WO2019024443A1 - 一种扫描驱动电路及装置 - Google Patents

一种扫描驱动电路及装置 Download PDF

Info

Publication number
WO2019024443A1
WO2019024443A1 PCT/CN2018/071912 CN2018071912W WO2019024443A1 WO 2019024443 A1 WO2019024443 A1 WO 2019024443A1 CN 2018071912 W CN2018071912 W CN 2018071912W WO 2019024443 A1 WO2019024443 A1 WO 2019024443A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
electrically connected
switch tube
unit
signal
Prior art date
Application number
PCT/CN2018/071912
Other languages
English (en)
French (fr)
Inventor
陈彩琴
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US15/910,447 priority Critical patent/US10665192B2/en
Publication of WO2019024443A1 publication Critical patent/WO2019024443A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a scan driving circuit and device.
  • the Gate Driver On Array (GOA) circuit is a driving method in which a scan driving circuit is formed on an array substrate of a conventional thin film transistor liquid crystal display to realize progressive scanning of a scanning line.
  • FIG. 1 is a circuit diagram of a prior art scan driving circuit.
  • FIG. 2 is a circuit timing diagram corresponding to the scan driving circuit.
  • the scan driving circuit uses a P-type thin film transistor (TFT), and by analyzing the circuit shown in FIG. 1, it can be seen that
  • the clock signal XCK is low and the capacitor C3 is charged, so that in the T1 phase, the capacitor C3 maintains the gate low of the transistor M4, and the transistor M4 is turned on. Since the clock signal CK is low during the T1 phase, the transistor M5 is turned on, the level of the scan signal of the previous stage is turned on, and the transistor M6 is also turned on, and the point of the point A is divided by the three TFTs to obtain a higher threshold value than the TFT. The level is such that transistor M2 and transistor M9 are turned off.
  • the level of the A point obtained by connecting a plurality of TFTs in series is unstable, which may cause the transistor M2 or the transistor M9 to be turned on, pulling up the level of the Q point, thereby causing an erroneous scan signal to be output.
  • the embodiment of the invention provides a scan driving circuit and device, which can avoid the instability of the control point caused by the series connection of the plurality of TFTs during the working process, and improve the correctness of the scan line output scan signal.
  • an embodiment of the present invention provides a scan driving circuit, including a plurality of scan drive units that are cascaded; and the Nth scan drive unit includes at least:
  • a first control module configured to receive an N-1th scan signal, and control a point at the first node according to the N-1 scan signal;
  • a second control module configured to control a point at the second node according to the N-1 scan signal, the first clock signal, the second clock signal, and the first constant voltage signal;
  • An output module configured to output an Nth-level scan signal as a level signal of the second clock signal when the level at the first node is an active level, and a signal at the second node is At the active level, the output signal of the Nth stage is the level signal of the first constant voltage signal; the level at the first node is different from the level at the second node;
  • the second control module includes a first switch unit, a second switch unit, a potential maintaining unit, and a first switch control unit; the first control end of the first switch unit and the first end electrically connect the first clock signal The second control end of the first switch unit is electrically connected to the first switch control unit; the second end of the first switch unit is connected to the first end of the second switch unit, and the second switch unit The second end is connected to the first constant voltage signal; the second node is connected to the common end of the first switch unit and the second switch unit;
  • the first end of the potential maintaining unit is electrically connected to the first constant voltage signal, and the second end of the potential maintaining unit is electrically connected to the second node for maintaining a level of the second node;
  • the N-1th scan signal is electrically connected to the control end of the second switch unit, and the first switch control unit is configured to use the second clock signal, the N-1th scan signal, and the The first constant voltage signal controls the first switching unit through the second control end of the first switching unit, such that the first switching unit and the second switching unit are not turned on at the same time.
  • an embodiment of the present invention further provides an array substrate, wherein the array substrate comprises any one of the scan driving circuits according to the first aspect.
  • an embodiment of the present invention further provides a display panel, the display panel comprising an array substrate, wherein the array substrate comprises any one of the scan driving circuits according to the first aspect.
  • the scan driving circuit includes a plurality of scan drive units that are cascaded;
  • the Nth scan drive unit includes at least: a first control module, a second control module, and an output module
  • the second control module includes the first a switching unit, a second switching unit, a potential maintaining unit, and a first switching control unit
  • the N-1th scanning signal is electrically connected to a control end of the second switching unit
  • the first switching control unit is used to Controlling the first switching unit by the second control end of the first switching unit according to the second clock signal, the N-1th scanning signal, and the first constant voltage signal, so that the first The switch unit and the second switch unit are not turned on at the same time, thereby preventing the potential of the control point caused by the series connection of the plurality of TFTs during the operation of the scan circuit from being unstable, and improving the correctness of the scan line output scan signal.
  • FIG. 1 is a schematic circuit diagram of a scan driving circuit provided by the prior art
  • FIG. 2 is a schematic diagram of a circuit structure of a scan driving unit provided by the prior art
  • FIG. 3 is a schematic structural diagram of a circuit of a scan driving circuit according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a circuit of a scan driving unit according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a first circuit of a first control module according to an embodiment of the present invention.
  • FIG. 6 is a first circuit diagram of another first control module according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a first circuit of a first switching unit according to an embodiment of the present invention.
  • FIG. 8 is a schematic circuit diagram of a first switch control unit according to an embodiment of the present invention.
  • FIG. 9 is a schematic circuit diagram of an output module according to an embodiment of the present invention.
  • FIG. 10 is a schematic circuit diagram of a scan driving circuit according to an embodiment of the present invention.
  • FIG. 11 is a circuit timing diagram of a scan driving circuit according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a circuit structure of a scan driving circuit according to an embodiment of the present invention.
  • the GOA circuit includes a display panel.
  • the GOA circuit includes a plurality of cascaded GOA units, setting N to be a positive integer, and the Nth stage GOA unit includes an Nth-stage scan driving circuit for driving the Nth-th scan line G(N) of the display region.
  • FIG. 4 is a schematic structural diagram of a circuit of a scan driving unit according to an embodiment of the present invention.
  • the scan driving unit includes at least:
  • the first control module 410 is configured to receive the N-1th scan signal G(N-1), and control a point at the first node Q(N) according to the N-1 scan signal;
  • the second control module 420 is configured to control the second node P(N) according to the (N-1)th scan signal G(N-1), the first clock signal CK1, the second clock signal CK2, and the first constant voltage signal VGH. Point at the place;
  • the output module 430 is configured to output, when the level of the first node Q(N) is an active level, the Nth-level scan signal G(N) is a level signal of the second clock signal CK2, and When the signal at the second node P(N) is an active level, the Nth-stage scan signal G(N) is output as a level signal of the first constant voltage signal VGH; the first node Q(N) Is effective when the level at the second node P(N) is different;
  • the second control module 420 includes a first switch unit 421, a second switch unit 422, a potential maintaining unit 423, and a first switch control unit 424.
  • the first control end of the first switch unit 421 and the first end are electrically connected.
  • the first clock signal CK1 the second control end of the first switch unit 421 is electrically connected to the first switch control unit 424;
  • the second end of the first switch unit 421 is connected to the second switch unit 422
  • the first end of the second switch unit 422 is connected to the first constant voltage signal VGH;
  • the second node P(N) is connected to the first switch unit 421 and the second switch unit
  • the first end of the potential maintaining unit 423 is electrically connected to the first constant voltage signal VGH, and the second end of the potential maintaining unit 423 is electrically connected to the second node P(N) for maintaining the second The level of node P(N);
  • the N-1th scan signal G(N-1) is electrically connected to the control end of the second switch unit 422, and the first switch control unit 424 is configured to use the second clock signal CK2 according to the second
  • the N-1 stage scan signal G(N-1) and the first constant voltage signal VGH are controlled by the second control end of the first switching unit 421 to the first switching unit 421 such that the first switching unit The 421 is not turned on at the same time as the second switching unit 422.
  • the scan driving circuit includes a plurality of scan drive units that are cascaded;
  • the Nth scan drive unit includes at least: a first control module, a second control module, and an output module
  • the second control module includes the first a switching unit, a second switching unit, a potential maintaining unit, and a first switching control unit
  • the N-1th scanning signal is electrically connected to a control end of the second switching unit
  • the first switching control unit is used to Controlling the first switching unit by the second control end of the first switching unit according to the second clock signal, the N-1th scanning signal, and the first constant voltage signal, so that the first The switch unit and the second switch unit are not turned on at the same time, thereby preventing the potential of the control point caused by the series connection of the plurality of TFTs during the operation of the scan circuit from being unstable, and improving the correctness of the scan line output scan signal.
  • FIG. 5 is a schematic circuit diagram of a first control module according to an embodiment of the present invention.
  • the first control module 500 includes a first switch tube T1 and a second switch tube T2. And a first capacitor C1, wherein
  • the source and the gate of the first switch T1 are electrically connected to the N-1th scan signal G(N-1); the drain of the first switch T1 is electrically connected to the first capacitor C1.
  • the first end of the first capacitor C1 is electrically connected to the output end of the output module 430; the first node Q(N) is the first end of the first capacitor C1;
  • the source of the switch T2 is electrically connected to the drain of the first switch T1, the drain of the second switch T2 is electrically connected to the first constant voltage signal VGH; the gate of the third switch T3
  • the second node P(N) is electrically connected.
  • FIG. 6 is a schematic circuit diagram of another first control module according to an embodiment of the present invention.
  • the first control module 600 includes a first switch tube T1 and a second switch tube. T2, a third switch tube T3, and a first capacitor C1; wherein
  • the drain of the first switch T1 is electrically connected to the source of the third switch T3, and the drain of the third switch T3 is electrically connected to the first end of the first capacitor C1;
  • the second segment of the capacitor C1 is electrically connected to the output end of the output module 430;
  • the first node Q(N) is the first end of the first capacitor C1;
  • the gate of the third switch transistor T3 is electrically connected a second constant voltage signal VGL;
  • the second constant voltage signal VGL controls the conduction of the third switching tube T3;
  • the source of the second switching tube T2 is electrically connected to the first switching tube T1 and the first a common end of the three switch tubes T3, the drain of the second switch tube T2 is electrically connected to the first constant voltage signal VGH;
  • the gate of the third switch tube T3 is electrically connected to the second node P(N) .
  • FIG. 7 is a schematic diagram of a first circuit of a first switch unit according to an embodiment of the present invention.
  • the first switch unit 700 includes a fourth switch tube T4 and a fifth. Switch tube T5; among them,
  • the first clock signal CK1 is electrically connected to the source of the fourth switch tube T4, the drain of the fourth switch tube T4 is electrically connected to the source of the fifth switch tube T5; the fifth switch tube T5 The drain is electrically connected to the second node P(N); the gate of the fourth switch T4 is the second control end of the first switch T1, and is electrically connected to the first switch control unit 424; The gate of the fifth switch T5 is the first control end of the first switch T1, and is electrically connected to the first clock signal CK1.
  • the second switch unit 422 includes a sixth switch tube T6, and the source of the sixth switch tube T6 is electrically connected to the second end of the first switch unit 421; the sixth switch The drain of the transistor T6 is electrically connected to the first constant voltage signal VGH; the gate of the sixth switch transistor T6 is electrically connected to the (N-1)th scan signal G(N-1).
  • the potential maintaining unit 423 includes a second capacitor C2; the first end of the second capacitor C2 is electrically connected to the second node P(N), and the second capacitor C2 is second.
  • the terminal electrically connects the first constant voltage signal VGH.
  • FIG. 8 is a schematic circuit diagram of a first switch control unit according to an embodiment of the present invention.
  • the first switch control unit 800 includes a seventh switch tube T7 and an eighth switch. a tube T8, a ninth switch tube T9 and a third capacitor C3; wherein
  • the source and the gate of the seventh switch T7 are electrically connected to the second clock signal CK2; the drain of the seventh switch T7 is electrically connected to the second control end of the first switch unit 421 and the a first end of the third capacitor C3; a second end of the third capacitor C3 is electrically connected to the first constant voltage signal VGH; a source of the eighth switch tube T8 is electrically connected to the seventh switch tube T7 a common end of the third capacitor C3, a drain of the eighth switch T8 is electrically connected to the first constant voltage signal VGH, and a gate of the eighth switch T8 is electrically connected to the N-1th stage a scan signal G(N-1); a source of the ninth switch T9 is electrically connected to the first constant voltage signal VGH, and a drain of the ninth switch T9 is electrically connected to the first switch unit 421
  • the second control terminal and the second node P(N), the gate point of the ninth switch T9 is connected to the N-1th scan signal G(N-1).
  • FIG. 9 is a schematic circuit diagram of an output module according to an embodiment of the present invention.
  • the output module 900 includes a tenth switch tube T10 and an eleventh switch tube T11.
  • the source of the tenth switch tube T10 is electrically connected to the second clock signal CK2, and the drain of the tenth switch tube T10 is electrically connected to the source of the eleventh switch tube T11, the eleventh switch
  • the drain of the transistor T11 is electrically connected to the first constant voltage signal VGH;
  • the gate of the tenth switch transistor T10 is electrically connected to the first node Q(N);
  • the gate of the eleventh switch transistor T11 is electrically The second node P(N) is connected;
  • the common end of the tenth switch tube T10 and the eleventh switch tube T11 is an output end of the Nth stage scan signal G(N).
  • FIG. 10 is a schematic circuit diagram of a scan driving circuit according to an embodiment of the present invention.
  • the switching transistors shown in FIG. 5 to FIG. 10 are all P-type transistors (the source and the drain are turned on when the gate is at a low level), but in other embodiments of the present invention, an N-type transistor can be used. In place of some or all of the transistors in the figure, the source and the drain are turned on when the gate is at a high level, which is not limited in the present invention.
  • the connection mode of the source and the drain of each transistor can be determined according to the type of the transistor selected, and when the transistor has a structure in which the source and the drain are symmetric, the source and the drain can be regarded as two which are not particularly distinguished. Electrodes, which are well known to those skilled in the art, are not described herein.
  • first clock signal CK1, the second clock signal CK2, the first constant voltage signal VGH, the second constant voltage signal VGL, and the initial scan signal and the switch tube in the scan driving circuit when the switch tube is a P-type transistor The first clock signal CK1, the second clock signal CK2, the first constant voltage signal VGH, the second constant voltage signal VGL, and the initial scan signal are opposite in polarity in the scan driving circuit in the case of the N-type transistor.
  • FIG. 11 is a circuit timing diagram for the scan driving circuit shown in FIG. In each action phase, the first constant voltage signal VGH is always at a high level; the second constant voltage signal VGL is always at a low level, and the third switching transistor T3 is always in an on state.
  • the N-1th scan signal G(N-1) is at a low level, and the first switch transistor T1, the sixth switch transistor T6, the eighth switch transistor T8, and the ninth switch are turned on.
  • the Nth scan line inputs a high level of the second clock signal CK2 at this time, and the first capacitor C1 is charged.
  • the ninth switching transistor T9 is turned on, and the high level of the first constant voltage signal VGH is input to the gate of the fourth switching transistor T4, although the third capacitor C3 and the second capacitor C2 are charged in the previous active phase, at the first constant Under the action of the high level of the voltage signal VGH, the fourth switching transistor T4 is turned off, preventing the low level of the first clock signal CK1 from being input to the second node P(N).
  • the high level of the first constant voltage signal VGH is input to the second node P(N), and the level of the second node P(N) is pulled up, and the eleventh switch tube T11 and the second switch tube T2 are both cut off, preventing the first A high level of a constant voltage signal VGH is input to the scan line. At this time, the second capacitor C2 and the third capacitor C3 are discharged.
  • the N-1th scanning signal G(N-1) is at a high level, and the first switching transistor T1, the sixth switching transistor T6, the eighth switching transistor T8, and the ninth switching transistor T9 All are closed.
  • the first clock signal CK1 is at a high level, and the fifth switching transistor T5 is turned off.
  • the second clock signal CK2 is at a low level, the seventh switch tube T7 and the fourth switch tube T4 are turned on, the input of the second clock signal CK2 is input to the second node P(N), and the power of the second node P(N) is pulled down.
  • the eleventh switch tube T11 and the second switch tube T2 are turned on, and the Nth scan line inputs the high level of the first constant voltage signal VGH, the second capacitor C2 is charged, and the third capacitor C3 is charged.
  • the second switch tube T2 and the third switch tube T3 are turned on, the high level of the first constant voltage signal VGH is input to the first node Q(N), the level of the first node Q(N) is pulled up, and the tenth switch The tube T10 is turned off, and the first capacitor C1 is discharged.
  • the N-1th scanning signal G(N-1) is at a high level, and the first switching transistor T1, the sixth switching transistor T6, the eighth switching transistor T8, and the ninth switching transistor T9 All are closed.
  • the second clock signal CK2 is at a high level, and the seventh switch tube T7 is turned off; since the second capacitor C2 and the third capacitor C3 are charged in the upper stage, the gate of the fourth switch tube T4 is maintained at a low level, The fourth switch tube T4 is turned on; the first clock signal CK1 is low level, and the fifth switch tube T5 is turned on, so that the low level of the first clock signal CK1 is input to the second node P(N), and the second capacitor C2 is at The upper stage is charged to maintain the low level of the second node P(N), the second switch tube T2 and the eleventh switch tube T11 are both turned on, and the Nth scan line inputs the high voltage of the first constant voltage signal VGH at this time. level.
  • the second switch tube T2 and the third switch tube T3 are turned on, the high level of the first constant voltage signal VGH is input to the first node Q(N), the level of the first node Q(N) is pulled up, and the tenth switch Tube T10 is cut off.
  • the N-1th scanning signal G(N-1) is at a high level, and the first switching transistor T1, the sixth switching transistor T6, the eighth switching transistor T8, and the ninth switching transistor T9 All are closed.
  • the second clock signal CK2 is at a low level, the seventh switch tube T7 and the fourth switch tube T4 are both turned on, the low level of the second clock signal CK2 is input to the second node P(N), and the second node P is pulled down ( The level of N), the second switch tube T2, and the eleventh switch tube T11 are both turned on; although the fourth switch tube T4 is turned on, the high level of the first clock signal CK1 and the fifth switch tube T5 are turned off.
  • the high level of the first clock signal CK1 cannot be input to the second node P(N), and the Nth stage scan line inputs the high level of the first constant voltage signal VGH at this time.
  • the second capacitor C2 and the third capacitor C3 are charged and maintained in a charged state.
  • the second switch tube T2 and the third switch tube T3 are turned on, and the high level of the first constant voltage signal VGH is input to the first node Q(N), and the level of the first node Q(N) is pulled up, and the tenth The switch tube T10 is turned off.
  • high level and low level in this document refer to two logic states represented by the level height range at a certain circuit node position, respectively. It can be understood that the specific level height range can be set as needed in a specific application scenario, and the present invention does not limit this.
  • pulse-up in this context refers to raising the level at the corresponding circuit node to a high level.
  • pulse-down refers to lowering the level at the corresponding circuit node to a low level. Level. It can be understood that the above-mentioned “pull-up” and “pull-down” can be realized by the directional movement of the electric charge, and thus can be realized by an electronic component having a corresponding function or a combination thereof, which is not limited by the present invention.
  • an embodiment of the present invention provides an array substrate including the scan driving circuit of any of the above. It will be appreciated that the scan drive circuit can be disposed outside of the display area to form a GOA circuit structure and has the advantages of any of the scan drive circuits described above.
  • an embodiment of the present invention provides a display device including the array substrate of any of the above, and thus has the advantages of any of the above array substrates.
  • the display device in this embodiment may be any product or component having a display function, such as a display, a mobile phone, a tablet computer, a television, a notebook computer, a digital photo frame, a navigator, and the like.
  • the terms “mounted,” “connected,” and “connected” are used in a broad sense, and may be, for example, a fixed connection, a detachable connection, or an integral connection; it may be a mechanical connection, It can also be an electrical connection; it can be directly connected, or it can be connected indirectly through an intermediate medium, which can be the internal connection of two components.
  • the specific meaning of the above terms in the present invention can be understood on a case-by-case basis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种扫描驱动电路及装置,该扫描驱动电路包括多级联的多个扫描驱动单元;第N级扫描驱动单元至少包括:第一控制模块(410)、第二控制模块(420)以及输出模块(430),第二控制模块(420)包括第一开关单元(431)、第二开关单元(432)、电位维持单元(433)以及第一开关控制单元(434),其中,第N-1级扫描信号(G(N-1))电连接所述第二开关单元(432)的控制端,所述第一开关控制单元(434)用于根据第二时钟信号(CK2)、所述第N-1级扫描信号(G(N-1))以及第一恒压信号(VGH)通过所述第一开关单元(431)的第二控制端控制所述第一开关单元(431),使得所述第一开关单元(431)与第二开关单元(432)不同时导通,进而避免扫描电路在工作过程中多个TFT的串联引起的控制点的电位不稳定,提高扫描线输出扫描信号的正确性。

Description

一种扫描驱动电路及装置 技术领域
本发明涉及显示技术领域,尤其涉及一种一种扫描驱动电路及装置。
背景技术
阵列基板行驱动(Gate Driver On Array,简称GOA)电路是在现有薄膜晶体管液晶显示器的阵列基板上制作扫描驱动电路,实现对扫描线逐行扫描的驱动方式。
请参阅图1,图1是现有技术中扫描驱动电路的电路图,请参阅图2,图2图1所示的扫描驱动电路对应的电路时序图。该扫描驱动电路采用P型薄膜晶体管(Thin Film Transistor,TFT),通过分析图1所示的电路,可见,
在T0阶段时,时钟信号XCK低电平,电容C3充电,使得在T1阶段时,电容C3维持晶体管M4栅极低电平,晶体管M4导通。由于在T1阶段时,时钟信号CK低电平,晶体管M5导通,上一级扫描信号电平,晶体管M6也导通,A点的点位通过三个TFT分压,得到较TFT阈值较高的电平,使得晶体管M2和晶体管M9关闭。然而,多个TFT串联得到的A点的电平不稳定,可能会造成晶体管M2或晶体管M9的导通,拉升Q点的电平,从而导致输出错误的扫描信号。
发明内容
本发明实施例提供了一种扫描驱动电路及装置,能够避免扫描电路在工作过程中多个TFT的串联引起的控制点的电位不稳定,提高扫描线输出扫描信号的正确性。
第一方面,本发明实施例提供了一种扫描驱动电路,包括多级联的多个扫描驱动单元;第N级扫描驱动单元至少包括:
第一控制模块,用于接收第N-1级扫描信号,并根据所述N-1扫描信号控制第一节点处的点位;
第二控制模块,用于根据所述N-1扫描信号、第一时钟信号、第二时钟信号以及第一恒压信号控制第二节点处的点位;
输出模块,用于在所述第一节点处的电平为有效电平时,输出第N级扫描信号为所述第二时钟信号的电平信号,以及,在所述第二节点处的信号为有效电平时,输出第N级扫描信号为所述第一恒压信号的电平信号;所述第一节点处的电平与所述第二节点处的电平不同时有效;其中,
所述第二控制模块包括第一开关单元、第二开关单元、电位维持单元以及第一开关控制单元;所述第一开关单元的第一控制端以及第一端电连接所述第一时钟信号,所述第一开关单元的第二控制端电连接所述第一开关控制单元;所述第一开关单元的第二端连接所述第二开关单元的第一端,所述第二开关单元的第二端连接所述第一恒压信号;所述第二节点连接所述第一开关单元与所述第二开关单元的公共端;
所述电位维持单元的第一端电连接所述第一恒压信号,所述电位维持单元的第二端电连接所述第二节点,用于维持所述第二节点的电平;
所述第N-1级扫描信号电连接所述第二开关单元的控制端,所述第一开关控制单元用于根据所述第二时钟信号、所述第N-1级扫描信号以及所述第一恒压信号通过所述第一开关单元的第二控制端控制所述第一开关单元,使得所述第一开关单元与第二开关单元不同时导通。
第二方面,本发明实施例还提供了一种阵列基板,所述阵列基板包括如第一方面所述的任一扫描驱动电路。
第三方面,本发明实施例还提供了一种显示面板,所述显示面板包括阵列基板,所述阵列基板包括如第一方面所述的任一扫描驱动电路。
本发明实施例中,该扫描驱动电路包括多级联的多个扫描驱动单元;第N级扫描驱动单元至少包括:第一控制模块、第二控制模块以及输出模块,第二控制模块包括第一开关单元、第二开关单元、电位维持单元以及第一开关控制单元,其中,所述第N-1级扫描信号电连接所述第二开关单元的控制端,所述第一开关控制单元用于根据所述第二时钟信号、所述第N-1级扫描信号以及所述第一恒压信号通过所述第一开关单元的第二控制端控制所述第一开关单元,使得所述第一开关单元与第二开关单元不同时导通,进而避免扫描电路在工作过程中多个TFT的串联引起的控制点的电位不稳定,提高扫描线输出扫描信号的正确性。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1是现有技术提供的一种扫描驱动电路的电路示意图;
图2是现有技术提供的一种扫描驱动单元的电路结构示意图;
图3是本发明实施例提供的一种扫描驱动电路的电路结构示意图;
图4是本发明实施例提供的一种扫描驱动单元的电路结构示意图;
图5是本发明实施例提供的一种第一控制模块的第一种电路示意图;
图6是本发明实施例提供的另一种第一控制模块的第一种电路示意图;
图7是本发明实施例提供的一种第一开关单元的第一种电路示意图;
图8是本发明实施例提供的一种第一开关控制单元的电路示意图;
图9是本发明实施例提供的一种输出模块的电路示意图;
图10是本发明实施例提供的一种扫描驱动电路的电路示意图;
图11是本发明实施例提供的一种扫描驱动电路的电路时序图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
请参阅图3,图3是本发明实施例提供的一种扫描驱动电路的电路结构示意图,该GOA电路包括可应用于显示面板。该GOA电路包括多个级联的GOA单元,设定N为正整数,第N级GOA单元包括第N级扫描驱动电路,用于驱动显示区域的第N级扫描线G(N)。
请参阅图4,图4是本发明实施例提供的一种扫描驱动单元的电路结构示意图,该扫描驱动单元至少包括:
第一控制模块410,用于接收第N-1级扫描信号G(N-1),并根据所述N-1扫描信号控制第一节点Q(N)处的点位;
第二控制模块420,用于根据所述第N-1扫描信号G(N-1)、第一时钟信号CK1、第二时钟信号CK2以及第一恒压信号VGH控制第二节点P(N)处的点 位;
输出模块430,用于在所述第一节点Q(N)处的电平为有效电平时,输出第N级扫描信号G(N)为所述第二时钟信号CK2的电平信号,以及,在所述第二节点P(N)处的信号为有效电平时,输出第N级扫描信号G(N)为所述第一恒压信号VGH的电平信号;所述第一节点Q(N)处的电平与所述第二节点P(N)处的电平不同时有效;其中,
所述第二控制模块420包括第一开关单元421、第二开关单元422、电位维持单元423以及第一开关控制单元424;所述第一开关单元421的第一控制端以及第一端电连接所述第一时钟信号CK1,所述第一开关单元421的第二控制端电连接所述第一开关控制单元424;所述第一开关单元421的第二端连接所述第二开关单元422的第一端,所述第二开关单元422的第二端连接所述第一恒压信号VGH;所述第二节点P(N)连接所述第一开关单元421与所述第二开关单元422的公共端;
所述电位维持单元423的第一端电连接所述第一恒压信号VGH,所述电位维持单元423的第二端电连接所述第二节点P(N),用于维持所述第二节点P(N)的电平;
所述第N-1级扫描信号G(N-1)电连接所述第二开关单元422的控制端,所述第一开关控制单元424用于根据所述第二时钟信号CK2、所述第N-1级扫描信号G(N-1)以及所述第一恒压信号VGH通过所述第一开关单元421的第二控制端控制所述第一开关单元421,使得所述第一开关单元421与第二开关单元422不同时导通。
本发明实施例中,该扫描驱动电路包括多级联的多个扫描驱动单元;第N级扫描驱动单元至少包括:第一控制模块、第二控制模块以及输出模块,第二控制模块包括第一开关单元、第二开关单元、电位维持单元以及第一开关控制单元,其中,所述第N-1级扫描信号电连接所述第二开关单元的控制端,所述第一开关控制单元用于根据所述第二时钟信号、所述第N-1级扫描信号以及所述第一恒压信号通过所述第一开关单元的第二控制端控制所述第一开关单元,使得所述第一开关单元与第二开关单元不同时导通,进而避免扫描电路在工作过程中多个TFT的串联引起的控制点的电位不稳定,提高扫描线输出扫描信 号的正确性。
本发明一实施例中,请参阅图5,图5是本发明实施例提供的一种第一控制模块的电路示意图,所述第一控制模块500包括第一开关管T1、第二开关管T2和第一电容C1,其中,
所述第一开关管T1的源极和栅极电连接所述第N-1级扫描信号G(N-1);所述第一开关管T1的漏极电连接所述第一电容C1的第一端,所述第一电容C1的第二段电连接所述输出模块430的输出端;所述第一节点Q(N)为所述第一电容C1的第一端;所述第二开关管T2的源极电连接所述第一开关管T1的漏极,所述第二开关管T2的漏极电连接所述第一恒压信号VGH;所述第三开关管T3的栅极电连接所述第二节点P(N)。
本发明一实施例中,请参阅图6,图6是本发明实施例提供的另一种第一控制模块的电路示意图,所述第一控制模块600包括第一开关管T1、第二开关管T2、第三开关管T3以及第一电容C1;其中,
所述第一开关管T1的漏极电连接所述第三开关管T3的源极,所述第三开关管T3的漏极电连接所述第一电容C1的第一端;所述第一电容C1的第二段电连接所述输出模块430的输出端;所述第一节点Q(N)为所述第一电容C1的第一端;所述第三开关管T3的栅极电连接第二恒压信号VGL;所述第二恒压信号VGL控制所述第三开关管T3的导通;所述第二开关管T2的源极电连接所述第一开关管T1与所述第三开关管T3的公共端,所述第二开关管T2的漏极电连接所述第一恒压信号VGH;所述第三开关管T3的栅极电连接所述第二节点P(N)。
本发明一实施例中,请参阅图7,图7是本发明实施例提供的一种第一开关单元的第一种电路示意图,所述第一开关单元700包括第四开关管T4和第五开关管T5;其中,
所述第一时钟信号CK1电连接所述第四开关管T4的源极,所述第四开关管T4的漏极电连接所述第五开关管T5的源极;所述第五开关管T5的漏极电连接所述第二节点P(N);所述第四开关管T4的栅极为所述第一开关管T1的第二控制端,电连接所述第一开关控制单元424;所述第五开关管T5的栅极为所述第一开关管T1的第一控制端,电连接所述第一时钟信号CK1。
本发明一实施例中,所述第二开关单元422包括第六开关管T6,所述第六开关管T6的源极电连接所述第一开关单元421的第二端;所述第六开关管T6的漏极电连接所述第一恒压信号VGH;所述第六开关管T6的栅极电连接所述第N-1级扫描信号G(N-1)。
本发明一实施例中,所述电位维持单元423包括第二电容C2;所述第二电容C2的第一端电连接所述第二节点P(N),所述第二电容C2的第二端电连接所述第一恒压信号VGH。
本发明一实施例中,请参阅图8,图8是本发明实施例提供的一种第一开关控制单元的电路示意图,所述第一开关控制单元800包括第七开关管T7、第八开关管T8、第九开关管T9和第三电容C3;其中,
所述第七开关管T7的源极和栅极电连接所述第二时钟信号CK2;所述第七开关管T7的漏极电连接所述第一开关单元421的第二控制端以及所述第三电容C3的第一端;所述第三电容C3的第二端电连接所述第一恒压信号VGH;所述第八开关管T8的源极电连接所述第七开关管T7与所述第三电容C3的公共端,所述第八开关管T8的漏极电连接所述第一恒压信号VGH,所述第八开关管T8的栅极电连接所述第N-1级扫描信号G(N-1);所述第九开关管T9的源极电连接所述第一恒压信号VGH,所述第九开关管T9的漏极电连接所述第一开关单元421的第二控制端以及所述第二节点P(N),所述第九开关管T9的栅极点连接所述第N-1级扫描信号G(N-1)。
本发明一实施例中,请参阅图9,图9是本发明实施例提供的一种输出模块的电路示意图,所述输出模块900包括第十开关管T10和第十一开关管T11;其中,
所述第十开关管T10的源极电连接所述第二时钟信号CK2,所述第十开关管T10的漏极电连接所述第十一开关管T11的源极,所述第十一开关管T11的漏极电连接所述第一恒压信号VGH;所述第十开关管T10的栅极电连接所述第一节点Q(N);所述第十一开关管T11的栅极电连接所述第二节点P(N);所述第十开关管T10与所述第十一开关管T11的公共端为所述第N级扫描信号G(N)的输出端。
请参阅图10,图10是本发明实施例提供的一种扫描驱动电路的电路示意 图。
需要说明的是,上述图5-图10所示的开关管均为P型晶体管(栅极为低电平时源极与漏极导通),但在本发明的其他实施例中可以用N型晶体管(栅极为高电平时源极与漏极导通)来代替图中的部分或全部晶体管,本发明对此不作限制。而且,每一晶体管源极与漏极的连接方式可以根据所选用的晶体管的类型进行确定,而在晶体管具有源极与漏极对称的结构时源极与漏极可以视为不作特别区分的两个电极,其是本领域技术人员所熟知的,在此不再赘述。
需要说明的是,开关管都为P型晶体管时的扫描驱动电路中第一时钟信号CK1、第二时钟信号CK2、第一恒压信号VGH、第二恒压信号VGL和初始扫描信号与开关管都为N型晶体管时的扫描驱动电路中对应的第一时钟信号CK1、第二时钟信号CK2、第一恒压信号VGH、第二恒压信号VGL和初始扫描信号极性相反。
下面以电路中开关管为PMOS型开关管为例,对本电路的实施方式进行具体说明:
请参阅图11,图11是针对图10所示的扫描驱动电路的电路时序图。在各个作用阶段,第一恒压信号VGH恒为高电平;第二恒压信号VGL恒为低电平,第三开关管T3恒为导通状态。
在第一作用阶段(t1),第N-1级扫描信号G(N-1)为低电平,导通第一开关管T1、第六开关管T6、第八开关管T8以及第九开关管T9;第N-1级扫描信号G(N-1)的低电平输入到第一节点Q(N),下拉第一节点Q(N)的电平,导通第十开关管T10,第N级扫描线输入此时第二时钟信号CK2的高电平,第一电容C1充电。
第九开关管T9导通,第一恒压信号VGH的高电平输入到第四开关管T4的栅极,尽管在上一作用阶段第三电容C3和第二电容C2充电,在第一恒压信号VGH的高电平的作用下,第四开关管T4截止,阻止第一时钟信号CK1的低电平输入到第二节点P(N)。第一恒压信号VGH的高电平输入到第二节点P(N),上拉第二节点P(N)的电平,第十一开关管T11、第二开关管T2都截止,阻止第一恒压信号VGH的高电平输入到扫描线。此时,第二电容C2、第三电 容C3放电。
在第二作用阶段(t2),第N-1级扫描信号G(N-1)为高电平,第一开关管T1、第六开关管T6、第八开关管T8以及第九开关管T9都截止。
第一时钟信号CK1为高电平,第五开关管T5截止。第二时钟信号CK2为低电平,第七开关管T7、第四开关管T4导通,第二时钟信号CK2的输入到第二节点P(N),下拉第二节点P(N)的电平,第十一开关管T11、第二开关管T2导通,第N级扫描线输入此时第一恒压信号VGH的高电平,第二电容C2充电、第三电容C3充电。
第二开关管T2、第三开关管T3导通,第一恒压信号VGH的高电平输入到第一节点Q(N),上拉第一节点Q(N)的电平,第十开关管T10截止,第一电容C1放电。
在第三作用阶段(t3),第N-1级扫描信号G(N-1)为高电平,第一开关管T1、第六开关管T6、第八开关管T8以及第九开关管T9都截止。
此时,第二时钟信号CK2处于高电平,第七开关管T7截止;由于第二电容C2、第三电容C3在上阶段充电,维持第四开关管T4的栅极处于低电平,第四开关管T4导通;第一时钟信号CK1低电平,第五开关管T5导通,使得第一时钟信号CK1的低电平输入到第二节点P(N),同时第二电容C2在上阶段充电,维持第二节点P(N)的低电平,第二开关管T2和第十一开关管T11都导通,第N级扫描线输入此时第一恒压信号VGH的高电平。
第二开关管T2、第三开关管T3导通,第一恒压信号VGH的高电平输入到第一节点Q(N),上拉第一节点Q(N)的电平,第十开关管T10截止。
在第四作用阶段(t4),第N-1级扫描信号G(N-1)为高电平,第一开关管T1、第六开关管T6、第八开关管T8以及第九开关管T9都截止。
第二时钟信号CK2为低电平,第七开关管T7和第四开关管T4都导通,第二时钟信号CK2的低电平输入到第二节点P(N),下拉第二节点P(N)的电平,第二开关管T2、第十一开关管T11、都导通;虽然第四开关管T4导通,然而 第一时钟信号CK1的高电平,第五开关管T5截止,使得第一时钟信号CK1的高电平不能输入到第二节点P(N),第N级扫描线输入此时第一恒压信号VGH的高电平。第二电容C2、第三电容C3充电保持充电状态。
第二开关管T2、第三开关管T3导通,第一恒压信号VGH的高电平输入到第一节点Q(N)处,上拉第一节点Q(N)的电平,第十开关管T10截止。
需要说明的是,本文中的“高电平”和“低电平”分别指的是某一电路节点位置处由电平高度范围代表的两种逻辑状态。可以理解的是,具体的电平高度范围可以在具体应用场景下根据需要进行设置,本发明对此不做限制。
与之对应的,本文中的“上拉”指的是使相应的电路节点处的电平上升至高电平,本文中的“下拉”指的是使相应的电路节点处的电平下降至低电平。可以理解的是,上述“上拉”与“下拉”均可以通过电荷的定向移动实现,因此可以具体由具有相应功能的电子元器件或其组合实现,本发明对此不做限制。
基于同样的发明构思,本发明实施例提供一种阵列基板,该阵列基板包括上述任意一种的扫描驱动电路。可以理解的是,该扫描驱动电路可以设置在显示区之外,以形成GOA电路结构,并具有上述任意一种扫描驱动电路所具有的优点。
基于同样的发明构思,本发明实施例提供了一种显示装置,该显示装置包括上述任意一种的阵列基板,因而具有上述任意一种阵列基板所具有的优点。需要说明的是,本实施例中的显示装置可以为:显示器、手机、平板电脑、电视机、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
在本发明的描述中需要说明的是,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含 义。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包括”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。

Claims (10)

  1. 一种扫描驱动电路,其中,包括多级联的多个扫描驱动单元;第N级扫描驱动单元至少包括:
    第一控制模块,用于接收第N-1级扫描信号,并根据所述N-1扫描信号控制第一节点处的点位;
    第二控制模块,用于根据所述N-1扫描信号、第一时钟信号、第二时钟信号以及第一恒压信号控制第二节点处的点位;
    输出模块,用于在所述第一节点处的电平为有效电平时,输出第N级扫描信号为所述第二时钟信号的电平信号,以及,在所述第二节点处的信号为有效电平时,输出第N级扫描信号为所述第一恒压信号的电平信号;所述第一节点处的电平与所述第二节点处的电平不同时有效;其中,
    所述第二控制模块包括第一开关单元、第二开关单元、电位维持单元以及第一开关控制单元;所述第一开关单元的第一控制端以及第一端电连接所述第一时钟信号,所述第一开关单元的第二控制端电连接所述第一开关控制单元;所述第一开关单元的第二端连接所述第二开关单元的第一端,所述第二开关单元的第二端连接所述第一恒压信号;所述第二节点连接所述第一开关单元与所述第二开关单元的公共端;
    所述电位维持单元的第一端电连接所述第一恒压信号,所述电位维持单元的第二端电连接所述第二节点,用于维持所述第二节点的电平;
    所述第N-1级扫描信号电连接所述第二开关单元的控制端,所述第一开关控制单元用于根据所述第二时钟信号、所述第N-1级扫描信号以及所述第一恒压信号通过所述第一开关单元的第二控制端控制所述第一开关单元,使得所述第一开关单元与第二开关单元不同时导通。
  2. 根据权利要求1所述的扫描驱动电路,其中,所述第一控制模块包括第一开关管、第二开关管和第一电容,其中,
    所述第一开关管的源极和栅极电连接所述第N-1级扫描信号;所述第一开关管的漏极电连接所述第一电容的第一端,所述第一电容的第二段电连接所述输出模块的输出端;所述第一节点为所述第一电容的第一端;所述第二开关管 的源极电连接所述第一开关管的漏极,所述第二开关管的漏极电连接所述第一恒压信号;所述第三开关管的栅极电连接所述第二节点。
  3. 根据权利要求1所述的扫描驱动电路,其中,所述第一控制模块包括第一开关管、第二开关管、第三开关管以及第一电容;其中,
    所述第一开关管的漏极电连接所述第三开关管的源极,所述第三开关管的漏极电连接所述第一电容的第一端;所述第一电容的第二段电连接所述输出模块的输出端;所述第一节点为所述第一电容的第一端;所述第三开关管的栅极电连接第二恒压信号;所述第二恒压信号控制所述第三开关管的导通;所述第二开关管的源极电连接所述第一开关管与所述第三开关管的公共端,所述第二开关管的漏极电连接所述第一恒压信号;所述第三开关管的栅极电连接所述第二节点。
  4. 根据权利要求1所述的扫描驱动电路,其中,所述第一开关单元包括第四开关管和第五开关管;其中,
    所述第一时钟信号电连接所述第四开关管的源极,所述第四开关管的漏极电连接所述第五开关管的源极;所述第五开关管的漏极电连接所述第二节点;所述第四开关管的栅极为所述第一开关管的第二控制端,电连接所述第一开关控制单元;所述第五开关管的栅极为所述第一开关管的第一控制端,电连接所述第一时钟信号。
  5. 根据权利要求1所述的扫描驱动电路,其中,所述第二开关单元包括第六开关管,所述第六开关管的源极电连接所述第一开关单元的第二端;所述第六开关管的漏极电连接所述第一恒压信号;所述第六开关管的栅极电连接所述第N-1级扫描信号。
  6. 根据权利要求1所述的方法,其中,所述电位维持单元包括第二电容;所述第二电容的第一端电连接所述第二节点,所述第二电容的第二端电连接所述第一恒压信号。
  7. 根据权利要求1所述的方法,其中,所述第一开关控制单元包括第七开关管、第八开关管、第九开关管和第三电容;其中,
    所述第七开关管的源极和栅极电连接所述第二时钟信号;所述第七开关管的漏极电连接所述第一开关单元的第二控制端以及所述第三电容的第一端;所 述第三电容的第二端电连接所述第一恒压信号;所述第八开关管的源极电连接所述第七开关管与所述第三电容的公共端,所述第八开关管的漏极电连接所述第一恒压信号,所述第八开关管的栅极电连接所述第N-1级扫描信号;所述第九开关管的源极电连接所述第一恒压信号,所述第九开关管的漏极电连接所述第一开关单元的第二控制端以及所述第二节点,所述第九开关管的栅极点连接所述第N-1级扫描信号。
  8. 根据权利要求1所述的方法,其中,所述输出模块包括第十开关管和第十一开关管;其中,
    所述第十开关管的源极电连接所述第二时钟信号,所述第十开关管的漏极电连接所述第十一开关管的源极,所述第十一开关管的漏极电连接所述第一恒压信号;所述第十开关管的栅极电连接所述第一节点;所述第十一开关管的栅极电连接所述第二节点;所述第十开关管与所述第十一开关管的公共端为所述第N级扫描信号的输出端。
  9. 一种阵列基板,其中,所述阵列基板包括如权利要求1所述的扫描驱动电路。
  10. 一种显示面板,其中,所述显示面板包括阵列基板,所述阵列基板如权利要求1所述的扫描驱动电路。
PCT/CN2018/071912 2017-07-31 2018-01-09 一种扫描驱动电路及装置 WO2019024443A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/910,447 US10665192B2 (en) 2017-07-31 2018-03-02 Scan driving circuit and apparatus thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710639385.X 2017-07-31
CN201710639385.XA CN107358927B (zh) 2017-07-31 2017-07-31 一种扫描驱动电路及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/910,447 Continuation US10665192B2 (en) 2017-07-31 2018-03-02 Scan driving circuit and apparatus thereof

Publications (1)

Publication Number Publication Date
WO2019024443A1 true WO2019024443A1 (zh) 2019-02-07

Family

ID=60285886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071912 WO2019024443A1 (zh) 2017-07-31 2018-01-09 一种扫描驱动电路及装置

Country Status (2)

Country Link
CN (1) CN107358927B (zh)
WO (1) WO2019024443A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107358927B (zh) * 2017-07-31 2019-07-23 武汉华星光电半导体显示技术有限公司 一种扫描驱动电路及装置
US10665192B2 (en) 2017-07-31 2020-05-26 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Scan driving circuit and apparatus thereof
CN107403610B (zh) * 2017-09-21 2019-10-11 武汉华星光电半导体显示技术有限公司 一种扫描goa电路
CN110503927B (zh) * 2018-05-16 2020-11-10 京东方科技集团股份有限公司 移位寄存器单元及其驱动方法、栅极驱动电路及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150029169A1 (en) * 2013-07-24 2015-01-29 Samsung Display Co., Ltd. Scan lines driver and organic light emmiting display device using the same
CN104537979A (zh) * 2015-01-28 2015-04-22 京东方科技集团股份有限公司 移位寄存器及其驱动方法、栅极驱动电路
CN105206238A (zh) * 2015-10-15 2015-12-30 武汉华星光电技术有限公司 栅极驱动电路及应用该电路的显示装置
CN106409262A (zh) * 2016-11-28 2017-02-15 深圳市华星光电技术有限公司 Goa驱动电路及液晶显示装置
CN107358927A (zh) * 2017-07-31 2017-11-17 武汉华星光电半导体显示技术有限公司 一种扫描驱动电路及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103680458B (zh) * 2014-01-02 2016-03-30 昆山龙腾光电有限公司 栅极驱动电路
TWI521490B (zh) * 2014-04-02 2016-02-11 友達光電股份有限公司 顯示面板與閘極驅動器
KR102268965B1 (ko) * 2014-12-04 2021-06-24 엘지디스플레이 주식회사 게이트 쉬프트 레지스터 및 이를 이용한 표시 장치
CN104505036B (zh) * 2014-12-19 2017-04-12 深圳市华星光电技术有限公司 一种栅极驱动电路
CN105261343B (zh) * 2015-11-24 2018-01-02 武汉华星光电技术有限公司 一种goa驱动电路
CN105390116B (zh) * 2015-12-28 2018-04-20 深圳市华星光电技术有限公司 栅极驱动电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150029169A1 (en) * 2013-07-24 2015-01-29 Samsung Display Co., Ltd. Scan lines driver and organic light emmiting display device using the same
CN104537979A (zh) * 2015-01-28 2015-04-22 京东方科技集团股份有限公司 移位寄存器及其驱动方法、栅极驱动电路
CN105206238A (zh) * 2015-10-15 2015-12-30 武汉华星光电技术有限公司 栅极驱动电路及应用该电路的显示装置
CN106409262A (zh) * 2016-11-28 2017-02-15 深圳市华星光电技术有限公司 Goa驱动电路及液晶显示装置
CN107358927A (zh) * 2017-07-31 2017-11-17 武汉华星光电半导体显示技术有限公司 一种扫描驱动电路及装置

Also Published As

Publication number Publication date
CN107358927A (zh) 2017-11-17
CN107358927B (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
WO2018161528A1 (zh) 移位寄存器单元及其驱动方法、栅极驱动电路和显示装置
WO2018209938A1 (zh) 移位寄存器单元、栅极驱动电路、显示器以及栅极驱动方法
WO2017107285A1 (zh) 用于窄边框液晶显示面板的goa电路
JP2020035510A (ja) 半導体装置
WO2018205543A1 (zh) 移位寄存器、其驱动方法、栅极集成驱动电路及显示装置
WO2018040322A1 (zh) 一种goa驱动单元及驱动电路
US7406146B2 (en) Shift register circuit
WO2017124721A1 (zh) 移位寄存器、栅极驱动电路及显示装置
WO2017107286A1 (zh) 基于ltps半导体薄膜晶体管的goa电路
WO2018209937A1 (zh) 移位寄存器及其驱动方法、栅极驱动电路、显示装置
WO2017049866A1 (zh) 移位寄存器单元及驱动方法、行扫描驱动电路、显示装置
WO2018059159A1 (zh) 移位寄存器单元、驱动方法、栅极驱动电路及显示装置
WO2018120330A1 (zh) 栅极驱动电路以及液晶显示装置
WO2014173025A1 (zh) 移位寄存器单元、栅极驱动电路与显示器件
WO2019024443A1 (zh) 一种扫描驱动电路及装置
WO2016123991A1 (zh) 移位寄存器及其驱动方法、栅极驱动电路、显示装置
KR20190035855A (ko) Goa 회로
WO2016061994A1 (zh) 移位寄存器、驱动方法、栅极驱动电路和显示装置
WO2017096704A1 (zh) 基于ltps半导体薄膜晶体管的goa电路
US11170696B2 (en) Gate drive circuit and display panel
WO2017107294A1 (zh) Goa电路及液晶显示装置
WO2019024442A1 (zh) 一种扫描驱动电路及装置
WO2019153864A1 (zh) 移位寄存器单元及其控制方法、栅极驱动电路、显示装置
WO2016150103A1 (zh) 一种移位寄存器单元、栅极驱动电路及显示装置
CN107516505B (zh) 移位寄存器单元及其驱动方法、栅极驱动电路和显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18842242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18842242

Country of ref document: EP

Kind code of ref document: A1