WO2019024382A1 - 光学膜、偏光片、背光模组及显示装置 - Google Patents
光学膜、偏光片、背光模组及显示装置 Download PDFInfo
- Publication number
- WO2019024382A1 WO2019024382A1 PCT/CN2017/116119 CN2017116119W WO2019024382A1 WO 2019024382 A1 WO2019024382 A1 WO 2019024382A1 CN 2017116119 W CN2017116119 W CN 2017116119W WO 2019024382 A1 WO2019024382 A1 WO 2019024382A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- optical film
- microstructure
- atomized
- film according
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133606—Direct backlight including a specially adapted diffusing, scattering or light controlling members
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/021—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/0236—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
- G02B5/0242—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/04—Prisms
- G02B5/045—Prism arrays
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133606—Direct backlight including a specially adapted diffusing, scattering or light controlling members
- G02F1/133607—Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
Definitions
- the present invention relates to the field of optical technologies, and in particular to an optical film, a polarizer, a backlight module, and a display device.
- LCDs active matrix liquid crystal displays
- PDPs plasma display panels
- ELs electroluminescent displays
- FEDs field emission displays
- LCDs are widely used in notebook computers, monitors, TVs, etc. instead of cathode ray tubes (CRTs) because of their high contrast and characteristics suitable for displaying moving images.
- CTRs cathode ray tubes
- the light source is not included in the LCD and therefore requires an additional light source.
- a backlight module including a light source is disposed under the liquid crystal panel to provide light to the liquid crystal panel, so that the LCD can display an image through light from the backlight module.
- the backlight module generally includes a light source, a light guide plate, a diffusion sheet and an optical film.
- the optical film is disposed on the surface of the diffusion sheet for improving the brightness of the backlight module.
- the LCD display portion and the backlight module are two independent modules, each having a housing, resulting in a large volume or thickness of the display device as a whole.
- the optical film disposed in the backlight module in the prior art has the problem of uneven light emission while having excellent light extraction efficiency, thereby affecting the display effect of the LCD having the backlight module.
- the main object of the present invention is to provide an optical film, a polarizer, a backlight module, and a display device to solve the problem that the optical film in the prior art cannot simultaneously ensure light extraction efficiency and light uniformity.
- an optical film comprising an atomized coating layer, an optical composite layer, a first bonding layer, a first substrate layer and an atomized bonding layer which are sequentially stacked.
- the optical composite layer comprises a first microstructure layer and a second microstructure layer which are sequentially stacked in a direction away from the atomized coating layer, the first microstructure layer and the second microstructure layer being respectively selected from the group consisting of a light collecting layer and light diffusion Any one of the layers, and the haze values of the atomized coating layer and the atomized bonding layer are each independently from 1 to 99%.
- the haze value of the atomized bonding layer is 2 to 15%, or the haze value of the atomized bonding layer is 10 to 99%, and the haze value of the atomized bonding layer is preferably 60-90%. .
- the adhesion of the atomized bonding layer is greater than 50 gf/in, preferably greater than 150 gf/in.
- the atomized bonding layer comprises a glue layer and diffusion particles dispersed in the glue layer.
- the above-mentioned diffusion particles include organic particles and/or inorganic particles, and preferably the organic particles are selected from any one or more of polyolefin, polystyrene, polyamide, polyurethane and melamine, and preferably the inorganic particles are selected from silicon and SiO. 2 , any one or more of TiO 2 , Al 2 O 3 and ZrO 2 .
- the material forming the adhesive layer comprises a pressure sensitive adhesive and/or an OCA adhesive, preferably the pressure sensitive adhesive and/or the OCA adhesive is selected from the group consisting of an acrylate adhesive, a synthetic rubber adhesive, a urethane adhesive, and an epoxy resin adhesive. And one or more of the polyester gums.
- the atomization bonding layer has a thickness of 10 to 100 ⁇ m, preferably 15 to 50 ⁇ m.
- the atomized coating layer has a haze value of 2 to 15%.
- the raw material forming the atomized coating layer comprises an organic material and/or an inorganic material, preferably the organic material is selected from any one or more of polyolefin, polystyrene, polyamide, polyurethane and melamine, preferably inorganic materials. Any one or more of SiO 2 , TiO 2 , Al 2 O 3 , silicon, and ZrO 2 .
- the concentrating layer is a prism layer.
- the prism structure in the prism layer has a triangular, trapezoidal, semi-circular or arcuate cross section; and the light diffusion layer is a lens layer.
- the optical composite layer further includes: a second substrate layer disposed between the atomized coating layer and the first microstructure layer, preferably the second substrate layer and the first microstructure layer are integrally formed; the third substrate a layer disposed between the first microstructure layer and the second microstructure layer, preferably the third substrate layer and the second microstructure layer are integrally formed; the second bonding layer is disposed on the first microstructure layer and the third base Between the layers.
- the optical composite layer further includes a third microstructure layer disposed on a side of the second microstructure layer away from the atomized coating layer, and the third microstructure layer is a light collecting layer, preferably optical composite
- the layer further includes a fourth substrate layer disposed on either side of the third microstructure layer, and a third bonding layer disposed on the fourth substrate layer away from the third micro layer
- One side of the structural layer, more preferably the fourth base material layer is integrally formed with the third microstructured layer.
- the second microstructure layer is a first prism layer
- the third microstructure layer is a second prism layer, and the extending direction of each prism structure in the first prism layer and the extending direction of each prism structure in the second prism layer The angle is greater than 0°.
- the optical film further includes a release layer disposed on a side of the atomized bonding layer away from the first substrate layer.
- an optical film comprising an optical composite layer, a first bonding layer, a first substrate layer and a bonding layer which are sequentially stacked, wherein the optical composite layer comprises a stacked layer A microstructure layer and a second microstructure layer, the first microstructure layer and the second microstructure layer being respectively selected from any one of a light collecting layer and a light diffusion layer.
- the adhesive layer is an atomized bonding layer.
- the optical film further includes an atomized coating disposed on a side of the optical composite layer away from the first bonding layer.
- the optical film further comprises an atomized coating, and the haze values of the atomized coating and the atomized bonding layer are each independently from 1 to 99%.
- the haze value of the atomized bonding layer is 2 to 15%, or the haze value of the atomized bonding layer is 10 to 99%, and the haze value of the atomized bonding layer is preferably 60-90%. .
- the adhesion of the atomized bonding layer is greater than 50 gf/in, preferably greater than 150 gf/in.
- the atomized bonding layer comprises a glue layer and diffusion particles dispersed in the glue layer.
- the above-mentioned diffusion particles include organic particles and/or inorganic particles, and preferably the organic particles are selected from any one or more of polyolefin, polystyrene, polyamide, polyurethane and melamine, and preferably the inorganic particles are selected from silicon and SiO. 2 , any one or more of TiO 2 , Al 2 O 3 and ZrO 2 .
- the material forming the adhesive layer comprises a pressure sensitive adhesive and/or an OCA adhesive, preferably the pressure sensitive adhesive and/or the OCA adhesive is selected from the group consisting of an acrylate adhesive, a synthetic rubber adhesive, a urethane adhesive, and an epoxy resin adhesive. And one or more of the polyester gums.
- the atomization bonding layer has a thickness of 10 to 100 ⁇ m, preferably 15 to 50 ⁇ m.
- the atomized coating layer has a haze value of 2 to 15%.
- the raw material forming the atomized coating layer comprises an organic material and/or an inorganic material, preferably the organic material is selected from any one or more of polyolefin, polystyrene, polyamide, polyurethane and melamine, preferably inorganic materials. Any one or more of SiO 2 , TiO 2 , Al 2 O 3 , silicon, and ZrO 2 .
- the concentrating layer is a prism layer.
- the prism structure in the prism layer has a triangular, trapezoidal, semi-circular or arcuate cross section; and the light diffusion layer is a lens layer.
- the optical composite layer further includes: a second substrate layer disposed between the atomized coating layer and the first microstructure layer, preferably the second substrate layer and the first microstructure layer are integrally formed; the third substrate a layer disposed between the first microstructure layer and the second microstructure layer, preferably the third substrate layer and the second microstructure layer are integrally formed; the second bonding layer is disposed on the first microstructure layer and the third base Between the layers.
- the optical composite layer further includes a third microstructure layer disposed on a side of the second microstructure layer away from the atomized coating layer, and the third microstructure layer is a light collecting layer, preferably optical composite
- the layer further includes a fourth substrate layer disposed on either side of the third microstructure layer, and a third bonding layer disposed on the fourth substrate layer away from the third micro layer
- One side of the structural layer, more preferably the fourth base material layer is integrally formed with the third microstructured layer.
- the second microstructure layer is a first prism layer
- the third microstructure layer is a second prism layer, and the extending direction of each prism structure in the first prism layer and the extending direction of each prism structure in the second prism layer The angle is greater than 0°.
- the optical film further includes a release layer disposed on a side of the atomized bonding layer away from the first substrate layer.
- a polarizer comprising a polarizing film and an optical film, wherein the optical film is the optical film described above, and an atomized bonding layer in the optical film is disposed on a surface of the polarizing film; or the optical The film is the above-described optical film, and the adhesive layer in the optical film is provided on the surface of the polarizing film.
- a backlight module comprising an optical film which is the optical film described above.
- a display device comprising a liquid crystal display panel and an optical film, wherein the optical film is the optical film described above, and the atomized bonding layer in the optical film is disposed on a surface of the liquid crystal display panel Or the optical film is the above optical film, and the adhesive layer in the optical film is provided on the surface of the liquid crystal display panel.
- an optical film is provided. Since the first bonding layer and the adhesive layer are respectively disposed on both sides of the substrate layer, the adhesive layer at the upper end thereof can be directly polarized directly with the display module.
- the film is bonded so that the display module and the backlight module having the optical film are no longer disposed independently, and the volume and thickness are reduced.
- the optical composite layer comprises a first microstructure layer and a second microstructure layer which are sequentially stacked in a direction away from the atomized coating layer, the first microstructure layer and the second microstructure layer are respectively selected from the group consisting of a light collecting layer and a light diffusion layer. Thereby, the light extraction efficiency of the optical film is improved by the combination of the first microstructure layer and the second microstructure layer.
- the atomized coating layer and the atomized bonding layer respectively disposed on the both side surfaces have atomization characteristics, not only the light uniformity of the optical film is improved, but also the shielding property of the optical film can be imparted to the optical film. It has the additional effect of masking the anomalies generated on the surface of the underlying optical composite layer.
- FIG. 1 is a cross-sectional structural view showing an optical film according to an embodiment of the present invention.
- FIG. 2 is a schematic cross-sectional view showing an optical film including a second substrate layer, a third substrate layer, and a second bonding layer according to an embodiment of the present invention
- FIG. 3 is a cross-sectional structural view showing an optical film including a third microstructure layer according to an embodiment of the present invention.
- FIG. 4 is a schematic cross-sectional view showing an optical film including a release layer provided by an embodiment of the present invention.
- the LCD display portion and the backlight module are two independent modules in the prior art, each having a housing, resulting in a large volume or thickness of the display device as a whole.
- the inventors of the present invention have conducted research on the above problems, and provided an optical film, as shown in FIG. 1, comprising an optical composite layer 20, a first bonding layer 30, a first substrate layer 40, and a bonding layer which are sequentially stacked.
- the optical composite layer comprises a first microstructure layer and a second microstructure layer which are laminated
- the first microstructure layer and the second microstructure layer are respectively selected from the light concentrating layer and the light diffusion layer, thereby
- the combination of the microstructure layer and the second microstructure layer improves the light extraction efficiency of the optical film.
- the first bonding layer and the adhesive layer are respectively disposed on both sides of the substrate layer, the adhesive layer at the upper end thereof can be directly bonded to the polarizing film in the display module, so that the display module having the optical film and the display module
- the backlight module is no longer set independently, reducing the size and thickness.
- the adhesive layer is an atomized adhesive layer 50; and, preferably, the optical film further includes an atomized coating layer 10, and the atomized coating layer 10 is provided On the side of the optical composite layer 20 away from the first bonding layer 30, and when the optical film includes the atomized bonding layer 50 and the atomized coating layer 10, the atomized coating layer 10 and the atomized bonding layer 50
- the haze values are each independently from 1 to 99%.
- the atomized coating layer and the atomized bonding layer respectively disposed on the both side surfaces have atomization characteristics, the light film uniformity of the optical film is not only improved, but also the shielding property of the optical film is imparted to the lower layer.
- the anomalies generated on the surface of the optical composite layer serve as an additional function of masking.
- an optical film as shown in FIG. 1, comprising the above-described atomized coating layer 10, the optical composite layer 20, the first bonding layer 30, and the first The substrate layer 40 and the atomized bonding layer 50 described above, wherein the optical composite layer 20 includes a first microstructure layer 220 and a second microstructure layer 250 which are sequentially stacked in a direction away from the atomized coating layer 10, the first micro The structural layer 220 and the second microstructure layer 250 are respectively selected from any one of a light-concentrating layer and a light-diffusing layer, and the haze values of the atomized coating layer 10 and the atomized bonding layer 50 are each independently from 1 to 99%. .
- the optical composite layer comprises a first microstructure layer and a second microstructure layer which are sequentially stacked in a direction away from the atomized coating layer
- the first microstructure layer and the second microstructure layer are respectively selected from the light collecting layer.
- a light diffusion layer thereby improving the light extraction efficiency of the optical film by the combination of the first microstructure layer and the second microstructure layer, and having the atomized coating layer and the atomized bonding layer respectively disposed on both side surfaces Atomization characteristics, which not only improve the light uniformity of the optical film, but also It is sufficient to impart a certain shielding property to the optical film, so as to have an additional effect of masking the abnormality generated on the surface of the underlying optical composite layer.
- the haze value of the atomized bonding layer 50 is 2 to 15%; and, in order to improve fogging
- the shielding effect of the bonding layer 50 is preferably such that the haze value of the atomized bonding layer 50 is 10 to 99%, and more preferably, the haze value of the atomizing bonding layer 50 is 60 to 90%.
- the adhesion of the atomized bonding layer 50 is more than 50 gf/in; more preferably The adhesion of the atomized bonding layer 50 described above is greater than 150 gf/in.
- the atomized adhesive layer 50 may include a glue layer and diffusion particles dispersed in the glue layer, and the diffusion particles may include organic particles and/or inorganic particles.
- the organic particles are selected from any one or more of polyolefin, polystyrene, polyamide, polyurethane, and melamine; and, preferably, the above The inorganic particles are selected from any one or more of silicon, SiO 2 , TiO 2 , Al 2 O 3 and ZrO 2 .
- the material forming the adhesive layer comprises a pressure sensitive adhesive and/or an OCA adhesive, preferably a pressure sensitive adhesive and/or an OCA adhesive.
- a pressure sensitive adhesive and/or an OCA adhesive preferably a pressure sensitive adhesive and/or an OCA adhesive.
- the atomization bonding layer 50 has a haze value of 2 to 15%.
- the raw material forming the atomized coating layer 10 may include an organic material and/or an inorganic material.
- the organic material is selected from the group consisting of polyolefin, polystyrene, and poly.
- the light diffusion layer may be a lens layer, and those skilled in the art may reasonably select the structure of the lens layer according to the prior art, so that the lens layer has a better light concentration effect;
- the concentrating layer may be a prism layer.
- the prism layer structure in the prism layer has a triangular, trapezoidal, semi-circular or arcuate cross section, wherein the arc shape refers to a circular arc segment and a connection. A circular shape consisting of straight segments of an arc segment. It will be apparent to those skilled in the art that the cross-section of the prism layer structure described above is conventionally defined in the art, along a section perpendicular to the direction in which the prism structure extends.
- the optical composite layer 20 may further include: a second substrate layer 210 disposed in the mist Between the first coating layer 220 and the first microstructure layer 220; the third substrate layer 240 is disposed between the first microstructure layer 220 and the second microstructure layer 250; the second bonding layer 230 is disposed at the first Between the microstructure layer 220 and the third substrate layer 240.
- the second microstructure layer 250 is formed on the surface of the third substrate layer 240 by forming the first microstructure layer 220 on the surface of the second substrate layer 210, and then the second substrate layer 210 and the third substrate layer 240 are formed.
- the process is simpler by laminating the second bonding layer 230.
- the second substrate layer 210 is integrally formed with the first microstructure layer 220, and the third substrate layer 240 and the second microstructure layer 250 are integrally formed.
- the optical composite layer 20 further includes a third microstructure layer 260, as shown in FIG. 3, the third microstructure layer 260 is disposed in the second The microstructure layer 250 is away from one side of the atomized coating layer 10, and the third microstructure layer 260 is a concentrating layer; and, in order to avoid mutual influence between adjacent two layers of light concentrating layers, more preferably, the second micro The structural layer 250 is a first prism layer, and the third microstructure layer 260 is a second prism layer. The angle between the extending direction of each prism structure in the first prism layer and the extending direction of each prism structure in the second prism layer is greater than 0°. .
- the optical composite layer 20 further includes a fourth substrate layer and a third bonding layer (not shown), and the fourth substrate layer is disposed on either side of the third microstructure layer 260.
- the third bonding layer is disposed on one side of the far third microstructure layer 260 of the fourth substrate layer, and the fourth substrate layer is used to connect the third microstructure layer 260 with the first microstructure layer 220 or the second micro
- the structural layer 250 is isolated.
- the second microstructure layer 250 is formed on the surface of the third substrate layer 240 by forming the first microstructure layer 220 on the surface of the second substrate layer 210, and the third microstructure layer 260 is formed on the surface of the fourth substrate layer.
- the second base material layer 210, the third base material layer 240, and the fourth base material layer are laminated through the second bonding layer 230 and the third bonding layer, thereby making the process simpler.
- the fourth substrate layer may be integrally formed with the third microstructure layer 260.
- first bonding layer 30, the second bonding layer 230, and/or the third bonding layer may be a pressure sensitive adhesive or an OCA adhesive
- the pressure sensitive adhesive and the OCA adhesive may be selected from the group consisting of an acrylate adhesive, a synthetic rubber adhesive, and a urethane. Any one or more of a rubber-like, an epoxy-based rubber, and a polyester-based rubber.
- the optical film further includes a release layer 60.
- the release layer 60 is disposed on a side of the atomized bonding layer 50 away from the first substrate layer 40.
- the release layer 60 mainly functions to integrate the optical film into the optical film.
- the release layer release layer 60 needs to be peeled off, and the optical film is pasted through the atomized bonding layer 50.
- those skilled in the art can appropriately select the type of the release layer 60 according to the prior art.
- a polarizer comprising a polarizing film and the above optical film, wherein an adhesive layer in the optical film is provided on a surface of the polarizing film. Since the polarizer comprises an optical film, the light extraction efficiency of the optical film is improved by the combination of the first microstructure layer and the second microstructure layer in the optical film; since the first sticker is respectively disposed on both sides of the substrate layer The bonding layer or the adhesive layer of the upper layer and the adhesive layer can be directly attached to the polarizing film in the display module, so that the display module and the backlight module having the polarizer are no longer independently set, and Small size and thickness.
- the adhesive layer is a haze bonding layer
- the optical film comprises an atomized coating layer
- the atomized coating layer is disposed on a side of the optical composite layer away from the first bonding layer, since the above is respectively disposed on both sides
- the atomized coating and the atomized bonding layer of the surface have atomization characteristics, thereby not only improving the light uniformity of the optical film, but also imparting a certain shielding property to the optical film, so that it has a surface on the surface of the optical composite layer.
- the abnormality serves as an additional function of masking, thereby enabling the above polarizer to have excellent optical properties.
- a backlight module comprising the above optical film.
- the optical film integrated in the backlight module includes an atomized coating layer, an optical composite layer, a first bonding layer, and a first base. a material layer and an adhesive layer, thereby improving the light extraction efficiency of the optical film by the combination of the first microstructure layer and the second microstructure layer; since the first bonding layer and the bonding are respectively disposed on both sides of the substrate layer
- the layer, the bonding layer or the adhesive layer at the upper end thereof can be directly attached to the polarizing film in the display module, so that the backlight module having the optical film is not separately disposed, and the volume and thickness are reduced.
- the adhesive layer is a haze bonding layer
- the optical film comprises an atomized coating layer
- the atomized coating layer is disposed on a side of the optical composite layer away from the first bonding layer, since the above is respectively disposed on both sides
- the atomized coating and the atomized bonding layer of the surface have atomization characteristics, thereby not only improving the light uniformity of the optical film, but also imparting a certain shielding property to the optical film, so that it has a surface on the surface of the optical composite layer.
- the abnormality plays an additional role of masking, thereby enabling the backlight module to have an excellent display effect.
- a display device comprising a liquid crystal display panel and the above optical film, wherein an adhesive layer in the optical film is disposed on a surface of the liquid crystal display panel.
- the light extraction efficiency of the optical film is improved by the combination of the first microstructure layer and the second microstructure layer in the optical film; since the first bonding layer and the adhesive layer are respectively disposed on both sides of the substrate layer, the upper end thereof is provided
- the conforming layer or the adhesive layer can be directly attached to the polarizing film in the display module, so that the display device having the optical film is no longer independently disposed, and the volume and thickness are reduced.
- the adhesive layer is a haze bonding layer
- the optical film comprises an atomized coating layer
- the atomized coating layer is disposed on a side of the optical composite layer away from the first bonding layer, since the above is respectively disposed on both sides
- the atomized coating and the atomized bonding layer of the surface have atomization characteristics, thereby not only improving the light uniformity of the optical film, but also imparting a certain shielding property to the optical film, so that it has a surface on the surface of the optical composite layer.
- the abnormality serves as an additional function of masking, thereby improving the display effect of the liquid crystal display panel by providing the optical film on the surface of the liquid crystal display panel.
- optical film provided by the present invention will be further described below in conjunction with the examples and comparative examples.
- the optical film provided in this embodiment includes an atomized coating layer, a first microstructure layer and a second microstructure layer, a first bonding layer, a first substrate layer and an atomized bonding layer, which are sequentially stacked.
- a microstructure layer is a lens layer
- a second microstructure layer is a prism layer
- a prism structure has a triangular cross section in the prism layer
- the first substrate layer and the second substrate layer are both PET layers
- the first bonding layer is acrylic
- the ester OCA glue forms a polyolefin coating material
- the atomization coating has a haze value of 1% and a thickness of 10 ⁇ m, forming a material of the atomized bonding layer, SiO 2 particles, and atomizing and bonding.
- the layer had a haze value of 99%, a thickness of 8 ⁇ m, and an adhesion of 50 gf/in.
- optical film provided in this embodiment differs from Embodiment 1 in that:
- the optical film comprises an atomized coating layer, a second substrate layer, a first microstructure layer and a second microstructure layer, a first bonding layer, a first substrate layer and an atomized bonding layer, which are sequentially stacked, to form a mist.
- the material of the coating layer is polystyrene, and the haze value of the atomized coating layer is 2%, the material forming the atomized bonding layer is OCA rubber and polyolefin, and the haze value of the atomized bonding layer is 1%.
- the thickness of the atomized bonding layer was 10 ⁇ m, and the adhesion of the atomized bonding layer was 55 gf/in.
- optical film provided in this embodiment differs from Embodiment 1 in that:
- the optical film includes an atomized coating layer, a second substrate layer, a first microstructure layer, a second bonding layer, a third substrate layer and a second microstructure layer, a first bonding layer, and a first layer.
- the substrate layer and the atomized bonding layer, the material forming the second bonding layer is acrylate PSA glue, the material forming the atomization coating layer is polystyrene, and the haze value of the atomized coating layer is 2%.
- the material forming the atomized bonding layer is OCA rubber and polystyrene, the haze value of the atomized bonding layer is 2%, the thickness of the atomized bonding layer is 100 ⁇ m, and the adhesion of the atomized bonding layer is 155 gf. /in.
- optical film provided in this embodiment differs from Embodiment 1 in that:
- the optical film comprises an atomized coating layer, a first microstructure layer, a second microstructure layer, a third microstructure layer, a first bonding layer, a first substrate layer and an atomized bonding layer, which are sequentially stacked, to form a mist.
- the material of the coating layer is polyamide and polyurethane, and the haze value of the atomized coating layer is 15%, the material OCA glue, polyamide and polyurethane which form the atomized bonding layer, and the haze value of the atomized bonding layer At 15%, the thickness of the atomized bonding layer was 50 ⁇ m.
- optical film provided in this embodiment differs from Embodiment 1 in that:
- the optical film includes an atomized coating layer, a second substrate layer, a first microstructure layer, a second bonding layer, a third substrate layer and a second microstructure layer, a third bonding layer, and a fourth layer, which are sequentially stacked.
- the third microstructure layer is also a prism layer, and an extension of each prism structure in the second microstructure layer
- the angle between the direction and the extending direction of each prism structure in the third microstructure layer is equal to 0°
- the material forming the second bonding layer and the third bonding layer is an acrylate PSA glue
- the material for forming the atomized coating layer is Silicon and melamine
- the haze value of the atomized coating is 8%, forming the material OCA glue, polystyrene and polyurethane of the atomized bonding layer, and the haze value of the atomized bonding layer is 10%
- the thickness of the bonding layer was 100 ⁇ m.
- optical film provided in this embodiment differs from Embodiment 1 in that:
- the optical film includes an atomized coating layer, a second substrate layer, a first microstructure layer, a second bonding layer, a third substrate layer and a second microstructure layer, a third bonding layer, and a fourth layer, which are sequentially stacked.
- a substrate layer, a third microstructure layer, a first bonding layer, a first substrate layer, and an atomized bonding layer the third microstructure layer is also a prism layer, and an extension of each prism structure in the second microstructure layer
- the angle between the direction and the extending direction of each prism structure in the third microstructure layer is equal to 90°
- the material forming the second bonding layer and the third bonding layer is OCA glue
- the material forming the atomization coating layer is SiO 2 particles.
- the haze value of the atomized coating is 99%
- the material forming the atomized bonding layer is OCA rubber and TiO 2 particles
- the haze value of the atomized bonding layer is 60%
- the atomized bonding layer is The thickness is 15 ⁇ m.
- optical film provided in this embodiment differs from Embodiment 1 in that:
- the optical film includes an atomized coating layer, a second substrate layer, a first microstructure layer, a second bonding layer, a third substrate layer and a second microstructure layer, a third bonding layer, and a fourth layer, which are sequentially stacked.
- a substrate layer, a third microstructure layer, a first bonding layer, a first substrate layer, and an atomized bonding layer the third microstructure layer is also a prism layer, and an extension of each prism structure in the second microstructure layer
- the angle between the direction and the extending direction of each prism structure in the third microstructure layer is equal to 90°
- the material forming the second bonding layer and the third bonding layer is OCA glue
- the material forming the atomization coating layer is silicon and melamine.
- the haze value of the atomized coating is 8%
- the material forming the atomized bonding layer is OCA rubber and TiO 2 particles
- the haze value of the atomized bonding layer is 90%
- the atomized bonding layer is The thickness is 15 ⁇ m.
- the adhesive layer at the upper end thereof can be directly attached to the polarizing film in the display module, so that the display mode having the optical film is The group and the backlight module are no longer independently arranged, reducing the volume and thickness;
- the optical film provided by the present invention comprises an atomized coating layer, an optical composite layer, a first bonding layer, a first substrate layer and an atomized bonding layer which are sequentially laminated, due to the above-mentioned mists respectively disposed on both side surfaces.
- the coating layer and the atomized bonding layer have atomization characteristics, thereby not only improving the light uniformity of the optical film, but also imparting a certain shielding property to the optical film, so as to have an abnormality on the surface of the lower optical composite layer. An additional effect to cover up;
- the optical composite layer comprises a second substrate layer, a first microstructure layer and a second microstructure layer which are sequentially stacked in a direction away from the atomized coating layer, and the first microstructure layer and the second microstructure layer are respectively selected from the group consisting of The light collecting layer and the light diffusing layer improve the light extraction efficiency of the optical film by the combination of the first microstructure layer and the second microstructure layer.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Nonlinear Science (AREA)
- Dispersion Chemistry (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optical Elements Other Than Lenses (AREA)
- Laminated Bodies (AREA)
Abstract
一种光学膜、偏光片、背光模组及显示装置。光学膜包括顺序层叠设置的雾化涂层(10)、光学复合层(20)、第一贴合层(30)、第一基材层(40)和雾化贴合层(50),其中,光学复合层(20)包括沿远离雾化涂层的方向顺序层叠设置的第一微结构层(220)和第二微结构层(250),第一微结构层(220)和第二微结构层(250)分别选自聚光层和光扩散层中的任意一种,且雾化涂层(10)和雾化贴合层(50)的雾度值各自独立地为1~99%。通过第一微结构层(220)和第二微结构层(250)的组合,提高了光学膜的出光效率;并且,由于分别设置于两侧表面的雾化涂层(10)和雾化贴合层(50)具有雾化特征,从而不仅提高了光学膜的出光均匀性,还能够赋予光学膜一定的遮蔽特性,使其具有对下层的光学复合层表面上产生的异常起到掩盖的附加作用。
Description
本发明涉及光学技术领域,具体而言,涉及一种光学膜、偏光片、背光模组及显示装置。
随着信息时代的发展,出现了诸如有源矩阵型液晶显示器(LCD)、等离子体显示面板(PDP)、电致发光显示器(EL)、以及场发射显示器(FED)之类的平板显示器,这些显示器具有外形薄、重量轻以及功耗低等优良的性能。其中,LCD由于高对比度及适于显示移动图像的特性,代替阴极射线管(CRT)被广泛用于笔记本电脑、监视器、TV等。
LCD中不包括光源,因此需要额外的光源。例如将包含光源的背光模组设置在液晶面板的下方以向该液晶面板提供光,使LCD可以通过来自该背光模组的光显示图像。背光模组通常包括光源、导光板、扩散片和光学膜,上述光学膜设置于扩散片的表面,用于提高背光模组的亮度。
现有技术中LCD显示部分与背光模组为两个独立的模组,各自具有壳体,导致显示设备整体的体积或厚度较大。
进一步地,现有技术中设置于背光模组中的光学膜在具有优异出光效率的同时,会存在出光不均匀的问题,从而影响了具有上述背光模组的LCD的显示效果。
发明内容
本发明的主要目的在于提供一种光学膜、偏光片、背光模组及显示装置,以解决现有技术中的光学膜无法同时保证出光效率和出光均匀性的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种光学膜,包括顺序层叠设置的雾化涂层、光学复合层、第一贴合层、第一基材层和雾化贴合层,其中,光学复合层包括沿远离雾化涂层的方向顺序层叠设置的第一微结构层和第二微结构层,第一微结构层和第二微结构层分别选自聚光层和光扩散层中的任意一种,且雾化涂层和雾化贴合层的雾度值各自独立地为1~99%。
进一步地,上述雾化贴合层的雾度值为2~15%,或雾化贴合层的雾度值为10~99%,优选雾化贴合层的雾度值为60-90%。
进一步地,上述雾化贴合层的粘着力大于50gf/in,优选大于150gf/in。
进一步地,上述雾化贴合层包括胶层以及分散于胶层中的扩散粒子。
进一步地,上述扩散粒子包括有机粒子和/或无机粒子,优选有机粒子选自聚烯烃、聚苯乙烯、聚酰胺、聚氨酯和三聚氰胺中的任一种或多种,优选无机粒子选自硅、SiO2、TiO2、Al2O3和ZrO2中的任一种或多种。
进一步地,形成胶层的材料包括压敏胶和/或OCA胶,优选压敏胶和/或OCA胶选自丙烯酸酯类胶、合成橡胶类胶、氨基甲酸酯类胶、环氧树脂类胶和聚酯类胶中的任一种或多种。
进一步地,上述雾化贴合层的厚度为10~100μm,优选为15~50μm。
进一步地,上述雾化涂层的雾度值为2~15%。
进一步地,形成雾化涂层的原料包括有机材料和/或无机材料,优选有机材料选自聚烯烃、聚苯乙烯、聚酰胺、聚氨酯和三聚氰胺中的任一种或多种,优选无机材料选自SiO2、TiO2、Al2O3、硅和ZrO2中的任一种或多种。
进一步地,上述聚光层为棱镜层,优选棱镜层中棱镜结构的截面为三角形、梯形、半圆形或弓形;光扩散层为透镜层。
进一步地,上述光学复合层还包括:第二基材层,设置于雾化涂层与第一微结构层之间,优选第二基材层与第一微结构层一体成型;第三基材层,设置于第一微结构层和第二微结构层之间,优选第三基材层与第二微结构层一体成型;第二贴合层,设置于第一微结构层和第三基材层之间。
进一步地,上述光学复合层还包括第三微结构层,第三微结构层设置于第二微结构层远离雾化涂层的一侧,且第三微结构层为聚光层,优选光学复合层还包括第四基材层和第三贴合层,第四基材层设置于第三微结构层的任意一侧表面,第三贴合层设置于第四基材层的远离第三微结构层的一侧,更优选第四基材层与第三微结构层一体成型。
进一步地,上述第二微结构层为第一棱镜层,第三微结构层为第二棱镜层,第一棱镜层中各棱镜结构的延伸方向与第二棱镜层中各棱镜结构的延伸方向的夹角大于0°。
进一步地,上述光学膜还包括离型层,离型层设置于雾化贴合层远离第一基材层的一侧。
根据本发明的另一个方面,提供了一种光学膜,包括顺序层叠设置的光学复合层、第一贴合层、第一基材层和贴合层,其中,光学复合层包括层叠设置的第一微结构层和第二微结构层,第一微结构层和第二微结构层分别选自聚光层和光扩散层中的任意一种。
进一步地,粘合层为雾化贴合层。
进一步地,光学膜还包括雾化涂层,雾化涂层设置于光学复合层远离第一贴合层的一侧。
进一步地,光学膜还包括雾化涂层,且雾化涂层和雾化贴合层的雾度值各自独立地为1~99%。
进一步地,上述雾化贴合层的雾度值为2~15%,或雾化贴合层的雾度值为10~99%,优选雾化贴合层的雾度值为60-90%。
进一步地,上述雾化贴合层的粘着力大于50gf/in,优选大于150gf/in。
进一步地,上述雾化贴合层包括胶层以及分散于胶层中的扩散粒子。
进一步地,上述扩散粒子包括有机粒子和/或无机粒子,优选有机粒子选自聚烯烃、聚苯乙烯、聚酰胺、聚氨酯和三聚氰胺中的任一种或多种,优选无机粒子选自硅、SiO2、TiO2、Al2O3和ZrO2中的任一种或多种。
进一步地,形成胶层的材料包括压敏胶和/或OCA胶,优选压敏胶和/或OCA胶选自丙烯酸酯类胶、合成橡胶类胶、氨基甲酸酯类胶、环氧树脂类胶和聚酯类胶中的任一种或多种。
进一步地,上述雾化贴合层的厚度为10~100μm,优选为15~50μm。
进一步地,上述雾化涂层的雾度值为2~15%。
进一步地,形成雾化涂层的原料包括有机材料和/或无机材料,优选有机材料选自聚烯烃、聚苯乙烯、聚酰胺、聚氨酯和三聚氰胺中的任一种或多种,优选无机材料选自SiO2、TiO2、Al2O3、硅和ZrO2中的任一种或多种。
进一步地,上述聚光层为棱镜层,优选棱镜层中棱镜结构的截面为三角形、梯形、半圆形或弓形;光扩散层为透镜层。
进一步地,上述光学复合层还包括:第二基材层,设置于雾化涂层与第一微结构层之间,优选第二基材层与第一微结构层一体成型;第三基材层,设置于第一微结构层和第二微结构层之间,优选第三基材层与第二微结构层一体成型;第二贴合层,设置于第一微结构层和第三基材层之间。
进一步地,上述光学复合层还包括第三微结构层,第三微结构层设置于第二微结构层远离雾化涂层的一侧,且第三微结构层为聚光层,优选光学复合层还包括第四基材层和第三贴合层,第四基材层设置于第三微结构层的任意一侧表面,第三贴合层设置于第四基材层的远离第三微结构层的一侧,更优选第四基材层与第三微结构层一体成型。
进一步地,上述第二微结构层为第一棱镜层,第三微结构层为第二棱镜层,第一棱镜层中各棱镜结构的延伸方向与第二棱镜层中各棱镜结构的延伸方向的夹角大于0°。
进一步地,上述光学膜还包括离型层,离型层设置于雾化贴合层远离第一基材层的一侧。
根据本发明的另一方面,提供了一种偏光片,包括偏光膜和光学膜,该光学膜为上述的光学膜,光学膜中的雾化贴合层设置于偏光膜的表面;或该光学膜为上述的光学膜,光学膜中的粘合层设置于偏光膜的表面。
根据本发明的另一方面,还提供了一种背光模组,包括光学膜,该光学膜为上述的光学膜。
根据本发明的再一方面,还提供了一种显示装置,包括液晶显示面板和光学膜,该光学膜为上述的光学膜,且光学膜中的雾化贴合层设置于液晶显示面板的表面;或光学膜为上述的光学膜,光学膜中的粘合层设置于液晶显示面板的表面。
应用本发明的技术方案,提供了一种光学膜,由于在基材层两侧分别设置了第一贴合层和粘合层,其上端的粘合层后续可以直接与显示模组中的偏光膜贴合,使得具有该光学膜的显示模组与背光模组不再独立设置,减小了体积和厚度。由于光学复合层包括沿远离雾化涂层的方向顺序层叠设置的第一微结构层和第二微结构层,第一微结构层和第二微结构层分别选自聚光层和光扩散层,从而通过上述第一微结构层和第二微结构层的组合,提高了光学膜的出光效率。进一步地,由于上述分别设置于两侧表面的雾化涂层和雾化贴合层具有雾化特征,从而不仅提高了光学膜的出光均匀性,还能够赋予光学膜一定的遮蔽特性,使其具有对下层的光学复合层表面上产生的异常起到掩盖的附加作用。
除了上面所描述的目的、特征和优点之外,本发明还有其它的目的、特征和优点。下面将参照图,对本发明作进一步详细的说明。
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了本发明实施方式所提供的一种的光学膜的剖面结构示意图;
图2示出了本发明实施方式所提供的一种包括第二基材层、第三基材层和第二贴合层的光学膜的剖面结构示意图;
图3示出了本发明实施方式所提供的一种包括第三微结构层的光学膜的剖面结构示意图;以及
图4示出了本发明实施方式所提供的一种包括离型层的光学膜的剖面结构示意图。
其中,上述附图包括以下附图标记:
10、雾化涂层;20、光学复合层;210、第二基材层;220、第一微结构层;230、第二贴合层;240、第三基材层;250、第二微结构层;260、第三微结构层;30、第一贴合层;40、第一基材层;50、雾化贴合层;60、离型层。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明
一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
由背景技术可知,现有技术中LCD显示部分与背光模组为两个独立的模组,各自具有壳体,导致显示设备整体的体积或厚度较大。本发明的发明人针对上述问题进行研究,提供了一种光学膜,如图1所示,包括顺序层叠设置的光学复合层20、第一贴合层30、第一基材层40和粘合层,其中,光学复合层20包括层叠设置的第一微结构层220和第二微结构层250,第一微结构层220和第二微结构层250分别选自聚光层和光扩散层中的任意一种。
上述光学膜中由于光学复合层包括层叠设置的第一微结构层和第二微结构层,第一微结构层和第二微结构层分别选自聚光层和光扩散层,从而通过上述第一微结构层和第二微结构层的组合,提高了光学膜的出光效率。由于在基材层两侧分别设置了第一贴合层和粘合层,其上端的粘合层后续可以直接与显示模组中的偏光膜贴合,使得具有该光学膜的显示模组与背光模组不再独立设置,减小了体积和厚度。
在本发明的上述光学膜中,如图1所示,优选地,粘合层为雾化贴合层50;并且,优选地,光学膜还包括雾化涂层10,雾化涂层10设置于光学复合层20远离第一贴合层30的一侧,且当上述光学膜同时包括雾化贴合层50和雾化涂层10时,雾化涂层10和雾化贴合层50的雾度值各自独立地为1~99%。
由于上述分别设置于两侧表面的雾化涂层和雾化贴合层具有雾化特征,从而不仅提高了光学膜的出光均匀性,还能够赋予光学膜一定的遮蔽特性,使其具有对下层的光学复合层表面上产生的异常起到掩盖的附加作用。
根据本发明的另一个方面,提供了一种光学膜,如图1所示,包括顺序层叠设置的上述雾化涂层10、上述光学复合层20、上述第一贴合层30、上述第一基材层40和上述雾化贴合层50,其中,光学复合层20包括沿远离雾化涂层10的方向顺序层叠设置的第一微结构层220和第二微结构层250,第一微结构层220和第二微结构层250分别选自聚光层和光扩散层中的任意一种,且雾化涂层10和雾化贴合层50的雾度值各自独立地为1~99%。
上述光学膜中由于光学复合层包括沿远离雾化涂层的方向顺序层叠设置的第一微结构层和第二微结构层,第一微结构层和第二微结构层分别选自聚光层和光扩散层,从而通过上述第一微结构层和第二微结构层的组合,提高了光学膜的出光效率,且由于上述分别设置于两侧表面的雾化涂层和雾化贴合层具有雾化特征,从而不仅提高了光学膜的出光均匀性,还能
够赋予光学膜一定的遮蔽特性,使其具有对下层的光学复合层表面上产生的异常起到掩盖的附加作用。
在本发明的上述光学膜中,为了提高雾化贴合层50对入射光的均匀分散效果,优选地,雾化贴合层50的雾度值为2~15%;并且,为了提高雾化贴合层50的遮蔽效果,优选地,雾化贴合层50的雾度值为10~99%,更为优选地,雾化贴合层50的雾度值为60~90%。
在本发明的上述光学膜中,为了使雾化贴合层50能够保持均匀的雾化特性和平整度,优选地,上述雾化贴合层50的粘着力大于50gf/in;更为优选地,上述雾化贴合层50的粘着力大于150gf/in。
在本发明的上述光学膜中,雾化贴合层50可以包括胶层以及分散于胶层中的扩散粒子,上述扩散粒子可以包括有机粒子和/或无机粒子。为了提高上述雾化贴合层50的雾化特性,优选地,上述有机粒子选自聚烯烃、聚苯乙烯、聚酰胺、聚氨酯和三聚氰胺中的任一种或多种;并且,优选地,上述无机粒子选自硅、SiO2、TiO2、Al2O3和ZrO2中的任一种或多种。
在本发明的上述光学膜中,为了提高上述雾化贴合层50的粘附性,优选地,形成胶层的材料包括压敏胶和/或OCA胶,优选压敏胶和/或OCA胶选自丙烯酸酯类胶、合成橡胶类胶、氨基甲酸酯类胶、环氧树脂类胶和聚酯类胶中的任一种或多种;并且,为了降低雾化贴合层50在集成在背光模组中时对光学膜与附着面之间结合力的影响,优选地,雾化贴合层50的厚度为10~100μm,更为优选地,雾化贴合层50的厚度为15~50μm。
在本发明的上述光学膜中,为了提高雾化涂层10对入射光的均匀分散效果,优选地,雾化贴合层50的雾度值为2~15%。形成上述雾化涂层10的原料可以包括有机材料和/或无机材料,为了提高上述雾化涂层10的雾化特性,更为优选地,上述有机材料选自聚烯烃、聚苯乙烯、聚酰胺、聚氨酯和三聚氰胺中的任一种或多种;并且,更为优选地,上述无机材料选自硅、SiO2、TiO2、Al2O3和ZrO2中的任一种或多种。
在本发明的上述光学膜中,光扩散层可以为透镜层,本领域技术人员可以根据现有技术对上述透镜层的结构进行合理选取,以使上述透镜层具有较好的光集中效果;上述聚光层可以为棱镜层,为了提高上述棱镜层的光扩散效果,优选地,棱镜层中棱镜层结构的截面为三角形、梯形、半圆形或弓形,其中弓形是指由圆弧段以及连接圆弧段的直线段组成的环形形状。本领域技术人员应该清楚,上述棱镜层结构的截面为本领域常规所定义的,沿与棱镜结构的延伸方向垂直的截面。
在本发明的上述光学膜中,为了提高第二微结构层250在光学膜中设置的稳定性,如图2所示,光学复合层20还可以包括:第二基材层210,设置于雾化涂层10与第一微结构层220之间;第三基材层240,设置于第一微结构层220和第二微结构层250之间;第二贴合层230,设置于第一微结构层220和第三基材层240之间。通过将第一微结构层220形成于第二基材层210表面,将第二微结构层250形成于第三基材层240表面,然后将第二基材层210与第三基材层240通过第二贴合层230层叠,使工艺更为简单。为了提高上述光学膜的工艺效率,
更为优选地,上述第二基材层210与第一微结构层220一体成型,上述第三基材层240与第二微结构层250一体成型。
在本发明的上述光学膜中,为了进一步提高光学膜的出光效率,优选地,光学复合层20还包括第三微结构层260,如图3所示,第三微结构层260设置于第二微结构层250远离雾化涂层10的一侧,且第三微结构层260为聚光层;并且,为了避免相邻两层聚光层之间相互影响,更为优选地,第二微结构层250为第一棱镜层,第三微结构层260为第二棱镜层,第一棱镜层中各棱镜结构的延伸方向与第二棱镜层中各棱镜结构的延伸方向的夹角大于0°。
更为优选地,光学复合层20还包括第四基材层和第三贴合层(未在图中示出),第四基材层设置于第三微结构层260的任意一侧表面,第三贴合层设置于第四基材层的远第三微结构层260的一侧,上述第四基材层用于将第三微结构层260与第一微结构层220或第二微结构层250隔离。通过将第一微结构层220形成于第二基材层210表面,将第二微结构层250形成于第三基材层240表面,将第三微结构层260形成于第四基材层表面,然后将第二基材层210、第三基材层240与第四基材层通过第二贴合层230和第三贴合层层叠,使工艺更为简单。为了提高上述光学膜的工艺效率,上述第四基材层可以与第三微结构层260一体成型。
在本发明的上述光学膜中,本领域技术人员可以根据现有技术对上述第一贴合层30、第二贴合层230和/或第三贴合层的种类进行合理选取,上述第一贴合层30、第二贴合层230和/或第三贴合层可以为压敏胶或OCA胶,压敏胶和OCA胶可以选自丙烯酸酯类胶、合成橡胶类胶、氨基甲酸酯类胶、环氧树脂类胶和聚酯类胶中的任一种或多种。
在本发明的上述光学膜中,光学膜还包括离型层60,如图4所示,离型层60设置于雾化贴合层50远离第一基材层40的一侧。上述离型层60主要起到将光学膜集成到光学膜中的作用,当集成上述光学膜时,需要将离型层离型层60撕去,通过雾化贴合层50将光学膜黏贴在导光板表面,即完成光学膜的集成,本领域技术人员可以根据现有技术对上述离型层60的种类进行合理选取。
根据本发明的另一个方面,提供了一种偏光片,该偏光片包括偏光膜以及上述的光学膜,光学膜中的粘合层设置于上述偏光膜的表面。由于上述偏光片包括光学膜,从而通过上述光学膜中的第一微结构层和第二微结构层的组合,提高了光学膜的出光效率;由于在基材层两侧分别设置了第一贴合层和粘合层,其上端的贴合层或粘合层后续可以直接与显示模组中的偏光膜贴合,使得具有该偏光片的显示模组与背光模组不再独立设置,减小了体积和厚度。
并且,当上述粘合层为雾度贴合层,且光学膜包括雾化涂层,雾化涂层设置于光学复合层远离第一贴合层的一侧时,由于上述分别设置于两侧表面的雾化涂层和雾化贴合层具有雾化特征,从而不仅提高了光学膜的出光均匀性,还能够赋予光学膜一定的遮蔽特性,使其具有对下层的光学复合层表面上产生的异常起到掩盖的附加作用,进而使上述偏光片能够具有优异的光学性能。
根据本发明的另一个方面,还提供了一种背光模组,该包括上述的光学膜。集成在上述背光模组中的光学膜由于包括顺序层叠设置的雾化涂层、光学复合层、第一贴合层、第一基
材层和粘合层,从而通过上述第一微结构层和第二微结构层的组合,提高了光学膜的出光效率;由于在基材层两侧分别设置了第一贴合层和粘合层,其上端的贴合层或粘合层后续可以直接与显示模组中的偏光膜贴合,使得具有该光学膜的背光模组不再独立设置,减小了体积和厚度。
并且,当上述粘合层为雾度贴合层,且光学膜包括雾化涂层,雾化涂层设置于光学复合层远离第一贴合层的一侧时,由于上述分别设置于两侧表面的雾化涂层和雾化贴合层具有雾化特征,从而不仅提高了光学膜的出光均匀性,还能够赋予光学膜一定的遮蔽特性,使其具有对下层的光学复合层表面上产生的异常起到掩盖的附加作用,进而使上述背光模组能够具有优异的显示效果。
根据本发明的再一个方面,还提供了一种显示装置,该液晶面板包括液晶显示面板和上述的光学膜,光学膜中的粘合层设置于上述液晶显示面板的表面。通过上述光学膜中的第一微结构层和第二微结构层的组合,提高了光学膜的出光效率;由于在基材层两侧分别设置了第一贴合层和粘合层,其上端的贴合层或粘合层后续可以直接与显示模组中的偏光膜贴合,使得具有该光学膜的显示装置不再独立设置,减小了体积和厚度。
并且,当上述粘合层为雾度贴合层,且光学膜包括雾化涂层,雾化涂层设置于光学复合层远离第一贴合层的一侧时,由于上述分别设置于两侧表面的雾化涂层和雾化贴合层具有雾化特征,从而不仅提高了光学膜的出光均匀性,还能够赋予光学膜一定的遮蔽特性,使其具有对下层的光学复合层表面上产生的异常起到掩盖的附加作用,从而通过在将上述光学膜设置于液晶显示面板的表面,提高了上述液晶显示面板的显示效果。
下面将结合实施例和对比例进一步说明本发明提供的光学膜。
实施例1
本实施例提供的光学膜包括顺序层叠设置的雾化涂层、第一微结构层和第二微结构层、第一贴合层、第一基材层和雾化贴合层,其中,第一微结构层为透镜层,第二微结构层为棱镜层,棱镜层中棱镜结构的截面为三角形,第一基材层和第二基材层均为PET层,第一贴合层为丙烯酸酯类OCA胶,形成雾化涂层的材料为聚烯烃,且雾化涂层的雾度值为1%,厚度为10μm,形成雾化贴合层的材料SiO2颗粒,且雾化贴合层的雾度值为99%,厚度为8μm,粘着力为50gf/in。
实施例2
本实施例提供的光学膜与实施例1的差别在于:
光学膜包括顺序层叠设置的雾化涂层、第二基材层、第一微结构层和第二微结构层、第一贴合层、第一基材层和雾化贴合层,形成雾化涂层的材料为聚苯乙烯,且雾化涂层的雾度值为2%,形成雾化贴合层的材料为OCA胶和聚烯烃,雾化贴合层的雾度值为1%,雾化贴合层的厚度为10μm,且雾化贴合层的粘着力为55gf/in。
实施例3
本实施例提供的光学膜与实施例1的差别在于:
光学膜包括顺序层叠设置的雾化涂层、第二基材层、第一微结构层、第二贴合层、第三基材层和第二微结构层、第一贴合层、第一基材层和雾化贴合层,形成第二贴合层的材料为丙烯酸酯类PSA胶,形成雾化涂层的材料为聚苯乙烯,且雾化涂层的雾度值为2%,形成雾化贴合层的材料为OCA胶和聚苯乙烯,雾化贴合层的雾度值为2%,雾化贴合层的厚度为100μm,且雾化贴合层的粘着力为155gf/in。
实施例4
本实施例提供的光学膜与实施例1的差别在于:
光学膜包括顺序层叠设置的雾化涂层、第一微结构层、第二微结构层、第三微结构层、第一贴合层、第一基材层和雾化贴合层,形成雾化涂层的材料为聚酰胺和聚氨酯,且雾化涂层的雾度值为15%,形成雾化贴合层的材料OCA胶、聚酰胺和聚氨酯,且雾化贴合层的雾度值为15%,雾化贴合层的厚度为50μm。
实施例5
本实施例提供的光学膜与实施例1的差别在于:
光学膜包括顺序层叠设置的雾化涂层、第二基材层、第一微结构层、第二贴合层、第三基材层和第二微结构层、第三贴合层、第四基材层、第三微结构层、第一贴合层、第一基材层和雾化贴合层,第三微结构层也为棱镜层,且第二微结构层中各棱镜结构的延伸方向与第三微结构层中各棱镜结构的延伸方向的夹角等于0°,形成第二贴合层和第三贴合层的材料为丙烯酸酯类PSA胶,形成雾化涂层的材料为硅和三聚氰胺,且雾化涂层的雾度值为8%,形成雾化贴合层的材料OCA胶、聚苯乙烯和聚氨酯,且雾化贴合层的雾度值为10%,雾化贴合层的厚度为100μm。
实施例6
本实施例提供的光学膜与实施例1的差别在于:
光学膜包括顺序层叠设置的雾化涂层、第二基材层、第一微结构层、第二贴合层、第三基材层和第二微结构层、第三贴合层、第四基材层、第三微结构层、第一贴合层、第一基材层和雾化贴合层,第三微结构层也为棱镜层,且第二微结构层中各棱镜结构的延伸方向与第三微结构层中各棱镜结构的延伸方向的夹角等于90°,形成第二贴合层和第三贴合层的材料为OCA胶,形成雾化涂层的材料为SiO2颗粒,且雾化涂层的雾度值为99%,形成雾化贴合层的材料为OCA胶和TiO2颗粒,且雾化贴合层的雾度值为60%,雾化贴合层的厚度为15μm。
实施例7
本实施例提供的光学膜与实施例1的差别在于:
光学膜包括顺序层叠设置的雾化涂层、第二基材层、第一微结构层、第二贴合层、第三基材层和第二微结构层、第三贴合层、第四基材层、第三微结构层、第一贴合层、第一基材层和雾化贴合层,第三微结构层也为棱镜层,且第二微结构层中各棱镜结构的延伸方向与第三微结构层中各棱镜结构的延伸方向的夹角等于90°,形成第二贴合层和第三贴合层的材料为OCA胶,形成雾化涂层的材料为硅和三聚氰胺,且雾化涂层的雾度值为8%,形成雾化贴合层的材料为OCA胶和TiO2颗粒,且雾化贴合层的雾度值为90%,雾化贴合层的厚度为15μm。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
1、由于在基材层两侧分别设置了第一贴合层和粘合层,其上端的粘合层后续可以直接与显示模组中的偏光膜贴合,使得具有该光学膜的显示模组与背光模组不再独立设置,减小了体积和厚度;
2、本发明提供的光学膜包括顺序层叠设置的雾化涂层、光学复合层、第一贴合层、第一基材层和雾化贴合层,由于上述分别设置于两侧表面的雾化涂层和雾化贴合层具有雾化特征,从而不仅提高了光学膜的出光均匀性,还能够赋予光学膜一定的遮蔽特性,使其具有对下层的光学复合层表面上产生的异常起到掩盖的附加作用;
3、光学复合层包括沿远离雾化涂层的方向顺序层叠设置的第二基材层、第一微结构层和第二微结构层,第一微结构层和第二微结构层分别选自聚光层和光扩散层,从而通过上述第一微结构层和第二微结构层的组合,提高了光学膜的出光效率。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (34)
- 一种光学膜,其特征在于,包括顺序层叠设置的雾化涂层(10)、光学复合层(20)、第一贴合层(30)、第一基材层(40)和雾化贴合层(50),其中,所述光学复合层(20)包括沿远离所述雾化涂层(10)的方向顺序层叠设置的第一微结构层(220)和第二微结构层(250),所述第一微结构层(220)和所述第二微结构层(250)分别选自聚光层和光扩散层中的任意一种,且所述雾化涂层(10)和所述雾化贴合层(50)的雾度值各自独立地为1~99%。
- 根据权利要求1所述的光学膜,其特征在于,所述雾化贴合层(50)的雾度值为2~15%,或所述雾化贴合层(50)的雾度值为10~99%,优选所述雾化贴合层(50)的雾度值为60~90%。
- 根据权利要求1所述的光学膜,其特征在于,所述雾化贴合层(50)的粘着力大于50gf/in,优选大于150gf/in。
- 根据权利要求1至3中任一项所述的光学膜,其特征在于,所述雾化贴合层(50)包括胶层以及分散于所述胶层中的扩散粒子。
- 根据权利要求4所述的光学膜,其特征在于,所述扩散粒子包括有机粒子和/或无机粒子,优选所述有机粒子选自聚烯烃、聚苯乙烯、聚酰胺、聚氨酯和三聚氰胺中的任一种或多种,优选所述无机粒子选自硅、SiO2、TiO2、Al2O3和ZrO2中的任一种或多种。
- 根据权利要求4所述的光学膜,其特征在于,形成所述胶层的材料包括压敏胶和/或OCA胶,优选所述压敏胶和/或所述OCA胶选自丙烯酸酯类胶、合成橡胶类胶、氨基甲酸酯类胶、环氧树脂类胶和聚酯类胶中的任一种或多种。
- 根据权利要求1至3中任一项所述的光学膜,其特征在于,所述雾化贴合层(50)的厚度为10~100μm,优选为15~50μm。
- 根据权利要求1所述的光学膜,其特征在于,所述雾化涂层(10)的雾度值为2~15%。
- 根据权利要求8所述的光学膜,其特征在于,形成所述雾化涂层(10)的原料包括有机材料和/或无机材料,优选所述有机材料选自聚烯烃、聚苯乙烯、聚酰胺、聚氨酯和三聚氰胺中的任一种或多种,优选所述无机材料选自SiO2、TiO2、Al2O3、硅和ZrO2中的任一种或多种。
- 根据权利要求1所述的光学膜,其特征在于,所述聚光层为棱镜层,优选所述棱镜层中棱镜结构的截面为三角形、梯形、半圆形或弓形;所述光扩散层为透镜层。
- 根据权利要求1所述的光学膜,其特征在于,所述光学复合层(20)还包括:第二基材层(210),设置于所述雾化涂层(10)与所述第一微结构层(220)之间,优选所述第二基材层(210)与所述第一微结构层(220)一体成型;第三基材层(240),设置于所述第一微结构层(220)和所述第二微结构层(250)之间,优选所述第三基材层(240)与所述第二微结构层(250)一体成型;第二贴合层(230),设置于所述第一微结构层(220)和所述第三基材层(240)之间。
- 根据权利要求1所述的光学膜,其特征在于,所述光学复合层(20)还包括第三微结构层(260),所述第三微结构层(260)设置于所述第二微结构层(250)远离所述雾化涂层(10)的一侧,且所述第三微结构层(260)为聚光层,优选所述光学复合层(20)还包括第四基材层和第三贴合层,所述第四基材层设置于所述第三微结构层(260)的任意一侧表面,所述第三贴合层设置于所述第四基材层的远离所述第三微结构层(260)的一侧,更优选所述第四基材层与所述第三微结构层(260)一体成型。
- 根据权利要求12所述的光学膜,其特征在于,所述第二微结构层(250)为第一棱镜层,所述第三微结构层(260)为第二棱镜层,所述第一棱镜层中各棱镜结构的延伸方向与所述第二棱镜层中各棱镜结构的延伸方向的夹角大于0°。
- 根据权利要求1所述的光学膜,其特征在于,所述光学膜还包括离型层(60),所述离型层(60)设置于所述雾化贴合层(50)远离所述第一基材层(40)的一侧。
- 一种光学膜,其特征在于,包括顺序层叠设置的光学复合层(20)、第一贴合层(30)、第一基材层(40)和粘合层,其中,所述光学复合层(20)包括层叠设置的第一微结构层(220)和第二微结构层(250),所述第一微结构层(220)和所述第二微结构层(250)分别选自聚光层和光扩散层中的任意一种。
- 根据权利要求15所述的光学膜,其特征在于,所述粘合层为雾化贴合层(50)。
- 根据权利要求15所述的光学膜,其特征在于,所述光学膜还包括雾化涂层(10),所述雾化涂层(10)设置于所述光学复合层(20)远离所述第一贴合层(30)的一侧。
- 根据权利要求16所述的光学膜,其特征在于,所述光学膜还包括雾化涂层(10),且所述雾化涂层(10)和所述雾化贴合层(50)的雾度值各自独立地为1~99%。
- 根据权利要求16所述的光学膜,其特征在于,所述雾化贴合层(50)的雾度值为2~15%,或所述雾化贴合层的雾度值为10~99%,优选所述雾化贴合层(50)的雾度值为60~90%。
- 根据权利要求16所述的光学膜,其特征在于,所述雾化贴合层(50)的粘着力大于50gf/in,优选大于150gf/in。
- 根据权利要求16、19和20中任一项所述的光学膜,其特征在于,所述雾化贴合层(50)包括胶层以及分散于所述胶层中的扩散粒子。
- 根据权利要求21所述的光学膜,其特征在于,所述扩散粒子包括有机粒子和/或无机粒子,优选所述有机粒子选自聚烯烃、聚苯乙烯、聚酰胺、聚氨酯和三聚氰胺中的任一种或多种,优选所述无机粒子选自硅、SiO2、TiO2、Al2O3和ZrO2中的任一种或多种。
- 根据权利要求21所述的光学膜,其特征在于,形成所述胶层的材料包括压敏胶和/或OCA胶,优选所述压敏胶和/或所述OCA胶选自丙烯酸酯类胶、合成橡胶类胶、氨基甲酸酯类胶、环氧树脂类胶和聚酯类胶中的任一种或多种。
- 根据权利要求16、19和20中任一项所述的光学膜,其特征在于,所述雾化贴合层(50)的厚度为10~100μm,优选为15~50μm。
- 根据权利要求17或18所述的光学膜,其特征在于,所述雾化涂层(10)的雾度值为2~15%。
- 根据权利要求25所述的光学膜,其特征在于,形成所述雾化涂层(10)的原料包括有机材料和/或无机材料,优选所述有机材料选自聚烯烃、聚苯乙烯、聚酰胺、聚氨酯和三聚氰胺中的任一种或多种,优选所述无机材料选自SiO2、TiO2、Al2O3、硅和ZrO2中的任一种或多种。
- 根据权利要求15所述的光学膜,其特征在于,所述聚光层为棱镜层,优选所述棱镜层中棱镜结构的截面为三角形、梯形、半圆形或弓形;所述光扩散层为透镜层。
- 根据权利要求17或18所述的光学膜,其特征在于,所述光学复合层(20)还包括:第二基材层(210),设置于所述雾化涂层(10)与所述第一微结构层(220)之间,优选所述第二基材层(210)与所述第一微结构层(220)一体成型;第三基材层(240),设置于所述第一微结构层(220)和所述第二微结构层(250)之间,优选所述第三基材层(240)与所述第二微结构层(250)一体成型;第二贴合层(230),设置于所述第一微结构层(220)和所述第三基材层(240)之间。
- 根据权利要求17或18所述的光学膜,其特征在于,所述光学复合层(20)还包括第三微结构层(260),所述第三微结构层(260)设置于所述第二微结构层(250)远离所述雾化涂层(10)的一侧,且所述第三微结构层(260)为聚光层,优选所述光学复合层(20)还包括第四基材层和第三贴合层,所述第四基材层设置于所述第三微结构层(260)的任意一侧表面,所述第三贴合层设置于所述第四基材层的远离所述第三微结构层(260)的一侧,更优选所述第四基材层与所述第三微结构层(260)一体成型。
- 根据权利要求29所述的光学膜,其特征在于,所述第二微结构层(250)为第一棱镜层,所述第三微结构层(260)为第二棱镜层,所述第一棱镜层中各棱镜结构的延伸方向与所述第二棱镜层中各棱镜结构的延伸方向的夹角大于0°。
- 根据权利要求16所述的光学膜,其特征在于,所述光学膜还包括离型层(60),所述离型层(60)设置于所述雾化贴合层(50)远离所述第一基材层(40)的一侧。
- 一种偏光片,包括偏光膜和光学膜,其特征在于,所述光学膜为权利要求1至14中任一项所述的光学膜,所述光学膜中的雾化贴合层设置于所述偏光膜的表面;或所述光学膜为权利要求15至31中任一项所述的光学膜,所述光学膜中的粘合层设置于所述偏光膜的表面。
- 一种背光模组,包括光学膜,其特征在于,所述光学膜为权利要求1至14中任一项所述的光学膜,或所述光学膜为权利要求15至31中任一项所述的光学膜。
- 一种显示装置,包括液晶显示面板和光学膜,其特征在于,所述光学膜为权利要求1至14中任一项所述的光学膜,且所述光学膜中的雾化贴合层设置于所述液晶显示面板的表面;或所述光学膜为权利要求15至31中任一项所述的光学膜,所述光学膜中的粘合层设置于所述液晶显示面板的表面。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710649411.7A CN107238976B (zh) | 2017-08-01 | 2017-08-01 | 光学膜、偏光片、背光模组及显示装置 |
CN201710649411.7 | 2017-08-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019024382A1 true WO2019024382A1 (zh) | 2019-02-07 |
Family
ID=59989867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/116119 WO2019024382A1 (zh) | 2017-08-01 | 2017-12-14 | 光学膜、偏光片、背光模组及显示装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107238976B (zh) |
WO (1) | WO2019024382A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107238976B (zh) * | 2017-08-01 | 2021-02-19 | 张家港康得新光电材料有限公司 | 光学膜、偏光片、背光模组及显示装置 |
CN108490528A (zh) * | 2018-03-26 | 2018-09-04 | 惠州市华星光电技术有限公司 | 偏光片及液晶显示器 |
CN110928053A (zh) * | 2019-12-31 | 2020-03-27 | 凯鑫森(上海)功能性薄膜产业有限公司 | 液晶显示器用贴合膜及液晶显示器背光模组 |
CN114114500A (zh) * | 2020-08-31 | 2022-03-01 | 宁波激智科技股份有限公司 | 一种保偏光学膜、一种保偏扩散膜及双面雾保偏扩散膜 |
CN114114499B (zh) * | 2020-08-31 | 2024-07-19 | 宁波激智科技股份有限公司 | 一种保偏光学膜、一种保偏扩散膜及一种双面雾保偏扩散膜 |
CN117441130A (zh) * | 2022-03-23 | 2024-01-23 | 京东方科技集团股份有限公司 | 显示模组及其制备方法、显示装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102519010A (zh) * | 2011-11-16 | 2012-06-27 | 友达光电股份有限公司 | 复合光学膜及应用其的背光模块 |
CN104166175A (zh) * | 2013-05-15 | 2014-11-26 | 新和因特泰科株式会社 | 复合光学薄膜以及包括该复合光学薄膜的光源组件 |
CN104880747A (zh) * | 2015-06-10 | 2015-09-02 | 宁波江北激智新材料有限公司 | 一种可替代扩散板的多功能复合光学膜及其制作方法、及一种显示屏 |
US20160109640A1 (en) * | 2013-02-14 | 2016-04-21 | Ubright Optronics Corporation | Luminance enhancement film, backlight module and liquid crystal display device |
CN106707377A (zh) * | 2016-12-23 | 2017-05-24 | 合肥乐凯科技产业有限公司 | 一种背光模组用多层复合膜的制备方法 |
CN107238976A (zh) * | 2017-08-01 | 2017-10-10 | 张家港康得新光电材料有限公司 | 光学膜、偏光片、背光模组及显示装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4083923B2 (ja) * | 1999-06-04 | 2008-04-30 | 三菱電機株式会社 | 面状光源装置 |
US20060164860A1 (en) * | 2005-01-26 | 2006-07-27 | Sanyo Epson Imaging Devices Corp. | Liquid crystal display device |
US20080192352A1 (en) * | 2007-02-12 | 2008-08-14 | Eastman Kodak Company | Optical diffuser film and light assembly |
KR101362112B1 (ko) * | 2011-04-12 | 2014-02-12 | 케이와 인코포레이티드 | 광확산 시트, 광학 유닛, 백라이트 유닛 및 액정 표시 장치 |
JP6647761B2 (ja) * | 2015-12-07 | 2020-02-14 | 恵和株式会社 | 上用光拡散シート及びバックライトユニット |
-
2017
- 2017-08-01 CN CN201710649411.7A patent/CN107238976B/zh active Active
- 2017-12-14 WO PCT/CN2017/116119 patent/WO2019024382A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102519010A (zh) * | 2011-11-16 | 2012-06-27 | 友达光电股份有限公司 | 复合光学膜及应用其的背光模块 |
US20160109640A1 (en) * | 2013-02-14 | 2016-04-21 | Ubright Optronics Corporation | Luminance enhancement film, backlight module and liquid crystal display device |
CN104166175A (zh) * | 2013-05-15 | 2014-11-26 | 新和因特泰科株式会社 | 复合光学薄膜以及包括该复合光学薄膜的光源组件 |
CN104880747A (zh) * | 2015-06-10 | 2015-09-02 | 宁波江北激智新材料有限公司 | 一种可替代扩散板的多功能复合光学膜及其制作方法、及一种显示屏 |
CN106707377A (zh) * | 2016-12-23 | 2017-05-24 | 合肥乐凯科技产业有限公司 | 一种背光模组用多层复合膜的制备方法 |
CN107238976A (zh) * | 2017-08-01 | 2017-10-10 | 张家港康得新光电材料有限公司 | 光学膜、偏光片、背光模组及显示装置 |
Also Published As
Publication number | Publication date |
---|---|
CN107238976A (zh) | 2017-10-10 |
CN107238976B (zh) | 2021-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019024382A1 (zh) | 光学膜、偏光片、背光模组及显示装置 | |
TWI379261B (en) | Curved display panel and manufacturing method thereof | |
US11069750B2 (en) | Flexible color filter, flexible organic light emitting display device comprising same, and manufacturing method therefor | |
WO2020113784A1 (zh) | 可折叠背板结构及显示装置 | |
US20170329160A1 (en) | Optical deflection diffusion sheet, laminated optical deflection diffusion sheet, laminated optical sheet, and liquid crystal display device using same | |
CN110928036A (zh) | 显示装置及其显示方法、制备方法 | |
US20180307092A1 (en) | Display apparatus | |
US10788863B1 (en) | Flexible display device | |
EP3825761A1 (en) | Display device | |
WO2017193768A1 (zh) | 显示面板及显示装置 | |
KR20080085658A (ko) | 광학용 복합 필름 | |
WO2021031537A1 (zh) | 一种柔性盖板、柔性显示装置及柔性盖板的制作方法 | |
TW201250340A (en) | Optical adhesive film and flat panel display device having the same | |
CN109411525A (zh) | 柔性显示面板及其制备方法 | |
CN108172121A (zh) | 一种功能膜层的制备方法 | |
WO2023115413A1 (zh) | 拼接显示面板及电子设备 | |
KR101087026B1 (ko) | 광학용 복합 필름 | |
WO2021243878A1 (zh) | 显示面板其制备方法 | |
KR100989046B1 (ko) | 광학 시트, 이를 포함하는 백라이트 유닛 및 액정표시장치 | |
WO2022252736A1 (zh) | 复合光学膜片与显示装置 | |
CN114690462A (zh) | 冲击防护层、控制方法、装置、显示模组和终端 | |
CN212433442U (zh) | 一种液晶显示用贴合膜及显示器背光模组 | |
TWI310856B (en) | Liquid crystal display module | |
TW200841081A (en) | Assembly structure and process for a backlight device of a display system | |
CN114495707A (zh) | 粘合剂组合物及显示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17919898 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17919898 Country of ref document: EP Kind code of ref document: A1 |