JPH0243015Y2 - - Google Patents

Info

Publication number
JPH0243015Y2
JPH0243015Y2 JP1982120302U JP12030282U JPH0243015Y2 JP H0243015 Y2 JPH0243015 Y2 JP H0243015Y2 JP 1982120302 U JP1982120302 U JP 1982120302U JP 12030282 U JP12030282 U JP 12030282U JP H0243015 Y2 JPH0243015 Y2 JP H0243015Y2
Authority
JP
Japan
Prior art keywords
temperature
amount
reheat
air
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982120302U
Other languages
Japanese (ja)
Other versions
JPS5925061U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1982120302U priority Critical patent/JPS5925061U/en
Publication of JPS5925061U publication Critical patent/JPS5925061U/en
Application granted granted Critical
Publication of JPH0243015Y2 publication Critical patent/JPH0243015Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Humidification (AREA)
  • Removal Of Water From Condensation And Defrosting (AREA)

Description

【考案の詳細な説明】 本考案は、主として電算機室に適用する空気調
和機に関する。
[Detailed Description of the Invention] The present invention relates to an air conditioner mainly applied to a computer room.

従来、電算機室に用いられる空気調和機は、例
えば特開昭51−93534号公報に示され、また、第
3図に示したごとく、蒸発器Aに再熱器Bを並設
して、前記再熱器Bに吐出ガスの1部を供給する
再熱回路Cを設け、運転時、吐出ガスの1部を用
いて蒸発器Aの出口空気を再熱し、吹出空気温度
の制御を行なつている。尚第3図においてDは圧
縮機、Eは凝縮器、Fはフアン、Gは膨張弁、H
は温度調節器、Iは再熱量制御弁である。
Conventionally, an air conditioner used in a computer room is shown in, for example, Japanese Patent Laid-Open No. 51-93534, and as shown in FIG. A reheat circuit C is provided to supply part of the discharged gas to the reheater B, and during operation, part of the discharged gas is used to reheat the outlet air of the evaporator A to control the temperature of the blown air. ing. In Fig. 3, D is a compressor, E is a condenser, F is a fan, G is an expansion valve, and H
is a temperature regulator, and I is a reheat amount control valve.

ところで、空気冷却に必要な全熱量は、空気の
温度変化のみに使用される熱量である顕熱量と、
空気中に含まれる水蒸気を凝縮させるのに必要な
熱量である潜熱量との和からなるのであるが、電
算機室では、前記顕熱量のみで空気が冷却される
状態つまり顕熱比[顕熱量/(顕熱量+潜熱量)]
(SHF)が1に近い状態、即ち除湿されない状態
で運転できることが望ましく、そのため、一般に
加湿器を用い、相対湿度が低下すると加湿を行う
ごとくなしている。
By the way, the total amount of heat required for air cooling is divided into sensible heat amount, which is the amount of heat used only for changing the temperature of the air, and
It consists of the sum of the amount of latent heat, which is the amount of heat required to condense the water vapor contained in the air.In a computer room, the air is cooled only by the amount of sensible heat, that is, the sensible heat ratio /(sensible heat amount + latent heat amount)]
It is desirable to be able to operate in a state where (SHF) is close to 1, that is, without dehumidification.For this reason, a humidifier is generally used to perform humidification when the relative humidity decreases.

所が、従来の空気調和機では、前記加湿器とし
て、超音波加湿器を用いたり、電気ヒータ又は冷
媒ヒータを組込んだ加湿器を用いているため、前
者によると、加湿用水に混入する塵埃やその他の
不純物を吹出空気に放出したり、水滴を飛散させ
てしまつたりする問題があつたし、また、後者に
よると、前記ヒータのオン・オフを検出するため
の検出回路が必要となると共に、加湿能力の制御
が困難となり、適正な加湿が行ないにくい問題が
あつた。
However, in conventional air conditioners, as the humidifier, an ultrasonic humidifier or a humidifier incorporating an electric heater or a refrigerant heater is used. There are problems such as releasing water and other impurities into the blown air and scattering water droplets, and according to the latter, a detection circuit is required to detect whether the heater is on or off. At the same time, it became difficult to control the humidifying capacity, making it difficult to perform proper humidification.

本考案の目的は、蒸発器で除湿するドレン水
を、再熱器に供給する吐出ガスの1部により加熱
して再蒸発させ、この再蒸発で加湿することによ
り、特別な加湿器を用いなくとも加湿できなが
ら、しかも、不純物が放出されたり、或いは水滴
が飛散したりする危険をなくし、かつ、簡単な制
御回路で加湿能力の制御が行なえると共に、加湿
器も正確に制御できるようにした点にある。
The purpose of this invention is to heat the drain water that is dehumidified in the evaporator with a part of the discharge gas supplied to the reheater and re-evaporate it, and to humidify it with this re-evaporation, thereby eliminating the need for a special humidifier. It is possible to humidify both types of air, eliminate the risk of impurities being released or water droplets being scattered, and the humidification capacity can be controlled using a simple control circuit, and the humidifier can also be controlled accurately. At the point.

本考案の構成は、圧縮機、蒸発器、再熱器とを
備え、該再熱器に吐出ガスの1部を供給する再熱
回路を設けた空気調和機において、前記蒸発器で
凝縮するドレン水の受皿に、ドレン水を加熱して
再蒸発させる再蒸発器を設けると共に、前記再熱
器の風下側に、該再熱器からの吹出空気温度を検
出する温度調節器を設ける一方、前記再熱回路
に、前記温度調節器で検出した温度信号をもとに
前記吹出空気温度が一定になるように前記再熱回
路の再熱器へ供給する吐出ガス量を調節する再熱
量制御弁を介装し、この再熱回路における前記再
熱量制御弁と前記再熱器との間に、前記再蒸発器
に吐出ガスの1部を供給する再蒸発回路を分岐さ
せたことにより、前記温度調節器と再熱量制御弁
とによる前記再熱器の再熱量の制御を利用して、
前記再熱と同時にドレン水の再蒸発で加湿制御す
ることも可能とし、ドレン発生量即ち除湿量に見
合つた加湿制御を可能にしたものである。
The configuration of the present invention provides an air conditioner that includes a compressor, an evaporator, and a reheater, and is provided with a reheat circuit that supplies part of the discharged gas to the reheater. A reevaporator for heating and reevaporating drain water is provided in the water tray, and a temperature controller is provided on the leeward side of the reheater to detect the temperature of the air blown from the reheater. The reheat circuit includes a reheat amount control valve that adjusts the amount of discharged gas supplied to the reheater of the reheat circuit so that the temperature of the blown air is constant based on the temperature signal detected by the temperature controller. A reevaporation circuit is interposed between the reheat amount control valve and the reheater in the reheat circuit, and a reevaporation circuit that supplies a part of the discharged gas to the reevaporator is branched. Utilizing the control of the reheat amount of the reheater by the reheater and the reheat amount control valve,
It is also possible to perform humidification control by re-evaporating drain water at the same time as the reheating, making it possible to perform humidification control commensurate with the amount of drain generated, that is, the amount of dehumidification.

次に、本考案空気調和機の実施例を第1図に基
づいて説明する。
Next, an embodiment of the air conditioner of the present invention will be described based on FIG.

第1図において1は圧縮機、2は冷却水と熱交
換する水用凝縮器、3は膨張弁、4は室内空気と
熱交換する空気用蒸発器であつて、これら各機器
は、吐出ガス管5、高圧液管6、低圧液管7及び
吸入ガス管8によりそれぞれ系統的に配管されて
いる。
In Figure 1, 1 is a compressor, 2 is a water condenser that exchanges heat with cooling water, 3 is an expansion valve, and 4 is an air evaporator that exchanges heat with indoor air. The pipes are systematically connected by pipes 5, high pressure liquid pipes 6, low pressure liquid pipes 7, and suction gas pipes 8, respectively.

また、前記蒸発器4には、フアン9が付設され
ると共に、その風下側には、再熱器10を並設す
るのであり、前記蒸発器4の下方には、該蒸発器
4で凝縮するドレン水の受皿11を設けるのであ
る。
Further, a fan 9 is attached to the evaporator 4, and a reheater 10 is installed in parallel on the leeward side of the fan 9. Below the evaporator 4, a reheater 10 is installed. A drain water receiving tray 11 is provided.

前記再熱器10は、前記吐出ガス管5を流れる
吐出ガスの1部を供給する再熱回路12を形成す
るのである。即ち、前記吐出ガス管5の途中に、
三方電磁弁から成る再熱量制御弁13を介装し
て、その1ポートに接続する高圧ガス管14を、
前記再熱器10の入口側に接続すると共に、出口
側には液管15を接続し、該液管15を、前記凝
縮器2に連通させ、再熱量制御弁13、前記高圧
ガス管14、再熱器10及び液管15により再熱
回路12を形成するのである。
The reheater 10 forms a reheat circuit 12 that supplies a portion of the discharge gas flowing through the discharge gas pipe 5. That is, in the middle of the discharge gas pipe 5,
A high pressure gas pipe 14 connected to one port of the reheat amount control valve 13 consisting of a three-way solenoid valve is interposed,
A liquid pipe 15 is connected to the inlet side of the reheater 10 and a liquid pipe 15 is connected to the outlet side, and the liquid pipe 15 is communicated with the condenser 2, the reheat amount control valve 13, the high pressure gas pipe 14, A reheat circuit 12 is formed by the reheater 10 and the liquid pipe 15.

そして、以上の如く構成する空気調和機におい
て、前記受皿11に、該受皿11に受水するドレ
ン水を加熱して再蒸発させる再蒸発器20を設け
ると共に、この再蒸発器20に吐出ガスの1部を
供給する再蒸発回路21を、前記再熱回路12か
ら分岐させるのである。
In the air conditioner configured as described above, a re-evaporator 20 is provided in the tray 11 to heat and re-evaporate the drain water received in the tray 11. A reevaporation circuit 21 that supplies one portion is branched from the reheating circuit 12.

第1図に示したものは、前記再熱回路12にお
ける高圧ガス管14の途中に、分岐管22を接続
し、この分岐管22を前記再蒸発器20の入口側
に接続すると共に、出口側には液管23を接続し
て、この液管23を、前記再熱回路12における
液管15の途中に接続し、そして、前記分岐管2
2の途中に、再蒸発回路21を閉鎖し、除湿運転
を可能とした電磁弁24を介装したものである。
In the system shown in FIG. 1, a branch pipe 22 is connected in the middle of the high-pressure gas pipe 14 in the reheat circuit 12, and this branch pipe 22 is connected to the inlet side of the reevaporator 20, and the branch pipe 22 is connected to the outlet side of the reevaporator 20. A liquid pipe 23 is connected to the branch pipe 2, and this liquid pipe 23 is connected to the middle of the liquid pipe 15 in the reheat circuit 12, and the branch pipe 2
2, a solenoid valve 24 is installed in the middle to close the re-evaporation circuit 21 and enable dehumidifying operation.

尚、第1図において30は温度調節器であつ
て、前記再熱器10の風下側に、その吹出空気温
度を検出するごとく配設し、この温度調節器30
で検出した温度信号により、前記再熱量制御弁1
3の開度を調節して、前記再熱回路12に流れる
吐出ガス量を制御し、前記再熱器10での再熱量
を制御して、前記吹出空気温度を一定に保持する
ごとく成すのである。即ち、蒸発器4に流入する
吸込空気温度が変化しても、前記再熱器10での
再熱量を制御し、吹出空気温度は常に一定になる
ごとく調節するのである。
In FIG. 1, reference numeral 30 denotes a temperature regulator, which is disposed on the leeward side of the reheater 10 so as to detect the temperature of the air blown out.
The temperature signal detected by the reheat amount control valve 1
3, the amount of discharged gas flowing into the reheat circuit 12 is controlled, and the amount of reheat in the reheater 10 is controlled to maintain the temperature of the blown air constant. . That is, even if the temperature of the intake air flowing into the evaporator 4 changes, the amount of reheat in the reheater 10 is controlled so that the temperature of the blown air is always constant.

しかして、以上の構成において、例えば電算機
室の温度制御を行なう場合、圧縮機1の駆動によ
り、冷媒を実線矢印のごとく循環させて行なうの
であつて、室内空気は前記蒸発器4で冷却される
のであり、しかもこの蒸発器4によつて過度に前
記室内空気が冷却されたときには、前記温度調節
器30で検出した温度信号をもとに前記再熱量制
御弁13から前記再熱器回路12へ供給する吐出
ガス供給量を調節して、前記冷却空気を前記再熱
器10で設定温度になるまで再加熱して、常に一
定温度で室内に吹出すのであり、かつ、前記蒸発
器4で凝縮したドレン水は、前記再蒸発器20で
再蒸発されて、前記再熱器10で再加熱した空気
を加湿して室内に吹出すのであり、このとき前記
再蒸発器20は前記再熱回路12から分岐した前
記再蒸発回路21に供給する吐出ガスにより加熱
されるので、前記温度調節器30と前記再熱量制
御弁13とによる前記再熱回路12の再熱量の制
御を利用して前記再蒸発回路21の加湿制御もす
ることができ、吹出空気を前記蒸発器4での冷却
前の室内空気のもつ湿度と同じ湿度をもたせるよ
うに加湿することができるのである。
Therefore, in the above configuration, when controlling the temperature of a computer room, for example, the compressor 1 is driven to circulate the refrigerant as shown by the solid arrow, and the indoor air is cooled by the evaporator 4. Moreover, when the indoor air is excessively cooled by the evaporator 4, the reheater circuit 12 is released from the reheat amount control valve 13 based on the temperature signal detected by the temperature controller 30. The cooling air is reheated in the reheater 10 until it reaches a set temperature by adjusting the amount of discharge gas supplied to the evaporator 4, and is always blown into the room at a constant temperature. The condensed drain water is reevaporated in the reevaporator 20, and the air reheated in the reheater 10 is humidified and blown into the room. At this time, the reevaporator 20 is connected to the reheat circuit. The reheating circuit 12 is heated by the discharged gas supplied to the reevaporation circuit 21 branched from the reheating circuit 12, so the reheating circuit 12 is heated by controlling the amount of reheating in the reheating circuit 12 by the temperature regulator 30 and the reheating amount control valve 13. The humidification of the evaporator circuit 21 can also be controlled, and the blown air can be humidified to have the same humidity as the indoor air before being cooled by the evaporator 4.

従つて、この加湿により、超音波加湿器などの
特別な加湿器を用いなくとも、除湿量に見合つた
加湿が行え、前記顕熱比(SHF)を結果的に1
に近い状態で運転できるのである。
Therefore, with this humidification, it is possible to perform humidification commensurate with the amount of dehumidification without using a special humidifier such as an ultrasonic humidifier, and as a result, the sensible heat ratio (SHF) can be reduced to 1.
It is possible to drive in conditions close to that of the previous model.

つまり、一般的に、前記蒸発器4への吸込空気
温度が高いときと、低いときとを比較すると、空
気調和機の能力(吸込空気を冷却するのに使われ
る全体の熱量)を一定とし、かつ、各温度の絶対
湿度が同じと仮定した場合、吸込空気温度の高い
ときには、前記吸込空気内に含まれる水蒸気の冷
却後の温度における水蒸気分圧がその温度におけ
る飽和水蒸気分圧よりも小さいか、または前記水
蒸気分圧が前記飽和水蒸気分圧より大きくなつて
もその差は小さいので、空気の温度変化のみに使
われる顕熱量の方が大きく、水蒸気を凝縮させる
のに使われる潜熱量の方が小さくなり、その結
果、ドレン水の発生は少ないのであり、また、吸
込空気温度の低いときには、前記吸込空気温度が
高いときに比べ前記吸込空気内に含まれる水蒸気
の冷却後の温度における前記水蒸気分圧がその温
度における飽和水蒸気分圧よりもかなり大きくな
つて、該飽和水蒸気分圧を越えた分だけ凝縮して
ドレン水となるので、前記顕熱変化量の方が小さ
く前記潜熱変化量の方が大きくなつて前記ドレン
水の発生が多くなるのである。しかも、前記吸込
空気温度が高いときには、過度の冷却による前記
蒸発器4の吹出空気温度と設定空気温度との差が
小さいので、再熱量は少なくてすみ、また、前記
吸込空気温度が低いときには、前記蒸発器4の吹
出空気温度と設定空気温度との差が大きいので、
前記再熱量が大きくなるのである。
That is, in general, when comparing when the temperature of the suction air to the evaporator 4 is high and when it is low, assuming that the capacity of the air conditioner (the total amount of heat used to cool the suction air) is constant, And, assuming that the absolute humidity at each temperature is the same, when the intake air temperature is high, is the water vapor partial pressure at the temperature after cooling of the water vapor contained in the intake air smaller than the saturated water vapor partial pressure at that temperature? , or even if the water vapor partial pressure becomes larger than the saturated water vapor partial pressure, the difference is small, so the amount of sensible heat used only for changing the temperature of the air is larger, and the amount of latent heat used to condense water vapor is larger. As a result, less drain water is generated, and when the suction air temperature is low, the water vapor contained in the suction air at the temperature after cooling becomes smaller than when the suction air temperature is high. The partial pressure becomes considerably larger than the saturated steam partial pressure at that temperature, and the amount exceeding the saturated steam partial pressure condenses to become drain water, so the sensible heat change is smaller than the latent heat change. The larger the size, the more the drain water will be generated. Moreover, when the suction air temperature is high, the difference between the air temperature blown from the evaporator 4 due to excessive cooling and the set air temperature is small, so the amount of reheating is small, and when the suction air temperature is low, Since the difference between the blowing air temperature of the evaporator 4 and the set air temperature is large,
This increases the amount of reheating.

従つて、吸込空気温度の変化に対応し、吸込空
気温度が高い場合、つまり、前記蒸発器4で冷却
された吹出空気温度と設定空気温度との温度差が
少なくドレン水の量が少ない場合には、再熱量を
少なくし、吸込空気温度が低い場合、つまり、前
記蒸発器4で冷却された吹出空気温度と設定空気
温度との温度差が大きくドレン水の量が多い場合
には、再熱量を多くなるごとく制御しているの
で、前記再蒸発回路21に特別な加湿量制御回路
を設けなくても前記温度調節器30と前記再熱量
制御弁13とによる前記再熱回路12の再熱量の
制御を利用して、簡単な構成で前記再蒸発回路2
1の加湿制御、即ち、ドレン発生量に見合う加湿
量の制御を行うことができるのである。
Therefore, in response to changes in the suction air temperature, when the suction air temperature is high, that is, when the temperature difference between the temperature of the blowing air cooled by the evaporator 4 and the set air temperature is small and the amount of drain water is small, In this case, the amount of reheat is reduced, and when the intake air temperature is low, that is, when the temperature difference between the temperature of the blowing air cooled by the evaporator 4 and the set air temperature is large and the amount of drain water is large, the amount of reheat is reduced. Therefore, the amount of reheat in the reheat circuit 12 can be controlled by the temperature regulator 30 and the reheat amount control valve 13 without providing a special humidification amount control circuit in the reevaporation circuit 21. The re-evaporation circuit 2 can be operated with a simple configuration using control.
This makes it possible to perform humidification control (1), that is, control the amount of humidification commensurate with the amount of drain generated.

また、ドレン水の再蒸発に必要な熱量以上の熱
量が前記再蒸発回路21に加わつても、この余剰
熱量は再熱に使用されるため、必要以上に加湿が
行われることはない。
Further, even if an amount of heat greater than the amount of heat required to re-evaporate the drain water is applied to the re-evaporation circuit 21, this excess amount of heat is used for reheating, so humidification is not performed more than necessary.

尚、第1図に示した実施例において、前記受皿
11に設ける再蒸発器20は、熱交換チユーブを
前記受皿11に浸漬するごとく配設したものであ
るが、第2図のごとく、クロスフインコイル式に
してもよい。この場合、前記再蒸発器20は、前
記蒸発器4の直下方に配設するのが好ましい。
In the embodiment shown in FIG. 1, the reevaporator 20 provided in the saucer 11 is arranged so that the heat exchange tube is immersed in the saucer 11, but as shown in FIG. A coil type may also be used. In this case, the re-evaporator 20 is preferably disposed directly below the evaporator 4.

以上の如く本考案は、前記蒸発器4で凝縮する
ドレン水の受皿11に、ドレン水を加熱して再蒸
発させる再蒸発器20を設けると共に、前記再熱
器10の風下側に、該再熱器10からの吹出空気
温度を検出する温度調節器30を設ける一方、前
記再熱回路12に、前記温度調節器30で検出し
た温度信号をもとに前記吹出空気温度が一定にな
るように前記再熱回路12の再熱器10へ供給す
る吐出ガス量を調節する再熱量制御弁13を介装
し、この再熱回路12における前記再熱量制御弁
13と前記再熱器10との間に、前記再蒸発器2
0に吐出ガスの1部を供給する再蒸発回路21を
分岐させたのであるから、前記温度調節器30と
前記再熱量制御弁13とによる前記再熱回路12
の再熱量の制御を利用して再蒸発回路21の加湿
制御を行うことができ、前記蒸発器4におけるド
レン水の発生量に見合つた加湿が可能となり、結
果として空気調和機を除湿しない状態、つまり顕
熱比(SHF)が1に近い状態で運転することが
できるのであり、しかも、特別な加湿制御回路を
必要とせず、その構成を簡単にできるのである。
As described above, the present invention provides a re-evaporator 20 for heating and re-evaporating the drain water in the drain water receiving tray 11 condensed in the evaporator 4, and a re-evaporator 20 for heating the drain water to re-evaporate it. A temperature regulator 30 is provided to detect the temperature of the air blown from the heater 10, and the reheat circuit 12 is configured to maintain the temperature of the blown air constant based on the temperature signal detected by the temperature regulator 30. A reheat amount control valve 13 that adjusts the amount of discharged gas supplied to the reheater 10 of the reheat circuit 12 is interposed, and between the reheat amount control valve 13 and the reheater 10 in the reheat circuit 12. , the re-evaporator 2
Since the reevaporation circuit 21 that supplies part of the discharged gas to the reheating circuit 12 is branched, the reheating circuit 12 is made up of the temperature regulator 30 and the reheat amount control valve 13.
It is possible to perform humidification control of the reevaporation circuit 21 by using the control of the reheat amount of the evaporator 4, and it becomes possible to perform humidification commensurate with the amount of drain water generated in the evaporator 4, and as a result, the air conditioner is not dehumidified. In other words, it is possible to operate with a sensible heat ratio (SHF) close to 1, and furthermore, there is no need for a special humidification control circuit, and the configuration can be simplified.

また、従来のような超音波加湿器などの特別な
加湿器を設けなくても、前記蒸発器4の冷却によ
り発生したドレン水を再蒸発させることにより加
湿することができるのであるから、従来の加湿器
のように塵埃、その他の不純物が吹出空気に放出
されることはないし、また、水滴が飛散する危険
もないのである。
Furthermore, humidification can be achieved by re-evaporating the drain water generated by cooling the evaporator 4 without providing a special humidifier such as a conventional ultrasonic humidifier. Unlike humidifiers, dust and other impurities are not emitted into the blown air, and there is no risk of water droplets flying around.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案空気調和機の実施例を示す冷媒
配管系統図、第2図は再蒸発器の別の実施例を示
す概略断面図、第3図は従来技術を示す冷媒配管
系統図である。 1……圧縮機、4……蒸発器、10……再熱
器、11……受皿、12……再熱回路、13……
再熱量制御弁、20……再蒸発器、21……再蒸
発回路、30……温度調節器。
Fig. 1 is a refrigerant piping system diagram showing an embodiment of the air conditioner of the present invention, Fig. 2 is a schematic sectional view showing another embodiment of the re-evaporator, and Fig. 3 is a refrigerant piping system diagram showing a conventional technique. be. 1...Compressor, 4...Evaporator, 10...Reheater, 11...Saucer, 12...Reheat circuit, 13...
Reheat amount control valve, 20... re-evaporator, 21... re-evaporation circuit, 30... temperature regulator.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮機1、蒸発器4、再熱器10とを備え、該
再熱器10に吐出ガスの1部を供給する再熱回路
12を設けた空気調和機において、前記蒸発器4
で凝縮するドレン水の受皿11に、ドレン水を加
熱して再蒸発させる再蒸発器20を設けると共
に、前記再熱器10の風下側に、該再熱器10か
らの吹出空気温度を検出する温度調節器30を設
ける一方、前記再熱回路12に、前記温度調節器
30で検出した温度信号をもとに前記吹出空気温
度が一定になるように前記再熱回路12の再熱器
10へ供給する吐出ガス量を調節する再熱量制御
弁13を介装し、この再熱回路12における前記
再熱量制御弁13と前記再熱器10との間に、前
記再蒸発器20に吐出ガスの1部を供給する再蒸
発回路21を分岐させたことを特徴とする空気調
和機。
In an air conditioner that includes a compressor 1, an evaporator 4, and a reheater 10, and is provided with a reheat circuit 12 that supplies part of the discharged gas to the reheater 10, the evaporator 4
A re-evaporator 20 for heating and re-evaporating the drain water is provided in the drain water receiving tray 11 condensed in the drain water, and a temperature of the air blown from the reheater 10 is detected on the leeward side of the reheater 10. A temperature regulator 30 is provided in the reheat circuit 12, and the temperature signal detected by the temperature regulator 30 is used to control the temperature of the blown air to be constant. A reheat amount control valve 13 that adjusts the amount of discharge gas to be supplied is interposed between the reheat amount control valve 13 and the reheater 10 in this reheat circuit 12, and the amount of discharge gas is supplied to the reevaporator 20. An air conditioner characterized in that a reevaporation circuit 21 that supplies one part of the air is branched.
JP1982120302U 1982-08-06 1982-08-06 air conditioner Granted JPS5925061U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1982120302U JPS5925061U (en) 1982-08-06 1982-08-06 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1982120302U JPS5925061U (en) 1982-08-06 1982-08-06 air conditioner

Publications (2)

Publication Number Publication Date
JPS5925061U JPS5925061U (en) 1984-02-16
JPH0243015Y2 true JPH0243015Y2 (en) 1990-11-15

Family

ID=30275772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1982120302U Granted JPS5925061U (en) 1982-08-06 1982-08-06 air conditioner

Country Status (1)

Country Link
JP (1) JPS5925061U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7049068B2 (en) * 2017-05-16 2022-04-06 株式会社竹中工務店 Air conditioner and air conditioner system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111722U (en) * 1974-07-15 1976-01-28
JPS56117035A (en) * 1980-02-18 1981-09-14 Toshiba Corp Drier combined with dehumidifier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111722U (en) * 1974-07-15 1976-01-28
JPS56117035A (en) * 1980-02-18 1981-09-14 Toshiba Corp Drier combined with dehumidifier

Also Published As

Publication number Publication date
JPS5925061U (en) 1984-02-16

Similar Documents

Publication Publication Date Title
JP3310118B2 (en) Humidification method and air conditioning system
US6311511B1 (en) Dehumidifying air-conditioning system and method of operating the same
KR101182064B1 (en) Air conditioning system
EP2224182B1 (en) Humidity control device
JP3545315B2 (en) Air conditioner and humidity control method
JPH0466308B2 (en)
JPH11101520A (en) Air cycle type air conditioner
WO2006064850A1 (en) Constant-temperature constant-humidity air conditioning system
JP6626424B2 (en) Environmental test equipment and air conditioner
JP3450147B2 (en) Air conditioner
JPH09329371A (en) Air conditioning system
JP2004028421A (en) Industrial air conditioner
JP2004324973A (en) Air conditioner and operating method of air conditioner
JPH04113136A (en) Clean room using direct expansion type heat exchanger
JP2003294274A (en) Constant temperature and humidity air-conditioning system
JPH0243015Y2 (en)
JP2001324193A (en) Device and method for introducing fresh air
JPH0346737B2 (en)
JP4317792B2 (en) Air conditioner indoor unit
JP2697655B2 (en) Air conditioner
JPH05288375A (en) Method and apparatus for detecting humidity of humidifier
JPH04332331A (en) Humidity control method and air-conditioner
JPH05196258A (en) Air-conditioning facility
JP6708708B2 (en) Constant humidity air conditioning system
JP2695603B2 (en) Humidification method of heat pump package