WO2019024872A1 - 空调器导风板 - Google Patents

空调器导风板 Download PDF

Info

Publication number
WO2019024872A1
WO2019024872A1 PCT/CN2018/098049 CN2018098049W WO2019024872A1 WO 2019024872 A1 WO2019024872 A1 WO 2019024872A1 CN 2018098049 W CN2018098049 W CN 2018098049W WO 2019024872 A1 WO2019024872 A1 WO 2019024872A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
airflow
deflector
air inlet
air outlet
Prior art date
Application number
PCT/CN2018/098049
Other languages
English (en)
French (fr)
Inventor
王永涛
王晓刚
闫宝升
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2019024872A1 publication Critical patent/WO2019024872A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/081Air-flow control members, e.g. louvres, grilles, flaps or guide plates for guiding air around a curve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F2013/221Means for preventing condensation or evacuating condensate to avoid the formation of condensate, e.g. dew

Definitions

  • the invention relates to the technical field of air conditioners, and in particular to an air deflector for an air conditioner.
  • the air deflector is an indispensable part of the air conditioner.
  • the air deflector is guided by the wind and has a certain static pressure recovery function. Its structural design has an important influence on the performance of the air conditioner and the user experience.
  • the current air conditioning air deflector mainly has the following two problems: (1) When the wind is blown, the airflow blown by the air duct directly impacts the wind deflector, the air deflector has large resistance, the wind loss of the whole machine is large, the air supply noise is improved, and the whole The performance of the machine is degraded, which affects the user experience. (2) When there is a certain angle between the position of the air deflector and the direction of the wind, the condensation on the leeward side of the front end of the air deflector may be caused by the intrusion of humid air.
  • the common practice is to design the cross-sectional structure of the wind deflector into a curved surface to reduce the wind deflector when the wind is placed.
  • the resistance this method only improves the structural shape of the needle deflector, and the resistance to the air deflector is limited.
  • the curved air deflector will deteriorate the condensation on the leeward side of the front end of the air conditioner deflector.
  • This method requires that the air-conducting air deflector must be wrapped by the cold air at the same time, and the smaller the angle between the width direction of the air deflector and the air-conditioning air outlet direction, the better the anti-condensation effect.
  • the air deflector rotates, as the angle between the width direction of the air deflector and the air outlet direction increases, a negative pressure zone is generated on the leeward side of the wind deflector to attract warm and humid air at normal temperature, and condensation forms on the leeward side of the wind deflector. dew.
  • more and more air-conditioning wind deflector structures are designed to be curved, and this curved structure will further deteriorate the condensation phenomenon of the air deflector.
  • a further object of the present invention is to prevent warm and humid air from being poured and to prevent condensation of the wind deflector.
  • the present invention provides an air deflector for an air conditioner having a windward side and a leeward side opposite to the windward side, wherein the air deflector is provided with an air flow passage connecting the windward side and the leeward side to A portion of the airflow blown onto the windward side is directed via the airflow passage to the mid-front region of the leeward surface or the leading edge region of the leeward surface.
  • the air deflector further has: an air inlet, located in an air inlet area covering at least a rear area of the windward side, to guide a part of the airflow to enter the air flow passage through the air inlet; and an air outlet, located in the middle front area of the leeward side Or the leading edge area of the leeward side to guide a portion of the airflow exiting the airflow passage through the air outlet.
  • the air inlet includes a plurality of air inlet slots located in the air inlet region; the air inlet region covers the middle portion of the windward surface from the trailing edge of the windward surface; the air outlet is formed at the front edge of the leeward surface and the front of the windward surface Between the edges.
  • the air flow channel includes: an air inlet section, configured to extend from the air inlet port toward the air outlet opening by a first predetermined distance in an extending direction of the air flow channel; and an acceleration section configured to be an air inlet end of the self-intake air section Extending a second predetermined distance toward the air outlet; and the air outlet section is disposed to extend a third distance from the acceleration end of the acceleration section toward the air outlet to the air outlet.
  • the air outlet section and the air outlet are also arranged to keep the flow direction of the airflow flowing through the air outlet section and flowing through the air outlet.
  • the second inner width of the airflow passage located in the acceleration section is configured to gradually decrease in a direction in which the air inlet section is directed toward the windward section.
  • the third inner width of the air flow passage located in the air outlet section is configured to remain unchanged along the direction of the acceleration section directed toward the air outlet, and the width of the air outlet is the same as the third inner width.
  • the plurality of air inlet slots are configured such that an angle between a portion of the airflow entering the airflow passage and a portion of the airflow exiting the airflow passage is less than 90 degrees.
  • the present invention also provides an air conditioner air deflector, the air conditioner air deflector comprising: a rear side panel, wherein the upper portion is provided with an air inlet for at least a part of the airflow blown by the fan of the air conditioner; and the front side panel An air flow passage is formed between the front side panel and the rear side panel, and an air outlet communicating with the airflow passage is formed at the bottom of the air deflector for exhausting airflow entering the airflow passage through the air inlet .
  • the ratio of the distance from the air outlet to the bottom end of the front side panel and the width of the wind deflector is less than or equal to a preset value.
  • the central portion to the lower portion of the air flow passage are tapered to accelerate the air flow into the air flow passage.
  • the rear side panel has a flat structure
  • the front side panel has an arc structure
  • the air inlet includes one or more air inlet holes/slots.
  • the angle between the air inlet direction of the air inlet or the air inlet slot and the end direction of the rear side plate is less than 90 degrees.
  • the front side panel and the rear side panel are both flat structures.
  • the air flow passages have the same width from top to bottom.
  • the preset value is 1/4.
  • the air conditioner air deflector of the present invention comprises: a rear side panel, wherein an upper portion is provided with an air inlet for at least a part of the airflow blown by the fan of the air conditioner; and a front side panel is connected to the outer side of the rear side panel, and the front An air flow passage is formed between the side plate and the rear side plate, and an air outlet communicating with the air flow passage is opened at the bottom of the air guide plate for exhausting airflow entering the air flow passage through the air inlet, and passing through the rear side plate and the front side plate
  • the air flow channel is arranged between the two-layer plate and the intermediate hollow structure, so that at least a part of the air flow enters the air flow passage through the air inlet and is led out from the air outlet, thereby reducing or eliminating the negative pressure region of the air deflector and guiding the heat exchange
  • the flow direction of the airflow reduces the friction between the heat exchange airflow and the air deflector, and prevents the warm and humid air from being poured, thereby preventing the
  • the ratio of the distance between the air deflector of the air conditioner and the air conditioner of the air conditioner to the bottom end of the front side panel and the width of the air deflector is less than or equal to a preset value, that is, the air outlet is disposed at the bottom of the front side panel as much as possible.
  • the middle to the lower portion of the airflow passage can be tapered, so that the airflow entering the airflow passage is accelerated and then discharged from the air outlet, thereby forming a lower low pressure region, and sucking the airflow outside the guide air panel
  • the convergence of the airflow guides the airflow along the direction of the air deflector, thereby optimizing the guiding effect on the airflow, thereby further preventing the condensation of the wind deflector and improving the user experience.
  • the air outlet region located at the downstream of the acceleration region with uniform width can function to rectify the accelerated airflow, so that the airflow finally blowing out the wind deflector maintains a high flow rate.
  • FIG. 1 is a cross-sectional view of an air deflector of an air conditioner according to an embodiment of the present invention
  • FIG. 2 is a schematic front view showing a wind deflector mounted to a vertical air conditioner and in a closed state according to an embodiment of the present invention
  • Figure 3 is a schematic cross-sectional view taken along line A-A of Figure 2;
  • Figure 4 is a schematic cross-sectional view of the wind deflector of Figure 3 in an open state
  • Figure 5a is a schematic front view of the wind deflector of Figure 1, showing the windward side;
  • Figure 5b is a schematic partial enlarged view of the wind deflector shown in Figure 5a, showing the air inlet;
  • Figure 6a is a schematic rear view of the wind deflector of Figure 1, showing the leeward side;
  • Figure 6b is a schematic partial enlarged view of the wind deflector shown in Figure 6a, showing the air outlet;
  • Figure 7 is a cross-sectional view of a wind deflector according to another embodiment of the present invention.
  • Figure 8a is a schematic front view of the wind deflector of Figure 7, showing the windward side;
  • Figure 8b is a schematic partial enlarged view of the wind deflector shown in Figure 8a, showing the air inlet;
  • Figure 9a is a schematic rear view of the wind deflector of Figure 7, showing the leeward side;
  • Figure 9b is a schematic partial enlarged view of the wind deflector shown in Figure 9a, showing the air outlet;
  • FIGS. 10a-10c are cross-sectional views of an air deflector of an air conditioner in accordance with some alternative embodiments of the present invention.
  • FIG. 11 is a schematic diagram of airflow backflow of an air deflector of an air conditioner in the prior art
  • Figure 12 is a schematic view showing the airflow guiding of an air deflector of an air conditioner according to an embodiment of the present invention.
  • the embodiment provides an air deflector for an air conditioner, which can reduce or eliminate the negative pressure region of the air deflector, guide the flow of the heat exchange airflow, reduce the friction between the heat exchange airflow and the wind deflector, and prevent the temperature from being prevented.
  • the wet air is poured back to prevent condensation of the air deflector and avoid affecting the user experience.
  • FIG. 1 is a cross-sectional view of an air deflector of an air conditioner in accordance with one embodiment of the present invention.
  • Fig. 2 is a schematic front view showing the air deflector mounted to the vertical air conditioner and in a closed state according to an embodiment of the present invention.
  • Figure 3 is a schematic cross-sectional view taken along line A-A of Figure 2 .
  • Figure 4 is a schematic cross-sectional view of the wind deflector 10 of Figure 3 in an open state.
  • the air conditioner air deflector 10 of the present embodiment may generally include: a rear side panel 11 and a front side panel 12, wherein “front” and “rear” refer to when the air deflector 10 is mounted on When the air blower 1 is in the closed state, the front side panel 12 which is the outer side of the air conditioner 1 and substantially forward is the front side panel 11, and the board which faces the inside of the air conditioner 1 and is substantially rearward is the rear side panel 11. It will be understood by those skilled in the art that when the wind deflector 10 is in a fully open or partially open state, the front side panel 12 and the rear side panel 11 do not necessarily face the front side and the rear side of the air conditioner 1, respectively.
  • An air inlet 111 is opened in the upper middle portion of the rear side plate 11 for at least a part of the airflow blown by the fan 2 of the air conditioner 1.
  • the front side panel 12 is coupled to the outer side of the rear side panel 11.
  • the front side panel 12 and the rear side panel 11 may be a separable two-piece structure or a unitary structure fixed together to form the wind deflector 10.
  • An air flow passage 13 is formed between the front side panel 12 and the rear side panel 11, and an air outlet 121 communicating with the air flow passage 13 is opened at the bottom of the air guide panel 10 for airflow entering the airflow passage 13 through the air inlet 111.
  • the air deflector 10 when the air deflector 10 is installed in the air outlet of the air conditioner 1 and is in the closed state, the side of the air deflector 10 close to the fan 2 of the air conditioner 1 is the rear side panel 11, and the air deflector 10 is away from the air conditioner 2 of the air conditioner 1.
  • One side is the front side panel 12.
  • the air deflector 10 for the air conditioner 1 may have a windward side 110 and a leeward side 120 opposite to the windward side 110, wherein the windward side 110 is the rear side panel 11 exposed to the airflow blown by the fan 2.
  • the board surface and the leeward surface 120 are the board faces of the front side panel 12 facing away from the rear side panel 11 side.
  • middle upper and bottom are used to describe the structure of the air deflector 10 in the orientation of FIG. 1. It can be understood that when the air deflector 10 is in the state shown in FIG.
  • the middle upper portion of the side panel 11 is the middle rear portion of the rear side panel 11 in Fig. 4, and the bottom portion of the wind deflector 10 in Fig. 1 is the front portion of the wind deflector 10 in Fig. 4.
  • the air flow passage 13 may be disposed in the wind deflector 10 and communicate the windward surface 110 and the leeward surface 120 to guide a portion of the airflow blown onto the windward surface 110 to the middle front region of the leeward surface 120 via the airflow passage 13 Or the leading edge area of the leeward face 120. That is, when the air deflector 10 is in the open position as shown in FIG. 4, the fan 2 causes the airflow from the wind deflector 10 toward the trailing edge region 1001 inside the air conditioner 1 toward the wind deflector 10 toward the outside of the air conditioner 1. The edge region 1002 flows, and a portion of the airflow that contacts the wind deflector 10 can thereby enter the airflow passage 13 via the air inlet 111 and exit through the air outlet 121.
  • the air inlet 111 may be located in an air intake region that covers at least the rear region of the windward side 110 to direct a portion of the airflow into the airflow passage 13 via the air inlet 111.
  • the air outlet 121 may be located in a mid-front area of the leeward surface 120 or a leading edge area of the leeward surface 120 to guide a portion of the airflow exiting the airflow passage 13 via the air outlet 121.
  • the area on the rear side panel 12 corresponding to L1 in FIG. 1 may be the air inlet area on the windward side 110.
  • the air inlet area and the air outlet 121 are respectively located on a side of the air deflector 10 near the fan 2 and a side away from the fan 2 in an open state, so that part of the airflow flowing through the airflow passage 13 and the outside of the air deflector 10 flow out
  • the flow direction of the airflow of the air conditioner 1 is substantially the same, and the flow rate of the airflow of the air conditioner 1 is ensured.
  • Figure 5a is a schematic front elevational view of the wind deflector of Figure 1 showing the windward side.
  • Figure 5b is a schematic partial enlarged view of the wind deflector of Figure 5a with detail B showing the air inlet.
  • Figure 6a is a schematic rear view of the wind deflector of Figure 1 showing the leeward side.
  • Fig. 6b is a schematic partial enlarged view of the wind deflector shown in Fig. 6a, wherein detail C shows the air outlet.
  • the air inlet 111 can include a plurality of air inlet slots located within the air inlet region.
  • the trough typically has an elongated opening.
  • the air inlet groove may have an elongated opening that is parallel to the longitudinal direction of the wind deflector 10 and that substantially traverses the wind deflector 10 in the longitudinal direction.
  • the air inlet region covers the central region of the windward surface 110 from the trailing edge of the windward surface 110, and the narrow openings of the plurality of air inlet slots are evenly spaced and disposed in parallel with each other in the air inlet region.
  • the “middle area” herein does not refer to the geometric center position of the wind panel 10, but refers to dividing the wind deflector 10 into a plurality of sub-portions from top to bottom or from back to front, wherein the wind guide is covered. A middle sub-portion of the geometric center of the plate 10 and one or several other sub-portions adjacent the intermediate sub-portion.
  • the “middle and lower area” or “middle area” refers to the middle area plus one or more subsections located in the lower or front part of the middle area.
  • the air outlet 121 may be formed between the leading edge of the leeward surface 120 and the leading edge of the windward surface 110. That is, with FIG. 1 as an example, a gap is left between the front side panel 12 and the bottom of the rear side panel 11 to form the air outlet 121, thereby eliminating the need to open the front side panel 12 to simplify the manufacturing process.
  • the air outlet 121 can also be a hole or slot that is formed in the front side panel 12 (see below for details).
  • the airflow passage 13 may include: an air inlet section L1, an acceleration section L2, and an air outlet section L3 (corresponding to the air inlet zone L1, the acceleration zone L2, and the outlet of the air deflector, respectively) Wind zone L3).
  • the intake section L1 is disposed to cover the intake area in the extending direction of the air flow passage 13. That is, the air inlet region L1 extends downward from the upper portion of the windward surface 110 (at the air inlet 111) by a first predetermined distance, and the first predetermined distance and the span of the air inlet region in the width direction of the wind deflector 10 Almost equal.
  • the acceleration section L2 is disposed to extend from the air inlet end of the air intake section L2 toward the air outlet 121 by a second predetermined distance.
  • the air outlet section L3 is disposed to extend a third distance from the acceleration end of the acceleration section L2 toward the air outlet 121 to the air outlet 121.
  • the ratio of the distance from the air outlet 121 to the bottom end of the front side panel 12 to the width of the wind deflector 10 is less than or equal to a preset value. That is, taking FIG. 1 as an example, the air outlet 121 is disposed as far as possible at the bottom of the front side panel 12 to guide the heat exchange airflow.
  • the width of the wind deflector 10 is the distance from the top to the bottom of the rear side panel 11 or the front side panel 12, that is, the width direction of the wind deflector 10 is the up and down direction in FIG.
  • the preset value can be 1/4.
  • the length of each section of the airflow passage 13 can be as shown in FIG. 1.
  • the overall width of the air deflector 10 is L.
  • the airflow zone can be divided into three zones: an air inlet zone L1, an acceleration zone L2, and an air outlet zone. L3.
  • the air inlet zone L1 is the distance from the top of the air deflector 10 to the lowest air inlet hole/slot;
  • the acceleration zone L2 is the distance from the lowest air inlet hole/slot to the top of the air outlet 121;
  • the air outlet zone L3 is The distance from the top of the air outlet 121 to the bottom of the wind deflector 10.
  • the ratio of the distance from the air outlet 121 to the bottom end of the front side panel 12 to the width of the wind deflector 10 is less than or equal to a preset value. That is, L3/L is less than or equal to a preset value. In a preferred embodiment, the preset value may be 1/4.
  • the rear side panel 11 may be a flat structure, and the windward side 110 and the inner surface of the rear side panel 11 may both be flat structures.
  • the front side panel 12 has an arc-shaped structure, and the leeward surface 120 and the inner surface of the front side panel 12 may both have an arc-shaped structure, and the arc-shaped structures may have the same or different curvatures, and the arc-shaped structure is configured to make the airflow passage 13 from the middle to the lower portion. The airflow is gradually narrowed, thereby accelerating the airflow entering the airflow passage 13.
  • the second inner width W2 of the airflow passage 13 at the acceleration zone L2 may be configured to gradually decrease in the direction in which the windward section L1 points toward the windward section.
  • the third inner width W3 of the air flow passage 13 at the air outlet section L3 may be configured to remain unchanged in the direction in which the acceleration section L2 is directed toward the air outlet 121, and the width of the air outlet 121 is the same as the third inner width W3.
  • the first inner width W1 of the air flow passage 13 located in the air inlet region L1 is configured to gradually increase in the flow direction of the air flow so that the air inlet region L1 and the acceleration region L2 and the air outlet region L3 together form an arc shape.
  • the inner width of the air flow passage 13 is a dimension in the thickness direction of the wind deflector 10, that is, a dimension in the front-rear direction in FIG.
  • the gap between the inner surface of the rear side panel 11 and the inner side surface of the front side panel 12 in the acceleration zone L2 may gradually decrease from the top to the bottom, and the rear side panel in the outlet zone L3.
  • the gap between the inner surface of the inner surface 11 and the inner side surface of the front side panel 12 can be uniformly disposed from the top to the bottom to rectify the accelerated air flow so that the air flow finally blown out of the air deflector 10 maintains a high flow rate.
  • the gap width at the end of the acceleration zone L2 may be the same as the gap width at the beginning of the windward zone L3 to achieve a smooth transition inside the airflow passage 13.
  • the gap width at the end of the air outlet zone L3 may be the same as the opening size of the air outlet 121 to maintain a high flow rate when the airflow flows through the air outlet section L3 and through the air outlet 121. That is, the air outlet section L3 and the air outlet 121 may be disposed such that the flow direction when the airflow flows through the air outlet section L3 and flows through the air outlet 121 does not change.
  • the acceleration zone L1 and the uniformity of the gap width may not be necessary.
  • Figure 7 is a cross-sectional view of a wind deflector in accordance with another embodiment of the present invention.
  • Figure 8a is a schematic front elevational view of the wind deflector of Figure 7, showing the windward side.
  • Figure 8b is a schematic partial enlarged view of the wind deflector of Figure 8a with detail D showing the air inlet.
  • Figure 9a is a schematic rear view of the wind deflector of Figure 7, showing the leeward side.
  • Fig. 9b is a schematic partial enlarged view of the wind deflector shown in Fig. 9a, wherein detail E shows the air outlet.
  • the air outlet 121 can be located at the bottom of the air flow passage 13 defined by the front side panel 12 and the rear side panel 11. As shown in FIG. 7, the air outlet 121 may be provided at the bottom of the front side panel 12. That is, as an example in which the wind deflector 10 is attached to the air conditioner 1 in FIG. 4, the air outlet 121 may be formed in the middle front portion of the leeward surface 120.
  • the air inlet 111 in the air deflector 10 of the air conditioner of the embodiment includes a plurality of air inlet holes, and may be a hollow structure.
  • the air outlet 121 in the air deflector 10 of the air conditioner is an air outlet.
  • the air inlet hole may also be an air inlet slot, an air inlet strip, or the like. That is, the air outlet may be a strip groove formed on the leeward surface, and an acute angle may be formed between the air outlet direction of the strip groove and the air flow direction in the air flow passage 13.
  • the angle ⁇ between the direction of the inlet of the inlet or outlet duct and the direction of the end of the rear side panel 11 is less than 90°. That is, the airflow direction of the airflow entering the airflow passage 13 via the air inlet 111 is substantially in the same direction as the direction from the air inlet 111 directed to the air outlet 121 at the end of the airflow of the rear side panel 11. This angle facilitates the flow of air blown by the fan of the air conditioner 1 into the air flow passage 13.
  • the plurality of air inlet slots may be configured such that an angle between the airflow direction of the airflow into the airflow passage 13 and the airflow direction of the airflow passageway 13 is less than 90[deg.].
  • the wind direction may be a direction vertically downward with respect to the wind deflector 10 shown in FIG.
  • the air inlet direction guided by the air inlet groove (shown in FIG. 1) is inclined downward, and the angle ⁇ between the air inlet and the vertical downward air direction is less than 90°.
  • the foregoing air outlet direction may also be a direction that is inclined downward relative to the air deflector 10 shown in FIG.
  • the air inlet direction guided by the air inlet groove (shown in FIG. 7) is the lateral direction, and the angle between the air inlet direction and the oblique downward air direction is also less than 90 degrees.
  • 10a-10c are cross-sectional views of an air deflector of an air conditioner in accordance with some alternative embodiments of the present invention.
  • the front side panel 12 and the rear side panel 11 of the air conditioner deflector 10 in FIGS. 10a-10c are both straight structures, wherein the airflow passages 13 of the wind deflector 10 in FIGS. 10a and 10b have the same width from top to bottom.
  • the air flow passage 13 of the air deflector 10 in Fig. 10b is an inclined air flow passage 13.
  • the air flow passage 13 of the air deflector 10 in Fig. 10c is tapered from the middle to the lower portion to accelerate the air flow entering the air flow passage 13.
  • the air inlet 111 of the air deflector 10 in FIG. 10a includes a plurality of air inlet holes/grooves, and the air inlets 111 of the air deflector 10 in FIGS. 10b and 10c each include an air inlet slot.
  • FIG. 11 is a schematic diagram of airflow backflow of an air deflector of an air conditioner in the prior art
  • FIG. 12 is a schematic diagram of airflow guidance of an air deflector 10 of an air conditioner according to an embodiment of the present invention.
  • FIG. 11 when the air deflector of the air conditioner rotates in the prior art, as the angle between the width direction of the air deflector and the air outlet direction of the air conditioner increases, a negative pressure zone is generated on the leeward side of the air deflector to attract warm and humid normal temperature. The air is poured back, and condensation forms on the leeward side of the wind deflector, which seriously affects the user experience.
  • the elliptical portion in Fig. 11 is the negative pressure region formed.
  • the air conditioner air deflector 10 according to an embodiment of the present invention, at least a part of the airflow blown by the air conditioner fan can be guided through the airflow passage 13 to deflect the airflow in the direction of the wind deflector 10.
  • the air conditioner air deflector 10 of the present embodiment has an air flow passage 13 between the rear side panel 11 and the front side panel 12, and a double-layer panel and an intermediate hollow combination structure, so that at least a part of the airflow enters through the air inlet 111.
  • the air flow passage 13 is led out from the air outlet 121, which can reduce or eliminate the negative pressure region of the air deflector 10, guide the flow of the heat exchange airflow, reduce the friction between the heat exchange airflow and the wind deflector 10, and prevent the temperature and humidity.
  • the air is poured back, thereby preventing the air deflector 10 from being condensed, thereby avoiding affecting the user experience.
  • the ratio of the distance between the air outlet 121 and the bottom end of the front side panel 12 and the width of the air deflector 10 is less than or equal to a preset value, that is, the air outlet 121 is disposed on the front side panel as much as possible.
  • the bottom of 12 is used to guide the heat exchange gas flow, and the middle to the lower portion of the gas flow passage 13 can be tapered to accelerate the air flow entering the air flow passage 13 and then be led out from the air outlet 121, thereby forming a lower low pressure region, attracting
  • the airflow outside the air deflector 10 is concentrated to guide the airflow along the deflector 10 to optimize the guiding effect on the airflow, thereby preventing the condensation of the wind deflector 10 more effectively and improving the user experience. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Flow Control Members (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)

Abstract

一种用于空调器的导风板(10),具有迎风面(110)和与迎风面(110)相对的背风面(120),导风板(10)中设置有连通迎风面(110)和背风面(120)的气流通道(13),以将吹送至迎风面(110)上的部分气流经由气流通道(13)导向至背风面(120)的中前部区域或背风面的前缘区域(1002)。该空调器导风板可以减小或消除导风板的负压区,引导换热气流流向,减小换热气流与导风板之间的摩擦,并可以防止温湿空气倒灌,进而防止导风板凝露。

Description

空调器导风板 技术领域
本发明涉及空调技术领域,特别是涉及一种空调器导风板。
背景技术
随着社会日益发展以及人们生活水平不断提高,环境调节电器如空调器等越来越普及。导风板作为空调器内机的性能及结构组件,是空调器不可缺少的一部分。导风板作为出风导向且具有一定的静压恢复功能,其结构设计对空调的性能以及用户的体验度有着重要影响。但是目前的空调导风板主要存在以下两点问题:(1)摆风时,风道吹出的气流直接冲击导风板,导风板阻力大,整机风量损失大、送风噪声提高、整机性能下降,影响用户体验;(2)制冷时,当导风板位置与出风方向存在一定夹角时,导风板前端背风侧会存在因潮湿空气倒灌引起的凝露问题。
目前,针对空调平直导风板摆风时阻力较大(达到相同摆风角度)的问题,通常的做法是将导风板横截面结构设计成弧形曲面,以减少摆风时导风板的阻力,这种方法仅针导风板的结构形状做出改善,对导风板阻力改善有限。同时,这种弧形导风板会恶化空调导风板前端背风侧的凝露情况。而目前解决空调制冷时导风板凝露最常用的方法有:(1)单侧隔热法,在导风板冷风侧增加隔热衬垫,使导风板的背风侧表面保持室温,与室内常温空气接触也不会凝露。这种方法对导风板隔热衬垫的要求很高,工艺复杂,材料、人工成本较高,并且导风板显得很厚,影响整机美观,用户体验度不高。(2)冷风包裹法,即用冷风同时吹过导风板两侧,形成冷风包膜,阻止导风板与室内温湿常温空气接触来抑制凝露。这种方法要求空调导风板必须同时被冷风包裹才有效,导风板的宽度方向与空调出风方向夹角越小防凝露效果越好。但是当导风板旋转时,随着导风板宽度方向与空调出风方向夹角增大,导风板背风侧会产生负压区吸引温湿常温空气倒灌,在导风板背风侧形成凝露。随着用户对空调内机外观需求的提升,空调导风板结构有越来越多的被设计成弧形,这种弧形结构会进一步恶化导风板的凝露现象。
发明内容
本发明的一个目的是减小或消除导风板的负压区,引导换热气流流向,减小换热气流与导风板之间的摩擦。
本发明一个进一步的目的是防止温湿空气倒灌,防止导风板凝露。
特别地,本发明提供了一种用于空调器的导风板,具有迎风面和与迎风面相对的背风面,其特征在于导风板中设置有连通迎风面和背风面的气流通道,以将吹送至迎风面上的部分气流经由气流通道导向至背风面的中前部区域或背风面的前缘区域。
可选地,导风板还具有:进风口,位于至少覆盖迎风面中后部区域的进风区域,以引导部分气流经由进风口进入气流通道;和出风口,位于背风面的中前部区域或背风面的前缘区域,以引导部分气流经由出风口离开气流通道。
可选地,进风口包括位于进风区域内的多个进风槽;进风区域自迎风面的后缘覆盖至迎风面的中部区域;出风口形成于背风面的前缘和迎风面的前缘之间。
可选地,气流通道包括:进风区段,设置为在气流通道的延伸方向上自进风口朝向出风口延伸第一预设距离;加速区段,设置为自进风区段的进风末端朝向出风口延伸第二预设距离;和出风区段,设置成自加速区段的加速末端朝向出风口延伸第三距离至出风口。
可选地,出风区段和出风口还设置成,使气流流经出风区段和流经出风口时的流动方向不变。
可选地,气流通道的位于加速区段的第二内部宽度配置成,沿进风区段指向出风区段的方向逐渐减小。
可选地,气流通道的位于出风区段的第三内部宽度配置成,沿加速区段指向出风口的方向保持不变,且出风口的宽度与第三内部宽度相同。
可选地,多个进风槽配置成,使部分气流进入气流通道的进风方向和部分气流离开气流通道的出风方向之间的夹角小于90°。
本发明还提供了一种空调器导风板,该空调器导风板包括:后侧板,其中上部开设有进风口,以供空调器的风机吹出的气流的至少一部分进入;以及前侧板,连接于后侧板的外侧,且前侧板和后侧板之间形成有气流通道,导风板的底部开设有与气流通道连通的出风口,以供通过进风口进入气流通道的气流导出。
可选地,出风口至前侧板底端的距离与导风板的宽度的比值小于等于预设值。
可选地,气流通道的中部至下部渐窄,以使进入气流通道的气流加速。
可选地,后侧板为平直结构,前侧板为弧形结构。
可选地,进风口包括一个或多个进风孔/槽。
可选地,进风孔或进风槽的进风方向与后侧板末端方向的夹角小于90°。
可选地,前侧板和后侧板均为平直结构。
可选地,气流通道由上至下的宽度相同。
可选地,预设值为1/4。
本发明的空调器导风板包括:后侧板,其中上部开设有进风口,以供空调器的风机吹出的气流的至少一部分进入;以及前侧板,连接于后侧板的外侧,且前侧板和后侧板之间形成有气流通道,导风板的底部开设有与气流通道连通的出风口,以供通过进风口进入气流通道的气流导出,通过在后侧板和前侧板之间设置气流通道,以一种双层板以及中间空心的组合结构,使得至少一部分气流通过进风口进入气流通道并从出风口导出,可以减小或消除导风板的负压区,引导换热气流流向,减小换热气流与导风板之间的摩擦,并可以防止温湿空气倒灌,进而防止导风板凝露,避免影响用户的使用体验。
进一步地,本发明的空调器导风板与空调器,出风口至前侧板底端的距离与导风板的宽度的比值小于等于预设值,即出风口尽量设置于前侧板的底部,以实现对换热气流的引导,并且气流通道的中部至下部可以渐窄,以使进入气流通道的气流加速之后从出风口导出,从而形成更低的低压区,吸引导风板外侧的气流向其汇聚,引导气流沿着导风板方向偏转,优化了对气流的引导效果,进而可以更加有效地防止导风板出现凝露现象,提升用户的使用体验。再进一步地,位于加速区下游的隙宽均匀不变的出风区可起到对加速后的气流进行整流的作用,使最终吹出导风板的气流保持有较高的流速。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具 体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的空调器导风板的剖视图;
图2是根据本发明一个实施例的导风板安装于立式空调器且处于关闭状态下的示意性主视图;
图3是沿图2中的剖切线A-A截取的示意性剖视图;
图4是图3中导风板处于打开状态下的示意性剖视图;
图5a是图1中导风板的示意性前视图,其中示出了迎风面;
图5b是图5a所示导风板的示意性局部放大视图,其中示出了进风口;
图6a是图1中导风板的示意性后视图,其中示出了背风面;
图6b是图6a所示导风板的示意性局部放大视图,其中示出了出风口;
图7是根据本发明另一个实施例的导风板的剖视图;
图8a是图7中导风板的示意性前视图,其中示出了迎风面;
图8b是图8a所示导风板的示意性局部放大视图,其中示出了进风口;
图9a是图7中导风板的示意性后视图,其中示出了背风面;
图9b是图9a所示导风板的示意性局部放大视图,其中示出了出风口;
图10a-10c是根据本发明一些替代性实施例的空调器导风板的剖视图;
图11是现有技术中空调器导风板的气流倒灌示意图;以及
图12是根据本发明一个实施例的空调器导风板的气流引导示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。在本发明的描述中,术语“上”、“下”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不能理解为对本发明的限制。
本实施例提供了一种空调器导风板,可以减小或消除导风板的负压区,引导换热气流流向,减小换热气流与导风板之间的摩擦,并可以防止温湿空气倒灌,进而防止导风板凝露,避免影响用户的使用体验。
图1是根据本发明一个实施例的空调器导风板的剖视图。图2是根据本 发明一个实施例的导风板安装于立式空调器且处于关闭状态下的示意性主视图。图3是沿图2中的剖切线A-A截取的示意性剖视图。图4是图3中导风板10处于打开状态下的示意性剖视图。
如图1所示,本实施例的空调器导风板10一般性地可以包括:后侧板11和前侧板12,其中的“前”和“后”是指当导风板10安装于空调器1送风口并处于关闭状态时,朝向空调器1外侧且大致朝前的板即为前侧板12,朝向空调器1内侧且大致朝后的板即为后侧板11。本领域技术人员均可以理解,当导风板10处于完全打开或部分打开的状态时,前侧板12和后侧板11并不一定分别朝向空调器1的前侧和后侧。
后侧板11的中上部开设有进风口111,以供空调器1的风机2吹出的气流的至少一部分进入。前侧板12连接于后侧板11的外侧。具体地,前侧板12和后侧板11可以为可分离的两块式结构,也可为固定在一起的一体式结构,以共同构成导风板10。前侧板12和后侧板11之间形成有气流通道13,导风板10的底部开设有与气流通道13连通的出风口121,以供通过进风口111进入气流通道13的气流导出。即当导风板10安装于空调器1送风口并处于关闭状态时,导风板10靠近空调器1的风机2的一侧为后侧板11,导风板10远离空调器1的风机2的一侧为前侧板12。也即是,用于空调器1的导风板10可具有迎风面110和与迎风面110相对的背风面120,其中迎风面110即是后侧板11的暴露在风机2吹出的气流中的板面,背风面120即是前侧板12的背向后侧板11一侧的板面。上述用词“中上部”、“底部”是以图1中的方位对导风板10结构进行的说明,可以理解地,当导风板10处于图4所示的状态时,图1中后侧板11的中上部即是图4中后侧板11的中后部,图1中导风板10的底部即是图4中导风板10的前部。
参见图4,气流通道13可设置于导风板10中且连通迎风面110和背风面120,以将吹送至迎风面110上的部分气流经由气流通道13导向至背风面120的中前部区域或背风面120的前缘区域。也即是,当导风板10处于如图4中的打开位置时,风机2促使气流自导风板10朝向空调器1内侧的后缘区域1001朝向导风板10朝向空调器1外侧的前缘区域1002流动,接触导风板10的部分气流由此可经由进风口111进入气流通道13并经由出风口121离开。
在一些实施例中,进风口111可位于至少覆盖迎风面110中后部区域的 进风区域,以引导部分气流经由进风口111进入气流通道13。出风口121可位于背风面120的中前部区域或背风面120的前缘区域,以引导部分气流经由出风口121离开气流通道13。
也即是,图1中与L1所对应的后侧板12上的区域即可为迎风面110上的进风区域。进风区域与出风口121分别位于打开状态下的导风板10的靠近风机2的一侧和远离风机2的一侧,以使流经气流通道13的部分气流与自导风板10外部流出空调器1的气流的流动方向大致相同,保证空调器1送风气流的流速。
图5a是图1中导风板的示意性前视图,其中示出了迎风面。图5b是图5a所示导风板的示意性局部放大视图,其中细节B示出了进风口。图6a是图1中导风板的示意性后视图,其中示出了背风面。图6b是图6a所示导风板的示意性局部放大视图,其中细节C示出了出风口。
参见图5a和5b,在一些实施例中,进风口111可包括位于进风区域内的多个进风槽。如本领域技术人员所熟识的,槽一般具有狭长的开口。进风槽可以具有与导风板10长度方向相平行的、且在长度方向基本横贯导风板10的狭长开口。进风区域为自迎风面110的后缘覆盖至迎风面110的中部区域,多个进风槽的狭长开口可均匀间隔且相互平行地设置在进风区域内。需要说明的是,本文中的“中部区域”并非指导风板10的几何中心位置,而是指将导风板10自上向下或自后向前等分为多个子部分,其中覆盖导风板10几何中心的中间子部分和邻接该中间子部分的一个或几个其他子部分。“中下部区域”或“中前区域”则是指中部区域加上位于中部区域下部或前部的一个或几个子部分。
进一步地,参见图1和6b,出风口121可形成于背风面120的前缘和迎风面110的前缘之间。也即是,以图1为例,前侧板12和后侧板11的底部之间留有间隙以形成出风口121,由此无需在前侧板12上开口,以简化制造工序。在另一些实施例中,出风口121也可为开设在前侧板12上的孔或槽(参见下文详述)。
继续参见图1,在一些实施例中,气流通道13可包括:进风区段L1、加速区段L2和出风区段L3(分别对应导风板的进风区L1、加速区L2和出风区L3)。具体地,进风区段L1设置为在气流通道13的延伸方向上覆盖进风区域。也即是,进风区L1自迎风面110的上部(进风口111处)向下 延伸第一预设距离,该第一预设距离与进风区域在导风板10的宽度方向上的跨度大致相等。加速区段L2设置为自进风区段L2的进风末端朝向出风口121延伸第二预设距离。出风区段L3设置为自加速区段L2的加速末端朝向出风口121延伸第三距离至出风口121。
在一些实施例中,出风口121至前侧板12底端的距离与导风板10的宽度的比值小于等于预设值。即,以图1为例,出风口121尽量设置于前侧板12的底部,以实现对换热气流的引导。导风板10的宽度即为后侧板11或前侧板12的顶部至底部的距离,也即是,导风板10的宽度方向为图1中的上下方向。在一种优选的实施例中,该预设值可以为1/4。
气流通道13各区段的长度可如图1所示,导风板10整体宽度为L,按照空调器1的出风方向可以分为三个区域:进风区L1、加速区L2以及出风区L3。其中,进风区L1为导风板10的顶部至最下边一个进风孔/槽的距离;加速区L2为最下边一个进风孔/槽至出风口121顶部的距离;出风区L3为出风口121顶部至导风板10底部的距离。如上文所描述的,出风口121至前侧板12底端的距离与导风板10的宽度的比值小于等于预设值。即L3/L小于等于预设值,在一种优选的实施例中,该预设值可以为1/4。
进一步地,参见图1,在一些实施例中,后侧板11可为平直结构,后侧板11的迎风面110和内部表面可均为平直结构。前侧板12为弧形结构,前侧板12的背风面120和内部表面可均为弧形结构,弧形结构的弧度可以相同或不同,弧形结构配置成使气流通道13自中部至下部渐窄,进而使进入气流通道13的气流加速。
换言之,气流通道13的位于加速区L2的第二内部宽度W2可配置成,沿进风区段L1指向出风区段的方向逐渐减小。气流通道13的位于出风区段L3的第三内部宽度W3可配置成,沿加速区段L2指向出风口121的方向保持不变,且出风口121的宽度与第三内部宽度W3相同。气流通道13的位于进风区L1的第一内部宽度W1配置成,沿气流流动方向逐渐增大,以使进风区L1与加速区L2和出风区L3共同构成弧形。其中,气流通道13的内部宽度为在导风板10的厚度方向上的尺寸,也即是在图1中的前后方向上的尺寸。
继续以图1为例,加速区L2内的后侧板11的内部表面与前侧板12的内侧表面之间的隙宽可自上向下逐渐减小,出风区L3内的后侧板11的内部 表面与前侧板12的内侧表面之间的隙宽可自上向下均匀设置,以对加速后的气流进行整流,使最终吹出导风板10的气流保持有较高的流速。加速区L2末端的隙宽可与出风区L3始端的隙宽相同以实现气流通道13内部的平滑过渡。出风区L3末端的隙宽可与出风口121的开口大小相同,以使气流流经出风区段L3和流经出风口121时持续保持较高的流速。也即是,出风区段L3和出风口121可设置成,使气流流经出风区段L3和流经出风口121时的流动方向不变。
在不脱离本发明精神和教导的情况下,在某些替代性的实施例中,加速区L1和隙宽均匀的部分也可能不是必须的。
图7是根据本发明另一个实施例的导风板的剖视图。图8a是图7中导风板的示意性前视图,其中示出了迎风面。图8b是图8a所示导风板的示意性局部放大视图,其中细节D示出了进风口。图9a是图7中导风板的示意性后视图,其中示出了背风面。图9b是图9a所示导风板的示意性局部放大视图,其中细节E示出了出风口。
如前所述,出风口121可位于由前侧板12与后侧板11限定出的气流通道13的底部。如图7所示,出风口121也可以设置于前侧板12的底部。也即是,以图4中导风板10安装于空调器1的状态为例,出风口121可形成于背风面120的中前部区域。
进一步地,本实施例的空调器导风板10中的进风口111包括多个进风孔,可以为一种镂空的结构。空调器导风板10中的出风口121为一个出风槽。在其他一些实施例中,进风孔还可以为进风槽、进风条等。也即是,出风口可为开设于背风面的一个条形槽,且该条形槽的出风方向与气流通道13内的气流流动方向之间可形成一个锐角。
在一些优选的实施例中,如图1和7所示,进风孔或进风槽的进风方向与后侧板11末端方向的夹角α小于90°。也即是,经由进风口111进入气流通道13的气流的进风方向与自进风口111指向位于后侧板11气流流动末端的出风口121的方向大致呈同向。该角度便于空调器1的风机吹出的气流进入气流通道13。
换言之,多个进风槽可配置成,使气流进入气流通道13的进风方向和气流离开气流通道13的出风方向之间的夹角小于90°。具体地,该出风方向可以为相对于图1所示导风板10竖直向下的方向。此时,进风槽(图1 所示)所引导的进风方向为倾斜向下,其与竖直向下的出风方向之间的夹角α小于90°。在另一些实施例中,前述出风方向还可以为相对图7所示导风板10倾斜向下的方向。此时,进风槽(图7所示)所引导的进风方向为横向,其与倾斜向下的出风方向之间的夹角也小于90°。
图10a-10c是根据本发明一些替代性实施例的空调器导风板的剖视图。
图10a-10c中的空调器导风板10的前侧板12和后侧板11均为平直结构,其中图10a和10b中导风板10的气流通道13由上至下的宽度相同,但图10b中导风板10的气流通道13为倾斜的气流通道13。
图10c中导风板10的气流通道13自中部至下部渐窄,以使进入气流通道13的气流加速。此外,图10a中导风板10的进风口111包括多个进风孔/槽,而图10b和10c中导风板10的进风口111均包括一个进风槽。
图11是现有技术中空调器导风板的气流倒灌示意图,图12是根据本发明一个实施例的空调器导风板10的气流引导示意图。如图11所示,现有技术中的空调器导风板旋转时,随着导风板宽度方向与空调出风方向夹角增大,导风板背风侧会产生负压区吸引温湿常温空气倒灌,在导风板背风侧形成凝露,严重影响用户的使用体验。其中图11中的椭圆形处即为形成的负压区。而图12中根据本发明一个实施例的空调器导风板10,可以引导空调器风机吹出的至少一部分气流通过气流通道13导出,使得气流沿着导风板10方向偏转。
本实施例的空调器导风板10通过在后侧板11和前侧板12之间设置气流通道13,以一种双层板以及中间空心的组合结构,使得至少一部分气流通过进风口111进入气流通道13并从出风口121导出,可以减小或消除导风板10的负压区,引导换热气流流向,减小换热气流与导风板10之间的摩擦,并可以防止温湿空气倒灌,进而防止导风板10凝露,避免影响用户的使用体验。
进一步地,本实施例的空调器导风板10,出风口121至前侧板12底端的距离与导风板10的宽度的比值小于等于预设值,即出风口121尽量设置于前侧板12的底部,以实现对换热气流的引导,并且气流通道13的中部至下部可以渐窄,以使进入气流通道13的气流加速之后从出风口121导出,从而形成更低的低压区,吸引导风板10外侧的气流向其汇聚,引导气流沿着导风板10方向偏转,优化了对气流的引导效果,进而可以更加有效地防 止导风板10出现凝露现象,提升用户的使用体验。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (13)

  1. 一种用于空调器的导风板,具有迎风面和与所述迎风面相对的背风面,其特征在于所述导风板中设置有连通所述迎风面和所述背风面的气流通道,以将吹送至所述迎风面上的部分气流经由所述气流通道导向至所述背风面的中前部区域或所述背风面的前缘区域。
  2. 根据权利要求1所述的导风板,其特征在于还具有:
    进风口,位于至少覆盖所述迎风面中后部区域的进风区域,以引导所述部分气流经由所述进风口进入所述气流通道;和
    出风口,位于所述背风面的所述中前部区域或所述背风面的所述前缘区域,以引导所述部分气流经由所述出风口离开所述气流通道。
  3. 根据权利要求2所述的导风板,其特征在于,
    所述进风口包括位于所述进风区域内的多个进风槽;所述进风区域自所述迎风面的后缘覆盖至所述迎风面的中部区域;所述出风口形成于所述背风面的前缘和所述迎风面的前缘之间。
  4. 根据权利要求3所述的导风板,其特征在于,所述气流通道包括:
    进风区段,设置为自所述进风口朝向所述出风口延伸第一预设距离;
    加速区段,设置为自所述进风区段的进风末端朝向所述出风口延伸第二预设距离;和
    出风区段,设置为自所述加速区段的加速末端朝向所述出风口延伸第三距离至所述出风口。
  5. 根据权利要求4所述的导风板,其特征在于,
    所述出风区段和所述出风口还设置成,使气流流经所述出风区段和流经所述出风口时的流动方向不变。
  6. 根据权利要求4所述的导风板,其特征在于,
    所述气流通道的位于所述加速区段的第二内部宽度配置成,沿所述进风区段指向所述出风区段的方向逐渐减小。
  7. 根据权利要求4所述的导风板,其特征在于,
    所述气流通道的位于所述出风区段的第三内部宽度配置成,沿所述加速区段指向所述出风口的方向保持不变,且所述出风口的宽度与所述第三内部宽度相同。
  8. 根据权利要求4所述的导风板,其特征在于,
    所述多个进风槽配置成,使所述部分气流进入所述气流通道的进风方向和所述部分气流离开所述气流通道的出风方向之间的夹角小于90°。
  9. 一种空调器导风板,包括:
    后侧板,其中上部开设有进风口,以供所述空调器的风机吹出的气流的至少一部分进入;以及
    前侧板,连接于所述后侧板的外侧,且所述前侧板和所述后侧板之间形成有气流通道,所述导风板的底部开设有与所述气流通道连通的出风口,以供通过所述进风口进入所述气流通道的气流导出。
  10. 根据权利要求9所述的空调器导风板,其特征在于,
    所述出风口至所述前侧板底端的距离与所述导风板的宽度的比值小于等于1/4。
  11. 根据权利要求10所述的空调器导风板,其特征在于,
    所述气流通道的中部至下部渐窄,以使进入所述气流通道的气流加速,以及
    所述后侧板为平直结构,所述前侧板为弧形结构。
  12. 根据权利要求11所述的空调器导风板,其特征在于,
    所述进风口包括一个或多个进风孔/槽。
  13. 根据权利要求12所述的空调器导风板,其特征在于,
    所述进风孔或所述进风槽的进风方向与所述后侧板末端方向的夹角小于90°。
PCT/CN2018/098049 2017-08-02 2018-08-01 空调器导风板 WO2019024872A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710652012.6A CN107525248B (zh) 2017-08-02 2017-08-02 空调器导风板与空调器
CN201710652012.6 2017-08-02

Publications (1)

Publication Number Publication Date
WO2019024872A1 true WO2019024872A1 (zh) 2019-02-07

Family

ID=60680545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098049 WO2019024872A1 (zh) 2017-08-02 2018-08-01 空调器导风板

Country Status (2)

Country Link
CN (1) CN107525248B (zh)
WO (1) WO2019024872A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107525248B (zh) * 2017-08-02 2020-09-25 青岛海尔空调器有限总公司 空调器导风板与空调器
CN108731108B (zh) * 2018-06-28 2020-08-04 芜湖美智空调设备有限公司 空调器
CN108826637A (zh) * 2018-07-11 2018-11-16 珠海格力电器股份有限公司 导风结构、风口装置及空调器
CN110864446B (zh) * 2018-08-13 2023-04-18 青岛海尔空调器有限总公司 防凝露导板及空调
CN111219788B (zh) * 2020-01-16 2021-03-23 珠海格力电器股份有限公司 导风组件和空调器
CN115342444A (zh) * 2022-08-18 2022-11-15 珠海格力电器股份有限公司 机柜空调器及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101072A (ja) * 2002-09-10 2004-04-02 Sharp Corp 空気調和機
CN201281436Y (zh) * 2008-09-04 2009-07-29 宁波奥克斯空调有限公司 一种空调器室内机组导风门结构
CN202274596U (zh) * 2011-10-24 2012-06-13 珠海格力电器股份有限公司 一种导风板及使用该导风板的空调器
CN104566893A (zh) * 2013-10-23 2015-04-29 珠海格力电器股份有限公司 导风板及具有其的空调器
CN106524463A (zh) * 2016-11-30 2017-03-22 广东美的制冷设备有限公司 导风板和空调室内机
CN107525248A (zh) * 2017-08-02 2017-12-29 青岛海尔空调器有限总公司 空调器导风板与空调器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201615575U (zh) * 2010-04-14 2010-10-27 珠海格力电器股份有限公司 空调器导风板及具有该导风板的空调器
CN203231477U (zh) * 2013-04-12 2013-10-09 广州华凌制冷设备有限公司 导风板和具有该导风板的空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004101072A (ja) * 2002-09-10 2004-04-02 Sharp Corp 空気調和機
CN201281436Y (zh) * 2008-09-04 2009-07-29 宁波奥克斯空调有限公司 一种空调器室内机组导风门结构
CN202274596U (zh) * 2011-10-24 2012-06-13 珠海格力电器股份有限公司 一种导风板及使用该导风板的空调器
CN104566893A (zh) * 2013-10-23 2015-04-29 珠海格力电器股份有限公司 导风板及具有其的空调器
CN106524463A (zh) * 2016-11-30 2017-03-22 广东美的制冷设备有限公司 导风板和空调室内机
CN107525248A (zh) * 2017-08-02 2017-12-29 青岛海尔空调器有限总公司 空调器导风板与空调器

Also Published As

Publication number Publication date
CN107525248B (zh) 2020-09-25
CN107525248A (zh) 2017-12-29

Similar Documents

Publication Publication Date Title
WO2019024872A1 (zh) 空调器导风板
JP4430649B2 (ja) 空気調和装置の室内ユニット
US9157673B2 (en) Wall-mounted air-conditioning apparatus
WO2021169803A1 (zh) 壁挂式空调室内机及其导风板
CN211822778U (zh) 壁挂式空调室内机及其导风板
CN104807077B (zh) 一种空调室内机
CN211575291U (zh) 壁挂式空调室内机及其导风板
WO2023065566A1 (zh) 壁挂式新风空调室内机及空调器
JP2008215801A (ja) 空気調和機
WO2022247543A1 (zh) 壁挂式空调室内机
KR20040073370A (ko) 분리형 공기 조화기
WO2021169802A1 (zh) 壁挂式空调室内机及其导风板
JPH0914742A (ja) 空気調和機
JPH10160238A (ja) 埋め込み形空気調和装置
CN211822779U (zh) 壁挂式空调室内机及其导风板
WO2021218292A1 (zh) 离心风机及具有该离心风机的窗机空调
CN212252870U (zh) 壁挂式空调室内机及其导风板
CN113310121A (zh) 壁挂式空调室内机及其导风板
JPH08254352A (ja) 送風フラップ及びその送風フラップを備える空気調和機
WO2017206643A1 (zh) 一种送风系统及应用其的室内机和空调
JP4866643B2 (ja) デフロスタ用送風ダクト
JPH0886504A (ja) 空気調和機
KR20040108454A (ko) 2층류 공기조화장치의 송풍유니트
CN213656944U (zh) 一种设置有风道切割结构的空调室内机及空调系统
CN211822785U (zh) 壁挂式空调室内机及其导风板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18840847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18840847

Country of ref document: EP

Kind code of ref document: A1