WO2019024326A1 - 蒸镀装置 - Google Patents

蒸镀装置 Download PDF

Info

Publication number
WO2019024326A1
WO2019024326A1 PCT/CN2017/111251 CN2017111251W WO2019024326A1 WO 2019024326 A1 WO2019024326 A1 WO 2019024326A1 CN 2017111251 W CN2017111251 W CN 2017111251W WO 2019024326 A1 WO2019024326 A1 WO 2019024326A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporation
vapor deposition
deposition device
gas
substrate
Prior art date
Application number
PCT/CN2017/111251
Other languages
English (en)
French (fr)
Inventor
沐俊应
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US15/575,877 priority Critical patent/US20190032193A1/en
Publication of WO2019024326A1 publication Critical patent/WO2019024326A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process

Definitions

  • the present invention relates to the field of vapor deposition technology, and in particular to an evaporation apparatus.
  • OLED Organic Light-Emitting Diode (Organic Light Emitting Diode) display technology has been widely used in mobile devices, wearable devices, large-scale curved TVs and white lighting.
  • OLED technology is divided into small molecule OLED technology and polymer OLED technology.
  • the vapor deposition machine is the main equipment of the small molecule OLED device, and the core part is the evaporation source device.
  • the evaporation source device is further divided into an integrated line evaporation source device and a conveyor line evaporation source device.
  • the conveying type evaporation source device comprises an evaporation portion, a transmission portion and an output portion, wherein the output portion is provided with a plurality of evaporation nozzles.
  • the material filled in the evaporation portion is heated to form an evaporation gas, which is sent to the output portion through the transfer portion, and then overflowed by the nozzle and deposited on the surface of the substrate.
  • the existing evaporation source device has a large area facing the substrate, and the heat radiation to the substrate is too large, resulting in the substrate and the fine metal mask (Fine Metal Mask, FMM) Increases temperature or thermal deformation during coating.
  • FMM Fine Metal Mask
  • the present invention provides an evaporation device for preparing an evaporation film on a substrate, comprising: an evaporation portion, a nozzle, and an output portion disposed between the evaporation portion and the nozzle;
  • the evaporation portion is configured to evaporate the evaporation raw material to form an evaporation gas
  • the output portion is configured to transfer the boil-off gas from the evaporation portion to the nozzle, wherein a side of the output portion facing the substrate is a concave curved surface or a convex curved surface;
  • the nozzle is configured to transfer the vaporized gas to the substrate.
  • the nozzle comprises:
  • a heating portion disposed on the outer layer of the cavity to surround the cavity for heating the vaporized gas
  • a heat insulating portion disposed on an outer layer of the heating portion and surrounding the heating portion for holding the evaporation gas
  • the cooling portion is disposed on the outer layer of the heat retaining portion and surrounds the heat retaining portion for cooling the boil-off gas.
  • the nozzle further includes a temperature controller
  • the temperature controller is configured to increase an output power of the heating portion to increase a temperature of the evaporation gas when a temperature of the evaporation gas is lower than a preset temperature range;
  • the output power of the heating portion is decreased to lower the temperature of the boil-off gas.
  • the output portion has a spherical shape.
  • the vapor deposition device includes a plurality of nozzles disposed on a side of the output portion facing the substrate.
  • the vapor deposition device includes a plurality of nozzles disposed on both sides of the output portion.
  • the vapor deposition device further includes a transfer portion
  • the transfer portion is disposed between the evaporation portion and the output portion to transfer the boil-off gas from the evaporation portion to the output portion.
  • At least one of the evaporation portion, the transfer portion, and the output portion includes a cooling structure, a heating structure, and a temperature monitor.
  • the vapor deposition device of the present invention is provided with a rate monitoring device;
  • the rate monitoring device is configured to monitor an evaporation rate of the evaporation portion in real time.
  • An embodiment of the present invention further provides an evaporation device for preparing an evaporation film on a substrate, the evaporation device comprising: an evaporation portion, a nozzle, and an output portion disposed between the evaporation portion and the nozzle;
  • the evaporation portion is configured to evaporate the evaporation raw material to form an evaporation gas
  • the output portion is configured to transfer the boil-off gas from the evaporation portion to the nozzle, wherein one side of the output portion facing the substrate is a curved surface;
  • the nozzle is configured to transfer the vaporized gas to the substrate.
  • the nozzle comprises:
  • a heating portion disposed on the outer layer of the cavity to surround the cavity for heating the vaporized gas
  • a heat insulating portion disposed on an outer layer of the heating portion and surrounding the heating portion for holding the evaporation gas
  • the cooling portion is disposed on the outer layer of the heat retaining portion and surrounds the heat retaining portion for cooling the boil-off gas.
  • the nozzle further includes a temperature controller
  • the temperature controller is configured to acquire a temperature of the boil-off gas, and increase an output power of the heating portion when a temperature of the boil-off gas is lower than a preset temperature range;
  • one surface of the output portion facing the substrate is a concave curved surface.
  • one surface of the output portion facing the substrate is a convex curved surface.
  • the output portion has a spherical shape.
  • the vapor deposition device includes a plurality of nozzles disposed on a side of the output portion facing the substrate.
  • the vapor deposition device includes a plurality of nozzles disposed on both sides of the output portion.
  • the vapor deposition device further includes a transfer portion
  • the transfer portion is disposed between the evaporation portion and the output portion to transfer the boil-off gas from the evaporation portion to the output portion.
  • At least one of the evaporation portion, the transfer portion, and the output portion includes a cooling structure, a heating structure, and a temperature monitor.
  • the vapor deposition device of the present invention is provided with a rate monitoring device;
  • the rate monitoring device is configured to monitor an evaporation rate of the vapor deposition device in real time.
  • the vapor deposition device of the present invention can reduce the surface area of the substrate facing the substrate by setting the output portion facing the substrate to a curved surface, thereby reducing the heat radiation of the substrate by the vapor deposition device. Helps avoid temperature rise and thermal deformation of the substrate and FMM during the coating process.
  • a heating portion, a heat insulating portion and a cooling portion are provided in the nozzle to control the temperature of the evaporation gas, and further nozzles having different numbers/positions/apertures/directions can be designed to improve coating uniformity.
  • FIG. 1 is a schematic structural view of a vapor deposition device according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an evaporation portion of a vapor deposition device according to an embodiment of the present invention.
  • FIG 3 is a view showing a cooperation between an output portion and a substrate of a vapor deposition device according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a nozzle of a vapor deposition device according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another vapor deposition device according to an embodiment of the present invention.
  • references to "an embodiment” herein mean that a particular feature, structure, or characteristic described in connection with the embodiments can be included in at least one embodiment of the invention.
  • the appearances of the phrases in various places in the specification are not necessarily referring to the same embodiments, and are not exclusive or alternative embodiments that are mutually exclusive. Those skilled in the art will understand and implicitly understand that the embodiments described herein can be combined with other embodiments.
  • FIG. 1 is a schematic structural diagram of a vapor deposition apparatus according to an embodiment of the present invention.
  • the vapor deposition device 1000 is for preparing a vapor deposition film on the substrate 2000, and includes an evaporation portion 100, a nozzle 200, and an output portion 300 provided between the evaporation portion 100 and the nozzle 200.
  • the evaporation unit 100 evaporates the vapor deposition material to form an evaporation gas
  • the output unit 300 transmits the evaporation gas from the evaporation unit to the nozzle 200
  • the nozzle 200 transmits the evaporation gas to the substrate 2000.
  • the evaporation portion 100 includes a first crucible 101, a second crucible 102, a heating structure 103, and a thermal insulation layer 104.
  • the second crucible 102 is provided with an evaporation material, and the heating structure 103 may be a heating filament.
  • the high frequency alternating current is passed to the magnetic field generated by the heating structure 103, passes through the thermal insulation layer 104, generates an induced current to the first crucible 101 to generate heat, thereby heating the evaporation material in the second crucible 102 to form Evaporate the gas.
  • a cooling structure 105 for lowering the temperature of the heated evaporation material and a thermal insulation structure 106 for maintaining the current heating temperature may be disposed on the evaporation portion 100.
  • the heating structure 103 By controlling the heating structure 103, the temperature of the evaporated evaporation material can be precisely adjusted.
  • a temperature monitor (not shown) may be disposed in the evaporation portion 100 to monitor the temperature of the heated evaporation material, and the temperature of the heated evaporation material is controlled by adjusting the output power of the heating structure 103, so that evaporation can be performed.
  • the material is uniformly sprayed on the substrate 2000.
  • the temperature controller can be implemented in the form of hardware or in the form of a software function module.
  • FIG. 3 is a view showing the cooperation between the output unit 300 and the substrate 2000.
  • the output portion 300 only shows the curved surface 301 facing the substrate 2000.
  • the curved surface 301 is formed by a rectangular plane having a length a of 20 cm and a width b of 10 cm, and the intermediate position is convex upward.
  • the area of the substrate 2000 facing the substrate 2000 is 20*10 cm 2 .
  • the area of the curved surface 301 facing the substrate 2000 is a* ,among them, Less than b, a surface of the output portion 300 facing the substrate is provided as a curved surface, and a surface area of the substrate 2000 facing the substrate 2000 is reduced. Therefore, the heat radiation of the substrate by the output portion 300 can be reduced, thereby reducing the thermal deformation of the substrate 2000 due to the excessive temperature during the coating process.
  • the substrate 2000 is further provided with an FMM on one side of the output portion 300. Similarly, the heat radiation of the output portion 300 to the FMM can also be reduced.
  • one side of the output portion 300 facing the substrate 2000 may be disposed as a convex curved surface, that is, the intermediate position is higher than the surrounding position.
  • the output portion 300 may be provided in a spherical shape.
  • one side of the output portion 300 facing the substrate 2000 may also be disposed as a concave curved surface, that is, the intermediate position is lower than the surrounding position.
  • a heating structure, a cooling structure, and a temperature monitor may be disposed on the output portion 300 to further achieve temperature control of the boil-off gas.
  • FIG. 4 is a schematic structural diagram of a nozzle according to an embodiment of the present invention.
  • the nozzle 200 includes a cavity 201 for transporting vaporized gas.
  • the heating unit 202, the heat retention portion 203, and the cooling portion 204 are further provided on the nozzle.
  • the heating portion 202 is disposed on the outer layer of the cavity 201 and surrounds the cavity 201 for heating the evaporation gas.
  • the heat retention portion 203 is disposed on the outer layer of the heating portion 202 and surrounds the heating portion 202 for holding the evaporation gas.
  • 204 disposed on the outer layer of the heat retaining portion 203, surrounding the heat retaining portion 203 for cooling the boil-off gas.
  • the heating portion 202 includes a heating wire
  • the heat insulating portion 203 includes a metal coating
  • the cooling portion 204 includes a refrigerant.
  • the nozzle 200 further includes a temperature controller (not shown) for acquiring the temperature of the boil-off gas, and increasing the heating portion when the temperature of the boil-off gas is lower than a preset temperature range.
  • the output power is to increase the temperature of the boil-off gas; when the temperature of the boil-off gas is higher than the preset temperature range, the output power of the heating portion is decreased to lower the temperature of the boil-off gas.
  • the preset temperature range may be a temperature range set according to an actual situation, such as 100-120 degrees, and is not specifically limited herein. Specifically, the temperature of the boil-off gas can be detected by measuring the thermocouple at a temperature at which the nozzle is out.
  • a plurality of nozzles 200 are included in the evaporation apparatus 1000.
  • the plurality of nozzles 200 may be disposed on an arc surface on the side of the output portion 300 facing the substrate, or may be disposed on both sides of the output portion 300. Meanwhile, the plurality of nozzles 200 may be uniformly disposed on the output portion 300, or a larger number of nozzles 200 may be disposed on both sides of the output portion 300, and a smaller number of nozzles 200 may be disposed on the arc surface facing the substrate side. It should be noted that the position and the distribution manner of the nozzles 200 can be set according to actual needs, and are not specifically limited in the preferred embodiment.
  • the plurality of nozzles 200 can be arranged to be equal in size, equal in shape, such as being arranged in a cylindrical shape, or both being arranged in a rectangular parallelepiped shape.
  • the diameter of the nozzle 200 of the cylindrical shape is set to 10 cm.
  • the plurality of nozzles 200 located at different positions on the curved surface, which face the side of the substrate 2000, will be in a non-flat state.
  • a nozzle of a larger height can be used to change the nozzle direction to shorten the length of the linear vapor deposition apparatus 1000, thereby preventing the heat radiation of the substrate by the vapor deposition apparatus 1000 from being excessive.
  • different nozzles 200 can be provided with different shapes and sizes.
  • the nozzles 200 on the arc surface of the conveying portion 300 are set in a cylindrical shape, and the nozzles 200 located on both sides of the conveying portion 300 are set in a cubic shape.
  • the height of the nozzle 200 at a higher position on the curved surface is lowered, and the height of the nozzle 200 at a lower position of the curved surface is increased so that the plurality of nozzles 200 face the side of the substrate 2000 and are flush along the same horizontal plane.
  • the shape and size of the nozzle 200 can be set according to actual needs, and are not specifically limited in the preferred embodiment.
  • the vapor deposition apparatus 1000 further includes a transfer portion 400 disposed between the evaporation portion 100 and the output portion 300 to transfer the boil-off gas from the evaporation portion 100 to the output portion 300. .
  • a heating structure, a cooling structure, and a temperature monitor may be disposed on the transmission portion 400 to achieve temperature control of the boil-off gas. Since the heating structure, the cooling structure, and the temperature monitor are disposed in the transmission portion 400 in a similar manner to the evaporation portion 100, they will not be described again in the preferred embodiment.
  • a rate monitoring device may also be provided in the evaporation device 1000 to monitor the vapor evaporation rate of the evaporation portion.
  • the rate monitoring device 401 is provided on the transmission unit 400.
  • the rate monitoring device 401 may be a valve that adjusts the speed at which the evaporation gas of the evaporation portion 100 is transmitted to the transmission portion 400 by adjusting the opening degree of the valve.
  • the vapor deposition device 1000 of the embodiment of the present invention can face the surface of the substrate facing the substrate to reduce the surface area of the substrate, thereby reducing the heat radiation of the substrate by the vapor deposition device 1000, and helping to avoid the substrate during the coating process. Increase in temperature and thermal deformation.
  • a heating portion, a heat insulating portion and a cooling portion are provided in the nozzle to control the temperature of the evaporation gas, and further nozzles having different numbers/positions/apertures/directions can be designed to improve coating uniformity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种蒸镀装置(1000),包括:蒸发部(100)、喷嘴(200)及设置在所述蒸发部(100)和所述喷嘴(200)之间的输出部(300);所述蒸发部(100),用于蒸发蒸镀原料以形成蒸发气体;所述输出部(300),用于将所述蒸发气体从所述蒸发部(100)传输至所述喷嘴(200),其中所述输出部(300)面向基板(2000)的一面为弧面(301);所述喷嘴(200),用于将所述蒸发气体传输给所述基板(2000)。

Description

蒸镀装置 技术领域
本发明涉及蒸镀技术领域,特别是涉及一种蒸镀装置。
背景技术
随着OLED(Organic Light-Emitting Diode,有机发光二极管)显示技术的发展,其被广泛的应用于移动设备、可穿戴设备,大尺寸曲面电视及白光照明等领域中。
OLED技术分为小分子OLED技术和高分子OLED技术。其中,蒸镀机是小分子OLED器件的主要设备,其核心部分为蒸发源装置。
蒸发源装置又分为一体式线蒸发源装置和输送式线蒸发源装置。输送式蒸发源装置包括蒸发部、传输部及输出部,其中输出部上设有若干蒸发喷嘴。填充在蒸发部中的材料经加热后形成蒸发气体,经传输部输送至输出部,再由喷嘴溢出并沉积在基板表面。现有的蒸发源装置正对基板的面积较大,对基板热辐射过大,导致基板和精细金属掩模板(Fine Metal Mask, FMM)在镀膜过程中温度的升高或热形变。
技术问题
本发明的目的在于提供一种蒸镀装置,可以降低对基板的热辐射。
技术解决方案
本发明提供一种蒸镀装置,用于制备蒸镀薄膜于基板上,其包括:蒸发部、喷嘴及设置在所述蒸发部和所述喷嘴之间的输出部;
所述蒸发部,用于蒸发蒸镀原料以形成蒸发气体;
所述输出部,用于将所述蒸发气体从所述蒸发部传输至所述喷嘴,其中所述输出部面向所述基板的一面为凹弧面或凸弧面;
所述喷嘴,用于将所述蒸发气体传输给所述基板。
在本发明所述的蒸镀装置中,所述喷嘴包括:
一腔体,用于传输所述蒸发气体;
加热部,设置在所述腔体外层,包围所述腔体,用于加热所述蒸发气体;
保温部,设置在所述加热部外层,包围所述加热部,用于对所述蒸发气体保温;
冷却部,设置在所述保温部外层,包围所述保温部,用于冷却所述蒸发气体。
在本发明所述的蒸镀装置中,所述喷嘴还包括温度控制器;
所述温度控制器,用于在所述蒸发气体的温度低于预设温度范围时,增大所述加热部的输出功率,以提高所述蒸发气体的温度;
在所述蒸发气体的温度高于所述预设温度范围时,减小所述加热部的输出功率,以降低所述蒸发气体的温度。
在本发明所述的蒸镀装置中,所述输出部为球体形状。
在本发明所述的蒸镀装置中,所述蒸镀装置包括多个喷嘴,所述多个喷嘴设置在所述输出部面向所述基板的一面上。
在本发明所述的蒸镀装置中,所述蒸镀装置包括多个喷嘴,所述多个喷嘴设置在所述输出部的两侧。
在本发明所述的蒸镀装置中,所述蒸镀装置还包括传输部;
所述传输部设置在所述蒸发部和所述输出部之间,以将所述蒸发气体从所述蒸发部传输至所述输出部。
在本发明所述的蒸镀装置中,所述蒸发部、所述传输部及所述输出部中至少一个包括冷却结构、加热结构和温度监控器。
在本发明所述的蒸镀装置中,所述蒸镀装置设有速率监控装置;
所述速率监控装置,用于实时监控所述蒸发部的蒸发速率。
本发明实施例还提供一种蒸镀装置,用于制备蒸镀薄膜于基板上,所述蒸镀装置包括:蒸发部、喷嘴及设置在所述蒸发部和所述喷嘴之间的输出部;
所述蒸发部,用于蒸发蒸镀原料以形成蒸发气体;
所述输出部,用于将所述蒸发气体从所述蒸发部传输至所述喷嘴,其中所述输出部面向所述基板的一面为弧面;
所述喷嘴,用于将所述蒸发气体传输给所述基板。
在本发明所述的蒸镀装置中,所述喷嘴包括:
一腔体,用于传输所述蒸发气体;
加热部,设置在所述腔体外层,包围所述腔体,用于加热所述蒸发气体;
保温部,设置在所述加热部外层,包围所述加热部,用于对所述蒸发气体保温;
冷却部,设置在所述保温部外层,包围所述保温部,用于冷却所述蒸发气体。
在本发明所述的蒸镀装置中,所述喷嘴还包括温度控制器;
所述温度控制器,用于获取所述蒸发气体的温度,在所述蒸发气体的温度低于预设温度范围时,增大所述加热部的输出功率;
在所述蒸发气体的温度高于所述预设温度范围时,减小所述加热部的输出功率。
在本发明所述的蒸镀装置中,所述输出部面向所述基板的一面为凹弧面。
在本发明所述的蒸镀装置中,所述输出部面向所述基板的一面为凸弧面。
在本发明所述的蒸镀装置中,所述输出部为球体形状。
在本发明所述的蒸镀装置中,所述蒸镀装置包括多个喷嘴,所述多个喷嘴设置在所述输出部面向所述基板的一面上。
在本发明所述的蒸镀装置中,所述蒸镀装置包括多个喷嘴,所述多个喷嘴设置在所述输出部的两侧。
在本发明所述的蒸镀装置中,所述蒸镀装置还包括传输部;
所述传输部设置在所述蒸发部和所述输出部之间,以将所述蒸发气体从所述蒸发部传输至所述输出部。
在本发明所述的蒸镀装置中,所述蒸发部、所述传输部及所述输出部中至少一个包括冷却结构、加热结构和温度监控器。
在本发明所述的蒸镀装置中,所述蒸镀装置设有速率监控装置;
所述速率监控装置,用于实时监控所述蒸镀装置的蒸发速率。
有益效果
相较于现有的蒸镀装置,本发明的蒸镀装置通过将输出部正对基板的一面设置成弧面,可以减少正对基板的表面积,从而降低蒸镀装置对基板的热辐射,有助于避免基板和FMM在镀膜过程中温度的升高及热形变。同时,在喷嘴中设置加热部、保温部和冷却部来控制蒸发气体的温度,进一步的可以设计具有不同数量/位置/孔径/方向的喷嘴,以改善镀膜均匀性。
为让本发明的上述内容能更明显易懂,下文特举优选实施例,并配合所附图式,作详细说明如下:
附图说明
图1为本发明实施例提供的蒸镀装置的结构示意图。
图2为本发明实施例提供的蒸镀装置的蒸发部的剖面示意图。
图3为本发明实施例提供的蒸镀装置的输出部与基板配合图。
图4为本发明实施例提供的蒸镀装置的喷嘴的剖面示意图。
图5为本发明实施例提供的另一蒸镀装置的结构示意图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如「上」、「下」、「前」、「后」、「左」、「右」、「内」、「外」、「侧面」等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
在图中,结构相似的单元是以相同标号表示。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
请参照图1,图1为本发明实施例提供的蒸镀装置的结构示意图。蒸镀装置1000,用于制备蒸镀薄膜于基板2000上,包括蒸发部100、喷嘴200和设置在蒸发部100、喷嘴200之间的输出部300。
其中,蒸发部100蒸发蒸镀原料以形成蒸发气体,输出部300将蒸发气体从蒸发部传输至所述喷嘴200,喷嘴200将蒸发气体传输给基板2000。
在一些实施例中,如图2所示,蒸发部100包括第一坩埚101、第二坩埚102、加热结构103及热绝缘层104。其中第二坩埚102内装有蒸镀材料,加热结构103可以为加热丝。在实际蒸镀过程中,高频交流电通入加热结构103产生的磁场,穿过热绝缘层104,对第一坩埚101生成感应电流产生热量,从而加热第二坩埚102内的蒸镀材料以形成蒸发气体。
在一些实施例中,可以在蒸发部100上设置冷却结构105及保温结构106,其中冷却结构105用于降低加热蒸镀材料的温度,保温结构106用于维持当前加热温度。通过对加热结构103的控制,可以精确调节蒸发蒸镀材料的温度。
进一步的,可以在蒸发部100设置温度监控器(图未示)以监控加热蒸镀材料的温度,并通过调节加热结构103的输出功率,来控制加热蒸镀材料的温度,从而可以使蒸镀材料均匀的喷涂在基板2000上。在本优选实施例中,温度控制器既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
如图1所示,输出部300面向基板2000的一面为弧面。请参照图3,图3为输出部300与基板2000的配合图。其中,输出部300仅示出其面向基板2000的弧面301。弧面301由一个长a为20cm,宽b为10cm的长方形平面,中间位置向上凸起形成。假设将输出部300面向2000的一面设置为水平形状,则其正对基板2000的面积为20*10cm2。而弧面301正对基板2000的面积为a* ,其中, 小于b,即将输出部300面向基板的一面设置成弧面,其正对基板2000的表面积将变小。因此可以减少输出部300对基板的热辐射,从而降低了基板2000因在镀膜过程中温度过高导致的热形变。在一些实施例中,基板2000相对输出部300的一侧还设有FMM,同理的,也可以减少输出部300对FMM的热辐射。
在一些实施例中,可以将输出部300面向基板2000的一面设置为凸弧面,即中间位置高于周围位置。优选的,如图1所示,可以将输出部300设置成球体形状。在一些实施例中,还可以将输出部300面向基板2000的一面设置为凹弧面,即中间位置低于周围位置。
在一些实施例中,输出部300上可以设置加热结构、冷却结构和温度监控器,以进一步实现对蒸发气体的温度控制。
请参照图4,图4为本发明实施例提供的喷嘴的结构示意图。喷嘴200包括一腔体201,用于传输蒸发气体。为了进一步精确调控蒸发气体的温度,在喷嘴上还设置了加热部202、保温部203及冷却部204。其中加热部202,设置在腔体201外层,包围腔体201,用于加热蒸发气体;保温部203,设置在加热部202外层,包围加热部202,用于对蒸发气体保温;冷却部204,设置在保温部203外层,包围保温部203,用于冷却蒸发气体。优选的,加热部202包括加热丝,保温部203包括金属涂层,冷却部204包括制冷剂。
在一些实施例中,喷嘴200还包括温度控制器(图未视),用于获取所述蒸发气体的温度,在所述蒸发气体的温度低于预设温度范围时,增大所述加热部的输出功率来提高蒸发气体的温度;在所述蒸发气体的温度高于所述预设温度范围时,减小所述加热部的输出功率来降低蒸发气体的温度。其中,预设温度范围可以为100-120度等根据实际情况设置的温度范围,在此不作具体限定。具体的,可以通过设置在喷嘴出的温度测量热电偶来检测蒸发气体的温度。
在一些实施例中,蒸镀装置1000中包括多个喷嘴200。该多个喷嘴200可以设置在输出部300面向基板一侧的弧面上,也可以设置在输出部300的两侧。同时,多个喷嘴200可以均匀的设置在输出部300上,也可以在输出部300两侧设置较多数量的喷嘴200,在面向基板一侧的弧面上设置较少数量的喷嘴200。需要说明的是,喷嘴200的位置、分布方式可以根据实际需要进行设定,在本优选实施例中不做具体限定。
在一些实施例中,可以将该多个喷嘴200设置成大小相等、形状相等,比如都设置为圆柱体形状,或都设置为长方体形状。比如将圆柱体形状的喷嘴200的孔径都设置为10cm。这样位于弧面不同位置的多个喷嘴200,其面向基板2000的一侧,将处于不齐平状态。优选的,可以将较大高度的喷嘴,以便于改变喷嘴方向来缩短线性蒸镀装置1000的长度,进而避免蒸镀装置1000对基板的热辐射过大。
在一些实施例中,可以对不同的喷嘴200设置不同的形状、大小。比如,将传输部300弧面上的喷嘴200设置成圆柱体形状,将位于传输部300两侧的喷嘴200设置成立方体形状。比如,将位于弧面较高位置的喷嘴200的高度降低,将位于弧面较低位置的喷嘴200的高度增高,以使多个喷嘴200面向基板2000的一侧,沿同一水平面齐平。需要说明的是,喷嘴200的形状、大小可以根据实际需要进行设定,在本优选实施例中不做具体限定。
在一些实施例中,如图5所示,蒸镀装置1000还包括传输部400,传输部400设置在蒸发部100和输出部300之间,以将蒸发气体从蒸发部100传输至输出部300。
同输出部300,传输部400上也可以设置加热结构、冷却结构和温度监控器,以实现对蒸发气体的温度控制。由于传输部400中加热结构、冷却结构和温度监控器的设置方式与蒸发部100类似,因此在本优选实施例中不再赘述。
在一些实施例中,在蒸镀装置1000中还可以设置速率监控装置,以监控蒸发部蒸汽蒸发速率。比如,在传输部400上设置速率监控装置401。其中速率监控装置401可以为阀门,通过调节阀门的开度来调节蒸发部100的蒸发气体传输至传输部400的速度。
本发明实施例的蒸镀装置1000将输出部正对基板的一面设置成弧面可以减少正对基板的表面积,从而降低蒸镀装置1000对基板的热辐射,有助于避免基板在镀膜过程中温度的升高及热形变。同时,在喷嘴中设置加热部、保温部和冷却部来控制蒸发气体的温度,进一步的可以设计具有不同数量/位置/孔径/方向的喷嘴,以改善镀膜均匀性。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种蒸镀装置,用于制备蒸镀薄膜于基板上,其包括:蒸发部、喷嘴及设置在所述蒸发部和所述喷嘴之间的输出部;
    所述蒸发部,用于蒸发蒸镀原料以形成蒸发气体;
    所述输出部,用于将所述蒸发气体从所述蒸发部传输至所述喷嘴,其中所述输出部面向所述基板的一面为凹弧面或凸弧面;
    所述喷嘴,用于将所述蒸发气体传输给所述基板。
  2. 根据权利要求1所述的蒸镀装置,其中所述喷嘴包括:
    一腔体,用于传输所述蒸发气体;
    加热部,设置在所述腔体外层,包围所述腔体,用于加热所述蒸发气体;
    保温部,设置在所述加热部外层,包围所述加热部,用于对所述蒸发气体保温;
    冷却部,设置在所述保温部外层,包围所述保温部,用于冷却所述蒸发气体。
  3. 根据权利要求2所述的蒸镀装置,其中所述喷嘴还包括温度控制器;
    所述温度控制器,用于在所述蒸发气体的温度低于预设温度范围时,增大所述加热部的输出功率,以提高所述蒸发气体的温度;
    在所述蒸发气体的温度高于所述预设温度范围时,减小所述加热部的输出功率,以降低所述蒸发气体的温度。
  4. 根据权利要求1所述的蒸镀装置,其中所述输出部为球体形状。
  5. 根据权利要求1所述的蒸镀装置,其中所述蒸镀装置包括多个喷嘴,所述多个喷嘴设置在所述输出部面向所述基板的一面上。
  6. 根据权利要求1所述的蒸镀装置,其中所述蒸镀装置包括多个喷嘴,所述多个喷嘴设置在所述输出部的两侧。
  7. 根据权利要求1所述的蒸镀装置,其中所述蒸镀装置还包括传输部;
    所述传输部设置在所述蒸发部和所述输出部之间,以将所述蒸发气体从所述蒸发部传输至所述输出部。
  8. 根据权利要求7所述的蒸镀装置,其中所述蒸发部、所述传输部及所述输出部中至少一个包括冷却结构、加热结构和温度监控器。
  9. 根据权利要求1所述的蒸镀装置,其中所述蒸镀装置设有速率监控装置;
    所述速率监控装置,用于实时监控所述蒸发部的蒸发速率。
  10. 一种蒸镀装置,用于制备蒸镀薄膜于基板上,其包括:蒸发部、喷嘴及设置在所述蒸发部和所述喷嘴之间的输出部;
    所述蒸发部,用于蒸发蒸镀原料以形成蒸发气体;
    所述输出部,用于将所述蒸发气体从所述蒸发部传输至所述喷嘴,其中所述输出部面向所述基板的一面为弧面;
    所述喷嘴,用于将所述蒸发气体传输给所述基板。
  11. 根据权利要求10所述的蒸镀装置,其中所述喷嘴包括:
    一腔体,用于传输所述蒸发气体;
    加热部,设置在所述腔体外层,包围所述腔体,用于加热所述蒸发气体;
    保温部,设置在所述加热部外层,包围所述加热部,用于对所述蒸发气体保温;
    冷却部,设置在所述保温部外层,包围所述保温部,用于冷却所述蒸发气体。
  12. 根据权利要求11所述的蒸镀装置,其中所述喷嘴还包括温度控制器;
    所述温度控制器,用于在所述蒸发气体的温度低于预设温度范围时,增大所述加热部的输出功率,以提高所述蒸发气体的温度;
    在所述蒸发气体的温度高于所述预设温度范围时,减小所述加热部的输出功率,以降低所述蒸发气体的温度。
  13. 根据权利要求10所述的蒸镀装置,其中所述输出部面向所述基板的一面为凹弧面。
  14. 根据权利要求10所述的蒸镀装置,其中所述输出部面向所述基板的一面为凸弧面。
  15. 根据权利要求14所述的蒸镀装置,其中所述输出部为球体形状。
  16. 根据权利要求10所述的蒸镀装置,其中所述蒸镀装置包括多个喷嘴,所述多个喷嘴设置在所述输出部面向所述基板的一面上。
  17. 根据权利要求10所述的蒸镀装置,其中所述蒸镀装置包括多个喷嘴,所述多个喷嘴设置在所述输出部的两侧。
  18. 根据权利要求10所述的蒸镀装置,其中所述蒸镀装置还包括传输部;
    所述传输部设置在所述蒸发部和所述输出部之间,以将所述蒸发气体从所述蒸发部传输至所述输出部。
  19. 根据权利要求18所述的蒸镀装置,其中所述蒸发部、所述传输部及所述输出部中至少一个包括冷却结构、加热结构和温度监控器。
  20. 根据权利要求10所述的蒸镀装置,其中所述蒸镀装置设有速率监控装置;
    所述速率监控装置,用于实时监控所述蒸发部的蒸发速率。
PCT/CN2017/111251 2017-07-31 2017-11-16 蒸镀装置 WO2019024326A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/575,877 US20190032193A1 (en) 2017-07-31 2017-11-16 Vapor Deposition Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710639964.4 2017-07-31
CN201710639964.4A CN107686966B (zh) 2017-07-31 2017-07-31 蒸镀装置

Publications (1)

Publication Number Publication Date
WO2019024326A1 true WO2019024326A1 (zh) 2019-02-07

Family

ID=61153160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111251 WO2019024326A1 (zh) 2017-07-31 2017-11-16 蒸镀装置

Country Status (2)

Country Link
CN (1) CN107686966B (zh)
WO (1) WO2019024326A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111501004B (zh) * 2020-05-09 2022-06-17 北京北方华创微电子装备有限公司 温度控制方法和系统、半导体设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1676660A (zh) * 2004-03-30 2005-10-05 株式会社延原表 蒸镀工序用喷嘴蒸发源
CN101294278A (zh) * 2007-04-27 2008-10-29 泰拉半导体株式会社 源气体供给装置
CN101298666A (zh) * 2007-05-04 2008-11-05 泰拉半导体株式会社 气源供给装置和方法
WO2012124246A1 (ja) * 2011-03-11 2012-09-20 パナソニック株式会社 薄膜の製造方法及び製造装置
CN102732837A (zh) * 2011-03-31 2012-10-17 株式会社日立高新技术 蒸镀装置
CN103710667A (zh) * 2012-09-28 2014-04-09 株式会社日立高新技术 蒸发源、真空蒸镀装置以及有机el显示装置制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1169477A (zh) * 1996-05-10 1998-01-07 萨蒂斯真空工业销售股份公司 在光学基片上蒸镀镀膜的方法
DE102005027382B4 (de) * 2005-06-14 2010-01-28 Leybold Optics Gmbh Verdampferschiffchen für eine Vorrichtung zum Beschichten von Substraten
JP5319025B2 (ja) * 2011-01-20 2013-10-16 シャープ株式会社 坩堝および蒸着装置
US20150207108A1 (en) * 2013-03-29 2015-07-23 Samsung Display Co., Ltd. Deposition apparatus, method of manufacturing organic light emitting display apparatus, and organic light emitting display apparatus
KR102150436B1 (ko) * 2013-12-20 2020-09-01 엘지디스플레이 주식회사 증발원 및 이를 포함하는 증착 장치
CN105296932B (zh) * 2015-10-30 2018-04-20 武汉华星光电技术有限公司 一种蒸镀机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1676660A (zh) * 2004-03-30 2005-10-05 株式会社延原表 蒸镀工序用喷嘴蒸发源
CN101294278A (zh) * 2007-04-27 2008-10-29 泰拉半导体株式会社 源气体供给装置
CN101298666A (zh) * 2007-05-04 2008-11-05 泰拉半导体株式会社 气源供给装置和方法
WO2012124246A1 (ja) * 2011-03-11 2012-09-20 パナソニック株式会社 薄膜の製造方法及び製造装置
CN102732837A (zh) * 2011-03-31 2012-10-17 株式会社日立高新技术 蒸镀装置
CN103710667A (zh) * 2012-09-28 2014-04-09 株式会社日立高新技术 蒸发源、真空蒸镀装置以及有机el显示装置制造方法

Also Published As

Publication number Publication date
CN107686966B (zh) 2019-09-24
CN107686966A (zh) 2018-02-13

Similar Documents

Publication Publication Date Title
WO2014168352A1 (ko) 증발 증착 장치
WO2014123310A1 (en) Substrate support and substrate treating apparatus having the same
CN104078626B (zh) 用于oled材料蒸镀的加热装置
US20200095671A1 (en) Carrying device and semiconductor processing apparatus
KR20070056190A (ko) 금속판 벨트 증발원을 이용한 선형 유기소자 양산장비
TW201604302A (zh) 蒸發源陣列
US9150952B2 (en) Deposition source and deposition apparatus including the same
JP2017509796A (ja) 有機材料用の蒸発源
WO2012079467A1 (zh) 腔室组件和具有它的金属有机化合物化学气相沉积设备
US8815016B2 (en) Heating unit and substrate processing apparatus having the same
WO2019024326A1 (zh) 蒸镀装置
WO2019028959A1 (zh) 一种制造有机发光显示面板的基板及蒸镀装置
CN103074579A (zh) 薄膜沉积设备
WO2013025000A2 (ko) 저온 금속 증착공정을 적용한 열변색성 유리의 제조방법 및 이에 의한 열변색성 유리
WO2016006740A1 (ko) 복수의 도가니를 갖는 박막 증착장치
WO2016076556A1 (ko) 유도 가열 선형 증발 증착 장치
WO2011083898A1 (en) Insulation device of single crystal growth device and single crystal growth device including the same
WO2020113676A1 (zh) 蒸镀坩埚
CN102187007A (zh) 溅射装置、薄膜形成方法和场效应晶体管的制造方法
WO2017096688A1 (zh) Oled显示面板及显示装置
WO2016122046A1 (en) Inductive heating linear evaporation deposition apparatus
TW201946312A (zh) 真空處理系統及操作一真空處理系統之方法
US20190032193A1 (en) Vapor Deposition Device
JP2011225965A (ja) 基板処理装置
TW202012662A (zh) 用於在真空腔室中蒸發沉積材料的蒸發源、用於蒸發沉積材料的系統以及用於操作蒸發源的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920497

Country of ref document: EP

Kind code of ref document: A1