WO2019024170A1 - 毫米波实时成像安全检测系统及安全检测方法 - Google Patents

毫米波实时成像安全检测系统及安全检测方法 Download PDF

Info

Publication number
WO2019024170A1
WO2019024170A1 PCT/CN2017/100401 CN2017100401W WO2019024170A1 WO 2019024170 A1 WO2019024170 A1 WO 2019024170A1 CN 2017100401 W CN2017100401 W CN 2017100401W WO 2019024170 A1 WO2019024170 A1 WO 2019024170A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
millimeter wave
output
transmitting
inspected
Prior art date
Application number
PCT/CN2017/100401
Other languages
English (en)
French (fr)
Inventor
祁春超
贾成艳
李玉鹏
Original Assignee
深圳市无牙太赫兹科技有限公司
深圳市太赫兹科技创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市无牙太赫兹科技有限公司, 深圳市太赫兹科技创新研究院 filed Critical 深圳市无牙太赫兹科技有限公司
Priority to US16/635,418 priority Critical patent/US11500088B2/en
Publication of WO2019024170A1 publication Critical patent/WO2019024170A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/005Prospecting or detecting by optical means operating with millimetre waves, e.g. measuring the black losey radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/886Radar or analogous systems specially adapted for specific applications for alarm systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/887Radar or analogous systems specially adapted for specific applications for detection of concealed objects, e.g. contraband or weapons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9021SAR image post-processing techniques
    • G01S13/9029SAR image post-processing techniques specially adapted for moving target detection within a single SAR image or within multiple SAR images taken at the same time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/034Duplexers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9064Inverse SAR [ISAR]

Definitions

  • the present invention belongs to the field of security inspection systems, and more particularly to a millimeter wave real imaging security detection system and a security detection method.
  • Millimeter wave imaging technology uses millimeter wave radar.
  • Millimeter wave radar means that the radar transmitting signal frequency is in the millimeter wave band, and the millimeter wave frequency is 30 GHz to 300 GHz (wavelength from lmm to 10 mm). In practical engineering applications, the low frequency of the millimeter wave is often reduced to 26 GHz.
  • the millimeter wave frequency is located between the microwave and the infrared.
  • millimeter waves are typically characterized by short wavelengths, wide frequency bandwidths (with a wide use of space), and propagation characteristics in the atmosphere.
  • millimeter waves have the ability to work around the clock and can be used in harsh environments such as smoke, clouds and fog.
  • the microwave band is becoming more and more crowded, the millimeter wave takes into account the advantages of microwaves and also has some advantages that are not available in low-band microwaves.
  • the millimeter wave mainly has the following characteristics: 1. High precision, the millimeter wave radar is more likely to obtain a narrow beam and a large absolute bandwidth, so that the millimeter wave radar system is more resistant to electronic interference; In the Doppler radar, the Doppler frequency resolution of the millimeter wave is high; 3. In the millimeter wave imaging system, the millimeter wave is sensitive to the shape and structure of the target, and the ability to distinguish the metal target from the background environment is strong, and the obtained image is resolved. The rate is high, so the target recognition and detection ability can be improved. 4. The millimeter wave can penetrate the plasma. 5. Compared with the infrared laser, the millimeter wave is less affected by the harsh natural environment. 6.
  • the millimeter wave system is small in size and light in weight. Therefore, the millimeter wave circuit is much smaller in size than the microwave circuit, so that the millimeter wave system is easier to integrate. It is these unique properties that give wide-ranging applications for millimeter-wave technology, especially in the areas of non-destructive testing and security.
  • millimeter wave imaging systems used a single-channel mechanical scanning system, which was simple in structure but long in scanning.
  • Millivision has developed the Vetal25 imager, which has an 8 x 8 array receiving mechanism in addition to the emission scanning system, but this imager is more suitable for large-scale remote monitoring outdoors, and The field is less than 50 cm.
  • Trex has also developed a PMC-2 imaging system in which the antenna unit uses a 3mm phased array antenna.
  • the PMC-2 imaging system uses a millimeter wave with a center frequency of 84 GHz.
  • the operating frequency of this imaging system is higher due to its proximity to the terahertz band.
  • Lockheed Martin has also developed a focal plane imaging array imaging system that uses a millimeter wave center frequency of 94 GHz.
  • TRW has developed a passive millimeter wave imaging system that uses a millimeter wave center frequency of 89G Hz. Lockheed
  • the imaging systems of both Martin and TRW have smaller field of view, usually less than 50 cm.
  • the millimeter wave imaging technology currently used in personnel security inspection is a synthetic aperture radar (SAR) imaging principle using radar motion and target motion.
  • SAR synthetic aperture radar
  • the existing security inspection system is inspecting the human body, and the security personnel need to use the security inspection equipment to move back and forth on the body of the inspected person, which is inconvenient for the security personnel and the inspected personnel.
  • An object of the present invention is to provide a millimeter wave real imaging security detection system, which solves the problem that the millimeter wave imaging safety detection system used in the existing security inspection has a slow imaging speed and a small field of view.
  • the technical solution adopted by the present invention is: Providing a millimeter wave real imaging security detection system, comprising: a transmitting device, a transmitting device for transmitting an object to be inspected; a millimeter wave transceiver module, millimeter wave transmitting and receiving The module is configured to generate a millimeter wave transmitting signal sent to the object to be inspected and receive and process the echo signal; the antenna array, the antenna array is connected with the millimeter wave transceiver module, the antenna array comprises a transmitting antenna array and a receiving antenna array, and the transmitting antenna array comprises multiple Transmitting antennas, the receiving antenna array comprises a plurality of receiving antennas, each transmitting antenna and each receiving antenna are in one-to-one correspondence to transmit a millimeter wave transmitting signal and receiving an echo signal; and the switching array includes a transmitting array and receiving In the ⁇ ⁇ array, the ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • the control unit is electrically connected to the receiving switch array to control the switching of each of the transmitting and receiving circuits according to a preset sequence; the quadrature demodulation and data acquisition module, the input of the quadrature demodulation and the data acquisition module The end is connected with the millimeter wave transceiver module to collect, correct and process the echo signal; the image display unit is connected with the output of the quadrature demodulation and data acquisition module to generate and display the echo signal Check the 3D image of the object.
  • the millimeter wave real imaging security detection system further comprises an alarm device connected to the quadrature demodulation and data acquisition module, and the alarm device is used to indicate the presence or absence of dangerous goods.
  • the millimeter wave real imaging security detection system further includes a door device, and the transmission device passes through the door device
  • the millimeter wave transceiver module and the antenna array are disposed on the door device.
  • the conveying device comprises: a belt, a belt passing through the door device, a belt for conveying the object to be inspected; and a motor, the motor and the belt driving connection to drive the belt movement.
  • the millimeter wave transceiver module includes: a transmission link for generating a millimeter wave transmission signal transmitted to the object to be inspected; a receiving link for receiving an echo returned by the object to be inspected Signal, and process the echo signal for transmission to the quadrature demodulation and data acquisition module; correction loop, correction The loop is used to correct the linearity of the input voltage of the first oscillation source and to correct the frequency of the millimeter wave transmission signal.
  • the transmitting link includes: a first oscillating source, the first oscillating source is a voltage controlled oscillating source device operating in a first frequency range; the first power splitter, the input end of the first power splitter and The voltage-controlled oscillator source is connected; the first power amplifier is connected to the output end of the first power splitter to amplify the power of one output signal of the first power splitter to reach the first frequency doubler a driving power range; a first frequency doubler, doubling the signal output by the first power amplifier to a second frequency range, and outputting the signal after the double frequency to the first filter; the first filter, The spurious signal generated by the first second frequency multiplier is suppressed, and the filtered signal is output to the second power amplifier; the second power amplifier performs power amplification on the signal output by the first filter to reach the second second frequency The driving power range of the device; the second frequency multiplier, doubling the signal output by the second power amplifier to the third frequency range, and outputting the signal after the double frequency to the second
  • the receiving link includes: a first low noise amplifier, the first low noise amplifier amplifies the millimeter wave signal received from the receiving antenna, and outputs the signal to the radio frequency input port of the second quadrature mixer; a cross mixer, the local oscillator port of the second quadrature mixer inputs a second output port from the second power splitter and the amplified signal amplified by the sixth power amplifier and the signal from the first low noise amplifier Orthogonal mixing is performed to obtain an output intermediate frequency signal; the output intermediate frequency signal sends a signal carrying the information of the object to be inspected to the quadrature demodulation and data acquisition module for processing and analysis.
  • the correction circuit includes: a seventh power amplifier, the seventh power amplifier amplifies another output signal from the first power splitter, and outputs the output signal to the first divider, the first divider output frequency range is a fourth frequency range; the first divider outputs the output signal to the third filter for filtering processing, and outputs the filtered signal to the second divider, wherein the output frequency range of the second divider is the fifth frequency range; The second divider outputs the output signal to the fourth filter for filtering, and outputs the filtered signal to the quadrature demodulation and data acquisition module for correcting the voltage input of the voltage controlled oscillation source.
  • the first frequency range is F1 ⁇ F2
  • the second frequency range is 2F1 ⁇ 2F2
  • the third frequency range is 4F1 ⁇ 4F2
  • the fourth frequency range is Fl/x ⁇ F2/x
  • the fifth frequency range Is Fl/xy ⁇ F2/xy, where x and y are integers greater than one.
  • the echo signal from the millimeter wave transceiver module is demodulated and acquired, the echo signal is correlated with the spatial position signal, and then the Fourier transform is performed. Fourier inverse transform to get a three-dimensional image.
  • the present invention also provides a security detection method for detecting an object to be inspected by using the millimeter wave real imaging security detection system described above, comprising the following steps: S1: the transmission device moves the object to be inspected; S2 : The millimeter wave transceiver module generates a millimeter wave transmission signal; S3: the control unit controls the gate array according to a preset sequence; S4: the gate array controls the transmission and reception of the antenna array according to a preset sequence, so that each The corresponding transmitting and receiving antennas sequentially transmit and receive millimeter waves; wherein, the transmitting antenna transmits the millimeter wave transmitting signal generated by the millimeter wave transceiver module to the object to be inspected, and the receiving antenna receives the echo signal returned by the object to be inspected and The echo signal is sent to the millimeter wave transceiver module; S5: the millimeter wave transceiver module processes the echo signal and sends it to the quadrature demodulation
  • the millimeter wave real imaging security system includes an alarm device
  • the safety detecting method further includes step S8: the alarm device alarms the detected object in which the dangerous substance exists.
  • the object to be inspected is moved by the transmitting device 10.
  • the inspected person When the object to be inspected is a human being, the inspected person generates and displays a three-dimensional graphic on the image display unit 13 during the moving process, and the security personnel observes the three-dimensional shape of the body of the inspected person. The figure can be judged whether or not it carries a dangerous article, thereby eliminating the inconvenience caused by the security personnel using the security inspection device to move back and forth on the body of the inspected person.
  • [0025] 3 comprising a plurality of switches to form an array of antennas
  • the antenna array is composed of a plurality of antennas
  • the control unit controls the array according to a preset sequence, so that the gate array controls each antenna array according to the sequence
  • the transmitting and receiving of the antenna so that the correspondingly disposed transmitting antenna and receiving antenna can sequentially transmit and receive millimeter waves according to the movement of the object to be inspected, so that only one millimeter wave transceiver module 11 can satisfy the object to be inspected. Scanning different parts of different locations reduces the number of signal transceiving modules compared to existing imaging systems that require a signal transceiving module for each pair of antennas, thereby reducing the cost of use.
  • FIG. 1 is a block diagram of a millimeter wave real imaging security detection system according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a millimeter wave real imaging security detection system according to an embodiment of the present invention
  • FIG. 3 is a circuit diagram of a millimeter wave transceiver module in a millimeter wave real imaging security detection system according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a millimeter wave real imaging security detection method according to an embodiment of the present invention.
  • the transmission device 11, millimeter wave transceiver module; 12, quadrature demodulation and data acquisition module; 13, image display unit; 14, alarm device; 15a, launch control unit; 15b, receive the gate Control unit; 16a, transmit-off array; 16b, receive-off array; 17, transmit antenna array; 18, receive antenna Array; 19, door device; 23, belt; 24, motor; 301, first oscillation source; 302, first power divider; 303, first power amplifier; 304, first frequency doubler; a filter 306, a second power amplifier; 307, a second second frequency multiplier; 308, a second filter; 309, a third power amplifier; 310, a second power splitter; 311, a fourth power amplifier; a first quadrature mixer; 313, a fifth power amplifier; 314, a first low noise amplifier; 315, a second quadrature mixer; 316, a sixth power amplifier; 317, a seventh power amplifier; a divider; 319, a third filter; 320, a second divider
  • first and second are used for descriptive purposes only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more, unless specifically defined otherwise.
  • the present invention provides a millimeter wave real imaging security detection system and a safety detection method.
  • the millimeter wave real imaging security detection system includes: a transmitting device 10 for transmitting an object to be inspected; a millimeter wave transceiver module 11 for generating a millimeter wave transceiver module 11 send to The millimeter wave of the detected object transmits a signal and receives and processes the echo signal;
  • the antenna array is connected to the millimeter wave transceiver module 11, the antenna array includes a transmitting antenna array 17 and a receiving antenna array 18, and the transmitting antenna array 17 includes a plurality of transmitting
  • the receiving antenna array 18 includes a plurality of receiving antennas, each of the transmitting antennas and the receiving antennas are in one-to-one correspondence to transmit the millimeter wave transmitting signal and the receiving echo signal;
  • the switching array, the switching array includes the transmitting gate array 16a and the receiving In the array 16b, the transmitting array 16a is composed of a plurality of transmitting switches, and the receiving array 16b is composed of a plurality of receiving
  • the switching control unit includes a transmitting and controlling unit 15a and a receiving unit.
  • the off control unit 15b, the transmit switch control unit 15a is electrically connected to the transmit switch array 16a, and the receive switch control unit 15b is electrically connected to the receive switch array 16b to control each of the launch switches and each according to a preset sequence.
  • the transmitting module 11 is connected to collect, correct and process the echo signal;
  • the image display unit 13 is connected with the output of the quadrature demodulation and data acquisition module 12 to generate and display the echo signal. Check the 3D image of the object.
  • detecting the object to be inspected by using the millimeter wave real imaging safety detecting system includes the following steps: S1: the transmitting device 10 moves the object to be inspected; S2: the millimeter wave transceiver module 11 generates a millimeter wave transmitting signal; S3: the control unit controls the switching array; S4: the switching array controls the transmission and reception of the antenna array according to the sequence, so that the correspondingly configured transmitting antenna and receiving antenna sequentially transmit and receive millimeter waves; wherein, the transmitting The antenna transmits the millimeter wave transmission signal generated by the millimeter wave transceiver module 11 to the object to be inspected, and the receiving antenna receives the echo signal returned by the object to be inspected and transmits the echo signal to the millimeter wave transceiver module 11; S5: millimeter wave transceiver module 11 The echo signal is processed and sent to the quadrature demodulation and data acquisition module 12; S6: the quadrature demodulation and data acquisition module 12
  • the millimeter wave real imaging safety detection system adopts the radar fixed motion and target motion inverse synthetic aperture radar (ISAR ) imaging principle, and the moving target is imaged by the static radar, and the moving target can be accurately and accurately imaged. Therefore, during the security check, the object to be inspected is moved by the transport device 10. During the moving process, the millimeter wave transceiver module 11 first generates a transmission signal and transmits it to the object to be inspected via the transmitting antenna, and the object to be inspected returns with the information.
  • ISAR radar fixed motion and target motion inverse synthetic aperture radar
  • the echo signal is sent to the receiving antenna, and the receiving antenna receives the echo
  • the signals are then sent to the millimeter wave transceiver module 11 and the quadrature demodulation and data acquisition module 12, and the echo signals with the object information to be inspected are collected, corrected, and processed by the quadrature demodulation and data acquisition module 12, and then sent to
  • the image display unit 13 generates and displays a three-dimensional image of the object to be inspected in the image display unit 13.
  • the security personnel can know whether the object to be inspected contains dangerous goods by observing the three-dimensional image of the object to be inspected.
  • This millimeter wave real imaging security detection system has the following advantages:
  • [0041] Using the inverse synthetic aperture radar (ISAR) imaging principle of radar motion and target motion, the image of the object to be inspected is moved, and the imaging is improved compared to the millimeter wave imaging system used in the existing security system. speed. Moreover, compared to synthetic aperture radar (SAR) imaging, the field of view of less than 50 cm is generally obtained, and the field of view of inverse synthetic aperture radar (ISAR) imaging can reach several meters or even tens of meters, which greatly expands the field of view. The scope of observation of security personnel has been expanded.
  • SAR synthetic aperture radar
  • the object to be inspected is moved by the transmitting device 10.
  • the inspected person When the object to be inspected is a human being, the inspected person generates and displays a three-dimensional graphic on the image display unit 13 during the moving process, and the security personnel observes the three-dimensional shape of the body of the inspected person. The figure can be judged whether or not it carries a dangerous article, thereby eliminating the inconvenience caused by the security personnel using the security inspection device to move back and forth on the body of the inspected person.
  • [0043] 3 comprising a plurality of switches to form an array of antennas
  • the antenna array is composed of a plurality of antennas
  • the control unit controls the array according to a preset sequence, so that the gate array controls each antenna array according to the sequence
  • the transmitting and receiving of the antenna so that the correspondingly disposed transmitting antenna and receiving antenna can sequentially transmit and receive millimeter waves according to the movement of the object to be inspected, so that only one millimeter wave transceiver module 11 can satisfy the object to be inspected. Scanning different parts of different locations reduces the number of signal transceiving modules compared to existing imaging systems that require a signal transceiving module for each pair of antennas, thereby reducing the cost of use.
  • the millimeter wave real imaging security detection system further includes an alarm device 14, and the alarm device 14 is connected with the orthogonal demodulation and data acquisition module 12, and the security detection includes S8: when the image is displayed The information of the dangerous goods exists in the three-dimensional image displayed by the unit 13, and the alarm device 14 sends an alarm signal to remind the security personnel to indicate the presence of the dangerous goods.
  • the alarm device 14 can be a buzzer.
  • the millimeter wave real imaging safety detecting system further includes a door device 19, the transmitting device 10 passes through the door device 19, the millimeter wave transceiver module 11 and the antenna array are disposed on the door device 19.
  • the transport device 10 includes: The belt 23, the belt 23 passes through the door device 19, and the belt 23 is used to convey the object to be inspected; the motor 24, the motor 24 is drivingly coupled to the belt 23 to drive the belt 23 to move.
  • N transmit antennas are fixed on each side door device 19 to form a column of transmit antenna arrays 17 and N receive antennas form a row of receive antenna arrays 18, and an array of switches is arranged on the rear side of the antenna array.
  • the control unit and the quadrature demodulation and data acquisition unit 12 are provided with an image display unit 13 and an alarm device 14 on the side of the door device 19.
  • N is an integer greater than or equal to 2.
  • the N millimeter wave transmitting antenna and the N receiving antennas are sequentially controlled to perform transmission and reception of a plurality of millimeter wave signals, thereby completing acquisition of echo signals of the front and rear of the moved object to be inspected.
  • control of N millimeter wave transmit antennas can be achieved by single-pole multi-roll gates, although any sequence control known in the art can be used.
  • the number of transmitting antennas and corresponding receiving antennas may be set according to parameters such as the height of the door device 19 and the imaging speed to be realized, and the height of the door device 19 may be determined according to the height of the object to be inspected. . Further, the horizontal distance between the side wall of the door device 19 and the footprint of the inspected person can be determined based on an index such as an antenna parameter.
  • a millimeter wave transceiver module 11 can input a millimeter wave signal to a single pole four-throw switch, and the single-pole four-throw switch can input four millimeter-wave signals to four single-pole four-throw switches, and the four The single-pole, four-throw switch can also input 16 millimeter-wave signals to 16 single-pole and four-throw switches, so that there are 64 transmit antennas, thereby forming a transmit antenna array 17 for transmitting the transmitted millimeter-wave signals to different positions of the human body. At the office.
  • the 64 transmit antennas do not work in the same way, but are controlled, for example, by a three-layer single-pole, four-throw switch, so that they can be transmitted one by one. Of course, it is also possible to use single-pole five-throw or other single-pole multi-roll. The number of transmit and receive antennas is controlled.
  • the millimeter wave transceiver module 11 includes a transmission link, a reception link, and a correction loop.
  • the transmitting link is configured to generate a millimeter wave transmitting signal sent to the object to be inspected;
  • the receiving link is configured to receive an echo signal returned by the object to be inspected, and process the echo signal to be sent to the orthogonal demodulation and data.
  • the acquisition module 12 is configured to correct the linearity of the input voltage of the first oscillation source and correct the frequency of the millimeter wave transmission signal.
  • the transmitting link includes a first oscillation source 301 and a first power divider connected in sequence. 302, a first power amplifier 303, a first double frequency converter 304, a first filter 305, a second power amplifier 306, a second second frequency multiplier 307, a second filter 308, a third power amplifier 309, and a second The power divider 3 10, the fourth power amplifier 311, the first quadrature mixer 312, and the fifth power amplifier 313.
  • the first oscillating source 301 is a voltage controlled oscillating source operating in a first frequency range; the first power amplifier 303 amplifies the power of one output signal of the first splitter 302 to reach the first doubling frequency a driving power range of 304; the first second frequency multiplier 304 doubles the signal output by the first power amplifier 303 to the second frequency range, and outputs the signal after the double frequency to the first filter 305; The 305 suppresses the spurious signal generated by the first second frequency multiplier 304, and outputs the filtered signal to the second power amplifier 306; the second power amplifier 306 performs power amplification on the signal output by the first filter 305.
  • the driving power range of the second second frequency multiplier 307 is reached; the second second frequency multiplier 307 doubles the signal output by the second power amplifier 306 to the third frequency range, and outputs the signal after the double frequency to the second frequency Filter 308; second filter 308 suppresses the spurious signal generated by second second frequency multiplier 307, and outputs the filtered signal to third power amplifier 309; third power amplifier 309 pairs second filter 308 Output
  • the signal is subjected to power amplification, and the amplified signal is output to the input port of the second power splitter 310; the second power splitter 310 outputs the output signal of the third power amplifier 309 to the fourth power amplifier 311 through one of the output ports;
  • the four power amplifier 311 outputs a signal of one of the output ports of the second power splitter 310 to the local oscillator port of the first quadrature mixer 312; the first quadrature mixer 312 transmits the transmitted intermediate frequency signal of the intermediate frequency link.
  • the output signal of the fourth power amplifier 311 is orthogonally mixed, the RF end obtains the mixed millimeter wave signal and outputs to the fifth power amplifier 313; the fifth power amplifier 313 sets the RF end of the first quadrature mixer 312
  • the mixing signal is power amplified and output to the transmitting antenna.
  • the frequency and power of the transmitted signal are improved by multi-level double frequency multi-frequency amplification, multi-stage amplification, and multi-stage filtering of the transmitted signal.
  • the receiving link includes a first low noise amplifier 314 and a second quadrature mixer 315 that are connected.
  • the first low noise amplifier 314 amplifies the millimeter wave signal received from the receiving antenna and outputs it to the radio frequency input port of the second quadrature mixer 315; the local oscillator port input of the second quadrature mixer 315 is derived from the second power split
  • the second output port of the device 310 and the signal amplified by the sixth power amplifier 316 and the signal from the first low noise amplifier 314 are orthogonally mixed to obtain an output intermediate frequency signal.
  • the output IF signal sends a signal carrying the object under test to the quadrature demodulation and data acquisition module 12 for processing and analysis.
  • the correction loop includes a seventh power amplifier 317, a first divider 318, and a second divider 320.
  • the seventh power amplifier 317 amplifies the other output signal from the first power divider 302 and outputs the signal to the first divider 318.
  • the output frequency range of the first divider 318 is the fourth frequency range; the first divider 318
  • the output signal is output to the third filter 319 for filtering processing, and the filtered signal is output to the second divider 320.
  • the output frequency range of the second divider 320 is the fifth frequency range; the second divider 320 outputs the signal.
  • the output is output to the fourth filter 321 for filtering processing, and the filtered signal is output to the quadrature demodulation and data acquisition module 12 for correction of the voltage-controlled oscillation source input voltage.
  • the first frequency range is F1 ⁇ F2
  • the second frequency range is 2F1 ⁇ 2F2
  • the third frequency range is 4F1 ⁇ 4F2
  • the fourth frequency range is Fl/x ⁇ F2/x
  • the five frequency ranges are Fl/xy ⁇ F2/xy, where x and y are integers greater than 1, and the specific values are selected according to the processing capability of the data acquisition unit.
  • the echo signal from the millimeter wave transceiver module 11 is demodulated and acquired, and the echo signal is associated with the spatial position signal, and then Fourier is performed. Transform and inverse Fourier transform to obtain a three-dimensional image.
  • the present invention has the following outstanding advantages by using the above-described millimeter wave real imaging safety detection system, compared with the existing millimeter wave imaging instrument:
  • the present invention utilizes a motor to enable the conveyor belt device to realize the scanning effect of the surface array, which greatly reduces the cost.
  • the invention adopts a plurality of single-pole multi-rolling control to control the working sequence of the millimeter wave transmitting and receiving antenna, and adopts a frequency modulation signal source and a millimeter wave device to construct the system, thereby greatly reducing the system. Complexity, peers also increase the integration of the system.
  • the present invention uses frequency modulated continuous wave technology, superheterodyne technology, and inverse synthetic aperture imaging technology to improve the resolution of the three-dimensional image plane and depth.
  • the present invention uses a conveyor belt to transport the object to be moved in the forward direction, and moves from one side of the door device to the other side to achieve imaging, thereby saving the user's peers and greatly improving the situation.
  • the imaging speed is a conveyor belt to transport the object to be moved in the forward direction, and moves from one side of the door device to the other side to achieve imaging, thereby saving the user's peers and greatly improving the situation.
  • the imaging speed is a conveyor belt to transport the object to be moved in the forward direction, and moves from one side of the door device to the other side to achieve imaging, thereby saving the user's peers and greatly improving the situation.
  • the imaging speed is a conveyor belt to transport the object to be moved in the forward direction, and moves from one side of the door device to the other side to achieve imaging, thereby saving the user's peers and greatly improving the situation.
  • Embodiments of the present invention can achieve a field of view of several meters, or even tens of meters, compared to the existing field of view of 50 cm or less.
  • High signal-to-noise ratio The system uses active millimeter wave imaging to control the output of each millimeter wave device.
  • the power range is increased to increase the transmit power of the antenna.
  • the transmit power is within the safe radiation range, so that the signal-to-noise ratio of the echo signal is much higher than the signal-to-noise ratio of the received signal of the passive millimeter wave imaging system, thereby obtaining higher imaging. quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种毫米波实时成像安全检测系统及安全检测方法。其中安全检测系统包括:传送装置(10)、毫米波收发模块(11)、天线阵列(17、18)、开关阵列(16a、16b)、开关控制单元(15a、15b)、正交解调和数据采集模块(12)和图像显示单元(13)。本方案的毫米波实时成像安全检测系统通过采用逆合成孔径雷达(ISAR)成像原理,在被检对象移动时对其实时成像,不仅提高了成像速度,还扩大了视场,安检人员通过观测被检人员身体的三维图就可判断其是否携带危险物品,从而消除了安检人员使用安检设备在被检人员的身体上来回移动产生的不方便的问题。

Description

说明书 发明名称:毫米波实时成像安全检测系统及安全检测方法 技术领域
[0001] 本发明属于安检系统领域, 更具体地说, 是涉及一种毫米波实吋成像安全检测 系统及安全检测方法。
背景技术
[0002] 近年来, 安全问题日益得到世界人民的关注, 对安检系统的可靠性与智能化也 提出了更高的要求。
[0003] 传统的金属探测器只能对近距离小范围目标进行检测, 效率低, 已远远不能满 足安检的需求。 尽管 X光等各种射线具有很强的穿透力, 但会对被测人体造成辐 射伤害, 即使当前存在低辐射剂量的 X光机, 但其依然不容易被公众接受。 红外 线是靠物体表面温度成像, 在有织物遮挡的情况下无法清晰成像。 而毫米波成 像系统不仅可以检测出隐藏在织物下的金属物体, 还可以检测出塑料手枪, 炸 药等危险品, 获得的信息更加详尽、 准确, 可以大大地降低误警率。 因此, 近 年来毫米波成像技术在人员安检等方面得到了更加广泛的应用。
[0004] 毫米波成像技术会使用到毫米波雷达。 毫米波雷达是指雷达发射信号频率在毫 米波频段, 毫米波的频率为 30GHz到 300GHz (波长从 lmm到 10mm) , 在实际工 程应用中, 常把毫米波的低端频率降到 26GHz。 在电磁波谱中, 毫米波频率的位 置介于微波与红外之间。 与微波相比, 毫米波的典型特点是波长短、 频带宽 ( 具有很广阔的利用空间) 以及在大气中的传播特性。 与红外相比, 毫米波具有 全天候工作的能力并且可用于烟尘, 云雾等恶劣环境下。 在微波频段越来越拥 挤的情况下, 毫米波兼顾微波的优点, 并且还具备低频段微波所不具备的一些 优点。
[0005] 具体来说, 毫米波主要有以下几个特点: 1、 精度高, 毫米波雷达更容易获得 窄的波束和大的绝对带宽, 使得毫米波雷达系统抗电子干扰能力更强; 2、 在多 普勒雷达中, 毫米波的多普勒频率分辨率高; 3、 在毫米波成像系统中, 毫米波 对目标的形状结构敏感, 区别金属目标和背景环境的能力强, 获得的图像分辨 率高, 因此可提高对目标识别与探测能力 4、 毫米波能够穿透等离子体; 5、 与 红外激光相比, 毫米波受恶劣自然环境的影响小; 6、 毫米波系统体积小、 重量 轻, 因此与微波电路相比, 毫米波电路尺寸要小很多, 从而毫米波系统更易集 成。 正是这些独特的性质赋予了毫米波技术的广泛应用前景, 尤其是在无损检 测和安检领域。
[0006] 在毫米波成像发展初期, 毫米波成像系统都使用单通道的机械扫描体制, 这种 成像体制结构简单但扫描吋间比较长。 为了缩短扫描吋间, Millivision公司研制 了 Vetal25成像仪, 该成像仪除发射扫描系统外, 还具有 8 x 8的阵列接收机制, 但这种成像仪更适合于室外大范围的远程监测, 而且视场不到 50厘米。 Trex公司 还研制了一套 PMC-2成像系统, 此成像系统中的天线单元采用了 3mm相控阵天 线的技术。 PMC-2成像系统采用了中心频率为 84GHz的毫米波, 这种成像系统 的工作频率由于接近太赫兹频段, 因而成本较高。 Lockheed Martin公司也研制了 一套焦平面成像阵列成像系统, 其采用的毫米波的中心频率为 94GHz。 TRW公 司研制了一套被动的毫米波成像系统, 此套系统采用的毫米波的中心频率为 89G Hz。 Lockheed
Martin和 TRW这两家公司的成像系统的视场都较小, 通常也不到 50厘米。
[0007] 现阶段在毫米波成像领域, 毫米波成像研究成果主要集中在西北太平洋实验室
(Pacific Northwest National Laboratory) 。 此实验室中的 McMakin等人, 幵发了 一套三维全息成像扫描系统, 此套成像系统的扫描机制是基于圆柱扫描, 并且 这套系统已经实现了毫米波成像系统的商业化。 该成像系统采用的是主动成像 机制, 通过全息算法反演得到目标的三维毫米波图像。 此项技术已经授权 L-3 Communications和 Save View有限公司, 他们生产出的产品分别用于车站码头等 场所的安检系统中和试选服装之中。 但是由于这种系统采用了 384个收发单元, 因而成本较高。
[0008] 并且, 目前在人员安检方面采用的毫米波成像技术都是运用雷达运动、 目标不 动的合成孔径雷达 (SAR)成像原理, 在安检吋存在成像速度慢、 视场小的问题。 并且, 现有的安检系统在安检人体吋, 安检人员需要使用安检设备在被检人员 的身体上来回移动, 这对于安检人员和被检人员而言存在不方便的问题。 技术问题
[0009] 本发明的目的在于提供一种毫米波实吋成像安全检测系统, 以解决现有安检中 使用的毫米波成像安全检测系统存在成像速度慢、 视场小的问题。
问题的解决方案
技术解决方案
[0010] 为实现上述目的, 本发明采用的技术方案是: 提供一种毫米波实吋成像安全检 测系统, 包括: 传送装置, 传送装置用于传送被检对象; 毫米波收发模块, 毫 米波收发模块用于生成发送给被检对象的毫米波发射信号并接收和处理回波信 号; 天线阵列, 天线阵列与毫米波收发模块连接, 天线阵列包括发射天线阵列 和接收天线阵列, 发射天线阵列包括多个发射天线, 接收天线阵列包括多个接 收天线, 各发射天线和各接收天线一一对应, 以发送毫米波发射信号和接收回 波信号; 幵关阵列, 幵关阵列包括发射幵关阵列和接收幵关阵列, 发射幵关阵 列由多个发射幵关组成, 接收幵关阵列由多个接收幵关组成; 幵关控制单元, 幵关控制单元包括发射幵关控制单元和接收幵关控制单元, 发射幵关控制单元 与发射幵关阵列电连接, 接收幵关控制单元与接收幵关阵列电连接, 以根据预 设的吋序控制各发射幵关和各接收幵关的通断; 正交解调和数据采集模块, 正 交解调和数据采集模块的输入端与毫米波收发模块连接, 以对回波信号进行采 集、 校正和处理; 图像显示单元, 图像显示单元与正交解调和数据采集模块的 输出端连接, 以将回波信号生成并显示被检对象的三维图像。
[0011] 进一步地, 毫米波实吋成像安全检测系统还包括报警装置, 与正交解调和数据 采集模块连接, 报警装置用于提示有无危险物品的存在。
[0012] 进一步地, 毫米波实吋成像安全检测系统还包括门装置, 传送装置穿过门装置
, 毫米波收发模块、 天线阵列设置在门装置上。
[0013] 进一步地, 传送装置包括: 皮带, 皮带穿过门装置, 皮带用于传送被检对象; 电机, 电机与皮带驱动连接, 以驱动皮带运动。
[0014] 进一步地, 毫米波收发模块包括: 发射链路, 发射链路用于生成发送给被检对 象的毫米波发射信号; 接收链路, 接收链路用于接收被检对象返回的回波信号 , 并对回波信号进行处理以发送给正交解调和数据采集模块; 校正回路, 校正 回路用于校正第一振荡源的输入电压的线性度, 并对毫米波发射信号的频率进 行校正。
[0015] 进一步地, 发射链路包括: 第一振荡源, 第一振荡源是工作在第一频率范围内 的压控振荡源器; 第一功分器, 第一功分器的输入端与压控振荡源器连接; 第 一功率放大器, 第一功率放大器与第一功分器的输出端连接, 以对第一功分器 的一路输出信号的功率进行放大以达到第一二倍频器的驱动功率范围; 第一二 倍频器, 将第一功率放大器输出的信号二倍频至第二频率范围, 并将二倍频后 的信号输出至第一滤波器; 第一滤波器, 对第一二倍频器产生的杂散信号进行 抑制, 并将滤波后的信号输出至第二功率放大器; 第二功率放大器, 对第一滤 波器输出的信号进行功率放大以达到第二二倍频器的驱动功率范围; 第二二倍 频器, 将第二功率放大器输出的信号二倍频至第三频率范围, 并将二倍频后的 信号输出至第二滤波器; 第二滤波器, 对第二二倍频器产生的杂散信号进行抑 制, 并将滤波后的信号输出至第三功率放大器; 第三功率放大器, 对第二滤波 器输出的信号进行功率放大, 放大后的信号输出至第二功分器的输入端口; 第 二功分器, 将第三功率放大器的输出信号通过其中一个输出端口输出至第四功 率放大器; 第四功率放大器, 将第二功分器中其中一个输出端口的信号输出至 第一正交混频器的本振端口; 第一正交混频器, 将发射中频链路的发射中频信 号和第四功率放大器的输出信号进行正交混频, 射频端得到混频的毫米波信号 并输出至第五功率放大器; 第五功率放大器, 将正交混频器的射频端的混频信 号进行功率放大并输出至发射天线。
[0016] 进一步地, 接收链路包括: 第一低噪声放大器, 第一低噪声放大器放大来自接 收天线接收的毫米波信号, 并输出至第二正交混频器的射频输入端口; 第二正 交混频器, 第二正交混频器的本振端口输入来自第二功分器的第二个输出端口 并经第六功率放大器放大的的发射信号与来自第一低噪声放大器的信号并进行 正交混频得到输出中频信号; 输出中频信号将携带有被检对象信息的信号送入 正交解调和数据采集模块进行处理和分析。
[0017] 进一步地, 校正回路包括: 第七功率放大器, 第七功率放大器放大来自第一功 分器的另外一路输出信号, 并输出至第一除法器, 第一除法器输出频率范围是 第四频率范围; 第一除法器将输出信号输出至第三滤波器进行滤波处理, 并将 滤波后的信号输出至第二除法器, 第二除法器的输出频率范围是第五频率范围 ; 第二除法器, 将输出信号输出至第四滤波器进行滤波处理, 并将滤波后的信 号输出至正交解调和数据采集模块进行压控振荡源输入电压的校正。
[0018] 进一步地, 第一频率范围为 F1~F2, 第二频率范围为 2F1~2F2, 第三频率范围 为 4F1~4F2, 第四频率范围为 Fl/x~F2/x, 第五频率范围为 Fl/xy~F2/xy, 其中 x、 y是大于 1的整数。
[0019] 进一步地, 在正交解调和数据采集模块中, 解调和采集来自毫米波收发模块的 回波信号, 将回波信号与空间位置信号联系到一起, 然后进行傅里叶变换和傅 里叶逆变换来得到三维图像。
[0020] 为实现上述目的, 本发明还提供一种使用上述的毫米波实吋成像安全检测系统 对被检对象进行检测的安全检测方法, 包括以下步骤: S1 : 传送装置移动被检 对象; S2: 毫米波收发模块生成毫米波发射信号; S3: 幵关控制单元根据预设 的吋序控制幵关阵列; S4: 幵关阵列根据预设的吋序控制天线阵列的发射和接 收, 以使各对应设置的发射天线和接收天线依次进行毫米波的发射和接收; 其 中, 发射天线将毫米波收发模块生成的毫米波发射信号发射给被检对象, 接收 天线接收被检对象返回的回波信号并将回波信号发送给毫米波收发模块; S5: 毫米波收发模块对回波信号进行处理并发送给正交解调和数据采集模块; S6: 正交解调和数据采集模块对来自毫米波收发模块的信号进行采集、 校正和处理 ; S7: 经处理后的信号在图像显示单元生成并显示被检对象的三维图像。
[0021] 进一步地, 毫米波实吋成像安全系统包括报警装置, 安全检测方法还包括步骤 S8: 报警装置对存在危险物质的被检对象进行报警。
发明的有益效果
有益效果
[0022] 本发明提供的毫米波实吋成像安全检测系统的有益效果在于:
[0023] 1、 采用雷达不动、 目标运动的逆合成孔径雷达 (ISAR) 成像原理, 在被检对 象移动吋对其实吋成像, 相比于现有安检系统使用的毫米波成像系统提高了成 像速度。 并且, 相比于合成孔径雷达 (SAR) 成像一般只能获得不到 50厘米的视 场, 逆合成孔径雷达 (ISAR) 成像的视场可以达到几米甚至几十米, 大大扩大 了视场, 从而扩大了安检人员的观测范围。
[0024] 2、 通过传送装置 10移动被检对象, 当被检对象为人吋, 被检人员在移动过程 中在图像显示单元 13上生成并显示三维图形, 安检人员通过观测被检人员身体 的三维图就可判断其是否携带危险物品, 从而消除了安检人员使用安检设备在 被检人员的身体上来回移动产生的不方便的问题。
[0025] 3、 由多个幵关组成幵关阵列, 由多个天线组成天线阵列, 幵关控制单元根据 预设的吋序控制幵关阵列, 使得幵关阵列根据吋序控制天线阵列中各个天线的 发射和接收, 进而使各对应设置的发射天线和接收天线可以根据被检对象的移 动依次进行毫米波的发射和接收, 从而只需一个毫米波收发模块 11就能满足对 被检对象在不同位置的不同部位进行扫描, 相比于现有的需要给每对天线对应 设置一个信号收发模块的成像系统来说减少了信号收发模块的数量, 从而降低 了使用成本。
对附图的简要说明
附图说明
[0026] 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例或现有技术描 述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是 本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性 的前提下, 还可以根据这些附图获得其他的附图。
[0027] 图 1为本发明实施例提供的毫米波实吋成像安全检测系统的组成框图;
[0028] 图 2为本发明实施例提供的毫米波实吋成像安全检测系统的结构示意图;
[0029] 图 3为本发明实施例提供的毫米波实吋成像安全检测系统中的毫米波收发模块 的电路图;
[0030] 图 4为本发明实施例提供的毫米波实吋成像安全检测方法的流程图。
[0031] 其中, 图中各附图标记:
[0032] 10、 传送装置; 11、 毫米波收发模块; 12、 正交解调和数据采集模块; 13、 图 像显示单元; 14、 报警装置; 15a、 发射幵关控制单元; 15b、 接收幵关控制单元 ; 16a、 发射幵关阵列; 16b、 接收幵关阵列; 17、 发射天线阵列; 18、 接收天线 阵列; 19、 门装置; 23、 皮带; 24、 电机; 301、 第一振荡源; 302、 第一功分 器; 303、 第一功率放大器; 304、 第一二倍频器; 305、 第一滤波器; 306、 第 二功率放大器; 307、 第二二倍频器; 308、 第二滤波器; 309、 第三功率放大器 ; 310、 第二功分器; 311、 第四功率放大器; 312、 第一正交混频器; 313、 第 五功率放大器; 314、 第一低噪声放大器; 315、 第二正交混频器; 316、 第六功 率放大器; 317、 第七功率放大器; 318、 第一除法器; 319、 第三滤波器; 320 、 第二除法器; 321、 第四滤波器。
本发明的实施方式
[0033] 为了使本发明所要解决的技术问题、 技术方案及有益效果更加清楚明白, 以下 结合附图及实施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的 具体实施例仅仅用以解释本发明, 并不用于限定本发明。
[0034] 需要说明的是, 当元件被称为 "固定于"或"设置于"另一个元件, 它可以直接在 另一个元件上或者间接在该另一个元件上。 当一个元件被称为是 "连接于"另一个 元件, 它可以是直接连接到另一个元件或间接连接至该另一个元件上。
[0035] 需要理解的是, 术语"长度"、 "宽度"、 "上"、 "下"、 "前"、 "后"、 "左"、 "右"、 "竖直"、 "水平"、 "顶"、 "底"、 "内"、 "外"等指示的方位或位置关系为基于附图 所示的方位或位置关系, 仅是为了便于描述本发明和简化描述, 而不是指示或 暗示所指的装置或元件必须具有特定的方位、 以特定的方位构造和操作, 因此 不能理解为对本发明的限制。
[0036] 此外, 术语"第一"、 "第二 "仅用于描述目的, 而不能理解为指示或暗示相对重 要性或者隐含指明所指示的技术特征的数量。 由此, 限定有 "第一"、 "第二 "的特 征可以明示或者隐含地包括一个或者更多个该特征。 在本发明的描述中, "多个" 的含义是两个或两个以上, 除非另有明确具体的限定。
[0037] 为了解决现有安检中使用的毫米波成像安全检测系统存在成像速度慢、 视场小 的问题, 本发明提供了一种毫米波实吋成像安全检测系统及安全检测方法。
[0038] 如图 1和图 2所示, 毫米波实吋成像安全检测系统包括: 传送装置 10, 传送装置 10用于传送被检对象; 毫米波收发模块 11, 毫米波收发模块 11用于生成发送给 被检对象的毫米波发射信号并接收和处理回波信号; 天线阵列, 天线阵列与毫 米波收发模块 11连接, 天线阵列包括发射天线阵列 17和接收天线阵列 18, 发射 天线阵列 17包括多个发射天线, 接收天线阵列 18包括多个接收天线, 各发射天 线和各接收天线一一对应, 以发送毫米波发射信号和接收回波信号; 幵关阵列 , 幵关阵列包括发射幵关阵列 16a和接收幵关阵列 16b, 发射幵关阵列 16a由多个 发射幵关组成, 接收幵关阵列 16b由多个接收幵关组成; 幵关控制单元, 幵关控 制单元包括发射幵关控制单元 15a和接收幵关控制单元 15b, 发射幵关控制单元 15 a与发射幵关阵列 16a电连接, 接收幵关控制单元 15b与接收幵关阵列 16b电连接, 以根据预设的吋序控制各发射幵关和各接收幵关的通断; 正交解调和数据采集 模块 12, 正交解调和数据采集模块 12的输入端与毫米波收发模块 11连接, 以对 回波信号进行采集、 校正和处理; 图像显示单元 13, 图像显示单元 13与正交解 调和数据采集模块 12的输出端连接, 以将回波信号生成并显示被检对象的三维 图像。
[0039] 参见图 4, 使用该毫米波实吋成像安全检测系统检测被检对象吋, 包括以下步 骤: S1 : 传送装置 10移动被检对象; S2: 毫米波收发模块 11生成毫米波发射信 号; S3: 幵关控制单元控制幵关阵列; S4: 幵关阵列根据吋序控制天线阵列的 发射和接收, 以使各对应设置的发射天线和接收天线依次进行毫米波的发射和 接收; 其中, 发射天线将毫米波收发模块 11生成的毫米波发射信号发射给被检 对象, 接收天线接收被检对象返回的回波信号并将回波信号发送给毫米波收发 模块 11 ; S5: 毫米波收发模块 11对回波信号进行处理并发送给正交解调和数据 采集模块 12; S6: 正交解调和数据采集模块 12对来自毫米波收发模块 11的信号 进行采集、 校正和处理; S7: 经处理后的信号在图像显示单元 13生成并显示被 检对象的三维图像。
[0040] 该毫米波实吋成像安全检测系统采用雷达不动、 目标运动的逆合成孔径雷达 ( ISAR) 成像原理, 通过静止雷达对运动目标进行成像, 可以对移动目标进行实 吋准确的成像, 因此, 在安检过程中, 通过传送装置 10移动被检对象, 被检对 象在移动过程中, 毫米波收发模块 11首先生成发射信号经发射天线发送给被检 对象, 被检对象返回带有其信息的回波信号给接收天线, 接收天线接收到回波 信号再依次发送给毫米波收发模块 11和正交解调和数据采集模块 12, 带有被检 对象信息的回波信号经正交解调和数据采集模块 12采集、 校正和处理后被发送 至图像显示单元 13, 在图像显示单元 13中生成和显示被检对象的三维图像。 安 检人员通过观察被检对象的三维图像就可知道被检对象是否藏有危险物品。 这 种毫米波实吋成像安全检测系统存在以下优点:
[0041] 1、 采用雷达不动、 目标运动的逆合成孔径雷达 (ISAR) 成像原理, 在被检对 象移动吋对其实吋成像, 相比于现有安检系统使用的毫米波成像系统提高了成 像速度。 并且, 相比于合成孔径雷达 (SAR) 成像一般只能获得不到 50厘米的视 场, 逆合成孔径雷达 (ISAR) 成像的视场可以达到几米甚至几十米, 大大扩大 了视场, 从而扩大了安检人员的观测范围。
[0042] 2、 通过传送装置 10移动被检对象, 当被检对象为人吋, 被检人员在移动过程 中在图像显示单元 13上生成并显示三维图形, 安检人员通过观测被检人员身体 的三维图就可判断其是否携带危险物品, 从而消除了安检人员使用安检设备在 被检人员的身体上来回移动产生的不方便的问题。
[0043] 3、 由多个幵关组成幵关阵列, 由多个天线组成天线阵列, 幵关控制单元根据 预设的吋序控制幵关阵列, 使得幵关阵列根据吋序控制天线阵列中各个天线的 发射和接收, 进而使各对应设置的发射天线和接收天线可以根据被检对象的移 动依次进行毫米波的发射和接收, 从而只需一个毫米波收发模块 11就能满足对 被检对象在不同位置的不同部位进行扫描, 相比于现有的需要给每对天线对应 设置一个信号收发模块的成像系统来说减少了信号收发模块的数量, 从而降低 了使用成本。
[0044] 可选的, 为了节省人力, 毫米波实吋成像安全检测系统还包括报警装置 14, 报 警装置 14与正交解调和数据采集模块 12连接, 安全检测吋还包括 S8: 当图像显 示单元 13显示的三维图像中存在危险物品的信息吋, 报警装置 14发出报警信号 , 提醒安检人员用于提示有危险物品的存在。 可选的, 报警装置 14可以是蜂鸣 器。
[0045] 参见图 2, 毫米波实吋成像安全检测系统还包括门装置 19, 传送装置 10穿过门 装置 19, 毫米波收发模块 11、 天线阵列设置在门装置 19上。 传送装置 10包括: 皮带 23, 皮带 23穿过门装置 19, 皮带 23用于传送被检对象; 电机 24, 电机 24与 皮带 23驱动连接, 以驱动皮带 23运动。
[0046] 具体而言, 在每侧门装置 19上固定有 N个发射天线组成一列发射天线阵列 17和 N个接收天线组成一列接收天线阵列 18, 在天线阵列后侧装有幵关阵列、 幵关控 制单元以及正交解调和数据采集单元 12, 在门装置 19一侧装有图像显示单元 13 以及报警装置 14。 其中 N是大于等于 2的整数。
[0047] 此外, 按照吋序控制 N个毫米波发射天线和 N个接收天线进行多次毫米波信号 的发射和接收, 从而完成对移动的被检对象的前后面的回波信号的采集。 例如 , 对 N个毫米波发射天线的控制可以通过单刀多掷幵关来实现, 当然也可以采用 本领域已知的任何吋序控制。
[0048] 还需要注意, 发射天线以及对应的接收天线的数量可以根据门装置 19的高度以 及所要实现的成像速度等参数来设置, 而门装置 19的高度又可以根据被检对象 的高度来确定。 此外, 门装置 19的侧壁与被检人员的脚印之间的水平距离可以 根据天线参数等指标来确定。 上面提及的尺寸的设置对于本领域技术人员来说 是显而易见的, 因此不再进行详细描述。
[0049] 例如, 一个毫米波收发模块 11可以给一个单刀四掷幵关输入毫米波信号, 而这 个单刀四掷幵关又可以给四个单刀四掷幵关输入毫米波信号, 而这四个单刀四 掷幵关又可以给 16个单刀四掷幵关输入毫米波信号, 这样就可以有 64个发射天 线, 从而组成发射天线阵列 17, 用于将发射的毫米波信号发射到人体的不同位 置处。 如上所述, 这 64个发射天线并非同吋工作, 而是例如通过三层单刀四掷 幵关来控制, 使它们逐个地进行发射, 当然也可以采用单刀五掷或者其他单刀 多掷幵关进行发射天线和接收天线的数量控制。
[0050] 在本实施例中, 毫米波收发模块 11包括发射链路、 接收链路和校正回路。 其中 , 发射链路用于生成发送给被检对象的毫米波发射信号; 接收链路用于接收被 检对象返回的回波信号, 并对回波信号进行处理以发送给正交解调和数据采集 模块 12; 校正回路用于校正第一振荡源的输入电压的线性度, 并对毫米波发射 信号的频率进行校正。
[0051] 进一步地, 如图 3所示, 发射链路包括依次连接的第一振荡源 301、 第一功分器 302、 第一功率放大器 303、 第一二倍频器 304、 第一滤波器 305、 第二功率放大 器 306、 第二二倍频器 307、 第二滤波器 308、 第三功率放大器 309、 第二功分器 3 10、 第四功率放大器 311、 第一正交混频器 312和第五功率放大器 313。 其中, 第 一振荡源 301是工作在第一频率范围内的压控振荡源器; 第一功率放大器 303对 第一功分器 302的一路输出信号的功率进行放大以达到第一二倍频器 304的驱动 功率范围; 第一二倍频器 304将第一功率放大器 303输出的信号二倍频至第二频 率范围, 并将二倍频后的信号输出至第一滤波器 305 ; 第一滤波器 305对第一二 倍频器 304产生的杂散信号进行抑制, 并将滤波后的信号输出至第二功率放大器 306; 第二功率放大器 306对第一滤波器 305输出的信号进行功率放大以达到第二 二倍频器 307的驱动功率范围; 第二二倍频器 307将第二功率放大器 306输出的信 号二倍频至第三频率范围, 并将二倍频后的信号输出至第二滤波器 308 ; 第二滤 波器 308对第二二倍频器 307产生的杂散信号进行抑制, 并将滤波后的信号输出 至第三功率放大器 309; 第三功率放大器 309对第二滤波器 308输出的信号进行功 率放大, 放大后的信号输出至第二功分器 310的输入端口; 第二功分器 310将第 三功率放大器 309的输出信号通过其中一个输出端口输出至第四功率放大器 311 ; 第四功率放大器 311将第二功分器 310中其中一个输出端口的信号输出至第一 正交混频器 312的本振端口; 第一正交混频器 312将发射中频链路的发射中频信 号和第四功率放大器 311的输出信号进行正交混频, 射频端得到混频的毫米波信 号并输出至第五功率放大器 313 ; 第五功率放大器 313将第一正交混频器 312的射 频端的混频信号进行功率放大并输出至发射天线。
[0052] 通过对发射信号的多级二倍频、 多级放大以及多级滤波, 提高了发射信号的频 率及功率。
[0053] 进一步地, 接收链路包括相连接的第一低噪声放大器 314和第二正交混频器 315 。 第一低噪声放大器 314放大来自接收天线接收的毫米波信号, 并输出至第二正 交混频器 315的射频输入端口; 第二正交混频器 315的本振端口输入来自第二功 分器 310的第二个输出端口并经第六功率放大器 316放大的发射信号与来自第一 低噪声放大器 314的信号并进行正交混频得到输出中频信号。 输出中频信号将携 带有被检对象信息的信号送入正交解调和数据采集模块 12进行处理和分析。 [0054] 再进一步地, 校正回路包括第七功率放大器 317、 第一除法器 318和第二除法器 320。 其中, 第七功率放大器 317放大来自第一功分器 302的另外一路输出信号, 并输出至第一除法器 318, 第一除法器 318输出频率范围是第四频率范围; 第一 除法器 318将输出信号输出至第三滤波器 319进行滤波处理, 并将滤波后的信号 输出至第二除法器 320, 第二除法器 320的输出频率范围是第五频率范围; 第二 除法器 320将输出信号输出至第四滤波器 321进行滤波处理, 并将滤波后的信号 输出至正交解调和数据采集模块 12进行压控振荡源输入电压的校正。
[0055] 在本实施例中, 第一频率范围为 F1~F2, 第二频率范围为 2F1~2F2, 第三频率 范围为 4F1~4F2, 第四频率范围为 Fl/x~F2/x, 第五频率范围为 Fl/xy~F2/xy, 其 中 x、 y是大于 1的整数, 具体数值根据数据采集单元的处理能力选择。
[0056] 进一步地, 在正交解调和数据采集模块 12中, 解调和采集来自毫米波收发模块 11的回波信号, 将回波信号与空间位置信号联系到一起, 然后进行傅里叶变换 和傅里叶逆变换来得到三维图像。
[0057] 本发明通过采用上述毫米波实吋成像安全检测系统, 与现有的毫米波成像仪器 相比, 具有以下突出的优点:
[0058] (1) 价格低廉: 本发明利用电机使传送带装置实现面阵列的扫描效果, 极大 地降低了成本。
[0059] (2) 结构简单, 易集成: 本发明采用多个单刀多掷幵关控制毫米波收发天线 的工作顺序, 并且采用调频信号源及毫米波器件进行系统的搭建, 大大降低了 系统的复杂度, 同吋也提高了系统的集成度。
[0060] (3) 分辨率高: 本发明采用调频连续波技术、 超外差技术以及逆合成孔径成 像技术, 提高了三维图像平面和深度的分辨率。
[0061] (4) 成像吋间快: 本发明采用传送带传送被检对象向前进方向运动, 从门装 置的一侧移动到另一侧即可实现成像, 节约了用户吋间同吋也大大提高了成像 速度。
[0062] (5) 视场增加: 与现有的 50厘米以下的视场相比, 本发明的实施例可以达到 几米, 甚至几十米的视场。
[0063] (6) 信噪比高: 系统采用主动式毫米波成像, 通过控制各个毫米波器件的输 出功率范围来提高天线的发射功率, 当然, 发射功率在安全辐射范围之内, 使 得回波信号信噪比远远高于被动式毫米波成像系统接收信号的信噪比, 进而获 得更高的成像质量。
[0064] (7) 用途广泛: 利用毫米波成像技术高分辨率及结构简单等优点, 可以进行 各类大型仪器外层损伤的检测, 也适用于违禁品的检测。
[0065] 以上仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的精神 和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保护范 围之内。

Claims

权利要求书
[权利要求 1] 一种毫米波实吋成像安全检测系统, 其特征在于, 包括:
传送装置, 所述传送装置用于传送被检对象;
毫米波收发模块, 所述毫米波收发模块用于生成发送给所述被检对象 的毫米波发射信号并接收和处理回波信号;
天线阵列, 所述天线阵列与所述毫米波收发模块连接, 所述天线阵列 包括发射天线阵列和接收天线阵列, 所述发射天线阵列包括多个发射 天线, 所述接收天线阵列包括多个接收天线, 各所述发射天线和各所 述接收天线一一对应, 以发送所述毫米波发射信号和接收所述回波信 号;
幵关阵列, 所述幵关阵列包括发射幵关阵列和接收幵关阵列, 所述发 射幵关阵列由多个发射幵关组成, 所述接收幵关阵列由多个接收幵关 组成;
幵关控制单元, 所述幵关控制单元包括发射幵关控制单元和接收幵关 控制单元, 所述发射幵关控制单元与所述发射幵关阵列电连接, 所述 接收幵关控制单元与所述接收幵关阵列电连接, 以根据预设的吋序控 制各所述发射幵关和各所述接收幵关的通断;
正交解调和数据采集模块, 所述正交解调和数据采集模块的输入端与 所述毫米波收发模块连接, 以对所述回波信号进行采集、 校正和处理 图像显示单元, 所述图像显示单元与所述正交解调和数据采集模块的 输出端连接, 以将所述回波信号生成并显示所述被检对象的三维图像
[权利要求 2] 如权利要求 1所述的毫米波实吋成像安全检测系统, 其特征在于, 所 述毫米波实吋成像安全检测系统还包括报警装置, 与所述正交解调和 数据采集模块连接, 所述报警装置用于提示有无危险物品的存在。
[权利要求 3] 如权利要求 1所述的毫米波实吋成像安全检测系统, 其特征在于, 所 述毫米波实吋成像安全检测系统还包括门装置, 所述传送装置穿过所 述门装置, 所述毫米波收发模块、 所述天线阵列设置在所述门装置上
[权利要求 4] 如权利要求 3所述的毫米波实吋成像安全检测系统, 其特征在于, 所 述传送装置包括:
皮带, 所述皮带穿过所述门装置, 所述皮带用于传送所述被检对象; 电机, 所述电机与所述皮带驱动连接, 以驱动所述皮带运动。
[权利要求 5] 如权利要求 1所述的毫米波实吋成像安全检测系统, 其特征在于, 所 述毫米波收发模块包括:
发射链路, 所述发射链路用于生成发送给所述被检对象的毫米波发射 信号;
接收链路, 所述接收链路用于接收被检对象返回的回波信号, 并对所 述回波信号进行处理以发送给所述正交解调和数据采集模块; 校正回路, 所述校正回路用于校正第一振荡源的输入电压的线性度, 并对所述毫米波发射信号的频率进行校正。
[权利要求 6] 如权利要求 5所述的毫米波实吋成像安全检测系统, 其特征在于, 所 述发射链路包括:
所述第一振荡源, 所述第一振荡源是工作在第一频率范围内的压控振 荡源器;
第一功分器, 所述第一功分器的输入端与所述压控振荡源器连接; 第一功率放大器, 所述第一功率放大器与所述第一功分器的输出端连 接, 以对所述第一功分器的一路输出信号的功率进行放大以达到第一 二倍频器的驱动功率范围;
所述第一二倍频器, 将所述第一功率放大器输出的信号二倍频至第二 频率范围, 并将二倍频后的信号输出至第一滤波器;
所述第一滤波器, 对所述第一二倍频器产生的杂散信号进行抑制, 并 将滤波后的信号输出至第二功率放大器;
所述第二功率放大器, 对所述第一滤波器输出的信号进行功率放大以 达到第二二倍频器的驱动功率范围; 所述第二二倍频器, 将所述第二功率放大器输出的信号二倍频至第三 频率范围, 并将二倍频后的信号输出至第二滤波器;
所述第二滤波器, 对所述第二二倍频器产生的杂散信号进行抑制, 并 将滤波后的信号输出至第三功率放大器;
所述第三功率放大器, 对所述第二滤波器输出的信号进行功率放大, 放大后的信号输出至第二功分器的输入端口;
所述第二功分器, 将所述第三功率放大器的输出信号通过其中一个输 出端口输出至第四功率放大器;
所述第四功率放大器, 将所述第二功分器中其中一个输出端口的信号 输出至第一正交混频器的本振端口;
所述第一正交混频器, 将发射中频链路的发射中频信号和所述第四功 率放大器的输出信号进行正交混频, 射频端得到混频的毫米波信号并 输出至第五功率放大器;
所述第五功率放大器, 将所述正交混频器的射频端的混频信号进行功 率放大并输出至所述发射天线。
[权利要求 7] 如权利要求 5所述的毫米波实吋成像安全检测系统, 其特征在于, 所 述接收链路包括:
第一低噪声放大器, 所述第一低噪声放大器放大来自所述接收天线接 收的毫米波信号, 并输出至第二正交混频器的射频输入端口; 所述第二正交混频器, 所述第二正交混频器的本振端口输入来自所述 第二功分器的第二个输出端口并经第六功率放大器放大的的发射信号 与来自所述第一低噪声放大器的信号并进行正交混频得到输出中频信 号;
所述输出中频信号将携带有被检对象信息的信号送入所述正交解调和 数据采集模块进行处理和分析。
[权利要求 8] 如权利要求 6所述的毫米波实吋成像安全检测系统, 其特征在于, 所 述校正回路包括:
第七功率放大器, 所述第七功率放大器放大来自所述第一功分器的另 外一路输出信号, 并输出至第一除法器, 所述第一除法器输出频率范 围是第四频率范围;
所述第一除法器, 将输出信号输出至第三滤波器进行滤波处理, 并将 滤波后的信号输出至第二除法器, 所述第二除法器的输出频率范围是 第五频率范围;
所述第二除法器, 将输出信号输出至第四滤波器进行滤波处理, 并将 滤波后的信号输出至正交解调和数据采集模块进行所述压控振荡源输 入电压的校正。
[权利要求 9] 如权利要求 8所述的毫米波实吋成像安全检测系统, 其特征在于, 所 述第一频率范围为 F1~F2, 所述第二频率范围为 2F1~2F2, 所述第三 频率范围为 4F1~4F2, 所述第四频率范围为 Fl/x~F2/x, 所述第五频率 范围为 Fl/xy~F2/xy, 其中 x、 y是大于 1的整数。
[权利要求 10] 如权利要求 1所述的毫米波实吋成像安全检测系统, 其特征在于, 在 所述正交解调和数据采集模块中, 解调和采集来自所述毫米波收发模 块的回波信号, 将所述回波信号与空间位置信号联系到一起, 然后进 行傅里叶变换和傅里叶逆变换来得到所述三维图像。
11.一种使用权利要求 1至 10中任一项所述的毫米波实吋成像安全检测 系统对被检对象进行检测的安全检测方法, 其特征在于, 包括以下步 骤:
S1 : 传送装置移动被检对象;
S2: 毫米波收发模块生成毫米波发射信号;
S3: 幵关控制单元根据预设的吋序控制幵关阵列;
S4: 幵关阵列根据预设的吋序控制天线阵列的发射和接收, 以使各对 应设置的所述发射天线和所述接收天线依次进行毫米波的发射和接收
其中, 所述发射天线将所述毫米波收发模块生成的毫米波发射信号发 射给所述被检对象, 所述接收天线接收所述被检对象返回的回波信号 并将所述回波信号发送给所述毫米波收发模块; S5: 所述毫米波收发模块对所述回波信号进行处理并发送给正交解调 和数据采集模块;
S6: 所述正交解调和数据采集模块对来自所述毫米波收发模块的信号 进行采集、 校正和处理;
S7: 经处理后的信号在图像显示单元生成并显示被检对象的三维图像
[权利要求 12] 如权利要求 11所述的安全检测方法, 其特征在于, 所述毫米波实吋成 像安全系统包括报警装置, 所述安全检测方法还包括步骤 S8: 所述报 警装置对存在危险物质的被检对象进行报警。
PCT/CN2017/100401 2017-07-31 2017-09-04 毫米波实时成像安全检测系统及安全检测方法 WO2019024170A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/635,418 US11500088B2 (en) 2017-07-31 2017-09-04 Millimeter-wave real-time imaging based safety inspection system and safety inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710638053.XA CN107238868B (zh) 2017-07-31 2017-07-31 毫米波实时成像安全检测系统及安全检测方法
CN201710638053.X 2017-07-31

Publications (1)

Publication Number Publication Date
WO2019024170A1 true WO2019024170A1 (zh) 2019-02-07

Family

ID=59988324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100401 WO2019024170A1 (zh) 2017-07-31 2017-09-04 毫米波实时成像安全检测系统及安全检测方法

Country Status (3)

Country Link
US (1) US11500088B2 (zh)
CN (1) CN107238868B (zh)
WO (1) WO2019024170A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6921339B1 (ja) * 2020-06-11 2021-08-18 三菱電機株式会社 レーダ装置およびレーダ画像生成方法
WO2021231381A1 (en) * 2020-05-11 2021-11-18 Bridgestone Americas Tire Operations, Llc Tire sensing systems and methods
CN113759376A (zh) * 2021-09-22 2021-12-07 上海无线电设备研究所 一种自主探测成像一体化雷达装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108152821A (zh) * 2018-01-23 2018-06-12 成都菲斯洛克电子技术有限公司 一种主动毫米波成像安全检测系统及安全检测方法
CN108427114B (zh) * 2018-01-24 2023-06-02 吉林大学 一种损耗补偿的频分复用毫米波三维成像装置及方法
CN109407165B (zh) * 2018-03-09 2023-11-03 同方威视技术股份有限公司 可扩展式毫米波安检系统、扫描单元及对人体进行安全检查的方法
CN108519623A (zh) * 2018-04-13 2018-09-11 北博(厦门)智能科技有限公司 基于毫米波雷达的异物探测系统
CN108597234A (zh) * 2018-05-10 2018-09-28 芜湖航飞科技股份有限公司 一种基于高分辨率雷达的智能交通检测仪
JP7156374B2 (ja) * 2018-06-06 2022-10-19 日本電気株式会社 レーダ信号画像化装置、レーダ信号画像化方法およびレーダ信号画像化プログラム
US11988792B2 (en) 2018-06-29 2024-05-21 Logistics And Supply Chain Multi Tech R&D Centre Limited Multimodal imaging sensor calibration method for accurate image fusion
DE102018131370A1 (de) * 2018-12-07 2020-06-10 INOEX GmbH Innovationen und Ausrüstungen für die Extrusionstechnik Messsystem und Verfahren zur Vermessung eines Messobjektes, insbesondere eines Kunststoff-Profils
CN109995397A (zh) * 2018-12-19 2019-07-09 安徽华东光电技术研究所有限公司 64路Ka波段阵列开关
CN109799538A (zh) * 2018-12-29 2019-05-24 清华大学 安检设备及其控制方法
CN109917380B (zh) * 2019-03-12 2022-12-06 西安电子工程研究所 一种通过功率检测实现综合孔径成像的方法
CN110717463A (zh) * 2019-10-12 2020-01-21 深圳芯启航科技有限公司 一种非接触式生物识别方法及装置
CN111064467B (zh) * 2019-12-24 2023-12-01 北京华研微波科技有限公司 毫米波频率合成器
CN111624672A (zh) * 2020-04-24 2020-09-04 博微太赫兹信息科技有限公司 一种基于频分复用技术的人体安检系统
CN111766294B (zh) * 2020-07-07 2023-07-14 杭州电子科技大学 基于微波成像的砂石骨料无损检测方法
CN112485768B (zh) * 2020-11-16 2023-07-21 西安电子工程研究所 基于分倍频方式的高精度连续波测速雷达回波模拟方法
CN112415624B (zh) * 2020-11-25 2023-08-25 成都菲斯洛克电子技术有限公司 一种安防检测系统及检测方法
CN112763514A (zh) * 2020-12-09 2021-05-07 北京无线电计量测试研究所 毫米波实时成像人员安检系统的收发天线模块及系统
CN114527517A (zh) * 2022-01-24 2022-05-24 清华大学 非驻留主动式的毫米波安检仪

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145230A (ja) * 2006-12-08 2008-06-26 Nippon Hoso Kyokai <Nhk> イメージング装置
CN102135629A (zh) * 2010-12-21 2011-07-27 中国科学院上海微系统与信息技术研究所 一种用于全息成像安检系统的毫米波收发模块
CN201936007U (zh) * 2010-12-24 2011-08-17 北京遥感设备研究所 一种毫米波主动式近场二维成像安检装置
CN102914766A (zh) * 2012-10-16 2013-02-06 中国科学院深圳先进技术研究院 应用于毫米波成像系统的天线装置
CN102983415A (zh) * 2012-12-10 2013-03-20 西安电子工程研究所 一种用于物位多点测量雷达的收发天线系统
CN104375193A (zh) * 2014-11-07 2015-02-25 深圳市一体投资控股集团有限公司 一种安检成像方法及系统
CN105068125A (zh) * 2015-07-02 2015-11-18 中国科学院上海微系统与信息技术研究所 一种基于可调中频衰减器的毫米波成像系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050058242A1 (en) * 2003-09-15 2005-03-17 Peschmann Kristian R. Methods and systems for the rapid detection of concealed objects
US10604352B2 (en) * 2015-12-14 2020-03-31 Indurad Gmbh Method and apparatus for monitoring the operational behavior, state and/or loading of belt conveyors during the operation thereof
CN105759269B (zh) * 2016-04-25 2018-06-26 华讯方舟科技有限公司 三维全息成像的安检系统及方法
CN107543831B (zh) * 2016-06-24 2020-05-22 南京理工大学 快递邮品微波扫描成像装置及微波图像的违禁品检测方法
CN207352187U (zh) * 2017-07-31 2018-05-11 深圳市无牙太赫兹科技有限公司 毫米波实时成像安全检测系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145230A (ja) * 2006-12-08 2008-06-26 Nippon Hoso Kyokai <Nhk> イメージング装置
CN102135629A (zh) * 2010-12-21 2011-07-27 中国科学院上海微系统与信息技术研究所 一种用于全息成像安检系统的毫米波收发模块
CN201936007U (zh) * 2010-12-24 2011-08-17 北京遥感设备研究所 一种毫米波主动式近场二维成像安检装置
CN102914766A (zh) * 2012-10-16 2013-02-06 中国科学院深圳先进技术研究院 应用于毫米波成像系统的天线装置
CN102983415A (zh) * 2012-12-10 2013-03-20 西安电子工程研究所 一种用于物位多点测量雷达的收发天线系统
CN104375193A (zh) * 2014-11-07 2015-02-25 深圳市一体投资控股集团有限公司 一种安检成像方法及系统
CN105068125A (zh) * 2015-07-02 2015-11-18 中国科学院上海微系统与信息技术研究所 一种基于可调中频衰减器的毫米波成像系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021231381A1 (en) * 2020-05-11 2021-11-18 Bridgestone Americas Tire Operations, Llc Tire sensing systems and methods
JP6921339B1 (ja) * 2020-06-11 2021-08-18 三菱電機株式会社 レーダ装置およびレーダ画像生成方法
WO2021250866A1 (ja) * 2020-06-11 2021-12-16 三菱電機株式会社 レーダ装置およびレーダ画像生成方法
CN113759376A (zh) * 2021-09-22 2021-12-07 上海无线电设备研究所 一种自主探测成像一体化雷达装置
CN113759376B (zh) * 2021-09-22 2023-09-19 上海无线电设备研究所 一种自主探测成像一体化雷达装置

Also Published As

Publication number Publication date
US11500088B2 (en) 2022-11-15
CN107238868B (zh) 2019-09-24
CN107238868A (zh) 2017-10-10
US20210088649A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
WO2019024170A1 (zh) 毫米波实时成像安全检测系统及安全检测方法
US11313963B2 (en) Millimeter wave holographic three-dimensional imaging detection system and method
WO2017107283A1 (zh) 基于线性调频的多人人体安检设备及方法
WO2017107284A1 (zh) 基于毫米波全息三维成像的人体安检系统及方法
JP6594331B2 (ja) 超広帯域検出機
US7671784B2 (en) Computerized tomography using radar
CN106990413B (zh) 外差式全相参太赫兹三维高分辨率成像的系统及方法
CN207352187U (zh) 毫米波实时成像安全检测系统
US20070035437A1 (en) Computerized Tomography Using Radar
CN105607056A (zh) 人体安检系统和方法
CN108152821A (zh) 一种主动毫米波成像安全检测系统及安全检测方法
EP3511745B1 (en) Power adjustment method and apparatus, and human body security check device
CN205608180U (zh) 三维全息成像的安检系统
CN207937600U (zh) 一种主动毫米波成像安全检测系统
CN105699493B (zh) 高铁无损检测系统和方法
CN105572667B (zh) 包裹安全检测系统和方法
CN105606630B (zh) 导弹外壳无损检测系统和方法
CN206832995U (zh) 外差式全相参太赫兹三维高分辨率成像的系统
RU2652530C1 (ru) Трехмерная система голографического радиовидения для досмотра
CN210465676U (zh) 一种毫米波宽角波束扫描雷达传感器
CN208224481U (zh) 一种毫米波信号收发一体机
Mencia-Oliva et al. 100-GHz FMCW radar front-end for ISAR and 3D imaging
CN206020692U (zh) 功率调节装置和人体安检设备
RU2522853C1 (ru) Способ и устройство обнаружения и идентификации предметов, спрятанных под одеждой на теле человека
Monnai Terahertz Radar Based on Leaky-Wave Coherence Tomography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920450

Country of ref document: EP

Kind code of ref document: A1