WO2019024752A1 - 车厢内位置区域确定及提供位置服务的方法、装置及终端 - Google Patents

车厢内位置区域确定及提供位置服务的方法、装置及终端 Download PDF

Info

Publication number
WO2019024752A1
WO2019024752A1 PCT/CN2018/097181 CN2018097181W WO2019024752A1 WO 2019024752 A1 WO2019024752 A1 WO 2019024752A1 CN 2018097181 W CN2018097181 W CN 2018097181W WO 2019024752 A1 WO2019024752 A1 WO 2019024752A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
location
vehicle
spatial distribution
area
Prior art date
Application number
PCT/CN2018/097181
Other languages
English (en)
French (fr)
Inventor
吴云崇
闵万里
Original Assignee
阿里巴巴集团控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿里巴巴集团控股有限公司 filed Critical 阿里巴巴集团控股有限公司
Publication of WO2019024752A1 publication Critical patent/WO2019024752A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0252Radio frequency fingerprinting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information

Definitions

  • the present invention relates to positioning technology, and more particularly to a method, device and terminal for determining a location area in a vehicle, and a method and terminal for providing a location service.
  • GNSS Global Navigation Satellite System
  • GLONASS GLOBAL NAVIGATION SATELLITE SYSTEM
  • Galileo in Europe, China's Beidou satellite navigation system
  • CAAS Wide Area Augmentation System
  • EGNOS European Quiet Place The EGNOS
  • MSAS Japan's Multi-Functional Satellite Augmentation System
  • AGPS Assisted Global Positioning System
  • AGPS is a way of operating GPS. It can use the information of the mobile base station to match the traditional GPS satellites, so that the positioning speed is faster.
  • the positioning algorithm has been applied to all aspects of life, as a basic service, to meet the basic needs of people for traffic supervision, navigation and so on.
  • Terminals such as mobile phones with GNSS and AGPS positioning functions have become the main carriers for mass users to meet daily positioning needs.
  • Accurate positioning of the location within the cabin of an outdoor car is also an integral part of the positioning algorithm.
  • the first way is to manually input the position information, but this method is not smart and friendly.
  • the second way is to realize the perception of the user's position through the car seat sensor and the connection between the car and the mobile phone, that is, the passenger seat position information is obtained by the car seat sensor, and the terminal installed on the car obtains the passenger position information from the car seat sensor and The passenger location information is broadcast to the passenger's mobile phone via a wireless network (WIFI, Bluetooth, etc.).
  • WIFI wireless network
  • Bluetooth Bluetooth
  • the third way is to achieve positioning by common indoor positioning means such as Bluetooth and infrared sensors. The latter two positioning methods add additional conditions and costs, making their usability greatly compromised.
  • the content of the location service that the driver and the passenger pay attention to is different, and the software that provides the location service currently provides the location service without distinguishing the driver or the passenger, so that the interface design and content cannot be used.
  • a personalized location service that provides a better experience for users.
  • an embodiment of the present invention provides a method for determining a location area in a vehicle, including:
  • the car positioning device determines a spatial distribution characteristic of the satellite signal at the current location
  • the car positioning device matches the determined spatial distribution feature with an expected feature corresponding to a set in-vehicle location area, the expected feature being a spatial distribution characteristic of an expected satellite signal;
  • the car positioning device determines the in-vehicle position area corresponding to the matched expected feature as the in-vehicle position area in which the car positioning device is currently located.
  • an embodiment of the present invention further provides a car positioning device, including:
  • An arithmetic unit configured to: determine a spatial distribution characteristic of a satellite signal at a current location
  • the matching unit is configured to: match the spatial distribution feature determined by the operation unit with an expected feature corresponding to the set position region in the vehicle, where the expected feature refers to a spatial distribution feature of the expected satellite signal;
  • the positioning unit is configured to: determine an in-vehicle position area corresponding to the expected feature to which the matching unit is matched as an in-vehicle position area where the car positioning device is currently located.
  • an embodiment of the present invention further provides a terminal, including a memory, a processor, and a computer program stored on the memory and operable on the processor, when the processor executes the computer program Implement the following steps:
  • the in-vehicle location area corresponding to the matched expected feature is determined as the in-vehicle location area in which the terminal is currently located.
  • an embodiment of the present invention further provides a computer readable storage medium, where a computer program is stored, and when the computer program is executed by the processor, the following steps are implemented:
  • the in-vehicle location area corresponding to the matched expected feature is determined to be the in-vehicle location area in which the terminal of the processor is currently located.
  • the above embodiment solution can realize the positioning of the position area in the vehicle compartment without adding additional conditions and costs.
  • the embodiment of the present invention further provides a method for providing a location service, including:
  • the location service mode is provided by using the determined location service mode corresponding to the in-vehicle location area.
  • the embodiment of the present invention further provides a terminal, including:
  • a compartment positioning module configured to: determine a location area within the cabin where the terminal is currently located;
  • the location service module is configured to: provide a location service by using a location service mode corresponding to the location area in the car determined by the car positioning module according to a corresponding relationship between the configured location area of the in-vehicle and the location service mode;
  • the memory is configured to: store information of a correspondence relationship between the location area of the vehicle and the location service mode.
  • the above embodiment can provide a personalized location service for the user according to the determined location area within the vehicle, and meet the personalized needs of the user.
  • FIG. 1 is a flow chart showing a method for determining a position area in a vehicle compartment according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing spatial distribution characteristics of satellite signals represented by a star map in the embodiment of the present invention
  • Figure 3 is a unit diagram of a position determining device in a vehicle compartment according to an embodiment of the present invention.
  • FIG. 4 is a schematic view showing five position areas set in a car in the second embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for providing a location service according to Embodiment 3 of the present invention.
  • FIG. 6 is a block diagram of a terminal for providing location service according to Embodiment 3 of the present invention.
  • the embodiment provides a method for determining a location area within a vehicle, and a corresponding device, terminal, and computer readable storage medium.
  • the terminal such as the mobile phone can receive the real-time ephemeris data of the current location through the network, and the real-time ephemeris data displays information such as the position of the satellite when there is no occlusion, and the terminal generally has a satellite signal receiving device such as a GPS receiving device, and can receive the satellite signal.
  • a satellite signal receiving device such as a GPS receiving device
  • the satellite signal received by the terminal is a satellite signal that is affected by the metal body of the vehicle, the door and window, and the like.
  • the spatial distribution of the metal body, doors and windows and other obstructions is different, and the shielding effect on the satellite signals is also different.
  • the car glass pass The permeability is good and the permeability of the metal car is poor. Therefore, the satellite signals received in different locations in the car will have a certain regularity in spatial distribution. For example, in the front left driving position of the car, the signal noise on the left side corresponding to the window will be relatively large.
  • the signal noise on the upper and upper right areas corresponding to the roof area is relatively small; and in the front passenger position of the car, the signal noise on the right side corresponding to the window area is relatively large, corresponding to the upper and upper left
  • the signal-to-noise on the space area of the roof is relatively small.
  • theoretical analysis can determine the spatial distribution characteristics of the satellite signals received in the location area of a certain compartment, as the spatial distribution characteristics of the expected satellite signals in the location area of the compartment (referred to as " Expected feature").
  • the spatial distribution characteristics of the expected satellite signals in the position area of the vehicle can also be obtained through actual detection.
  • the vehicle of a certain type of vehicle can be driven to an open area, and then the mobile phone is placed in a position area of a certain vehicle to receive satellite signals, and then according to
  • the received satellite signals and real-time ephemeris data determine the spatial distribution characteristics of the satellite signals as a spatial distribution characteristic of the expected satellite signals in the location area within the vehicle.
  • satellite signals may not be received in some spatial regions, and thus detection may be performed at multiple locations to obtain distribution characteristics of satellite signals over a larger spatial region.
  • the feature matching method can be used to determine the location area of the vehicle in which the terminal is currently located, and the terminal The current location area within the vehicle compartment can be presumed to be the location area within the vehicle in which the user carrying the terminal is currently located.
  • the car positioning device of the present application may be any device having the positioning function of the embodiment.
  • This embodiment takes a mobile phone as an example.
  • the GPS chip of the mobile phone has the ability to output standard NMEA (National Marine Electronics Association) data.
  • NMEA National Marine Electronics Association
  • RTCM Radio Technical Commission for Maritime services
  • the GGA format includes positioning time, latitude, longitude, altitude, number of satellites used for positioning, DOP value, differential status, and correction period.
  • the GSV format contains information about visible satellites, including PRN codes, elevation angles, and azimuths. Angle and signal to noise ratio, etc. By parsing the NMEA data, relevant data of the currently visible satellite can be obtained.
  • the mobile phone can obtain real-time ephemeris data (at least the satellite ephemeris data of the current location and time) through AGPS or other means.
  • the satellite ephemeris data gives the position, time, azimuth, speed, etc. of the satellite. Item parameters.
  • the real-time ephemeris data is parsed, and the starry sky map with the current time and place without occlusion can be drawn.
  • the present embodiment combines real-time GNSS satellite distribution data provided by AGPS with satellite signal data received by the mobile phone, and based on the characteristics of GNSS signal propagation and
  • the relevant derivation is used as a theoretical basis to predict the location of the mobile phone in the outdoor compartment.
  • the method for determining a location area in a vehicle compartment includes: step 110, the cabin positioning device determines a spatial distribution feature of a satellite signal at a current location; and step 120, the spatial distribution of the determined location by the car positioning device The feature is matched to an expected feature corresponding to the set in-vehicle location area, the expected feature being a spatial distribution feature of the expected satellite signal; in step 130, the car positioning device will match the expected location within the in-vehicle location area It is determined as the in-vehicle position area where the car positioning device is currently located.
  • the embodiment determines the spatial distribution characteristics of the current position satellite signal based on the acquired real-time ephemeris data and the received satellite signal.
  • the spatial distribution characteristics of the satellite signal at the current location include signal noise information such as signal-to-noise ratio of the satellite signal on one or more spatial regions in the starry sky map, and may also be represented by other information that may indicate the influence of the occlusion object, such as signal strength information. It is also possible to use a plurality of information, which may independently represent spatial distribution features, or may be combined to represent spatial distribution features, such as weighting.
  • the signal-to-noise ratio in this embodiment is a signal-to-noise ratio, but may be any parameter that reflects the relationship between the signal and the noise, such as a signal-to-interference ratio, a carrier-to-noise ratio, and a carrier-to-interference ratio.
  • the signal-to-noise ratio can be expressed by the value of the signal-to-noise ratio itself, or by the signal-to-noise ratio level or the signal-to-noise ratio interval determined according to the value of the signal-to-noise ratio to accommodate the need for rule matching.
  • signal strength information may be represented by the value of the signal strength or by a signal strength level or signal strength interval determined from the value of the signal strength.
  • 2 is an exemplary starry sky diagram of the present embodiment based on real-time ephemeris data and received satellite signals, the graph including a plurality of concentric circles, the largest concentric circle representing the entire starry sky region, and the circle closer to the center indicates the starry sky
  • the area with the higher elevation angle, the angle marked on the inner side of the largest concentric circle is used to indicate the orientation, a total of 360 degrees, where N (0°) means “north” and E (90°) means “east”, S ( 180°) means “South”, W (270°) means “West”, and so on.
  • the starry sky map of Figure 2 is divided into four spatial regions: the upper left region, which is the upper left quadrant of the starry sky map; the upper right region, which is the upper right quadrant of the starry sky map; the lower left region, which is the starry sky map.
  • the small circle with numbers in Figure 2 indicates the GPS satellite that received its signal, and the position of the small circle in the figure corresponds to the position of the satellite in the sky.
  • the number in the small circle represents the signal-to-noise ratio level of the satellite signal in this embodiment, and the numbers “1" to "5" indicate the five signal-to-noise ratio levels from low to high, and are named “low” and “lower”. Medium “high” and “high”.
  • the signal-to-noise ratio of the GPS satellite signals shown in the figure is “2", "3" or "4".
  • the signal-to-noise ratio level can be determined according to the relative magnitude of the signal-to-noise ratio.
  • the signal-to-noise ratio of the satellite signal with the highest received signal-to-noise ratio is used as the reference value of 100.
  • the signal-to-noise ratio of other satellite signals can be converted from 0 to 100.
  • the value in the range if the signal-to-noise ratio level is “5” in the [50 ⁇ 100] interval, the signal-to-noise ratio level is “4” in the [30 ⁇ 50] interval, and in the [20 ⁇ 30) interval.
  • the signal-to-noise ratio level is "3", the signal-to-noise ratio level is "2" in the [10 to 20) interval, and the signal-to-noise ratio level is "1" in the [0 to 10) interval.
  • the signal to noise ratio level is divided according to the absolute magnitude of the signal to noise ratio, that is, the possible range of the signal to noise ratio is divided into a plurality of intervals, each of which corresponds to a signal to noise ratio level.
  • the number and names of the above signal to noise ratio levels are merely exemplary. Those skilled in the art will readily understand that the number of signal to noise ratio levels can also be divided into two, three, four or more, and the name of the signal to noise level can also be any identifier, such as in the signal to noise ratio level. When the number is 2, it is divided into two levels: high signal-to-noise ratio and low signal-to-noise ratio, as long as the signal-to-noise ratio can be distinguished.
  • the value of the signal to noise ratio interval or signal to noise ratio may be directly used to represent signal noise information on each spatial region.
  • the black circle shown in Figure 2 represents a satellite that exists on the star map obtained by the real-time ephemeris but does not exist on the NMEA star map, ie, does not receive its signal.
  • the signal-to-noise ratio or the signal strength value of the unreceived satellite signal is set to 0, thereby determining Corresponding signal to noise ratio level or signal strength level.
  • the corresponding signal to noise ratio level is 1, that is, the case where the signal to noise ratio is low.
  • This type of processing is more accurate for an open environment because the reception of satellite signals in an open environment is primarily related to the occlusion of the car.
  • satellite signals may also be affected by the spatial distribution of the building in a narrow environment such as a street. In the positioning operation, the influence of the building occlusion is considered.
  • the car positioning device determines, for the satellite existing in the real-time ephemeris, if the corresponding satellite signal is not received, and then combines the urban 3D model of the current location to determine the unreceived Whether the satellite signal is occluded by the building, and when determining the spatial distribution characteristic of the satellite signal at the current location, ignoring the satellite signal occluded by the building among the unreceived satellite signals, and not including the unreceived satellite signal
  • the value of the signal-to-noise ratio or signal strength of the satellite signal blocked by the building is set to zero. This type of processing can achieve higher positioning accuracy in a narrow environment, but requires more data and more resources.
  • the average of the signal to noise ratio levels of all satellites in the region may be used as the signal to noise ratio of the spatial region.
  • Level can be rounded off).
  • the signal-to-noise ratio level of the lower right area and the lower left area is 2, that is, "lower”; the signal-to-noise ratio level of the upper left area is 3, that is, "medium”, and the signal-to-noise ratio of the upper right area is Is 4, which is "higher”. It is easy to understand that the signal-to-noise ratio of each spatial region can be calculated by other means.
  • the value of the signal-to-noise ratio of all satellite signals in the spatial region is averaged, and then converted to the corresponding signal noise. It is also possible to compare grades. For satellites in different locations, different weights can also be assigned. For example, for satellites at medium and high elevation angles, the influence of the distribution of the door and window on the satellite signal can be reflected, so that higher weights can be given, or only medium and high elevation angles can be considered. Satellite. There are various possible calculation methods here, and the application does not impose any limitations on the specific calculation method. The above is the determination of the signal-to-noise ratio level by taking the signal-to-noise ratio as an example. When other parameters such as signal strength are used, the corresponding level can also be determined in a similar manner.
  • the four spatial regions of this example are the same size, and in other examples, the spatial regions may be different in size.
  • the upper right area in the figure is divided into two areas at the time of division, in which the area within the second concentric circle from the inside to the outside is regarded as one space area (hereinafter referred to as space area A), and the remaining part is regarded as another space area. (hereinafter referred to as space area B).
  • space area A the area within the second concentric circle from the inside to the outside
  • space area B space area
  • the spatial signal level A has a signal to noise ratio of 2
  • the spatial region B has a signal to noise ratio of 5, that is, "high.”
  • the spatial regions in the spatial distribution feature do not necessarily form a complete starry sky map, or they can be selected from the starry sky map instead of being divided.
  • a particular spatial region may be selected from the starry sky map, and the signal-to-noise ratio information or signal strength information of the spatial region is used as a spatial distribution feature.
  • the plurality of spatial regions may be nested, for example, considering the four regions divided in FIG. 2, and the medium-high elevation regions of the four regions (corresponding to the elevation angle of the starry sky diagram of about 22.5°).
  • the area of ⁇ 67.5° is taken as the area to be considered when determining the spatial distribution characteristics, and for the four high elevation angle areas, it can be divided into three sub-areas according to the orientation (left side, middle and right side, or upper side, middle and middle). The lower side), one or more of the sub-areas are taken as the area to be considered when determining the spatial distribution feature.
  • the specific spatial region division such as the number and size of the spatial regions and the position in the starry sky map, may be determined according to the shape, size, window and window distribution of the vehicle, and may also be combined with the actual detection results. To choose the most stable and obvious way to divide a spatial distribution feature.
  • Shown in Figure 2 is a GPS satellite.
  • other satellite positioning systems such as the Galileo system, the Beidou system satellites may be used to determine spatial distribution characteristics, or GNSS satellites may be employed.
  • the information of the satellites of the plurality of systems is collected, and the spatial distribution characteristics may be determined by using weighting or the like, or the spatial distribution characteristics of the satellite signals are respectively determined for each system, and respectively matched, and the matching result may be If the system is successfully matched, the match is considered successful, or the matching of multiple systems is successful, and the match is considered successful.
  • FIG. 2 is used to visually represent the spatial distribution characteristics of satellite signals, so as to facilitate understanding of the present application.
  • the terminal does not need to draw such a star map when actually positioning.
  • the determined spatial distribution feature needs to be matched with the expected feature corresponding to the set in-vehicle location area, and the in-vehicle location area corresponding to the matched expected feature is determined as the compartment positioning.
  • the expected characteristic refers to the spatial distribution characteristics of the expected satellite signal. That is to say, the expected feature corresponding to the location area within a certain vehicle is also the spatial distribution characteristic of the expected satellite signal in the location area within the vehicle.
  • the set position area in the vehicle compartment can be divided into two types: a driving area and a non-driving area.
  • a driving area For non-driving areas, you can subdivide.
  • the non-driving area of a car can be subdivided into front right (front right), rear left (back left), rear (back), and rear (back).
  • the area can also be simply divided into a front non-driving area and a rear non-driving area.
  • each row or rows of seats outside the driver's seat can be divided into one zone.
  • the location area in the cabin is mainly determined according to the needs of positioning, and is not limited to a certain fixed manner.
  • the signal to noise ratio level of the two can be calculated. Or the similarity of the signal strength levels in spatial distribution, and then the calculated similarity is compared with the set similarity threshold, and if it is greater than the threshold, the matching is considered. For example, for the same spatial region, if the two spatial distribution features have the same signal-to-noise ratio level in the spatial region, the similarity is considered to be 1, and if the SNR level is one level, the similarity is considered to be 0.5. In other cases, the similarity is zero. Then, the similarities of all the spatial regions are accumulated, and different spatial regions can be given different weights when accumulating, and the spatial distribution similarities are accumulated to be compared with the set thresholds to determine whether the two spatial distribution features match.
  • the matching result is obtained by matching the determined spatial distribution feature with the expected feature corresponding to the position area in the vehicle.
  • the determined spatial distribution features may be matched one by one with the expected features corresponding to the plurality of in-vehicle location areas. If no match is found to any expected feature, the match fails and the positioning result is not output.
  • the expected feature that is matched first can be directly used as the matched expected feature, and all expected features can be matched. If multiple expected features match successfully, the match can be considered as failed, or the similarity is the highest. The expected characteristics are taken as the expected characteristics of the match.
  • the spatial distribution features are directly represented by the value of the signal to noise ratio.
  • the statistical value (such as the mean value) of the satellite signal-to-noise ratio in a spatial distribution feature is the same as the largest and smallest spatial region of the satellite signal-to-noise ratio in the spatial distribution feature, That is to say that the two match. It is also possible to use the signal to noise ratio level to calculate the mean in this matching method.
  • the matching of the spatial distribution features is performed, if three or more spatial regions of the four spatial regions have the same signal-to-noise ratio, the two spatial distribution features are considered to match.
  • There are many algorithms for matching which are not explained here. Those skilled in the art can verify different matching algorithms and select one of the most accurate algorithms to use.
  • the car positioning device periodically determines the current location area of the vehicle, and locally records the determined in-vehicle location area and/or reports the determined in-vehicle location area to the network side.
  • the car positioning device such as the location area of the car in which the mobile phone is located, can be presumed to be the in-vehicle location area where the person carrying the mobile phone is located, so the information can reflect whether the user is driving the vehicle, and can provide useful information for personalized location service, traffic supervision, and the like. Information, for example, can be used to restore user behavior in an incident investigation to determine if the user is driving a vehicle.
  • the embodiment further provides a car positioning device, as shown in FIG. 3, comprising:
  • the operation unit 10 is configured to: determine a spatial distribution feature of the satellite signal at the current location;
  • the matching unit 20 is configured to: match the spatial distribution feature determined by the operation unit with an expected feature corresponding to the set position region in the vehicle, the expected feature refers to a spatial distribution feature of the expected satellite signal;
  • the positioning unit 30 is configured to determine an in-vehicle position area corresponding to the expected feature to which the matching unit is matched as an in-vehicle position area in which the car positioning device is currently located.
  • the spatial distribution characteristics of the satellite signal include signal noise information and/or signal strength information of satellite signals on one or more spatial regions in the starry sky map.
  • the signal noise information is represented by a signal to noise ratio value or a signal to noise ratio level or a signal to noise ratio interval
  • the signal strength information is represented by a signal strength value or a signal strength level or a signal strength interval.
  • the operation unit determines a spatial distribution feature of the satellite signal at the current location, and includes: determining, according to the acquired real-time ephemeris data and the received satellite signal, a spatial distribution characteristic of the satellite signal at the current location, where:
  • the signal-to-noise ratio or the signal strength value of the unreceived satellite signal is set to 0;
  • the urban 3D model of the current location is used to determine whether the unreceived satellite signals are blocked by the building, and the spatial distribution of the satellite signals at the current location is determined.
  • the satellite signal occluded by the building among the unreceived satellite signals is ignored, and the signal-to-noise ratio or the signal strength value of the satellite signal not blocked by the building among the unreceived satellite signals is set Is 0.
  • the set in-vehicle position area includes two types: a driving area and a non-driving area; the car positioning device periodically determines the current in-vehicle position area, and locally records the determined car. The inner location area and/or the determined in-vehicle location area is reported to the network side.
  • the embodiment further provides a terminal comprising a memory, a processor, and a computer program stored on the memory and operable on the processor, wherein the processor implements the following steps when executing the computer program :
  • the in-vehicle location area corresponding to the matched expected feature is determined as the in-vehicle location area in which the terminal is currently located.
  • the computer program may be a location service application (such as Gao De, Baidu, etc.), in which a positioning function in the cabin is added. It can also be any new or old application that can be run in the background for positioning after it is launched.
  • a location service application such as Gao De, Baidu, etc.
  • the spatial distribution characteristics of the satellite signal include signal noise information and/or signal strength information of satellite signals on one or more spatial regions in the starry sky map.
  • the processor determines a spatial distribution feature of the current location satellite signal, including: determining, according to the acquired real-time ephemeris data and the received satellite signal, a spatial distribution characteristic of the current location satellite signal, where:
  • the signal-to-noise ratio or the signal strength value of the unreceived satellite signal is set to 0;
  • the urban 3D model of the current location is used to determine whether the unreceived satellite signals are blocked by the building, and the spatial distribution of the satellite signals at the current location is determined.
  • the satellite signal occluded by the building among the unreceived satellite signals is ignored, and the signal-to-noise ratio or the signal strength value of the satellite signal not blocked by the building among the unreceived satellite signals is set Is 0.
  • the processor may perform any one of the methods in this embodiment, and details are not described herein again.
  • the embodiment further provides a computer readable storage medium having stored thereon a computer program, wherein the computer program is executed by the processor to implement the following steps:
  • the in-vehicle location area corresponding to the matched expected feature is determined to be the in-vehicle location area in which the terminal of the processor is currently located.
  • the method for determining the location area in the vehicle compartment of the present embodiment can be implemented based on the existing terminal, so that the location area where the in-vehicle personnel are located can be predicted and identified without depending on other auxiliary equipment.
  • the positioning results can be used for higher precision positioning services.
  • the scheme can be used to output the position of the current passenger relative to the road, thereby improving the positioning effect and the user experience.
  • the program also facilitates many other location-based applications and traffic supervision on the road.
  • the present embodiment provides an example of positioning based on the determination method of the position area in the vehicle of the embodiment.
  • This embodiment relates to the determination of the location area in the car compartment, which is implemented using a mobile phone. Based on the principle of GNSS signal propagation and the structure of the car compartment, the satellite signals observed by the mobile phone will exhibit a certain spatial distribution characteristic for passengers in different positions, so that the location area in the compartment where the mobile phone is located can be determined by feature matching.
  • the mobile phone GPS chip has output standard NMEA data information.
  • GGA which includes positioning time, latitude, longitude, altitude, number of satellites used for positioning, DOP value, differential status and correction period, etc.
  • GSV contains information about visible satellites, including PRN Code, elevation, azimuth and signal to noise ratio.
  • real-time ephemeris data of the current location can be obtained by AGPS or other means.
  • the NMEA star map of the mobile phone at the current time and location can be obtained (and does not need to be actually drawn).
  • the real-time ephemeris data the real-time starry sky map without the occlusion can be obtained, and the spatial distribution characteristics of the satellite signal at the current location can be determined by combining the relevant information in the two star maps.
  • the location information As shown in Fig. 4, there are five position areas in the car set by the car, which are front left, front right, rear left, rear middle, and rear right.
  • the location information wherein the front left is the location area where the driver is located for the domestic vehicle.
  • the method to be output in this embodiment is the location area where the mobile phone is located.
  • the definition is as follows: the upper left region is the upper left quadrant of the starry sky map; the upper right region is the upper right quadrant of the starry sky map; the lower left region is the lower left quadrant of the starry sky map; the lower right region is It is the lower right quadrant of the sky map.
  • the matching is also performed as an independent region.
  • the GNSS satellites are in good condition (high availability and low multipath effects). According to the driving route and map of the car, it can be known whether the condition is satisfied, and therefore, when the positioning result is used, the positioning result when the condition is satisfied can be filtered out.
  • the spatial distribution characteristics of the expected satellite signals in the location areas within each compartment are as follows:
  • the signal-to-noise ratio in the lower right area is relatively low
  • the signal-to-noise ratio in the high elevation angle area in the lower left area is relatively high
  • the signal-to-noise ratio in the high elevation angle area in the upper left area is relatively high (but the signal-to-noise ratio in the middle direction area is relatively low)
  • the signal-to-noise ratio in the high elevation angle area in the upper right area is relatively high (but the signal-to-noise ratio in the lower side azimuth area is relatively low).
  • the signal-to-noise ratio in the lower left area is relatively low, and the signal-to-noise ratio in the high elevation angle area in the lower right area is relatively high, and the signal-to-noise ratio in the high elevation angle area in the upper right area is relatively high (but the signal-to-noise ratio in the middle direction area is relatively low),
  • the signal-to-noise ratio of the high elevation angle area in the upper left area is relatively high (but the signal-to-noise ratio of the lower side azimuth area is relatively low).
  • the signal-to-noise ratio is low in the high elevation angle area in the upper right area, the signal-to-noise ratio in the high elevation angle area in the upper left area is relatively high, and the signal-to-noise ratio in the upper middle area is higher (but the signal-to-noise ratio in the middle direction area is lower) In the lower right area, the signal-to-noise ratio is low.
  • the signal-to-noise ratio in the high elevation angle area in the lower right area is relatively high
  • the signal-to-noise ratio in the high elevation angle area in the lower left area is relatively high
  • the signal-to-noise ratio in the upper left middle and high area is relatively low
  • the signal-to-noise ratio in the upper right middle and high area is relatively low.
  • Rear right position The signal-to-noise ratio of the high elevation angle area in the upper left area is relatively low, the signal-to-noise ratio of the high elevation angle area in the upper right area is relatively high, and the signal-to-noise ratio in the middle and high area of the lower right area is relatively high (but the signal-to-noise comparison of the middle direction area) Low), the signal-to-noise ratio is low in the middle and high areas of the lower left area.
  • the mobile phone after determining the spatial distribution characteristics of the current position satellite signals according to the real-time ephemeris data and the received satellite signals, the mobile phone can match the expected features of the above five positions one by one, if there is an expected feature matching. If the success is successful, the matching position area corresponding to the expected feature is output as the positioning result, that is, the position area in the cabin where the determined mobile phone is located.
  • the mobile phone positioning chip can achieve the first positioning time of 1 second with the aid of AGPS, which is also the time when the positioning algorithm is first started.
  • the update frequency of the mobile phone observation epoch is 1 second, so the update frequency of the algorithm can also reach 1 second.
  • the position judgment accuracy can reach more than 90% under the condition of good observation conditions.
  • mobile positioning chips for multi-mode satellites GPS, GLONASS, BD, GALILO
  • more satellite data will be used as the basis for the algorithm, and the accuracy of position determination will be higher.
  • the user's experience requirements are different for the navigation software used by the driver and the navigation software used by ordinary passengers. Since the driver needs to be more focused on driving, the interaction with the navigation software can be as small as possible, by maximizing the navigation interface, eliminating unimportant message prompts, etc. to improve the safety and friendliness of driving, while for ordinary passengers, While navigating, if you can provide more information services and interactive experiences, the whole trip will be full of fun.
  • the embodiment provides a method for providing a location service, which can provide a personalized location service according to different location areas within the cabin where the terminal is currently located.
  • the method in this embodiment is as shown in FIG. 5, and includes:
  • Step 210 Determine a location area within the cabin where the terminal is currently located
  • the method in the first embodiment can be used to determine the location area in the vehicle where the terminal is currently located, that is,
  • the in-vehicle location area corresponding to the matched expected feature is determined as the in-vehicle location area in which the terminal is currently located.
  • the spatial distribution characteristic of the satellite signal may include signal noise information and/or signal strength information of a satellite signal on one or more spatial regions in the star map.
  • the method of the first embodiment can be seen.
  • other methods are used to determine the location area of the vehicle in which the terminal is currently located, such as the manual input method mentioned above, or the location of the user is realized by the car seat sensor and the interconnection of the car and the mobile phone.
  • the location service area of the terminal is determined by the application that provides the location service on the terminal.
  • other applications on the terminal which can cooperate with other auxiliary devices may be used to determine the current location of the terminal.
  • the location area in the vehicle compartment is then sent to the application providing the location service according to the request of the application providing the location service, or may be actively sent to the application providing the location service.
  • Step 220 According to the corresponding relationship between the configured location area of the in-vehicle and the location service mode, the location service mode is provided by using the determined location service mode corresponding to the location area in the in-vehicle.
  • the in-vehicle location area includes a driving area and a non-driving area; the driving service area corresponding to the driving area is different from the location service mode corresponding to the non-driving area.
  • the embodiment further provides a device for providing a location service, and the device may be a user terminal, such as a mobile phone. As shown in FIG. 6, the device includes:
  • the car positioning module 50 is configured to: determine a location area within the car where the terminal is currently located;
  • the location service module 60 is configured to: provide a location service by using a location service mode corresponding to the location area in the car determined by the car positioning module according to a corresponding relationship between the configured location area of the in-vehicle and the location service mode;
  • the memory 70 is configured to store information of a correspondence relationship between the location area of the vehicle and the location service mode.
  • the positioning module of the first embodiment adopts the positioning method of the first embodiment (but is not limited thereto), and includes:
  • An arithmetic unit configured to: determine a spatial distribution characteristic of a satellite signal at a current location
  • the matching unit is configured to: match the spatial distribution feature determined by the operation unit with an expected feature corresponding to the set position region in the vehicle, where the expected feature refers to a spatial distribution feature of the expected satellite signal;
  • a positioning unit configured to: determine an in-vehicle location area corresponding to the expected feature to which the matching unit is matched as an in-vehicle location area where the terminal is currently located;
  • the spatial distribution characteristic of the satellite signal includes signal noise information and/or signal strength information of a satellite signal on one or more spatial regions in the star map.
  • the car positioning module may be a module in an application that provides location services on the terminal, that is, the application has a car positioning module and a location service module.
  • the car positioning module is a module in other applications that transmits the determined in-vehicle location area to a location service module in an application that provides location services.
  • the memory stores information of a correspondence relationship between a location area in the vehicle and a location service mode, where the in-vehicle location area includes a driving area and a non-driving area; the location service mode corresponding to the driving area is different from The location service mode corresponding to the non-driving area.
  • the embodiment further provides a terminal, comprising a memory, a processor, and a computer program stored on the memory and operable on the processor, the processor implementing the computer program to implement the following steps:
  • the location service mode is provided by using the determined location service mode corresponding to the in-vehicle location area.
  • the embodiment further provides a computer readable storage medium having stored thereon a computer program, the computer program being executed by the processor to implement the following steps:
  • the location service mode is provided by using the determined location service mode corresponding to the in-vehicle location area.
  • determining a location area within the vehicle where the terminal is currently located including:
  • the in-vehicle location area corresponding to the matched expected feature is determined as the in-vehicle location area in which the terminal is currently located.
  • the spatial distribution characteristic of the satellite signal includes signal noise information and/or signal strength information of a satellite signal on one or more spatial regions in the star map.
  • the foregoing embodiment is for the positioning of the interior space of the passenger compartment. It is easy to understand that in addition to the interior space of the compartment, there are some internal spaces of the object which can also be used. For example, the positioning of the interior space of the aircraft, some rooms, and so on.
  • the internal space of the object here refers to the internal space of the object that can receive the satellite signal, and the part of the outer casing has a strong shielding effect on the satellite signal, and some parts are weakly shielded.
  • the spatial distribution characteristics of the satellite signals are different in different areas of the internal space of the object. Therefore, the method of determining the position area of the foregoing embodiment may also be adopted, but the application scenario is not limited to Inside the train,
  • This embodiment provides a method for positioning an internal space of an object, including:
  • the positioning device determines a spatial distribution characteristic of the satellite signal at the current location
  • the positioning device matches the determined spatial distribution feature with an expected feature corresponding to the set location region, the expected feature referring to a spatial distribution characteristic of the expected satellite signal;
  • the positioning device determines the location area corresponding to the matched expected feature as the in-vehicle location area where the positioning device is currently located.
  • the application of the location area in the vehicle in the location service is taken as an example.
  • the corresponding positioning result can also be used for traffic supervision, such as determining whether the user is in the driving position when determining an accident.
  • traffic supervision such as determining whether the user is in the driving position when determining an accident.
  • the data of the end user's location area in the cabin reflects the user's car behavior and can be used as a basis for the user's portrait. Important data provides a source of data for a large portion of marketing and modeling scenarios.
  • Such software may be distributed on a computer readable medium, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .

Abstract

一种车厢内位置区域确定及提供位置服务的方法、装置及终端,车厢定位装置确定当前位置卫星信号的空间分布特征;所述车厢定位装置将确定的所述空间分布特征与设定的车厢内位置区域对应的预期特征进行匹配,所述预期特征指预期的卫星信号的空间分布特征;所述车厢定位装置将匹配到的预期特征对应的车厢内位置区域确定为所述车厢定位装置当前所在的车厢内位置区域。所述车厢定位装置可以是终端,确定终端当前所在的车厢内位置区域后可以采用其对应的位置服务模式提供位置服务。本申请无需额外条件即可实现车内定位,还可满足个性化的位置服务需求。

Description

车厢内位置区域确定及提供位置服务的方法、装置及终端
本申请要求2017年08月04日递交的申请号为201710661197.7、发明名称为“车厢内位置区域确定及提供位置服务的方法、装置及终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及定位技术,更具体地,涉及一种车厢内位置区域的确定方法、装置及终端,以及提供位置服务的方法及终端。
背景技术
全球导航卫星系统(GNSS:Global Navigation Satellite System)泛指所有的卫星导航系统,包括全球的、区域的和增强的,如美国的全球定位系统(GPS:Global Positioning System)、俄罗斯的格洛纳斯(GLONASS:GLOBAL NAVIGATION SATELLITE SYSTEM)、欧洲的伽利略(Galileo)、中国的北斗卫星导航系统,以及相关的增强系统,如美国的广域增强系统(WAAS:Wide Area Augmentation System)、欧洲的欧洲静地导航重叠系统(EGNOS:European Geostationary Navigation Overlay Service)和日本的多功能运输卫星增强系统(MSAS:Multi-Functional Satellite Augmentation System)等,还涵盖在建和以后要建设的其他卫星导航系统。辅助全球卫星定位系统(AGPS:Assisted Global Positioning System)是一种GPS的运行方式。它可以利用手机基地站的资讯,配合传统GPS卫星,让定位的速度更快。
定位算法已应用于生活的方方面面,作为一种基础服务,满足了人们对交通监管,导航等基本需求。而具备GNSS及AGPS定位功能的手机等终端已经成了大众用户满足日常定位需求的主要载体。
对于室外汽车的车厢内位置区域的精准定位也是定位算法的一个组成部分。
相关技术中,为了获得车内人员在车厢内的位置区域,第一种方式是人工输入位置信息,但这种方式不够智能和友好。第二种方式是通过汽车座椅传感器及汽车与手机的互联来实现对用户位置的感知,即由汽车座椅传感器获得乘客位置信息,汽车上安装的终端从汽车座椅传感器获得乘客位置信息并通过无线网络(WIFI、蓝牙等)将乘客位置信息播发给乘客的手机。这种方式需要依赖于汽车座椅传感器、汽车终端、汽车终端无线网络及与手机的连接。第三种方式是通过常用室内定位手段如蓝牙、红外传感器 来实现定位。后二种定位方式增加了额外的条件和成本,使得其可用性大打折扣。
此外,驾驶员和乘客所关注的位置服务的内容是不同的,而目前提供位置服务的软件,其提供的位置服务并没有针对驾驶者或者乘客进行区别,从而不能从界面设计、内容等方面为用户提供更好体验的个性化位置服务。
发明内容
有鉴于此,本发明实施例提供了一种车厢内位置区域的确定方法,包括:
车厢定位装置确定当前位置卫星信号的空间分布特征;
所述车厢定位装置将确定的所述空间分布特征与设定的车厢内位置区域对应的预期特征进行匹配,所述预期特征指预期的卫星信号的空间分布特征;
所述车厢定位装置将匹配到的预期特征对应的车厢内位置区域确定为所述车厢定位装置当前所在的车厢内位置区域。
有鉴于此,本发明实施例还提供了一种车厢定位装置,包括:
运算单元,设置为:确定当前位置卫星信号的空间分布特征;
匹配单元,设置为:将所述运算单元确定的所述空间分布特征与设定的车厢内位置区域对应的预期特征进行匹配,所述预期特征指预期的卫星信号的空间分布特征;
定位单元,设置为:将所述匹配单元匹配到的预期特征对应的车厢内位置区域确定为所述车厢定位装置当前所在的车厢内位置区域。
有鉴于此,本发明实施例还提供了一种终端,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
确定当前位置卫星信号的空间分布特征;
将确定的所述空间分布特征与设定的车厢内位置区域对应的预期特征进行匹配,所述预期特征指预期的卫星信号的空间分布特征;
将匹配到的预期特征对应的车厢内位置区域确定为所述终端当前所在的车厢内位置区域。
有鉴于此,本发明实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
确定当前位置卫星信号的空间分布特征;
将确定的所述空间分布特征与设定的车厢内位置区域对应的预期特征进行匹配,所 述预期特征指预期的卫星信号的空间分布特征;
将匹配到的预期特征对应的车厢内位置区域确定为包含所述处理器的终端当前所在的车厢内位置区域。
上述实施例方案可以实现车厢内位置区域的定位,且不需要增加额外的条件和成本。
有鉴于此,本发明实施例还提供了一种提供位置服务的方法,包括:
确定终端当前所在的车厢内位置区域;
根据配置的车厢内位置区域与位置服务模式的对应关系,采用确定的所述车厢内位置区域对应的位置服务模式提供位置服务。
有鉴于此,本发明实施例还提供了一种终端,包括:
车厢定位模块,设置为:确定所述终端当前所在的车厢内位置区域;
位置服务模块,设置为:根据配置的车厢内位置区域与位置服务模式的对应关系,采用所述车厢定位模块确定的所述车厢内位置区域对应的位置服务模式提供位置服务;
存储器,设置为:存储所述车厢内位置区域与位置服务模式的对应关系的信息。
上述实施例可以根据确定的车厢内位置区域为用户提供个性化的位置服务,满足用户个性化的需求。
附图说明
图1是本发明实施例一车厢内位置区域的确定方法的流程图;
图2是本发明实施例一用星空图表示的卫星信号的空间分布特征的示意图;
图3是本发明实施例一车厢内位置区域确定装置的单元图;
图4是本发明实施例二小轿车内设定的5个位置区域的示意图;
图5是本发明实施例三提供位置服务的方法的流程图;
图6是本发明实施例三提供位置服务的终端的模块图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
实施例一
本实施例提供一种车厢内位置区域的确定方法,及相应的装置、终端和计算机可读存储介质。
手机等终端可以通过网络接收当前位置的实时星历数据,实时星历数据展示的是没有遮挡时卫星的位置等信息,而终端普遍都有卫星信号接收装置如GPS接收装置,可以接收卫星信号。
当用户在车内携带终端时,终端接收到的卫星信号是受到车辆的金属厢体、门窗等遮挡物影响后的卫星信号。对车厢内不同的位置区域如驾驶区域和非驾驶区域而言,金属厢体、门窗等遮挡物的空间分布是不相同的,对卫星信号的遮档作用也不相同,一般而言汽车玻璃通透性较好而金属厢体的通透性差。因此车厢内不同位置区域接收到的卫星信号在空间分布上会呈现出一定的规律性,例如,在轿车前左的驾驶位置,左侧对应于窗户的空间区域上的信噪会比较大,正上方及右上方对应车顶的空间区域上的信噪比较小;而在轿车前右的乘客位置上,右侧对应于窗户的空间区域上的信噪会比较大,正上方及左上方对应车顶的空间区域上的信噪比较小。这样对于某一类车型如轿车而言,通过理论分析可以确定某一车厢内位置区域接收到的卫星信号的空间分布特征,作为该车厢内位置区域预期的卫星信号的空间分布特征(简称为“预期特征”)。车厢内位置区域预期的卫星信号的空间分布特征也可以通过实际检测得到,例如可以将某一车型的车辆行驶到开阔地带,然后将手机放置在某一车厢内位置区域去接收卫星信号,然后根据接收到的卫星信号和实时星历数据确定卫星信号的空间分布特征,作为该车厢内位置区域预期的卫星信号的空间分布特征。在一个地点检测时可能在一些空间区域上接收不到卫星信号,因而可以在多个地点进行检测,以得到卫星信号在较多的空间区域上分布特征。
基于得到设定的车厢内位置区域预期的卫星信号的空间分布特征,终端计算出当前位置卫星信号的空间分布特征之后,就可以通过特征匹配的方法确定终端当前所在的车厢内位置区域,而终端当前所在的车厢内位置区域可推定为携带该终端的用户当前所在的车厢内位置区域。
本申请的车厢定位装置可以是任何具备本实施例定位功能的装置,本实施例以手机为例。手机的GPS芯片具备输出标准NMEA(National Marine Electronics Association)数据的能力。NMEA是美国国家海洋电子协会的简称,现在是GPS导航设备统一的RTCM (Radio Technical Commission for Maritime services:国际海运事业无线电技术委员会)标准协议。标准NMEA数据中,GGA格式包含了定位时间、纬度、经度、高度、定位所用的卫星数,DOP值、差分状态和校正时段等,GSV格式包含了可见卫星的信息,包括PRN码、仰角、方位角和信噪比等。通过解析NMEA数据,可以获得当前可见卫星的相关数据。根据获得的数据,可以通过绘制当前时间、地点该手机的NMEA星空图。同时,手机通过AGPS或其他方式可以获取实时星历数据(ephemeris data)(至少包括当前位置和时间的卫星星历数据),卫星星历数据给出了卫星的位置、时间、方位、速度等各项参数。对实时星历数据进行解析,可以绘制当前时间、地点无遮挡情况下的星空图。本实施例结合如AGPS提供的实时GNSS卫星分布数据与手机接收到的卫星信号数据,并基于GNSS信号传播的特性及
相关的推导作为理论依据,对手机在室外车厢内的位置区域进行预测。
如图1所示,本实施例车厢内位置区域的确定方法,包括:步骤110,车厢定位装置确定当前位置卫星信号的空间分布特征;步骤120,所述车厢定位装置将确定的所述空间分布特征与设定的车厢内位置区域对应的预期特征进行匹配,所述预期特征指预期的卫星信号的空间分布特征;步骤130,所述车厢定位装置将匹配到的预期特征对应的车厢内位置区域确定为所述车厢定位装置当前所在的车厢内位置区域。
在步骤110中,本实施例根据获取的实时星历数据和接收到的卫星信号,确定当前位置卫星信号的空间分布特征。当前位置卫星信号的空间分布特征包括星空图中的一个或多个空间区域上卫星信号的信号噪声信息如信号噪声比,也可以用信号强度信息等可以表示遮挡物影响的其他信息表示。使用多个信息也是可以的,多个信息可以独立地表示空间分布特征,也可以结合起来如加权后表示空间分布特征。本实施例中的信号噪声比是信噪比,但也可以是信干比、载噪比、载干比等反映信号和噪声之间关系的任意参数。信号噪声比可以用信号噪声比本身的值表示,也可以用根据信号噪声比的值确定的信号噪声比等级或信号噪声比区间表示,以适应规则匹配的需要。类似的,信号强度信息可用信号强度的值表示,或用根据信号强度的值确定的信号强度等级或信号强度区间表示。
下面用星空图来形象的说明一下空间分布特征。图2是本实施例根据实时星历数据和接收到的卫星信号绘制的一个示例性的星空图,该图包括多个同心圆,最大的同心圆表示整个星空区域,越靠近中心的圆表示星空中仰角越高的区域,最大的同心圆的圆周 内侧标注的角度用于表示方位,一共360度,其中的N(0°)表示“北”,E(90°)表示“东”,S(180°)表示“南”,W(270°)表示“西”,依此类推。在该示例中,将图2的星空图划分为4个空间区域:左上区域,即为星空图的左上象限部分;右上区域,即为星空图的右上象限部分;左下区域,即为星空图的左下象限部分;右下区域,即为星空图的右下象限部分。
图2中带数字的小圆圈表示接收到其信号的GPS卫星,小圆圈在图中的位置对应于卫星在星空中的位置。小圆圈中的数字在本实施例中表示卫星信号的信噪比等级,数字“1”至“5”表示从低到高的5个信噪比等级,命名为“低”“较低”“中”“较高”和“高”。图中示出的GPS卫星信号的信噪比等级为“2”、“3”或“4”。信噪比等级可以根据信噪比的相对大小来确定,例如,将收到的信噪比最大的卫星信号的信噪比作为基准值100,其他卫星信号的信噪比可以换算为0~100范围内的数值,该数值如果在[50~100]区间时信噪比等级为“5”,在[30~50)区间则信噪比等级为“4”,在[20~30)区间则信噪比等级为“3”,在[10~20)区间则信噪比等级为“2”,在[0~10)区间则信噪比等级为“1”。在另一示例中,信噪比等级根据信噪比的绝对大小来划分,也即将信噪比的可能取值范围划分为多个区间,每个区间对应于一个信噪比等级。上述信噪比等级的数量和名称仅仅是示例性的。本领域技术人员容易理解,信噪比等级的数量也可以分为2个、3个、4个或6个以上,而信噪比等级的名称也可以是任意标识,如在信噪比等级的数量为2时,分为信噪比较高和信噪比较低两个等级,只要能够区分信噪比等级即可。在另一实施例中,可以直接采用信号噪声比区间或信号噪声比的值来表示各个空间区域上的信号噪声信息。
图2中涂黑的小圆圈表示的是实时星历得到的星空图上存在但NMEA星空图上不存在即没有接收到其信号的一颗卫星。本实施例中,对于实时星历中存在的卫星,如果未接收到相应的卫星信号,则将所述未接收到的卫星信号的信号噪声比或信号强度的值置为0,由此可确定相应的信号噪声比等级或信号强度等级。按该示例的等级划分,相应的信噪比等级为1,即认为是信噪比低的情况。这种处理方式对于开阔环境是比较准确地,因为在开阔环境下卫星信号的接收主要与车厢的遮挡有关。在另一实施例中,考虑到在街道等狭窄的环境中,卫星信号还会受到建筑物的空间分布的影响。在定位运算时考虑建筑物遮挡的影响,具体地,车厢定位装置对于实时星历中存在的卫星,如果未接收到相应的卫星信号,再结合当前位置的城市3D模型确定所述未接收到的卫星信号是否被建筑物遮挡,在确定当前位置卫星信号的空间分布特征时,忽略所述未接收到的卫 星信号中被建筑物遮挡的卫星信号,而将所述未接收到的卫星信号中没有被建筑物遮挡的卫星信号的信号噪声比或信号强度的值置为0。这种处理方式在狭窄环境可以获得更高的定位精度,但需要的数据和占用的资源比较多。
在图2所示的示例中,确定各个卫星信号的信噪比等级之后,对于划分的每一空间区域,可以将该区域中所有卫星的信噪比等级的均值作为该空间区域的信噪比等级(可以四舍五入)。例如图2的示例中,右下区域和左下区域的信噪比等级为2,即“较低”;左上区域的信噪比等级为3,即“中”,而右上区域的信噪比等级为4,即“较高”。容易理解,各个空间区域的信噪比等级可以通过其他方式计算,例如,对每一空间区域,将该空间区域中所有卫星信号的信噪比的值取均值后,再换算到相应的信噪比等级也是可以的。对于不同位置的卫星,也可以赋予不同的权值,例如,对于位于中高仰角的卫星,更能体现出车厢门窗分布对卫星信号的影响,因而可以赋予较高的权值,或者只考虑中高仰角的卫星。这里有各种可能的计算方式,对于具体计算方式,本申请不做任何局限。上面是以信噪比为例说明信噪比等级的确定,使用其他参数如信号强度时,相应等级也可以用类似的方式来确定。
该示例的4个空间区域是同样大小的,在其他示例中,空间区域的大小可以是不同的。例如,在划分时将图中的右上区域划分为2个区域,其中从内到外第2个同心圆内的区域作为一个空间区域(以下称为空间区域A),余下部分作为另一个空间区域(以下称为空间区域B)。那么,空间区域A的信噪比等级为2即“较低”,而空间区域B的信噪比等级为5即“高”。空间分布特征中的空间区域合并起来并不一定要组成完整的星空图,或者说,这些空间区域可以是从星空图中挑选出来而不是划分的。在一实施例中,可以从星空图中选择一个特定的空间区域,将该空间区域的信号噪声比信息或信号强度信息作为空间分布特征。在另一实施例中,多个空间区域可以是嵌套的,例如,即考虑图2中划分的4个区域,又将这4个区域中的中高仰角区域(对应于星空图仰角约22.5°~67.5°的区域)作为确定空间分布特征时要考虑的区域,而对于这4个高仰角区域,又可以按照方位分为3个子区域(左侧、中间和右侧,或上侧、中间和下侧),将其中的一个或多个子区域作为确定空间分布特征时要考虑的区域。
本领域技术人员容易明了,具体的空间区域划分例如空间区域的数量、大小及在星空图中的位置等,可以根据车辆的形状、大小、门窗分布等情况来确定,还可以结合实际检测的结果来选择一种空间分布特征最为稳定和明显的划分方式。
图2中示出的是GPS卫星,在另一实施例中,也可以采用其他卫星定位系统如伽利 略系统、北斗系统的卫星来确定空间分布特征,或者采用GNSS卫星。在又一实施例中采集多种系统的卫星的信息,可以采用加权等方式来确定空间分布特征,或者对每一种系统,分别确定其卫星信号的空间分布特征,分别匹配,对于匹配结果可以是一种系统匹配成功即认为匹配成功,也可以是多种系统匹配成功才认为匹配成功,等等。
需要说明的是,使用图2是为了直观地表示卫星信号的空间分布特征,以便于理解本申请。在实际定位时终端并不需要绘制这样的星空图。
在步骤120和步骤130中,需要将确定的所述空间分布特征与设定的车厢内位置区域对应的预期特征进行匹配,将匹配到的预期特征对应的车厢内位置区域确定为所述车厢定位装置当前所在的车厢内位置区域。所述预期特征指预期的卫星信号的空间分布特征。也就是说,某一车厢内位置区域对应的预期特征也即该车厢内位置区域预期的卫星信号的空间分布特征。
本实施例中,设定的车厢内位置区域可以分为驾驶区域和非驾驶区域两类。对于非驾驶区域可以再细分。例如,小轿车的非驾驶区域可以再分为前右(前排右侧)、后左(后排左侧)、后中(后排中部)、后右(后排右侧)等几个位置区域,也可以简单划分为前排非驾驶区域和后排非驾驶区域。对于大客车,则可以将驾驶座之外的每一排或几排座位划分为一个区域。车厢内位置区域主要根据定位的需要来确定,不局限于某种固定方式。
本实施例中,将确定的所述空间分布特征与设定的车厢内位置区域对应的预期特征进行匹配(也即对两个空间分布特征进行匹配)时,可以计算两者的信号噪声比等级或信号强度等级在空间分布的相似度,然后将计算得到的相似度与设定的相似度阈值相比,如果大于阈值则认为匹配。举例来说,对于同一个空间区域来说,如果两个空间分布特征在该空间区域的信噪比等级相同则认为相似度为1,如果信噪比等级差一个等级则认为相似度为0.5,其他情况下相似度为0。然后将所有空间区域的相似度累加,累加时对不同的空间区域可以赋予不同的权重,累加得到空间分布相似度后再与设定的阈值比较以确定两个空间分布特征是否匹配。
当设定的车厢内位置区域有一个时,将确定的所述空间分布特征与该车厢内位置区域对应的预期特征匹配后,即可得到匹配结果。当设定的车厢内位置区域有多个时,可以将确定的所述空间分布特征与多个车厢内位置区域对应的预期特征逐一匹配。如果没有匹配到任何预期特征,则匹配失败,不输出定位结果。在匹配时,可以将先匹配到的 预期特征直接作为匹配到的预期特征,也可以对所有预期特征进行匹配,如果有多个预期特征匹配成功,可以认为匹配失败,或将其中的相似度最高的预期特征作为匹配到的预期特征。
在另一个实施例中,空间分布特征直接用信噪比的值表示。匹配时,如果一个空间分布特征中卫星信号信噪比的统计值(如均值)最大和最小的空间区域与另一个空间分布特征中卫星信号信噪比的统计值最大和最小的空间区域相同,即认为两者匹配。这种匹配方式中采用信噪比等级来计算均值也是可以的。在又一实施例中,进行空间分布特征的匹配时,如果4个空间区域中有3个以上的空间区域的信号噪声比相同,即认为两个空间分布特征匹配。用于匹配的算法有很多,这里不再一一说明。本领域技术人员可以对不同的匹配算法进行验证,选择其中最为准确的一种算法使用。
本实施例中,所述车厢定位装置周期性地确定当前所在的车厢内位置区域,并在本地记录确定的所述车厢内位置区域和/或将确定的所述车厢内位置区域上报到网络侧。车厢定位装置如手机所在的车厢内位置区域可以推定为携带该手机的人员所在的车厢内位置区域,因而该信息可以反映用户是否在驾驶车辆,可以为个性化位置服务、交通监管等提供有用的信息,例如可以用于在事故调查中还原用户行为,确定用户是否驾驶车辆。
本实施例还提供了一种车厢定位装置,如图3所示,包括:
运算单元10,设置为:确定当前位置卫星信号的空间分布特征;
匹配单元20,设置为:将所述运算单元确定的所述空间分布特征与设定的车厢内位置区域对应的预期特征进行匹配,所述预期特征指预期的卫星信号的空间分布特征;
定位单元30,设置为:将所述匹配单元匹配到的预期特征对应的车厢内位置区域确定为所述车厢定位装置当前所在的车厢内位置区域。
本实施例中,所述卫星信号的空间分布特征包括星空图中的一个或多个空间区域上卫星信号的信号噪声信息和/或信号强度信息。
本实施例中,所述信号噪声信息用信号噪声比的值或信号噪声比等级或信号噪声比区间表示;所述信号强度信息用信号强度的值或信号强度等级或信号强度区间表示。
本实施例中,所述运算单元确定当前位置卫星信号的空间分布特征,包括:根据获取的实时星历数据和接收到的卫星信号,确定当前位置卫星信号的空间分布特征,其中:
对于实时星历中存在的卫星,如果未接收到相应的卫星信号,则将所述未接收到的 卫星信号的信号噪声比或信号强度的值置为0;或者
对于实时星历中存在的卫星,如果未接收到相应的卫星信号,再结合当前位置的城市3D模型确定所述未接收到的卫星信号是否被建筑物遮挡,在确定当前位置卫星信号的空间分布特征时,忽略所述未接收到的卫星信号中被建筑物遮挡的卫星信号,而将所述未接收到的卫星信号中没有被建筑物遮挡的卫星信号的信号噪声比或信号强度的值置为0。
本实施例中,所述设定的车厢内位置区域包括驾驶区域和非驾驶区域两类;所述车厢定位装置周期性地确定当前所在的车厢内位置区域,并在本地记录确定的所述车厢内位置区域和/或将确定的所述车厢内位置区域上报到网络侧。
本实施例还提供了一种终端,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现以下步骤:
确定当前位置卫星信号的空间分布特征;
将确定的所述空间分布特征与设定的车厢内位置区域对应的预期特征进行匹配,所述预期特征指预期的卫星信号的空间分布特征;
将匹配到的预期特征对应的车厢内位置区域确定为所述终端当前所在的车厢内位置区域。
本实施例中,所述计算机程序可以是位置服务的应用程序(如高德、百度等),在其中增加车厢内的定位功能。也可以是任意新的或旧的应用程序,该应用程序启动后可以在后台运行进行定位。
本实施例中,所述卫星信号的空间分布特征包括星空图中的一个或多个空间区域上卫星信号的信号噪声信息和/或信号强度信息。
本实施例中,所述处理器确定当前位置卫星信号的空间分布特征,包括:根据获取的实时星历数据和接收到的卫星信号,确定当前位置卫星信号的空间分布特征,其中:
对于实时星历中存在的卫星,如果未接收到相应的卫星信号,则将所述未接收到的卫星信号的信号噪声比或信号强度的值置为0;或者
对于实时星历中存在的卫星,如果未接收到相应的卫星信号,再结合当前位置的城市3D模型确定所述未接收到的卫星信号是否被建筑物遮挡,在确定当前位置卫星信号的空间分布特征时,忽略所述未接收到的卫星信号中被建筑物遮挡的卫星信号,而将所述未接收到的卫星信号中没有被建筑物遮挡的卫星信号的信号噪声比或信号强度的值 置为0。
所述处理器可以执行本实施例方法中的任一处理,这里不再赘述。
本实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现以下步骤:
确定当前位置卫星信号的空间分布特征;
将确定的所述空间分布特征与设定的车厢内位置区域对应的预期特征进行匹配,所述预期特征指预期的卫星信号的空间分布特征;
将匹配到的预期特征对应的车厢内位置区域确定为包含所述处理器的终端当前所在的车厢内位置区域。
所述计算机程序被处理器执行时还可以实现本实施例方法的任一处理,这里不再赘述。
本实施例车厢内位置区域的确定方法,可以基于现有终端来实现,因而能够在不依赖于其他辅助设备的情况下,对车内人员所在的位置区域进行预测和识别。定位结果可以用于更高精度的定位服务。例如在车道级的行车导航场景下,采用了该方案可以输出当前乘客相对于道路的位置,提升了定位效果与用户体验。同时,该方案也为道路上其他很多基于位置的应用、交通监管等提供了便利。
实施例二
本实施例提供一个基于实施例一车厢内位置区域的确定方法进行定位的一个示例。
本实施例涉及小轿车车厢内位置区域的确定,使用手机来实现。基于GNSS信号传播原理和汽车车厢的结构,对于不同位置的乘客,手机所观测到的卫星信号会表现出一定的空间分布特征,因而可以通过特征匹配的方式来确定手机所在车厢内的位置区域。
手机GPS芯片具备输出标准NMEA数据信息。标准NMEA数据中,"GGA",它包含了定位时间,纬度,经度,高度,定位所用的卫星数,DOP值,差分状态和校正时段等,”GSV”,包含了可见卫星的信息,包括PRN码,仰角,方位角和信号噪声比。同时,通过AGPS或其他方式可以获取当前地点的实时星历数据。通过解析NMEA数据获得当前可见卫星数据,可以得到当前时间、地点该手机的NMEA星空图(并不需要实际绘制)。而对实时星历数据进行解析,可以获得当前无遮挡情况下的实时星空图,结合两个星空 图中的相关信息,可以确定当前位置卫星信号的空间分布特征。
如图4所示,该小轿车设定的车厢内位置区域有5个,分别是前左,前右,后左,后中,后右。该位置信息,其中,前左对于国内车辆来说,是驾驶员所在的位置区域。本实施例方法要输出的就是手机所在的位置区域。
对于选择的空间区域,定义如下:左上区域,即为星空图的左上象限部分;右上区域,即为星空图的右上象限部分;左下区域,即为星空图的左下象限部分;右下区域,即为星空图的右下象限部分。此外,对于这4个区域中的中高仰角区域(星空图仰角在约22.5°~67.5°的区域)也作为独立的区域参与匹配。本实施例空间区域的划分可以参照图2,各空间区域预期的信噪比等级以以下的文字记载为准。
假定汽车行驶在室外、此时GNSS卫星观察情况良好(可用性高且多径效应影响少)。根据汽车的行驶路线和地图可以知道该条件是否满足,因而在使用定位结果时,可以过滤出满足该条件时的定位结果使用。
本示例中,各个车厢内位置区域预期的卫星信号的空间分布特征如下:
前左位置:右下区域信噪比较低,左下区域中高仰角区域的信噪比较高,左上区域中高仰角区域的信噪比较高(但其中间方位区域的信噪比较低),右上区域中高仰角区域的信噪比较高(但其下侧方位区域的信噪比较低)。
前右位置:左下区域信噪比较低,右下区域中高仰角区域的信噪比较高,右上区域中高仰角区域的信噪比较高(但其中间方位区域的信噪比较低),左上区域中高仰角区域的信噪比较高(但其下侧方位区域的信噪比较低)。
后左位置:右上区域中高仰角区域信噪比较低,左上区域中高仰角区域的信噪比较高,左下区域中高区域的信噪比较高(但其中间方位区域的信噪比较低),右下区域中高区域的信噪比较低。
后中位置:右下区域中高仰角区域的信噪比较高,左下区域中高仰角区域的信噪比较高,左上中高区域的信噪比较低,右上中高区域的信噪比较低。
后右位置:左上区域中高仰角区域的信噪比较低,右上区域中高仰角区域的信噪比较高,右下区域中高区域的信噪比较高(但其中间方位区域的信噪比较低),左下区域中高区域的信噪比较低。
需要说明的是,不同的轿车结构是不同的,上述预期特征只是一个示例,并不适用于所有的车型。
根据实施例一的方法,手机根据实时星历数据和接收到的卫星信号,确定当前位置 卫星信号的空间分布特征之后,就可以与上述5个位置的预期特征逐一匹配,如果有一个预期特征匹配成功,则将匹配到的该预期特征对应的车厢内位置区域输出为定位结果,也就是此次确定的手机所在的车厢内位置区域。
在实际检测中,手机定位芯片在借助AGPS的情况下,首次定位时间可以达到1秒,这也是定位算法首次启动的时间。手机观测历元的更新频率在1秒,所以算法的更新频率也可以达到1秒。通过对算法准确性的测算,在观测条件较好的情况下,位置判断准确率可以达到90%以上。随着手机定位芯片对多模卫星(GPS,GLONASS,BD,GALILO)的支持,将会有更多的卫星数据作为算法的判断依据,位置判断准确率将会达到更高。而通过结合车辆当前位置所在的城市3D模型数据,可以推导卫星被建筑物遮挡的情况,从而优化算法表现,在观测条件不够好的情况下提升算法的可用性,结合方式的示例可以见实施例一的说明。
实施例三
对于位置服务,在车厢内不同位置的用户有着个性化的需求。例如,对于驾驶员使用的导航软件和普通乘客使用的导航软件,用户的体验需求是不一样的。由于司机需要更专注于驾驶,因而对导航软件的交互可以尽可能较少,通过最大化导航界面,杜绝不重要的消息提示等来提高驾驶的安全性和友好性,而对于普通乘客,在提供导航的同时,如能提供更多的资讯服务和交互体验,则会整个出行充满乐趣。
本实施例提供了一种提供位置服务的方法,可以根据终端当前所在的车厢内位置区域的不同而提供个性化的位置服务。
本实施例方法如图5所示,包括:
步骤210,确定终端当前所在的车厢内位置区域;
本实施例中,可以采用实施例一的方法确定终端当前所在的车厢内位置区域,即:
确定当前位置卫星信号的空间分布特征;
将确定的所述空间分布特征与设定的车厢内位置区域对应的预期特征进行匹配,所述预期特征指预期的卫星信号的空间分布特征;
将匹配到的预期特征对应的车厢内位置区域确定为所述终端当前所在的车厢内位置区域。
其中,所述卫星信号的空间分布特征可以包括星空图中的一个或多个空间区域上卫 星信号的信号噪声信息和/或信号强度信息。对于该定位方法的其他内容可以见实施例一的方法
在其他实施例中,采用其他的方法确定终端当前所在的车厢内位置区域,例如上文提到过的手工输入方式,或者通过汽车座椅传感器及汽车与手机的互联来实现对用户位置感知的方式,或者通过常用室内定位手段来实现定位的方式等等。
本实施例中,由终端上提供位置服务的应用来确定终端当前所在的车厢内位置区域,但在其他实施例中,也可以由终端上其他的应用(可以与其他辅助设备配合)确定终端当前所在的车厢内位置区域,再根据提供位置服务的应用的请求,将确定的车厢内位置区域发送给提供位置服务的应用,也可以主动发送给提供位置服务的应用。
步骤220,根据配置的车厢内位置区域与位置服务模式的对应关系,采用确定的所述车厢内位置区域对应的位置服务模式提供位置服务。
本实施例中,所述车厢内位置区域包括驾驶区域和非驾驶区域;所述驾驶区域对应的位置服务模式不同于非驾驶区域对应的位置服务模式。
本实施例还提供了一种提供位置服务的装置,该装置可以是用户终端如手机等,如图6所示,该装置包括:
车厢定位模块50,设置为:确定所述终端当前所在的车厢内位置区域;
位置服务模块60,设置为:根据配置的车厢内位置区域与位置服务模式的对应关系,采用所述车厢定位模块确定的所述车厢内位置区域对应的位置服务模式提供位置服务;
存储器70,设置为:存储所述车厢内位置区域与位置服务模式的对应关系的信息。
本实施例中车厢定位模块采用实施例一的定位方法(但不局限于此),包括:
运算单元,设置为:确定当前位置卫星信号的空间分布特征;
匹配单元,设置为:将所述运算单元确定的所述空间分布特征与设定的车厢内位置区域对应的预期特征进行匹配,所述预期特征指预期的卫星信号的空间分布特征;
定位单元,设置为:将所述匹配单元匹配到的预期特征对应的车厢内位置区域确定为所述终端当前所在的车厢内位置区域;
其中,所述卫星信号的空间分布特征包括星空图中的一个或多个空间区域上卫星信号的信号噪声信息和/或信号强度信息。
本实施例中,该车厢定位模块可以是终端上提供位置服务的应用中的模块,即该应用即有车厢定位模块又有位置服务模块。在其他实施例中,该车厢定位模块是其他应用 中的模块,该模块将确定的车厢内位置区域发送给提供位置服务的应用中的位置服务模块。
本实施例中,所述存储器存储车厢内位置区域与位置服务模式的对应关系的信息,其中,所述车厢内位置区域包括驾驶区域和非驾驶区域;所述驾驶区域对应的位置服务模式不同于非驾驶区域对应的位置服务模式。
终端中的导航本实施例车厢定位模块的其他功能见实施例一中车厢定位装置的内容。
本实施例还提供了一种终端,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
确定终端当前所在的车厢内位置区域;
根据配置的车厢内位置区域与位置服务模式的对应关系,采用确定的所述车厢内位置区域对应的位置服务模式提供位置服务。
本实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
确定终端当前所在的车厢内位置区域;
根据配置的车厢内位置区域与位置服务模式的对应关系,采用确定的所述车厢内位置区域对应的位置服务模式提供位置服务。
本实施例中,所述计算机程序被处理器执行时确定所述终端当前所在的车厢内位置区域,包括:
确定当前位置卫星信号的空间分布特征;
将确定的所述空间分布特征与设定的车厢内位置区域对应的预期特征进行匹配,所述预期特征指预期的卫星信号的空间分布特征;
将匹配到的预期特征对应的车厢内位置区域确定为所述终端当前所在的车厢内位置区域。
其中,所述卫星信号的空间分布特征包括星空图中的一个或多个空间区域上卫星信号的信号噪声信息和/或信号强度信息。
本实施例所述计算机程序被处理器执行时可以采用实施例一的定位方法的任何处理,这里不再赘述。
实施例四
前述实施例是用于车厢内部空间的定位,容易理解的是,除了车厢内部空间之外,还有一些物体内部空间也是可以使用上述定位方法的。例如,飞机内部空间的定位、一些房间等等。此处的物体内部空间是指可以接收到卫星信号的物体内部空间,其外壳有的部分对卫星信号屏蔽作用较强,有的部分屏蔽较弱。基于与车厢内同样的原因,这种物体内部空间的不同区域上,卫星信号的空间分布特征是不同的,因此也可以采用与前述实施例的位置区域确定的方法,只是应用的场景不再限于车厢内,
本实施例提供一种物体内部空间的定位方法,包括:
定位装置确定当前位置卫星信号的空间分布特征;
所述定位装置将确定的所述空间分布特征与设定的位置区域对应的预期特征进行匹配,所述预期特征指预期的卫星信号的空间分布特征;
所述定位装置将匹配到的预期特征对应的位置区域确定为所述定位装置当前所在的车厢内位置区域。
前述实施例的车厢内位置区域的确定方法中的其他特征,也可以用于本实施例的定位方法,这里不再一一赘述。
本实施例是以车厢内位置区域在位置服务中的应用为例,在实施例一还提到了相应的定位结果可以用于交通监管如确定事故时用户是否处于驾驶位置。除此之外,该定位结果还有着其他应用,例如,在商业营销、金融、保险等业务场景,终端用户在车厢内位置区域的数据反映了用户的用车行为,可以作为用户画像的一个基础重要的数据,为很大一部分营销、建模场景提供了数据来源。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存 储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (19)

  1. 一种车厢内位置区域的确定方法,包括:
    车厢定位装置确定当前位置卫星信号的空间分布特征;
    所述车厢定位装置将确定的所述空间分布特征与设定的车厢内位置区域对应的预期特征进行匹配,所述预期特征指预期的卫星信号的空间分布特征;
    所述车厢定位装置将匹配到的预期特征对应的车厢内位置区域确定为所述车厢定位装置当前所在的车厢内位置区域。
  2. 如权利要求1所述的方法,其特征在于:
    所述卫星信号的空间分布特征包括星空图中的一个或多个空间区域上卫星信号的信号噪声信息和/或信号强度信息。
  3. 如权利要求2所述的方法,其特征在于:
    所述信号噪声信息用信号噪声比的值或信号噪声比等级或信号噪声比区间表示;所述信号强度信息用信号强度的值或信号强度等级或信号强度区间表示。
  4. 如权利要求2所述的方法,其特征在于:
    所述车厢定位装置确定当前位置卫星信号的空间分布特征,包括:根据获取的实时星历数据和接收到的卫星信号,确定当前位置卫星信号的空间分布特征,其中:
    对于实时星历中存在的卫星,如果未接收到相应的卫星信号,则将所述未接收到的卫星信号的信号噪声比或信号强度的值置为0;或者
    对于实时星历中存在的卫星,如果未接收到相应的卫星信号,再结合当前位置的城市3D模型确定所述未接收到的卫星信号是否被建筑物遮挡,在确定当前位置卫星信号的空间分布特征时,忽略所述未接收到的卫星信号中被建筑物遮挡的卫星信号,而将所述未接收到的卫星信号中没有被建筑物遮挡的卫星信号的信号噪声比或信号强度的值置为0。
  5. 如权利要求1-4任一所述的方法,其特征在于:
    所述设定的车厢内位置区域包括驾驶区域和非驾驶区域两类;
    所述方法还包括:所述车厢定位装置周期性地确定当前所在的车厢内位置区域,并在本地记录确定的所述车厢内位置区域和/或将确定的所述车厢内位置区域上报到网络侧。
  6. 一种车厢定位装置,其特征在于,包括:
    运算单元,设置为:确定当前位置卫星信号的空间分布特征;
    匹配单元,设置为:将所述运算单元确定的所述空间分布特征与设定的车厢内位置区域对应的预期特征进行匹配,所述预期特征指预期的卫星信号的空间分布特征;
    定位单元,设置为:将所述匹配单元匹配到的预期特征对应的车厢内位置区域确定为所述车厢定位装置当前所在的车厢内位置区域。
  7. 如权利要求6所述的装置,其特征在于:
    所述卫星信号的空间分布特征包括星空图中的一个或多个空间区域上卫星信号的信号噪声信息和/或信号强度信息。
  8. 一种终端,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现以下步骤:
    确定当前位置卫星信号的空间分布特征;
    将确定的所述空间分布特征与设定的车厢内位置区域对应的预期特征进行匹配,所述预期特征指预期的卫星信号的空间分布特征;
    将匹配到的预期特征对应的车厢内位置区域确定为所述终端当前所在的车厢内位置区域。
  9. 如权利要求8所述的终端,其特征在于:
    所述卫星信号的空间分布特征包括星空图中的一个或多个空间区域上卫星信号的信号噪声信息和/或信号强度信息。
  10. 如权利要求8所述的终端,其特征在于:
    所述处理器确定当前位置卫星信号的空间分布特征,包括:根据获取的实时星历数据和接收到的卫星信号,确定当前位置卫星信号的空间分布特征,其中:
    对于实时星历中存在的卫星,如果未接收到相应的卫星信号,则将所述未接收到的卫星信号的信号噪声比或信号强度的值置为0;或者
    对于实时星历中存在的卫星,如果未接收到相应的卫星信号,再结合当前位置的城市3D模型确定所述未接收到的卫星信号是否被建筑物遮挡,在确定当前位置卫星信号的空间分布特征时,忽略所述未接收到的卫星信号中被建筑物遮挡的卫星信号,而将所述未接收到的卫星信号中没有被建筑物遮挡的卫星信号的信号噪声比或信号强度的值置为0。
  11. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现以下步骤:
    确定当前位置卫星信号的空间分布特征;
    将确定的所述空间分布特征与设定的车厢内位置区域对应的预期特征进行匹配,所述预期特征指预期的卫星信号的空间分布特征;
    将匹配到的预期特征对应的车厢内位置区域确定为包含所述处理器的终端当前所在的车厢内位置区域。
  12. 一种提供位置服务的方法,包括:
    确定终端当前所在的车厢内位置区域;
    根据配置的车厢内位置区域与位置服务模式的对应关系,采用确定的所述车厢内位置区域对应的位置服务模式提供位置服务。
  13. 如权利要求12所述的方法,其特征在于:
    确定所述终端当前所在的车厢内位置区域,包括:
    确定当前位置卫星信号的空间分布特征;
    将确定的所述空间分布特征与设定的车厢内位置区域对应的预期特征进行匹配,所述预期特征指预期的卫星信号的空间分布特征;
    将匹配到的预期特征对应的车厢内位置区域确定为所述终端当前所在的车厢内位置区域。
  14. 如权利要求13所述的方法,其特征在于:
    所述卫星信号的空间分布特征包括星空图中的一个或多个空间区域上卫星信号的信号噪声信息和/或信号强度信息。
  15. 如权利要求12或13或14所述的方法,其特征在于:
    所述车厢内位置区域包括驾驶区域和非驾驶区域;所述驾驶区域对应的位置服务模式不同于非驾驶区域对应的位置服务模式。
  16. 一种提供位置服务的装置,其特征在于,包括:
    车厢定位模块,设置为:确定终端当前所在的车厢内位置区域;
    位置服务模块,设置为:根据配置的车厢内位置区域与位置服务模式的对应关系,采用所述车厢定位模块确定的所述车厢内位置区域对应的位置服务模式提供位置服务;
    存储器,设置为:存储所述车厢内位置区域与位置服务模式的对应关系的信息。
  17. 如权利要求16所述的装置,其特征在于:
    所述车厢定位模块包括:
    运算单元,设置为:确定当前位置卫星信号的空间分布特征;
    匹配单元,设置为:将所述运算单元确定的所述空间分布特征与设定的车厢内位置 区域对应的预期特征进行匹配,所述预期特征指预期的卫星信号的空间分布特征;
    定位单元,设置为:将所述匹配单元匹配到的预期特征对应的车厢内位置区域确定为所述终端当前所在的车厢内位置区域;
    其中,所述卫星信号的空间分布特征包括星空图中的一个或多个空间区域上卫星信号的信号噪声信息和/或信号强度信息。
  18. 如权利要求16或17所述的装置,其特征在于:
    所述存储器存储车厢内位置区域与位置服务模式的对应关系的信息,其中,所述车厢内位置区域包括驾驶区域和非驾驶区域;所述驾驶区域对应的位置服务模式不同于非驾驶区域对应的位置服务模式。
  19. 一种物体内部空间的定位方法,包括:
    定位装置确定当前位置卫星信号的空间分布特征;
    所述定位装置将确定的所述空间分布特征与物体内部空间设定的位置区域对应的预期特征进行匹配,所述预期特征指预期的卫星信号的空间分布特征;
    所述定位装置将匹配到的预期特征对应的位置区域确定为所述定位装置当前所在的车厢内位置区域。
PCT/CN2018/097181 2017-08-04 2018-07-26 车厢内位置区域确定及提供位置服务的方法、装置及终端 WO2019024752A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710661197.7A CN109547914B (zh) 2017-08-04 2017-08-04 车厢内位置区域确定及提供位置服务的方法、装置及终端
CN201710661197.7 2017-08-04

Publications (1)

Publication Number Publication Date
WO2019024752A1 true WO2019024752A1 (zh) 2019-02-07

Family

ID=65233408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097181 WO2019024752A1 (zh) 2017-08-04 2018-07-26 车厢内位置区域确定及提供位置服务的方法、装置及终端

Country Status (2)

Country Link
CN (1) CN109547914B (zh)
WO (1) WO2019024752A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114079852A (zh) * 2020-08-10 2022-02-22 大唐高鸿智联科技(重庆)有限公司 一种车辆位置空间的确定方法、装置及车联网设备
CN114764981A (zh) * 2021-01-14 2022-07-19 上海汽车集团股份有限公司 一种泊车意图识别方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140129051A1 (en) * 2012-11-02 2014-05-08 GM Global Technology Operations LLC Device location determination by a vehicle
CN105611500A (zh) * 2015-12-07 2016-05-25 苏州触达信息技术有限公司 一种预定空间内的定位系统和方法
CN106162558A (zh) * 2015-05-15 2016-11-23 福特全球技术公司 确定车辆乘员位置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104507755B (zh) * 2012-04-30 2018-01-16 福特全球技术公司 用于检测车辆中的个人通信装置的设备和方法
US9537989B2 (en) * 2014-03-04 2017-01-03 Qualcomm Incorporated Managing features associated with a user equipment based on a location of the user equipment within a vehicle
KR101637670B1 (ko) * 2014-08-25 2016-07-07 현대자동차주식회사 차량 탑승자 및 탑승 위치 인식 시스템
CN104391313B (zh) * 2014-08-29 2017-05-03 北京中电华远科技有限公司 一种移动终端室外定位装置和移动终端
CN104820226A (zh) * 2015-04-29 2015-08-05 重庆长安汽车股份有限公司 一种用于汽车导航系统导航信号强度的测试方法
CN106804028A (zh) * 2016-12-29 2017-06-06 上海蔚来汽车有限公司 基于ibeacon的车内定位装置、方法和车内设备控制系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140129051A1 (en) * 2012-11-02 2014-05-08 GM Global Technology Operations LLC Device location determination by a vehicle
CN106162558A (zh) * 2015-05-15 2016-11-23 福特全球技术公司 确定车辆乘员位置
CN105611500A (zh) * 2015-12-07 2016-05-25 苏州触达信息技术有限公司 一种预定空间内的定位系统和方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114079852A (zh) * 2020-08-10 2022-02-22 大唐高鸿智联科技(重庆)有限公司 一种车辆位置空间的确定方法、装置及车联网设备
CN114079852B (zh) * 2020-08-10 2023-05-16 中信科智联科技有限公司 一种车辆位置空间的确定方法、装置及车联网设备
CN114764981A (zh) * 2021-01-14 2022-07-19 上海汽车集团股份有限公司 一种泊车意图识别方法及装置
CN114764981B (zh) * 2021-01-14 2023-12-22 上海汽车集团股份有限公司 一种泊车意图识别方法及装置

Also Published As

Publication number Publication date
CN109547914B (zh) 2021-11-30
CN109547914A (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
US20220390236A1 (en) Determination of position, velocity, and/or heading by simultaneous use of on-device and on-vehicle information
KR101499366B1 (ko) 과거 및 현재 에포크들로부터의 측정들을 이용한 포지션 결정을 위한 방법, 장치 및 컴퓨터 판독가능 매체
US8761133B2 (en) Use of movement information about a wireless client
US9200902B2 (en) Method of processing global navigation satellite system data
EP3186653B1 (en) Selective crowdsourcing of location-related data
KR100532589B1 (ko) 무선인식/위성측위/관성항법을 결합한 통합 측위 장치 및그 방법
US9366764B2 (en) Vehicular GPS/DR navigation with environmental-adaptive kalman filter gain
US7705775B2 (en) Method of improving a vehicle emergency call network
US11536850B2 (en) GNSS spoofing detection and recovery
US8738035B1 (en) System and method for hybrid positioning using Wi-Fi and GNSS blending
JP2014501912A (ja) ハイブリッド測位システムにおける位置推定の信頼性および正確さを増加するための方法およびシステム
JP2011514521A (ja) 移動局の位置を判定することに役立つための予期されたユーザ高度基準の効率的な使用
JP6743777B2 (ja) 測位装置
US20120239291A1 (en) Mobile history based adaptive positioning mechanism
EP3185042A1 (en) Method and apparatus for enabling the use of global navigation satellite system (gnss) signals indoors
US20220357464A1 (en) Determining position information of mobile devices
WO2019024752A1 (zh) 车厢内位置区域确定及提供位置服务的方法、装置及终端
US9784841B2 (en) Method of determining the own-vehicle position of a motor vehicle
US11412363B2 (en) Context-adaptive RSSI-based misbehavior detection
KR20120081304A (ko) 적응형 복합 측위 시스템 및 그 방법
CN113905438B (zh) 场景标识生成方法、定位方法、装置及电子设备
US20220159429A1 (en) Adaptive rssi adjustment
CN113419266B (zh) 定位方法及装置、电子设备、计算机可读存储介质
WO2022198166A1 (en) Adaptive rssi adjustment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18841750

Country of ref document: EP

Kind code of ref document: A1