WO2019024701A1 - 球形氢氧化镍生产工艺过程废水的处理方法 - Google Patents

球形氢氧化镍生产工艺过程废水的处理方法 Download PDF

Info

Publication number
WO2019024701A1
WO2019024701A1 PCT/CN2018/096615 CN2018096615W WO2019024701A1 WO 2019024701 A1 WO2019024701 A1 WO 2019024701A1 CN 2018096615 W CN2018096615 W CN 2018096615W WO 2019024701 A1 WO2019024701 A1 WO 2019024701A1
Authority
WO
WIPO (PCT)
Prior art keywords
filtration system
nickel hydroxide
spherical nickel
stage
production process
Prior art date
Application number
PCT/CN2018/096615
Other languages
English (en)
French (fr)
Inventor
郭定江
何志
何劲松
刘超
蔡湘亭
Original Assignee
四川思达能环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川思达能环保科技有限公司 filed Critical 四川思达能环保科技有限公司
Priority to US16/635,279 priority Critical patent/US11078100B2/en
Priority to JP2020506259A priority patent/JP7173612B2/ja
Publication of WO2019024701A1 publication Critical patent/WO2019024701A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/028Flow sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D36/00Filter circuits or combinations of filters with other separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/58Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2649Filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2653Degassing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions

Definitions

  • the invention relates to the technical field of industrial wastewater treatment, in particular to a method for treating wastewater from a spherical nickel hydroxide production process.
  • Spherical nickel hydroxide is a light green powder, non-toxic and harmless. It has the characteristics of storing electric energy and slowly releasing electric energy. It is a new type of green energy material and is used as a positive electrode material for nickel-hydrogen batteries. Due to its small size and light weight, With high energy density, good safety performance, no pollution, and reasonable price, nickel-hydrogen batteries are widely used in portable electronic products and power tools, which has led to an increasing market demand for spherical nickel hydroxide powder.
  • spherical nickel hydroxide In the preparation process of spherical nickel hydroxide, a large amount of process wastewater is generated during the preparation process, such as extraction, preparation reaction, filtration, elution, etc., and the wastewater contains a large amount of metal ions, and the ammonia ammonia content is high and the pH value is high. Unstable, leading to extremely difficult wastewater treatment, direct emissions will cause great harm to the environment.
  • the currently used methods for treating wastewater from spherical nickel hydroxide process include electrolysis, ion exchange, heating and evaporation, and biological treatment processes. These processes are expensive to process and cannot segment the process wastewater in each production stage. Comprehensive treatment, resulting in poor process wastewater treatment, can not meet the national wastewater treatment standards.
  • the main object of the present invention is to provide a method for treating wastewater from a spherical nickel hydroxide production process, which solves the problems of high wastewater treatment cost and unsatisfactory treatment effect in the prior art spherical nickel hydroxide production process.
  • a method for treating wastewater from a spherical nickel hydroxide production process is provided.
  • the method for treating wastewater from the spherical nickel hydroxide production process is provided.
  • the treatment method of the spherical nickel hydroxide production process wastewater is as follows:
  • the raffinate in the extraction stage of the spherical nickel hydroxide production process is passed to a first-stage membrane concentration filtration system, and the first-stage membrane concentration filtration system concentrates and filters the raffinate to output a first-stage concentrate and a first-stage clear liquid. liquid;
  • the secondary membrane concentration filtration system concentrates and filters the nickel hydroxide mother liquor, and outputs the secondary concentrated solution.
  • secondary serum
  • the spherical nickel hydroxide elution water produced in the elution stage of the spherical nickel hydroxide production process is passed to a tertiary membrane concentration filtration system, and the tertiary membrane concentration filtration system concentrates and filters the spherical nickel hydroxide elution water. After outputting the third-stage concentrate and the third-stage clear liquid;
  • step d Passing the first-stage concentrate in step a to the evaporation system
  • the secondary concentrated liquid output from the secondary membrane concentration filtration system in step b and the tertiary concentrated liquid output from the tertiary membrane concentrated filtration system in step c are all fed to an ammonia recovery system for ammonia recovery;
  • the above method is used to treat the wastewater of the spherical nickel hydroxide production process in stages, and the process wastewater generated in each stage of the spherical nickel hydroxide production process is separately concentrated and filtered, thereby effectively and comprehensively realizing the spherical hydrogen.
  • the nickel oxide production process wastewater is treated,
  • the invention adopts a combined membrane treatment process, systematically and specifically processes the process waste liquid generated in each stage of the preparation process of the spherical nickel hydroxide, and concentrates the waste water raw liquid, thereby greatly reducing the processing amount of the evaporation process and reducing the processing amount of the evaporation process.
  • the energy consumption and environmental protection benefits are obvious, and the membrane processing system has the characteristics of easy control and simple operation.
  • the water quality of the water-producing portion can reach the standard of pure water.
  • the primary clear liquid in the step a, the secondary clear liquid in the step b, and the tertiary clear liquid in the step c are all used as the elution water supply source in the elution stage in the spherical nickel hydroxide production process. This enables water reuse and reduces waste of water resources.
  • the gas outlet of the ammonia recovery system in step e discharges ammonia gas as an ammonia gas supply source for the preparation reaction stage.
  • the primary membrane concentration filtration system, the secondary membrane concentration filtration system, and the tertiary membrane concentration filtration system each include an ultrafiltration membrane filtration system, a nanofiltration membrane filtration system, and a multi-stage reverse osmosis membrane filtration system.
  • the raffinate in step a, the spherical nickel hydroxide mother liquor in step b, and the spherical nickel hydroxide elution water in step c are respectively introduced into the ultrafiltration membrane filtration system in the respective membrane concentration filtration system, and the ultrafiltration membrane is filtered.
  • the filtrate outputted by the system enters the nanofiltration membrane filtration system, and the filtrate output from the nanofiltration membrane filtration system enters the multi-stage reverse osmosis membrane filtration system, and the concentrated liquid output from the multi-stage reverse osmosis membrane filtration system passes through the inlet of the nanofiltration membrane filtration system.
  • the flow to the nanofiltration membrane filtration system continues to be filtered, and finally the multi-stage reverse osmosis membrane filtration system outputs the supernatant, and the nanofiltration membrane filtration system outputs the concentrate. Therefore, the membrane concentration filtration system of each stage is used to filter and concentrate the wastewater generated in each stage of the spherical nickel hydroxide production step by step.
  • the reverse osmosis membrane filtration system is a disc tube type reverse osmosis membrane filtration system.
  • the filter-type reverse osmosis membrane filtration system is more stable than other reverse osmosis membrane filtration systems, especially for the high-salt process wastewater produced during the spherical nickel hydroxide production process. Blockage, the filtration effect is significantly better.
  • the raffinate in step a, the spherical nickel hydroxide mother liquor in step b, and the spherical nickel hydroxide elution water in step c are pretreated before entering the ultrafiltration membrane filtration system, respectively. Thereby, the filtration load of the ultrafiltration membrane filtration system is alleviated, and some large and relatively obvious impurities can be initially filtered out.
  • the pretreatment comprises removing the turbidity, lowering the temperature, and adjusting the pH of the raffinate in step a, the spherical nickel hydroxide mother liquor in step b, and the spherical nickel hydroxide elution water in step c.
  • the pretreatment of the raffinate in step a, the spherical nickel hydroxide mother liquor in step b, and the spherical nickel hydroxide elution water in step c is thus well achieved, thereby reducing the filtration enrichment burden for subsequent processing procedures and Water production and product quality are guaranteed.
  • the ultrafiltration membrane filtration system is a filtration system that filters particles having a molecular weight > 500 and a particle size > 0.005 ⁇ m.
  • the liquid can be better filtered and the filtration effect is optimal.
  • the nanofiltration membrane filtration system is a filtration system that filters a molecular weight of 150 to 500 and a particle diameter of 0.0005 to 0.005 ⁇ m.
  • the liquid can be better filtered and concentrated, and the filtration and concentration effect is optimal.
  • the reverse osmosis membrane filtration system is a filtration system that filters a molecular weight of 50 to 150 and a particle diameter of 0.0001 to 0.001 ⁇ m.
  • the liquid can be filtered and concentrated better.
  • a treatment system for wastewater from a spherical nickel hydroxide production process comprises a first membrane concentration filtration system, a secondary membrane concentration filtration system and a three-stage membrane concentration filtration system, wherein the first membrane concentration filtration system is provided with an extraction liquid wastewater inlet, a first-stage clear liquid outlet, and a first-stage concentrated liquid outlet.
  • the secondary membrane concentration filtration system is provided with a spherical nickel hydroxide mother liquor inlet, a secondary supernatant outlet, and a secondary concentrate outlet.
  • the tertiary membrane concentration filtration system is provided with a spherical nickel hydroxide elution water inlet and a third-stage clearing.
  • a liquid outlet, a tertiary concentrate outlet, the first concentrated liquid outlet is connected with an evaporation system, and the secondary concentrated liquid outlet and the tertiary concentrated liquid outlet are connected to an ammonia recovery system, and the liquid outlet of the ammonia recovery system Connected to the evaporation system.
  • the above method is used to treat the wastewater of the spherical nickel hydroxide production process in stages, and the process wastewater generated in each stage of the spherical nickel hydroxide production process is separately concentrated and filtered, thereby effectively and comprehensively realizing the spherical hydrogen.
  • the nickel oxide production process wastewater is treated.
  • the invention adopts a combined membrane treatment process system, systematically and specifically treats the process waste liquid generated in each stage of the spherical nickel hydroxide preparation process, and concentrates the waste water liquid solution.
  • the earth reduces the processing capacity of the evaporation process, reduces energy consumption, and has obvious environmental benefits.
  • the membrane processing system has the characteristics of easy control, simple operation and uncomplicated structure. According to the treatment method of the present invention, the water quality of the water-producing portion can reach the standard of pure water.
  • first-stage clear liquid outlet, the second-stage clear liquid outlet, and the third-stage clear liquid outlet are all used as a spherical nickel hydroxide eluting water supply port. Therefore, the clear liquid discharged from the first-stage clear liquid outlet, the second-stage clear liquid outlet, and the third-stage clear liquid outlet can be used as the spherical nickel hydroxide eluting water for water supply, thereby saving water resources and reducing the processing cost of the system. .
  • first-stage clear liquid outlet, the second-stage clear liquid outlet, and the third-stage clear liquid outlet are connected and connected as a spherical nickel hydroxide eluting water supply port. This makes the system device structure more compact, reducing the amount of pipe and space.
  • the gas outlet of the ammonia recovery system serves as an ammonia gas supply port.
  • the gas discharged from the gas outlet of the ammonia recovery system can be reused, thereby saving ammonia resources, further reducing the production cost of the spherical nickel hydroxide, and realizing the reuse of the single resource.
  • the primary membrane concentration filtration system, the secondary membrane concentration filtration system, and the tertiary membrane concentration filtration system each include a pretreatment system, an ultrafiltration membrane filtration system, a nanofiltration membrane filtration system, and a reverse osmosis membrane filtration. system. Therefore, the membrane concentration filtration system of each stage is used to filter and concentrate the wastewater generated in each stage of the spherical nickel hydroxide production step by step.
  • the ultrafiltration membrane filtration system is a filtration system for filtering particles having a molecular weight of >50 and a particle diameter of >10 nm
  • the nanofiltration membrane filtration system is a filtration system having a filtration molecular weight of 150 to 500 and a particle diameter of 0.0005 to 0.005 ⁇ m
  • the permeable membrane filtration system is a filtration system that filters a molecular weight of 50 to 150 and a particle diameter of 0.0001 to 0.001 ⁇ m. Under this condition, the ultrafiltration membrane filtration system is optimal for liquid filtration, and the nanofiltration membrane filtration system and the reverse osmosis membrane filtration system have the best filtration and concentration effect on the liquid.
  • the filtration membrane of the ultrafiltration membrane filtration system, the nanofiltration membrane filtration system, and the reverse osmosis membrane filtration system is one of an intermetallic compound filtration membrane, a ceramic filtration membrane, and a high molecular polymer filtration membrane.
  • the filtration membrane described above has better filtration effect and filtration stability than the conventional filtration membrane, and has higher strength, and is particularly suitable for high-salt process wastewater generated in the production process of spherical nickel hydroxide.
  • the pretreatment system includes a primary filtration system, a pH adjustment device, and a temperature reduction device.
  • the pretreatment of the raffinate in step a, the spherical nickel hydroxide mother liquor in step b, and the spherical nickel hydroxide elution water in step c is thus well achieved, thereby reducing the filtration enrichment burden for subsequent processing procedures and Water production and product quality are guaranteed.
  • the reverse osmosis membrane filtration system comprises at least one first-stage reverse osmosis membrane filtration system, and the concentrated liquid outlet of the disc-type reverse osmosis membrane filtration system is in communication with the inlet of the nanofiltration membrane filtration system.
  • ammonia recovery system includes a distillation system or a rectification system. Thereby, the recovery of ammonia can be effectively achieved.
  • the invention adopts a combined membrane treatment process, systematically and specifically processes the process waste liquid generated in each stage of the preparation process of the spherical nickel hydroxide, and concentrates the waste liquid stock solution, thereby greatly reducing the processing amount of the evaporation process.
  • the energy consumption is reduced, the environmental protection benefits are obvious, and the membrane processing system has the characteristics of easy control and simple operation.
  • the water quality of the water-producing portion can reach the standard of pure water.
  • the method for treating wastewater in the process of producing spherical nickel hydroxide in the invention and the system thereof are all applicable to the technical field of spherical nickel hydroxide production process, and are advantageous for producing spherical nickel hydroxide with better product quality, and at the same time saving resources. Reduced production costs.
  • FIG. 1 is a schematic view showing the equipment flow of a treatment system for wastewater in a spherical nickel hydroxide production process according to the present invention.
  • FIG. 2 is a schematic view showing the flow of equipment of the membrane concentration filtration system of the present invention.
  • FIG. 3 is a schematic view showing a process for treating a spherical nickel hydroxide in a spherical nickel hydroxide production process wastewater according to the present invention.
  • One aspect of the invention provides a method for treating wastewater from a spherical nickel hydroxide production process, the steps are as follows:
  • the raffinate in the extraction stage of the spherical nickel hydroxide production process is passed to the first-stage membrane concentration filtration system 1, and the first-stage membrane concentration filtration system 1 concentrates and filters the raffinate to output a first-stage concentrate and a Grade clear liquid;
  • the spherical nickel hydroxide mother liquor produced in the filtration stage of the spherical nickel hydroxide production process is passed to the second membrane concentration filtration system 2, and the secondary membrane concentration filtration system 2 concentrates and filters the nickel hydroxide mother liquor and outputs the second stage. Concentrate and secondary solution;
  • the spherical nickel hydroxide elution water produced in the elution stage of the spherical nickel hydroxide production process is passed to a tertiary membrane concentration filtration system 3, and the tertiary membrane concentration filtration system 3 is a spherical nickel hydroxide elution water. After concentrated filtration, the third-stage concentrate and the third-stage clear liquid are output;
  • step d the first stage of the concentrated liquid in step a is passed to the evaporation system 5;
  • the secondary concentrated liquid output from the secondary membrane concentration filtration system 2 in step b and the tertiary concentrated liquid output from the tertiary membrane concentrated filtration system 3 in step c are all fed to the ammonia recovery system 4 for ammonia recovery;
  • step e The remaining liquid output from the ammonia recovery system 4 in step e is passed to the evaporation system 5.
  • the first-stage clear liquid in the step a, the second-stage clear liquid in the step b, and the third-stage clear liquid in the step c are all used as the elution water supply source in the elution stage in the spherical nickel hydroxide production process.
  • the gas outlet of the ammonia recovery system 4 in step e discharges ammonia gas as an ammonia gas supply source for the preparation reaction stage.
  • the primary membrane concentration filtration system 1, the secondary membrane concentration filtration system 2, and the tertiary membrane concentration filtration system 3 each include an ultrafiltration membrane filtration system 61, a nanofiltration membrane filtration system 62, and a multi-stage reverse osmosis membrane filtration.
  • the system, the raffinate in step a, the spherical nickel hydroxide mother liquid in step b, and the spherical nickel hydroxide eluting water in step c are respectively introduced into the ultrafiltration membrane filtration system 61 in the respective membrane concentration filtration system, super
  • the filtrate outputted by the membrane filtration system 61 enters the nanofiltration membrane filtration system 62, and the filtrate output from the nanofiltration membrane filtration system 62 enters a multi-stage reverse osmosis membrane filtration system, and the concentrated liquid output from the multi-stage reverse osmosis membrane filtration system is filtered through a nanofiltration membrane.
  • the inlet of system 62 is returned to nanofiltration membrane filtration system 62 for continued filtration, and finally the multi-stage reverse osmosis membrane filtration system outputs the supernatant, and nanofiltration membrane filtration system 62 outputs the concentrate.
  • the reverse osmosis membrane filtration system is a disc tube type reverse osmosis membrane filtration system.
  • the raffinate in step a, the spherical nickel hydroxide mother liquor in step b, and the spherical nickel hydroxide elution water in step c are pretreated prior to entering the ultrafiltration membrane filtration system 61, respectively.
  • the pretreatment comprises removing the turbidity, cooling, and adjusting the pH of the raffinate in step a, the spherical nickel hydroxide mother liquor in step b, and the spherical nickel hydroxide elution water in step c.
  • the ultrafiltration membrane filtration system is a filtration system that filters particles having a molecular weight > 500 and a particle size > 0.005 ⁇ m.
  • the nanofiltration membrane filtration system (62) is a filtration system that filters a molecular weight of 150 to 500 and a particle diameter of 0.0005 to 0.005 ⁇ m.
  • the reverse osmosis membrane filtration system is a filtration system that filters a molecular weight of 50 to 150 and a particle diameter of 0.0001 to 0.001 ⁇ m.
  • the invention also provides a treatment system for wastewater of a spherical nickel hydroxide production process, comprising a first membrane concentration filtration system 1, a secondary membrane concentration filtration system 2, a tertiary membrane concentration filtration system 3, the first membrane
  • the concentrated filtration system 1 is provided with a raffinate inlet, a first clear liquid outlet, and a first concentrated liquid outlet.
  • the second membrane concentrated filtration system 2 is provided with a spherical nickel hydroxide mother liquid inlet, a secondary clear liquid outlet, and a second concentrated a liquid outlet
  • the tertiary membrane concentration filtration system 3 is provided with a spherical nickel hydroxide elution water inlet, a tertiary clear liquid outlet, and a tertiary concentrate outlet
  • the first concentrated liquid outlet is connected with an evaporation system 5
  • the secondary dope outlet and the tertiary concentrate outlet are all connected to an ammonia recovery system 4, and the outlet of the ammonia recovery system 4 is connected to the evaporation system 5.
  • the first-stage clear liquid outlet, the second-stage clear liquid outlet, and the third-stage clear liquid outlet are all used as spherical nickel hydroxide eluting water supply ports.
  • the first-stage clear liquid outlet, the second-stage clear liquid outlet, and the third-stage clear liquid outlet are connected and connected as a spherical nickel hydroxide eluting water supply port.
  • the gas outlet of the ammonia recovery system 4 serves as an ammonia gas supply port.
  • the primary membrane concentration filtration system 1, the secondary membrane concentration filtration system 2, and the tertiary membrane concentration filtration system 3 each include a pretreatment system sequentially connected, an ultrafiltration membrane filtration system 61, a nanofiltration membrane filtration system 62, and reverse osmosis. Membrane filtration system.
  • the ultrafiltration membrane filtration system (61) is a filtration system for filtering particles having a molecular weight of >500 and a particle diameter of >0.005 ⁇ m
  • the nanofiltration membrane filtration system (62) has a filtration molecular weight of 150 to 500 and a particle diameter of 0.0005 to 0.005 ⁇ m.
  • the filtration system and the reverse osmosis membrane filtration system are filtration systems having a molecular weight of 50 to 150 and a particle diameter of 0.0001 to 0.001 ⁇ m.
  • the filtration membranes of the ultrafiltration membrane filtration system 61, the nanofiltration membrane filtration system 62, and the reverse osmosis membrane filtration system are one of an intermetallic compound filtration membrane, a ceramic filtration membrane, and a high molecular polymer filtration membrane.
  • the pretreatment system 65 includes a primary filtration system, a pH adjustment device, and a temperature reduction device.
  • the reverse osmosis membrane filtration system includes at least a first-stage disc reverse osmosis membrane filtration system, and a concentrate outlet of the disc-type reverse osmosis membrane filtration system is in communication with a liquid inlet of the nanofiltration membrane filtration system 62.
  • the ammonia recovery system 4 includes a distillation system or a rectification system.
  • the invention adopts a combined membrane treatment process, systematically and specifically processes the process waste liquid generated in each stage of the preparation process of the spherical nickel hydroxide, and comprehensively considers the application value of the water.
  • the wastewater raw liquid is subjected to concentration treatment, which greatly reduces the processing amount of the evaporation process, reduces energy consumption, and has obvious environmental protection benefits, and the membrane processing system has the characteristics of easy control and simple operation.
  • concentration treatment greatly reduces the processing amount of the evaporation process, reduces energy consumption, and has obvious environmental protection benefits
  • the membrane processing system has the characteristics of easy control and simple operation.
  • the treatment method of the present invention the water quality of the water-producing portion can be brought to the standard of pure water.
  • a treatment system for a spherical nickel hydroxide production process wastewater in the embodiment includes a first membrane concentration filtration system 1 , a secondary membrane concentration filtration system 2 , and a tertiary membrane concentration filtration system 3 .
  • the secondary membrane concentration filtration system 2 is provided with a spherical nickel hydroxide mother liquor inlet, a secondary supernatant outlet, and a secondary concentrate outlet.
  • the tertiary membrane concentration filtration system 3 is provided with a spherical nickel hydroxide elution water inlet, and three Level clear liquid outlet, third grade concentrated liquid outlet.
  • the inlet port of the primary membrane concentration filtration system 1 is a raffinate inlet of the raffinate produced in the extraction phase of the spherical nickel hydroxide production process
  • the inlet of the secondary membrane concentration filtration system 2 is spherical hydroxide
  • the inlet port of the three-stage membrane concentration filtration system 3 is a spherical nickel hydroxide elution water inlet port of spherical nickel hydroxide elution water produced during the elution of the spherical nickel hydroxide production process.
  • the first-stage clear liquid outlet, the second-stage clear liquid outlet, and the third-stage clear liquid outlet are connected and connected as a spherical nickel hydroxide eluting water supply port.
  • the first-stage dope outlet is in communication with the evaporation system 5, and the second-stage dope outlet and the third-stage dope outlet are both connected to the ammonia recovery system 4, and the ammonia recovery system 4 includes a distillation system or a rectification system.
  • the gas outlet of the ammonia recovery system 4 discharges ammonia gas
  • the liquid outlet of the ammonia recovery system 4 discharges the remaining liquid after distillation.
  • the first-stage dope outlet is connected with an evaporation system 5, and the secondary concentrated liquid outlet and the tertiary concentrated liquid outlet are connected to an ammonia recovery system 4, and the liquid outlet of the ammonia recovery system 4 is connected to the evaporation system 5.
  • the membrane concentration filtration system includes a pretreatment system 65, an ultrafiltration membrane filtration system 61, a nanofiltration membrane filtration system 62, and a first disc tubular reverse osmosis membrane filtration system. 63.
  • a second-disc tubular reverse osmosis membrane filtration system 64 wherein the concentrate outlet of the first disc-type reverse osmosis membrane filtration system 63 and the concentrate outlet of the second disc-type reverse osmosis membrane filtration system 65 are returned It is in communication with the inlet of the nanofiltration membrane filtration system 62.
  • FIG. 3 is a schematic view showing a process for treating a spherical nickel hydroxide in a spherical nickel hydroxide production process wastewater according to the present invention.
  • the spherical nickel hydroxide production process basically comprises an extraction stage, a preparation stage, centrifugation, precision filtration, elution, and drying, and the nickel-containing waste sequentially passes through the above process steps to finally produce a spherical nickel hydroxide product.
  • the inlet port of the primary membrane concentration filtration system 1 in the treatment system for the wastewater of the spherical nickel hydroxide production process of the present invention is used for introducing the raffinate produced in the extraction stage, and the inlet port of the secondary membrane concentration filtration system 2 is used for The spherical nickel hydroxide mother liquor produced by centrifugation and precision filtration is introduced, and the inlet of the third-stage membrane concentration filtration system 3 is used to introduce the spherical nickel hydroxide elution water generated at the time of elution.
  • the supernatant ports of the primary membrane concentration filtration system 1, the secondary membrane concentration filtration system 2, and the tertiary membrane concentration filtration system 3 are unified as the water supply port at the time of elution.
  • the ultrafiltration membrane filtration system 61 is a filtration system for filtering particles having a molecular weight of >500 and a particle diameter of >0.005 ⁇ m
  • the nanofiltration membrane filtration system 62 is a filtration system having a filtration molecular weight of 150 to 500 and a particle diameter of 0.0005 to 0.005 ⁇ m
  • the permeable membrane filtration system is a filtration system that filters a molecular weight of 50 to 150 and a particle diameter of 0.0001 to 0.001 ⁇ m.
  • the filtration membranes of the ultrafiltration membrane filtration system 61, the nanofiltration membrane filtration system 62, and the reverse osmosis membrane filtration system are one of an intermetallic compound filtration membrane, a ceramic filtration membrane, and a high molecular polymer filtration membrane.
  • the pretreatment system 65 includes a primary filtration system, a pH adjustment device, and a temperature reduction device.
  • the invention realizes the recycling of process wastewater at various stages in the spherical nickel hydroxide production process, and greatly reduces the production cost of the spherical nickel hydroxide and the wastewater treatment cost.
  • the wastewater raw liquid is subjected to concentration treatment, which greatly reduces the processing amount of the evaporation process, reduces energy consumption, and has obvious environmental protection benefits, and the membrane processing system has the characteristics of easy control and simple operation.
  • the water quality of the water-producing portion can reach the standard of pure water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种球形氢氧化镍生产工艺过程废水的处理方法,采用组合的膜处理工艺,系统且有针对性地处理球形氢氧化镍制备过程中各个阶段产生的过程废液,将废水原液进行提浓处理,降低了蒸发工艺的处理量,降低能耗,环保效益明显,同时膜处理系统具有易于控制、操作简单,可以将产水部分水质达到纯水的标准。

Description

球形氢氧化镍生产工艺过程废水的处理方法 技术领域
本发明涉及工业废水处理技术领域,具体而言,涉及一种球形氢氧化镍生产工艺过程废水的处理方法。
背景技术
球形氢氧化镍为淡绿色粉末状,无毒无害,具有储存电能及缓慢释放电能的特性,属于新型的绿色能源材料,被用作镍氢电池的正极材料,由于具有体积小、质量轻、能量密度高、安全性能好、无污染、价格适宜等特点,镍氢电池广泛应用于便携式电子产品和电动工具等设备,带动了球形氢氧化镍粉末的市场需求量的不断增加。
球形氢氧化镍在制备过程中,由于使用了萃取、制备反应、过滤、洗脱等操作工艺,期间会产生大量的过程废水,这些废水中含有大量的金属离子,同时氨氨含量高、pH值不稳定,导致废水处理难度极大,直接排放会对环境造成极大的危害。目前常用的球形氢氧化镍处理工艺段废水的方法包括:电解、离子交换、加热蒸发和生物处理工艺,这些工艺运行处理成本较高,并且无法对各个生产阶段的过程废水进行针对性的分段式综合处理,导致过程废水处理效果差,达不到国家规定的废水处理标准。
发明内容
本发明的主要目的在于提供球形氢氧化镍生产工艺过程废水的处理方法,以解决现有技术中球形氢氧化镍生产工艺过程废水处理成本较高、处理效果不理想的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种球形氢氧化镍生产工艺过程废水的处理方法。该球形氢氧化镍生产工艺过程废水的处理方法。
球形氢氧化镍生产工艺过程废水的处理方法,步骤如下:
a、将球形氢氧化镍生产过程中的萃取阶段的萃余液通入一级膜浓缩过滤系统,所述一级膜浓缩过滤系统将萃余液浓缩过滤后输出一级浓液和一级清液;
b、将球形氢氧化镍生产过程中的过滤阶段产生的球形氢氧化镍母液通入二 级膜浓缩过滤系统,所述二级膜浓缩过滤系统将氢氧化镍母液浓缩过滤后输出二级浓液和二级清液;
c、将球形氢氧化镍生产过程中的洗脱阶段产生的球形氢氧化镍洗脱水通入三级膜浓缩过滤系统,所述三级膜浓缩过滤系统将球形氢氧化镍洗脱水浓缩过滤后输出三级浓液和三级清液;
d、将步骤a中一级浓液通入到蒸发系统;
e、将步骤b中二级膜浓缩过滤系统输出的二级浓液和步骤c中三级膜浓缩过滤系统输出的三级浓液均通入到氨回收系统进行氨回收;
f、将步骤e中氨回收系统输出的余液通入蒸发系统。
采用上述方法对供球形氢氧化镍生产工艺过程废水进行分段式处理,针对球形氢氧化镍生产工艺中各个阶段产生的过程废水分别进行浓缩过滤,由此有效地且全面的实现了对球形氢氧化镍生产工艺过程废水进行处理,
本发明采用组合的膜处理工艺,系统且有针对性地处理球形氢氧化镍制备过程中各个阶段产生的过程废液,将废水原液进行提浓处理,极大地降低了蒸发工艺的处理量,降低能耗,环保效益明显,同时膜处理系统具有易于控制、操作简单的特点。采用本发明的处理方法,可以将产水部分水质达到纯水的标准。
进一步地,将步骤a中的一级清液、步骤b中的二级清液、步骤c中的三级清液均作为球形氢氧化镍生产过程中洗脱阶段的洗脱水供水源。由此能够实现水的回用,减少了水资源的浪费。
进一步地,步骤e中的氨回收系统的出气口排出氨气作为制备反应阶段的氨气供给源。由此实现了生产系统氨的回用,降低了系统生产成本。
进一步地,所述一级膜浓缩过滤系统、二级膜浓缩过滤系统、三级膜浓缩过滤系统均包括依次相连的超滤膜过滤系统、纳滤膜过滤系统、多级反渗透膜过滤系统,步骤a中的萃余液、步骤b中球形氢氧化镍母液、步骤c中的球形氢氧化镍洗脱水均分别在各自的膜浓缩过滤系统中先进入超滤膜过滤系统,超滤膜过滤系统输出的滤液进入纳滤膜过滤系统,纳滤膜过滤系统输出的滤液进入多级反渗透膜过滤系统,多级反渗透膜过滤系统输出的浓液经纳滤膜过滤系统的进液口返流至纳滤膜过滤系统继续过滤,最终多级反渗透膜过滤系统输出清液,纳滤膜过滤系统输出浓液。由此实现了各级膜浓缩过滤系统对球形氢氧化镍各个生产阶 段产生废水分别进行逐级过滤浓缩,
进一步地,所述反渗透膜过滤系统为碟管式反渗透膜过滤系统。碟管式反渗透膜过滤系统相较于其它的反渗透膜过滤系统而言过滤性能更加稳定,尤其是针对球形氢氧化镍生产工艺阶段产生的高盐含量过程废水来说,在过滤时不容易堵塞,过滤效果明显更优。
进一步地,步骤a中的萃余液、步骤b中球形氢氧化镍母液、步骤c中的球形氢氧化镍洗脱水在分别进入超滤膜过滤系统之前均先经过预处理。由此,减轻了超滤膜过滤系统的过滤负担,能够初步过滤掉一些颗粒较大,较为明显的杂质。
进一步地,所述预处理包括对步骤a中的萃余液、步骤b中球形氢氧化镍母液、步骤c中的球形氢氧化镍洗脱水进行去除浊度、降温以及调节pH。由此很好地实现了对步骤a中的萃余液、步骤b中球形氢氧化镍母液、步骤c中的球形氢氧化镍洗脱水的预先处理,为后续处理程序减轻过滤浓缩负担并且使得产水和产品品质得到保证。
进一步地,超滤膜过滤系统为过滤分子量>500且粒径>0.005μm颗粒的过滤系统。
在此条件下,能够更好地对液体进行过滤,过滤效果最佳。
进一步地,纳滤膜过滤系统为过滤分子量150~500且粒径介于0.0005~0.005μm的过滤系统。
在此条件下,能够更好地对液体进行过滤浓缩,过滤浓缩效果最佳。
进一步地,反渗透膜过滤系统为过滤分子量50~150且粒径介于0.0001~0.001μm的过滤系统。
在此条件下,能够更好地对液体进行过滤浓缩
根据本发明的另一个方面,还提供了一种球形氢氧化镍生产工艺过程废水的处理系统。包括一级膜浓缩过滤系统、二级膜浓缩过滤系统、三级膜浓缩过滤系统,所述一级膜浓缩过滤系统设有萃取液废水进口、一级清液出口、一级浓液出口,所述二级膜浓缩过滤系统设有球形氢氧化镍母液进口、二级清液出口、二级浓液出口,所述三级膜浓缩过滤系统设有球形氢氧化镍洗脱水进口、三级清液出口、三级浓液出口,所述一级浓液出口连有蒸发系统,所述二级浓液出口、三 级浓液出口均与氨回收系统相连,所述氨回收系统的出液口与蒸发系统相连。采用上述方法对供球形氢氧化镍生产工艺过程废水进行分段式处理,针对球形氢氧化镍生产工艺中各个阶段产生的过程废水分别进行浓缩过滤,由此有效地且全面的实现了对球形氢氧化镍生产工艺过程废水进行处理,本发明采用组合的膜处理工艺系统,系统且有针对性地处理球形氢氧化镍制备过程中各个阶段产生的过程废液,将废水原液进行提浓处理,极大地降低了蒸发工艺的处理量,降低能耗,环保效益明显,同时膜处理系统具有易于控制、操作简单、结构不复杂的特点。采用本发明的处理方法,可以将产水部分水质达到纯水的标准。
进一步地,所述一级清液出口、二级清液出口、三级清液出口均作为球形氢氧化镍洗脱水供水口。由此能够实现所述一级清液出口、二级清液出口、三级清液出口流出的清液作为球形氢氧化镍洗脱水供水回用,节约了水资源,降低了系统的处理成本。
进一步地,所述一级清液出口、二级清液出口、三级清液出口汇合连通后作为球形氢氧化镍洗脱水供水口。由此使得系统装置结构更加紧凑,减小管道用量以及占用空间。
进一步地,所述氨回收系统的出气口作为氨气供给口。由此使得从氨回收系统出气口排出的气体能够实现回用,由此节约了氨资源,进一步降低了球形氢氧化镍生产成本,实现了单资源的回用。
进一步地,所述一级膜浓缩过滤系统、二级膜浓缩过滤系统、三级膜浓缩过滤系统均包括依次相连的预处理系统,超滤膜过滤系统、纳滤膜过滤系统、反渗透膜过滤系统。由此实现了各级膜浓缩过滤系统对球形氢氧化镍各个生产阶段产生废水分别进行逐级过滤浓缩,
进一步地,所述超滤膜过滤系统为过滤分子量>50且粒径>10nm颗粒的过滤系统、纳滤膜过滤系统为过滤分子量150~500且粒径介于0.0005~0.005μm的过滤系统、反渗透膜过滤系统为过滤分子量50~150且粒径介于0.0001~0.001μm的过滤系统。在此条件下超滤膜过滤系统对液体过滤效果为最佳,纳滤膜过滤系统以及反渗透膜过滤系统对液体的过滤浓缩效果为最佳。
进一步地,所述超滤膜过滤系统、纳滤膜过滤系统、反渗透膜过滤系统的过滤膜为金属间化合物过滤膜、陶瓷过滤膜、高分子聚合物过滤膜中的一种。选 择上述过滤膜相比于普通的过滤膜而言过滤效果以及过滤稳定性更好,使用强度更高,尤其适用于球形氢氧化镍生产过程中产生的高盐含量的过程废水。
进一步地,所述预处理系统包括初级过滤系统、pH调节装置、降温装置。由此很好地实现了对步骤a中的萃余液、步骤b中球形氢氧化镍母液、步骤c中的球形氢氧化镍洗脱水的预先处理,为后续处理程序减轻过滤浓缩负担并且使得产水和产品品质得到保证。
进一步地,所述反渗透膜过滤系统包括至少一级碟管式反渗透膜过滤系统,所述碟管式反渗透膜过滤系统的浓液出口与纳滤膜过滤系统进液口连通。
进一步地,所述氨回收系统包括蒸馏系统或精馏系统。由此能够有效地实现对氨的回收。
可见,本发明采用组合的膜处理工艺,系统且有针对性地处理球形氢氧化镍制备过程中各个阶段产生的过程废液,将废水原液进行提浓处理,极大地降低了蒸发工艺的处理量,降低能耗,环保效益明显,同时膜处理系统具有易于控制、操作简单的特点。采用本发明的处理方法,可以将产水部分水质达到纯水的标准。
本发明中的球形氢氧化镍生产工艺过程废水的处理方法以及其系统均适用于球形氢氧化镍生产工艺技术领域,利于生产出产品品质更好的球形氢氧化镍,与此同时节约了资源,降低了生产成本。
下面结合附图和具体实施方式对本发明做进一步的说明。本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
构成本发明的一部分的附图用来辅助对本发明的理解,附图中所提供的内容及其在本发明中有关的说明可用于解释本发明,但不构成对本发明的不当限定。在附图中:
图1为本发明中一种球形氢氧化镍生产工艺过程废水的处理系统的设备流程示意图。
图2为本发明中膜浓缩过滤系统的设备流程示意图。
图3为本发明中一种球形氢氧化镍生产工艺过程废水的处理系统应用于球形氢氧化镍生产工艺的示意图。
上述附图中的有关标记为:
1:一级膜浓缩过滤系统;
2:二级膜浓缩过滤系统;
3:三级膜浓缩过滤系统;
4:氨回收系统;
5:蒸发系统;
61:超滤膜过滤系统;
62:纳滤膜过滤系统;
63:一级碟管式反渗透膜过滤系统;
64:一级碟管式反渗透膜过滤系统。
具体实施方式
下面结合附图对本发明进行清楚、完整的说明。本领域普通技术人员在基于这些说明的情况下将能够实现本发明。在结合附图对本发明进行说明前,需要特别指出的是:
本发明中在包括下述说明在内的各部分中所提供的技术方案和技术特征,在不冲突的情况下,这些技术方案和技术特征可以相互组合。
此外,下述说明中涉及到的本发明的实施例通常仅是本发明一分部的实施例,而不是全部的实施例。因此,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
关于本发明术语和单位。本发明的说明书和权利要求书及有关的部分中的术语“包括”、“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
本发明一方面提供了一种球形氢氧化镍生产工艺过程废水的处理方法,步骤如下:
a、将球形氢氧化镍生产过程中的萃取阶段的萃余液通入一级膜浓缩过滤系统1,所述一级膜浓缩过滤系统1将萃余液浓缩过滤后输出一级浓液和一级清液;
b、将球形氢氧化镍生产过程中的过滤阶段产生的球形氢氧化镍母液通入二级膜浓缩过滤系统2,所述二级膜浓缩过滤系统2将氢氧化镍母液浓缩过滤后输出二级浓液和二级清液;
c、将球形氢氧化镍生产过程中的洗脱阶段产生的球形氢氧化镍洗脱水通入三级膜浓缩过滤系统3,所述三级膜浓缩过滤系统3将球形氢氧化镍洗脱水浓缩过滤后输出三级浓液和三级清液;
d、将步骤a中一级浓液通入到蒸发系统5;
e、将步骤b中二级膜浓缩过滤系统2输出的二级浓液和步骤c中三级膜浓缩过滤系统3输出的三级浓液均通入到氨回收系统4进行氨回收;
f、将步骤e中氨回收系统4输出的余液通入蒸发系统5。
将步骤a中的一级清液、步骤b中的二级清液、步骤c中的三级清液均作为球形氢氧化镍生产过程中洗脱阶段的洗脱水供水源。
步骤e中的氨回收系统4的出气口排出氨气作为制备反应阶段的氨气供给源。
所述一级膜浓缩过滤系统1、二级膜浓缩过滤系统2、三级膜浓缩过滤系统3均包括依次相连的超滤膜过滤系统61、纳滤膜过滤系统62、多级反渗透膜过滤系统,步骤a中的萃余液、步骤b中球形氢氧化镍母液、步骤c中的球形氢氧化镍洗脱水均分别在各自的膜浓缩过滤系统中先进入超滤膜过滤系统61,超滤膜过滤系统61输出的滤液进入纳滤膜过滤系统62,纳滤膜过滤系统62输出的滤液进入多级反渗透膜过滤系统,多级反渗透膜过滤系统输出的浓液经纳滤膜过滤系统62的进液口返流至纳滤膜过滤系统62继续过滤,最终多级反渗透膜过滤系统输出清液,纳滤膜过滤系统62输出浓液。
所述反渗透膜过滤系统为碟管式反渗透膜过滤系统。
步骤a中的萃余液、步骤b中球形氢氧化镍母液、步骤c中的球形氢氧化镍洗脱水在分别进入超滤膜过滤系统61之前均先经过预处理。
所述预处理包括对步骤a中的萃余液、步骤b中球形氢氧化镍母液、步骤c中的球形氢氧化镍洗脱水进行去除浊度、降温以及调节pH。
超滤膜过滤系统为过滤分子量>500且粒径>0.005μm颗粒的过滤系统。
纳滤膜过滤系统(62)为过滤分子量150~500且粒径介于0.0005~0.005μm的过滤系统。
反渗透膜过滤系统为过滤分子量50~150且粒径介于0.0001~0.001μm的过滤系统。
本发明还提供了一种球形氢氧化镍生产工艺过程废水的处理系统,,包括一级膜浓缩过滤系统1、二级膜浓缩过滤系统2、三级膜浓缩过滤系统3,所述一级膜浓缩过滤系统1设有萃余液进口、一级清液出口、一级浓液出口,所述二级膜浓缩过滤系统2设有球形氢氧化镍母液进口、二级清液出口、二级浓液出口,所述三级膜浓缩过滤系统3设有球形氢氧化镍洗脱水进口、三级清液出口、三级浓液出口,所述一级浓液出口连有蒸发系统5,所述二级浓液出口、三级浓液出口均与氨回收系统4相连,所述氨回收系统4的出液口与蒸发系统5相连。
所述一级清液出口、二级清液出口、三级清液出口均作为球形氢氧化镍洗脱水供水口。
所述一级清液出口、二级清液出口、三级清液出口汇合连通后作为球形氢氧化镍洗脱水供水口。
所述氨回收系统4的出气口作为氨气供给口。
所述一级膜浓缩过滤系统1、二级膜浓缩过滤系统2、三级膜浓缩过滤系统3均包括依次相连的预处理系统,超滤膜过滤系统61、纳滤膜过滤系统62、反渗透膜过滤系统。
所述超滤膜过滤系统(61)为过滤分子量>500且粒径>0.005μm颗粒的过滤系统、纳滤膜过滤系统(62)为过滤分子量150~500且粒径介于0.0005~0.005μm的过滤系统、反渗透膜过滤系统为过滤分子量50~150且粒径介于0.0001~0.001μm的过滤系统。
所述超滤膜过滤系统61、纳滤膜过滤系统62、反渗透膜过滤系统的过滤膜为金属间化合物过滤膜、陶瓷过滤膜、高分子聚合物过滤膜中的一种。
所述预处理系统65包括初级过滤系统、pH调节装置、降温装置。
所述反渗透膜过滤系统包括至少一级碟管式反渗透膜过滤系统,所述碟管式反渗透膜过滤系统的浓液出口与纳滤膜过滤系统62进液口连通。
所述氨回收系统4包括蒸馏系统或精馏系统。
本发明采用组合的膜处理工艺,系统且有针对性地处理球形氢氧化镍制备过程中各个阶段产生的过程废液,并综合考虑出水的应用价值。将废水原液进行提浓处理,极大地降低了蒸发工艺的处理量,降低能耗,环保效益明显,同时膜处理系统具有易于控制、操作简单的特点。采用本发明的处理方法,可以将产水 部分水质达到纯水的标准。
图1为本发明中一种球形氢氧化镍生产工艺过程废水的处理系统的设备流程示意图。如图1所示,本具体实施方式中一种球形氢氧化镍生产工艺过程废水的处理系统包括一级膜浓缩过滤系统1,二级膜浓缩过滤系统2,三级膜浓缩过滤系统3,所述二级膜浓缩过滤系统2设有球形氢氧化镍母液进口、二级清液出口、二级浓液出口,所述三级膜浓缩过滤系统3设有球形氢氧化镍洗脱水进口、三级清液出口、三级浓液出口。所述一级膜浓缩过滤系统1的进液口为球形氢氧化镍生产工艺过程中萃取阶段产生的萃余液的萃余液进口,所述二级膜浓缩过滤系统2的进口为球形氢氧化镍生产工艺过程中离心以及过滤时球形氢氧化镍母液的球形氢氧化镍母液进口。所述三级膜浓缩过滤系统3的进液口为球形氢氧化镍生产工艺过程中洗脱时产生的球形氢氧化镍洗脱水的球形氢氧化镍洗脱水进液口。其中,所述一级清液出口、二级清液出口、三级清液出口汇合连通后作为球形氢氧化镍洗脱水供水口。其中,所述一级浓液出口与蒸发系统5连通,所述二级浓液出口、三级浓液出口均与氨回收系统4连通,所述氨回收系统4包括蒸馏系统或精馏系统,氨回收系统4的出气口排出氨气,氨回收系统4的出液口排出蒸馏之后的余液。所述一级浓液出口连有蒸发系统5,所述二级浓液出口、三级浓液出口均与氨回收系统4相连,所述氨回收系统4的出液口与蒸发系统5相连。
上述一级膜浓缩过滤系统、二级膜浓缩过滤系统、三级膜浓缩过滤系统在组成上相同。图2为本发明中膜浓缩过滤系统的设备流程示意图。如图2所示,本具体实施方式中上述膜浓缩过滤系统均包括依次相连的预处理系统65,超滤膜过滤系统61、纳滤膜过滤系统62、第一碟管式反渗透膜过滤系统63、第二碟管式反渗透膜过滤系统64,其中所述第一碟管式反渗透膜过滤系统63的浓液出口和第二碟管式反渗透膜过滤系统65的浓液出口均返回与纳滤膜过滤系统62的进液口连通。
图3为本发明中一种球形氢氧化镍生产工艺过程废水的处理系统应用于球形氢氧化镍生产工艺的示意图。如图3所示,球形氢氧化镍生产工艺基本包括萃取阶段、制备阶段、离心、精密过滤、洗脱、干燥,含镍废料依次通过上述工艺步骤最终产出球形氢氧化镍产品。本发明球形氢氧化镍生产工艺过程废水的处理 系统中的一级膜浓缩过滤系统1的进液口用于导入萃取阶段产生的萃余液,二级膜浓缩过滤系统2的进液口用于导入离心和精密过滤时产生的球形氢氧化镍母液,三级膜浓缩过滤系统3的进液口用于导入洗脱时产生的球形氢氧化镍洗脱水。一级膜浓缩过滤系统1、二级膜浓缩过滤系统2、三级膜浓缩过滤系统3的清液口统一作为洗脱时的供水口。
所述超滤膜过滤系统61为过滤分子量>500且粒径>0.005μm颗粒的过滤系统、纳滤膜过滤系统62为过滤分子量150~500且粒径介于0.0005~0.005μm的过滤系统、反渗透膜过滤系统为过滤分子量50~150且粒径介于0.0001~0.001μm的过滤系统。
所述超滤膜过滤系统61、纳滤膜过滤系统62、反渗透膜过滤系统的过滤膜为金属间化合物过滤膜、陶瓷过滤膜、高分子聚合物过滤膜中的一种。
所述预处理系统65包括初级过滤系统、pH调节装置、降温装置。
本发明实现了球形氢氧化镍生产工艺中各个阶段的过程废水的回收利用,大大降低了球形氢氧化镍的生产成本和废水处理成本。将废水原液进行提浓处理,极大地降低了蒸发工艺的处理量,降低能耗,环保效益明显,同时膜处理系统具有易于控制、操作简单的特点。采用本发明的处理方法,可以将产水部分水质达到纯水的标准。
以上对本发明的有关内容进行了说明。本领域普通技术人员在基于这些说明的情况下将能够实现本发明。基于本发明的上述内容,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。

Claims (10)

  1. 球形氢氧化镍生产工艺过程废水的处理方法,其特征在于,步骤如下:
    a、将球形氢氧化镍生产过程中的萃取阶段的萃余液通入一级膜浓缩过滤系统(1),所述一级膜浓缩过滤系统(1)将萃余液浓缩过滤后输出一级浓液和一级清液;
    b、将球形氢氧化镍生产过程中的过滤阶段产生的球形氢氧化镍母液通入二级膜浓缩过滤系统(2),所述二级膜浓缩过滤系统(2)将氢氧化镍母液浓缩过滤后输出二级浓液和二级清液;
    c、将球形氢氧化镍生产过程中的洗脱阶段产生的球形氢氧化镍洗脱水通入三级膜浓缩过滤系统(3),所述三级膜浓缩过滤系统(3)将球形氢氧化镍洗脱水浓缩过滤后输出三级浓液和三级清液;
    d、将步骤a中一级浓液通入到蒸发系统(5);
    e、将步骤b中二级膜浓缩过滤系统(2)输出的二级浓液和步骤c中三级膜浓缩过滤系统(3)输出的三级浓液均通入到氨回收系统(4)进行氨回收;
    f、将步骤e中氨回收系统(4)输出的余液通入蒸发系统(5)。
  2. 如权利要求1所述的球形氢氧化镍生产工艺过程废水的处理方法,其特征在于,将步骤a中的一级清液、步骤b中的二级清液、步骤c中的三级清液均作为球形氢氧化镍生产过程中洗脱阶段的洗脱水供水源。
  3. 如权利要求1所述的球形氢氧化镍生产工艺过程废水的处理方法,其特征在于,步骤e中的氨回收系统(4)的出气口排出氨气作为制备反应阶段的氨气供给源。
  4. 如权利要求1所述的球形氢氧化镍生产工艺过程废水的处理方法,其特征在于,所述一级膜浓缩过滤系统(1)、二级膜浓缩过滤系统(2)、三级膜浓缩过滤系统(3)均包括依次相连的超滤膜过滤系统(61)、纳滤膜过滤系统(62)、多级反渗透膜过滤系统,步骤a中的萃余液、步骤b中球形氢氧化镍母液、步骤c中的球形氢氧化镍洗脱水均分别在各自的膜浓缩过滤系统中先进入超滤膜过滤系统(61),超滤膜过滤系统(61)输出的滤液进入纳滤膜过滤系统(62),纳滤膜过滤系统(62)输出的滤液进入多级反渗透膜过滤系统,多级反渗透膜过滤系 统输出的浓液经纳滤膜过滤系统(62)的进液口返流至纳滤膜过滤系统(62)继续过滤,最终多级反渗透膜过滤系统输出清液,纳滤膜过滤系统(62)输出浓液。
  5. 如权利要求4所述的球形氢氧化镍生产工艺过程废水的处理方法,其特征在于,所述反渗透膜过滤系统为碟管式反渗透膜过滤系统。
  6. 如权利要求4所述的球形氢氧化镍生产工艺过程废水的处理方法,其特征在于,步骤a中的萃余液、步骤b中球形氢氧化镍母液、步骤c中的球形氢氧化镍洗脱水在分别进入超滤膜过滤系统(61)之前均先经过预处理。
  7. 如权利要求4所述的球形氢氧化镍生产工艺过程废水的处理方法,其特征在于,所述预处理包括对步骤a中的萃余液、步骤b中球形氢氧化镍母液、步骤c中的球形氢氧化镍洗脱水进行去除浊度、降温以及调节pH。
  8. 如权利要求4所述的球形氢氧化镍生产工艺过程废水的处理方法,其特征在于,超滤膜过滤系统(61)为过滤分子量>500且粒径>0.005μm颗粒的过滤系统。
  9. 如权利要求4所述的球形氢氧化镍生产工艺过程废水的处理方法,其特征在于,纳滤膜过滤系统(62)为过滤分子量150~500且粒径介于0.0005~0.005μm的过滤系统。
  10. 如权利要求4所述的球形氢氧化镍生产工艺过程废水的处理方法,其特征在于,反渗透膜过滤系统为过滤分子量50~150且粒径介于0.0001~0.001μm的过滤系统。
PCT/CN2018/096615 2017-07-31 2018-07-23 球形氢氧化镍生产工艺过程废水的处理方法 WO2019024701A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/635,279 US11078100B2 (en) 2017-07-31 2018-07-23 Method for treating wastewater in the spherical nickel hydroxide production process
JP2020506259A JP7173612B2 (ja) 2017-07-31 2018-07-23 球状水酸化ニッケルの生産プロセスの途中廃水を処理する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710644044.1 2017-07-31
CN201710644044.1A CN107512811B (zh) 2017-07-31 2017-07-31 球形氢氧化镍生产工艺过程废水的处理方法

Publications (1)

Publication Number Publication Date
WO2019024701A1 true WO2019024701A1 (zh) 2019-02-07

Family

ID=60722906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096615 WO2019024701A1 (zh) 2017-07-31 2018-07-23 球形氢氧化镍生产工艺过程废水的处理方法

Country Status (4)

Country Link
US (1) US11078100B2 (zh)
JP (1) JP7173612B2 (zh)
CN (1) CN107512811B (zh)
WO (1) WO2019024701A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107512811B (zh) * 2017-07-31 2020-06-23 四川思达能环保科技有限公司 球形氢氧化镍生产工艺过程废水的处理方法
CN113104914A (zh) * 2021-04-13 2021-07-13 深圳市环境工程科学技术中心有限公司 化学镍废液浓缩减量处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6428705B1 (en) * 1996-11-26 2002-08-06 Microbar Incorporated Process and apparatus for high flow and low pressure impurity removal
CN1778695A (zh) * 2005-10-12 2006-05-31 王凌云 废液处理方法及系统
CN106673269A (zh) * 2017-03-14 2017-05-17 福建欣宇卫浴科技股份有限公司 含镍废水处理系统
CN107512811A (zh) * 2017-07-31 2017-12-26 四川思达能环保科技有限公司 球形氢氧化镍生产工艺过程废水的处理方法
CN207512005U (zh) * 2017-07-31 2018-06-19 四川思达能环保科技有限公司 球形氢氧化镍生产工艺过程废水的处理系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310486A (en) * 1993-05-25 1994-05-10 Harrison Western Environmental Services, Inc. Multi-stage water treatment system and method for operating the same
US5476591A (en) * 1993-05-25 1995-12-19 Harrison Western Environmental Services, Inc. Liquid treatment system and method for operating the same
WO1998056494A1 (en) * 1997-06-09 1998-12-17 Hw Process Technologies, Inc. Method for separating and isolating precious metals from non precious metals dissolved in solutions
AU758572B2 (en) * 1997-10-30 2003-03-27 Hw Process Technologies, Inc. Method for removing contaminants from process streams in metal recovery processes
US6444363B1 (en) * 1998-08-17 2002-09-03 Ovonic Battery Company, Inc. Method of making a nickel hydroxide material
DE19939025A1 (de) * 1998-12-24 2000-06-29 Starck H C Gmbh Co Kg Nickel-Mischydroxid, Verfahren zu dessen Herstellung und dessen Verwendung als Kathodenmaterial in alkalischen Batterien
DE10030093C1 (de) * 2000-06-19 2002-02-21 Starck H C Gmbh Verfahren und Vorrichtung zur Herstellung von Metallhydroxiden oder basischen Metallcarbonaten
JP4146078B2 (ja) * 2000-12-27 2008-09-03 新日本製鐵株式会社 ニッケル、亜鉛含有排水あるいはスラッジからのニッケル、亜鉛の分離回収方法
DE10132895A1 (de) * 2001-07-06 2003-01-16 Starck H C Gmbh Nickelhydroxid und Verfahren zu dessen Herstellung
AU2003270626A1 (en) * 2002-09-16 2004-04-30 The University Of Iowa Research Foundation Magnetically modified electrodes as well as methods of making and using the same
US9617179B2 (en) * 2013-03-14 2017-04-11 Massachusetts Institute Of Technology Ion sequestration for scale prevention in high-recovery desalination systems
CN103745759B (zh) * 2014-01-09 2017-01-18 清华大学 一种放射性废水处理的方法和装置
CA2914750C (en) * 2014-04-17 2022-09-20 Paladin Intellectual Property Pty Ltd Uranium extraction process and plant
AP2017009696A0 (en) * 2014-06-18 2017-01-31 Sirch Group Pty Ltd A method of recovering base metals from low grade ores and residues
CN105329955B (zh) * 2015-12-01 2017-03-22 韶关中弘金属实业有限公司 球型氢氧化镍的生产工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6428705B1 (en) * 1996-11-26 2002-08-06 Microbar Incorporated Process and apparatus for high flow and low pressure impurity removal
CN1778695A (zh) * 2005-10-12 2006-05-31 王凌云 废液处理方法及系统
CN106673269A (zh) * 2017-03-14 2017-05-17 福建欣宇卫浴科技股份有限公司 含镍废水处理系统
CN107512811A (zh) * 2017-07-31 2017-12-26 四川思达能环保科技有限公司 球形氢氧化镍生产工艺过程废水的处理方法
CN207512005U (zh) * 2017-07-31 2018-06-19 四川思达能环保科技有限公司 球形氢氧化镍生产工艺过程废水的处理系统

Also Published As

Publication number Publication date
JP7173612B2 (ja) 2022-11-16
US20210087092A1 (en) 2021-03-25
JP2020528872A (ja) 2020-10-01
CN107512811A (zh) 2017-12-26
CN107512811B (zh) 2020-06-23
US11078100B2 (en) 2021-08-03

Similar Documents

Publication Publication Date Title
CN210001701U (zh) 一种处理高悬浮物高矿化度矿井水的系统
CN105366838B (zh) 三价铬钝化废水零排放处理方法
WO2022088379A1 (zh) 一种膜法处理钛白酸性废水副产高品质钛石膏的方法和装置
CN107473483A (zh) 一种电镀废水零排放处理的方法
CN103341320A (zh) 粘胶纤维硫酸钠废液经双极膜电渗析法回收酸碱的新工艺
CN106396221A (zh) 一种络合型电镀污水零排放处理方法
WO2019024701A1 (zh) 球形氢氧化镍生产工艺过程废水的处理方法
CN103341321A (zh) 粘胶纤维硫酸钠废液经双极膜电渗析法回收酸碱的工艺
CN103422118B (zh) 两矿法生产电解金属锰的方法及两矿法生产的电解金属锰
CN109775904A (zh) 一种利用LED行业含As废水制备电子级超纯水的处理方法
JP2021531225A (ja) リチウム鉱石から炭酸リチウムを調製するための方法およびシステム
CN112456687A (zh) 一种垃圾渗滤液浓缩液减量化方法及系统
CN218403895U (zh) 一种磷酸铁废水的处理装置
CN115108673B (zh) 一种氧化法生产磷酸铁母液资源化处理的工艺
CN216472254U (zh) 硫酸法钛白粉一洗稀废酸膜集成资源化处理系统
CN214270480U (zh) 一种垃圾渗滤液浓缩液减量化系统
CN108059292A (zh) 锂离子电池生产废水零排放的处理方法
CN207512005U (zh) 球形氢氧化镍生产工艺过程废水的处理系统
CN211069302U (zh) 一种低浓度nmmo连续浓缩装置
CN211283959U (zh) 一种浓盐水深度净化装置
CN210367323U (zh) 一种高浓度工业有机废水零排放处理系统
CN207210100U (zh) 一种分离催化剂废水中硫酸根与氯离子的集成装置
CN220745638U (zh) 一种利用含硼化工回用水制备脱盐水的系统
CN205204974U (zh) 对苯二酚生产废水处理系统
CN219929867U (zh) 石墨生产废酸的处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18842125

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506259

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18842125

Country of ref document: EP

Kind code of ref document: A1