WO2019023846A1 - 数据转换与拍摄控制方法、系统、云台组件及无人机系统 - Google Patents

数据转换与拍摄控制方法、系统、云台组件及无人机系统 Download PDF

Info

Publication number
WO2019023846A1
WO2019023846A1 PCT/CN2017/095164 CN2017095164W WO2019023846A1 WO 2019023846 A1 WO2019023846 A1 WO 2019023846A1 CN 2017095164 W CN2017095164 W CN 2017095164W WO 2019023846 A1 WO2019023846 A1 WO 2019023846A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
pan
drone
data conversion
remote control
Prior art date
Application number
PCT/CN2017/095164
Other languages
English (en)
French (fr)
Inventor
蔡远佳
王振动
章鹤
崔鹤
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/095164 priority Critical patent/WO2019023846A1/zh
Priority to CN201780007051.9A priority patent/CN108700896A/zh
Publication of WO2019023846A1 publication Critical patent/WO2019023846A1/zh
Priority to US16/747,835 priority patent/US20200162659A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • H04L67/125Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks involving control of end-device applications over a network
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • G03B17/561Support related camera accessories
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/56Provisioning of proxy services
    • H04L67/565Conversion or adaptation of application format or content
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/08Protocols for interworking; Protocol conversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/51Housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/695Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/18Information format or content conversion, e.g. adaptation by the network of the transmitted or received information for the purpose of wireless delivery to users or terminals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Definitions

  • the invention relates to the field of shooting control, in particular to a data conversion and shooting control method, system, a pan/tilt assembly and a drone system.
  • the camera is fixed on the pan/tilt, and then the remote control device controls the camera to work. Since the pan/tilt can support multiple models of cameras, and the remote control device can only control the camera's simple camera function, and cannot control the camera in all directions, the images captured by the camera are difficult to meet the various needs of the user.
  • the invention provides a data conversion and shooting control method, system, cloud platform component and drone system.
  • a data conversion method is provided, which is applied to a data conversion device, which is respectively connected to a cloud platform and a camera, and the cloud platform is controlled by a remote control device, and the method includes:
  • a camera control signal after converting the format is sent to the camera.
  • a data conversion system the data conversion system being respectively connected to a pan/tilt, a camera, the pan/tilt being controlled by a remote control device, the system comprising one or more first processors Working separately or together, the first processor is configured to perform:
  • a camera control signal after converting the format is sent to the camera.
  • a computer readable storage medium for use in a data conversion device, the data conversion device being respectively connected to a cloud platform and a camera, the cloud platform being controlled by a remote control device, the computer
  • the read storage medium stores a computer program that, when executed by the first processor, implements the following steps:
  • a camera control signal after converting the format is sent to the camera.
  • a photographing control method for use in a cloud platform, the cloud platform being controlled by a remote control device, the cloud platform being communicatively coupled to a data conversion device, the data conversion device further The camera is communicatively coupled, the method comprising:
  • the camera control signal is forwarded to the camera via the data conversion device to trigger the camera to perform a camera function corresponding to the camera control signal.
  • a photographing control system for use in a cloud platform, the cloud platform being controlled by a remote control device, the cloud platform being communicatively coupled to a data conversion device, the data conversion device further The camera is communicatively coupled, the system comprising one or more second processors operating separately or collectively, the second processor for:
  • the camera control signal is forwarded to the camera via the data conversion device to trigger the camera to perform a camera function corresponding to the camera control signal.
  • a computer readable storage medium for use in a cloud platform, the cloud platform being controlled by a remote control device, the cloud platform being communicatively coupled to a data conversion device, and the data conversion device further Connected to a camera, the computer readable storage medium storing a computer program, the program being executed by the second processor to implement the following steps:
  • the camera control signal is forwarded to the camera via the data conversion device to trigger the camera to perform a camera function corresponding to the camera control signal.
  • a data conversion device includes a first processor and a first interface and a second interface respectively connected to the first processor;
  • the first interface is configured to physically connect to the cloud platform, and the cloud platform is controlled by a remote control device;
  • the second interface is used to physically connect the camera
  • the first processor is configured to convert a format of the camera control signal into a protocol format of the camera upon receiving a camera control signal sent by the remote control device, and then send the image to the camera via the second interface.
  • a cloud platform assembly including a cloud platform, further comprising a data conversion device fixed to the cloud platform, the data conversion device including a first processor and the first processing a first interface and a second interface respectively connected to the device;
  • the first interface is physically connected to the cloud platform
  • the second interface is used to physically connect the camera
  • the first processor is configured to convert a format of the camera control signal into a protocol format of the camera upon receiving a camera control signal sent by the remote control device, and then send the image to the camera via the second interface.
  • an image system includes a pan/tilt head, a camera mounted on the pan/tilt head, and a data conversion device, the data conversion device including a first processor and a first processor connected thereto a first interface and a second interface;
  • the first interface is physically connected to the cloud platform, and the cloud platform is controlled by a remote control device;
  • the second interface is used to physically connect the camera
  • the first processor is configured to convert a format of the camera control signal into a protocol format of the camera upon receiving a camera control signal sent by the remote control device, and then send the image to the camera via the second interface.
  • a drone system includes a remote control device, a drone, a pan/tilt mounted on the drone, a camera mounted on the pan/tilt, and a data conversion device, wherein
  • the remote control device is configured to control the drone and/or the pan/tilt, the drone is communicatively coupled to the pan/tilt, the data conversion device includes a first processor and the first processor a first interface and a second interface respectively connected;
  • the first interface is physically connected to the cloud platform
  • the second interface is used to physically connect the camera
  • the first processor is configured to convert a format of the camera control signal into a protocol format of the camera upon receiving a camera control signal sent by the remote control device, and then send the image to the camera via the second interface.
  • the data conversion device converts the camera control signal sent by the remote control device into a camera protocol format by the data conversion device, and can overcome the cloud platform manufacturer and the The camera manufacturer's protocol is not compatible with the issue, resulting in a more comprehensive camera capture for a better imaging experience.
  • the camera control signal controlled by the camera is transmitted through the pan/tilt and processed by the data conversion device, so that the pan/tilt and the camera are controlled by the same remote control device, and the user operation is more convenient.
  • FIG. 1 is a schematic structural diagram of an image system according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of an unmanned aerial vehicle system according to an embodiment of the present invention.
  • FIG. 3 is a flow chart of a data conversion method in an embodiment of the present invention.
  • FIG. 5 is a flowchart of a photographing control method in an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a data conversion device according to an embodiment of the present invention.
  • Figure 7 is a block diagram showing the structure of a photographing control system in an embodiment of the present invention.
  • FIG. 8 is a flowchart of a data conversion device in an embodiment of the present invention.
  • FIG. 9 is a schematic structural view of a pan/tilt head assembly according to an embodiment of the present invention.
  • Figure 10 is a block diagram showing the structure of an unmanned aerial vehicle system in another embodiment of the present invention.
  • 100 data conversion device; 101: first processor; 102: first interface; 103: second interface; 200: camera; 300: pan/tilt; 301: second processor; 400: drone.
  • an image system provided by an embodiment of the present invention may include a pan/tilt head 300, a camera 200 mounted on the pan/tilt head 300, and a data conversion device 100 that converts the pan/tilt head 300 and the camera 200.
  • the image system may further include a remote control device (not shown in FIG. 1), and the remote control device is communicatively coupled to the pan/tilt head 300 to control the operation of the pan/tilt head 300.
  • the camera 200 By mounting the camera 200 on the pan/tilt head 300, the camera 200 is stabilized, so that the image captured by the camera 200 is smoother.
  • the data conversion device 100 By setting the data conversion device 100, the data transmitted from the pan-tilt 300 to the camera 200 or the camera 200 to the pan-tilt 300 is converted and then transmitted to the camera 200 or the pan-tilt 300, thereby solving the difference between the gimbal manufacturer and the camera manufacturer.
  • the problem of incompatibility between the two is that the user can use the same remote control device to realize both the control of the pan/tilt head 300 and the control of the camera 200, and the operation is convenient and quick.
  • the pan/tilt head 300 is a handheld pan/tilt head.
  • the platform 300 can be mounted on a mobile device such as a drone 400, a robot, a mobile cart, or the like. Referring to Fig. 2, the pan/tilt head 300 is mounted on the drone 400.
  • the remote control device can be a dedicated remote control or a smart terminal (eg, a mobile phone, a tablet, etc.) with an APP installed.
  • the remote control device can cooperate with the pan/tilt head 300 and/or the drone 400, and the remote control device can remotely control the pan/tilt head 300 And/or drone 400 to control the attitude of the pan/tilt head 300 to switch and/or control the flight of the drone 400.
  • the type of the camera 200 is determined, and the type of the camera 200 needs to support the protocol format of the camera 200.
  • a data conversion method provided by an embodiment of the present invention is applied to a data conversion device 100.
  • the data conversion device 100 is connected to the pan/tilt head 300 and the camera 200, respectively.
  • the pan/tilt head 300 and the camera 200 of the present embodiment implement a communication connection through the transfer of the data device.
  • the pan/tilt head 300 is controlled by a remote control device.
  • the method can include the following steps:
  • Step S301 receiving a camera control signal sent by the remote control device
  • the remote control device is in direct communication with the pan/tilt head 300.
  • Step S301 includes receiving a camera control signal from the remote control device forwarded by the pan/tilt head 300.
  • the remote control device transmits a camera control signal to the pan/tilt head 300, and the pan-tilt head 300 forwards the camera control signal from the remote control device to the data conversion device 100.
  • the pan/tilt head 300 is mounted on a mobile device such as a drone 400 or a robot.
  • the gimbal 300 is mounted on the drone 400 as an example, and the remote control device is communicably connected to the drone 400.
  • step S301 includes: receiving a camera control signal from the remote control device forwarded by the drone 400.
  • the remote control device transmits a camera control signal to the drone 400, and the camera control signal from the remote control device is forwarded by the drone 400 to the data conversion device 100.
  • step S301 includes: receiving a camera control signal from the remote control device sequentially transmitted by the drone 400 and the pan/tilt head 300.
  • the remote control device transmits the camera control signal to the data conversion device 100 after being transmitted by the drone 400 and the pan/tilt 300 in sequence.
  • the camera control signal may include at least one of an action execution signal and a parameter setting signal.
  • the action execution signal transmitted by the remote control device is forwarded to the camera 200 through the pan/tilt head 300 and the data conversion device 100, or the drone 400 and the data conversion device 100, or the drone 400, the pan/tilt head 300, and the data conversion device 100, such that The camera 200 can perform the function of the camera 200 corresponding to the action execution signal, and pass through the pan/tilt head 300 and the data conversion device 100, or the drone 400 and the data conversion device 100, or the drone 400, the pan-tilt 300, and the data.
  • the conversion device 100 sends the parameter setting signal sent by the remote control to the camera 200, thereby changing the shooting parameters of the camera 200, and realizing the full control of the camera 200.
  • the user only needs to operate the remote control device, which is convenient and quick, and no additional camera is needed.
  • the remote control of 200 or by manually adjusting the camera 200 allows the camera 200 to be adjusted to the required shooting parameters or actions during flight of the drone 400 to obtain images that meet the various needs of the user.
  • the camera control signal may also select other types of signals used to control the camera 200 to capture.
  • the action execution signal may include a photographing instruction signal for instructing the camera 200 to perform a photographing function, or A focus indication signal for instructing the camera 200 to perform a focus function, or another type of motion execution signal.
  • the user only needs to control the remote control device to instruct the camera 200 to realize the photographing or focusing function, which is convenient and quick.
  • the camera parameter (ie, the shooting parameter) corresponding to the parameter setting signal may include at least one of a shutter control parameter, an aperture parameter, an exposure parameter, an exposure mode, a white balance parameter, a white balance mode, and an infinity and auto focus mode switching.
  • a shutter control parameter an aperture parameter, an exposure parameter, an exposure mode, a white balance parameter, a white balance mode, and an infinity and auto focus mode switching.
  • the user only needs to control the remote control device to set the shooting parameters of the camera 200, which is convenient and quick.
  • Step S302 Convert the format of the camera control signal into a protocol format of the camera 200;
  • Step 302 converts the format of the camera control signal into the protocol format of the camera 200 by the data conversion device 100, thereby enabling the camera control signal to be recognized by the camera 200, thereby implementing control of the camera 200.
  • the protocol format of the camera 200 can be selected as the protocol format of the default camera manufacturer camera 200 to enable control of the camera 200 produced by the camera manufacturer. In this application scenario, as long as the camera 200 of the same manufacturer can be directly replaced.
  • the protocol format of the camera 200 can be selected to be a standard camera 200 protocol format. This application scenario is applicable to the camera 200 using the standard camera 200 protocol format, but in practice, the protocol format used by each camera manufacturer may vary widely and is difficult to apply.
  • a protocol format selection module is provided on the remote control device, and the protocol format selection module may preset a protocol format of the camera 200 of a plurality of camera manufacturers or a standard camera 200 protocol format.
  • the user can directly select the protocol format of the current camera 200 in the protocol format selection module, and the remote control device sends the protocol format of the current camera 200 selected by the user to the data conversion device 100 to indicate the camera 200 that the data conversion device 100 can currently support. Protocol format.
  • the method may further include: receiving a protocol format of the camera 200 sent by the remote control device to instruct the data conversion device 100 to convert the camera control signal received by the data conversion device 100 into the received camera 200 protocol format.
  • Step S303 Send the converted camera control signal to the camera 200.
  • the data conversion device 100 converts the camera control signal into the protocol format of the camera 200
  • the converted camera control signal is transmitted to the camera 200.
  • the camera 200 can recognize the camera control signal after the conversion format, thereby performing a corresponding action or performing shooting parameter setting.
  • the cloud platform 300 and the camera 200 are switched by the data conversion device 100, and the camera control signal sent by the remote control device is converted into the protocol format of the camera 200 by the data conversion device 100, which can overcome the requirements of the platform manufacturer and the camera manufacturer.
  • the problem of incompatible protocols makes it possible to capture the camera 200 more comprehensively for a better imaging experience.
  • the camera control signal captured by the camera 200 is controlled to be forwarded by the pan/tilt head 300, and processed by the data conversion device 100, so that the pan/tilt head 300 and the camera 200 are controlled by the same remote control device. Make it easier.
  • the method may further include:
  • Step S401 receiving data information sent by the camera 200;
  • the data information includes at least one of camera parameters (ie, shooting parameters of the camera 200) and image information captured by the camera 200.
  • the camera parameters may include parameters such as a shutter control parameter, an aperture parameter, an exposure parameter, an exposure mode, a white balance parameter, a white balance mode, and an infinity and auto focus mode switching.
  • the image information refers to the number of images taken by the camera 200, the size of the image, and the like, and does not include the content of the image. This is because the content of the image is large, and the communication speed may be slow in the manner of forwarding by the data conversion device 100, which cannot meet the requirements of real-time transmission.
  • the camera 200 is connected to the cloud platform 300 or the drone 400 that mounts the pan/tilt head 300 through an image transmission line (for example, HDMI line, High Definition Multimedia Interface), and the image captured by the camera 200 ( That is, the content of the image is transmitted to the cloud platform 300 or the drone 400 on which the cloud platform 300 is mounted through the image transmission line, thereby ensuring real-time transmission of images.
  • an image transmission line for example, HDMI line, High Definition Multimedia Interface
  • the method further includes: sending a read command to the camera 200 to trigger the camera 200 to return data information for the read instruction, where the read instruction includes a type of data information to be read, thereby timely Obtain camera parameters or image information captured by the camera 200, and the like.
  • the sending the read command to the camera 200 further includes: receiving a camera data read signal sent by the remote control device, wherein the camera data read signal is used to indicate that the camera 200 returns Corresponding data information.
  • the data conversion device 100 transmits a read command to the camera 200 after it receives the camera data read signal transmitted by the remote control device, so that the camera parameter or the image information captured by the camera 200 can be read according to the user's needs.
  • the control is more flexible.
  • the sending a read command to the camera 200 includes transmitting a read command to the camera 200 according to a preset time rule.
  • the preset time rule is aperiodic, thereby improving the timeliness of the data conversion device 100 processing the data.
  • Step S402 Convert the format of the data information into a protocol format of the cloud platform 300 or the drone 400 that mounts the pan/tilt;
  • the remote control device is directly in communication with the cloud platform 300.
  • the cloud platform 300 is a handheld cloud platform 300.
  • Step S402 includes converting the format of the data information into a protocol format of the pan/tilt 300.
  • the format of the data information is converted into the protocol format of the pan/tilt 300 by the data conversion device 100, so that the data information returned by the camera 200 can be recognized by the pan-tilt 300 and transmitted to the remote control device, so that the user can obtain the camera parameters or the camera in time. 200 image information and the like are taken to guide the user to further control the camera 200.
  • the pan/tilt head 300 is mounted on a mobile device such as a drone 400 or a robot.
  • the gimbal 300 is mounted on the drone 400 as an example, and the remote control device is communicably connected to the drone 400.
  • Step S402 includes converting the format of the data information into a protocol format of the drone 400. Data letter through data conversion device 100 The format of the information is converted into the protocol format of the drone 400, so that the data information returned by the camera 200 can be recognized by the drone 400 and sent to the remote control device, so that the user can obtain the camera parameters or the image information captured by the camera 200 in time. Etc., in turn, instructing the user to further control the camera 200.
  • the protocol format of the pan/tilt 300 is the same as the protocol format of the drone 400.
  • Step S403 Send the data information after the conversion format to the pan/tilt head 300 or the drone 400.
  • the cloud platform 300 is a handheld cloud platform 300, and the data conversion device 100 directly transmits the converted format data information to the cloud platform 300.
  • the pan/tilt head 300 is mounted on the drone 400.
  • the data conversion device 100 is communicatively coupled to the drone 400, and the data conversion device 100 directly transmits the converted format data information to the drone 400.
  • the data conversion device 100 is communicatively coupled to the drone 400 via the pan/tilt 300.
  • the transmitting the converted formatted data information to the drone 400 includes: forwarding the converted format data information to the drone 400 via the pan/tilt head 300.
  • the method may further include receiving positioning information transmitted by the cloud station 300 and transmitting the most recently received positioning information to the camera 200.
  • the PTZ 300 may actively send its real-time positioning information to the data conversion device 100, or the remote control device may instruct the PTZ 300 to transmit its positioning information to the data conversion.
  • the remote control device is provided with a positioning parameter setting button, and the user presses the positioning parameter setting button, and the remote control device generates a positioning parameter setting signal to the pan/tilt head 300. After receiving the positioning parameter setting signal sent by the remote control device, the cloud station 300 transmits its positioning information to the data conversion device 100.
  • the method may further include receiving positioning information transmitted by the drone 400 and transmitting the most recently received positioning information to the camera 200.
  • the positioning information sent by the UAV 400 received by the data conversion device 100 after the PTZ 300 actively obtains the positioning information of the UAV 400, the positioning information of the UAV 400 may be forwarded to the data conversion device 100, or may be The remote control device instructs the drone 400 to transmit its positioning information to the cloud platform 300, and the cloud station 300 forwards the positioning information of the drone 400 to the data conversion device 100, or the drone 400 actively transmits its real-time positioning information to the data. Conversion device 100.
  • the remote control device is provided with a positioning parameter setting button, and the user presses the positioning parameter setting button, and the remote control device generates a positioning parameter setting signal to the drone 400.
  • the drone 400 After receiving the positioning parameter setting signal sent by the remote control device, the drone 400 transmits its positioning information to the cloud platform 300, and the cloud station 300 forwards the positioning information of the drone 400 to the data conversion device 100, or the drone The 400 directly transmits its positioning information to the data conversion device 100 without the forwarding of the pan/tilt 300.
  • the sending the most recently received positioning information to the camera 200 includes: saving the last received positioning information to the image file format (EXIF) of the camera 200, so that the camera 200 captures Real-time positioning information can be displayed in the image.
  • EXIF image file format
  • the positioning information may be obtained by the gimbal 300 or the drone 400 by means of GPS or other navigation, or may be set by a user.
  • the positioning information may include a real-time location of the pan/tilt head 300 or the camera 200, and may also include a current date or the like.
  • the method may further include: transmitting a user prompt to the remote control device if the trigger condition is met.
  • the user prompt may include prohibiting the photographing prompt, prohibiting the focus prompt or the focus enabling prompt, etc., preventing the user from misoperation or prompting the user to operate the camera 200 function.
  • the user prompts to disable the photo reminder.
  • the trigger condition is that it is detected that the number of images that the camera 200 can store is less than or equal to a preset number.
  • the preset number is 0.
  • sending a photo inhibition prohibition to the user preventing the user from operating the camera function of the camera 200 by mistake.
  • a camera function button may be provided on the remote control device. When the camera 200 can perform a photographing function, the photographing function button is in a photographable state. After receiving the prohibition of photographing, the remote control device sets the photographing function button to a state in which photographing is prohibited, so as to prevent the user from operating the photographing function button by mistake.
  • the user prompts a photo enable prompt.
  • the data conversion device 100 detects that the number of storable images of the camera 200 is greater than 0, sending a photographing enable prompts to the user.
  • the remote control device restores the photographing function button to a photographable state.
  • the user prompts to disable the photo reminder.
  • the trigger condition is that the camera 200 is detected to perform a focus function.
  • the camera 200 performs the focus function, if an action execution signal indicating that the camera 200 performs the photographing function is received, the camera 200 may be stuck.
  • a camera function button may be disposed on the remote control device.
  • the photographing function button is in a photographable state.
  • the data conversion device 100 transmits a photo inhibition prohibition to the remote control device.
  • the remote control device sets the photographing function button to a state in which photographing is prohibited, so as to prevent the user from operating the photographing function button by mistake.
  • the user prompts a photo enable prompt.
  • the data conversion device 100 After receiving the focus end signal sent by the camera 200, the data conversion device 100 transmits a photographing enable prompt to the user. After receiving the photographing enable prompt, the remote control device restores the photographing function button to a photographable state.
  • the user prompts to disable focus prompting.
  • the trigger condition is that the camera 200 is detected to perform a photographing function.
  • an action execution signal indicating that the camera 200 performs the focus function is received, the camera 200 may be stuck.
  • a focus function button may be provided on the remote control device. After the remote control device receives the prohibition focus prompt, the focus function button is set to a state in which the focus is prohibited to prevent the user from operating the focus function button by mistake.
  • the user prompt is a focus enable prompt.
  • the triggering condition is that after the sending of the inhibit focus prompt to the remote control device, the photographing end signal sent by the camera 200 is received. After receiving the photographing end signal sent by the camera 200, the data conversion device 100 sends a focus enable prompt to the user. After the remote control device receives the focus enable prompt, the focus function button is restored to the focusable state.
  • the method may further include: detecting that the pan-tilt head 300 and the data conversion device 100 are in an off state, then controlling the status indicator of the data conversion device 100 to be in a first state, thereby guiding the user to complete the cloud
  • the connection of the communication link between the station 300 and the data conversion device 100 is relatively intuitive and efficient. high.
  • the disconnection state between the cloud platform 300 and the data conversion device 100 means that the communication link between the cloud platform 300 and the data conversion device 100 is interrupted.
  • the data conversion device 100 detects the first interface 102 of the data conversion device 100 for connecting to the PTZ 300 in real time, and reads the status of the connected device of the first interface 102 and the device information, so as to the PTZ 300 and The on/off status of the communication link between the data conversion devices 100 is detected to help the user quickly set up the system.
  • the method may further include detecting that the camera 200 and the data conversion device 100 are in an off state, and then controlling the status indicator of the data conversion device 100 to be in a second state, thereby guiding the user to complete the pair of cameras 200.
  • the connection to the communication link between the data conversion device 100 is relatively straightforward and efficient.
  • the disconnection state between the camera 200 and the data conversion device 100 means that the communication link between the camera 200 and the data conversion device 100 is interrupted.
  • the data conversion device 100 detects the second interface 103 of the data conversion device 100 for connecting to the PTZ 300 in real time, and reads the state of the connected device of the second interface 103 and the device information, so as to the camera 200 and the data.
  • the on/off status of the communication link between the conversion devices 100 is detected to help the user quickly set up the system.
  • the pan/tilt head 300 is mounted on the drone 400.
  • the method may further include: detecting that the pan/tilt head 300 and the drone 400 are in an off state, then controlling the status indicator of the data conversion device 100 to be in a third state, thereby guiding the user to complete the pair of pan/tilt 300 and the drone 400
  • the connection between the communication links is intuitive and efficient.
  • the disconnected state of the pan-tilt head 300 and the drone 400 means that the communication link between the pan-tilt head 300 and the drone 400 is interrupted.
  • the PTZ 300 sends a signal indicating that the PTZ 300 and the UAV 400 are in an off state to the data conversion device 100, and the data The conversion device 100 guides the user through the control of the status indicator to complete the connection to the communication link between the pan/tilt head 300 and the drone 400.
  • the data conversion device 100 can detect that the cloud platform 300 and the drone 400 are in an off state, and the communication link between the cloud platform 300 and the data conversion device 100 is in a connected state.
  • the first state, the second state, and the third state of the present invention are all different, thereby guiding the cloud platform 300 and the data conversion device 100, the camera 200 and the data conversion device 100, the drone 400, and the pan/tilt 300
  • the installation solves the problem of quickly detecting each communication link.
  • the first state, the second state, and the third state may be distinguished by the illuminating color of the status indicator, and the first state, the second state, and the third state may also be distinguished by the illuminating duration of the status indicator.
  • the blinking state of the status indicator distinguishes the first state, the second state, and the third state, or distinguishes the first state and the second state by a combination of at least two of a light color, a light emitting duration, and a blinking state of the state indicator State, third state.
  • the first state, the second state, and the third state may also be distinguished by other means.
  • a shooting control method provided by an embodiment of the present invention is applied to a cloud platform 300.
  • the pan/tilt head 300 is in communication with a data conversion device 100, and the data conversion device 100 is also in communication with a camera 200.
  • the pan/tilt head 300 and the camera 200 of the present embodiment implement a communication connection by switching of the data device.
  • the pan/tilt head 300 is controlled by a remote control device.
  • the method can include the following steps:
  • Step S501 receiving a camera control signal sent by the remote control device
  • the remote control device is directly in communication with the pan/tilt head 300, and the pan/tilt head 300 directly receives the camera control signal transmitted by the remote control device.
  • the pan/tilt head 300 is mounted on a mobile device such as a drone 400 or a robot.
  • the gimbal 300 is mounted on the drone 400 as an example, and the remote control device is communicably connected to the drone 400.
  • step S501 includes: receiving a camera control signal from the remote control device forwarded by the drone 400.
  • the remote control device sends a camera control signal to the drone 400, and the camera control signal from the remote control device is forwarded by the drone 400 to the pan/tilt head 300.
  • the camera control signal may include at least one of an action execution signal and a parameter setting signal.
  • the action execution signal transmitted by the remote control device is forwarded to the camera 200 through the pan/tilt 300 and the data conversion device 100, or the drone 400, the pan/tilt head 300, and the data conversion device 100, so that the camera 200 can perform the action execution signal Corresponding camera 200 functions, and transmits the parameter setting signal of the remote control transmission to the camera 200 through the pan/tilt 300 and the data conversion device 100, or the drone 400, the pan/tilt head 300, and the data conversion device 100, thereby changing the camera 200.
  • the shooting parameters enable full control of the camera 200, and the user only needs to operate the remote control device, which is convenient and quick, and the camera 200 can be made in the drone without additionally adding a remote controller of the camera 200 or manually adjusting the camera 200. During the 400 flight, it can still be adjusted to the required shooting parameters or actions to get an image that meets the user's multiple needs.
  • the camera control signal may also select other types of signals used to control the camera 200 to capture.
  • the action execution signal may include a photographing instruction signal for instructing the camera 200 to perform a photographing function, or a focus indication signal for instructing the camera 200 to perform a focus function, or other types of motion execution signals.
  • the user only needs to control the remote control device to instruct the camera 200 to realize the photographing or focusing function, which is convenient and quick.
  • the camera parameters corresponding to the parameter setting signal may include at least one of a shutter control parameter, an aperture parameter, an exposure parameter, an exposure mode, a white balance parameter, a white balance mode, and an infinity and auto focus mode switching.
  • the user only needs to control the remote control device to set the respective shooting parameters of the camera 200, which is convenient and quick.
  • Step S502 The camera control signal is forwarded to the camera 200 via the data conversion device 100 to trigger the camera 200 to perform the camera 200 function corresponding to the camera control signal.
  • the cloud platform 300 and the camera 200 are switched by the data conversion device 100, and the camera control signal sent by the remote control device is converted into the protocol format of the camera 200 by the data conversion device 100, which can overcome the requirements of the platform manufacturer and the camera manufacturer. Protocol incompatibility issues, resulting in a more comprehensive camera shot, getting better Imaging experience.
  • the camera control signal captured by the camera 200 is controlled to be forwarded by the pan/tilt head 300, and processed by the data conversion device 100, so that the pan/tilt head 300 and the camera 200 are controlled by the same remote control device, and the user operation is more convenient.
  • the method may further include transmitting positioning information of the pan/tilt head 300 to the data conversion device 100.
  • the pan/tilt 300 may actively transmit the real-time positioning information to the data conversion device 100, or the remote control device may instruct the pan-tilt 300 to transmit its positioning information to the data conversion device 100.
  • the remote control device is provided with a positioning parameter setting button. When the user presses the positioning parameter setting button, the remote control device generates a positioning parameter setting signal to the pan/tilt head 300, and the pan-tilt head 300 receives the positioning sent by the remote control device. After the parameter setting signal, its positioning information is transmitted to the camera 200.
  • the pan/tilt head 300 is mounted on the drone 400.
  • the method may further include transmitting positioning information of the drone 400 to the data conversion device 100.
  • the positioning information of the drone 400 is forwarded to the data conversion device 100, or the remote control device instructs the drone 400 to transmit its positioning information to the pan/tilt 300.
  • the pan/tilt 300 forwards the positioning information of the drone 400 to the data conversion device 100.
  • the remote control device is provided with a positioning parameter setting button. When the user presses the positioning parameter setting button, the remote control device generates a positioning parameter setting signal to the drone 400, and the drone 400 receives the remote control device to send. After the positioning parameter setting signal is transmitted, the positioning information is transmitted to the pan/tilt head 300, and the positioning information of the drone 400 is forwarded by the pan/tilt head 300 to the camera 200.
  • the positioning information may be obtained by the gimbal 300 or the drone 400 by means of GPS or other navigation, or may be set by a user.
  • the positioning information may include a real-time location of the pan/tilt head 300 or the camera 200, and may also include a current date or the like.
  • the method may further include: receiving a camera data read signal sent by the remote control device, and transmitting the camera data read signal to the data conversion device 100 to trigger the data conversion device 100 to acquire corresponding data information from the camera 200, and capable of The camera parameters are read according to the user's needs or the image information captured by the camera 200, etc., and the control is more flexible.
  • the camera data read signal is used to instruct the camera 200 to return corresponding data information.
  • the shooting control method of the second embodiment can be further explained with reference to the data conversion method of the first embodiment.
  • an embodiment of the present invention provides a data conversion system.
  • the data conversion system is respectively connected to a cloud platform and a camera, and the cloud platform is controlled by a remote control device.
  • the data conversion system can include a first processor 101.
  • the first processor 101 can be separately connected to the pan/tilt head 300 and the camera 200.
  • the first processor 101 can also be communicatively coupled to the drone 400.
  • the first processor 101 includes one or more, working separately or in common, for performing the steps of the data conversion method according to the first embodiment.
  • an embodiment of the present invention provides a shooting control system that can be applied to a cloud platform 300.
  • the photographing control system may include a second processor 301.
  • the second processor 301 includes one or more, working alone or in combination, for performing the steps of the shooting control method described in the second embodiment.
  • the fifth embodiment will specifically explain the structure of the data conversion device 100.
  • a data conversion device 100 may include a first processor 101, a first interface 102, and a second interface 103.
  • the first processor 101 and the first processor 101 are respectively connected.
  • the first interface 102 can be connected to the pan/tilt head 300, and the second interface 103 can be connected to the camera 200.
  • the first interface 102 and the second interface 103 may be hardware interfaces, and may be connected to the cloud platform 300 or the camera 200 by physical connection.
  • the first interface 102 and the second interface 103 can be application interfaces.
  • the structure of the data conversion device 100 of the present invention will be further described by taking the first interface 102 and the second interface 103 as hardware interfaces as an example.
  • the first interface 102 matches the interface type of an external interface of the cloud platform 300.
  • the interface of the cloud platform 300 is a bus interface (for example, a CAN bus interface)
  • the first interface 102 is a matched bus interface.
  • the interface type for the first interface 102 is not enumerated here.
  • the second interface 103 matches the interface type of an external interface of the camera 200.
  • an external interface of the camera 200 is a Type C interface
  • the second interface 103 is an interface that matches the Type C interface.
  • the signal line between the second interface 103 and the camera 200 has two interfaces, one of which matches the second interface 103 and the other that matches an external interface of the camera 200.
  • the second interface 103 is a USB interface
  • an external interface of the camera 200 is a Type C interface
  • the two interfaces connecting the signal lines of the camera 200 and the second interface 103 can be respectively matched with the USB interface and the Type C interface, thereby A communication link between the camera 200 and the second interface 103 is connected.
  • the interface type for the second interface 103 is not enumerated here.
  • the first processor 101 is configured to convert a format of the camera control signal into a protocol format of the camera 200 when receiving a camera control signal sent by a remote control device, and then pass the second interface. 103 is sent to the camera 200.
  • the camera control signal sent by the remote control device can be recognized by the camera 200, thereby controlling the camera 200 to perform the function of the camera 200 corresponding to the camera control signal to meet the shooting requirements of the user.
  • the remote control device can control the operation of the pan/tilt head 300 and/or the movable device (for example, the drone 400, the robot, etc.) for carrying the pan/tilt head 300.
  • the remote control device is a dedicated remote controller or a smart terminal (eg, a mobile phone, a tablet, etc.) installed with an APP.
  • the camera control signal may include at least one of an action execution signal and a parameter setting signal.
  • the action execution signal transmitted by the remote control device is forwarded to the camera 200 through the pan/tilt head 300 and the data conversion device 100, or the drone 400 and the data conversion device 100, or the drone 400, the pan/tilt head 300, and the data conversion device 100, such that The camera 200 can perform the function of the camera 200 corresponding to the action execution signal, and pass through the pan/tilt head 300 and the data conversion device 100, or the drone 400 and the data conversion device 100, or the drone 400, the pan-tilt 300, and the data.
  • the conversion device 100 sends the parameter setting signal sent by the remote control to the camera 200, thereby changing the shooting parameters of the camera 200, and realizing the full control of the camera 200.
  • the user only needs to operate the remote control device, which is convenient and quick, and no additional camera is needed.
  • the remote control of 200 or by manually adjusting the camera 200 allows the camera 200 to be adjusted to the required shooting parameters or actions during flight of the drone 400 to obtain images that meet the various needs of the user.
  • the camera control signal may also select other types of signals used to control the camera 200 to capture.
  • the action execution signal may include a photographing instruction signal for instructing the camera 200 to perform a photographing function, or a focus indication signal for instructing the camera 200 to perform a focus function, or other types of motion execution signals.
  • the user only needs to control the remote control device to instruct the camera 200 to realize the photographing or focusing function, which is convenient and quick.
  • the camera parameters corresponding to the parameter setting signal may include at least one of a shutter control parameter, an aperture parameter, an exposure parameter, an exposure mode, a white balance parameter, a white balance mode, and an infinity and auto focus mode switching.
  • the user only needs to control the remote control device to set the respective shooting parameters of the camera 200, which is convenient and quick.
  • the first processor 101 is further configured to convert the format of the data information into a protocol format of the pan/tilt head 300 or the drone 400 when receiving the data information sent by the camera 200. And transmitting the data information to the pan/tilt head 300 or the drone 400 via the first interface 102.
  • the data information converted by the data conversion device 100 is transmitted back to the remote control device, and can be displayed on the remote control device for the user to view, thereby better grasping the current shooting parameters of the camera 200 or the captured image information.
  • the data information includes at least one of camera parameters (ie, shooting parameters of the camera 200) and image information captured by the camera 200, and the like.
  • the camera parameters may include parameters such as a shutter control parameter, an aperture parameter, an exposure parameter, an exposure mode, a white balance parameter, a white balance mode, and an infinity and auto focus mode switching.
  • the image information refers to the number of images taken by the camera 200, the size of the image, and the like, and does not include the content of the image. This is because the content of the image is large, and the communication speed may be slow in the manner of forwarding by the data conversion device 100, which cannot meet the requirements of real-time transmission.
  • the data conversion device 100 may further include a status indicator to guide the user between the pan/tilt head 300 and the data conversion device 100, the camera 200 and the data conversion device 100, and the pan/tilt 300 drone 400.
  • the status indicator is electrically connected to the first processor 101, and the first processor 101 can be based on a connection state of the platform 300 and the first interface 102, a connection state of the camera 200 and the second interface 103, and At least one of the connection states of the pan/tilt head 300 and the drone 400 controls the operation of the status indicator.
  • the first processor 101 detects that the pan-tilt head 300 and the first interface 102 are disconnected.
  • the state ie, the communication link between the gimbal 300 and the first interface 102 is disconnected
  • the first processor 101 detects that the camera 200 and the second interface 103 are in an off state (ie, the communication link between the camera 200 and the second interface 103 is disconnected), and then controls the status indicator to be in the second state.
  • the first processor 101 detects that the pan-tilt head 300 and the drone 400 are in an off state (ie, the communication link between the pan-tilt head 300 and the drone 400 is disconnected), and then controls the status indicator to be the first Three states.
  • the first state, the second state, and the third state are all different, thereby guiding the installation of the cloud platform 300 and the data conversion device 100, the camera 200 and the data conversion device 100, the drone 400, and the pan/tilt 300, Achieve fast detection of each communication link.
  • the status indicator is one.
  • the first processor 101 can detect the connection state of the communication link between the pan-tilt head 300 and the drone 400.
  • the first state, the second state, and the third state may be distinguished by the illumination color of the status indicator, and the first state, the second state, and the third state may also be distinguished by the illumination duration of the status indicator, or may be indicated by the status.
  • the blinking state of the light distinguishes the first state, the second state, and the third state, or distinguishes the first state, the second state, and a combination of at least two of a light color, a light emitting time, and a blinking state of the state indicator The third state.
  • the first state, the second state, and the third state may also be distinguished by other means.
  • the status indicator is three for indicating the connection status of the platform 300 and the first interface 102, the connection status of the camera 200 and the second interface 103, and the pan/tilt 300 and the drone 400. Connection status.
  • the corresponding status indicator does not work.
  • the corresponding status indicator lights up.
  • the corresponding status indicator does not work.
  • the corresponding status indicator lights up.
  • the corresponding status indicator does not work.
  • the pan/tilt head 300 is mounted on the drone 400, and the first processor 101 receives the unmanned aerial vehicle 400 and the pan-tilt head 300 sequentially transmitted from the remote control device.
  • Camera control signal The pan/tilt head 300 and the camera 200 are switched by the data conversion device 100, and the camera control signal transmitted by the remote control device is converted into the protocol format of the camera 200 by the data conversion device 100, which can overcome the problem of incompatibility between the platform manufacturer and the camera manufacturer. Thereby the camera 200 is more comprehensively photographed for a better imaging experience.
  • the camera control signal captured by the camera 200 is controlled to be forwarded by the drone 400 and the pan/tilt head 300, and processed by the data conversion device 100, so that the drone 400, the pan-tilt head 300, and the camera 200 are controlled by the same remote control device.
  • User operation is more convenient.
  • the protocol format of the drone 400 is the same as the protocol format of the pan/tilt 300.
  • the cloud platform 300 and the drone 400, the cloud platform 300, and the first interface 102 are both based on bus communication.
  • the first processor 101 receives a camera control signal from the remote control device forwarded by the pan/tilt head 300.
  • the remote control device realizes the data conversion device through the transfer of the pan/tilt head 300. Data transfer between the standby 100. If the pan/tilt head 300 is mounted on the drone 400, the remote control device can also be communicably connected to the drone 400, thereby achieving control of the drone 400. Through the same remote control device, the control of the drone 400 and the pan/tilt head 300 can be realized, and the control of the camera 200 can be realized, the operation is more convenient, and the control of the camera 200 is more comprehensive to obtain a better shooting experience.
  • the first processor 101 receives a camera control signal from the remote control device forwarded by the drone 400.
  • the first processor 101 is communicatively coupled to the drone 400, and the remote control device implements data transmission with the data conversion device 100 through the drone 400.
  • the control of the drone 400 can be realized, the control of the camera 200 can be realized, the operation is more convenient, and the control of the camera 200 is more comprehensive to obtain a better shooting experience.
  • the data conversion function of the data conversion device 100 can implement the data conversion function of the data conversion device 100 by means of a dedicated chip.
  • the dedicated chip may be an ASIC (Application Specific Integrated Circuit) chip or a programmable device such as an FPGA (Field-Programmable Gate Array).
  • the data conversion device 100 has The function can be realized by one chip, or some of the functions can be completed by different chips.
  • the chip can realize the corresponding functions through software programs, and can also implement corresponding functions through hardware forms such as circuits.
  • Embodiment 6 to Embodiment 8 are various application scenarios of Embodiment 5.
  • an embodiment of the present invention provides a cloud platform component, which may include a cloud platform 300 and the data conversion device 100 of the above fifth embodiment.
  • the first interface 102 of the data conversion device 100 is connected to the cloud platform 300, and the second interface 103 of the data conversion device 100 is used to connect the camera 200, and the data conversion device 100 can be switched to overcome the cloud.
  • the problem of incompatibility between the manufacturer and the camera manufacturer is that the camera 200 can be more comprehensively controlled for a better shooting experience, and the user operation is more convenient.
  • the data conversion device 100 can be fixed to the pan/tilt head 300. Specifically, the data conversion device 100 can be fixed to the pan/tilt head 300 by means of snapping, bonding, or threading.
  • the fixing manner of the data conversion device 100 to the pan/tilt head 300 is not specifically limited.
  • the pan/tilt head 300 can cooperate with a remote control device, and the user can control the pan/tilt head 300 and the camera 200 through the remote control device, which is convenient and quick.
  • the cloud platform 300 is a handheld cloud platform 300.
  • an embodiment of the present invention provides an image system, which may include a cloud platform 300, a camera 200 mounted on the cloud platform 300, and the data conversion device 100 of the fifth embodiment.
  • the first interface 102 of the data conversion device 100 is connected to the cloud platform 300, and the second interface 103 of the data conversion device 100 is connected to the camera 200.
  • the problem of incompatibility between the platform manufacturer and the camera manufacturer can be overcome, and the camera 200 can be more comprehensively controlled to obtain a better subject. Inspection, and user operations are more convenient.
  • the data conversion device 100 may be fixed to the pan/tilt head 300, may be fixed to the camera 200, or may be fixed to a movable device (for example, a drone 400, a robot, etc.) on which the pan/tilt head 300 is mounted.
  • the data conversion device 100 can be fixed to the pan/tilt head 300, the camera 200, or the mobile device by means of snapping, bonding, or threading.
  • the present invention is fixed to the pan/tilt head 300, the camera 200, or the data conversion device 100.
  • the manner of fixing the mobile device is not specifically limited.
  • the pan/tilt head 300 can cooperate with a remote control device, and the user can control the pan/tilt head 300 and the camera 200 through the remote control device, which is convenient and quick.
  • the cloud platform 300 is a handheld cloud platform 300.
  • an embodiment of the present invention provides an unmanned aerial vehicle system, which may include a remote control device, a drone 400, and a pan/tilt 300 mounted on the drone 400.
  • the remote control device is communicably connected to the drone 400, and the drone 400 is communicably connected to the cloud platform 300.
  • the remote control device can be used by the user to control the drone 400 and/or the pan/tilt head 300 and the camera 200, which is convenient and quick.
  • the drone 400, the data conversion device 100, and the pan/tilt head 300 are each based on a bus communication connection.
  • the type of bus can be selected as desired, for example, a CAN bus.
  • the first interface 102 of the data conversion device 100 is connected to the cloud platform 300, and the second interface 103 of the data conversion device 100 is connected to the camera 200.
  • the problem of incompatibility between the platform manufacturer and the camera manufacturer can be overcome, the camera 200 can be more comprehensively controlled, a better shooting experience can be obtained, and the user operation is more convenient.
  • the data conversion device 100 may be fixed to the pan/tilt head 300, may be fixed to the camera 200, or may be fixed to the drone 400 on which the pan/tilt head 300 is mounted.
  • the data conversion device 100 can be fixed to the pan/tilt head 300, the camera 200, or the drone 400 by means of snapping, bonding, or threading.
  • the present invention fixes the data conversion device 100 to the pan/tilt head 300, the camera 200, or The fixing manner of the drone 400 is not specifically limited.
  • the embodiment of the present invention provides a computer storage medium, where the computer storage medium stores program instructions, where the computer storage medium stores program instructions, and the program executes the data conversion method of the first embodiment or the second embodiment. Shooting control method.
  • the device embodiment since it basically corresponds to the method embodiment, refer to the method for related parts. A part of the description of the embodiment is sufficient.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located A place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without any creative effort.
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented with any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals. Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Studio Devices (AREA)

Abstract

一种数据转换与拍摄控制方法、系统、云台组件及无人机系统。数据转换方法应用于数据转换设备(100),数据转换设备(100)分别与云台(300)、相机(200)相连,数据转换方法包括:接收遥控设备发送的相机控制信号(S301);将相机控制信号的格式转换成相机(200)的协议格式(S302);发送转换格式后的相机控制信号至相机(200)(S303)。通过数据转换设备(100)转接云台(300)和相机(200),由数据转换设备(100)将遥控设备发送的相机控制信号转换成相机(200)的协议格式,能够克服云台(300)厂商与相机(200)厂商的协议不兼容的问题,从而更为全面地相机(200)拍摄,获得更好的成像体验。并且,实现了由同一遥控设备控制云台(300)和相机(200),用户操作更加便捷。

Description

数据转换与拍摄控制方法、系统、云台组件及无人机系统 技术领域
本发明涉及拍摄控制领域,尤其涉及一种数据转换与拍摄控制方法、系统、云台组件及无人机系统。
背景技术
随着拍摄技术的发展,用户对相机拍摄的影像的要求越来越高。
目前,为实现对相机的增稳,会将相机固定在云台,再由遥控设备来控制相机工作。由于通常云台可支持搭载多种型号的相机,而遥控设备只能够控制相机的简单拍照功能,而无法全方位地控制相机,相机拍摄的影像难以满足用户的多种需求。
发明内容
本发明提供一种数据转换与拍摄控制方法、系统、云台组件及无人机系统。
根据本发明的第一方面,提供一种数据转换方法,应用于数据转换设备,所述数据转换设备分别与云台、相机相连,所述云台由一遥控设备控制,所述方法包括:
接收遥控设备发送的相机控制信号;
将所述相机控制信号的格式转换成所述相机的协议格式;
发送转换格式后的相机控制信号至所述相机。
根据本发明的第二方面,提供一种数据转换系统,所述数据转换系统分别与云台、相机相连,所述云台由一遥控设备控制,所述系统包括一个或多个第一处理器,单独地或共同地工作,所述第一处理器用于执行:
接收遥控设备发送的相机控制信号;
将所述相机控制信号的格式转换成所述相机的协议格式;
发送转换格式后的相机控制信号至所述相机。
根据本发明的第三方面,提供一种计算机可读存储介质,应用于数据转换设备,所述数据转换设备分别与云台、相机相连,所述云台由一遥控设备控制,所述计算机可读存储介质上存储有计算机程序,该程序被第一处理器执行时实现以下步骤:
接收遥控设备发送的相机控制信号;
将所述相机控制信号的格式转换成所述相机的协议格式;
发送转换格式后的相机控制信号至所述相机。
根据本发明的第四方面,提供一种拍摄控制方法,应用于云台,所述云台由一遥控设备控制,所述云台与一数据转换设备通信连接,所述数据转换设备还与一相机通信连接,所述方法包括:
接收遥控设备发送的相机控制信号;
经数据转换设备转发所述相机控制信号至相机,以触发所述相机执行与所述相机控制信号相对应的相机功能。
根据本发明的第五方面,提供一种拍摄控制系统,应用于云台,所述云台由一遥控设备控制,所述云台与一数据转换设备通信连接,所述数据转换设备还与一相机通信连接,所述系统包括一个或多个第二处理器,单独地或共同地工作,所述第二处理器用于:
接收遥控设备发送的相机控制信号;
经数据转换设备转发所述相机控制信号至相机,以触发所述相机执行与所述相机控制信号相对应的相机功能。
根据本发明的第六方面,提供一种计算机可读存储介质,应用于云台,所述云台由一遥控设备控制,所述云台与一数据转换设备通信连接,所述数据转换设备还与一相机通信连接,所述计算机可读存储介质上存储有计算机程序,该程序被第二处理器执行时实现以下步骤:
接收遥控设备发送的相机控制信号;
经数据转换设备转发所述相机控制信号至相机,以触发所述相机执行与所述相机控制信号相对应的相机功能。
根据本发明的第七方面,提供一种数据转换设备,包括第一处理器以及与所述第一处理器分别相连的第一接口和第二接口;其中,
所述第一接口用于物理连接云台,所述云台由一遥控设备控制;
所述第二接口用于物理连接相机;
所述第一处理器用于在接收到遥控设备发送的相机控制信号时,将所述相机控制信号的格式转换成所述相机的协议格式,然后经所述第二接口发送至所述相机。
根据本发明的第八方面,提供一种云台组件,包括云台,还包括固定于所述云台上的数据转换设备,所述数据转换设备包括第一处理器以及与所述第一处理器分别相连的第一接口和第二接口;
所述第一接口物理连接云台;
所述第二接口用于物理连接相机;
所述第一处理器用于在接收到遥控设备发送的相机控制信号时,将所述相机控制信号的格式转换成所述相机的协议格式,然后经所述第二接口发送至所述相机。
根据本发明的第九方面,一种影像系统,包括云台、搭载在云台上的相机以及数据转换设备,所述数据转换设备包括第一处理器以及与所述第一处理器分别相连的第一接口和第二接口;
所述第一接口物理连接云台,所述云台由一遥控设备控制;
所述第二接口用于物理连接相机;
所述第一处理器用于在接收到遥控设备发送的相机控制信号时,将所述相机控制信号的格式转换成所述相机的协议格式,然后经所述第二接口发送至所述相机。
根据本发明的第十方面,提供一种无人机系统,包括遥控设备、无人机、搭载在所述无人机上的云台、搭载在所述云台上的相机以及数据转换设备,其中,所述遥控设备用于控制所述无人机和/或云台,所述无人机与所述云台通信连接,所述数据转换设备包括第一处理器以及与所述第一处理器分别相连的第一接口和第二接口;
所述第一接口物理连接云台;
所述第二接口用于物理连接相机;
所述第一处理器用于在接收到遥控设备发送的相机控制信号时,将所述相机控制信号的格式转换成所述相机的协议格式,然后经所述第二接口发送至所述相机。
由以上本发明实施例提供的技术方案可见,本发明通过数据转换设备转接云台和相机,由数据转换设备将遥控设备发送的相机控制信号转换成相机的协议格式,能够克服云台厂商与相机厂商的协议不兼容的问题,从而更为全面地相机拍摄,获得更好的成像体验。并且,将控制相机拍摄的相机控制信号通过云台的转发,并通过数据转换设备的处理,实现了由同一遥控设备控制云台和相机,用户操作更加便捷。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例中的影像系统的结构示意图;
图2是本发明一实施例中的无人机系统的结构示意图;
图3是本发明一实施例中的数据转换方法的流程图;
图4是本发明另一实施例中的数据转换方法的流程图;
图5是本发明一实施例中的拍摄控制方法的流程图;
图6是本发明一实施例中的数据转换设备的结构示意图;
图7是本发明一实施例中的拍摄控制系统的结构框图;
图8是本发明一实施例中的数据转换设备的流程图;
图9是本发明一实施例中的云台组件的结构示意图;
图10是本发明另一实施例中的无人机系统的结构示意图。
附图标记:
100:数据转换设备;101:第一处理器;102:第一接口;103:第二接口;200:相机;300:云台;301:第二处理器;400:无人机。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图,对本发明的数据转换与拍摄控制方法、系统、云台组件及无人机系统进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
参见图1,本发明实施例提供的一种影像系统,可包括云台300、搭载在云台300上的相机200以及转接云台300和相机200的数据转换设备100。所述影像系统还可包括遥控设备(图1未显示),所述遥控设备与云台300通信连接,以控制云台300的工作。
通过将相机200搭载在云台300上,对相机200进行增稳,使得相机200拍摄的影像更加流畅。通过设置数据转换设备100,对云台300发送至相机200或者相机200发送至云台300的数据进行转换后再发送至相机200或者云台300,从而解决云台厂商与相机厂商的不同而导致两者之间的协议不兼容的问题,用户可使用同一遥控设备既实现对云台300的控制,也实现对相机200的控制,操作方便快捷。
在一些实施例中,所述云台300为手持云台。
在一些实施例中,所述云台300可搭载在无人机400、机器人、移动小车等可移动设备上。参见图2,所述云台300搭载在无人机400上。
遥控设备可为专用遥控器或者安装有APP的智能终端(例如,手机、平板电脑等)。其中,遥控设备可与云台300和/或无人机400配合,遥控设备可遥控云台300 和/或无人机400,以控制云台300的姿态切换和/或控制无人机400的飞行。
本实施例中,数据转换设备100可转换的相机200的协议格式确定后,相机200的类型即被确定,相机200的类型需要支持所述相机200的协议格式。
实施例一和实施例二将分别对数据转换设备100、云台300的处理过程进行具体阐述。
实施例一
参见图3,本发明实施例提供的一种数据转换方法,应用于数据转换设备100。所述数据转换设备100分别与云台300、相机200相连,本实施例的云台300和相机200通过数据设备的转接实现通信连接。所述云台300由一遥控设备控制。
所述方法可包括以下步骤:
步骤S301:接收遥控设备发送的相机控制信号;
在一实施例中,遥控设备直接与云台300通信连接。步骤S301包括:接收云台300转发的来自遥控设备的相机控制信号。遥控设备发送相机控制信号至云台300,再由云台300转发来自遥控设备的相机控制信号至数据转换设备100。
在一实施例中,云台300搭载在无人机400、机器人等可移动设备上。以云台300搭载在无人机400上为例,遥控设备与无人机400通信连接。可选地,步骤S301包括:接收无人机400转发的来自遥控设备的相机控制信号。遥控设备发送相机控制信号至无人机400,由无人机400转发来自遥控设备的相机控制信号至数据转换设备100。可选地,步骤S301包括:接收无人机400、云台300依次传输的来自遥控设备的相机控制信号。遥控设备发送相机控制信号依次经无人机400、云台300的传输后,再发送至数据转换设备100。
所述相机控制信号可包括动作执行信号和参数设定信号中的至少一种。通过云台300和数据转换设备100、或者无人机400与数据转换设备100、或者无人机400、云台300和数据转换设备100来将遥控设备发送的动作执行信号转发至相机200,使得相机200可以执行与所述动作执行信号相对应的相机200功能,并通过云台300和数据转换设备100、或者无人机400与数据转换设备100、或者无人机400、云台300和数据转换设备100来将遥控发送的参数设定信号发送至相机200,从而改变相机200的拍摄参数,实现对相机200的全方位控制,用户只需操作遥控设备即可,方便快捷,无需额外增设相机200的遥控器或者通过手动方式来调节相机200,即可使得相机200在无人机400飞行期间仍然能够被调整为需要的拍摄参数或动作进而得到满足用户多种需求的图像。需要说明的是,所述相机控制信号还可选择其他用于控制相机200拍摄的信号类型。
所述动作执行信号可包括用于指示相机200执行拍照功能的拍照指示信号,或 者,用于指示相机200执行对焦功能的对焦指示信号,或者,其他类型的动作执行信号。用户只需控制遥控设备,即可指示相机200实现拍照或者对焦功能,方便快捷。
所述参数设定信号对应的相机参数(即拍摄参数)可包括快门控制参数、光圈参数、曝光参数、曝光模式、白平衡参数、白平衡模式和无穷远与自动对焦模式切换等中的至少一种。用户只需控制遥控设备,即可对相机200的各拍摄参数进行设定,方便快捷。
步骤S302:将所述相机控制信号的格式转换成所述相机200的协议格式;
步骤302通过数据转换设备100将相机控制信号的格式转换成所述相机200的协议格式,从而使得相机控制信号能够被所述相机200识别,从而实现对相机200的控制。
在一些实施例中,所述相机200的协议格式可选择为默认相机厂商相机200的协议格式,从而实现对该相机厂商生产的相机200的控制。在这种应用场景中,只要是同一厂商的相机200,均可直接替换。
在一些实施例中,所述相机200的协议格式可选择为标准相机200协议格式。这种应用场景适用于采用标准相机200协议格式的相机200,但在实际当中,每个相机厂商使用的协议格式可能千差万别,难以适用。
在一些实施例中,遥控设备上设有协议格式选择模块,所述协议格式选择模块可预先设定有多种相机厂商的相机200的协议格式或者标准相机200协议格式。用户可直接在所述协议格式选择模块选择当前相机200的协议格式,遥控设备会将用户选择的当前相机200的协议格式发送至数据转换设备100,以指示数据转换设备100当前可支持的相机200的协议格式。
步骤S302之前,还可包括:接收到遥控设备发送的相机200的协议格式,以指示数据转换设备100将其接收到的相机控制信号转换成所接收到的相机200协议格式。
步骤S303:发送转换格式后的相机控制信号至所述相机200。
数据转换设备100将相机控制信号转换成相机200的协议格式后,将转换格式后的相机控制信号发送至相机200。相机200能够识别出转换格式后的相机控制信号,从而执行相应的动作或者进行拍摄参数设定。
本发明实施例中,通过数据转换设备100转接云台300和相机200,由数据转换设备100将遥控设备发送的相机控制信号转换成相机200的协议格式,能够克服云台厂商与相机厂商的协议不兼容的问题,从而更为全面地相机200拍摄,获得更好的成像体验。并且,将控制相机200拍摄的相机控制信号通过云台300的转发,并通过数据转换设备100的处理,实现了由同一遥控设备控制云台300和相机200,用户操 作更加便捷。
参见图4,所述方法还可包括:
步骤S401:接收所述相机200发送的数据信息;
本实施例中,所述数据信息包括相机参数(即相机200的拍摄参数)和相机200拍摄的图像信息等中的至少一种。其中,所述相机参数可包括快门控制参数、光圈参数、曝光参数、曝光模式、白平衡参数、白平衡模式和无穷远与自动对焦模式切换等参数。所述图像信息是指相机200拍摄图像的张数、图像的大小等,而不包括图像的内容。这是由于图像的内容较大,通过数据转换设备100转发的方式通信速度可能较为缓慢,无法满足实时传输的要求。可选地,相机200与云台300或者挂载云台300的无人机400之间通过图像传输线(例如HDMI线,High Definition Multimedia Interface,高清晰多媒体接口线)连接,相机200拍摄的图像(即图像的内容)是通过该图像传输线传输至云台300或者挂载云台300的无人机400上的,从而保证图像的实时传输。
步骤S401之前,还包括:发送读取指令至所述相机200,以触发所述相机200针对所述读取指令返回数据信息,所述读取指令包括待读取的数据信息的类型,从而及时获得相机参数或相机200拍摄的图像信息等。
在一实施例中,所述发送读取指令至所述相机200之前还包括:接收到遥控设备发送的相机数据读取信号,其中,所述相机数据读取信号用以指示所述相机200返回对应的数据信息。数据转换设备100发送读取指令至所述相机200是在其接收到遥控设备发送的相机数据读取信号后执行的,从而能够根据用户的需求来读取相机参数或相机200拍摄的图像信息等,控制较为灵活。
在一实施例中,所述发送读取指令至所述相机200,包括:根据预设的时间规则,发送读取指令至所述相机200。可选地,所述预设时间规则为非周期性的,从而提高数据转换设备100处理数据的及时性。
步骤S402:将所述数据信息的格式转换成云台300或挂载云台的无人机400的协议格式;
在一实施例中,遥控设备直接与云台300通信连接,例如,所述云台300为手持云台300。步骤S402包括:将所述数据信息的格式转换成云台300的协议格式。通过数据转换设备100将数据信息的格式转换成所述云台300的协议格式,从而使得相机200返回的数据信息能够被云台300识别,并发送至遥控设备,使得用户及时获得相机参数或者相机200拍摄的图像信息等,进而指导用户进一步控制相机200。
在一实施例中,云台300搭载在无人机400、机器人等可移动设备上。以云台300搭载在无人机400上为例,遥控设备与无人机400通信连接。步骤S402包括:将所述数据信息的格式转换成无人机400的协议格式。通过数据转换设备100将数据信 息的格式转换成所述无人机400的协议格式,从而使得相机200返回的数据信息能够被无人机400识别,并发送至遥控设备,使得用户及时获得相机参数或者相机200拍摄的图像信息等,进而指导用户进一步控制相机200。
可选地,云台300的协议格式和无人机400的协议格式相同。
步骤S403:发送转换格式后的数据信息至云台300或无人机400。
在一些实施例中,所述云台300为手持云台300,数据转换设备100直接将转换格式后的数据信息发送至云台300。
在一些实施例中,所述云台300搭载在无人机400上。可选地,数据转换设备100与无人机400通信连接,数据转换设备100直接将转换格式后的数据信息发送至无人机400。可选地,数据转换设备100经云台300与无人机400通信连接。所述发送转换格式后的数据信息至无人机400,包括:经所述云台300转发转换格式后的数据信息至无人机400。
在一些例子中,所述方法还可包括:接收云台300发送的定位信息,将最近一次接收到的定位信息发送至所述相机200。对于数据转换设备100接收到的云台300发送的定位信息,可以是云台300主动将其实时定位信息发送至数据转换设备100,也可以是遥控设备指示云台300发送其定位信息至数据转换设备100。可选地,遥控设备上设有定位参数设定按钮,用户按下该定位参数设定按钮,遥控设备会产生定位参数设定信号至云台300。云台300在接收到遥控设备发送的定位参数设定信号后,发送其定位信息至数据转换设备100。
在一些例子中,所述方法还可包括:接收无人机400发送的定位信息,将最近一次接收到的定位信息发送至所述相机200。对于数据转换设备100接收到的无人机400发送的定位信息,可以是云台300主动获无人机400的定位信息后,转发无人机400的定位信息至数据转换设备100,也可以是遥控设备指示无人机400发送其定位信息至云台300,由云台300转发无人机400的定位信息至数据转换设备100,还可以是无人机400主动将其实时定位信息发送至数据转换设备100。可选地,遥控设备上设有定位参数设定按钮,用户按下该定位参数设定按钮,遥控设备会产生定位参数设定信号至无人机400。无人机400在接收到遥控设备发送的定位参数设定信号后,发送其定位信息至云台300,由云台300转发无人机400的定位信息至数据转换设备100,或者,无人机400直接将其定位信息发送至数据转换设备100,无需云台300的转发。
本实施例中,所述将最近一次接收到的定位信息发送至所述相机200,包括:保存最近一次接收到的定位信息至所述相机200的图像文件格式(EXIF),使得相机200拍摄的图像中能够显示实时的定位信息。
其中,所述定位信息可由云台300或者无人机400采用GPS或者其他导航的方式获得,也可由用户设定。
所述定位信息可包括云台300或相机200的实时位置,还可包括当前日期等。
在某些实施例中,所述方法还可包括:满足触发条件,则发送用户提示至遥控设备。其中,所述用户提示可包括禁止拍照提示、禁止对焦提示或者对焦使能提示等,防止用户的误操作或者提示用户当前可操作的相机200功能。
在一些例子中,所述用户提示为禁止拍照提示。所述触发条件为:检测到相机200可存储图像的数量小于或等于预设数量。可选地,所述预设数量为0,当数据转换设备100检测到相机200可存储图像的数量等于0时,发送禁止拍照提示至用户,防止用户误操作相机200的拍照功能。所述遥控设备上可设有拍照功能按钮。在相机200可执行拍照功能时,所述拍照功能按钮为可拍照的状态。遥控设备接收到禁止拍照提示后,将所述拍照功能按钮设置成禁止拍照的状态,以防止用户误操作拍照功能按钮。可选地,所述用户提示为拍照使能提示。当数据转换设备100检测到相机200的可存储图像的数量大于0时,发送拍照使能提示至用户。遥控设备接收到拍照使能提示后,将所述拍照功能按钮恢复至可拍照的状态。
在一些例子中,所述用户提示为禁止拍照提示。所述触发条件为:检测到相机200执行对焦功能。相机200在执行对焦功能时,若接收到指示相机200执行拍照功能的动作执行信号,可能导致相机200的卡顿。可选地,所述遥控设备上可设有拍照功能按钮。当相机200可执行拍照功能时,所述拍照功能按钮为可拍照的状态。数据转换设备100在检测到相机200执行对焦功能后,发送禁止拍照提示至遥控设备。遥控设备接收到禁止拍照提示后,将所述拍照功能按钮设置成禁止拍照的状态,以防止用户误操作拍照功能按钮。可选地,所述用户提示为拍照使能提示。数据转换设备100接收到相机200发送的对焦结束信号后,发送拍照使能提示至用户。遥控设备接收到拍照使能提示后,将所述拍照功能按钮恢复至可拍照的状态。
在一些例子中,所述用户提示为禁止对焦提示。所述触发条件为:检测到相机200执行拍照功能。相机200在执行拍照功能时,若接收到指示相机200执行对焦功能的动作执行信号,可能导致相机200的卡顿。可选地,所述遥控设备上可设有对焦功能按钮。在遥控设备在接收到禁止对焦提示后,将所述对焦功能按钮设置成禁止对焦的状态,以防止用户误操作对焦功能按钮。
在一些例子中,所述用户提示为对焦使能提示。所述触发条件为:所述发送禁止对焦提示至所述遥控设备之后,接收到相机200发送的拍照结束信号。数据转换设备100接收到相机200发送的拍照结束信号后,发送对焦使能提示至用户。遥控设备接收到对焦使能提示后,将所述对焦功能按钮恢复至可对焦的状态。
在某些实施例中,所述方法还可包括:检测到云台300与数据转换设备100为断开状态,则控制数据转换设备100的状态指示灯为第一状态,从而引导用户完成对云台300与数据转换设备100之间的通信链路的连接,这种引导方式比较直观且效率 高。本发明实施例中,云台300与数据转换设备100为断开状态是指云台300与数据转换设备100的通信链路中断。可选地,数据转换设备100对该数据转换设备100上用于连接云台300的第一接口102实时检测,并读取第一接口102连接设备的状态以及设备信息,从而对云台300与数据转换设备100之间的通信链路的通断情况进行检测,帮助用户快速搭建系统。
在某些实施例中,所述方法还可包括:检测到相机200与数据转换设备100为断开状态,则控制数据转换设备100的状态指示灯为第二状态,从而引导用户完成对相机200与数据转换设备100之间的通信链路的连接,这种引导方式比较直观且效率高。本发明实施例中,相机200与数据转换设备100为断开状态是指相机200与数据转换设备100的通信链路中断。可选地,数据转换设备100对该数据转换设备100上用于连接云台300的第二接口103实时检测,并读取第二接口103连接设备的状态以及设备信息,从而对相机200与数据转换设备100之间的通信链路的通断情况进行检测,帮助用户快速搭建系统。
在某些实施例中,所述云台300搭载在无人机400上。所述方法还可包括:检测到云台300与无人机400为断开状态,则控制数据转换设备100的状态指示灯为第三状态,从而引导用户完成对云台300与无人机400之间的通信链路的连接,这种引导方式比较直观且效率高。本发明实施例中,云台300与无人机400为断开状态是指云台300与无人机400的通信链路中断。可选地,云台300在检测到其与无人机400之间的通信链路中断后,发送用于指示云台300与无人机400为断开状态的信号至数据转换设备100,数据转换设备100通过控制状态指示灯来引导用户完成对云台300和无人机400之间的通信链路的连接。需要说明的是,数据转换设备100能够检测到云台300与无人机400为断开状态,云台300与数据转换设备100之间的通信链路为连通状态。
需要说明的是,本发明的第一状态、第二状态、第三状态均不相同,从而引导云台300与数据转换设备100、相机200与数据转换设备100、无人机400与云台300的安装,解决快速检测各通信链路的问题。例如,可通过状态指示灯的发光颜色来区分第一状态、第二状态、第三状态,还可通过状态指示灯的发光时长来区分第一状态、第二状态、第三状态,也可以通过状态指示灯的闪烁状态来区分第一状态、第二状态、第三状态,或者,通过状态指示灯的发光颜色、发光时长和闪烁状态中的至少两者的结合来区分第一状态、第二状态、第三状态。当然,也可以通过其他方式来区分第一状态、第二状态、第三状态。
实施例二
参见图5,本发明实施例提供的一种拍摄控制方法,应用于云台300。所述云台300与一数据转换设备100通信连接,所述数据转换设备100还与一相机200通信 连接,本实施例的云台300和相机200通过数据设备的转接实现通信连接。所述云台300由一遥控设备控制。
所述方法可包括以下步骤:
步骤S501:接收遥控设备发送的相机控制信号;
在一实施例中,遥控设备直接与云台300通信连接,云台300是直接接收遥控设备发送的相机控制信号的。
在一实施例中,云台300搭载在无人机400、机器人等可移动设备上。以云台300搭载在无人机400上为例,遥控设备与无人机400通信连接。可选地,步骤S501包括:接收无人机400转发的来自遥控设备的相机控制信号。遥控设备发送相机控制信号至无人机400,由无人机400转发来自遥控设备的相机控制信号至云台300。
所述相机控制信号可包括动作执行信号和参数设定信号中的至少一种。通过云台300和数据转换设备100、或者无人机400、云台300和数据转换设备100来将遥控设备发送的动作执行信号转发至相机200,使得相机200可以执行与所述动作执行信号相对应的相机200功能,并通过云台300和数据转换设备100、或者无人机400、云台300和数据转换设备100来将遥控发送的参数设定信号发送至相机200,从而改变相机200的拍摄参数,实现对相机200的全方位控制,用户只需操作遥控设备即可,方便快捷,无需额外增设相机200的遥控器或者通过手动方式来调节相机200,即可使得相机200在无人机400飞行期间仍然能够被调整为需要的拍摄参数或动作进而得到满足用户多种需求的图像。需要说明的是,所述相机控制信号还可选择其他用于控制相机200拍摄的信号类型。
所述动作执行信号可包括用于指示相机200执行拍照功能的拍照指示信号,或者,用于指示相机200执行对焦功能的对焦指示信号,或者,其他类型的动作执行信号。用户只需控制遥控设备,即可指示相机200实现拍照或者对焦功能,方便快捷。
所述参数设定信号对应的相机参数可包括快门控制参数、光圈参数、曝光参数、曝光模式、白平衡参数、白平衡模式和无穷远与自动对焦模式切换等中的至少一种。用户只需控制遥控设备,即可对相机200的各自拍摄参数进行设定,方便快捷。
步骤S502:经数据转换设备100转发所述相机控制信号至相机200,以触发所述相机200执行与所述相机控制信号相对应的相机200功能。
其中,数据转换设备100对相机控制信号的处理过程可参见上述实施例五的数据转换方法,在此不再赘述。
本发明实施例中,通过数据转换设备100转接云台300和相机200,由数据转换设备100将遥控设备发送的相机控制信号转换成相机200的协议格式,能够克服云台厂商与相机厂商的协议不兼容的问题,从而更为全面地相机200拍摄,获得更好的 成像体验。并且,将控制相机200拍摄的相机控制信号通过云台300的转发,并通过数据转换设备100的处理,实现了由同一遥控设备控制云台300和相机200,用户操作更加便捷。
在一些例子中,所述方法还可包括:发送云台300的定位信息至数据转换设备100。可以是云台300主动将实时的定位信息发送至数据转换设备100,也可以是遥控设备指示云台300发送其定位信息至数据转换设备100。可选地,遥控设备上设有定位参数设定按钮,用户按下该定位参数设定按钮,遥控设备会产生定位参数设定信号至云台300,云台300在接收到遥控设备发送的定位参数设定信号后,发送其定位信息至相机200。
在一些例子中,云台300搭载在无人机400上。所述方法还可包括:发送无人机400的定位信息至数据转换设备100。可以是云台300主动获无人机400的定位信息后,转发无人机400的定位信息至数据转换设备100,也可以是遥控设备指示无人机400发送其定位信息至云台300,由云台300转发无人机400的定位信息至数据转换设备100。可选地,遥控设备上设有定位参数设定按钮,用户按下该定位参数设定按钮,遥控设备会产生定位参数设定信号至无人机400,无人机400在接收到遥控设备发送的定位参数设定信号后,发送其定位信息至云台300,由云台300转发无人机400的定位信息至相机200。
其中,所述定位信息可由云台300或者无人机400采用GPS或者其他导航的方式获得,也可由用户设定。
所述定位信息可包括云台300或相机200的实时位置,还可包括当前日期等。
所述方法还可包括:接收遥控设备发送的相机数据读取信号,并发送所述相机数据读取信号至数据转换设备100,以触发数据转换设备100从相机200获取对应的数据信息,并能够根据用户的需求来读取相机参数或相机200拍摄的图像信息等,控制较为灵活。其中所述相机数据读取信号用以指示所述相机200返回对应的数据信息。
实施例二的拍摄控制方法可参照实施例一的数据转换方法进一步解释。
实施例三
参见图6,本发明实施例提供一种数据转换系统。所述数据转换系统分别与云台、相机相连,所述云台由一遥控设备控制。
参见图6,所述数据转换系统可包括第一处理器101。所述第一处理器101可与云台300、相机200分别通信连接。第一处理器101还可与无人机400通信连接。
本实施例中,所述第一处理器101包括一个或多个,单独地或共同地工作,用于执行上述实施例一所述的数据转换方法的步骤。
实施例四
参见图7,本发明实施例提供一种拍摄控制系统,可应用于云台300中。参见图7,所述拍摄控制系统可包括第二处理器301。
本实施例中,所述第二处理器301包括一个或多个,单独地或共同地工作,用于执行上述实施例二所述的拍摄控制方法的步骤。
实施例五将对所述数据转换设备100的结构具体阐述。
实施例五
参见图6,本发明实施例提供的一种数据转换设备100,所述数据转换设备100可包括第一处理器101、第一接口102和第二接口103。其中,所述第一处理器101与所述第一处理器101分别相连。
参见图9,所述第一接口102可与云台300连接,所述第二接口103可与相机200连接。在一些例子中,所述第一接口102、第二接口103可以是硬件接口,可以分别通过物理连接的方式与云台300或相机200连接。在其他一些例子中,第一接口102和第二接口103可以是应用程序接口。
以第一接口102、第二接口103为硬件接口为例进一步说明本发明的数据转换设备100的结构。
第一接口102与云台300的一个外置接口的接口类型相匹配,例如,当云台300的接口是总线接口(例如CAN总线接口)时,第一接口102则为相匹配的总线接口。对于第一接口102的接口类型在此不作枚举。
第二接口103与相机200的一个外置接口的接口类型相匹配。例如,当相机200的一个外置接口是Type C接口时,第二接口103则为与Type C接口相匹配的接口。
可选地,第二接口103与相机200之间的信号线具有两个接口,其中一个与第二接口103匹配,另一个与相机200的一个外置接口相匹配。例如,第二接口103为USB接口,相机200的一个外置接口为Type C接口,则连接相机200与第二接口103的信号线的两个接口可分别与USB接口和Type C接口匹配,从而连通相机200与第二接口103之间的通信链路。对于第二接口103的接口类型在此不作枚举。
参见图8,所述第一处理器101用于在接收到遥控设备发送的相机控制信号时,将所述相机控制信号的格式转换成所述相机200的协议格式,然后经所述第二接口103发送至所述相机200。经过第一处理器101的处理后,遥控设备发送的相机控制信号即可被相机200所识别,从而控制相机200执行于所述相机控制信号相对应的相机200功能,满足用户的拍摄需求。
需要说明的是,本发明中,遥控设备可控制云台300和/或用于搭载云台300的可移动设备(例如无人机400、机器人等)的工作。可选地,所述遥控设备为专用遥控器或者安装有APP的智能终端(例如手机、平板电脑等)。
所述相机控制信号可包括动作执行信号和参数设定信号中的至少一种。通过云台300和数据转换设备100、或者无人机400和数据转换设备100、或者无人机400、云台300和数据转换设备100来将遥控设备发送的动作执行信号转发至相机200,使得相机200可以执行与所述动作执行信号相对应的相机200功能,并通过云台300和数据转换设备100、或者无人机400和数据转换设备100、或者无人机400、云台300和数据转换设备100来将遥控发送的参数设定信号发送至相机200,从而改变相机200的拍摄参数,实现对相机200的全方位控制,用户只需操作遥控设备即可,方便快捷,无需额外增设相机200的遥控器或者通过手动方式来调节相机200,即可使得相机200在无人机400飞行期间仍然能够被调整为需要的拍摄参数或动作进而得到满足用户多种需求的图像。需要说明的是,所述相机控制信号还可选择其他用于控制相机200拍摄的信号类型。
所述动作执行信号可包括用于指示相机200执行拍照功能的拍照指示信号,或者,用于指示相机200执行对焦功能的对焦指示信号,或者,其他类型的动作执行信号。用户只需控制遥控设备,即可指示相机200实现拍照或者对焦功能,方便快捷。
所述参数设定信号对应的相机参数可包括快门控制参数、光圈参数、曝光参数、曝光模式、白平衡参数、白平衡模式和无穷远与自动对焦模式切换等中的至少一种。用户只需控制遥控设备,即可对相机200的各自拍摄参数进行设定,方便快捷。
又参见图8,所述第一处理器101还用于在接收到所述相机200发送的数据信息时,将所述数据信息的格式转换成所述云台300或无人机400的协议格式,然后经所述第一接口102发送所述数据信息至云台300或无人机400。经数据转换设备100转换后的数据信息回传到遥控设备,即可显示在遥控设备上供用户查看,从而更好地掌握相机200的当前拍摄参数或拍摄的图像信息等。
所述数据信息包括相机参数(即相机200的拍摄参数)和相机200拍摄的图像信息等中的至少一种。其中,所述相机参数可包括快门控制参数、光圈参数、曝光参数、曝光模式、白平衡参数、白平衡模式和无穷远与自动对焦模式切换等参数。所述图像信息是指相机200拍摄图像的张数、图像的大小等,而不包括图像的内容。这是由于图像的内容较大,通过数据转换设备100转发的方式通信速度可能较为缓慢,无法满足实时传输的要求。
所述数据转换设备100还可包括状态指示灯,从而引导用户安装云台300与数据转换设备100、相机200与数据转换设备100、云台300无人机400之间。
其中,所述状态指示灯与所述第一处理器101电连接,所述第一处理器101能够根据云台300与第一接口102的连接状态、相机200与第二接口103的连接状态和云台300与无人机400的连接状态中的至少一个,控制所述状态指示灯的工作。
在一实施例中,所述第一处理器101检测到云台300与第一接口102为断开状 态(即云台300与第一接口102之间的通信链路断开),则控制所述状态指示灯为第一状态。所述第一处理器101检测到相机200与第二接口103为断开状态(即相机200与第二接口103之间的通信链路断开),则控制所述状态指示灯为第二状态。所述第一处理器101检测到云台300与无人机400为断开状态(即云台300与无人机400之间的通信链路断开),则控制所述状态指示灯为第三状态。本实施例中,第一状态、第二状态、第三状态均不相同,从而引导云台300与数据转换设备100、相机200与数据转换设备100、无人机400与云台300的安装,实现各通信链路的快速检测。
在一些实施例中,所述状态指示灯为一个。本实施例中,在云台300与第一接口102为连通状态时,第一处理器101才能够检测到云台300与无人机400之间的通信链路的连接状态。可通过状态指示灯的发光颜色来区分第一状态、第二状态、第三状态,还可通过状态指示灯的发光时长来区分第一状态、第二状态、第三状态,也可以通过状态指示灯的闪烁状态来区分第一状态、第二状态、第三状态,或者,通过状态指示灯的发光颜色、发光时长和闪烁状态中的至少两者的结合来区分第一状态、第二状态、第三状态。当然,也可以通过其他方式来区分第一状态、第二状态、第三状态。
在一些实施例中,所述状态指示灯为三个,分别用于指示云台300与第一接口102的连接状态、相机200与第二接口103的连接状态和云台300与无人机400的连接状态。可选地,当云台300与第一接口102为断开状态时,对应状态指示灯则不工作。当云台300与第一接口102为连通状态时,对应的状态指示灯则点亮。可选地,当相机200与第二接口103为断开状态时,对应状态指示灯则不工作。当相机200与第二接口103为连通状态时,对应的状态指示灯则点亮。可选地,当云台300与无人机400为断开状态时,对应状态指示灯则不工作。当云台300与无人机400为连通状态时,对应的状态指示灯则点亮。
在一些实施例中,参见图10,所述云台300搭载在无人机400上,所述第一处理器101接收到所述无人机400、云台300依次传输后的来自遥控设备的相机控制信号。通过数据转换设备100转接云台300和相机200,由数据转换设备100将遥控设备发送的相机控制信号转换成相机200的协议格式,能够克服云台厂商与相机厂商的协议不兼容的问题,从而更为全面地相机200拍摄,获得更好的成像体验。并且,将控制相机200拍摄的相机控制信号通过无人机400和云台300的转发,并通过数据转换设备100的处理,实现了由同一遥控设备控制无人机400、云台300和相机200,用户操作更加便捷。可选地,无人机400的协议格式与云台300的协议格式相同。可选地,所述云台300与所述无人机400、所述云台300与所述第一接口102均基于总线通信。
在一些实施例中,所述第一处理器101接收到所述云台300转发的来自遥控设备的相机控制信号。本实施例中,遥控设备通过云台300的转接来实现与数据转换设 备100之间的数据传输。若云台300搭载在无人机400上,则遥控设备还可与无人机400通信连接,从而实现对无人机400的控制。通过同一遥控设备,即能够实现对无人机400和云台300的控制,也能够实现对相机200的控制,操作更加便捷,且相机200的控制更加全面,以获得更好的拍摄体验。
在一些实施例中,所述第一处理器101接收到所述无人机400转发的来自遥控设备的相机控制信号。本实施例中,第一处理器101与无人机400通信连接,遥控设备是通过无人机400的来实现与数据转换设备100之间的数据传输的。通过同一遥控设备,即能够实现对无人机400控制,也能够实现对相机200的控制,操作更加便捷,且相机200的控制更加全面,以获得更好的拍摄体验。
在一些其他例子中,本领域技术人员可以采用专用芯片的方式来实现数据转换设备100的数据转换功能。这种专用芯片可以是ASIC(Application Specific Integrated Circuit,专用集成电路)芯片,也可以是FPGA(FPGA(Field-Programmable Gate Array,现场可编程门阵列)等可编程器件。数据转换设备100所具有的功能可以通过一个芯片实现,也可以通过不同的芯片分别完成其中一部分功能。芯片可以通过软件程序实现相应功能,也可以通过电路等硬件形式实现相应功能。
实施例六至实施例八为实施例五的各种应用场景。
实施例六
参见图9,本发明实施例提供一种云台组件,所述云台组件可包括云台300以及上述实施例五的数据转换设备100。其中,所述数据转换设备100的第一接口102连接所述云台300,所述数据转换设备100的第二接口103用于连接相机200,通过数据转换设备100的转接,从而可克服云台厂商和相机厂商的协议不兼容的问题,能够更加全面地控制相机200拍摄,获得更好的拍摄体验,并且用户操作更加便捷。
所述数据转换设备100可固定于所述云台300上。具体而言,数据转换设备100可通过卡接、粘接或者螺纹等方式固定在云台300上,本发明对数据转换设备100固定至云台300的固定方式不作具体限定。
所述云台300可与一遥控设备配合,用户可通过该遥控设备来控制云台300和相机200,方便快捷。可选地,所述云台300为手持云台300。
实施例七
参见图1,本发明实施例提供一种影像系统,所述影像系统可包括云台300、搭载在云台300上的相机200以及上述实施例五的数据转换设备100。其中,所述数据转换设备100的第一接口102连接所述云台300,所述数据转换设备100的第二接口103连接所述相机200。通过数据转换设备100的转接,从而可克服云台厂商和相机厂商的协议不兼容的问题,能够更加全面地控制相机200拍摄,获得更好的拍摄体 验,并且用户操作更加便捷。
数据转换设备100可固定于云台300上,也可固定于相机200上,还可以固定于搭载云台300的可移动设备(例如无人机400、机器人等)上。具体而言,数据转换设备100可通过卡接、粘接或者螺纹等方式固定在云台300、相机200或者可移动设备上,本发明对数据转换设备100固定至云台300、相机200或者可移动设备的固定方式不作具体限定。
所述云台300可与一遥控设备配合,用户可通过该遥控设备来控制云台300和相机200,方便快捷。可选地,所述云台300为手持云台300。
实施例八
结合图2和图10,本发明实施例提供一种无人机系统,所述无人机系统可包括遥控设备、无人机400、搭载在所述无人机400上的云台300、搭载在所述云台300上的相机200以及上述实施例五的数据转换设备100。
其中,所述遥控设备与所述无人机400通信连接,所述无人机400与所述云台300通信连接。用户可通过该遥控设备来控制无人机400和/或云台300以及相机200,方便快捷。
在一些实施例中,所述无人机400、所述数据转换设备100与所述云台300均基于总线通信连接。
所述总线的类型可根据需要选择,例如,CAN总线。
所述数据转换设备100的第一接口102连接所述云台300,所述数据转换设备100的第二接口103连接所述相机200。通过数据转换设备100的转接,从而可克服云台厂商和相机厂商的协议不兼容的问题,能够更加全面地控制相机200拍摄,获得更好的拍摄体验,并且用户操作更加便捷。
数据转换设备100可固定于云台300上,也可固定于相机200上,还可以固定于搭载云台300的无人机400上。具体而言,数据转换设备100可通过卡接、粘接或者螺纹等方式固定在云台300、相机200或者无人机400上,本发明对数据转换设备100固定至云台300、相机200或者无人机400的固定方式不作具体限定。
实施例九
本发明的实施例提供了一种计算机存储介质,该计算机存储介质中存储有程序指令,该计算机存储介质中存储有程序指令,所述程序执行上述实施例一的数据转换方法或实施例二的拍摄控制方法。
需要说明的是,实施例五至实施例八可参照实施例一和实施例二进一步解释。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法 实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
“具体示例”、或“一些示例”等的描述意指结合所述实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施例的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施例中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施例中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (97)

  1. 一种数据转换方法,应用于数据转换设备,所述数据转换设备分别与云台、相机相连,所述云台由一遥控设备控制,其特征在于,所述方法包括:
    接收遥控设备发送的相机控制信号;
    将所述相机控制信号的格式转换成所述相机的协议格式;
    发送转换格式后的相机控制信号至所述相机。
  2. 根据权利要求1所述的方法,其特征在于,所述相机控制信号包括动作执行信号和参数设定信号中的至少一种。
  3. 根据权利要求2所述的方法,其特征在于,所述动作执行信号包括用于指示相机执行拍照功能的拍照指示信号和用于指示相机执行对焦功能的对焦指示信号中的一个。
  4. 根据权利要求2所述的方法,其特征在于,所述参数设定信号对应的相机参数包括快门控制参数、光圈参数、曝光参数、曝光模式、白平衡参数、白平衡模式和无穷远与自动对焦模式切换中的至少一种。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收所述相机发送的数据信息;
    将所述数据信息的格式转换成云台或挂载云台的无人机的协议格式;
    发送转换格式后的数据信息至云台或无人机。
  6. 根据权利要求5所述的方法,其特征在于,所述发送转换格式后的数据信息至无人机,包括:
    经所述云台转发转换格式后的数据信息至无人机。
  7. 根据权利要求5所述的方法,其特征在于,所述数据信息包括相机参数和相机拍摄的图像信息中的至少一种。
  8. 根据权利要求5所述的方法,其特征在于,所述接收所述相机发送的数据信息之前,还包括:
    发送读取指令至所述相机,以触发所述相机针对所述读取指令返回数据信息,所述读取指令包括待读取的数据信息的类型。
  9. 根据权利要求8所述的方法,其特征在于,所述发送读取指令至所述相机之前,还包括:
    接收到遥控设备发送的相机数据读取信号,其中所述相机数据读取信号用以指示所述相机返回对应的数据信息。
  10. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    检测到云台与数据转换设备为断开状态,则控制数据转换设备的状态指示灯为第一状态。
  11. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    检测到相机与数据转换设备为断开状态,则控制数据转换设备的状态指示灯为第二状态。
  12. 根据权利要求1所述的方法,其特征在于,所述云台搭载于无人机上,所述遥控设备用于控制所述无人机和/或所述云台。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    检测到云台与无人机为断开状态,则控制数据转换设备的状态指示灯为第三状态。
  14. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    接收云台或无人机发送的定位信息;
    将最近一次接收到的定位信息发送至所述相机。
  15. 根据权利要求12所述的方法,其特征在于,所述接收遥控设备发送的相机控制信号,包括:
    接收无人机、云台依次传输的来自遥控设备的相机控制信号;或者,
    接收云台或无人机转发的来自遥控设备的相机控制信号。
  16. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    满足触发条件,则发送用户提示至遥控设备。
  17. 根据权利要求16所述的方法,其特征在于,所述用户提示为禁止拍照提示,
    所述触发条件为检测到相机可存储图像的数量小于或等于预设数量和检测到相机执行对焦功能中的至少一种。
  18. 根据权利要求16所述的方法,其特征在于,所述用户提示为禁止对焦提示,所述触发条件为:检测到相机执行拍照功能。
  19. 根据权利要求16所述的方法,其特征在于,所述用户提示为对焦使能提示,所述触发条件为:
    所述发送禁止对焦提示至所述遥控设备之后,接收到相机发送的拍照结束信号。
  20. 一种数据转换系统,所述数据转换系统分别与云台、相机相连,所述云台由一遥控设备控制,其特征在于,所述系统包括一个或多个第一处理器,单独地或共同地工作,所述第一处理器被配置为:
    接收遥控设备发送的相机控制信号;
    将所述相机控制信号的格式转换成所述相机的协议格式;
    发送转换格式后的相机控制信号至所述相机。
  21. 根据权利要求20所述的系统,其特征在于,所述相机控制信号包括动作执行信号和参数设定信号中的至少一种。
  22. 根据权利要求21所述的系统,其特征在于,所述动作执行信号包括用于指示相机执行拍照功能的拍照指示信号和用于指示相机执行对焦功能的对焦指示信号中的一个。
  23. 根据权利要求21所述的系统,其特征在于,所述参数设定信号对应的相机参数包括快门控制参数、光圈参数、曝光参数、曝光模式、白平衡参数、白平衡模式和 无穷远与自动对焦模式切换中的至少一种。
  24. 根据权利要求20所述的系统,其特征在于,所述系统还包括:
    接收所述相机发送的数据信息;
    将所述数据信息的格式转换成云台或挂载云台的无人机的协议格式;
    发送转换格式后的数据信息至云台或无人机。
  25. 根据权利要求24所述的系统,其特征在于,所述发送转换格式后的数据信息至无人机,包括:
    经所述云台转发转换格式后的数据信息至无人机。
  26. 根据权利要求24所述的系统,其特征在于,所述数据信息包括相机参数和相机拍摄的图像信息中的至少一种。
  27. 根据权利要求24所述的系统,其特征在于,所述接收所述相机发送的数据信息之前,还包括:
    发送读取指令至所述相机,以触发所述相机针对所述读取指令返回数据信息,所述读取指令包括待读取的数据信息的类型。
  28. 根据权利要求27所述的系统,其特征在于,所述发送读取指令至所述相机之前,还包括:
    接收到遥控设备发送的相机数据读取信号,其中所述相机数据读取信号用以指示所述相机返回对应的数据信息。
  29. 根据权利要求20所述的系统,其特征在于,所述第一处理器还被配置为:
    检测到云台与数据转换设备为断开状态,则控制数据转换设备的状态指示灯为第一状态。
  30. 根据权利要求20所述的系统,其特征在于,所述第一处理器还被配置为:
    检测到相机与数据转换设备为断开状态,则控制数据转换设备的状态指示灯为第二状态。
  31. 根据权利要求20所述的系统,其特征在于,所述云台搭载在无人机上,所述遥控设备用于控制所述无人机和/或所述云台。
  32. 根据权利要求31所述的系统,其特征在于,所述第一处理器还被配置为:
    检测到云台与无人机为断开状态,则控制数据转换设备的状态指示灯为第三状态。
  33. 根据权利要求31所述的系统,其特征在于,所述第一处理器还被配置为:
    接收云台或无人机发送的定位信息;
    将最近一次接收到的定位信息发送至所述相机。
  34. 根据权利要求31所述的系统,其特征在于,所述接收遥控设备发送的相机控制信号,包括:
    接收无人机、云台依次传输的来自遥控设备的相机控制信号;或者,
    接收云台或无人机转发的来自遥控设备的相机控制信号。
  35. 根据权利要求20所述的系统,其特征在于,所述第一处理器还被配置为:
    满足触发条件,则发送用户提示至遥控设备。
  36. 根据权利要求35所述的系统,其特征在于,所述用户提示为禁止拍照提示,
    所述触发条件为检测到相机可存储图像的数量小于或等于预设数量和检测到相机执行对焦功能中的至少一种。
  37. 根据权利要求35所述的系统,其特征在于,所述用户提示为禁止对焦提示,所述触发条件为:检测到相机执行拍照功能。
  38. 根据权利要求35所述的系统,其特征在于,所述用户提示为对焦使能提示,所述触发条件为:
    所述发送禁止对焦提示至所述遥控设备之后,接收到相机发送的拍照结束信号。
  39. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被第一处理器执行时实现权利要求1至19任一项所述的数据转换方法的步骤。
  40. 一种拍摄控制方法,应用于云台,所述云台由一遥控设备控制,所述云台与一数据转换设备通信连接,所述数据转换设备还与一相机通信连接,其特征在于,所述方法包括:
    接收遥控设备发送的相机控制信号;
    经数据转换设备转发所述相机控制信号至相机,以触发所述相机执行与所述相机控制信号相对应的相机功能。
  41. 根据权利要求40所述的方法,其特征在于,所述相机控制信号包括动作执行信号和参数设定信号中的至少一种。
  42. 根据权利要求41所述的方法,其特征在于,所述动作执行信号为用于指示相机执行拍照功能的拍照指示信号和用于指示相机执行对焦功能的对焦指示信号中的一个。
  43. 根据权利要求41所述的方法,其特征在于,所述参数设定信号对应的相机参数包括快门控制参数、光圈参数、曝光参数、曝光模式、白平衡参数、白平衡模式和无穷远与自动对焦模式切换中的至少一种。
  44. 根据权利要求40所述的方法,其特征在于,所述云台搭载在无人机上,所述遥控设备用于控制所述无人机和/或所述云台。
  45. 根据权利要求44所述的方法,其特征在于,所述接收遥控设备发送的相机控制信号,包括:
    接收无人机转发的来自遥控设备的相机控制信号。
  46. 根据权利要求44所述的方法,其特征在于,所述方法还包括:
    发送云台或无人机的定位信息至数据转换设备。
  47. 根据权利要求40所述的方法,其特征在于,所述方法还包括:
    接收遥控设备发送的相机数据读取信号,所述相机数据读取信号用以指示所述相机返回对应的数据信息;
    发送所述相机数据读取信号至数据转换设备。
  48. 一种拍摄控制系统,应用于云台,所述云台由一遥控设备控制,所述云台与一数据转换设备通信连接,所述数据转换设备还与一相机通信连接,其特征在于,所述系统包括一个或多个第二处理器,单独地或共同地工作,所述第二处理器被配置为:
    接收遥控设备发送的相机控制信号;
    经数据转换设备转发所述相机控制信号至相机,以触发所述相机执行与所述相机控制信号相对应的相机功能。
  49. 根据权利要求48所述的系统,其特征在于,所述相机控制信号包括动作执行信号和参数设定信号中的至少一种。
  50. 根据权利要求49所述的系统,其特征在于,所述动作执行信号为用于指示相机执行拍照功能的拍照指示信号和用于指示相机执行对焦功能的对焦指示信号中的一个。
  51. 根据权利要求49所述的系统,其特征在于,所述参数设定信号对应的相机参数包括快门控制参数、光圈参数、曝光参数、曝光模式、白平衡参数、白平衡模式和无穷远与自动对焦模式切换中的至少一种。
  52. 根据权利要求48所述的系统,其特征在于,所述云台搭载在无人机上,所述遥控设备用于控制所述无人机和/或所述云台。
  53. 根据权利要求52所述的系统,其特征在于,所述接收遥控设备发送的相机控制信号,包括:
    接收无人机转发的来自遥控设备的相机控制信号。
  54. 根据权利要求52所述的系统,其特征在于,所述第二处理器还被配置为:
    发送云台或无人机的定位信息至数据转换设备。
  55. 根据权利要求48所述的系统,其特征在于,所述第二处理器还被配置为:
    接收遥控设备发送的相机数据读取信号,所述相机数据读取信号用以指示所述相机返回对应的数据信息;
    发送所述相机数据读取信号至数据转换设备。
  56. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被第二处理器执行时实现权利要求40至47任一项所述的拍摄控制方法的步骤。
  57. 一种数据转换设备,其特征在于,包括第一处理器以及与所述第一处理器分别相连的第一接口和第二接口;其中,
    所述第一接口用于物理连接云台,所述云台由一遥控设备控制;
    所述第二接口用于物理连接相机;
    所述第一处理器用于在接收到遥控设备发送的相机控制信号时,将所述相机控制信号的格式转换成所述相机的协议格式,然后经所述第二接口发送至所述相机。
  58. 根据权利要求57所述的数据转换设备,其特征在于,所述第一处理器还用于在接收到所述相机发送的数据信息时,将所述数据信息的格式转换成所述云台或无人机的协议格式,然后经所述第一接口发送所述数据信息至云台或无人机。
  59. 根据权利要求57所述的数据转换设备,其特征在于,所述第一接口为总线接口。
  60. 根据权利要求57所述的数据转换设备,其特征在于,所述第二接口为USB接口。
  61. 根据权利要求57所述的数据转换设备,其特征在于,还包括与所述第一处理器相连的状态指示灯;
    所述第一处理器能够根据云台与第一接口的连接状态、相机与第二接口的连接状态和云台与无人机的连接状态中的至少一个,控制所述状态指示灯的工作。
  62. 根据权利要求57所述的数据转换设备,其特征在于,所述相机控制信号包括动作执行信号和参数设定信号中的至少一种。
  63. 根据权利要求62所述的数据转换设备,其特征在于,所述动作执行信号为用于指示相机执行拍照功能的拍照指示信号和用于指示相机执行对焦功能的对焦指示信号中的一个。
  64. 根据权利要求62所述的数据转换设备,其特征在于,所述参数设定信号对应的相机参数包括快门控制参数、光圈参数、曝光参数、曝光模式、白平衡参数、白平衡模式和无穷远与自动对焦模式切换中的至少一种。
  65. 根据权利要求58所述的数据转换设备,其特征在于,所述数据信息包括相机参数和相机拍摄的图像信息中的至少一种。
  66. 根据权利要求57所述的数据转换设备,其特征在于,所述云台搭载在无人机上,所述遥控设备用于控制所述无人机和/或云台;
    所述第一处理器接收到经所述无人机、云台依次传输后的来自遥控设备的相机控制信号;
    或者,
    所述第一处理器接收到所述云台或者所述无人机转发的来自遥控设备的相机控制信号。
  67. 一种云台组件,包括云台,其特征在于,还包括数据转换设备,其中所述数据转换设备固定于所述云台上,且所述数据转换设备包括第一处理器以及与所述第一处理器分别相连的第一接口和第二接口;其中,
    所述第一接口用于物理连接云台,所述云台由一遥控设备控制;
    所述第二接口用于物理连接相机;
    所述第一处理器用于在接收到遥控设备发送的相机控制信号时,将所述相机控制信号的格式转换成所述相机的协议格式,然后经所述第二接口发送至所述相机。
  68. 根据权利要求67所述的云台组件,其特征在于,所述第一处理器还用于在接收到所述相机发送的数据信息时,将所述数据信息的格式转换成所述云台或无人机的协议格式,然后经所述第一接口发送所述数据信息至云台或无人机。
  69. 根据权利要求67所述的云台组件,其特征在于,所述第一接口为总线接口。
  70. 根据权利要求67所述的云台组件,其特征在于,所述第二接口为USB接口。
  71. 根据权利要求67所述的云台组件,其特征在于,还包括与所述第一处理器相连的状态指示灯;
    所述第一处理器能够根据云台与第一接口的连接状态、相机与第二接口的连接状态和云台与无人机的连接状态中的至少一个,控制所述状态指示灯的工作。
  72. 根据权利要求67所述的云台组件,其特征在于,所述相机控制信号包括动作执行信号和参数设定信号中的至少一种。
  73. 根据权利要求72所述的云台组件,其特征在于,所述动作执行信号为用于指示相机执行拍照功能的拍照指示信号和用于指示相机执行对焦功能的对焦指示信号中的一个。
  74. 根据权利要求72所述的云台组件,其特征在于,所述参数设定信号对应的相机参数包括快门控制参数、光圈参数、曝光参数、曝光模式、白平衡参数、白平衡模式和无穷远与自动对焦模式切换中的至少一种。
  75. 根据权利要求68所述的云台组件,其特征在于,所述数据信息包括相机参数和相机拍摄的图像信息中的至少一种。
  76. 根据权利要求67所述的云台组件,其特征在于,所述云台搭载在无人机上,所述遥控设备用于控制所述无人机和/或所述云台;
    所述第一处理器接收到经所述无人机、云台依次传输后的来自遥控设备的相机控制信号;
    或者,
    所述第一处理器接收到所述云台或者所述无人机转发的来自遥控设备的相机控制信号。
  77. 一种影像系统,包括云台和搭载在云台上的相机,其特征在于,还包括数据转换设备,其中所述数据转换设备包括第一处理器以及与所述第一处理器分别相连的第一接口和第二接口;其中,
    所述第一接口用于物理连接云台,所述云台由一遥控设备控制;
    所述第二接口用于物理连接相机;
    所述第一处理器用于在接收到遥控设备发送的相机控制信号时,将所述相机控制信号的格式转换成所述相机的协议格式,然后经所述第二接口发送至所述相机。
  78. 根据权利要求77所述的影像系统,其特征在于,所述第一处理器还用于在接收到所述相机发送的数据信息时,将所述数据信息的格式转换成所述云台或无人机的协议格式,然后经所述第一接口发送所述数据信息至云台或无人机。
  79. 根据权利要求77所述的影像系统,其特征在于,所述第一接口为总线接口。
  80. 根据权利要求77所述的影像系统,其特征在于,所述第二接口为USB接口。
  81. 根据权利要求77所述的影像系统,其特征在于,还包括与所述第一处理器相连的状态指示灯;
    所述第一处理器能够根据云台与第一接口的连接状态、相机与第二接口的连接状态和云台与无人机的连接状态中的至少一个,控制所述状态指示灯的工作。
  82. 根据权利要求77所述的影像系统,其特征在于,所述相机控制信号包括动作执行信号和参数设定信号中的至少一种。
  83. 根据权利要求82所述的影像系统,其特征在于,所述动作执行信号为用于指示相机执行拍照功能的拍照指示信号和用于指示相机执行对焦功能的对焦指示信号中的一个。
  84. 根据权利要求82所述的影像系统,其特征在于,所述参数设定信号对应的相机参数包括快门控制参数、光圈参数、曝光参数、曝光模式、白平衡参数、白平衡模式和无穷远与自动对焦模式切换中的至少一种。
  85. 根据权利要求78所述的影像系统,其特征在于,所述数据信息包括相机参数和相机拍摄的图像信息中的至少一种。
  86. 根据权利要求77所述的影像系统,其特征在于,所述云台搭载在无人机上,所述遥控设备用于控制所述无人机和/或所述云台;
    所述第一处理器接收到经所述无人机、云台依次传输后的来自遥控设备的相机控制信号;
    或者,
    所述第一处理器接收到所述云台或者所述无人机转发的来自遥控设备的相机控制信号。
  87. 一种无人机系统,其特征在于,包括遥控设备、无人机、搭载在所述无人机上的云台、搭载在所述云台上的相机以及数据转换设备,其中,所述遥控设备用于控制所述无人机和/或云台,所述无人机与所述云台通信连接;所述数据转换设备包括第一处理器以及与所述第一处理器分别相连的第一接口和第二接口;其中,
    所述第一接口用于物理连接云台;
    所述第二接口用于物理连接相机;
    所述第一处理器用于在接收到遥控设备发送的相机控制信号时,将所述相机控制信号的格式转换成所述相机的协议格式,然后经所述第二接口发送至所述相机。
  88. 根据权利要求87所述的无人机系统,其特征在于,所述第一处理器还用于在接收到所述相机发送的数据信息时,将所述数据信息的格式转换成所述云台或无人机的协议格式,然后经所述第一接口发送所述数据信息至云台或无人机。
  89. 根据权利要求87所述的无人机系统,其特征在于,所述第一接口为总线接口。
  90. 根据权利要求87所述的无人机系统,其特征在于,所述第二接口为USB接口。
  91. 根据权利要求87所述的无人机系统,其特征在于,还包括与所述第一处理器相连的状态指示灯;
    所述第一处理器能够根据云台与第一接口的连接状态、相机与第二接口的连接状 态和云台与无人机的连接状态中的至少一个,控制所述状态指示灯的工作。
  92. 根据权利要求87所述的无人机系统,其特征在于,所述相机控制信号包括动作执行信号和参数设定信号中的至少一种。
  93. 根据权利要求92所述的无人机系统,其特征在于,所述动作执行信号为用于指示相机执行拍照功能的拍照指示信号和用于指示相机执行对焦功能的对焦指示信号中的一个。
  94. 根据权利要求92所述的无人机系统,其特征在于,所述参数设定信号对应的相机参数包括快门控制参数、光圈参数、曝光参数、曝光模式、白平衡参数、白平衡模式和无穷远与自动对焦模式切换中的至少一种。
  95. 根据权利要求88所述的无人机系统,其特征在于,所述数据信息包括相机参数和相机拍摄的图像信息中的至少一种。
  96. 根据权利要求87所述的无人机系统,其特征在于,所述第一处理器接收到经所述无人机、云台依次传输后的来自遥控设备的相机控制信号;
    或者,
    所述第一处理器接收到所述云台或者所述无人机转发的来自遥控设备的相机控制信号。
  97. 根据权利要求87所述的无人机系统,其特征在于,所述无人机与所述云台、数据转换设备与所述云台均基于总线通信连接。
PCT/CN2017/095164 2017-07-31 2017-07-31 数据转换与拍摄控制方法、系统、云台组件及无人机系统 WO2019023846A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2017/095164 WO2019023846A1 (zh) 2017-07-31 2017-07-31 数据转换与拍摄控制方法、系统、云台组件及无人机系统
CN201780007051.9A CN108700896A (zh) 2017-07-31 2017-07-31 数据转换与拍摄控制方法、系统、云台组件及无人机系统
US16/747,835 US20200162659A1 (en) 2017-07-31 2020-01-21 Data conversion and photographing control method and system, gimbal assembly and unmanned aerial vehicle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/095164 WO2019023846A1 (zh) 2017-07-31 2017-07-31 数据转换与拍摄控制方法、系统、云台组件及无人机系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/747,835 Continuation US20200162659A1 (en) 2017-07-31 2020-01-21 Data conversion and photographing control method and system, gimbal assembly and unmanned aerial vehicle system

Publications (1)

Publication Number Publication Date
WO2019023846A1 true WO2019023846A1 (zh) 2019-02-07

Family

ID=63843795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095164 WO2019023846A1 (zh) 2017-07-31 2017-07-31 数据转换与拍摄控制方法、系统、云台组件及无人机系统

Country Status (3)

Country Link
US (1) US20200162659A1 (zh)
CN (1) CN108700896A (zh)
WO (1) WO2019023846A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111279313A (zh) * 2018-12-18 2020-06-12 深圳市大疆创新科技有限公司 Fpga芯片和具有该fpga芯片的电子设备
CN109927906A (zh) * 2019-04-19 2019-06-25 广州市房地产测绘院(广州市测绘产品质量检验中心) 一种通过获取无人机信号来控制摄像设备的装置
CN110149481B (zh) * 2019-06-23 2024-05-07 广西翼界科技有限公司 一种相机指示灯信号检测模块及航拍控制系统
WO2021081810A1 (zh) * 2019-10-30 2021-05-06 深圳市大疆创新科技有限公司 控制方法、控制系统、云台及存储介质
WO2021179131A1 (zh) * 2020-03-09 2021-09-16 深圳市大疆创新科技有限公司 第三方设备转接方法、第三方设备转接系统和可移动平台
WO2022040965A1 (zh) * 2020-08-26 2022-03-03 深圳市大疆创新科技有限公司 图像传输方法、装置及云台系统
CN113302569A (zh) * 2020-09-25 2021-08-24 深圳市大疆创新科技有限公司 云台控制方法、装置、可移动平台和存储介质
CN115174802B (zh) * 2022-06-07 2023-12-29 杭州海康机器人股份有限公司 图像采集卡及图像采集方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202334716U (zh) * 2011-11-25 2012-07-11 中国科学院沈阳自动化研究所 面向输电线路巡检应用的航拍相机摄像机控制器
CN103139459A (zh) * 2011-11-25 2013-06-05 中国科学院沈阳自动化研究所 面向输电线路巡检应用的航拍相机摄像机控制器
US20150316927A1 (en) * 2014-04-30 2015-11-05 Lg Electronics Inc. Unmanned aerial vehicle control apparatus and method
CN205490872U (zh) * 2016-03-31 2016-08-17 深圳市大疆创新科技有限公司 相机快门控制装置及系统
CN106970649A (zh) * 2017-04-25 2017-07-21 华南农业大学 一种无人机无线充电自动控制平台及控制方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101137008A (zh) * 2007-07-11 2008-03-05 裘炅 一种将位置信息隐藏于视频、音频或图的摄像装置及方法
US8750674B2 (en) * 2011-09-26 2014-06-10 Intellectual Ventures Fund 83 Llc Remotely controllable digital video camera system
DE102011088822A1 (de) * 2011-12-16 2013-06-20 Robert Bosch Gmbh Überwachungskamera, Überwachungssystem sowie Verfahren zur Konfiguration einer bzw. der Überwachungskamera
CN102868860A (zh) * 2012-09-13 2013-01-09 深圳一电科技有限公司 远程摄像的控制方法、装置及摄像机
CN104838325A (zh) * 2014-06-30 2015-08-12 深圳市大疆创新科技有限公司 一种云台参数调整方法、装置及云台设备
CN105120011B (zh) * 2015-09-22 2019-02-12 杨珊珊 一种航拍数据下载系统及方法
CN205507553U (zh) * 2016-04-07 2016-08-24 吉林禾熙科技开发有限公司 一种无人机三维场景数据采集控制装置
CN106375720A (zh) * 2016-09-12 2017-02-01 中国科学院自动化研究所 智能视觉云台系统及其实现方法
CN206162501U (zh) * 2016-09-18 2017-05-10 深圳市大疆创新科技有限公司 数据转换设备、芯片、及影像系统
CN106412370A (zh) * 2016-10-21 2017-02-15 广东容祺智能科技有限公司 一种带坐标信息的无人机航拍相机系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202334716U (zh) * 2011-11-25 2012-07-11 中国科学院沈阳自动化研究所 面向输电线路巡检应用的航拍相机摄像机控制器
CN103139459A (zh) * 2011-11-25 2013-06-05 中国科学院沈阳自动化研究所 面向输电线路巡检应用的航拍相机摄像机控制器
US20150316927A1 (en) * 2014-04-30 2015-11-05 Lg Electronics Inc. Unmanned aerial vehicle control apparatus and method
CN205490872U (zh) * 2016-03-31 2016-08-17 深圳市大疆创新科技有限公司 相机快门控制装置及系统
CN106970649A (zh) * 2017-04-25 2017-07-21 华南农业大学 一种无人机无线充电自动控制平台及控制方法

Also Published As

Publication number Publication date
CN108700896A (zh) 2018-10-23
US20200162659A1 (en) 2020-05-21

Similar Documents

Publication Publication Date Title
WO2019023846A1 (zh) 数据转换与拍摄控制方法、系统、云台组件及无人机系统
JP5110805B2 (ja) 有線及び無線通信可能な通信端末、通信方法、プログラム
US9563245B2 (en) Electronic device and computer readable medium
US20110317990A1 (en) Interchangeable lens, camera body, and camera system
JP2017142354A (ja) 撮像装置、撮像装置の制御方法及びプログラム並びに記憶媒体
US20150271415A1 (en) Photographing apparatus, image pickup and observation apparatus, image comparison and display method, image comparison and display system, and recording medium
US20200120259A1 (en) Imaging apparatus, accessory apparatus and control methods therefor
EP3661183B1 (en) Method and apparatus for accelerating aec convergence, and terminal device
CN108924520B (zh) 传输控制方法、装置、控制器、拍摄设备及飞行器
US9438784B2 (en) Camera operation terminal, camera, imaging system, imaging method, and computer-readable device
US11575832B2 (en) Imaging device, camera-mounted drone, mode control method, and program
JP2010009521A (ja) 画像供給装置、画像出力装置及び画像出力システム
JP2017041417A (ja) 電子機器およびその制御方法、プログラム
KR20170056421A (ko) 촬상 장치, 통신 제어 방법 및 기록 매체에 저장된 컴퓨터 프로그램
WO2018163571A1 (ja) 情報処理装置、情報処理方法および情報処理プログラム
KR102512839B1 (ko) 외부 장치의 자세 조정을 통해 복수의 카메라들을 이용하여 이미지를 획득하는 전자 장치 및 방법
KR20200039725A (ko) 제어장치, 제어 시스템, 제어 방법, 프로그램, 및 기억 매체
WO2019009171A1 (en) IMAGING DEVICE, DRONE EQUIPPED WITH CAMERA, METHOD OF CONTROLLING MODE AND PROGRAM
JP4508810B2 (ja) 撮像装置、撮像装置による撮影方法およびプログラム
WO2022195342A1 (en) Imaging device and system, method of capturing images and computer readable storage medium
CN110933297B (zh) 智能摄影系统的摄影控制方法、装置、存储介质及系统
JP2007310303A (ja) レンズシステム
JP4652248B2 (ja) 撮影システム、撮影制御方法、及び撮影装置
JP2010175587A (ja) 画像表示システムおよび画像入力装置
JP4759372B2 (ja) 無線通信状態を報知する通信端末及びその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920444

Country of ref document: EP

Kind code of ref document: A1