を決定する制御ベクトルを得る。ST61(運転制御ステップ)は、外気量制御手段83と運転動作制御手段84で、決定した制御ベクトルに基づいて冷凍サイクルを運転する。また必要に応じて加熱を行う。実際には、圧縮機の運転周波数、室内および室外ファンの回転数、ヒータ4の入力、外気導入量に応じて、空気調和装置を構成する各機器部品が運転される。ST41〜ST51、ST61を一定時間、例えば1分程度のサイクルで繰り返すことで、室内の空気状態は徐々に目標室内空気温湿度tになり、室内2の空気調和が行われる。   In ST51, a control vector for determining operation control is obtained from the intake air temperature / humidity KA and the target blowing temperature / humidity SA *. In ST61 (operation control step), the outside air amount control means 83 and the operation operation control means 84 operate the refrigeration cycle based on the determined control vector. Heating is performed as necessary. Actually, each component constituting the air conditioner is operated according to the operating frequency of the compressor, the rotational speeds of the indoor and outdoor fans, the input of the heater 4, and the amount of outside air introduced. By repeating ST41 to ST51, ST61 in a cycle of a certain time, for example, about 1 minute, the indoor air condition gradually becomes the target indoor air temperature and humidity t, and the air conditioning of the indoor 2 is performed.

上記では、ゾーン(1)とそれ以外のゾーン(2)、ゾーン(3)とで外気を導入するかしないかに分けられる。一方のゾーン(1)の場合には外気エンタルピーがリターン空気エンタルピーよりも大きいので、外気を導入しないで冷凍サイクルで空調を行い、他方のゾーン(2)、(3)の場合には外気エンタルピーがリターン空気エンタルピーよりも小さいので、外気をできるだけ導入して室内空調に利用している。また、ゾーン(2)とゾーン(3)とで冷凍サイクルの空調能力で除湿能力の大きい運転を行うか高顕熱運転を行うかに分けられる。一方のゾーン(2)の場合には外気の低温特性を利用して冷凍サイクルは除湿能力の大きい運転を行う。他方のゾーン(3)の場合には外気の低湿特性を利用して冷凍サイクルは高顕熱運転を行う。このように室内空気の温湿度状態に対する外気の温湿度状態でゾーンに分け、それぞれに適した制御を設定することで、外気導入量を空調目標に最適な量とし、無駄な仕事をすることなく、外気を最大限に利用し、省エネルギー化を図ることができる。   In the above, it is divided into whether zone (1) and other zones (2) and zone (3) introduce external air. In the case of one zone (1), the outside air enthalpy is larger than the return air enthalpy, so air conditioning is performed in the refrigeration cycle without introducing outside air, and in the other zones (2) and (3), the outside air enthalpy is Since it is smaller than the return air enthalpy, outside air is introduced as much as possible for indoor air conditioning. Further, the zone (2) and the zone (3) can be divided into an operation with a large dehumidifying capacity or a high sensible heat operation with the air conditioning capacity of the refrigeration cycle. In the case of one zone (2), the refrigeration cycle is operated with a large dehumidifying capacity by utilizing the low temperature characteristics of the outside air. In the case of the other zone (3), the refrigeration cycle performs high sensible heat operation using the low humidity characteristics of the outside air. In this way, by dividing into zones according to the temperature and humidity conditions of the outside air with respect to the temperature and humidity conditions of the indoor air, and setting the control suitable for each, the amount of outside air introduction becomes the optimum amount for the air conditioning target, and without wasteful work It is possible to use the outside air to the maximum and save energy.

以上のように、室内の空気状態に対する室外の空気状態に応じて外気を積極的に導入して効果的に空気調和に利用し、かつ、空気調和装置が熱処理する空気のエネルギーを最小限に制御するため、新鮮外気を導入しつつ、省エネルギーを実現することができる。特に外気や室内空気の温度だけでなく湿度も共に考慮して細かい制御を行っているので、さらに快適な室内空間を得ることができる。また、温度と湿度を関連して変化させながら制御しつつ目標の室内空気状態に接近させるので、より速く目標の室内空間が得られ、省エネルギー化を図ることができる。また、新鮮な外気で室内の空気を新鮮に保つことで、質的にも良好な室内空気を確保でき、室内の人または動植物の健康状態にも良い影響をもたらすと期待できる。   As described above, outside air is actively introduced according to the outdoor air condition relative to the indoor air condition, effectively used for air conditioning, and the energy of the air heat-treated by the air conditioner is controlled to a minimum. Therefore, energy saving can be realized while introducing fresh outside air. In particular, since fine control is performed in consideration of humidity as well as the temperature of outside air and room air, a more comfortable room space can be obtained. In addition, since the target indoor air state is approached while controlling the temperature and humidity while being related to each other, the target indoor space can be obtained faster and energy saving can be achieved. In addition, by keeping indoor air fresh with fresh outside air, it is possible to secure good indoor air in quality, and it can be expected to have a positive effect on the health of indoor people or animals and plants.

上記までの説明は部屋2の室内を中心として屋外である室外との換気を主体に説明して来た。また換気には吸気と排気と言う2つの作用がありこれを自然流によるか送風機によるかで分類するが主として室外からの外気をファンによる、即ち機械換気、或いは強制換気とし排気は自然に排気される構成で説明して来ている。この発明ではどこに焦点を当てて制御するかの都合上以上の説明をして来たが、屋外でない室外、例えばサニタリールームや地下室のように別の部屋で温湿度状態が異なる部屋や、複数のへ夜間の温湿度状態を合わせる場合等にこの発明の制御を使用しても良いことは当然である。更に換気の種類として吸気、排気を強制的に行っても良いし、また特定の温湿度環境、例えば常に外気導入量が決まった値の環境では換気用のファン31を設けずに換気用の開口を設け室内ファンで換気するなどの構成でも良い。また本発明では空気線図上で説明して来たが、これらはマイコンに記載させた空気線図上のベクトル演算で簡単に求めることが出来る。或いは先に述べたごとく空気線図は物理量相互の関係を図面にまとめたもので各物理量の間は演算で求めることが出来る。例えば設定された目標温湿度t*を得るために冷凍サイクルや送風機、換気扇等をどのように運転すればよいかの制御内容において、現状のリターンエア温湿度RAの状態で現状の能力のままではサプライエアの温度と湿度SAが維持され、この状態での室内の負荷の大きさであるQL[Kcal/h]の絶対値は、風量*密度*サプライエアとリターンエアの間のエンタルピーの差、で表される。すなわち、|QL|=(VRA+VOA)*ρa*(iRA-iSA)である。この負荷状態に対する潜熱と顕熱の負荷比率は、LH[g]/SH[℃]=(Xra-Xsa)/(Tra-Tsa)であり、この様に負荷の状態等、この発明の演算は空気線図を全く使わないで演算式の組み合せでも把握することが出来る。   The description so far has been mainly focused on the ventilation between the room 2 and the outside, which is the outdoors. Ventilation has two actions, intake and exhaust. These are classified according to natural flow or blower, but the outside air is mainly exhausted by fans, that is, mechanical ventilation or forced ventilation. It has been explained in the configuration. In the present invention, the above explanation has been given for the purpose of controlling the focus, but it is not outdoor, for example, a sanitary room or a basement, etc. Of course, the control of the present invention may be used when adjusting the temperature and humidity conditions at night. Furthermore, intake and exhaust may be forcibly performed as a type of ventilation, and in a specific temperature and humidity environment, for example, an environment where the amount of outside air introduction is always determined, the ventilation opening is not provided without providing the ventilation fan 31. It is also possible to use a configuration in which ventilation is provided with an indoor fan. Although the present invention has been described on the air diagram, these can be easily obtained by vector calculation on the air diagram described in the microcomputer. Alternatively, as described above, the air diagram is a diagram in which the mutual relationships between physical quantities are summarized in the drawing, and between the physical quantities can be obtained by calculation. For example, in the control content of how to operate the refrigeration cycle, blower, ventilation fan, etc. to obtain the set target temperature / humidity t *, the current return air temperature / humidity RA is not affected by the current capacity. Supply air temperature and humidity SA are maintained, and the absolute value of QL [Kcal / h], which is the magnitude of the indoor load in this state, is the air volume * density * difference in enthalpy between supply air and return air, It is represented by That is, | QL | = (VRA + VOA) * ρa * (iRA-iSA). The load ratio of latent heat and sensible heat with respect to this load state is LH [g] / SH [° C.] = (Xra-Xsa) / (Tra-Tsa). It is possible to grasp even a combination of arithmetic expressions without using an air diagram at all.

エアコンの使用は春から秋にかけての冷房と、主として冬に暖房として使用されるが、能力一杯の負荷を掛けることは例えば夜は温度が下がるなどのためあまり無いのが実状である。例えば関東地区では平均負荷率は13.3%との報告がある。図18に外気温湿度分布説明図を示す。冷房を主体に運転を行う5月から9月までの昼と夜のすべての時間での東京の外気の温度と湿度の状況で、横軸に温度、縦軸に絶対湿度をとり、基準値である温度26度、湿度50%で区分けした時間数が記載してある。aは5月分の744時間のうち基準値よりも温度と湿度が低い時間が595時間、温度が低く湿度が高い時間が140時間であることを示している。bは6月で温度が低く湿度が高い時間が458時間、温度湿度共低い時間が203時間、温度湿度とも高い時間が59時間を示している。cは7月で温度が低く湿度が高い時間が420時間、温度湿度とも高い時間が280時間、温度湿度とも低い時間が40時間を示している。dは8月で温度湿度とも高い時間が430時間、温度が低く湿度が高い時間が312時間を示している。eは9月で温度が低く湿度が高い時間が363時間、温度湿度とも高い時間が187時間、温度湿度とも低い時間が170時間を示している。fは5月から9月までの総計の時間を示している。   The air conditioner is used for cooling from spring to autumn and mainly for heating in winter. However, it is not so much to apply a full load because the temperature drops at night, for example. For example, in the Kanto area, the average load factor is reported to be 13.3%. FIG. 18 is an explanatory diagram of the outside air temperature humidity distribution. The temperature and humidity of Tokyo's outside air at all times of day and night from May to September, which are mainly operated by cooling. The temperature is plotted on the horizontal axis and the absolute humidity is plotted on the vertical axis. The number of hours divided by a certain temperature of 26 degrees and a humidity of 50% is described. “a” indicates that the time when the temperature and the humidity are lower than the reference values is 595 hours and the time when the temperature is low and the humidity is high is 140 hours in 744 hours for May. In b, the time when the temperature is low and the humidity is high in June is 458 hours, the time when the temperature and humidity are both low is 203 hours, and the time when both the temperature and humidity are high is 59 hours. c shows 420 hours when the temperature is low and the humidity is high in July, 280 hours when the temperature and humidity are both high, and 40 hours when both the temperature and humidity are low. d shows that the time when the temperature and humidity are high in August is 430 hours, and the time when the temperature is low and the humidity is high is 312 hours. “e” indicates that the time when the temperature is low and the humidity is high in September is 363 hours, the time when the temperature and humidity are both high is 187 hours, and the time when both the temperature and humidity are low is 170 hours. f indicates the total time from May to September.

5月から9月までの5ヶ月の範囲で温度湿度とも室内温度と湿度の目標値より高い外気は26%にすぎないことが分かる。さらに温度が低くとも湿度が高い時間が非常に多いことも分かる。当然ながらエアコンでは室内で発生する熱の負荷や湿気を除去する必要があり、外気の低い温度の利用が非常に有効であることがこの図からも大まかに判断できる。更に室内負荷は所定の係数*室内面積*温度差で求めることが出来、この負荷量を上述した各温度分布で求めて平均化するとエアコンの平均年間負荷率は冷房最大能力のわずか13.3%に過ぎないので外気による換気を有効に利用して冷房能力と再加熱能力を出来るだけ小さくすることが出来る。もちろん地域性や気象の変動によりこの関係は変化するが、外気の湿度などを計測して外気を利用しすなわち年間の換気を有効に利用して換気、冷却、除湿、冷えすぎ防止を少ないエネルギーで行うことが出来る。これによりエアコン夜間冷房等の小容量負荷のオンとオフの繰り返しを外気導入で避けることが出来、エネルギーの低減だけでなく、騒音を減らし、かつ、体にも冷えすぎを起こさせないなどの効果が得られる。春秋などの中間期の冷房ニーズにも同様に有効に対応できる。従来換気扇は室内汚染空気の換気を主体に考えられていたが導入する外気の温度と湿度を正確に活用してエネルギーの低減が得られる。   It can be seen that only 26% of the outside air is higher than the target values of the room temperature and humidity in the range of 5 months from May to September. In addition, it can be seen that even when the temperature is low, the time when the humidity is high is very large. Of course, in an air conditioner, it is necessary to remove the heat load and moisture generated indoors, and it can be roughly determined from this figure that the use of a low temperature of the outside air is very effective. Furthermore, the indoor load can be obtained by a predetermined coefficient * indoor area * temperature difference. If this load is obtained by averaging the above temperature distributions, the average annual load factor of the air conditioner is only 13.3% of the maximum cooling capacity. Therefore, it is possible to make the cooling capacity and the reheating capacity as small as possible by effectively using the ventilation by outside air. Of course, this relationship changes depending on regional characteristics and weather fluctuations, but the humidity of the outside air is measured and the outside air is used, that is, the annual ventilation is effectively used to ventilate, cool, dehumidify and prevent overcooling with less energy. Can be done. As a result, it is possible to avoid turning on and off a small-capacity load such as air-conditioning at night by introducing outside air, which not only reduces energy, but also reduces noise and prevents the body from getting too cold. can get. It can respond effectively to mid-term cooling needs such as spring and autumn. Conventionally, ventilation fans have been considered mainly for ventilation of indoor polluted air, but energy can be reduced by accurately using the temperature and humidity of the outside air introduced.

上記に述べたように空気線図はエンタルピー差の大小や温度と湿度の位置関係を求めるときにわかりやすいため採用したもので特に空気線図を使わなくとも良く、各物理量はそれぞれ相関関係があるので演算により求められるが、温度と湿度の関係を図表としてマイコン内に記憶させてもよい。この発明は、以上のように外気を導入して温度と湿度を調整するが、ディジタル制御を使えば連続的に同時処理も可能である。また室内の温度の熱時定数による遅れを考慮して間欠的な処理により演算や操作を行っても良い。また、この処理のために検出された温度と湿度を一つのパラメータとして取り扱って目標値の設定や能力などの操作量を求め、このデータにより機器を操作するものを説明したが、温度と湿度を別々のパラメータとして個々のパラメータを組み合わせる演算も可能である。即ち温湿度状態を把握しながら湿度は所定の範囲に或場合は制御せずに冷凍サイクルや換気装置を温度制御だけで行っても良いことは、湿度が大きく変わらない時などには既に述べているように有効なことは当然である。この発明は以上のように、室内に吸込み口と吹出し口を有するエアコン室内ユニットの室内ファンにより室内空気を吸込み口から吸込んで吹出し口から吹出して循環させる室内空気の温度および湿度の少なくとも一方を変化させて空気調和を行う構造に関するもので、この室内ユニットの吸い込み側に換気用のファンと室外から室内に外気を導入または室内から室外へ空気を排気する開口およびこの開口を開閉するシャッターや、通風量を調整する装置、例えばファンの回転数を調整するか、あるいはシャッターの角度を変えて通風調整をしても良い、を設けている。これによりエアコンの室内熱交換器では吸込み口から吸込まれた室内からの戻りの空気と換気用のファンにて導入される外気の両方が冷却または加熱される。この外気の温度と湿度が検出されるとともに、エアコンへ室内から吸込む空気の温度と湿度、および、エアコンから吹出され室内に循環する空気の温度と湿度も検出されて、室内空気の温度および湿度、すなわちエアコンに戻される温度と湿度を目標値である温度および湿度に接近させるように、エアコンの冷凍サイクルを調整したり、室内ファンの回転数を変えたり、換気ファンの回転数やシャッターを調整している。   As mentioned above, the air diagram is adopted because it is easy to understand when determining the enthalpy difference and the positional relationship between temperature and humidity.There is no need to use an air diagram, and each physical quantity has a correlation. Although it is calculated | required by calculation, you may memorize | store the relationship between temperature and humidity as a chart in a microcomputer. In the present invention, the outside air is introduced and the temperature and humidity are adjusted as described above. However, if digital control is used, continuous simultaneous processing is possible. Further, calculation and operation may be performed by intermittent processing in consideration of the delay due to the thermal time constant of the indoor temperature. In addition, the temperature and humidity detected for this process are handled as one parameter, and the operation amount such as setting of target value and capacity is calculated, and the device is operated by this data. Calculations combining individual parameters as separate parameters are also possible. In other words, it is already possible to control the refrigeration cycle and ventilator with temperature control without knowing that the humidity is within the specified range or while controlling the humidity. Of course it is as effective as it is. As described above, the present invention changes at least one of the temperature and humidity of the indoor air that is circulated by sucking indoor air from the air inlet and blowing it out from the air outlet by the indoor fan of the air conditioner indoor unit having the air inlet and outlet. The ventilation unit on the suction side of this indoor unit and the opening for introducing outside air into the room from the outside or exhausting air from the room to the outside, the shutter for opening and closing this opening, and ventilation A device for adjusting the amount, for example, adjusting the rotation speed of the fan or changing the angle of the shutter to adjust the ventilation may be provided. Thereby, in the indoor heat exchanger of the air conditioner, both the return air from the room sucked from the suction port and the outside air introduced by the ventilation fan are cooled or heated. The temperature and humidity of the outside air are detected, the temperature and humidity of the air sucked into the air conditioner from the room, and the temperature and humidity of the air blown from the air conditioner and circulated in the room are also detected, and the temperature and humidity of the room air are That is, adjust the refrigeration cycle of the air conditioner, change the rotation speed of the indoor fan, adjust the rotation speed of the ventilation fan and the shutter so that the temperature and humidity returned to the air conditioner approach the target temperature and humidity. ing.

またこの発明は各部の温度と湿度を検出するが、温度は室内の負荷量や風量とも関係しており、直接計測しても良いが間接的に求めることも出来る。また湿度も季節や天候などに左右されるし、室内の空気調和に対し厳密な計測を必ずしも必要としない場合もあることから記憶されたデータや外気の温度などのパラメータにより間接的に検出しても良い。あるいは、遠方から検出するデータを電話線や電灯線に乗せて情報として送り、この情報に基づき機器の運転停止のみならず温度湿度の制御に関する動作を行うことも可能である。   Although the present invention detects the temperature and humidity of each part, the temperature is also related to the load amount and air volume in the room, and may be directly measured or indirectly obtained. In addition, the humidity depends on the season and weather, and it may not always be necessary to strictly measure indoor air conditioning. Also good. Alternatively, it is also possible to send data detected from a distant place on a telephone line or a power line as information, and based on this information, perform operations related to temperature / humidity control as well as stop operation of the equipment.

この発明の装置により夏の温度と湿度の両方が高い時は外気による換気がほとんど行われないが、温度が比較的低く湿度が低い時、温度も湿度も低い時、温度は高いが湿度が低い時は、換気量が空調に使用するエネルギーが少なくなるように設定される。省エネルギー効果の一例として、外気温湿度がゾーン(2)で低温高湿の場合、外気の低温を利用して室内を冷却し、冷凍サイクルで最大除湿運転を行うとしたときの負荷について概算してみる。通常6月に頻度が高く現れる外気温21℃、絶対湿度12g/kg(相対湿度77%程度)の場合で、8畳程度の室内の目標室内温湿度を26℃、12.8g/kg(相対湿度60%程度)でこの室内に人が2名いるとする。顕熱比SHFminとなるのは、リターン空気と外気の導入比率が0.65:0.35の時で、エンタルピーによる負荷比率(吸込み空気と目標吹出し空気のエンタルピー差)/(リターン空気と目標吹出し空気のエンタルピー差)は、0.5となる。即ち、本実施の形態のように外気を積極的に導入、例えば室内ユニットの総風量の35%の分だけ外気を導入して空気調和を行った場合、従来のように外気を導入しないで室内からのリターン空気のみを吸込み空気として循環させて空気調和を行う場合の半分のエネルギーで空気調和できる。   The device of the present invention hardly ventilates by outside air when summer temperature and humidity are both high, but when temperature is relatively low and humidity is low, when temperature and humidity are low, temperature is high but humidity is low Sometimes the ventilation is set so that less energy is used for air conditioning. As an example of the energy-saving effect, when the outside air temperature humidity is low in the zone (2) and low temperature and high humidity, the room temperature is cooled using the low temperature of the outside air and the load when the maximum dehumidifying operation is performed in the refrigeration cycle is estimated. View. In the case of an outside air temperature of 21 ° C. and an absolute humidity of 12 g / kg (relative humidity of about 77%), which frequently appear in June, the target indoor temperature / humidity of about 8 tatami indoors is 26 ° C. and 12.8 g / kg (relative). It is assumed that there are two people in the room at a humidity of about 60%. The sensible heat ratio SHFmin is when the return air / outside air introduction ratio is 0.65: 0.35, and the load ratio due to enthalpy (the enthalpy difference between the intake air and the target blowing air) / (the return air and the target blowing). The enthalpy difference of air) is 0.5. That is, when the outside air is positively introduced as in the present embodiment, for example, when air is conditioned by introducing the outside air by 35% of the total air volume of the indoor unit, the outside air is not introduced as in the conventional case. The air can be conditioned with half the energy required for air conditioning by circulating only the return air from the air as suction air.

上記では、省エネルギー重視運転の場合の制御を説明したが、所定の換気量が必要な場合には、その換気量を確保した上で、同様の制御を行うことも可能である。また、ヒータ4は必ずしも必要ではなく、特に備えていなくてもよい。この場合冷凍サイクルの最大除湿運転SHFminでも除湿が足りず制御ベクトルを実現できない時には、目標吹出し空気の湿度を上げて温度は満足するように運転し、室内熱交換器3から流出する出口側空気を除湿する除湿手段を設けて目標吹出し空気温湿度SA*になるように制御することもできる。さらに加熱手段4は室内ユニット1の内部に設けていなくてもよく、室内熱交換器3の下流側の空気流路、即ち室内熱交換器3から流出する空気の出口と目標室内空気温湿度としたい領域、例えば人の居住領域の間の空気流路を流れる空気を加熱する位置にあればよい。   In the above description, the control in the case of the energy saving operation has been described. However, when a predetermined ventilation amount is necessary, the same control can be performed after securing the ventilation amount. Further, the heater 4 is not necessarily required and may not be particularly provided. In this case, when the maximum dehumidification operation SHFmin of the refrigeration cycle is not sufficient for dehumidification and the control vector cannot be realized, the operation is performed so that the temperature of the target blown air is increased and the temperature is satisfied, and the outlet side air flowing out from the indoor heat exchanger 3 is discharged. It is also possible to provide a dehumidifying means for dehumidifying and control the target blown air temperature and humidity SA *. Furthermore, the heating means 4 may not be provided inside the indoor unit 1, and the air flow path downstream of the indoor heat exchanger 3, that is, the outlet of the air flowing out from the indoor heat exchanger 3, the target indoor air temperature and humidity, It suffices to be in a position where the air flowing through the air flow path between the desired areas, for example, the areas where people live, is heated.

また、外気導入手段6の外気導入口の全面に外気処理フィルターを設けて、外気に混入している花粉やちりやほこりなどが室内に取り込まれるのを防止すると、室内空間をさらに健康的で快適に保つことができる。また、この外気処理フィルターとして、その少なくとも一部を悪臭などを吸着させる材料で構成すると、ごみ収集日などに外気に混ざっている悪臭が室内に入り込むのを防止できる。   In addition, if an outside air treatment filter is provided on the entire outside air introduction port of the outside air introduction means 6 to prevent pollen, dust, and dust mixed in the outside air from being taken into the room, the indoor space becomes healthier and more comfortable. Can be kept in. Moreover, if this outdoor air filter is made of a material that adsorbs malodors or the like, at least a part of the outdoor air treatment filter can prevent bad odors mixed with the outside air from entering the room on the day of garbage collection.

既に述べたように、室内を空気調和する際に制御に関与する空気状態は、室内空気であるリターン空気(RA)、外気(OA)、吸込みである混合空気(KA)、室内に循環する空気である吹出し空気(SA)のそれぞれの温度と湿度であるが、これらの空気状態には互いに関連性がある。このため、これら全ての値を実際に検知しなくても演算で求めてもよい。また他の方法、例えば圧縮機の周波数や蒸発温度や管温やファンの回転速度などの情報から演算によって求めてもよい。例えば室内空気状態としてリターン空気、吹出し空気、外気の温度と湿度を計測によって検知し、混合空気の温度と湿度は演算する。また、外気の温度と湿度を計測によって検知する代わりに、外気とリターン空気とが混合した吸込み空気の温度と湿度を計測して検知し、この検知値と外気風量VOAとリターン空気風量VRAから外気の温度と湿度を演算してもよい。さらに、温度は室内の負荷量や風量とも関係しており、これらから間接的に求めることもできる。また、湿度は季節や天候などに左右されたり、室内の空気調和を行う際にそれほど厳密な計測を必要としないこともあり、予め季節の平均湿度を記憶しておいてこのデータを使用したり、他のパラメータから間接的に推測や計算によって検出してもよい。また、リターン空気と吹出し空気の状態はどちらも計測するように構成すると、室内空調負荷を正確に把握できるのであるが、この室内空調負荷が冷凍サイクルの動作状態などの他の情報から推測できる場合には、リターン空気と吹出し空気のどちらか一方の空気状態を計測によって検知し、他方を推測するようにしてもよい。また、室内空気状態として、リターン空気の温度と湿度を検知したが、リターン空気に限るものではなく吹出し空気や他の室内空間の空気、例えば室内の所定の場所に設けたセンサーでその場所の温度と湿度を検知し、これを用いてもよい。室内の所定の場所の場合には、室内空調負荷を受けている途中の空気状態を検知することになるが、その計測場所からの室内空調負荷を把握していれば、同様に制御できる。   As described above, the air condition involved in the control when air-conditioning the room is the return air (RA) that is room air, the outside air (OA), the mixed air that is suction (KA), and the air that circulates in the room. The temperature and humidity of each of the blown air (SA) are related to each other. For this reason, all these values may be obtained by calculation without actually detecting them. Moreover, you may obtain | require by calculation from other methods, for example, information, such as the frequency of a compressor, evaporation temperature, tube temperature, and the rotational speed of a fan. For example, the temperature and humidity of return air, blown air, and outside air are detected by measurement as the indoor air state, and the temperature and humidity of the mixed air are calculated. Also, instead of detecting the temperature and humidity of the outside air by measurement, the temperature and humidity of the intake air mixed with the outside air and the return air are measured and detected, and the outside air is detected from the detected value, the outside air volume VOA and the return air volume VRA. The temperature and humidity may be calculated. Furthermore, the temperature is also related to the indoor load and air volume, and can be obtained indirectly from these. In addition, the humidity depends on the season, weather, etc., and it may not require so strict measurement when performing indoor air conditioning. Alternatively, it may be detected indirectly by estimation or calculation from other parameters. If both the return air and blown air conditions are measured, the indoor air conditioning load can be accurately grasped, but this indoor air conditioning load can be estimated from other information such as the operating state of the refrigeration cycle. Alternatively, one of the return air and the blown air may be detected by measurement and the other may be estimated. In addition, the temperature and humidity of the return air are detected as the indoor air condition. However, the temperature and humidity of the return air are not limited to the return air, but are not limited to the return air. And humidity may be detected and used. In the case of a predetermined place in the room, the air condition during the indoor air-conditioning load is detected, but if the indoor air-conditioning load from the measurement place is grasped, it can be controlled similarly.

実施の形態2.
実施の形態1では外気導入手段6を室内ユニット1と一体に構成し、これによって外気を室内ユニット1内に導入し、室内空気が循環して室内ユニット1内に取り込まれたリターン空気と混合して室内熱交換器3への吸込み空気となる構成であった。本実施の形態では外気導入手段6を室内ユニット1と一体ではなく分離して別々に配設し、外気を室内2に取込む構成としたものである。但し、空気調和装置、冷凍サイクル、換気装置の運転を室外や室内の空気の温湿度状態を検出し、空気線図上、または空気線図に示される各物理量の相関関係を利用して温湿度状態をベクトル的に取り扱い、エンタルピーなどを演算し、使用するエネルギーを少なくする制御を行うことは実施の形態1と同様で、更にこのような構成、動作のみならず同様な効果が得られることも実施の形態1と同様である。
Embodiment 2. FIG.
In the first embodiment, the outside air introduction means 6 is configured integrally with the indoor unit 1, whereby outside air is introduced into the indoor unit 1, and the indoor air circulates and mixes with return air taken into the indoor unit 1. Thus, the air is sucked into the indoor heat exchanger 3. In the present embodiment, the outside air introduction means 6 is separated from the indoor unit 1 instead of being integrated with the indoor unit 1 and is separately arranged so that the outside air is taken into the room 2. However, the operation of the air conditioner, refrigeration cycle, and ventilator detects the temperature and humidity conditions of the outdoor and indoor air, and uses the correlation between the physical quantities shown on the air diagram or air diagram to determine the temperature and humidity. It is the same as in the first embodiment that the state is treated as a vector, the enthalpy is calculated, and the energy used is reduced as in the first embodiment. In addition to this configuration and operation, the same effect can be obtained. The same as in the first embodiment.

図19は、本実施の形態による空気調和装置の室内に配置された室内ユニット1近傍の構成を示す部分構成図である。実施の形態1で説明した図面に記載されている符号と同一の符号は同一のものを示す。外気導入手段6は室内の例えば壁面に取り付けられており、室外の新鮮な空気を室内に取込むことができる。この外気導入手段6には、外気導入口開閉機構として例えばダンパ67、および外気を吸込むためのファン31を有し、ダンパ67の開閉、または開度を調節、またはファン31の回転速を変化させることで、室内への外気導入量を制御することができる。また、69は制御信号線であり、室内ユニット1内に設置されている電子箱32内のマイクロプロセッサに接続されている。例えばマイクロプロセッサ内の外気量制御手段83からの制御信号が外気導入手段6に送信され、実際にダンパ67の開閉制御や開度制御やファン31の回転数制御を行う。   FIG. 19 is a partial configuration diagram showing a configuration in the vicinity of the indoor unit 1 arranged in the room of the air-conditioning apparatus according to the present embodiment. The same reference numerals as those in the drawings described in the first embodiment denote the same components. The outside air introduction means 6 is attached to, for example, a wall surface in the room, and fresh air outside the room can be taken into the room. This outside air introduction means 6 has, for example, a damper 67 and a fan 31 for sucking outside air as an outside air inlet opening / closing mechanism, and adjusts the opening / closing or opening of the damper 67 or changes the rotational speed of the fan 31. Thus, the amount of outside air introduced into the room can be controlled. Reference numeral 69 denotes a control signal line, which is connected to a microprocessor in the electronic box 32 installed in the indoor unit 1. For example, a control signal from the outside air amount control means 83 in the microprocessor is transmitted to the outside air introduction means 6 to actually perform opening / closing control of the damper 67, opening degree control, and rotation speed control of the fan 31.

図19、図20は本発明の別の形態の空調装置の構成および動作を説明する図であり、実施の形態1とは外気を取り入れる換気扇6をエアコンの室内機すなわち室内ユニット1とは一体とせずに別の位置に設けたもので、上記説明と同一符号は同一のものを示す。図20は室内ユニットと換気扇を別体にした構造の空調装置における温度と湿度を一体で制御して目標値に近づける制御の内容を説明する図である。図19、図20に示すごとく、室内ユニット1の中の室内熱交換器3に戻る室内空気である吸込み空気、即ちリターンエアは、冷凍サイクルを循環する冷媒により熱交換器3の中で冷却及び除湿されて、室内ファン5の回転により吹出し空気即ちサプライエアとして室内へ供給される。リターンエアとサプライエアの風量は同一でVRAである。この室内ユニットとは別の位置例えばエアコンの吹出し口がある下部の壁面でエアコンに隣接して設けられた外気導入手段である換気扇6は同じ室内へ外気を供給する。サプライエアと外気の各風量は加算されて、すなわちリターンエア風量VRAと外気風量VOAがVRA+VOAである混合エアとなり室内を循環するが、実施の形態1の説明と同様に自然または強制的に排気される分があり、室内ファンの回転数が一定の場合はほぼ一定のリターンエアーが確保される。マイコンのメモリーにファンの回転数と風量の関係を記憶させておけば、風量比に於ける各風量や式1で負荷を計算する時の風量は簡単に演算出来る。この室内に循環する混合エアの温湿度KAは負荷QLの顕熱分SHと潜熱分LHにより昇温増湿等されてリターンエア温湿度RAの温湿度状態となる。   19 and 20 are diagrams for explaining the configuration and operation of an air conditioner according to another embodiment of the present invention. In the first embodiment, the ventilation fan 6 that takes in outside air is integrated with the indoor unit of the air conditioner, that is, the indoor unit 1. The same reference numerals as those in the above description denote the same components. FIG. 20 is a diagram for explaining the contents of control in which the temperature and humidity are integrally controlled in an air conditioner having a structure in which the indoor unit and the ventilation fan are separated from each other so as to approach the target value. As shown in FIG. 19 and FIG. 20, the intake air, that is, the return air that returns to the indoor heat exchanger 3 in the indoor unit 1, that is, return air is cooled in the heat exchanger 3 by the refrigerant circulating in the refrigeration cycle. The air is dehumidified and supplied to the room as blown air or supply air by the rotation of the indoor fan 5. The return air and the supply air flow rate are the same and are VRA. A ventilator 6 which is an outside air introducing means provided adjacent to the air conditioner at a position different from the indoor unit, for example, at the lower wall surface where the air conditioner outlet is located, supplies the outside air to the same room. The air volumes of supply air and outside air are added, that is, the return air volume VRA and the outside air volume VOA are mixed air of VRA + VOA and circulate in the room. Therefore, when the rotation speed of the indoor fan is constant, a substantially constant return air is secured. If the relationship between the fan speed and the air volume is stored in the memory of the microcomputer, each air volume in the air volume ratio and the air volume when calculating the load by Equation 1 can be easily calculated. The temperature / humidity KA of the mixed air circulated in the room is increased in temperature and humidity by the sensible heat SH and the latent heat LH of the load QL to be in the temperature / humidity state of the return air temperature / humidity RA.

図中に示すTOA,XOA等のTやXの記号は先の説明のように温度や湿度を示すもので湿度は絶対値である。温度と湿度を計測する検出手段おいて、吸込み口温度検出手段9、吸込み口湿度検出手段10は図1のごとくエアコンの吸込みグリル35の位置に取り付けられる。また、図1に記載されているように換気扇である外気導入手段6は図1とは異なる位置であるが、外気温度検出手段11、外気湿度検出手段12は図1と同様に換気ファン31の側の室内側に取り付けられる。また吹出し口温度検出手段13と吹出し湿度検出手段14も図1のごとくエアコンの吹出し口に設けられる。但し図1の構成では、吹出し口温度検出手段13と吹出し湿度検出手段14は、エアコンの吹出しグリル34の内側に混合エアの温度を計測するように取り付けられていたが、この実施の形態での吹出し口からの空気はリターンエアであって、混合エア、すなわち室内に循環する空気の温度と湿度は、吹出し口のグリル近傍で計測された温度と湿度と、換気ファンの出口で計測された温度と湿度にたいし、それぞれの位置での風量を室内ファン及び換気ファンの回転数から求め、風量比に応じた平均値として求めている。もちろん吹出し口温度検出手段13と吹出し口湿度検出手段14を、エアコン室内ユニットと換気扇を隣接して配置し室内ユニットから下側に吹出す構造にすれば室内ユニット1の下部の外側の両方の空気が混合する位置に配置して、混合エアの温度と湿度を検出する検出器52および53で直接計測しても良い。もしエアコンの室内ユニット1と換気扇が離れた位置にあったとしても、混合される位置に混合エアの温度と湿度を計測する検出器を設ければ良い。   T and X symbols such as TOA and XOA shown in the figure indicate temperature and humidity as described above, and humidity is an absolute value. In the detecting means for measuring temperature and humidity, the inlet temperature detecting means 9 and the inlet humidity detecting means 10 are attached to the position of the inlet grill 35 of the air conditioner as shown in FIG. Further, as shown in FIG. 1, the outside air introduction means 6 which is a ventilation fan is at a position different from that in FIG. 1, but the outside air temperature detection means 11 and the outside air humidity detection means 12 are the same as those in FIG. It is attached to the indoor side. The outlet temperature detecting means 13 and the outlet humidity detecting means 14 are also provided at the outlet of the air conditioner as shown in FIG. However, in the configuration of FIG. 1, the outlet temperature detecting means 13 and the outlet humidity detecting means 14 are attached to measure the temperature of the mixed air inside the outlet grill 34 of the air conditioner. The air from the outlet is return air, and the temperature and humidity of the mixed air, that is, the air circulating in the room, are the temperature and humidity measured near the grill of the outlet and the temperature measured at the outlet of the ventilation fan. For air and humidity, the air volume at each position is obtained from the rotation speed of the indoor fan and the ventilation fan, and is obtained as an average value corresponding to the air volume ratio. Of course, if the air outlet temperature detecting means 13 and the air outlet humidity detecting means 14 are structured such that the air conditioner indoor unit and the ventilation fan are disposed adjacent to each other and are blown downward from the indoor unit, both the air outside the lower part of the indoor unit 1 is provided. May be directly measured by detectors 52 and 53 that detect the temperature and humidity of the mixed air. Even if the indoor unit 1 of the air conditioner and the ventilation fan are located at a distance from each other, a detector for measuring the temperature and humidity of the mixed air may be provided at the mixing position.

実施の形態1では外気とリターン空気の混合空気が室内に循環して室内熱交換器3への吸込み空気となって、室内熱交換器3を流れる冷媒と熱交換する。吹出し空気の温湿度SAが室内に循環して室内で熱負荷を受けて帰ってくるリターンエアの温湿度RAとなり、温湿度SAとRAにより負荷QLを知ることが出来る。即ち空気線図において温湿度SAに負荷QLのベクトルを加えたものが温湿度RAとなる。この負荷QLベクトルが分かったのでリターンエアーの温湿度RAが目標点の温湿度tへ重なるように負荷QLベクトルを平行移動させて目標吹出し空気の温湿度SA*を得ることができる。サプライエアーの温湿度SAは検出されるか、或いは室内負荷より分かっている。この状態で混合エアーの温湿度KAが外気温湿度OAとリターンエアー温湿度RAの線分上のどこにあれば混合エアーの温湿度KAのエンタルピーとサプライエアーの温湿度SAのエンタルピーの差が最小になるかと言う判断、即ちi(KA*−SA*)minimumを得ればエネルギーの最も小さいKA*がえられる。一方、本実施の形態2では、リターン空気のみが吸込み空気となって冷媒と熱交換され、室内ユニット1からの吹出し空気と外気とが混合されることになる。従って本実施の形態2は、外気の温湿度OAと風量VOA、吹出し空気の温湿度SAと風量VSAが検出され、或いは検出された値から求めることが出来る。同様に空気線図上で外気の温湿度OAと吹出し空気の温湿度SAを結ぶ線上で、且つ、風量比で案分された点に混合エア、即ち室内に循環する循環空気の温湿度KAが求められる。この混合エアの温湿度KAが室内を循環して負荷QLを受けてリターンエアRAとして空調装置に帰ってくる。即ち空気線図において演算された或いは計測されて得られた温湿度KAに負荷QLのベクトルを加えたものが温湿度RAとなる。この負荷QLベクトルが分かったのでリターンエアーの温湿度RAが目標点の温湿度tへ重なるように負荷QLベクトルを平行移動させて目標混合エアの温湿度KA*を得ることができる。この状態で吹出し空気の温湿度SAが外気温湿度OAと室内に循環する混合エアー温湿度KA*の線分上でどこにあればリターンエアの温湿度RAのエンタルピーとサプライエアーの温湿度SAのエンタルピーの差が最小になるかと言う判断、即ちi(RA−SA*)minimumを得ればエネルギーの最も小さいSA*がえられる。   In the first embodiment, the mixed air of the outside air and the return air circulates in the room and becomes air sucked into the indoor heat exchanger 3 to exchange heat with the refrigerant flowing through the indoor heat exchanger 3. The temperature / humidity SA of the blown air circulates in the room and becomes the return air temperature / humidity RA that receives the heat load in the room and returns, and the load QL can be known from the temperature / humidity SA and RA. That is, in the air diagram, the temperature and humidity RA is obtained by adding the vector of the load QL to the temperature and humidity SA. Since this load QL vector is known, the load QL vector can be translated so that the temperature and humidity RA of the return air overlap the temperature and humidity t of the target point, and the temperature and humidity SA * of the target blown air can be obtained. The supply air temperature / humidity SA is detected or known from the indoor load. In this state, if the temperature / humidity KA of the mixed air is on the segment of the outside air temperature / humidity OA and the return air temperature / humidity RA, the difference between the enthalpy of the temperature / humidity KA of the mixed air and the enthalpy of the temperature / humidity SA of the supply air is minimized. KA * with the lowest energy can be obtained by obtaining i (KA * -SA *) minimum. On the other hand, in the second embodiment, only the return air becomes the intake air to exchange heat with the refrigerant, and the air blown out from the indoor unit 1 and the outside air are mixed. Therefore, in the second embodiment, the temperature / humidity OA and the air volume VOA of the outside air, the temperature / humidity SA and the air volume VSA of the blown air are detected, or can be obtained from the detected values. Similarly, on the air diagram, the temperature / humidity KA of the mixed air, that is, the circulating air circulating in the room, is on the line connecting the temperature / humidity OA of the outside air and the temperature / humidity SA of the blown air, and at a point proportional to the air volume ratio. Desired. The temperature and humidity KA of the mixed air circulates in the room, receives the load QL, and returns to the air conditioner as return air RA. That is, the temperature / humidity RA is obtained by adding the vector of the load QL to the temperature / humidity KA calculated or measured in the air diagram. Since the load QL vector is known, the load QL vector can be translated so that the temperature and humidity RA of the return air overlap the temperature and humidity t of the target point, and the temperature and humidity KA * of the target mixed air can be obtained. In this state, the enthalpy of the return air temperature / humidity RA and the supply air temperature / humidity SA are located where the temperature / humidity SA of the blown air is on the line segment of the outside air temperature / humidity OA and the mixed air temperature / humidity KA * circulating in the room. If the determination is made that the difference between the two is minimized, i.e., i (RA-SA *) minimum, SA * having the smallest energy is obtained.

実施の形態1ではi(KA*−SA*)minimumの求め方として、KAはOAとRAの内分点のどこかにある、冷却除湿負荷=蒸発器能力=i(KA*−SA*)×風量である、ことから、KA*がRAとOAの線分上でi(KA*−SA*)が小さいほど能力は小さくなる。但し外気OAがいろいろな場合があり、図8のゾーン(1)ではRA=KAの時、KA*−SA*が最小になり、外気を導入しない方がエネルギーが小さくなる。また図8のゾーン(2)ではOAとRAの内分点上にあるKAとSA*を通るベクトル線が飽和線Hと接する交点をもつ混合エアの温湿度KA*が、KA*−SA*は最小になる。また図8のゾーン(3)ではOAとRAの内分点上にあるKAとSA*を通るベクトル線が飽和線Hと交点を有するがSHF=1となる混合エアの温湿度KA*が、KA*−SA*は最小になる。一方、本実施の形態2では、リターン空気の温湿度RAが冷却除湿されて吹出し空気の温湿度SAになり、吹出し空気の温湿度SAと外気の温湿度OAが混合して室内に循環する循環空気の温湿度KAになり、混合エアの温湿度KAに室内負荷QLが加わりリターンエアの温湿度RAとなるので、実施の形態2ではi(RA−SA*)minimumの求め方として、混合エアKAは外気OAと吹出し空気SA*の内分点のどこかにある、冷却除湿負荷=蒸発器能力=i(RA−SA*)×風量である、ことから、混合エアの温湿度KA*は外気の温湿度OAとサプライエアの温湿度SA*の線分上でi(RA−SA*)が小さいほど能力は小さくなる。但し分かっているものはリターンエアと混合エアであり、外気OAがいろいろな場合がある。   In the first embodiment, as a method for obtaining i (KA * -SA *) minimum, KA is somewhere at the internal dividing point of OA and RA, cooling dehumidification load = evaporator capacity = i (KA * -SA *) X Because of the air volume, the smaller the i (KA * -SA *) on the line segment of RA and OA, the smaller the capacity. However, there are various cases of outside air OA. In the zone (1) in FIG. 8, when RA = KA, KA * -SA * is minimized, and energy is reduced when outside air is not introduced. In the zone (2) of FIG. 8, the temperature and humidity KA * of the mixed air having the intersection where the vector line passing through KA and SA * on the internal dividing point of OA and RA contacts the saturation line H is KA * -SA *. Is minimized. In the zone (3) of FIG. 8, the temperature / humidity KA * of the mixed air in which the vector line passing through KA and SA * on the internal dividing point of OA and RA intersects with the saturation line H but SHF = 1 is obtained. KA * -SA * is minimized. On the other hand, in the second embodiment, the return air temperature / humidity RA is cooled and dehumidified to become the blown air temperature / humidity SA, and the circulation / circulation in which the blown air temperature / humidity SA and the outside air temperature / humidity OA are mixed and circulated in the room. Since the temperature and humidity KA of the air is added, and the indoor load QL is added to the temperature and humidity KA of the mixed air to obtain the temperature and humidity RA of the return air, in the second embodiment, as a method for obtaining i (RA-SA *) minimum, the mixed air KA is somewhere in the internal dividing point between the outside air OA and the blown air SA *, and cooling dehumidification load = evaporator capacity = i (RA-SA *) × air volume. Therefore, the temperature / humidity KA * of the mixed air is The smaller i (RA-SA *) is on the line between the temperature / humidity OA of the outside air and the temperature / humidity SA * of the supply air, the smaller the capacity. However, what is known is return air and mixed air, and the outside air OA may be various.

本実施の形態2のi(RA−SA*)minimumの求め方を図21、図22、図23の空気線図に示す。図21はゾーン(1)の説明図であって、図のハッチングの部分がゾーン(1)の範囲を示す。図においてリターンエア温湿度RAと目標混合エア温湿度KA*によって分類されるゾーンによって、新鮮外気の利用方法が異なる。図21の外気の温湿度OA1が目標混合エアの温湿度KA*よりも高エンタルピー側外気は利用しない方が望ましい。目標混合エアの温湿度KA*と挟んで外気の温湿度OA1と反対側に空気調和装置の吹出し空気の温湿度SAを作らねばならず、冷凍サイクルのエネルギーを増やすことになる。冷凍サイクルのエンタルピー差i(RA−SA*)minimumはSA*=KA*のとき最小となる。図22はゾーン(2)の説明図であって、図のハッチングの部分がゾーン(2)の範囲を示す。外気の温湿度OA2がKA*のエネルギーより低く、ベクトルRA−KA*より温度が低い状態にあるゾーン(2)の範囲では外気の低温特性を最大限利用し冷凍サイクルは除湿能力をフル運転させる。これにより省エネルギーを計るが除湿能力に限界があり、例えばベクトルRA−SA*の延長線が飽和線Hに接する事が出来なかったり、室内熱交換器温度ETが許容範囲より小さくなる場合には可能な顕熱比の最小値、即ちベクトルRA−SA*の傾きの限界であるSHFRminimumを選択する。ゾーン(2)では目標混合エアの温湿度KA*と挟んで外気の温湿度OA1と反対側に空気調和装置の吹出し空気の温湿度SAがくるので、ベクトルRA−SA*の延長線が飽和線Hに接する点を有する目標吹出し空気の温湿度SAを選択すれば冷凍サイクルのエンタルピー差RA−SA*が最も小さくなる目標サプライエア温湿度SA*が求まる。   The method for obtaining i (RA-SA *) minimum in the second embodiment is shown in the air diagram of FIG. 21, FIG. 22, and FIG. FIG. 21 is an explanatory diagram of the zone (1), and the hatched portion in the figure indicates the range of the zone (1). In the figure, the method of using fresh outside air differs depending on the zones classified by the return air temperature and humidity RA and the target mixed air temperature and humidity KA *. It is desirable not to use the high enthalpy-side outside air with respect to the temperature / humidity OA1 of the outside air in FIG. The temperature / humidity SA of the blown air of the air conditioner must be created on the opposite side of the temperature / humidity OA1 of the outside air across the temperature / humidity KA * of the target mixed air, which increases the energy of the refrigeration cycle. The enthalpy difference i (RA-SA *) minimum of the refrigeration cycle is minimum when SA * = KA *. FIG. 22 is an explanatory diagram of the zone (2), and the hatched portion in the figure indicates the range of the zone (2). In the range of zone (2) where the temperature and humidity OA2 of the outside air is lower than the energy of KA * and the temperature is lower than the vector RA-KA *, the refrigeration cycle makes full use of the dehumidifying capacity while making the best use of the low temperature characteristics of the outside air. . This saves energy, but there is a limit to the dehumidifying capacity. For example, it is possible when the extension line of the vector RA-SA * cannot touch the saturation line H or the indoor heat exchanger temperature ET is smaller than the allowable range. The minimum value of the sensible heat ratio, that is, the SHFRminimum which is the limit of the gradient of the vector RA-SA * is selected. In zone (2), the temperature and humidity SA of the air conditioner blown air is on the opposite side of the temperature and humidity OA1 of the outside air across the temperature and humidity KA * of the target mixed air, so the extension line of the vector RA-SA * is the saturation line. If the temperature / humidity SA of the target blowing air having a point in contact with H is selected, the target supply air temperature / humidity SA * that minimizes the enthalpy difference RA-SA * of the refrigeration cycle is obtained.

図23はゾーン(3)の説明図であって、図のハッチングの部分がゾーン(3)の範囲を示す。外気の温湿度OA3がKA*よりエネルギーが低く、且つ、低い湿度で、ベクトルRA−KA*より湿度が低い状態にあるゾーン(3)の範囲では外気の低湿特性を利用し冷凍サイクルは高顕熱運転を行う。目標混合エアの温湿度KA*と挟んで外気の温湿度OA1と反対側に設定する空気調和装置の吹出し空気の温湿度SAはリターンエアの温湿度RAとこの吹出し空気の温湿度SA*が空気線図で水平になるところ、即ちSHF=1が冷凍サイクルのエンタルピー差RA−SA*が最も小さくなる。実施の形態2の構成によるゾーン(1)の外気利用が望ましくない範囲は実施の形態1の一体の構成に比べ増加する。以上の実施の形態2の構成の場合の制御動作を図24でまとめて説明する。、負荷の大きさはQL=(VRA+VOA)×密度×エンタルピー差で得られ、この負荷はリターンエアの温湿度RAと混合エアの温湿度KAのエンタルピー差で、顕熱負荷SHと潜熱負荷LHに分けられる。室内を目標温湿度tにするにはリターンエアの温湿度RAを目標温湿度tにしなければならず、負荷を平行移動させて目標混合エアKA*が決まる。この目標混合エアの温湿度KA*に対し外気の温湿度状態によりエネルギーが少ない、即ちリターンエアの温湿度と目標サプライエアの温湿度のエンタルピー差が最小になる条件を図21、図22、図23のように選ぶことになる。図24の外気の温湿度がベクトルRA−KA*より湿度が低い状態にあるゾーン(3)の範囲では外気の低湿特性を利用し冷凍サイクルは高顕熱運転即ちSHF=1の運転を行う。この様に各空気の温湿度の状態が決まることにより、顕熱比が許容範囲内の室内熱交換器温度ET*が求められる。更に冷凍サイクル能力Qe即ちベクトルRA・SA*が決定される。また温湿度OAとKA*の線分上でSA*が決まりこの案分比率x*とy*でサプライエアと外気の風量比率も決定される。この様に冷凍サイクルのSHFの許容範囲等を考慮しながら温湿度の変化のエンタルピー差をできるだけ最少とする基本的な考え方は実施の形態1と同様で、空気調和装置の省エネルギー運転が可能になる。   FIG. 23 is an explanatory diagram of the zone (3), and the hatched portion in the figure indicates the range of the zone (3). In the zone (3) where the temperature and humidity OA3 of the outside air is lower than that of KA * and lower than the vector RA-KA *, the refrigeration cycle uses the low humidity characteristics of the outside air and has a high sensible heat. Do the driving. The temperature / humidity SA of the air conditioner that is set on the side opposite to the temperature / humidity OA1 of the outside air sandwiched between the temperature / humidity KA * of the target mixed air is the temperature / humidity SA of the return air and the temperature / humidity SA * of the blown air is air. When it becomes horizontal in the diagram, that is, when SHF = 1, the enthalpy difference RA-SA * of the refrigeration cycle is the smallest. The range in which the use of the outside air in the zone (1) according to the configuration of the second embodiment is not desirable increases compared to the integral configuration of the first embodiment. The control operation in the case of the configuration of the second embodiment will be described collectively with reference to FIG. The magnitude of the load is obtained by QL = (VRA + VOA) × density × enthalpy difference, and this load is the enthalpy difference between the temperature / humidity RA of the return air and the temperature / humidity KA of the mixed air, and is applied to the sensible heat load SH and the latent heat load LH. Divided. In order to achieve the target temperature / humidity t in the room, the temperature / humidity RA of the return air must be set to the target temperature / humidity t, and the target mixed air KA * is determined by moving the load in parallel. FIG. 21, FIG. 22 and FIG. 22 show the conditions that energy is less than the temperature / humidity KA * of the target mixed air due to the temperature / humidity state of the outside air, that is, the enthalpy difference between the return air temperature / humidity and the target supply air temperature / humidity is minimized. 23 will be selected. In the range of zone (3) in which the temperature and humidity of the outside air are lower than the vector RA-KA * in FIG. 24, the refrigeration cycle performs the high sensible heat operation, that is, the operation of SHF = 1, using the low humidity characteristic of the outside air. Thus, by determining the temperature and humidity state of each air, the indoor heat exchanger temperature ET * whose sensible heat ratio is within an allowable range is obtained. Further, the refrigeration cycle capacity Qe, that is, the vector RA · SA * is determined. Further, SA * is determined on the line segment of temperature and humidity OA and KA *, and the air volume ratio between the supply air and the outside air is determined based on the prorated ratio x * and y *. In this way, the basic idea of minimizing the enthalpy difference of temperature and humidity changes as much as possible while considering the allowable range of SHF of the refrigeration cycle is the same as in the first embodiment, and the energy-saving operation of the air conditioner becomes possible. .

図3の空気線図にエンタルピーiの軸が記載されているように、温度と絶対湿度とは次の関係でエンタルピーiの斜交軸が一義的に決められている。すなわち、i=0.24*温度+(597.5+0.441*温度)*絶対湿度である。従って温度と湿度を検出すればマイコンにてエネルギーである室内負荷の大きさと潜熱・件熱の負荷比率を演算することが出来る。室内の負荷の大きさであるQl[Kcal/h]の絶対値は、風量*密度*混合エアとリターンエアの間のエンタルピの差、で表される。この負荷状態に対する潜熱と顕熱の負荷比率は、LH[g]/SH[℃]=(Xra-Xka)/(Tra-Tka)、であり、負荷の状態は演算で把握することが出来る。なおx:yの風量比の算定は、例えばファンの回転数と風量の関係が制御装置のマイコンに記憶させてあるので決められており、サプライエアの温湿度SAは外気温湿度OAと混合エアの温湿度KAと風量比からOAとKAの延長線上に得られる。リターンエアの温湿度RAと得られたサプライエアの温湿度SAを直線で結ぶ間のエンタルピーが空調機の能力Qeである。さらに、この延長線が相対湿度100%の飽和線と交わる点が蒸発温度ETとみなされる。空気線図のデータが記憶されているためこれらの演算は制御装置のマイコンで簡単に行われる。   As the axis of enthalpy i is described in the air diagram of FIG. 3, the oblique axis of enthalpy i is uniquely determined by the following relationship between temperature and absolute humidity. That is, i = 0.24 * temperature + (597.5 + 0.441 * temperature) * absolute humidity. Therefore, if the temperature and humidity are detected, the microcomputer can calculate the size of the indoor load as energy and the load ratio of latent heat and heat. The absolute value of Ql [Kcal / h], which is the magnitude of the load in the room, is expressed as: air volume * density * difference in enthalpy between mixed air and return air. The load ratio between latent heat and sensible heat for this load state is LH [g] / SH [° C.] = (Xra-Xka) / (Tra-Tka), and the load state can be grasped by calculation. Note that the calculation of the air volume ratio of x: y is determined because, for example, the relationship between the rotational speed of the fan and the air volume is stored in the microcomputer of the control device, and the temperature and humidity SA of the supply air is the air temperature and humidity OA and the mixed air It is obtained on the extension line of OA and KA from the temperature and humidity KA and air volume ratio. The enthalpy between the return air temperature and humidity RA and the obtained supply air temperature and humidity SA in a straight line is the capacity Qe of the air conditioner. Furthermore, the point where this extension line intersects the saturation line with a relative humidity of 100% is regarded as the evaporation temperature ET. Since the air diagram data is stored, these calculations are easily performed by the microcomputer of the control device.

空調能力Qeの増加にたいし圧縮機の周波数を増加させる考えは式2などで詳細を説明しているが、空調能力Qeがベクトル(RA,SA)より決まるのでその増加分ΔQeは(Qe+ΔQe)/Qe=[i(RA−SA*)]/[i(RA−SA)]で求められる。これに対し現在の周波数をfzとすると、周波数の増分は空調能力の増加分に対応した(fz+Δfz)/fzというように得られる。本実施の形態のように、外気導入手段6を室内ユニット1と分離して独立に設けた場合には、省エネルギーとなる外気利用範囲は、一体に設けた場合よりも狭くなるが、やはり外気を積極的に利用しない従来の場合と比べて、省エネルギー効果はあり、新鮮な外気を導入することによる健康上への効果も大きい。また、このような構成では、現在広く用いられている室内ユニットからの構成変更が少なく、例えば外気導入手段6へ信号線69によって制御信号を送信するように変更すればよいので、比較的簡単に実現できる。さらに一体ではないので外気導入手段6の部分だけの清掃やメンテナンスなども手軽に行うことができる。   The idea of increasing the compressor frequency for increasing the air conditioning capacity Qe is explained in detail in Equation 2, etc., but since the air conditioning capacity Qe is determined from the vector (RA, SA), the increase ΔQe is (Qe + ΔQe) / Qe = [i (RA-SA *)] / [i (RA-SA)]. On the other hand, if the current frequency is fz, the frequency increment is obtained as (fz + Δfz) / fz corresponding to the increase in the air conditioning capacity. When the outside air introduction means 6 is provided separately from the indoor unit 1 as in the present embodiment, the outside air utilization range for energy saving is narrower than that in the case where it is provided integrally. Compared to the conventional case where it is not actively used, there is an energy saving effect, and the health effect by introducing fresh outside air is also great. Further, in such a configuration, there is little change in the configuration from the indoor units that are currently widely used, and for example, it may be changed so that a control signal is transmitted to the outside air introduction means 6 through the signal line 69, so that it is relatively easy. realizable. Further, since it is not integrated, cleaning or maintenance of only the outside air introduction means 6 can be easily performed.

さらに、外気導入手段6として室内ユニット1とは独立しているので、この外気導入手段6として従来の換気扇のような作用も兼ね備えたものとすることもできる。即ち、例えばファンを反転させるなどして室内空気を室外へ導出できるように構成すれば、換気機能の大きい空気調和を行うことができる。この例を図25にて説明する。図25は室内ユニット1の中の室内熱交換器3や室内ファン5と、外気導入手段である換気扇6を設ける構成は同一であり、31は換気ファン、32は室内制御装置である。リターンエア、サプライエアなど各空気の温湿度を基にエンタルピー差のか少ない運転を設定する内容は上記説明と同一であるが外気導入手段6は換気ファン31により室内空気を排気することが異なり、したがってリターンエアの温湿度は室内空気から排気がベクトル的に減算された形になる。換気ファン31の運転は室内制御装置32からの信号により制御される。別の構成の例を図26に示す。図26も空調装置と外気導入手段6とは別体に設ける構成であるが、外気導入手段6に全熱熱交換器と給気用ファン44、排気用ファン43を設け、外気を導入する吸気に室内空気を排気する際の熱を伝達して室内の熱エネルギーを無駄にしない構成である。給気用ファン44、排気用ファン43の運転は室内制御装置32からの信号により制御される。この構成に対しても外気導入手段6の給気とは域の温湿度を含めたベクトル演算を必要とするが、上述の様に温湿度のエンタルピー差を利用した低エネルギーの運転設定が可能であり、より一層の省エネルギーが計れることになる。図25、図26では外気導入手段の運転などは室内制御装置の中のマイコンにて制御する例を示したがリモコンなど別の制御装置により運転を制御しても良いことは当然であるし、この信号は信号線を設け伝達する構成にしてあるが、電力とともに電灯線にて信号を搬送したり、電波などの信号線無しの構成でも良い。   Furthermore, since the outside air introduction means 6 is independent of the indoor unit 1, the outside air introduction means 6 can also have an action like a conventional ventilation fan. That is, for example, if the indoor air can be led out to the outside by inverting the fan, air conditioning with a large ventilation function can be performed. This example will be described with reference to FIG. FIG. 25 shows the same configuration in which the indoor heat exchanger 3 and the indoor fan 5 in the indoor unit 1 are provided, and the ventilation fan 6 that is an outside air introduction means, 31 is a ventilation fan, and 32 is an indoor control device. The contents of setting the operation with little or less enthalpy difference based on the temperature and humidity of each air such as return air and supply air are the same as the above description, but the outside air introducing means 6 differs in that the indoor air is exhausted by the ventilation fan 31, and therefore The temperature and humidity of the return air is obtained by subtracting the exhaust from the room air in a vector manner. The operation of the ventilation fan 31 is controlled by a signal from the indoor control device 32. An example of another configuration is shown in FIG. FIG. 26 also shows a configuration in which the air conditioner and the outside air introduction means 6 are provided separately. However, the outside air introduction means 6 is provided with a total heat exchanger, a supply fan 44 and an exhaust fan 43 to introduce outside air. It is the structure which transmits the heat | fever at the time of exhausting indoor air and does not waste indoor thermal energy. The operation of the air supply fan 44 and the exhaust fan 43 is controlled by a signal from the indoor control device 32. Even with this configuration, the supply of air from the outside air introduction means 6 requires vector calculation including the temperature and humidity of the region. However, as described above, low energy operation setting using the enthalpy difference of temperature and humidity is possible. There will be even more energy savings. 25 and 26 show an example in which the operation of the outside air introduction means is controlled by a microcomputer in the indoor control device, but it is natural that the operation may be controlled by another control device such as a remote controller. This signal is configured to be transmitted by providing a signal line. However, the signal may be transmitted along a power line along with electric power or may be configured without a signal line such as a radio wave.

一体型の構成にしろ、別体型の構成にしろ、蒸発温度である室内熱交換器温度ETに付いては、許容範囲が存在することと、例として下限値として10゜Cで説明してきた。この下限値を空調装置の性能の面から求めた例を、図27および図28に示す。図27は室内熱交換器温度ETを空気線図上で設定する説明図で、Pは室内熱交換器3へ吸込まれる空気の温湿度で、温度24゜C、相対湿度50%とする。これは一体構造では目標混合エアの温湿度KA*であり、別体構造ではリターン空気の温湿度RAである。顕熱比SHFが異なる直線と飽和線Hの交点をそれぞれET=1゜C、5゜C、10゜Cとする。図28は横軸に蒸発温度を取り、図28の縦軸として、(a)は顕熱比、(b)は空調装置の成績係数COPである。図28の(a)からは室内熱交換器温度が低下するに伴いあの値以下では顕熱比は差が出ないことになる。一方(b)からは室内熱交換器温度ETを下げていけば比例して成績係数COPが低下し能力が低下する。従って図のように室内熱交換器温度ETの下限値を5゜C程度より下げてもエネルギー低減を得る効果がなくなるのでETの下限値としてこの飽和する約5゜Cを採用する。すなわち、図27のP点からETに引く直線はET=1の点で接点となり、それより下がるとSHFは上昇してしまう。本発明では第1に室内負荷を求めて室内に循環する空気、例えば一体型では空調装置の吹出し空気、また別体装置では室内に循環する空調装置と外気との混合エアの温湿度の目標値を設定した。更に第2に外気を含めた各空気の温湿度を基に、室内熱交換器に直接吸込まれる空気と吹出す空気のエンタルピー差が小さくなるように、即ち冷凍サイクルのエネルギーを少なくする蒸発温度ETを求めている。但しこの時、外気の温度が室内の各空気の温度との関係にたいしどのゾーンにあるかで制御を行う説明をしてきた。ゾーン(1)や(2)の様にSFHminを求める演算ではでは最初から上記で説明した飽和値、例えば5゜Cの様なこの固定された下限値を使用すれば飽和線Hと接する点を求める必要がなく、制御がより簡単になる。この制御は一体型換気制御にしろ、別置き型換気制御にしろ、空調装置のおかれた地域や室内の条件、或いは運転の要求により除湿運転が必要であれば換気する風量の比率に関らず先ず室内熱交換器で目一杯除湿する、即ち、SFHmin運転を行うと言う考えで、そのため性能低下を考慮した蒸発温度下限値である固定置5゜Cで固定された条件で運転することが制御が簡単で効率の良い運転が行えることになる。   Regardless of whether it is an integral type structure or a separate type structure, the indoor heat exchanger temperature ET, which is the evaporation temperature, has been described as having an allowable range, and as an example, the lower limit value has been described at 10 ° C. The example which calculated | required this lower limit from the surface of the performance of the air conditioner is shown in FIG. 27 and FIG. FIG. 27 is an explanatory diagram for setting the indoor heat exchanger temperature ET on the air diagram. P is the temperature and humidity of the air sucked into the indoor heat exchanger 3, and the temperature is 24 ° C. and the relative humidity is 50%. In the integrated structure, this is the temperature / humidity KA * of the target mixed air, and in the separate structure, the temperature / humidity RA of the return air. Let ET = 1 ° C, 5 ° C, and 10 ° C be the intersections of the straight line and the saturation line H with different sensible heat ratios SHF. In FIG. 28, the horizontal axis represents the evaporation temperature, and in FIG. 28, the vertical axis represents (a) the sensible heat ratio and (b) the coefficient of performance COP of the air conditioner. From (a) of FIG. 28, as the indoor heat exchanger temperature decreases, there is no difference in the sensible heat ratio below that value. On the other hand, from (b), if the indoor heat exchanger temperature ET is lowered, the coefficient of performance COP is proportionately lowered and the capacity is lowered. Therefore, even if the lower limit value of the indoor heat exchanger temperature ET is lowered below about 5 ° C. as shown in the figure, the effect of obtaining energy reduction is lost. Therefore, the saturated lower limit value of about 5 ° C. is adopted. That is, the straight line drawn from point P in FIG. 27 to ET becomes a contact point at the point of ET = 1, and if it falls below that, SHF will rise. In the present invention, first, the target value of the temperature and humidity of the air that is circulated in the room in order to obtain the indoor load, for example, the blowout air of the air conditioner in the case of an integral type, It was set. Secondly, based on the temperature and humidity of each air including the outside air, the evaporation temperature that reduces the enthalpy difference between the air directly sucked into the indoor heat exchanger and the blown air, that is, reduces the energy of the refrigeration cycle. Seeking ET. However, at this time, it has been explained that the control is performed according to which zone the outside air temperature is in relation to the temperature of each indoor air. In the calculation for calculating SFHmin as in zones (1) and (2), if the saturation value described above is used from the beginning, for example, if this fixed lower limit value such as 5 ° C. is used, the point in contact with the saturation line H is determined. There is no need to obtain it, and control becomes easier. Whether this control is integrated ventilation control or separate ventilation control, it is related to the ratio of the air volume to be ventilated if the dehumidifying operation is necessary depending on the area where the air conditioner is located, the indoor conditions, or the operation requirements. First of all, the idea is to perform full dehumidification with the indoor heat exchanger, that is, to perform the SFHmin operation. Control is easy and efficient operation can be performed.

更にこのような空調装置と換気装置の組み合せに対し、一体型換気制御にしろ、別置き型換気制御にしろ高温多湿状態が存在する場合は除湿が必要であり
、もっと簡単な固定値を使用した制御を行うことが出来る。既に説明したように一体型換気制御の場合はリターンエアのエンタルピーiRAよりも外気のエンタルピーiOAが小なら外気導入手段にて外気を導入する。別置き型換気制御の場合は空調装置からの吹出し空気と外気を混合した混合エアのエンタルピーiKAより外気のエンタルピーiOAが小なら外気導入手段にて外気を導入する。この外気の導入にあたりエンタルピー差を算出する場合厳密な数値でなくとも、効果的な除湿が行える。すなわち空調装置と換気装置の組み合せに関係なく、空調装置に戻るリターンエアの室内空気の温湿度iRAと外気のエンタルピーiOAとの関係を、iRA−iOA<αとする。この説明を図29に示す。図29の空気線図において、φは各温度に於ける相対湿度を示す。室内空気の温湿度をRA、外気の温湿度をOAとし、このエンタルピー差をもとめ、図のようにiRA−iOA<αとなり、若干の差が存在することを検出する。これによりファン回転数が一定である換気扇を運転して、この時の外気の風量と室内空気の風量の関係から、室内空気の温湿度と外気の温湿度の線分に風量比から熱交換器に直接吸込まれる空気の温湿度Kが設定される。このK点と固定された蒸発温度5゜Cを結ぶ線と、目標とする室内温度Ttとの交点が目標温湿度tとなって、この値に制御される。この結果、室内温湿度のエンタルピーiRAと目標温湿度tのエンタルピーitの差より、K点でのエンタルピーiKと目標温湿度tのエンタルピーitの差の方が小さく、冷却除湿すべき負荷が小さく省エネルギーとなる。この様にiRA−iOA<αという条件で換気扇を動作させるだけで目標温度に到達する時には除湿も行われると言う簡単な制御になる。
Furthermore, for such a combination of air conditioner and ventilator, whether it is integrated ventilation control or separate ventilation control, dehumidification is necessary when a hot and humid condition exists, and a simpler fixed value was used. Control can be performed. As described above, in the case of integrated ventilation control, if the enthalpy iOA of the outside air is smaller than the enthalpy iRA of the return air, the outside air is introduced by the outside air introducing means. In the case of separate ventilation control, if the enthalpy iOA of the outside air is smaller than the enthalpy iOA of the mixed air obtained by mixing the air blown from the air conditioner and the outside air, the outside air is introduced by the outside air introducing means. When calculating the enthalpy difference for the introduction of the outside air, effective dehumidification can be performed even if it is not a strict numerical value. That is, regardless of the combination of the air conditioner and the ventilator, the relationship between the temperature / humidity iRA of the indoor air of the return air returning to the air conditioner and the enthalpy iOA of the outside air is assumed to be iRA-iOA <α. This explanation is shown in FIG. In the air diagram of FIG. 29, φ indicates the relative humidity at each temperature. The temperature and humidity of the indoor air is RA, and the temperature and humidity of the outside air is OA. The enthalpy difference is obtained, and it is detected that iRA−iOA <α as shown in FIG. As a result, a fan with a constant fan speed is operated, and from the relationship between the air volume of the outside air and the air volume of the room air at this time, the heat exchanger is calculated from the air volume ratio to the line between the temperature and humidity of the room air and the temperature and humidity of the outside air. The temperature / humidity K of the air directly sucked into is set. The intersection between the line connecting the point K and the fixed evaporation temperature of 5 ° C. and the target indoor temperature Tt becomes the target temperature / humidity t, and is controlled to this value. As a result, the difference between the enthalpy it between the enthalpy iK and the target temperature / humidity t at the K point is smaller than the difference between the enthalpy it between the indoor temperature / humidity enthalpy iRA and the target temperature / humidity t. It becomes. In this way, simple control is performed such that dehumidification is performed when the target temperature is reached only by operating the ventilation fan under the condition of iRA-iOA <α.

上記の説明では、加熱手段4としてヒータを有する構成としたが、この加熱手段4は例えば空気を数℃〜20℃程度加熱できるものであればよく、ヒータに限るものではない。図30は加熱手段として一般に再熱方式と称されているものであり、冷媒との熱交換によって空気を加熱するものの、構成の一例を示す説明図である。図において、3a、3bは2台の室内熱交換器、26bは冷凍サイクルの室外ユニット8に置かれた膨張弁とは異なる減圧手段である膨張弁である。   In the above description, the heating unit 4 has a heater. However, the heating unit 4 is not limited to a heater as long as it can heat air, for example, about several degrees Celsius to 20 degrees Celsius. FIG. 30 is an explanatory diagram showing an example of the configuration of what is generally referred to as a reheating method as a heating means and heats air by heat exchange with a refrigerant. In the figure, 3a and 3b are two indoor heat exchangers, and 26b is an expansion valve which is a pressure reducing means different from the expansion valve placed in the outdoor unit 8 of the refrigeration cycle.

図において、例えば実施の形態1の冷房運転の時で外気温湿度がゾーン(1)または(2)の領域にあり、リターン空気温湿度RAから目標吹出し空気温湿度SA*へのベクトルの延長線が飽和線と交差しない時、または外気温湿度がゾーン(3)の領域にあり、外気温湿度OA3から目標吹出し空気温湿度SA*へのベクトルの延長線が飽和線と交差しない時、冷凍サイクルで目標吹出し空気温湿度SA*を実現するのは不可能であった。このとき冷凍サイクルによって湿度は目標と一致させて温度の低い出口側空気とし、この空気を加熱して目標吹出し空気温湿度SA*を実現出来る。図30のように2台の室内熱交換器3a、3bを備え、一方の室内熱交換器3aを凝縮器、他方の室内熱交換器3bを蒸発器として動作させる。蒸発器として動作する室内熱交換器3bを例えば空気流路の上流側に配置し、凝縮器として動作する室内熱交換器3aを例えば空気流路の下流側に配置する。この2台の室内熱交換器3a、3bの間には、膨張弁26bを設けている。   In the figure, for example, in the cooling operation of the first embodiment, the outside air temperature humidity is in the zone (1) or (2) region, and the vector extension line from the return air temperature humidity RA to the target blowing air temperature humidity SA * Refrigeration cycle when the air temperature does not cross the saturation line, or when the outside air temperature humidity is in the zone (3) region and the extension line of the vector from the outside air temperature humidity OA3 to the target blowing air temperature humidity SA * does not cross the saturation line Therefore, it was impossible to achieve the target blowing air temperature and humidity SA *. At this time, by the refrigeration cycle, the humidity is matched with the target to provide the outlet side air having a low temperature, and this air can be heated to realize the target blown air temperature and humidity SA *. As shown in FIG. 30, two indoor heat exchangers 3a and 3b are provided, and one indoor heat exchanger 3a is operated as a condenser and the other indoor heat exchanger 3b is operated as an evaporator. The indoor heat exchanger 3b that operates as an evaporator is disposed on the upstream side of the air flow path, for example, and the indoor heat exchanger 3a that operates as a condenser is disposed on the downstream side of the air flow path, for example. An expansion valve 26b is provided between the two indoor heat exchangers 3a and 3b.

以下、図30に示した冷凍サイクルの冷房運転時の動作について説明する。圧縮機で圧縮された高圧ガス冷媒は、圧縮機の吐出口から四方弁を介して室外熱交換器へ流通し、ここで室外ファンで吹きつけられる外気に放熱する。そして冷媒は凝縮し、高圧液冷媒となって室外熱交換器から流出する。その後室外機に設けられた膨張弁26で中間圧まで減圧し、一部ガスとなって冷媒配管を流通して室内ユニット1の室内熱交換器3aへ流入する。この室内熱交換器3aで冷媒はさらに凝縮すると共に室内熱交換器3aの冷媒配管の周囲を流れる空気を加熱する。その後室内熱交換器3aから流出した冷媒は膨張弁26bで低圧にまで減圧され、低圧二相冷媒となる。さらに低圧二相冷媒は室内熱交換器3bへ流通し、ここで採熱して蒸発する際に周囲を流れる空気と熱交換することによって室内空気を冷却除湿する。そして冷媒は、室内熱交換器3bから低圧ガス冷媒となって流出した後、冷媒配管7を通って室外ユニット8に流通し、四方弁22を介して圧縮機の吸入口へと戻る。このような動作によって室内熱交換器3aは加熱手段となり、室内熱交換器3bでは冷熱が得られる。   Hereinafter, the operation during the cooling operation of the refrigeration cycle shown in FIG. 30 will be described. The high-pressure gas refrigerant compressed by the compressor flows from the discharge port of the compressor to the outdoor heat exchanger through the four-way valve, and radiates heat to the outside air blown by the outdoor fan. Then, the refrigerant condenses and becomes high-pressure liquid refrigerant and flows out of the outdoor heat exchanger. Thereafter, the pressure is reduced to an intermediate pressure by an expansion valve 26 provided in the outdoor unit, becomes a partial gas, flows through the refrigerant pipe, and flows into the indoor heat exchanger 3a of the indoor unit 1. The refrigerant further condenses in the indoor heat exchanger 3a and heats the air flowing around the refrigerant pipe of the indoor heat exchanger 3a. Thereafter, the refrigerant flowing out of the indoor heat exchanger 3a is decompressed to a low pressure by the expansion valve 26b, and becomes a low-pressure two-phase refrigerant. Further, the low-pressure two-phase refrigerant flows into the indoor heat exchanger 3b, and heat is exchanged with the air flowing around when the heat is collected and evaporated, thereby cooling and dehumidifying the indoor air. Then, the refrigerant flows out from the indoor heat exchanger 3b as a low-pressure gas refrigerant, then flows through the refrigerant pipe 7 to the outdoor unit 8, and returns to the compressor inlet via the four-way valve 22. By such an operation, the indoor heat exchanger 3a becomes a heating means, and cold heat is obtained in the indoor heat exchanger 3b.

このような再熱方式の加熱手段を用いることで、空気調和装置の冷媒に例えば炭化水素やR290などの可燃性冷媒を用いても、冷媒が燃焼することがなく、安全な空気調和装置とすることができる。近年、地球環境保全の観点から、オゾン層を破壊せず、温暖化係数も0である冷媒を用いる要求が高まっている。R290はこの条件を満足するものであるが、問題点はその性質が可燃性を有することである。本実施の形態のように構成すれば、新鮮な外気を積極的に効果的に利用でき、省エネルギーであり、健康にも良好で、さらに可燃性を有する冷媒でも安全に使用することができる空気調和装置が得られる。またこの発明において、送風機により循環する空気に加熱または冷却または加湿または除湿を行う熱交換器は、既に説明してきたように冷媒を循環させる冷媒サイクルに設けられ空気の温度および空気中の水蒸気成分量を変化可能な熱交換器であっても良いし、空気の温度だけを変化させることが出来るオイルヒータのような単なるヒータでも良いし、主として空気中の水蒸気成分を変化させることが出来る吸着式の除湿機、或いはこれらの組み合せでも室内を循環させる空気の温湿度に影響を与える複数の種類の装置を設けた場合でも本発明が成り立つことは明らかである。   By using such a reheating type heating means, even if a flammable refrigerant such as hydrocarbon or R290 is used as the refrigerant of the air conditioner, the refrigerant does not burn and a safe air conditioner is obtained. be able to. In recent years, from the viewpoint of global environmental conservation, there is an increasing demand for using a refrigerant that does not destroy the ozone layer and has a global warming potential of zero. R290 satisfies this condition, but the problem is that its property is flammable. If configured as in the present embodiment, fresh air can be used actively and effectively, energy saving, good for health, and can be used safely even with a flammable refrigerant. A device is obtained. In the present invention, the heat exchanger for heating, cooling, humidifying, or dehumidifying the air circulated by the blower is provided in the refrigerant cycle for circulating the refrigerant as described above, and the temperature of the air and the amount of water vapor component in the air It may be a heat exchanger that can change the temperature, or it may be a simple heater such as an oil heater that can change only the temperature of air, or an adsorption type that can mainly change the water vapor component in the air. It is clear that the present invention can be realized even when a dehumidifier or a combination of these is provided with a plurality of types of devices that affect the temperature and humidity of the air circulating in the room.

図31は空調装置を説明する図であって、天井20には吸込みグリル35から吸込んだ空気をダクト48を介して別の個所へ補助グリルの吹出しグリル34を設けた室内の空気を空調する空調機1とダクト36で外気を吸気する天井埋め込み換気扇46が設けられている。この様に空調機にダクトを介して補助グリルや循環送風機等を設け、室内の他の場所や穂かの部屋へ一つの空調機により空調された空気を送風することも出きる。室内に温調された空気を循環させる方法としては空調機の存在する部屋の中で扇風機を運転する方法等があるが部屋の部分的空気を利用しての循環にとどまり冷房や暖房の効果が限定され、かつ、あまり広い範囲では効果がなくなったり別の部屋を一緒に行うことも出来ないが、本発明の装置ではダクトを介して循環送風機等で必要な場所に温調された空気を効果的にしかも低騒音で循環させることが出来る。ダクトを通じて別の部屋の空調や、複数の部屋や廊下などの調温を簡単な設備で行うことが出来る。各部屋の空調は本発明の湿度調整する装置を設け湿度調整された空気調和を行ってもよいことは当然である。更に室内には、室内の空気の温湿度に影響する加湿器50やヒーター51が設けられていても検出したり制御する空気の温湿度の数が増えるだけでエンタルピーなどによる制御は本発明の制御で行うことが出来る。   FIG. 31 is a diagram for explaining an air conditioner. In the ceiling 20, air sucked from a suction grill 35 is provided to another place via a duct 48. A ceiling-embedded ventilation fan 46 for taking in outside air through the machine 1 and the duct 36 is provided. In this way, the air conditioner can be provided with an auxiliary grill, a circulation blower, or the like via a duct, and the air conditioned by one air conditioner can be blown to other places in the room or the room in Hotaka. As a method of circulating the temperature-controlled air in the room, there is a method of operating a fan in a room where an air conditioner exists, but the effect of cooling and heating is limited to circulation using partial air in the room. Although it is limited and it is not effective in a wide range or it can not be performed in another room together, the device of the present invention is effective for the temperature adjusted air to the necessary place with a circulation fan etc. through the duct In addition, it can be circulated with low noise. Air conditioning of another room and temperature control of multiple rooms and hallways can be performed with simple equipment through the duct. As a matter of course, the air conditioning in each room may be performed by adjusting the humidity according to the present invention to adjust the humidity. Furthermore, even if a humidifier 50 or a heater 51 that affects the temperature and humidity of the indoor air is provided in the room, the control based on the enthalpy or the like can be controlled only by increasing the number of temperature and humidity of the air to be detected and controlled. Can be done.

この発明は、空気調和装置で室内空気を冷房または暖房することで室内空気の温度または湿度を関連して変化させ、目標値である温度および湿度に接近するように室内の空気調和を行い、外気の導入量を調整し得る外気導入手段で外気を室内に導入し、外気の温度および湿度、室内空気の温度および湿度、並びに室内空気の目標値である温度および湿度に基づいて、外気の導入量を変えることにより、室外の空気状態に応じて外気を導入しこれを効果的に利用して快適な室内空間を得るように空気調和を行うことができる。   The present invention changes the temperature or humidity of an indoor air by cooling or heating the indoor air with an air conditioner and performs indoor air conditioning so as to approach the target temperature and humidity. The amount of outside air introduced based on the temperature and humidity of the outside air, the temperature and humidity of the room air, and the target value of the room air, that is, the outside air is introduced by the outside air introduction means capable of adjusting the amount of air introduced. Therefore, it is possible to perform air conditioning so as to obtain a comfortable indoor space by introducing outside air according to the outdoor air condition and effectively using the outside air.

またこの発明は、外気のエンタルピーが室内空気のエンタルピーよりも大きい場合に外気導入手段を閉止して外気の導入量を最小にすることにより、室外の空気状態に応じて外気を導入しこれを効果的に利用して快適な室内空間を得るように空気調和を行うことができ、さらに無駄な仕事をすることなく省エネルギー化を実現できる。   In addition, the present invention introduces the outside air according to the outdoor air condition by closing the outside air introduction means and minimizing the amount of outside air introduced when the outside air enthalpy is larger than the indoor air enthalpy. Air conditioning can be performed so that a comfortable indoor space can be obtained by using it, and further energy saving can be realized without wasteful work.

またこの発明は、外気のエンタルピーが室内空気のエンタルピーよりも小さく、かつ外気の温度と湿度が前記室内空気の温度と湿度から目標値である温度と湿度への変化の延長線よりも低温側である場合に、外気と室内空気を混合した混合空気の温度と湿度から目標値である温度と湿度へ接近させる際の、温度の変化量に対する湿度の変化量が大きくなるように外気の導入量を調整することにより、室外の空気状態に応じて外気を導入しこれを効果的に利用して快適な室内空間を得るように空気調和を行うことができ、さらに無駄な仕事をすることなく省エネルギー化を実現できる。   Further, the present invention is such that the enthalpy of the outside air is smaller than the enthalpy of the indoor air, and the temperature and humidity of the outside air are lower than the extension line of the change from the temperature and humidity of the indoor air to the target value. In some cases, the amount of outside air introduced is set so that the amount of change in humidity relative to the amount of change in temperature when the temperature and humidity of the mixed air that is a mixture of outside air and room air is approached to the target temperature and humidity. By adjusting, air can be conditioned to obtain a comfortable indoor space by introducing outside air according to the outdoor air condition and effectively using it, saving energy without unnecessary work Can be realized.

またこの発明は、外気のエンタルピーが室内空気のエンタルピーよりも小さく、かつ外気の温度と湿度が室内空気の温度と湿度から目標値である温度と湿度への変化の延長線よりも低湿側である場合に、外気と室内空気を混合した混合空気の温度と湿度から目標値である温度と湿度へ接近させる際の、温度の変化量に対する湿度の変化量が小さくなるように外気の導入量を調整することにより、室外の空気状態に応じて外気を導入しこれを効果的に利用して快適な室内空間を得るように空気調和を行うことができ、さらに無駄な仕事をすることなく省エネルギー化を実現できる。   Further, according to the present invention, the enthalpy of the outside air is smaller than the enthalpy of the room air, and the temperature and humidity of the outside air are lower than the extension line of the change from the temperature and humidity of the room air to the target value. In this case, the amount of outside air introduced is adjusted so that the amount of change in humidity with respect to the amount of change in temperature is reduced when approaching the target temperature and humidity from the temperature and humidity of the mixed air that is a mixture of outside air and room air. By doing this, air can be conditioned so that a comfortable indoor space can be obtained by introducing the outside air according to the outdoor air condition and effectively using this, and energy saving can be achieved without doing unnecessary work. realizable.

またこの発明は、熱輸送手段によって輸送された温熱または冷熱と吸込み空気とを熱交換して吸込み空気の温度と湿度の少なくともどちらか一方を変化させる室内熱交換器と、この室内熱交換器による熱交換後の空気を吹出し空気として室内に吹出す室内ファンと、室外から外気を導入する外気導入手段と、外気の温度を検知する外気温度検知手段と、外気の湿度を検知する外気湿度検知手段と、室内空気の温度を検知する室内温度検知手段と、室内空気の湿度を検知する室内湿度検知手段と、室内の空調負荷を検知する室内空調負荷検知手段と、外気の温度と湿度から得られた外気状態、室内空気の温度と湿度から得られた室内空気状態、室内空調負荷検知手段で得られた室内空調負荷、目標室内空気温度と目標室内空気湿度とから得られた目標室内空気状態、の外気状態、室内空気状態、室内空調負荷、目標室内空気状態に基づいて外気を室内に取り込む外気導入量並びに室内熱交換器での吸込み空気から吹出し空気への間の温度および湿度の変化量を設定する運転動作設定手段と、運転動作設定手段で設定した外気導入量になるように外気導入手段を運転制御する外気量制御手段と、運転動作設定手段で設定した吸込み空気から吹出し空気への間の温度および湿度の変化量を得るように熱輸送手段の運転動作を制御する運転動作制御手段を備えたことにより、室外の空気状態に応じて外気を導入しこれを効果的に利用して快適な室内空間を得るように空気調和を行うことができる。   The present invention also relates to an indoor heat exchanger that changes the temperature and humidity of the intake air by exchanging heat or cold and the intake air that has been transported by the heat transport means, and the indoor heat exchanger. An indoor fan that blows out air after heat exchange into the room as outside air, an outside air introducing means for introducing outside air from the outside, an outside air temperature detecting means for detecting the temperature of the outside air, and an outside air humidity detecting means for detecting the humidity of the outside air The indoor air temperature detecting means for detecting the temperature of the indoor air, the indoor humidity detecting means for detecting the humidity of the indoor air, the indoor air conditioning load detecting means for detecting the air conditioning load of the room, and the temperature and humidity of the outside air. Obtained from the outdoor air condition, the indoor air condition obtained from the temperature and humidity of the room air, the indoor air conditioning load obtained by the indoor air conditioning load detection means, the target indoor air temperature and the target indoor air humidity. The target indoor air condition, the outside air condition, the indoor air condition, the indoor air conditioning load, the amount of outside air introduced into the room based on the target indoor air condition, the temperature between the intake air and the blown air in the indoor heat exchanger, and Driving operation setting means that sets the amount of change in humidity, outside air amount control means that controls the outside air introduction means so that the outside air introduction amount set by the driving action setting means becomes equal, and intake air that is set by the driving action setting means Equipped with an operation control means that controls the operation of the heat transport means to obtain the amount of change in temperature and humidity between the blown air and effectively introduces the outside air according to the outdoor air condition. Air conditioning can be performed so as to obtain a comfortable indoor space.

またこの発明は、運転動作設定手段で、外気温度検知手段で検知した外気温度と外気湿度検知手段で検知した外気湿度とから求める外気エンタルピーが、室内空気温度検知手段で検知した室内空気温度と室内空気湿度検知手段で検知した室内空気湿度とから求める室内空気エンタルピーよりも小さいときに、外気を導入するように設定することにより、室外の空気状態に応じて外気を導入しこれを効果的に利用して快適な室内空間を得るように空気調和を行うことができ、さらに無駄な仕事をすることなく省エネルギー化を実現できる空気調和装置が得られる   Further, the present invention provides a driving operation setting means, wherein the outside air enthalpy obtained from the outside air temperature detected by the outside air temperature detecting means and the outside air humidity detected by the outside air humidity detecting means is the room air temperature detected by the indoor air temperature detecting means and the indoor air temperature. By setting the outside air to be introduced when it is smaller than the indoor air enthalpy obtained from the indoor air humidity detected by the air humidity detection means, the outside air is introduced according to the outdoor air condition and used effectively. Air conditioning can be performed so that a comfortable indoor space can be obtained, and further energy saving can be realized without performing useless work.

またこの発明は、運転動作設定手段で、湿り空気線図において、外気の温湿度が、室内空気温湿度と目標室内空気温湿度を結ぶ線よりも低温側のとき、外気を導入して主に室内空気の温度を低下させ、室内熱交換器での冷媒との熱交換よって主に室内空気の湿度を低下させるように設定することにより、室外の空気状態に応じて外気を導入しこれを効果的に利用して快適な室内空間を得るように空気調和を行うことができ、さらに無駄な仕事をすることなく省エネルギー化を実現できる空気調和装置が得られる   Further, the present invention is an operation setting means for introducing outside air mainly when the temperature and humidity of the outside air is lower than the line connecting the room air temperature and the target room air temperature in the wet air diagram. By reducing the temperature of the indoor air and setting it to reduce the humidity of the indoor air mainly by exchanging heat with the refrigerant in the indoor heat exchanger, the outside air is introduced according to the outdoor air condition and this is effective. Air conditioning can be performed so that a comfortable indoor space can be used by using the system and energy can be saved without doing unnecessary work.

またこの発明は、運転動作設定手段で、湿り空気線図において、外気の温湿度が、室内空気温湿度と目標室内温湿度を結ぶ線よりも低湿側のとき、外気を導入して主に室内空気の湿度を低下させ、室内熱交換器での冷媒との熱交換よって主に前記室内空気の温度を低下させるように設定することにより、室外の空気状態に応じて外気を導入しこれを効果的に利用して快適な室内空間を得るように空気調和を行うことができ、さらに無駄な仕事をすることなく省エネルギー化を実現できる。   Further, the present invention is an operation operation setting means for introducing outdoor air mainly when the temperature and humidity of the outside air is lower than the line connecting the room air temperature and the target room temperature and humidity in the wet air diagram. By reducing the humidity of the air and setting it to lower the temperature of the indoor air mainly by heat exchange with the refrigerant in the indoor heat exchanger, the outside air is introduced according to the outdoor air condition and this is effective. Air conditioning can be performed so that a comfortable indoor space can be obtained by using it, and further energy saving can be realized without wasteful work.

またこの発明は、室内熱交換器の下流側の空気流路に設けられ、前記室内熱交換器から流出した空気を加熱する加熱手段を備えたことにより、室外の空気状態に応じて外気を導入しこれを効果的に利用して快適な室内空間を得るように空気調和を行うことができ、さらに無駄な仕事をすることなく省エネルギー化を実現できる空気調和装置が得られる。   In addition, the present invention is provided in the air flow path on the downstream side of the indoor heat exchanger, and has heating means for heating the air flowing out from the indoor heat exchanger, thereby introducing outside air according to the outdoor air condition. Thus, it is possible to perform air conditioning so as to obtain a comfortable indoor space by effectively using this, and it is possible to obtain an air conditioning apparatus capable of realizing energy saving without performing useless work.

またこの発明は、加熱手段を、ヒータ、または冷媒との熱交換によって空気を加熱するものとしたことにより、室外の空気状態に応じて外気を導入しこれを効果的に利用して快適な室内空間を得るように空気調和を行うことができ、さらに無駄な仕事をすることなく省エネルギー化を実現できる。   Further, according to the present invention, the heating means heats the air by heat exchange with a heater or a refrigerant, so that the outside air is introduced according to the outdoor air condition and is used effectively to provide a comfortable room. Air conditioning can be performed so as to obtain space, and energy saving can be realized without unnecessary work.

またこの発明は、外気導入手段を少なくとも外気導入口開閉機構を有するものとし、外気導入口開閉機構を開閉することにより、または外気導入口開閉機構の開度を調節することにより、外気導入量を可変にしたので、室外の空気状態に応じて外気を導入しこれを効果的に利用して快適な室内空間を得るように空気調和を行うことができ、さらに細かく制御を行って省エネルギー化を実現できる。   Further, the present invention has an outside air introduction means having at least an outside air inlet opening / closing mechanism, and the outside air introduction amount is controlled by opening / closing the outside air introduction opening / closing mechanism or by adjusting the opening degree of the outside air introduction opening / closing mechanism. Because it is variable, air can be conditioned in order to obtain a comfortable indoor space by introducing outside air according to the outdoor air condition and effectively using this, and more precise control realizes energy saving it can.

またこの発明は、熱輸送手段を、圧縮機と熱源側熱交換器と減圧手段と利用側熱交換器とを冷媒配管によって連結し冷媒を循環させる冷凍サイクルを備え、室内熱交換器を前記利用側熱交換器で構成して冷媒配管を流れる冷媒によって室内熱交換器に冷熱または温熱を輸送するものとしたことにより、もしくは室内熱交換器を利用側熱交換器とは別の熱交換器で構成して利用側熱交換器での冷熱または温熱を前記別の熱交換器に輸送する循環路を有するものとしたことにより、既存のエネルギー効率の高い冷凍サイクルを利用して、室外の空気状態に応じて外気を導入しこれを効果的に利用して快適な室内空間を得るように空気調和を行うことができる。   Further, the present invention includes a refrigeration cycle in which the heat transport means is connected to the compressor, the heat source side heat exchanger, the decompression means, and the use side heat exchanger by a refrigerant pipe to circulate the refrigerant, and the indoor heat exchanger is used as described above. By configuring the side heat exchanger to transport cold or hot heat to the indoor heat exchanger by the refrigerant flowing through the refrigerant pipe, or by using a heat exchanger that is different from the use side heat exchanger. By configuring and having a circulation path for transporting cold or hot heat in the use-side heat exchanger to the other heat exchanger, the existing air-efficient refrigeration cycle is used, and the outdoor air condition Accordingly, it is possible to perform air conditioning so as to obtain a comfortable indoor space by introducing outside air and effectively using the outside air.

またこの発明は、湿り空気線図上で、外気の温湿度と室内空気の温湿度間で前記外気の導入量に応じて変化する温湿度の空気を吸込み空気とし、目標吹出し空気として設定された温湿度の空気を吹出し空気とし、吸込み空気から吹出し空気への温湿度の変化を制御ベクトルとし、制御ベクトルの延長が冷媒温度の許容範囲から制限される範囲の飽和線の温湿度に至るように吸込み空気の温湿度と許容範囲内の冷媒温度とを設定することにより、室外の空気状態に応じて外気を導入しこれを効果的に利用でき、さらに外気を積極的に利用する際の空気調和装置の制御に際し、空気温度と共に空気湿度を関連させて快適な室内空間を得るように空気調和を行うことができる空気調和装置の制御方法が得られる。   Further, according to the present invention, on the wet air diagram, the temperature and humidity air that changes between the temperature and humidity of the outside air and the temperature and humidity of the room air according to the introduction amount of the outside air is set as the intake air and is set as the target blowing air. The temperature / humidity air is blown air, the change in temperature / humidity from the intake air to the blown air is used as the control vector, and the extension of the control vector reaches the temperature / humidity of the saturation line in the range that is restricted from the allowable range of the refrigerant temperature. By setting the temperature / humidity of the intake air and the refrigerant temperature within the allowable range, outside air can be introduced and used effectively according to the outdoor air condition, and air conditioning when actively using outside air In controlling the apparatus, there is obtained a control method for an air conditioner capable of performing air conditioning so as to obtain a comfortable indoor space by relating air humidity with air temperature.

またこの発明は、制御ベクトルの延長が冷媒温度の許容範囲から制限される範囲の飽和線の温湿度に至るように、かつ空気調和装置の入力が最小となるように、吸込み空気の温湿度と許容範囲内の冷媒温度とを設定することにより、室外の空気状態に応じて外気を導入しこれを効果的に利用でき、さらに省エネルギー化を実現できる。   The present invention also provides the temperature and humidity of the intake air so that the extension of the control vector reaches the temperature and humidity of the saturation line in a range that is limited from the allowable range of the refrigerant temperature and the input of the air conditioner is minimized. By setting the refrigerant temperature within an allowable range, outside air can be introduced and used effectively according to the outdoor air condition, and further energy saving can be realized.

またこの発明は、吸込み空気のエンタルピーが室内空気のエンタルピー以下となるように吸込み空気の温湿度を設定して外気の導入量を制御することにより、室外の空気状態に応じて外気を導入しこれを効果的に利用して快適な室内空間を得るように空気調和を行うことができ、さらに無駄な仕事をすることなく省エネルギー化を実現できる。   In addition, the present invention introduces outside air according to the outdoor air condition by setting the temperature and humidity of the suction air so that the enthalpy of the suction air is equal to or less than the enthalpy of the room air and controlling the amount of outside air introduced. The air conditioning can be performed so as to obtain a comfortable indoor space by effectively utilizing the energy saving, and further energy saving can be realized without performing unnecessary work.

またこの発明は、外気の温湿度が、室内空気から目標吹出し空気への温湿度の変化の延長線よりも低温側の領域の場合、吸込み空気の温度が目標吹出し空気の温度に接近するように、または制御ベクトルの傾斜が大きくなるように、外気の導入量を制御することにより、室外の空気状態に応じて外気を導入しこれを効果的に利用して快適な室内空間を得るように空気調和を行うことができ、さらに無駄な仕事をすることなく省エネルギー化を実現できる。   Further, according to the present invention, in the case where the temperature and humidity of the outside air is in a region lower than the extension line of the temperature and humidity change from the indoor air to the target blowing air, the temperature of the intake air approaches the temperature of the target blowing air. Or, by controlling the introduction amount of the outside air so that the inclination of the control vector becomes large, the outside air is introduced according to the outdoor air condition and effectively used to obtain a comfortable indoor space. Harmonization can be achieved, and further energy saving can be realized without wasteful work.

またこの発明は、外気の温湿度が、室内空気から目標吹出し空気への温湿度の変化の延長線よりも低湿側の領域の場合、吸込み空気の湿度が目標吹出し空気の湿度に接近するように、または制御ベクトルの傾斜が小さくなるように、外気の導入量を制御することにより、室外の空気状態に応じて外気を導入しこれを効果的に利用して快適な室内空間を得るように空気調和を行うことができ、さらに無駄な仕事をすることなく省エネルギー化を実現できる。   Further, according to the present invention, in the case where the temperature and humidity of the outside air is in a region on the lower humidity side than the extension line of the temperature and humidity change from the room air to the target blown air, the humidity of the intake air approaches the humidity of the target blown air. Or, by controlling the amount of outside air introduced so that the inclination of the control vector becomes small, the outside air is introduced according to the outdoor air condition and effectively used to obtain a comfortable indoor space. Harmonization can be achieved, and further energy saving can be realized without wasteful work.

またこの発明は、湿り空気線図上で、外気の温湿度と室内空気の温湿度間で外気の導入量に応じて変化する温湿度の空気を吸込み空気とし、目標吹出し空気として設定された温湿度の空気を吹出し空気としたときの、吸込み空気から吹出し空気への温湿度の変化の延長が冷媒温度の許容範囲から制限される範囲の飽和線の温湿度から外れる場合、吹出し空気の湿度の目標値と同レベルの湿度の空気を吹出し空気としたときの、吸込み空気から吹出し空気への温湿度の変化を制御ベクトルとし、制御ベクトルの延長が冷媒温度の許容範囲から制限される範囲の飽和線の温湿度に至るように吸込み空気の温湿度と許容範囲内の冷媒温度とを設定し、吹出し空気の温度が目標吹出し空気の温度よりも低い場合に加熱して目標吹出し空気の温度とするように加熱量を設定することにより、室外の空気状態に応じて外気を導入しこれを効果的に利用でき、さらに外気を積極的に利用する際の空気調和装置の制御に際し、空気温度と共に空気湿度を関連させて快適な室内空間を得るように空気調和を行うことができる。   Further, according to the present invention, on the wet air diagram, the temperature and humidity air that changes between the temperature and humidity of the outside air and the temperature and humidity of the room air according to the amount of the outside air is taken as the intake air, and the temperature set as the target blown air. If the extension of temperature / humidity change from the intake air to the blowout air deviates from the saturation line temperature / humidity in the range restricted from the allowable range of the refrigerant temperature when the humidity air is used as the blowout air, the humidity of the blowout air When air with the same level of humidity as the target value is used as the blown air, the change in temperature and humidity from the intake air to the blown air is used as the control vector, and saturation of the range in which the extension of the control vector is limited from the allowable range of the refrigerant temperature Set the temperature and humidity of the intake air and the refrigerant temperature within the allowable range so that the temperature and humidity of the wire are reached, and if the temperature of the blown air is lower than the temperature of the target blown air, heat it to the target blown air temperature In addition, by setting the amount of heating, outside air can be introduced and used effectively according to the outdoor air condition, and when controlling the air conditioner when actively using the outside air, the air humidity as well as the air temperature It is possible to perform air conditioning so as to obtain a comfortable indoor space by relating them.

またこの発明は、制御ベクトルの延長が冷媒温度の許容範囲から制限される範囲の飽和線の温湿度に至るように、かつ空気調和装置の入力が最小となるように、吸込み空気の温湿度と許容範囲内の冷媒温度とを設定することにより、室外の空気状態に応じて外気を導入しこれを効果的に利用でき、さらに省エネルギー化を実現できる。   The present invention also provides the temperature and humidity of the intake air so that the extension of the control vector reaches the temperature and humidity of the saturation line in a range limited from the allowable range of the refrigerant temperature and the input of the air conditioner is minimized. By setting the refrigerant temperature within an allowable range, outside air can be introduced and used effectively according to the outdoor air condition, and further energy saving can be realized.

またこの発明は、外気の温湿度と室内空気の温湿度間で吸込み空気の温湿度を変更し、または、目標吹出し空気の湿度と同レベルである湿度で吹出し空気の温度を変更し、制御ベクトルの長さである空調能力と加熱量とのエネルギー総量が小さくなるように制御ベクトルを設定することにより、室外の空気状態に応じて外気を導入しこれを効果的に利用でき、無駄な仕事をすることなく省エネルギー化を実現できる。   Further, the present invention changes the temperature / humidity of the intake air between the temperature / humidity of the outside air and the temperature / humidity of the room air, or changes the temperature of the blown air at the same level as the humidity of the target blown air. By setting the control vector so that the total amount of energy between the air conditioning capacity and the heating amount, which is the length of the air, is reduced, outside air can be introduced and used effectively according to the outdoor air condition, and wasteful work can be done. Energy saving can be realized without doing.

またこの発明は、外気のエンタルピーが室内空気のエンタルピーよりも大きい外気の領域と、外気のエンタルピーが室内空気のエンタルピーよりも小さい外気の領域と、の領域に応じて外気の導入量を設定することにより、室外の空気状態に応じて外気を導入しこれを効果的に利用でき、さらに外気を積極的に利用する際の空気調和装置の制御に際し、空気温度と共に空気湿度を関連させて快適な室内空間を得るように空気調和を行うことができ、制御しやすい。   Further, the present invention sets the introduction amount of the outside air according to the area of the outside air where the enthalpy of the outside air is larger than the enthalpy of the room air and the area of the outside air where the enthalpy of the outside air is smaller than the enthalpy of the room air. The outdoor air can be introduced and used effectively according to the outdoor air condition, and the indoor air can be comfortably related to the air humidity together with the air temperature when controlling the air conditioner when actively using the outdoor air. Air conditioning can be performed to obtain space, and it is easy to control.

またこの発明は、外気の温湿度が室内空気から目標吹出し空気への温湿度の変化の延長線よりも低温側である領域と、外気の温湿度が室内空気から目標吹出し空気への温湿度の変化の延長線よりも低湿側である領域と、の領域に応じて、冷凍サイクルの空調能力を設定することにより、室外の空気状態に応じて外気を導入しこれを効果的に利用して快適な室内空間を得るように空気調和を行うことができ、さらに無駄な仕事をすることなく省エネルギー化を実現できる。   The present invention also provides a region where the temperature and humidity of the outside air are on a lower temperature side than the extension line of the temperature and humidity change from the room air to the target blowing air, and the temperature and humidity of the outside air are the temperature and humidity of the room air to the target blowing air. By setting the air-conditioning capacity of the refrigeration cycle according to the area that is on the low-humidity side of the extended line of change, the outside air is introduced according to the outdoor air condition and is used effectively Air conditioning can be performed to obtain a comfortable indoor space, and further energy saving can be realized without wasteful work.

またこの発明は、外気のエンタルピーが室内空気のエンタルピーよりも大きい外気の領域と、外気のエンタルピーが室内空気のエンタルピーよりも小さく、かつ外気の温湿度が室内空気から目標吹出し空気への温湿度の変化の延長線よりも低温側である領域と、外気のエンタルピーが室内空気のエンタルピーよりも小さく、かつ外気の温湿度が室内空気から目標吹出し空気への温湿度の変化の延長線よりも低湿側である領域と、の3つの領域に応じて、外気の導入量並びに冷凍サイクルの空調能力および冷媒温度を設定することにより、室外の空気状態に応じて外気を導入しこれを効果的に利用して快適な室内空間を得るように空気調和を行うことができ、さらに無駄な仕事をすることなく省エネルギー化を実現できる。   In addition, the present invention provides an outside air region in which the enthalpy of the outside air is larger than the enthalpy of the room air, the enthalpy of the outside air is smaller than the enthalpy of the room air, and the temperature and humidity of the outside air is the temperature / humidity of the room air to the target blowing air. The region that is on the lower temperature side of the extended line of change, the enthalpy of the outside air is smaller than the enthalpy of the room air, and the temperature and humidity of the outside air are lower than the extended line of the temperature and humidity change from the room air to the target blown air By setting the amount of outside air introduced, the air conditioning capacity of the refrigeration cycle, and the refrigerant temperature according to the three areas, the outside air is introduced according to the outdoor air condition and used effectively. Air conditioning can be performed to obtain a comfortable and comfortable indoor space, and energy saving can be realized without wasteful work.

またこの発明は上記のように再熱をヒーターや冷凍サイクルの熱交換器を利用して行う説明をしてきたが、図29で説明した運転方法に検出値をさらに簡略させて設定温度を若干、たとえば−2゜C程度下げて除湿を有効に行うことができる。まずセンサーとして、外気温度TOAとリターンエアーの吸い込み温度TRAの2点を実際に計測する。外気の温湿度におけるエンタルピーiOAを得るためには、外気の湿度が必要であるが、外気湿度検出手段としてこれは演算にて求められる。たとえば年間気象データ頻度表から、平均相対湿度をマイコンに記憶させることができる。さらに湿度の値の精度を上げるため、標準気象データの温湿度データを利用し外気湿度として、φOA=φ(TOA)としてもよい。すなわち検出した外気温度に応じて外気湿度の平均値を変えて求めた値を外気湿度として、外気の温湿度を得て、外気のエンタルピーiOA=f(TOA,φOA)が演算できる。   In addition, although the present invention has been described as performing reheating using a heater or a heat exchanger of a refrigeration cycle as described above, the detected value is further simplified in the operation method described in FIG. For example, dehumidification can be effectively performed by lowering by about −2 ° C. First, as a sensor, two points of the outside air temperature TOA and the return air suction temperature TRA are actually measured. In order to obtain the enthalpy iOA at the temperature and humidity of the outside air, the humidity of the outside air is required, but this is obtained by calculation as an outside air humidity detecting means. For example, the average relative humidity can be stored in the microcomputer from the annual weather data frequency table. Further, in order to increase the accuracy of the humidity value, the temperature and humidity data of the standard weather data may be used as the outside air humidity so that φOA = φ (TOA). That is, the value obtained by changing the average value of the outside air humidity according to the detected outside air temperature is taken as the outside air humidity, the outside air temperature and humidity can be obtained, and the outside air enthalpy iOA = f (TOA, φOA) can be calculated.

次に吸い込み空気の湿度は目標湿度、たとえば相対湿度60%とする。検出された吸い込み温度TRAと目標湿度を吸い込み空気の検出湿度に置き換える演算により吸い込み空気の温湿度が演算されて、吸い込み空気のエンタルピーiRA=f(TRA,60%)が演算できる。このように外気温度センサー、吸い込み空気温度センサー、外気湿度演算手段、吸い込み空気湿度演算手段殻得たデータにより、外気エンタルピー演算手段、吸い込み空気エンタルピー演算手段で各エンタルピーを求め、図29で説明した、iRA−iOA<αという判定手段にて、この条件を満足するときに換気扇を動作させる信号が発せられる。この結果簡単な検出センサーを用いるだけで、目標温度と目標湿度を設定し、外気及び吸い込み空気の温湿度からエンタルピーを演算するとともにこのエンタルピーにより前記空気調和手段および前記換気手段を制御する制御手段により、設定された温度への空調装置の運転が行われ、目標温度に到達するときに図29で説明したように温湿度データを基にした除湿が行える。さらに、外気を利用した効果的な除湿も一緒に行うことができて、温度と湿度の空調をエアコンと換気扇を利用して少ないエネルギーで行うことができ、快適な室内空気の状態を簡単な装置と簡単な制御で効率よく行うことができる。   Next, the humidity of the suction air is set to a target humidity, for example, 60% relative humidity. The temperature and humidity of the intake air are calculated by replacing the detected intake temperature TRA and the target humidity with the detected humidity of the intake air, and the enthalpy iRA = f (TRA, 60%) of the intake air can be calculated. As described above with reference to FIG. 29, the outside air temperature sensor, the intake air temperature sensor, the outside air humidity calculation means, the intake air humidity calculation means, and the enthalpy obtained by the outside air enthalpy calculation means and the intake air enthalpy calculation means, as described in FIG. The iRA-iOA <α determination means generates a signal for operating the ventilation fan when this condition is satisfied. As a result, by using a simple detection sensor, the target temperature and the target humidity are set, the enthalpy is calculated from the temperature and humidity of the outside air and the intake air, and the air conditioning means and the ventilation means are controlled by this enthalpy by the control means. When the air conditioner is operated to the set temperature and reaches the target temperature, dehumidification based on the temperature and humidity data can be performed as described with reference to FIG. In addition, effective dehumidification using outside air can be performed together, air conditioning of temperature and humidity can be performed with less energy using an air conditioner and a ventilation fan, and a simple device for comfortable indoor air condition And it can be done efficiently with simple control.

以上のように、本発明によれば、室内に吸込み口と吹出し口を有し、送風機により室内空気を吸込み口から吸込んで前記吹出し口から吹出して循環させる室内空気の温度および湿度を変化させて空気調和を行う空気調和手段と、室外から室内に外気を導入または室内から室外へ空気を排気する開口およびこの開口を開閉する開閉手段または通風量を調整する通風調整手段を有する換気手段と、換気手段から導入される外気の温度を検出する外気温度検出手段と、換気手段から導入される外気の湿度を検出する外気湿度検出手段と、空気調和手段へ室内から吸込む空気の温度を検出する吸込み温度検出手段と、空気調和手段の室内熱交換器温度を検出する室内熱交換器温度検出手段及び室内に循環する空気の温度を検出する室内温度検出手段の少なくともどちらかと、外気温度検出手段、外気湿度検出手段、吸込み温度検出手段、及び、室内熱交換器温度検出手段と室内温度検出手段の少なくともいずれか、から検出した温度および湿度により空気調和手段および換気手段を制御する制御手段と、を備え、室内空気の温度を目標値である温度に接近させるようにするので、外気を有効に活用出来、運転時のエネルギーを押さえた空気調和装置が得られる。   As described above, according to the present invention, the room has a suction port and a blowout port, and the temperature and humidity of the indoor air that is circulated by sucking the indoor air from the suction port and blowing out from the blowout port by a blower are changed. Air conditioning means for performing air conditioning, ventilation means having an opening for introducing outside air into the room from the outside or exhausting air from the room to the outside, an opening / closing means for opening and closing the opening, or a ventilation adjusting means for adjusting the amount of ventilation; and ventilation Outside temperature detecting means for detecting the temperature of the outside air introduced from the means, outside air humidity detecting means for detecting the humidity of the outside air introduced from the ventilation means, and suction temperature for detecting the temperature of the air sucked into the air conditioning means from the room A detection means, an indoor heat exchanger temperature detection means for detecting the indoor heat exchanger temperature of the air conditioning means, and an indoor temperature detection means for detecting the temperature of the air circulating in the room At least one of the outside air temperature detecting means, the outside air humidity detecting means, the suction temperature detecting means, and the air conditioning means according to the temperature and humidity detected from at least one of the indoor heat exchanger temperature detecting means and the indoor temperature detecting means, and Control means for controlling the ventilation means, and the temperature of the room air is made to approach the target temperature, so that the outside air can be used effectively and an air conditioner with reduced energy during operation can be obtained. .

また、本発明によれば、室内に吸込み口と吹出し口を有し、送風機により室内空気を前記吸込み口から吸込んで前記吹出し口から吹出して循環させる室内空気の温度および湿度を変化させて空気調和を行う空気調和手段と、室外から室内に外気を導入または室内から室外へ空気を排気する開口およびこの開口を開閉する開閉手段または通風量を調整する通風調整手段を有する換気手段と、換気手段から導入される外気の温度を検出する外気温度検出手段と、換気手段から導入される外気の湿度を検出する外気湿度検出手段と、空気調和手段へ室内から吸込む空気の温度を検出する吸込み温度検出手段と、空気調和手段へ室内から吸込む空気の湿度を検出する吸込み湿度検出手段と、室内に循環する空気の温度を検出する室内温度検出手段と、室内に循環する空気の湿度を検出する室内湿度検出手段と、外気温度検出手段、外気湿度検出手段、吸込み温度検出手段、吸込み湿度検出手段、室内温度検出手段、および室内湿度検出手段の検出した温度および湿度により空気調和手段および換気手段を制御する制御手段、を備え、室内空気の温度と湿度を目標値である温度と湿度に接近させるようにするので、外気を有効に活用して健康的な空気調和が、エネルギーの少ない状態で得られる。   In addition, according to the present invention, the air conditioner has an air inlet and an air outlet, and changes the temperature and humidity of the indoor air that is circulated by sucking the indoor air from the air inlet and blowing out the air through the air outlet. An air conditioning means for performing air conditioning, an opening for introducing outside air into the room from the outside or exhausting air from the room to the outside, a ventilation means having an opening / closing means for opening and closing the opening or a ventilation adjusting means for adjusting the amount of ventilation, and a ventilation means An outside air temperature detecting means for detecting the temperature of the introduced outside air, an outside air humidity detecting means for detecting the humidity of the outside air introduced from the ventilation means, and a suction temperature detecting means for detecting the temperature of the air sucked into the air conditioning means from the room A suction humidity detecting means for detecting the humidity of air sucked from the room into the air conditioning means, a room temperature detecting means for detecting the temperature of the air circulating in the room, Indoor humidity detection means for detecting the humidity of the air circulating inside, outside temperature detection means, outside air humidity detection means, suction temperature detection means, suction humidity detection means, room temperature detection means, and temperature detected by the room humidity detection means And control means for controlling the air conditioning means and the ventilation means according to the humidity, so that the temperature and humidity of the indoor air are brought close to the target values of temperature and humidity. Air conditioning can be achieved with less energy.

また、本発明によれば、制御手段は検出した各空気の温度と湿度を関連させながら、制御するので、温度と湿度を同時に効率よく制御出来る空気調和装置が得られる。   Further, according to the present invention, since the control means controls the detected air temperature and humidity in relation to each other, an air conditioner capable of efficiently controlling the temperature and humidity simultaneously is obtained.

また、本発明によれば、室内に循環する空気の温度を検出する室内温度検出手段と、および、室内に循環する空気の湿度を検出する室内湿度検出手段と、の少なくとも一方は、吹出し口近傍にて室内に循環する空気の温度および湿度の少なくとも一方を検出するので、確実な制御が可能な空気調和装置が得られる。   According to the present invention, at least one of the indoor temperature detection means for detecting the temperature of the air circulating in the room and the indoor humidity detection means for detecting the humidity of the air circulating in the room is in the vicinity of the outlet. Since at least one of the temperature and humidity of the air circulating in the room is detected, an air conditioner capable of reliable control is obtained.

また、本発明によれば、室内を循環する空気の温度を検出する室内温度検出手段と、および、室内を循環する空気の湿度を検出する室内湿度検出手段と、の少なくとも一方は、換気手段から導入される空気と吹出し口から吹出される空気との混合した空気の温度および湿度の少なくとも一方を検出するので、確実な制御が可能な空気調和装置が得られる。   Further, according to the present invention, at least one of the indoor temperature detection means for detecting the temperature of the air circulating in the room and the indoor humidity detection means for detecting the humidity of the air circulating in the room is provided by the ventilation means. Since at least one of the temperature and humidity of the mixed air of the introduced air and the air blown from the blowout port is detected, an air conditioner capable of reliable control is obtained.

また、本発明によれば、室外から室内への換気および室内から室外への排気の両方が可能な送風手段を備えているので、室内の良好な環境を維持し易い空気調和装置が得られる。   In addition, according to the present invention, the air conditioner that can easily maintain a good indoor environment can be obtained because it includes the air blowing means that can perform both ventilation from the outside to the room and exhaust from the room to the outside.

また、本発明によれば、換気手段は、熱交換可能な換気扇であるので、更に省エネルギーを達成出来る空気調和装置が得られる。   Further, according to the present invention, since the ventilation means is a ventilation fan that can exchange heat, an air conditioner that can achieve further energy saving is obtained.

また、本発明によれば、室内に吸入口と吹出し口を有し、送風機により室内空気を吸入口から吸込んで吹出し口から吹出させる空気調和装置にて室内空気を循環させて室内の温度および湿度を変化させて空気調和を行うステップと、室外から室内に外気を導入または室内から室外へ空気を排気する開口およびこの開口を開閉する開閉手段またはこの開口を通風する通風量を調整する通風調整手段とを有する換気手段にて室外と室内間の換気を行うステップと、外気の温度と外気の湿度と前記空気調和装置へ室内から吸込む空気の温度と、及び、空気調和装置の室内熱交換器の温度または室内に循環する空気の温度と、を検出するステップと、を備え、検出した温度および湿度により空気調和手段および換気手段を制御して、室内空気の温度および湿度を目標値である温度および湿度に接近させるように、温度と湿度を一体で変化させるので外気を有効に活用出来、運転時のエネルギーの少ない空気調和方法が得られる。   Further, according to the present invention, the indoor air is circulated in the air conditioner having an air inlet and an air outlet in the room, and the room air is sucked from the air inlet by the blower and blown out from the air outlet. A step of performing air conditioning by changing the pressure, an opening for introducing outside air into the room from the outside or exhausting air from the room to the outside, an opening / closing means for opening / closing the opening, or a ventilation adjusting means for adjusting the amount of ventilation through the opening A step of ventilating between the outside and the outside by a ventilation means having a temperature of outside air, a humidity of outside air, a temperature of air sucked into the air conditioner from the room, and an indoor heat exchanger of the air conditioner Detecting the temperature or the temperature of the air circulating in the room, and controlling the air conditioning means and the ventilation means according to the detected temperature and humidity to control the temperature of the room air. Fine humidity so as to approach the temperature and humidity which is a target value, so changing the temperature and humidity integrally effectively be utilized outside air, less air conditioning method with energy at the time of operation is obtained.

また、本発明によれば、外気のエンタルピーと空気調和装置へ室内から吸込む空気のエンタルピーを求め両方のエンタルピーを比較するステップと、外気のエンタルピーが空気調和装置へ室内から吸込む空気のエンタルピより低い場合は換気手段にて外気を室内に導入するとともに冷凍サイクルを所定の条件で運転させるステップと、を備えたので、簡単な方法でエネルギーの少ない空気調和方法が得られる。   According to the present invention, the step of obtaining the enthalpy of the outside air and the enthalpy of the air sucked into the air conditioner from the room and comparing both enthalpies, and the enthalpy of the outside air being lower than the enthalpy of the air sucked into the air conditioner from the room Has a step of introducing outside air into the room by a ventilation means and operating the refrigeration cycle under a predetermined condition, so that an air conditioning method with less energy can be obtained by a simple method.

また、本発明によれば、室内に循環する空気のエンタルピーと空気調和装置へ室内から吸込む空気のエンタルピーを求め両方のエンタルピーから室内負荷を求めるステップと、この室内負荷と室内空気の温度と湿度の目標値と空気調和装置へ室内から吸込む空気の温度と湿度から、目標とする室内に循環する空気の温度と湿度を求めるステップと、換気手段にて外気を室内に導入するとともに冷凍サイクルを所定の条件で運転させるステップと、を備えたので、外気を利用して効果的な省エネルギー運転が可能な空気調和方法が得られる。   Further, according to the present invention, the step of obtaining the enthalpy of the air circulating into the room and the enthalpy of the air sucked into the air conditioner from the room to obtain the room load from both enthalpies, and the temperature and humidity of the room load and the room air are determined. The step of obtaining the temperature and humidity of the air circulated in the target room from the target value and the temperature and humidity of the air sucked into the air conditioner from the room; And the step of operating under conditions, an air conditioning method capable of effective energy-saving operation using outside air is obtained.

また、本発明によれば、室内に吸入口有し、送風機により室内空気を前記吸入口から吸込んで空気調和を行う空調機の吸込んだ空気の温度と湿度を検出するステップと、空調機の室内への吹出し口から吹出させ室内に循環させる空気の温度と湿度を検出するステップと、室外から室内に外気を導入する外気の温度と湿度を検出するステップと、室内空気の目標値である温度と湿度を設定するステップと、室内空気の目標値を達成させ、且つ、冷凍サイクルのエネルギーを小さくするため、室内熱交換器に直接吸込む室内空気と外気が混合された空気の温湿度の目標値を設定するステップと、を備えたので、信頼性が高く、且つ、エネルギーの少ない空気調和方法が得られる。   Further, according to the present invention, there is provided a step of detecting the temperature and humidity of the air sucked by an air conditioner that has a suction port in the room and sucks room air from the suction port by a blower and performs air conditioning, Detecting the temperature and humidity of the air that is blown out from the outlet to be circulated into the room, detecting the temperature and humidity of the outside air that introduces the outside air from the outside into the room, and the temperature that is the target value of the indoor air; In order to achieve the target value of the indoor air and the step of setting the humidity, and to reduce the energy of the refrigeration cycle, the target value of the temperature and humidity of the air mixed with the indoor air and the outside air directly sucked into the indoor heat exchanger is set. And the step of setting the air conditioning method with high reliability and low energy.

また、本発明によれば、室内に吸入口有し、送風機により室内空気を前記吸入口から吸込んで空気調和を行う空調機の吸込んだ空気の温度と湿度を検出するステップと、空調機の室内への吹出し口から吹出させ室内に循環させる空気の温度と湿度と風量を検出するステップと、室外から室内に外気を導入する外気の温度と湿度と風量を検出するステップと、室内空気の目標値である温度と湿度を設定するステップと、室内空気の目標値を達成させ、且つ、冷凍サイクルのエネルギーを小さくするため、室内熱交換器から直接吹出す空気の温湿度の目標値を設定するステップと、を備えたので、使い勝手が良く無駄なエネルギーを利用しない空気調和方法が得られる。   Further, according to the present invention, there is provided a step of detecting the temperature and humidity of the air sucked by an air conditioner that has a suction port in the room and sucks room air from the suction port by a blower and performs air conditioning, Detecting the temperature, humidity, and air volume of the air that is blown out from the air outlet and circulated into the room, detecting the temperature, humidity, and air volume of the outside air that introduces the outside air from the outside into the room, and a target value of the indoor air The step of setting the temperature and humidity, and the step of setting the target value of the temperature and humidity of the air directly blown from the indoor heat exchanger in order to achieve the target value of the indoor air and reduce the energy of the refrigeration cycle Thus, an air conditioning method that is convenient and does not use wasteful energy can be obtained.

また、本発明によれば、冷凍サイクルの蒸発温度を所定の値に設定して、または、顕熱比を所定の値に設定して、空気調和装置を運転させるステップと、を備えたので、確実な制御が可能で、省エネルギーを確実に達成出来る空気調和方法が得られる。   According to the present invention, the evaporating temperature of the refrigeration cycle is set to a predetermined value, or the sensible heat ratio is set to a predetermined value, and the air conditioner is operated. An air conditioning method capable of reliably controlling and achieving energy saving can be obtained.

また、本発明によれば、室内熱交換器に直接吸込まれる空気の温湿度と室内熱交換器から直接吹出される空気の温湿度の両者のエンタルピーの差が小さくなるように冷凍サイクルを運転するので、省エネルギーを確実に達成出来る空気調和方法が得られる。。   Further, according to the present invention, the refrigeration cycle is operated so that the difference in enthalpy between the temperature and humidity of air directly sucked into the indoor heat exchanger and the temperature and humidity of air blown directly from the indoor heat exchanger is reduced. Therefore, an air conditioning method that can reliably achieve energy saving is obtained. .

また、本発明によれば、室内に吸入口と吹出し口を有し、送風機により室内空気を吸入口から吸込んで吹出し口から吹出して循環させる室内空気の温度および湿度を変化させて室内熱交換器により空気調和を行う空気調和手段と、室外から室内に外気を導入または室内から室外へ空気を排気する開口およびこの開口を開閉する開閉手段またはこの開口を通風する通風量を調整する通風調整手段を有する換気手段と、換気手段から導入される外気の温度を検出する外気温度検出手段と、換気手段から導入される外気の湿度を検出する外気湿度検出手段と、空気調和手段へ室内から吸込まれる空気の温度を検出する吸込み温度検出手段と、室内空気の温度目標値を設定する室内吸い込み温度設定手段と、室内空気の湿度目標値を設定する室内吸い込み湿度設定手段と、外気及び吸い込み空気の温湿度からエンタルピーを演算するとともに演算されたエンタルピーにより空気調和手段および換気手段を制御する制御手段と、を備え、室内空気の温度を目標値である温度に接近させるので、簡単な装置で快適な空調と、省エネルギーを達成できる空気調和装置が得られる。   Further, according to the present invention, the indoor heat exchanger has a suction port and a blowout port in the room, and changes the temperature and humidity of the indoor air that is sucked from the suction port by the blower and blown from the blowout port and circulated. Air conditioning means for performing air conditioning, and an opening for introducing outside air into the room from the outside or exhausting air from the room to the outside, an opening / closing means for opening and closing the opening, or a ventilation adjusting means for adjusting the amount of ventilation through the opening. A ventilation means, an outside air temperature detection means for detecting the temperature of the outside air introduced from the ventilation means, an outside air humidity detection means for detecting the humidity of the outside air introduced from the ventilation means, and the air conditioning means being sucked from the room Suction temperature detection means for detecting the temperature of air, indoor suction temperature setting means for setting a target temperature of indoor air, and indoor suction for setting a target humidity of indoor air Temperature control means for calculating the enthalpy from the temperature and humidity of the outside air and the intake air and controlling the air conditioning means and the ventilation means based on the calculated enthalpy, and the temperature of the room air is a target value. Therefore, it is possible to obtain an air conditioner that can achieve comfortable air conditioning and energy saving with a simple device.

また、本発明によれば、室内に吸入口と吹出し口を有し、送風機の回転により室内空気を吸入口から吸込んで吹出し口から吹出させ、室内の温度および湿度を熱交換器の能力により変化させて冷房や暖房などの運転を行う空気調和手段と、空気調和手段に接続され、送風機の回転および熱交換器の能力を調整して室内の温度および湿度を目標値である温度および湿度の少なくとも一つに接近させるように設定する目標値設定手段と、目標値設定手段の設定する目標値を複数の帯域からなるゾーンとし、空気調和手段の運転の状態に応じて目標値の複数の帯域からゾーンの幅を選択可能とするので、快適な室内の空気調和が得られる。   Further, according to the present invention, the room has an intake port and an air outlet, and the air is sucked from the air inlet through the rotation of the blower and blown out from the air outlet, so that the temperature and humidity in the room change depending on the capacity of the heat exchanger. Air conditioning means for performing operations such as cooling and heating, and connected to the air conditioning means, adjusting the rotation of the blower and the capacity of the heat exchanger to adjust the indoor temperature and humidity to at least the target temperature and humidity. The target value setting means that is set so as to approach one, and the target value that is set by the target value setting means is a zone consisting of a plurality of bands, and from a plurality of bands of target values according to the operating state of the air conditioning means Since the zone width can be selected, comfortable indoor air conditioning can be obtained.

また、本発明によれば、室内に吸入口と吹出し口を有し、送風機の回転により室内空気を前記吸入口から吸込んで吹出し口から吹出させ、室内の温度および湿度を熱交換器の能力により変化させて冷房や暖房などの運転を行う空気調和手段と、室内と室外の間を通風可能な開口およびこの通風を行う換気ファンを有し室内の換気を行う換気手段と、空気調和手段および換気手段に接続され、送風機の回転および熱交換器の能力および換気ファンの回転を調整して室内の温度および湿度を目標値である温度および湿度に接近させるように制御する制御手段と、を備え、空気調和手段または前記換気手段からダクトを介して他の個所または他の部屋へ送風可能にするとともに、送風手段および換気手段を制御手段にて温度と湿度を一体に制御するので、多くの個所やお奥の部屋を一括して効率の良い空気調和を可能にする。   Further, according to the present invention, the room has an inlet and an outlet, and the air is sucked from the inlet by the rotation of the blower and blown out from the outlet, and the indoor temperature and humidity are controlled by the ability of the heat exchanger. Air conditioning means that performs operations such as cooling and heating by changing, ventilation means that has an opening that allows ventilation between the room and the outside, and a ventilation fan that performs this ventilation, and that ventilates the room, and air conditioning means and ventilation Control means connected to the means for adjusting the rotation of the blower and the capacity of the heat exchanger and the rotation of the ventilation fan to control the room temperature and humidity to approach the target temperature and humidity; and Air can be blown from the air conditioning means or the ventilation means to another place or another room via a duct, and the temperature and humidity are integrally controlled by the control means for the blowing means and the ventilation means. In, to allow for good air-conditioning efficiency in a lump a lot of places and your back of the room.

1 室内ユニット、2 部屋、3、3a、3b 室内熱交換器、4 加熱手段、5 室内ファン、6 外気導入手段、7 冷媒配管、8 室外ユニット、9 吸込み空気である室内空気温度検知手段、10 吸込み空気である室内空気湿度検知手段、11 外気温度検知手段、12 外気湿度検知手段、13 吹出し空気温度検知手段、14 吹出し空気湿度検知手段、 20 天井、 21 壁面、 22 圧縮機、23 流路切換手段、25 室外熱交換器、 26、26b 減圧手段、 31 換気ファン、 32 室内制御装置、 33 室外制御装置、 34 吹出しグリル、 35 吸込みグリル、 36 ダクト、 39 室内フィルター、 40 室外フィルター、 41 室外ファン、 46 天井埋め込み換気扇、 47 床面、 50 加湿器、 51 ヒーター、 52 混合エア温度検出器、 53 混合エア湿度検出器、 67 外気導入手段のダンパー、 68 室内熱交換器配管温度検知手段、 81 室内空調負荷検知手段、 82 運転動作設定手段、83 外気量制御手段、84 運転動作制御手段。   DESCRIPTION OF SYMBOLS 1 Indoor unit, 2 rooms, 3, 3a, 3b Indoor heat exchanger, 4 Heating means, 5 Indoor fan, 6 Outside air introduction means, 7 Refrigerant piping, 8 Outdoor unit, 9 Indoor air temperature detection means which are intake air, 10 Indoor air humidity detection means that is intake air, 11 Outside air temperature detection means, 12 Outside air humidity detection means, 13 Blow air temperature detection means, 14 Blow air humidity detection means, 20 Ceiling, 21 Wall surface, 22 Compressor, 23 Channel switching Means, 25 outdoor heat exchanger, 26, 26b pressure reducing means, 31 ventilation fan, 32 indoor control device, 33 outdoor control device, 34 blowout grill, 35 suction grille, 36 duct, 39 indoor filter, 40 outdoor filter, 41 outdoor fan , 46 Ceiling embedded ventilation fan, 47 Floor, 50 Humidifier, 51 Heater, 52 Mixed air temperature detector, 53 Mixed air humidity detector, 67 Damper of outside air introducing means, 68 Indoor heat exchanger piping temperature detecting means, 81 Indoor air conditioning load detecting means, 82 Operation setting means, 83 Outside air amount control Means, 84 Driving operation control means.

Claims (3)

室内に吸入口と吹出し口を有し、送風機の回転により室内空気を前記吸込口から吸込んで前記吹出し口から吹出させ、室内空気の温度または湿度を熱交換器により変化させて冷房や暖房などの運転を行う空気調和手段と、室外から前記室内に外気を導入または前記室内から室外へ空気を排気する開口およびこの開口を開閉する開閉手段またはこの開口を通風する通風量を調整する通風調整手段を有する換気手段と、前記熱交換器に流れる冷媒の物理状態を圧縮機、膨張弁など調整可能な調整手段にて調整し前記熱交換器の能力、動作を変化させる冷凍サイクルと、前記空気調和手段、前記換気手段および前記冷凍サイクルに接続され、前記送風機、前記熱交換器、前記開口、等を調整して室内の温度または湿度を目標値である温度および湿度の少なくとも一つに接近させるように設定する目標値設定手段と、を備え、前記目標値設定手段の設定する目標値を複数の帯域からなるゾーンとし、前記室内の温度および湿度の少なくとも1つが目標値である目標ゾーンに到達したときまたはゾーン内の所定値に到達したときに前記空気調和手段、前記換気手段および前記冷凍サイクルの少なくともいずれかの動作を切り換えることを特徴とする空気調和装置。 It has a suction port and a blowout port in the room, and the air is sucked from the suction port by the rotation of the blower and blown out from the blowout port, and the temperature or humidity of the room air is changed by a heat exchanger to An air conditioning means for operating, an opening for introducing outside air into the room from the outside or exhausting air from the room to the outside, an opening / closing means for opening / closing the opening, or a ventilation adjusting means for adjusting the amount of air flowing through the opening. A ventilation means, a refrigeration cycle that adjusts the physical state of the refrigerant flowing through the heat exchanger by an adjustable adjustment means such as a compressor and an expansion valve, and changes the capacity and operation of the heat exchanger, and the air conditioning means The temperature and humidity are connected to the ventilation means and the refrigeration cycle, and adjust the blower, the heat exchanger, the opening, and the like to set the indoor temperature or humidity as target values. Target value setting means for setting the target value to approach at least one, the target value set by the target value setting means is a zone consisting of a plurality of bands, and at least one of the indoor temperature and humidity is the target value An air conditioner that switches the operation of at least one of the air conditioning means, the ventilation means, and the refrigeration cycle when the target zone is reached or when a predetermined value in the zone is reached. 前記目標値である温度および湿度の一方が目標ゾーンに到達したときに他方の目標ゾーンの幅は切り換えられることを特徴とする請求項1記載の空気調和装置。 The air conditioner according to claim 1, wherein when one of the target value of temperature and humidity reaches the target zone, the width of the other target zone is switched. 前記目標ゾーンまたはゾーン内の前記所定値は、外気の状態または記憶された季節カレンダーにより変更可能とすることを特徴とする請求項1記載の空気調和装置。 The air conditioner according to claim 1, wherein the target zone or the predetermined value in the zone can be changed according to an outside air state or a stored seasonal calendar.
JP2010243557A 2010-10-29 2010-10-29 Air conditioner Expired - Fee Related JP5110152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010243557A JP5110152B2 (en) 2010-10-29 2010-10-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010243557A JP5110152B2 (en) 2010-10-29 2010-10-29 Air conditioner

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008115649A Division JP4915387B2 (en) 2008-04-25 2008-04-25 Air conditioning apparatus and air conditioning method

Publications (2)

Publication Number Publication Date
JP2011021881A true JP2011021881A (en) 2011-02-03
JP5110152B2 JP5110152B2 (en) 2012-12-26

Family

ID=43632106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010243557A Expired - Fee Related JP5110152B2 (en) 2010-10-29 2010-10-29 Air conditioner

Country Status (1)

Country Link
JP (1) JP5110152B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050227A1 (en) 2012-09-28 2014-04-03 ダイキン工業株式会社 Controller for ventilation device
WO2014076793A1 (en) * 2012-11-15 2014-05-22 三菱電機株式会社 Remote controller, air-conditioning system, and program
JP2015183918A (en) * 2014-03-24 2015-10-22 株式会社Nttファシリティーズ Method for controlling operation of surrounding air cooling and air conditioning system
WO2020162306A1 (en) * 2019-02-06 2020-08-13 パナソニックIpマネジメント株式会社 Air conditioning system and control unit
CN114183897A (en) * 2021-11-18 2022-03-15 玉环蓓瑾思流体控制科技有限公司 Heating and ventilation system with automatic detection and control functions and control method
CN114893890A (en) * 2022-05-07 2022-08-12 合肥美的暖通设备有限公司 Air conditioner, control method, device and component thereof, and computer equipment
CN116358127A (en) * 2023-03-31 2023-06-30 清华大学 Subway station fresh air valve control method and device, electronic equipment and storage medium
EP4224079A4 (en) * 2020-09-30 2024-03-13 Daikin Ind Ltd Air-conditioning and ventilation system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380153A (en) * 1986-09-19 1988-04-11 Matsushita Electric Ind Co Ltd Air conditioning control system
JPH0460331A (en) * 1990-06-29 1992-02-26 Toshiba Corp Air conditioner with ventilating function
JPH04257636A (en) * 1991-02-08 1992-09-11 Kajima Corp Air conditioner
JPH0735389A (en) * 1993-07-23 1995-02-07 Toshiba Corp Air conditioner
JPH08303833A (en) * 1995-04-28 1996-11-22 Matsushita Seiko Co Ltd Indoor temperature set value operating device for air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380153A (en) * 1986-09-19 1988-04-11 Matsushita Electric Ind Co Ltd Air conditioning control system
JPH0460331A (en) * 1990-06-29 1992-02-26 Toshiba Corp Air conditioner with ventilating function
JPH04257636A (en) * 1991-02-08 1992-09-11 Kajima Corp Air conditioner
JPH0735389A (en) * 1993-07-23 1995-02-07 Toshiba Corp Air conditioner
JPH08303833A (en) * 1995-04-28 1996-11-22 Matsushita Seiko Co Ltd Indoor temperature set value operating device for air conditioner

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050227A1 (en) 2012-09-28 2014-04-03 ダイキン工業株式会社 Controller for ventilation device
JP2014070827A (en) * 2012-09-28 2014-04-21 Daikin Ind Ltd Controller for ventilation device
WO2014076793A1 (en) * 2012-11-15 2014-05-22 三菱電機株式会社 Remote controller, air-conditioning system, and program
JP2015183918A (en) * 2014-03-24 2015-10-22 株式会社Nttファシリティーズ Method for controlling operation of surrounding air cooling and air conditioning system
WO2020162306A1 (en) * 2019-02-06 2020-08-13 パナソニックIpマネジメント株式会社 Air conditioning system and control unit
JP7398621B2 (en) 2019-02-06 2023-12-15 パナソニックIpマネジメント株式会社 Air conditioning system and control unit
EP4224079A4 (en) * 2020-09-30 2024-03-13 Daikin Ind Ltd Air-conditioning and ventilation system
CN114183897A (en) * 2021-11-18 2022-03-15 玉环蓓瑾思流体控制科技有限公司 Heating and ventilation system with automatic detection and control functions and control method
CN114893890A (en) * 2022-05-07 2022-08-12 合肥美的暖通设备有限公司 Air conditioner, control method, device and component thereof, and computer equipment
CN114893890B (en) * 2022-05-07 2024-01-30 合肥美的暖通设备有限公司 Air conditioner, control method and device thereof, assembly and computer equipment
CN116358127A (en) * 2023-03-31 2023-06-30 清华大学 Subway station fresh air valve control method and device, electronic equipment and storage medium
CN116358127B (en) * 2023-03-31 2023-10-27 清华大学 Subway station fresh air valve control method and device, electronic equipment and storage medium

Also Published As

Publication number Publication date
JP5110152B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
JP4915387B2 (en) Air conditioning apparatus and air conditioning method
JP2001272086A (en) Air conditioner, air conditioning method
JP5110152B2 (en) Air conditioner
JP5076745B2 (en) Ventilation air conditioner
JP6494765B2 (en) Air conditioning system
JP4816251B2 (en) Air conditioner and building
CN110017564B (en) Double-cold-source fresh air unit and control method thereof
JP5447360B2 (en) Control method of air conditioner
JP5487857B2 (en) Air conditioning system
JP2006275509A (en) Control method of air conditioner
JP3994607B2 (en) Air conditioning method
WO2013046605A1 (en) Air conditioning system
WO2020053929A1 (en) Air conditioning device
JP2006275507A (en) Air conditioner
JP5256828B2 (en) Ventilation air conditioner
JP5359170B2 (en) Air conditioner
JP2011202916A (en) Air conditioning control device
JP5439792B2 (en) Air conditioner
Pisarev et al. Ventilation system with ground heat exchanger
JP2020197310A (en) Ventilation device and ventilation system
US20220090813A1 (en) Outside air treatment device and air conditioning system
JP4997830B2 (en) Air conditioner and building
WO2020035907A1 (en) Air-conditioning device, control device, air-conditioning method, and program
JP2005214608A (en) Method for improving energy saving for air-conditioning facility
JP5435161B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5110152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees