WO2019024559A1 - 一种渐变式基于流态化自适应机理卧式超高压前混合磨料射流发生装置 - Google Patents

一种渐变式基于流态化自适应机理卧式超高压前混合磨料射流发生装置 Download PDF

Info

Publication number
WO2019024559A1
WO2019024559A1 PCT/CN2018/086057 CN2018086057W WO2019024559A1 WO 2019024559 A1 WO2019024559 A1 WO 2019024559A1 CN 2018086057 W CN2018086057 W CN 2018086057W WO 2019024559 A1 WO2019024559 A1 WO 2019024559A1
Authority
WO
WIPO (PCT)
Prior art keywords
horizontal
tank
high pressure
pressure
ultra
Prior art date
Application number
PCT/CN2018/086057
Other languages
English (en)
French (fr)
Inventor
谢淮北
王岩
杜鹏
Original Assignee
安徽理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽理工大学 filed Critical 安徽理工大学
Publication of WO2019024559A1 publication Critical patent/WO2019024559A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/04Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for treating only selected parts of a surface, e.g. for carving stone or glass
    • B24C1/045Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for treating only selected parts of a surface, e.g. for carving stone or glass for cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C5/00Devices or accessories for generating abrasive blasts
    • B24C5/02Blast guns, e.g. for generating high velocity abrasive fluid jets for cutting materials
    • B24C5/04Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C7/00Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts
    • B24C7/0007Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a liquid carrier
    • B24C7/0015Equipment for feeding abrasive material; Controlling the flowability, constitution, or other physical characteristics of abrasive blasts the abrasive material being fed in a liquid carrier with control of feed parameters, e.g. feed rate of abrasive material or carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C9/00Appurtenances of abrasive blasting machines or devices, e.g. working chambers, arrangements for handling used abrasive material

Definitions

  • the invention relates to the technical field of design of abrasive water jet mechanical equipment, in particular to a gradual flow-based adaptive mechanism horizontal ultra-high pressure premixed abrasive jet generating device.
  • the water jet is a jet of high velocity water of different shapes formed by the flow of the nozzle, the flow rate of which depends on the pressure drop before and after the nozzle exit section.
  • Water jets are the simplest form of energy conversion and application.
  • the power-driven pump pumps a certain amount of water to the high-pressure pipeline by performing a suction and discharge process on the water, so that it reaches the nozzle with a certain amount of energy.
  • the aperture of the nozzle is required to be much smaller than the diameter of the high pressure line, so that this amount of water reaching the nozzle must be accelerated in order to flow out of the nozzle hole.
  • the water that has accelerated the condensation through the nozzle holes forms a jet.
  • Abrasive jet refers to the jet formed by the abrasive moving at high speed after the abrasive is accelerated by some external power.
  • the conventional abrasive water jet device uses water as a medium to obtain huge energy through a high-pressure generating device, and then directly injects the abrasive into the high-pressure water through a feeding device to eject it from the nozzle at a high speed in a specific fluid motion mode. , forming an abrasive water jet with high energy concentration.
  • the abrasive material is affected by its own gravity factor, and the fluidization effect of the abrasive and water in the abrasive tank under the vertical state is better than that of the abrasive material in the vertical state.
  • the pre-mixed abrasive jet equipment has a smaller capacity of the abrasive tank for vertical arrangement and has a portable function. It is often referred to as a portable waterjet.
  • the front-mixed abrasive equipment cannot be continuously operated due to the volume limitation of the abrasive tank, but with industrial technology.
  • the abrasive in the horizontal low-pressure sand tank is transported laterally, and the problem of abrasive accumulation under the horizontal low-pressure sand tank due to the gravity of the abrasive cannot be avoided; some ultra-high pressure premixed abrasive jet generating equipment cannot realize the spiral precision conveying and throttling output.
  • the dual function of the mortar and can not accurately control the concentration of the mortar; some ultra-high pressure premixed abrasive jet generation equipment can realize the function of mortar transportation, but can not fully mix the mortar in the horizontal adaptive mortar fluidization tank. It is also impossible to avoid the problem of unstable mortar concentration caused by the mixing of the mortar in the pressure increasing valve, and the fluctuation range of the mortar output concentration is very large. Therefore, it is necessary to provide a gradual flow-based adaptive mechanism horizontal ultra-high pressure premixed abrasive jet generating device with simple structure, quick and convenient operation, safety and high efficiency.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art described above, and provide a gradual flow-based adaptive mechanism horizontal ultra-high pressure premixed abrasive jet generation with simple structure, quick and convenient operation, safety and high efficiency. Device.
  • a gradual flow-based adaptive mechanism horizontal ultra-high pressure premixed abrasive jet generating device including a solid-moving dual-purpose vehicle, wherein the horizontal low-pressure sand is also included Tank, horizontal adaptive mortar fluidization tank and horizontal ultra-high pressure tank, the axis of the horizontal low-pressure sand tank, the axis of the horizontal adaptive mortar fluidization tank and the axis of the horizontal ultra-high pressure tank are both fixed and fixed
  • the vertical end of the horizontal low-pressure sand tank is installed with an end seat, the upper end of the end seat is provided with a water injection pipe, and the middle end of the water injection pipe is provided with a shunt pipe, and the right end of the end seat
  • a normally open two-position valve is installed, and the normally open two-position valve is provided with a horizontal flow path and a downward inclined flow path, and the axis of the horizontal flow path and the axis of the downward oblique flow path are
  • An upper side busbar of the normally open two-position valve coincides with an upper side busbar of the end seat, and a special valve is installed between the horizontal low pressure sand tank and the horizontal adaptive mortar fluidization tank,
  • a horizontal stepped throttle passage is provided in the valve, and the special valve is also installed with a vertical a screw conveyor, the axis of the horizontal stepped throttle channel is perpendicular to the axis of the vertical screw conveyor, and the vertical screw conveyor is also installed in the middle of the horizontal stepped throttle channel, the special purpose
  • a cyclone is installed at a right end of the valve, and a horizontal mortar conveying pipe is installed in the cyclone through a bearing, and a rotating impeller is installed at a right end of the horizontal mortar conveying pipe, and the right end of the horizontal mortar conveying pipe and the rotating impeller are located
  • an annular groove is arranged in the cyclone, a hydrodynamic impeller is installed in the annular groove, and the hydrodynamic impeller is fixed on a horizontal mortar conveying pipe,
  • the lower end of the horizontal low-pressure sand tank is installed with a sand inlet pipe, one side of the sand inlet pipe is provided with a humidified sand water pipe, and the vertical screw conveyor is provided with a spiral conveying blade, and the vertical spiral conveying
  • a stepping motor is installed at the upper end of the device, and a sealing assembly is installed at a left end of the horizontal mortar conveying pipe and a right end of the horizontal stepped throttle channel, and a water outlet check valve is installed at a lower side of the annular groove, and the water outlet is unidirectional The valve is connected to the water injection pipe through a high pressure hose.
  • the upper end of the fixed-duty vehicle is equipped with two supporting frames, the upper end of the two-layer supporting frame has a C-shaped fixing ring arm and a C-shaped fixing ring B, and the middle portion of the two-layer supporting frame is provided with an H-shaped fixing frame.
  • the horizontal low-pressure sand tank is mounted on the two-layer support frame through the C-shaped fixed ring arm, and the horizontal adaptive mortar fluidization tank is installed on the two-layer support frame through the C-shaped fixed ring B, the lying
  • the ultra-high pressure tank is mounted on the two-layer support frame through the H-shaped fixing frame.
  • the upper end of the boosting valve seat is installed with a main water delivery pipe, and the main water delivery pipe is connected to the water injection pipe through a split valve, and the left end of the horizontal ultrahigh pressure tank is connected through a high pressure sand pipe through an ultrahigh pressure valve seat There are nozzles.
  • the operator fixes the target on the three-dimensional coordinate table, then fixes the nozzle on the cutting table of the three-dimensional coordinate instrument, and inserts the dry sand from the sand pipe into the horizontal low-pressure sand tank.
  • the sand inlet pipe is connected to the output end of the small water pump, and the small water pump is started.
  • the horizontal low pressure sand tank is gradually filled, the small water pump is turned off, and the horizontal low pressure sand is stopped.
  • the tank can be filled with dry sand, and the distance between the target and the bottom of the nozzle is within the effective cutting target distance, and the relative position between the nozzle and the target is fixed to determine the moving direction of the cutting nozzle.
  • the operator moves the solid-moving dual-purpose vehicle to the non-working area of the laboratory to adjust the position of the fixed leg on the fixed-duty vehicle until the moving wheel on the fixed-shift vehicle is separated from the ground end.
  • the boost valve seat is connected to the ultra-high pressure pumping station, and the starter on the ultra-high pressure pumping station is turned on, and the low-pressure water enters the end seat through the water injection pipe, and the low-pressure water is often opened in the two-position horizontal valve and the lower inclined flow channel is divided into two.
  • the water flow enters the horizontal low-pressure sand tank, and the mortar mixed with the low-pressure water and the horizontal low-pressure sand tank enters the horizontal stepped throttle channel in the special valve.
  • the stepping motor is started to make the vertical
  • the straight screw conveyor rotates at a certain speed, and the mortar enters the horizontal adaptive mortar fluidization tank through the horizontal mortar conveying pipe.
  • a water in the water injection pipe enters the annular groove in the cyclone through the diverter pipe and the inlet check valve.
  • the hydrodynamic impeller rotates, and the hydrodynamic impeller drives the horizontal mortar conveying pipe.
  • the rotary impeller at the end rotates, and the mortar in the horizontal adaptive mortar fluidization tank is fully mixed and fluidized.
  • the water flow in the annular tank enters the water tank from the end of the outlet check valve, and is fluidized.
  • the mortar and the main water pipeline are mixed with the ultra-high pressure water in the pressure-increasing valve seat, and then enter the horizontal ultra-high pressure tank through the high-pressure sand tube, and the ultra-high pressure mortar is sequentially sprayed from the nozzle through the ultra-high pressure valve seat and the high-pressure sand tube.
  • the operator activates the three-dimensional coordinate instrument workbench to move the nozzle.
  • all the mortars in the horizontal low-pressure sand tank, the horizontal adaptive mortar fluidization tank and the horizontal ultra-high pressure tank are discharged.
  • the cutting seat on the three-dimensional coordinate measuring table is reset, and the ultra-high pressure pumping station is closed, so that the ultra-high pressure abrasive jet cutting operation can be completed.
  • the invention has the beneficial effects that the arrangement of the high-pressure tank body in the horizontal arrangement manner of the invention can effectively avoid the problem that the high-pressure tank cannot be manufactured due to the material problem, and the large-diameter volume carrying the high-pressure container can can be avoided. It can effectively solve a series of problems such as instability caused by the high center of gravity of the vertical large-volume ultra-high pressure abrasive tank due to the axial length. It can be realized by the normally open two-position valve with horizontal flow path and downward inclined flow path.
  • the horizontally conveyed abrasive in the horizontal low-pressure sand tank can also effectively avoid the abrasive accumulation problem of the lower side of the horizontal low-pressure sand tank due to the gravity of the abrasive; the special precision valve and the vertical screw conveyor can realize the precision conveying of the spiral and
  • the dual function of the throttling output mortar can also effectively control the concentration of the mortar; the horizontal mortar conveying pipe and the rotating impeller can realize the conveying function of the mortar, and the mortar can be fully mixed in the horizontal adaptive mortar fluidization tank.
  • the power impeller can use water as the power to rotate the rotating impeller on the horizontal mortar conveying pipe, and adjust the rotating speed of the rotating impeller according to the flow rate in the water injection pipe, and the structure is simple, the operation is convenient, and the utility model is economical and practical.
  • Figure 1 is a schematic view of the structure of the present invention
  • Figure 2 is a partial enlarged view of a portion A in Figure 1;
  • Figure 3 is a partial enlarged view of B in Figure 1;
  • FIG. 4 is a schematic structural view of the internal components of the cyclone of FIG. 1.
  • the gradual type fluidized adaptive mechanism horizontal ultra-high pressure premixed abrasive jet generating device comprises a solid-moving dual-purpose vehicle 1 , wherein Including horizontal low pressure sand tank 2, horizontal adaptive mortar fluidization tank 3 and horizontal ultra high pressure tank 4, horizontal low pressure sand tank 2 axis, horizontal adaptive mortar fluidization tank 3 axis and horizontal
  • the axis of the ultra-high pressure tank 4 is perpendicular to the vertical line of the fixed-use dual-purpose vehicle 1.
  • the left end of the horizontal low-pressure sand tank 2 is mounted with an end seat 21, and the upper end of the end seat 21 is provided with a water injection pipe 211.
  • the middle portion of the water injection pipe 211 is provided with a shunt pipe 2111.
  • the right end of the end seat 21 is provided with a normally open two-position valve 212.
  • the normally open two-position valve 212 is provided with a horizontal flow path 2121 and a downward inclined flow path. 2122, the axis of the horizontal flow channel 2121 and the axis of the lower oblique flow channel 2122 are at an angle of 60°, and the upper side busbar of the normally open two-position valve 212 coincides with the upper side busbar of the end seat 21, the horizontal type A special valve 5 is installed between the low pressure sand tank 2 and the horizontal adaptive mortar fluidization tank 3, and the special valve 5 is provided with a horizontal stepped throttle passage 51.
  • a vertical auger 52 is also mounted in the special valve 5, the axis of the horizontal stepped throttle 51 is perpendicular to the axis of the vertical auger 52, and the vertical auger 52 is also mounted In the middle of the horizontal stepped throttle passage 51, a swirler 53 is mounted at the right end of the special valve 5, and a horizontal mortar conveying pipe 531 is installed in the cyclone 53 through a bearing, and the horizontal mortar conveying pipe 531 is installed.
  • the right end of the horizontal mortar conveying pipe 531 and the rotating impeller 5311 are respectively disposed in the horizontal adaptive mortar fluidization tank 3, and the cyclone 53 is provided with an annular groove 532.
  • a hydrodynamic impeller 5321 is mounted in the annular groove 532.
  • the hydrodynamic impeller 5321 is fixed on the horizontal mortar conveying pipe 531.
  • the upper side of the annular groove 532 is installed with a water inlet check valve 5322, and the water inlet check valve
  • the upper end of the 5322 is connected to the shunt pipe 211, and the right end of the horizontal adaptive mortar fluidization tank 3 is equipped with a pressure increasing valve seat 31, and the pressure increasing valve seat 31 is passed through a high pressure sand pipe and a horizontal ultrahigh pressure tank 4 Connected.
  • the lower end of the horizontal low-pressure sand tank 2 is mounted with a sand inlet pipe 22 , and one side of the sand inlet pipe 22 is provided with a humidified sand water pipe 221 .
  • the vertical screw conveyor 52 is provided with a spiral conveying blade 521, and the upper end of the vertical screw conveyor 52 is mounted with a stepping motor 522, the left end of the horizontal mortar conveying pipe 531 and the right end of the horizontal stepped throttle channel 51.
  • a sealing assembly 6 is mounted, and a water outlet check valve 5323 is mounted on the lower side of the annular groove 532, and the water outlet check valve 5323 is connected to the water injection pipe 211 via a high pressure hose.
  • the upper end of the fixed-duty vehicle 1 is mounted with two layers of support frames 11 , and the upper ends of the two-layer support frames 11 are fixed by a C-shaped fixed ring arm 111 and a C-shaped fixed ring B 112 .
  • the middle portion of the layer support frame 11 is provided with an H-shaped fixing frame 113, which is mounted on the two-layer support frame 1 by a C-shaped fixed ring armor 111, and the horizontal adaptive mortar fluidization tank 3
  • the C-shaped fixing ring B is mounted on the two-layer support frame 1 which is mounted on the two-layer support frame 1 via the H-shaped holder 113.
  • the upper end of the pressure increasing valve seat 31 is mounted with a main water delivery pipe 311 , and the main water delivery pipe 311 is connected to the water injection pipe 211 through a split valve, and the horizontal ultra high pressure tank 4 The left end is connected to the nozzle 41 through a high pressure sand pipe through an ultrahigh pressure valve seat.
  • the operator fixes the target on the three-dimensional coordinate table, and then fixes the nozzle 41 on the cutting table of the three-dimensional coordinate instrument table, and can insert the dry sand from the sand inlet tube 22 into the horizontal low-pressure sand tank. 2, at the same time, the sand inlet pipe 22 is connected to the output end of the small water pump, and the small water pump is started. After the dry sand is converted into wet sand by water mixing, the horizontal low pressure sand tank 2 is gradually filled, and the small water pump is turned off and stopped.
  • the horizontal low-pressure sand tank 2 is filled with dry sand, and the distance between the target and the bottom of the nozzle 41 is within the effective cutting target distance, and the relative position between the fixed nozzle 41 and the target is determined to determine the moving direction of the cutting head 41. .
  • the operator moves the fixed-moving dual-purpose vehicle 1 to the non-working area of the laboratory to adjust the position of the fixed legs on the fixed-moving dual-purpose vehicle 1 until the moving wheel on the fixed-moving dual-purpose vehicle 1 is separated from the ground end.
  • the boosting valve seat 31 is connected to the ultra-high pressure pumping station, and the starter on the ultra-high pressure pumping station is turned on.
  • the low-pressure water enters the end seat 21 through the water injection pipe 211, and the low-pressure water frequently opens the horizontal flow path in the two-position valve 212.
  • the stepping motor 522 is activated to rotate the vertical auger 52 at a certain speed, and the mortar enters the horizontal adaptive mortar fluidization tank 3 through the horizontal mortar conveying pipe 531.
  • a water in the water injection pipe 211 enters the annular groove 532 of the cyclone 53 through the branch pipe 2111 and the water inlet check valve 5322.
  • the hydrodynamic impeller 5321 rotates, and the hydrodynamic power
  • the impeller 5321 drives the rotating impeller 5311 at the end of the horizontal mortar conveying pipe 531 to rotate, and the mortar in the horizontal adaptive mortar fluidizing tank 3 is thoroughly mixed and fluidized, and the water flow in the annular groove 532 is discharged from the water outlet check valve 5323.
  • the end pipe enters the water tank, and the fluidized mortar and the main water delivery pipe 311 are mixed in the high pressure water in the pressure rising valve seat 31, and then enter the horizontal ultrahigh pressure tank 4 through the high pressure sand pipe, and the ultrahigh pressure mortar is sequentially super
  • the high pressure valve seat and the high pressure sand tube are ejected from the nozzle 41.
  • the operator activates the three-dimensional coordinate instrument workbench to move the spray head 41.
  • the horizontal low-pressure sand tank 2 the horizontal adaptive mortar fluidization tank 3 and the horizontal ultra-high pressure tank 4 are After all the mortar is discharged, the cutting seat on the three-dimensional coordinate instrument workbench is reset, and the ultra-high pressure pumping station is closed, so that the ultra-high pressure abrasive jet cutting operation can be completed.

Abstract

一种卧式超高压前混合磨料射流发生装置,包括固移两用车(1),还包括卧式低压砂罐(2)、卧式自适应砂浆流态化罐(3)和卧式超高压罐(4),卧式低压砂罐(2)的左端安装有端座(21),端座(21)的上端安装有注水管道(211),端座(21)的右端安装有常开式二位阀(212),卧式低压砂罐(2)与卧式自适应砂浆流态化罐(3)之间安装有特用阀(5),特用阀(5)的右端安装有旋流器(53)。卧式超高压前混合磨料射流发生装置能避免使用大直径高压罐和立式高重心高压罐,还能有效避免磨料因自身重力带来卧式低压砂罐下侧磨料堆积问题,实现螺旋精密输送和节流输出砂浆的双重功能。

Description

一种渐变式基于流态化自适应机理卧式超高压前混合磨料射流发生装置 技术领域
本发明涉及磨料水射流机械设备设计技术领域,尤其涉及一种渐变式基于流态化自适应机理卧式超高压前混合磨料射流发生装置。
背景技术
水射流是由喷嘴流出形成的不同形状的高速水流束,射流的流速取决于喷嘴出口截面前后的压力降。水射流是能量转变与应用的最简单的一种形式。通常,动力驱动泵通过对水完成一个吸、排过程,将一定量的水泵送到高压管路,使其以一定能量到达喷嘴。而喷嘴的孔径要求比高压管路直径小得多,因此到达喷嘴的这一一定量的水要想流出喷嘴孔,必须加速。这样,经过喷嘴孔加速凝聚的水就形成了射流。磨料射流是指磨料在某种外动力的作用下被加速后,高速运动的磨料所形成的射流。传统的磨料水射流设备是以水作为介质,通过高压发生设备使它获得巨大能量后,再通过供料装置将磨料直接注入高压水中,使其以一种特定的流体运动方式高速从喷嘴喷射出来,形成能量高速集中的一股磨料水射流。
国内外有关学者研究表明:磨料因自身重力因素影响,立式状态下的磨料罐内磨料与水的流态化效果比立式状态下的磨料罐内磨料与水的流态化效果更好。目前,前混合磨料射流设备的磨料罐容量较小适合立式布置,具有便携功能,常称被为便携式水刀,前混合磨料设备因受磨料罐体积限制,无法连续作业,但随着工业技术的发展,延长前混合磨料设备作业时间,磨料罐的容量加大,磨料罐将由“高、细”的特点朝“矮、粗”的特点的趋势发展,不便于采用立式的方式布置磨料罐,这将失去便携式水刀的优势,尤其国内磨料罐体因材质问题无法制造出承载超高压的罐体,国内一些研究机构常采用细直径和长度很长的容积罐体来解决承载高压问题,随着我国研究机构的对磨料罐体材质的研究不断深入,后期会研究出满足商用用途的超高压磨料罐体的材质,但是现阶段超高压前混合磨料射流发生设备还存在一系列问题,现有的超高压前混合磨料射流发生设备既无法避免高压罐因材质问题无法制造大直径容积承载高压的容器罐带来的问题又不能解决立式大容积超高压磨料罐体因轴向长度带来的重心过高带来失稳等问题;一些超高压前混合磨料射流发生设备不能实现卧式低压砂罐内的磨料进行横向输送,还无法避免磨料因自身重力带来卧式低压砂罐下侧磨料堆积问题;有些超高压前混合磨料射流发生设备不能实现螺旋精密输送和节流输出砂浆的双重功能,且 无法精确控制砂浆的浓度;还有的超高压前混合磨料射流发生设备虽然能实现砂浆的输送功能,但无法使砂浆在卧式自适应砂浆流态化罐内充分混合,还不能避免砂浆在升压阀内混合而带来的砂浆浓度不稳定问题,砂浆输出浓度波动范围非常大。因此,有必要提供一种结构简单、操作快捷方便、安全高效的一种渐变式基于流态化自适应机理卧式超高压前混合磨料射流发生装置。
发明内容
本发明所要解决的技术问题,是克服上述现有技术的不足,提供一种结构简单、操作快捷方便、安全高效的一种渐变式基于流态化自适应机理卧式超高压前混合磨料射流发生装置。
为实现上述目的,本发明采用的技术方案如下:一种渐变式基于流态化自适应机理卧式超高压前混合磨料射流发生装置,包括固移两用车,其中,还包括卧式低压砂罐、卧式自适应砂浆流态化罐和卧式超高压罐,卧式低压砂罐的轴线、卧式自适应砂浆流态化罐的轴线和卧式超高压罐的轴线均与固移两用车中垂线相互垂直,所述卧式低压砂罐的左端安装有端座,所述端座的上端安装有注水管道,所述注水管道的中部设有分流管,所述端座的右端安装有常开式二位阀,所述常开式二位阀内设有水平流道和下斜流道,所述水平流道的轴线和下斜流道的轴线呈45°~60°夹角,所述常开式二位阀的上侧母线与端座上侧母线重合,所述卧式低压砂罐与卧式自适应砂浆流态化罐之间安装有特用阀,所述特用阀内设有水平阶梯式节流流道,所述特用阀内还安装有竖直螺旋输送器,所述水平阶梯式节流流道的轴线与竖直螺旋输送器的轴线相互垂直,所述竖直螺旋输送器还安装在水平阶梯式节流流道的中部,所述特用阀的右端安装有旋流器,所述旋流器内通过轴承安装有水平砂浆输送管,所述水平砂浆输送管的右端安装有旋转叶轮,所述水平砂浆输送管的右端和旋转叶轮均位于卧式自适应砂浆流态化罐内,所述旋流器内设有环形槽,所述环形槽内安装有水动力叶轮,所述水动力叶轮固定在水平砂浆输送管上,所述环形槽的上侧安装有进水单向阀,所述进水单向阀的上端与分流管相连接,所述卧式自适应砂浆流态化罐的右端安装有升压阀座,所述升压阀座经高压砂管与卧式超高压罐相连接。
所述卧式低压砂罐的下端安装有进砂管,所述进砂管的一侧安装有湿化砂水管,所述竖直螺旋输送器上设有螺旋输送叶片,所述竖直螺旋输送器的上端安装有步进电机,水平砂浆输送管的左端与水平阶梯式节流流道的右端安装有密封组件,所述环形槽的的下侧安装有出水单向阀,所述出水单向阀经高压胶管与注水管道相连接。
所述固移两用车的上端安装有两层支撑架,所述两层支撑架的上端C形固定环甲和C形固定环乙,所述两层支撑架的中部设有H形固定架,所述卧式低压砂罐通过C形固定环甲安 装在两层支撑架上,所述卧式自适应砂浆流态化罐通过C形固定环乙安装在两层支撑架上,所述卧式超高压罐通过H形固定架安装在两层支撑架上。
所述升压阀座的上端安装有主输水管道,所述主输水管道通过分向阀与注水管道相连接,所述卧式超高压罐的左端通过超高压阀座经高压砂管连接有喷头。
现场使用时,首先,操作人员将靶物固定在三维坐标仪工作台上,再将喷头固定在三维坐标仪工作台切割座上,将干砂从进砂管罐入卧式低压砂罐中,与此同时,将进砂管连接在小水泵的输出端,启动小水泵,干砂经水混合转变成湿砂后,逐渐充满卧式低压砂罐后,关闭小水泵,停止向卧式低压砂罐内罐装干砂,再使靶物与喷头底部的距离处于有效切割靶距之中,固定喷头与靶物之间的相对位置,确定切割喷头的移动方向。
其次,操作人员将固移两用车移动到实验室非工作区内,调节固移两用车上的固定支腿的位置,直至固移两用车上的移动车轮脱离地面一端距离后,将升压阀座连接到超高压泵站,开启超高压泵站上的启动器,低压水经注水管道进入端座内,低压水经常开式二位阀内水平流道和下斜流道分成两股水流进入卧式低压砂罐内,低压水与卧式低压砂罐内砂混合后的砂浆进入特用阀中的水平阶梯式节流流道内,根据射流输出浓度参数,启动步进电机使竖直螺旋输送器按照一定速度旋转,砂浆经水平砂浆输送管进入卧式自适应砂浆流态化罐内。
与此同时,注水管道内的一股水经分流管和进水单向阀进入旋流器中环形槽内,在水动力的驱使下,水动力叶轮进行旋转,水动力叶轮带动水平砂浆输送管端部的旋转叶轮旋转,将卧式自适应砂浆流态化罐中的砂浆充分混合并实现流态化,环形槽内的水流从出水单向阀端部的管道进入水箱中,流态化的砂浆与主输水管道在升压阀座内超高压水混合后经高压砂管进入卧式超高压罐内,超高压砂浆依次经超高压阀座和高压砂管从喷头喷出。
最后,操作人员启动三维坐标仪工作台,使喷头移动,待靶物完成切割作业后,将卧式低压砂罐、卧式自适应砂浆流态化罐和卧式超高压罐内的砂浆全部排出后,三维坐标仪工作台上的切割座复位,关闭超高压泵站,即可完成超高压磨料射流切割作业工作。
与现有的技术相比,本发明的有益效果是:本发明采用卧式布置方式布置高压罐体能有效避免高压罐因材质问题无法制造大直径容积承载高压的容器罐带来的问题,还能有效解决立式大容积超高压磨料罐体因轴向长度带来的重心过高带来失稳等一系列问题,采用设置有水平流道和下斜流道的常开式二位阀能实现卧式低压砂罐内的磨料进行横向输送,还能有效避免磨料因自身重力带来卧式低压砂罐下侧磨料堆积问题;通过设置特用阀和竖直螺旋输送器能实现螺旋精密输送和节流输出砂浆的双重功能,还能有效控制砂浆的浓度;通过设置水平砂浆输送管和旋转叶轮能实现砂浆的输送功能,还能使砂浆在卧式自适应砂浆流态化罐内充分混合,避免砂浆在升压阀内混合而带来的砂浆浓度不稳定问题,进一步降低砂浆输出浓 度波动范围;通过设置旋流器和水动力叶轮能采用水作为动力使水平砂浆输送管上的旋转叶轮进行旋转,并根据注水管道内的流量来实时调节旋转叶轮的转速,且结构简单,操作方便,经济实用。
附图说明
图1为本发明的结构示意图;
图2为图1中A处的局部放大图;
图3为图1中B处的局部放大图;
图4为图1中旋流器内部组件结构示意图。
图中:1、固移两用车;11、两层支撑架;111、C形固定环甲;112、C形固定环乙;113、H形固定架;2、卧式低压砂罐;21、端座;211、注水管道;2111、分流管;212、常开式二位阀;2121、水平流道;2122、下斜流道;22、进砂管;221、湿化砂水管;3、卧式自适应砂浆流态化罐;31、升压阀座;311、主输水管道;4、卧式超高压罐;41、喷头;5、特用阀;51、水平阶梯式节流流道;52、竖直螺旋输送器;521、螺旋输送叶片;522、步进电机;53、旋流器;531、水平砂浆输送管;5311、旋转叶轮;532、环形槽;5321、水动力叶轮;5322、进水单向阀;5323、出水单向阀;6、密封组件。
具体实施方式
为了使本发明所实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施例和图示,进一步阐述本发明。
如图1、图2、图3和图4所示,所述一种渐变式基于流态化自适应机理卧式超高压前混合磨料射流发生装置,包括固移两用车1,其中,还包括卧式低压砂罐2、卧式自适应砂浆流态化罐3和卧式超高压罐4,卧式低压砂罐2的轴线、卧式自适应砂浆流态化罐3的轴线和卧式超高压罐4的轴线均与固移两用车1中垂线相互垂直,所述卧式低压砂罐2的左端安装有端座21,所述端座21的上端安装有注水管道211,所述注水管道211的中部设有分流管2111,所述端座21的右端安装有常开式二位阀212,所述常开式二位阀212内设有水平流道2121和下斜流道2122,所述水平流道2121的轴线和下斜流道2122的轴线呈60°夹角,所述常开式二位阀212的上侧母线与端座21上侧母线重合,所述卧式低压砂罐2与卧式自适应砂浆流态化罐3之间安装有特用阀5,所述特用阀5内设有水平阶梯式节流流道51,所述特用阀5内还安装有竖直螺旋输送器52,所述水平阶梯式节流流道51的轴线与竖直螺旋输送器52的轴线相互垂直,所述竖直螺旋输送器52还安装在水平阶梯式节流流道51的中部,所 述特用阀5的右端安装有旋流器53,所述旋流器53内通过轴承安装有水平砂浆输送管531,所述水平砂浆输送管531的右端安装有旋转叶轮5311,所述水平砂浆输送管531的右端和旋转叶轮5311均位于卧式自适应砂浆流态化罐3内,所述旋流器53内设有环形槽532,所述环形槽532内安装有水动力叶轮5321,所述水动力叶轮5321固定在水平砂浆输送管531上,所述环形槽532的上侧安装有进水单向阀5322,所述进水单向阀5322的上端与分流管211相连接,所述卧式自适应砂浆流态化罐3的右端安装有升压阀座31,所述升压阀座31经高压砂管与卧式超高压罐4相连接。
如图1、图2、图3和图4所示,所述卧式低压砂罐2的下端安装有进砂管22,所述进砂管22的一侧安装有湿化砂水管221,所述竖直螺旋输送器52上设有螺旋输送叶片521,所述竖直螺旋输送器52的上端安装有步进电机522,水平砂浆输送管531的左端与水平阶梯式节流流道51的右端安装有密封组件6,所述环形槽532的的下侧安装有出水单向阀5323,所述出水单向阀5323经高压胶管与注水管道211相连接。
如图1所示,所述固移两用车1的上端安装有两层支撑架11,所述两层支撑架11的上端C形固定环甲111和C形固定环乙112,所述两层支撑架11的中部设有H形固定架113,所述卧式低压砂罐2通过C形固定环甲111安装在两层支撑架1上,所述卧式自适应砂浆流态化罐3通过C形固定环乙112安装在两层支撑架1上,所述卧式超高压罐4通过H形固定架113安装在两层支撑架1上。
如图1所示,所述升压阀座31的上端安装有主输水管道311,所述主输水管道311通过分向阀与注水管道211相连接,所述卧式超高压罐4的左端通过超高压阀座经高压砂管连接有喷头41。
现场使用时,首先,操作人员将靶物固定在三维坐标仪工作台上,再将喷头41固定在三维坐标仪工作台切割座上,将干砂从进砂管22罐入卧式低压砂罐2中,与此同时,将进砂管22连接在小水泵的输出端,启动小水泵,干砂经水混合转变成湿砂后,逐渐充满卧式低压砂罐2后,关闭小水泵,停止向卧式低压砂罐2内罐装干砂,再使靶物与喷头41底部的距离处于有效切割靶距之中,固定喷头41与靶物之间的相对位置,确定切割喷头41的移动方向。
其次,操作人员将固移两用车1移动到实验室非工作区内,调节固移两用车1上的固定支腿的位置,直至固移两用车1上的移动车轮脱离地面一端距离后,将升压阀座31连接到超高压泵站,开启超高压泵站上的启动器,低压水经注水管道211进入端座21内,低压水经常开式二位阀212内水平流道2121和下斜流道2122分成两股水流进入卧式低压砂罐2内,低压水与卧式低压砂罐2内砂混合后的砂浆进入特用阀5中的水平阶梯式节流流道51内,根据射流输出浓度参数,启动步进电机522使竖直螺旋输送器52按照一定速度旋转,砂浆经水平 砂浆输送管531进入卧式自适应砂浆流态化罐3内。
与此同时,注水管道211内的一股水经分流管2111和进水单向阀5322进入旋流器53中环形槽532内,在水动力的驱使下,水动力叶轮5321进行旋转,水动力叶轮5321带动水平砂浆输送管531端部的旋转叶轮5311旋转,将卧式自适应砂浆流态化罐3中的砂浆充分混合并实现流态化,环形槽532内的水流从出水单向阀5323端部的管道进入水箱中,流态化的砂浆与主输水管道311在升压阀座31内超高压水混合后经高压砂管进入卧式超高压罐4内,超高压砂浆依次经超高压阀座和高压砂管从喷头41喷出。
最后,操作人员启动三维坐标仪工作台,使喷头41移动,待靶物完成切割作业后,将卧式低压砂罐2、卧式自适应砂浆流态化罐3和卧式超高压罐4内的砂浆全部排出后,三维坐标仪工作台上的切割座复位,关闭超高压泵站,即可完成超高压磨料射流切割作业工作。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (4)

  1. 一种渐变式基于流态化自适应机理卧式超高压前混合磨料射流发生装置,包括固移两用车,其特征在于:还包括卧式低压砂罐、卧式自适应砂浆流态化罐和卧式超高压罐,卧式低压砂罐的轴线、卧式自适应砂浆流态化罐的轴线和卧式超高压罐的轴线均与固移两用车中垂线相互垂直,所述卧式低压砂罐的左端安装有端座,所述端座的上端安装有注水管道,所述注水管道的中部设有分流管,所述端座的右端安装有常开式二位阀,所述常开式二位阀内设有水平流道和下斜流道,所述水平流道的轴线和下斜流道的轴线呈45°~60°夹角,所述常开式二位阀的上侧母线与端座上侧母线重合,所述卧式低压砂罐与卧式自适应砂浆流态化罐之间安装有特用阀,所述特用阀内设有水平阶梯式节流流道,所述特用阀内还安装有竖直螺旋输送器,所述水平阶梯式节流流道的轴线与竖直螺旋输送器的轴线相互垂直,所述竖直螺旋输送器还安装在水平阶梯式节流流道的中部,所述特用阀的右端安装有旋流器,所述旋流器内通过轴承安装有水平砂浆输送管,所述水平砂浆输送管的右端安装有旋转叶轮,所述水平砂浆输送管的右端和旋转叶轮均位于卧式自适应砂浆流态化罐内,所述旋流器内设有环形槽,所述环形槽内安装有水动力叶轮,所述水动力叶轮固定在水平砂浆输送管上,所述环形槽的上侧安装有进水单向阀,所述进水单向阀的上端与分流管相连接,所述卧式自适应砂浆流态化罐的右端安装有升压阀座,所述升压阀座经高压砂管与卧式超高压罐相连接。
  2. 根据权利要求1所述的一种渐变式基于流态化自适应机理卧式超高压前混合磨料射流发生装置,其特征在于:所述卧式低压砂罐的下端安装有进砂管,所述进砂管的一侧安装有湿化砂水管,所述竖直螺旋输送器上设有螺旋输送叶片,所述竖直螺旋输送器的上端安装有步进电机,水平砂浆输送管的左端与水平阶梯式节流流道的右端安装有密封组件,所述环形槽的的下侧安装有出水单向阀,所述出水单向阀经高压胶管与注水管道相连接。
  3. 根据权利要求1所述的一种渐变式基于流态化自适应机理卧式超高压前混合磨料射流发生装置,其特征在于:所述固移两用车的上端安装有两层支撑架,所述两层支撑架的上端C形固定环甲和C形固定环乙,所述两层支撑架的中部设有H形固定架,所述卧式低压砂罐通过C形固定环甲安装在两层支撑架上,所述卧式自适应砂浆流态化罐通过C形固定环乙安装在两层支撑架上,所述卧式超高压罐通过H形固定架安装在两层支撑架上。
  4. 根据权利要求1所述的一种渐变式基于流态化自适应机理卧式超高压前混合磨料射流发生装置,其特征在于:所述升压阀座的上端安装有主输水管道,所述主输水管道通过分向阀与注水管道相连接,所述卧式超高压罐的左端通过超高压阀座经高压砂管连接有喷头。
PCT/CN2018/086057 2017-08-04 2018-05-08 一种渐变式基于流态化自适应机理卧式超高压前混合磨料射流发生装置 WO2019024559A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710658446.7A CN107322482B (zh) 2017-08-04 2017-08-04 一种渐变式流态化自适应卧式超高压磨料射流发生装置
CN201710658446.7 2017-08-04

Publications (1)

Publication Number Publication Date
WO2019024559A1 true WO2019024559A1 (zh) 2019-02-07

Family

ID=60226089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086057 WO2019024559A1 (zh) 2017-08-04 2018-05-08 一种渐变式基于流态化自适应机理卧式超高压前混合磨料射流发生装置

Country Status (3)

Country Link
CN (1) CN107322482B (zh)
LU (1) LU101091B1 (zh)
WO (1) WO2019024559A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107322482B (zh) * 2017-08-04 2019-01-11 安徽理工大学 一种渐变式流态化自适应卧式超高压磨料射流发生装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000176839A (ja) * 1998-12-17 2000-06-27 Sankyo Giken Kogyo Kk ブラスト材切り出し装置
CN2573152Y (zh) * 2002-10-18 2003-09-17 上海大学 前混合式磨料射流系统自控防堵装置
GB2458785A (en) * 2008-04-05 2009-10-07 Well Ops Uk Ltd Abrasive cutting fluids
CN203804803U (zh) * 2014-03-05 2014-09-03 安徽理工大学 一种用于水射流切割设备上的磨料浓度调节装置
CN107322482A (zh) * 2017-08-04 2017-11-07 安徽理工大学 一种渐变式基于流态化自适应机理卧式超高压前混合磨料射流发生装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19650171C1 (de) * 1996-12-04 1997-11-27 Kaesch Optiblast System Gmbh Vorrichtung zum Strahlen mit wahlweise trockenem oder feuchtem Strahlmittel
CN2574834Y (zh) * 2002-10-18 2003-09-24 上海上大集仁水射流技术有限公司 前混合式磨料射流双罐连续供料装置
CN202129728U (zh) * 2011-06-09 2012-02-01 广东工业大学 微磨料水射流精加工装置
CN203600080U (zh) * 2013-10-15 2014-05-21 常州交通技师学院 一种前混合磨料射流连续供料系统
CN204366751U (zh) * 2014-10-14 2015-06-03 王晖 一种便携式矿用前混合磨料水射流切割装置
CN106112821B (zh) * 2016-07-29 2017-11-28 重庆大学 一种前混合磨料水射流连续作业系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000176839A (ja) * 1998-12-17 2000-06-27 Sankyo Giken Kogyo Kk ブラスト材切り出し装置
CN2573152Y (zh) * 2002-10-18 2003-09-17 上海大学 前混合式磨料射流系统自控防堵装置
GB2458785A (en) * 2008-04-05 2009-10-07 Well Ops Uk Ltd Abrasive cutting fluids
CN203804803U (zh) * 2014-03-05 2014-09-03 安徽理工大学 一种用于水射流切割设备上的磨料浓度调节装置
CN107322482A (zh) * 2017-08-04 2017-11-07 安徽理工大学 一种渐变式基于流态化自适应机理卧式超高压前混合磨料射流发生装置

Also Published As

Publication number Publication date
CN107322482A (zh) 2017-11-07
LU101091A1 (en) 2019-03-19
LU101091B1 (en) 2019-05-27
CN107322482B (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
WO2019010907A1 (zh) 一种提高瓦斯抽放泵运行效率的闭式循环系统
CN106112821A (zh) 一种前混合磨料水射流连续作业系统及方法
CN205009063U (zh) 一种前混式水喷砂机
WO2019024559A1 (zh) 一种渐变式基于流态化自适应机理卧式超高压前混合磨料射流发生装置
CN108204382A (zh) 一种基于中心射流和环形射流相结合的复合射流泵
CN204594656U (zh) 旋流导引式高压纳米粒子气溶胶生成装置
CN106144603A (zh) 一种适用于粒状固体颗粒气力输送的复合式发料器
CN103977721B (zh) 一种储槽内固液混合介质循环搅拌系统
CN203695267U (zh) 喷枪
CN205128321U (zh) 一种大口径弯管内涂层涂覆设备
CN106076688B (zh) 一种粉体涂装设备及涂装工艺
CN208868966U (zh) 一种气力输送设备
CN205652837U (zh) 一种液固气耦合体射流喷出装置
CN207696361U (zh) 一种湿式压入式去毛刺喷砂机
CN207667590U (zh) 一种烟气净化药液自动配送装置
CN207667474U (zh) 一种烟气净化药液自动配液机构
CN102371547A (zh) 混浆浓度可调的磨料水射流清洗和除锈设备
CN105234052A (zh) 一种大口径弯管内涂层涂覆设备
CN108188937A (zh) 一种湿式压入式去毛刺喷砂机
CN203886439U (zh) 一种储槽内固液混合介质循环搅拌系统
CN104110239B (zh) 加砂混砂装置
CN209188693U (zh) 一种可溶性大豆多糖助溶剂无尘定量装置
CN208713723U (zh) 一种新型喷砂装置
CN112470612A (zh) 一种市政绿化用节能型喷播机
CN205892150U (zh) 一种适用于粒状固体颗粒气力输送的复合式发料器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18841339

Country of ref document: EP

Kind code of ref document: A1