WO2019021958A1 - ポンプおよびシールシステム - Google Patents

ポンプおよびシールシステム Download PDF

Info

Publication number
WO2019021958A1
WO2019021958A1 PCT/JP2018/027267 JP2018027267W WO2019021958A1 WO 2019021958 A1 WO2019021958 A1 WO 2019021958A1 JP 2018027267 W JP2018027267 W JP 2018027267W WO 2019021958 A1 WO2019021958 A1 WO 2019021958A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
pump
oil pump
seal chamber
seal
Prior art date
Application number
PCT/JP2018/027267
Other languages
English (en)
French (fr)
Inventor
成 吉川
淳一 早川
Original Assignee
株式会社 荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 荏原製作所 filed Critical 株式会社 荏原製作所
Priority to CN201880048536.7A priority Critical patent/CN110945249A/zh
Priority to JP2019532565A priority patent/JPWO2019021958A1/ja
Priority to EP18838382.2A priority patent/EP3660324A4/en
Priority to US16/632,620 priority patent/US20200408219A1/en
Publication of WO2019021958A1 publication Critical patent/WO2019021958A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/06Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/06Lubrication
    • F04D29/061Lubrication especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/106Shaft sealings especially adapted for liquid pumps
    • F04D29/108Shaft sealings especially adapted for liquid pumps the sealing fluid being other than the working liquid or being the working liquid treated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/12Shaft sealings using sealing-rings
    • F04D29/126Shaft sealings using sealing-rings especially adapted for liquid pumps
    • F04D29/128Shaft sealings using sealing-rings especially adapted for liquid pumps with special means for adducting cooling or sealing fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3464Mounting of the seal
    • F16J15/348Pre-assembled seals, e.g. cartridge seals
    • F16J15/3484Tandem seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/40Sealings between relatively-moving surfaces by means of fluid
    • F16J15/406Sealings between relatively-moving surfaces by means of fluid by at least one pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/106Shaft sealings especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/57Seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/60Fluid transfer
    • F05B2260/602Drainage
    • F05B2260/603Drainage of leakage having past a seal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/98Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/84Redundancy

Definitions

  • the present invention relates to a pump provided with a mechanical seal, and more particularly to a pump provided with a seal system for preventing leakage of fluid containing harmful components such as volatile combustible components and hydrogen sulfide.
  • a mechanical seal is an important part that seals where the rotary shaft of the pump penetrates the casing.
  • the mechanical seal is a device that prevents the fluid from leaking to the outside of the pump, as the rotating ring attached to the rotating shaft and the fixed ring attached to the casing slide while being pressed with an appropriate surface pressure.
  • the sliding surface is damaged in a short time by heat generation and the sealing function can not be maintained, so an appropriate amount of liquid is supplied to the sliding surface for cooling and lubrication. There is a need to. This is called flushing, and the liquid supplied to the sliding surface is called flushing liquid.
  • the combination of piping and equipment / instrument that supplies flushing fluid to the mechanical seal is called seal system or seal plan.
  • the pump pressurized toxic or flammable liquid is introduced into the compartment provided between the inner seal and the outer seal through the gap between the rotating shaft and the stationary member, A structure is disclosed that is mixed with the supplied fluid (air, steam) and transferred from the seal chamber to the regeneration system outside the pump.
  • the fluid (air, steam) supplied to the compartment is lower than the pressure in the pump, but is higher than the outside air in order to allow toxic and flammable liquids pressurized by the pump to flow into the compartment. I have a pressure. Therefore, the toxic or flammable liquid contained in the compartment may flow out through the outer seal.
  • seal oil is supplied to the space provided between the inner oil film seal and the outer oil film seal, and the seal ring and the fixed side are not incorporated on the fixed side or the rotating side.
  • a seal structure is disclosed that produces an oil film in the gap between the and the rotating side.
  • the oil pushed out of the oil film seal comes in contact with the fluid pressurized by the compressor or pump, and then recovered and reused. That is, if the fluid pressurized by the compressor or pump contains a toxic or flammable fluid, the oil is used contaminated with the toxic or flammable fluid. Since this oil also flows to the outer oil film seal, there is a risk that the oil contaminated with the toxic or flammable fluid acts as a medium to transport the toxic or flammable fluid to the atmosphere.
  • Patent Document 3 discloses a technique in which the pump liquid handled by the pump is pressurized to be supplied to the seal mechanism and used as a leak prevention liquid of the seal mechanism.
  • the pressure applied to the seal mechanism when the pump is stopped is a pressure equivalent to the discharge pressure of the pump, and is also applied to the sliding surface of the seal mechanism on the outside air side and the sliding surface of the opposing ring. That is, when the pump fluid contains a toxic or flammable fluid, there is a risk that a dangerous fluid may be present near the outside air and leak to the outside.
  • Patent Document 4 discloses a sealing technique for preventing leakage of a pump pressurized toxic or flammable fluid to the outside of the pump.
  • this sealing technology when the main pump is stopped due to a power failure or the like, fluid leakage is prevented by keeping the flushing fluid other than the fluid handled by the pump higher than the fluid in the pump. That is, oil as flushing liquid is supplied to the seal chamber at high pressure by the oil pump. Furthermore, in order to continue the sealing function even in an emergency such as a power failure, the oil pressure in the sealing chamber is maintained by closing the emergency closing valve of the line for discharging the high pressure oil from the sealing chamber.
  • the above-mentioned pump (hereinafter, referred to as a main pump) pumping a fluid having toxicity and flammable is usually operated by supplying power from a high voltage power supply of about 6.6 kV.
  • the oil pump is operated by supplying power from a low voltage power supply of about 400V. Even if the oil pump is stopped due to a power failure or failure while oil is supplied to the seal chamber, the operation of the main pump may have to be continued because the plant can not be stopped.
  • the prior art although it is possible to maintain the pressure in the seal chamber at the time of a power failure, there was a point that the redundancy of the main pump operation was somewhat lacking.
  • one aspect of the present invention is redundancy in a plant or the like for refining fossil fuels such as petroleum and natural gas so that operation can be continued while preventing leakage of fluid containing harmful components such as hydrogen sulfide.
  • one aspect of the present invention provides a seal system for use in such a pump.
  • one aspect of the present invention provides a pump and seal system that can be safely used in designated explosion-proof areas such as a plant that refines fossil fuels such as petroleum and natural gas.
  • one aspect of the present invention provides a pump and seal system that can quickly take the measures necessary to prevent fluid leakage in emergency situations.
  • a rotary shaft, an impeller fixed to the rotary shaft, a casing for housing the impeller, a double mechanical seal, a seal chamber for housing the double mechanical seal, and oil are stored.
  • a preferred embodiment of the present invention is characterized by further comprising a system controller for starting the second oil pump based on a signal indicating the operating state of the first oil pump.
  • a preferred embodiment of the present invention is characterized in that the second oil pump has a steam turbine as a prime mover.
  • the pressure holding mechanism is located between a first check valve located between the first oil pump and the seal chamber, and between the second oil pump and the seal chamber.
  • a preferred embodiment of the present invention further comprises a main power supply connected to the first oil pump and a standby power supply connected to the second oil pump, wherein the first oil pump and the second oil pump are each a prime mover.
  • a preferred embodiment of the present invention further comprises a third oil pump which is disposed in parallel with the first oil pump and pressurizes the oil supplied from the oil reservoir and transfers the oil to the seal chamber; The pump is characterized by having a steam turbine as a prime mover.
  • the pressure holding mechanism is located between a first check valve located between the first oil pump and the seal chamber, and between the second oil pump and the seal chamber. Between the second check valve, the third check valve located between the third oil pump and the seal chamber, the first, second and third check valves and the seal chamber It is characterized in that it comprises at least one accumulator arranged and a shutoff valve attached to the oil outlet line.
  • a seal chamber for accommodating a double mechanical seal, an oil storage unit for storing oil, an oil supply line for connecting the oil storage unit and the seal chamber, and the oil storage unit
  • a first oil pump that pressurizes the supplied oil and transfers it to the seal chamber, and is arranged in parallel with the first oil pump, and pressurizes the oil supplied from the oil reservoir to the seal chamber
  • a seal system comprising: a second oil pump for transfer; an oil outlet line connected to the seal chamber; and a pressure holding mechanism for holding the pressure of oil in the seal chamber.
  • the first oil pump as a regular pump and the second oil pump as a spare pump are provided, when the first oil pump is stopped due to a power failure or a failure, the second oil pump is promptly
  • the pressure in the seal chamber can be maintained by activating the As a result, it is possible to continue main pump operation at the time of a power failure, and it is possible to increase redundancy.
  • a rotary shaft, an impeller fixed to the rotary shaft, a casing for housing the impeller, a double mechanical seal, a seal chamber for housing the double mechanical seal, and oil are stored.
  • An oil supply line connecting the oil storage portion and the seal chamber, an oil pump for pressurizing the oil supplied from the oil storage portion and transferring the oil to the seal chamber, and the oil pump A check valve located between the and the seal chamber, an oil outlet line connected to the seal chamber, at least one accumulator disposed between the check valve and the seal chamber, and the oil
  • a shut-off valve attached to the outlet line, the shut-off valve being an explosion-proof valve.
  • a preferred embodiment of the present invention is characterized by further comprising a system controller that detects an emergency condition of the oil pump and closes the shutoff valve.
  • the shutoff valve is a pneumatically operated valve or a hydraulically operated valve.
  • a preferred embodiment of the present invention is characterized by further comprising a working fluid supply line connected to the shutoff valve and a working fluid supply valve attached to the working fluid supply line.
  • the system controller transmits an instruction signal to the working fluid supply valve to open the working fluid supply valve when an emergency state of the oil pump is detected.
  • the system controller and the working fluid supply valve are disposed in an area isolated from the closing valve by an isolation wall.
  • a preferred aspect of the present invention is characterized in that the system controller is configured to close the shutoff valve when the discharge pressure of the oil pump becomes lower than a threshold.
  • the system controller is configured to open the working fluid supply valve when the discharge pressure of the oil pump becomes lower than a threshold value.
  • a preferred embodiment of the present invention is characterized in that the system controller is configured to close the shutoff valve when the rotational speed of the oil pump falls below a threshold.
  • a preferred embodiment of the present invention is characterized in that the system controller is configured to open the working fluid supply valve when the rotational speed of the oil pump falls below a threshold.
  • a seal chamber for accommodating a double mechanical seal, an oil storage unit for storing oil, an oil supply line for connecting the oil storage unit and the seal chamber, and the oil storage unit
  • An oil pump that pressurizes the supplied oil and transfers it to the seal chamber, a check valve located between the oil pump and the seal chamber, an oil outlet line connected to the seal chamber, and
  • a seal system comprising: at least one accumulator disposed between a check valve and the seal chamber; and a shutoff valve attached to the oil outlet line, the shutoff valve being an explosion-proof valve It is.
  • the shutoff valve is an explosion-proof valve, an accident due to ignition of combustible gas and the like does not occur.
  • a pneumatically driven valve or a hydraulically driven valve as the closing valve in particular, it is possible to realize a seal system that can operate safely even in areas where power supply conditions are not sufficient.
  • a rotary shaft, an impeller fixed to the rotary shaft, a casing for housing the impeller, a double mechanical seal, a seal chamber for housing the double mechanical seal, and oil are stored.
  • An oil supply line connecting the oil storage portion and the seal chamber, an oil pump for pressurizing the oil supplied from the oil storage portion and transferring the oil to the seal chamber, and the oil pump A check valve located between the and the seal chamber, an oil outlet line connected to the seal chamber, at least one accumulator disposed between the check valve and the seal chamber, and the oil
  • a shutoff valve attached to the outlet line, the shutoff valve being a motorized valve or a solenoid valve.
  • a preferred embodiment of the present invention is characterized by further comprising a system controller that detects an emergency condition of the oil pump and closes the shutoff valve.
  • the system controller sends an instruction signal to the shutoff valve to close the shutoff valve when an emergency state of the oil pump is detected.
  • the system controller is configured to close the shutoff valve when the discharge pressure of the oil pump becomes lower than a threshold.
  • the system controller is configured to close the shutoff valve when the rotational speed of the oil pump falls below a threshold.
  • a seal chamber for accommodating a double mechanical seal, an oil storage unit for storing oil, an oil supply line for connecting the oil storage unit and the seal chamber, and the oil storage unit
  • An oil pump that pressurizes the supplied oil and transfers it to the seal chamber, a check valve located between the oil pump and the seal chamber, an oil outlet line connected to the seal chamber, and At least one accumulator disposed between the check valve and the seal chamber, and a shutoff valve attached to the oil outlet line, wherein the shutoff valve is a motorized valve or a solenoid valve.
  • the shutoff valve is an electrically operated valve or a solenoid valve
  • the shutoff valve can be closed quickly in an emergency, and fluid leakage can be prevented before a major accident develops.
  • FIG. 2 is an enlarged view showing a shaft seal unit including the mechanical seal shown in FIG. 1, and a schematic view showing an embodiment of a seal system according to the present invention.
  • FIG. 7 is a schematic view of another embodiment of a sealing system.
  • FIG. 7 is a schematic view of yet another embodiment of a sealing system.
  • FIG. 2 is a schematic view of an embodiment of a seal system including the mechanical seal shown in FIG. 1;
  • FIG. 2 is a schematic view of an embodiment of a seal system including the mechanical seal shown in FIG. 1;
  • FIG. 7 is a schematic view showing another embodiment of the sealing system.
  • FIG. 1 is a sectional view showing a centrifugal multistage pump (main pump) according to an embodiment of the present invention.
  • This pump is used in a plant or the like for refining fossil fuels such as petroleum and natural gas, and is a pump for pressurizing a fluid (liquid) containing volatile combustible components and harmful components such as hydrogen sulfide.
  • This pump accommodates a rotary shaft 1 rotatably supported by radial bearings 8A and 8B and a thrust bearing 9, a plurality of impellers 3 arranged in series on the rotary shaft 1, and the impellers 3 And a barrel-type outer casing 2B for housing the inner casings 2A.
  • the inner casing 2A and the outer casing 2B constitute a casing 2 having a double casing structure.
  • the plurality of impellers 3 are arranged in the same direction, and each impeller 3 is accommodated one by one in each inner casing 2A.
  • a pin 4 is mounted between the inner casing 2A and the guide vanes 14, whereby the relative position between the inner casing 2A and the guide vanes 14 is fixed.
  • the respective inner casings 2A are fixed to one another by a plurality of through bolts 5 extending along the rotation axis 1.
  • a suction port 6 and a discharge port 7 are formed in the outer casing 2B.
  • the end of the rotating shaft 1 is connected to a driving machine (for example, a motor) (not shown), and the impeller 3 is rotated by this driving machine.
  • the inner casing has the “optimum shape for compressing the fluid”
  • the outer casing has the “shape for maintaining the pressure (sealable shape, safety without leaking the fluid to the outside)
  • the components in contact with the fluid such as the inner casing 2A, the outer casing 2B and the impeller 3 are made of a material having corrosion resistance. It is formed.
  • a casing cover 13 is fixed to the discharge side end of the casing 2 and a stuffing box 12A is fixed to the side end of the casing cover 13.
  • a stuffing box 12B is fixed to the suction side end of the casing 2.
  • An O-ring 15A is provided between the casing 2 (the outer casing 2B in the example of FIG. 1) and the casing cover 13.
  • an O-ring 15B is provided between the casing cover 13 and the stuffing box 12A. It is done.
  • An O-ring 15C is also provided between the casing 2 (the outer casing 2B in the example of FIG. 1) and the stuffing box 12B.
  • Annular grooves 16A, 16B and 16C are formed on the contact surface between the casing 2 and the casing cover 13, the contact surface between the casing cover 13 and the stuffing box 12A, and the contact surface between the casing 2 and the stuffing box 12B. .
  • the annular grooves 16A, 16B, 16C communicate with the pressure detection ports 17A, 17B, 17C, respectively.
  • the pressure detection ports 17A, 17B and 17C are respectively connected to pressure sensors (not shown), and each pressure sensor is connected to an alarm device (not shown).
  • the alarm device is configured to emit an alarm when the output value of the pressure sensor rises and reaches a predetermined value.
  • the above configuration when the fluid leaks from the casing 2, the output value of the pressure sensor rises. When the output value of the pressure sensor reaches the above-mentioned predetermined value, an alarm is issued from the alarm device, whereby fluid leakage is detected. Therefore, the above configuration can provide a highly safe pump.
  • a balance chamber 10 is provided to balance the thrust load generated due to the pressure difference between the suction side and the discharge side. More specifically, the balance chamber 10 is formed in the casing cover 13.
  • the balance chamber 10 has a shape surrounding the rotary shaft 1 and is in communication with the suction port 6 through the communication line 11. Therefore, the pressure in the balance chamber 10 is the same as the pressure (suction pressure) of the suction port 6. Generally, the specific gravity of the supercritical fluid changes with pressure.
  • impellers may be disposed back to back, and balancing pistons may be attached while arranging the impellers in the same direction, etc.
  • the configuration of the embodiment i.e., the balance chamber 10 and the communication line 11) is optimal.
  • mechanical seals 20 are respectively disposed on the suction side and the discharge side of the casing 2. These mechanical seals 20 are disposed in the stuffing boxes 12A and 12B, respectively.
  • a shaft seal unit including the mechanical seal 20 will be described with reference to FIG.
  • FIG. 2 is an enlarged view showing a shaft seal unit including the mechanical seal 20 shown in FIG. 1, and is a schematic view showing an embodiment of a seal system according to the present invention.
  • the mechanical seal 20 of this embodiment is a double mechanical seal basically constituted of two pairs of rotating side sealing members and stationary side sealing members arranged in back-to-back alignment. is there. More specifically, the mechanical seal 20 is in sliding contact with the two seal rings (first and second rotation side seal members) 21A and 21B that rotate integrally with the rotary shaft 1 and the seal rings 21A and 21B, respectively.
  • a sleeve 24 is fixed on the rotary shaft 1, and the seal rings 21A and 21B are fixed on the outer peripheral surface of the sleeve 24.
  • the seal ring bodies 22A and 22B are supported by the stationary side member.
  • the two pairs of seal rings 21A and 21B and the seal ring bodies 22A and 22B are disposed symmetrically with respect to a plane perpendicular to the rotation axis 1.
  • the mechanical seal 20 is disposed in the seal chamber 25.
  • the sealing chamber 25 is formed between the stuffing box 12A (or 12B) and the rotating shaft 1.
  • An oil supply line 26 is connected to the seal chamber 25, and an end of the oil supply line 26 is connected to an oil tank (oil reservoir) 30.
  • a first oil pump 31 for pressurizing the oil supplied from the oil tank 30 and transferring it to the seal chamber 25 in the oil supply line 26, and a position between the first oil pump 31 and the seal chamber 25
  • a check valve (Non Return Valve) 32 is provided.
  • the first oil pump 31 is provided with an electric motor 31a as its prime mover.
  • a bypass line 40 is connected to the oil supply line 26. Both ends of the bypass line 40 are connected to the oil supply line 26, and the bypass line 40 bypasses the first oil pump 31 and the first check valve 32 and extends. One end of the bypass line 40 is located between the oil tank 30 and the first oil pump 31, and the other end of the bypass line 40 is located between the first check valve 32 and the seal chamber 25.
  • the bypass line 40 is provided with a second oil pump 42 and a second check valve 44.
  • the second oil pump 42 and the second check valve 44 are disposed in parallel with the first oil pump 31 and the first check valve 32.
  • the second oil pump 42 is arranged to pressurize the oil supplied from the oil tank 30 through the bypass line 40 and transfer the oil to the seal chamber 25.
  • the second check valve 44 is located between the second oil pump 42 and the seal chamber 25, and the backflow of the oil pressurized by the second oil pump 42 is prevented by the second check valve 44.
  • the second oil pump 42 is provided with an electric motor 42a as its prime mover.
  • the first check valve 32 and the second check valve 44 allow oil to flow only in the direction from the oil tank 30 to the seal chamber 25.
  • An oil outlet line 27 is further connected to the seal chamber 25, and the oil outlet line 27 is in communication with the oil tank 30.
  • the first oil pump 31 and the second oil pump 42 are driven by electric motors 31a and 42a which are motors different from the motor of the main pump shown in FIG.
  • the first oil pump 31 and the second oil pump 42 are pumps capable of supplying oil to the seal chamber 25 by setting the pressure of oil higher than the pressure of the fluid in the main pump, and a gear pump or the like is used .
  • the first oil pump 31 is used as a regular pump
  • the second oil pump 42 is used as a spare pump.
  • the spare pump is operated when the regular pump is stopped due to a failure or the like.
  • a shutoff valve may be provided on the suction side and the discharge side of each of the first oil pump 31 and the second oil pump 42. Such a shutoff valve can perform the replacement operation without removing all the oil in the oil supply line 26 and the oil outlet line 27 at the time of replacement of the failed oil pump and without stopping the oil circulation. I assume. That is, by closing the shut off valves on the suction side and the discharge side of the broken oil pump, it is possible to replace the broken oil pump while the oil pump other than the broken oil pump is operated.
  • a branch line 33 is connected to the oil supply line 26, and three accumulators 34 are connected in parallel to the branch line 33.
  • a connection point between the oil supply line 26 and the branch line 33 is located between the check valves 32 and 44 and the seal chamber 25.
  • a diaphragm (partition wall) (not shown) is disposed inside each accumulator 34, and a gas such as nitrogen gas is sealed therein.
  • a portion of the oil transferred to the seal chamber 25 is introduced into the three accumulators 34 through the branch line 33 and accumulated in the accumulators 34.
  • the oil accumulated in the accumulator 34 is pressurized by the pressure of the gas. Therefore, the accumulator 34 has a function of holding the pressure of the oil supplied to the seal chamber 25.
  • the present invention is not limited to this.
  • it may be a single accumulator, or two or more accumulators may be provided. It is important that the pressure of the oil held by the accumulator is higher than the pressure of the fluid boosted by the rotation of the impeller 3 (see FIG. 1).
  • the pressure of the oil supplied to the seal chamber 25 is set to be higher than the pressure of the fluid pressurized by the main pump.
  • the fluid eg, supercritical fluid
  • the pressure of the oil in the seal chamber 25 is maintained at about 16 MPa.
  • a small amount of oil passes between the seal rings 21A and 21B and the seal ring main bodies 22A and 22B to form the seal chamber 25. Flow outside. Therefore, the fluid pressurized by the rotating impeller 3 does not enter the seal chamber 25 and the fluid leakage to the outside of the pump is prevented.
  • the oil that has passed between the low pressure side seal ring 21B and the low pressure side seal ring main body 22B is discharged from the drain (not shown) to the outside of the pump.
  • the oil outlet line 27 is provided with a shutoff valve 35.
  • the shutoff valve 35 When all of the main pump, the first oil pump 31 and the second oil pump 42 stop, the shutoff valve 35 is closed. As a result, the pressure of the oil in the seal chamber 25 can be maintained at a pressure higher than the fluid in the main pump, so that fluid leakage can be prevented even when the oil pumps 31, 42 are stopped.
  • a solenoid valve, a motor operated valve, a pneumatically driven valve, a hydraulically driven valve or the like can be used as the shutoff valve 35.
  • the first oil pump 31 and the second oil pump 42 are supplied with power from different power supply systems.
  • the first oil pump 31 is connected to the main power supply 47, and power is supplied from the main power supply 47 to the first oil pump 31.
  • the second oil pump 42 is connected to the standby power supply 48, and power is supplied from the standby power supply 48 to the second oil pump 42.
  • the auxiliary power supply 48 can be configured of a battery, a diesel engine driven generator, or the like.
  • the standby power supply 48 Electric power is supplied to the second oil pump 42 as a spare pump to start the second oil pump 42.
  • the second oil pump 42 can maintain the oil pressure in the seal chamber 25 while maintaining the oil circulation. As a result, the main pump can continue operation with the fluid safely sealed, increasing redundancy.
  • a pressure detector 51 is provided which detects the discharge pressure of the first oil pump 31 and outputs a signal A indicating the detected discharge pressure.
  • a pressure sensor, a pressure switch, a pressure transmitter or the like can be used.
  • the first oil pump 31 is provided with a rotational speed detector 52 that detects the rotational speed and outputs a signal B indicating the detected rotational speed.
  • a speedometer with a transmission function such as a speed transmitter can be used.
  • the first oil pump 31 is provided with a first pump controller 31 b that controls the operation thereof.
  • the interlock signal C is output from the first pump controller 31b.
  • the interlock signal C is used as a signal for detecting the above-mentioned emergency condition of the first oil pump 31.
  • a power failure detector 57, a current measuring device 58, a voltage measuring device 59, and a power measuring device 60 are attached to the main power line 55 extending from the main power supply 47 to the first oil pump 31.
  • the power failure detector 57 is configured to output a power failure detection signal G when a power failure is detected.
  • the current measuring device 58, the voltage measuring device 59, and the power measuring device 60 are configured to output signals D, E, F indicating the current, voltage, and power supplied to the first oil pump 31, respectively.
  • a power shutoff device 61 is disposed on the main power line 55.
  • the power shutoff device 61 has a function of detecting an overcurrent and cutting off the power.
  • the power shutoff device 61 may be configured to operate the power shutoff / power connection in response to an external power shutoff / power connection instruction.
  • the power shutoff device 61 may be configured to output a signal indicating the power shutoff state and the power connection state.
  • the signal output from the power shutoff device 61 and the signal input from the outside are collectively referred to as H.
  • the pressure detector 51, the rotational speed detector 52, the power failure detector 57, the current measuring device 58, the voltage measuring device 59, the power measuring device 60, and the power cut-off device 61 To H are operating condition detectors.
  • the signals A to H from these operating condition detectors are sent to the system controller 65.
  • the system controller 65 is configured to detect an emergency state of the first oil pump 31 based on the signals A to H, and send an instruction signal I to the standby power supply 48 and the power shutoff device 70.
  • the power shutoff device 70 is attached to a backup power line 71 extending from the backup power supply 48 to the second oil pump 42.
  • the instruction signal I starts the second oil pump 42 by activating the standby power supply 48 and switching the power shutoff device 70 to energization.
  • the system controller 65 instructs the second oil pump 42 to issue the instruction signal J for activating the second oil pump 42 b.
  • the system controller 65 can quickly maintain the pressure in the seal chamber 25 by activating the second oil pump 42 promptly when the first oil pump 31 is in an emergency state. Become. As a result, the main pump can continue operation with the fluid safely sealed, and can increase redundancy.
  • shutoff valve 35 a solenoid valve which is open when power is supplied and closed when power is not supplied may be used. In this case, it is preferable to supply a part of the electric power supplied to the first oil pump 31 or the second oil pump 42 in operation to the shutoff valve 35 via a changeover switch (not shown). According to this structure, if both the main power supply 47 and the standby power supply 48 can not supply power to the shutoff valve 35, the shutoff valve 35 can be closed promptly. Can be maintained under high pressure.
  • the system controller 65 may close the shutoff valve 35 when the discharge pressure of the second oil pump 42 falls below a threshold.
  • a threshold value is a value higher than 15 MPa and lower than 16 MPa (e.g. 15.8 MPa) Set to
  • the discharge pressure of the second oil pump 42 is detected by a pressure detector 72 disposed between the second oil pump 42 and the second check valve 44.
  • the pressure detector 72 is configured to detect the discharge pressure of the second oil pump 42 and to send a signal A ′ indicating the detected discharge pressure to the system controller 65.
  • the system controller 65 closes the shutoff valve 35 when the discharge pressure of the second oil pump 42 indicated by the signal A 'becomes lower than the threshold value.
  • the system controller 65 may close the shutoff valve 35 when the rotational speed of the second oil pump 42 falls below a threshold. For example, if the rated rotational speed of the second oil pump 42 is 1500 min -1 , the pressure is proportional to the square of the rotational speed, so the threshold is set at 1470 min -1, which is 2% lower than 1500 min -1. Ru.
  • the rotational speed of the second oil pump 42 is detected by a rotational speed detector 73 attached to the rotational shaft of the second oil pump 42.
  • the rotational speed detector 73 is configured to detect the rotational speed of the second oil pump 42 and to transmit a signal B ′ indicating the detected rotational speed to the system controller 65.
  • the rotational speed detector 73 for example, a speedometer with a transmission function such as a speed transmitter can be used.
  • the system controller 65 closes the shutoff valve 35 when the rotational speed of the second oil pump 42 indicated by the signal B 'becomes lower than the threshold value.
  • the first check valve 32 located between the first oil pump 31 and the seal chamber 25 described above, and the second check valve 44 located between the second oil pump 42 and the seal chamber 25
  • the at least one accumulator 34 arranged between the valves 32, 44 and the sealing chamber 25 and the shutoff valve 35 attached to the oil outlet line 27 seal chamber 25 when the oil pump 31, 42 is stopped. Configure a pressure holding mechanism to hold the pressure of the oil inside.
  • FIG. 3 is a schematic diagram illustrating another embodiment of a seal system that does not use the standby power supply 48.
  • the prime mover of the second oil pump 42 as a spare pump is not an electric motor but a steam turbine 75. That is, the energy at the time of the expansion of the steam is converted to a rotational force by the steam turbine 75, and the rotational force is used for the driving force of the second oil pump 42.
  • the steam turbine 75 is connected to a steam supply line 76, and a steam supply valve 77 is attached to the steam supply line 76.
  • a steam supply valve 77 As the steam supply valve 77, a solenoid valve, a motor operated valve, a pneumatically driven valve, a hydraulically driven valve or the like can be used.
  • a clutch 80 is disposed between the drive shaft of the steam turbine 75 and the impeller (not shown) of the second oil pump 42. When the clutch 80 is connected, the torque of the steam turbine 75 is transmitted to the impeller of the second oil pump 42, and the second oil pump 42 is started.
  • no power is used to drive the second oil pump 42.
  • the first oil pump 31 as a regular pump stops due to a power failure or failure the second oil pump 42 having the steam turbine 75 as a prime mover is operated. Therefore, the second oil pump 42 can maintain the oil circulation and maintain the oil pressure in the seal chamber 25. As a result, the main pump can continue to operate while sealing the fluid safely, and redundancy can be increased.
  • the configuration for detecting an emergency state in which the first oil pump 31 is stopped or forced to stop due to a power failure or failure is basically the same as the embodiment shown in FIG. That is, the signals A to H described above are sent to the system controller 65.
  • the system controller 65 detects an emergency state of the first oil pump 31 based on the signals A to H, sends an instruction signal I to the steam supply valve 77, opens the steam supply valve 77, and further transmits the instruction signal J to the clutch 80.
  • the second oil pump 42 is started by sending and connecting the clutch 80. If steam has already been supplied to the steam turbine 75, the system controller 65 sends an instruction signal J to the clutch 80 to connect the clutch 80.
  • FIG. 4 is a schematic diagram illustrating yet another embodiment of a sealing system.
  • the same components as those shown in FIGS. 2 and 3 are denoted by the same reference numerals, and redundant description will be omitted.
  • one first oil pump 31 as a regular pump
  • a second oil pump 42 and a third oil pump 91 as spare pumps are provided.
  • the second oil pump 42 is a motor driven oil pump driven by the auxiliary power supply 48
  • the third oil pump 91 is a turbine driven oil pump driven by the steam turbine 75.
  • the second oil pump 42 of this embodiment has the same configuration as the second oil pump 42 of the embodiment shown in FIG. 2, and the third oil pump 91 of this embodiment is the second oil of the embodiment shown in FIG. It has the same configuration as the pump 42.
  • the oil supply line 26 is connected to the first bypass line 40A and the second bypass line 40B. Both ends of the first bypass line 40A and the second bypass line 40B are connected to the oil supply line 26. More specifically, one ends of the first bypass line 40A and the second bypass line 40B are located between the oil tank 30 and the first oil pump 31, and one end of the first bypass line 40A and the second bypass line 40B. The other end is located between the first check valve 32 and the seal chamber 25.
  • a second oil pump 42 and a second check valve 44 are provided in the first bypass line 40A, and a third oil pump 91 and a third check valve 93 are provided in the second bypass line 40B. There is.
  • the second check valve 44 is located between the second oil pump 42 and the seal chamber 25, and the third check valve 93 is located between the third oil pump 91 and the seal chamber 25.
  • the second oil pump 42 and the second check valve 44 are disposed in parallel with the first oil pump 31 and the first check valve 32, and the second oil pump 42 is connected to the first bypass line 40A from the oil tank 30. Are arranged to be pressurized and transferred to the seal chamber 25.
  • the third oil pump 91 and the third check valve 93 are also arranged in parallel with the first oil pump 31 and the first check valve 32, and the third oil pump 91 is connected to the second bypass line 40B from the oil tank 30. Are arranged to be pressurized and transferred to the seal chamber 25.
  • the third check valve 93 allows oil to flow only in the direction from the oil tank 30 to the seal chamber 25.
  • the second oil pump 42 is disposed between the second oil pump 42 and the second check valve 44 in order to detect an emergency state in which the second oil pump 42 is stopped or has to be stopped.
  • a pressure detector 72 is provided which detects the discharge pressure of the pressure sensor 72 and outputs a signal A 'indicative of the detected discharge pressure.
  • the second oil pump 42 is provided with a rotational speed detector 73 that detects the rotational speed and outputs a signal B 'indicating the detected rotational speed.
  • the second oil pump 42 is provided with a second pump controller 42 b that controls its operation.
  • the interlock signal C ' is output from the second pump controller 42b.
  • the interlock signal C ' is used as a signal for detecting the above-mentioned emergency condition of the second oil pump 42.
  • a power failure detector 101, a current measuring device 102, a voltage measuring device 103, and a power measuring device 104 are attached to a backup power line 71 extending from the backup power supply 48 to the second oil pump 42.
  • the power failure detector 101 is configured to output a power failure detection signal G ′ when a power failure of the standby power supply 48 is detected.
  • the current measuring device 102, the voltage measuring device 103, and the power measuring device 104 are configured to output signals D ', E', F 'indicating the current, voltage, and power supplied to the second oil pump 42, respectively. It is done.
  • a power shutoff device 70 is disposed on the backup power line 71.
  • the power shutoff device 70 has a function of detecting an overcurrent and cutting off the power.
  • the power shutoff device 70 may be configured to operate the power shutoff / power connection in response to an external power shutoff / power connection indication. Also, the power shutoff device 70 may be configured to output a signal indicating a power shutoff state and a power connection state. In FIG. 4, the signal output from the power shutoff device 70 and the signal input from the outside are collectively referred to as H ′.
  • Signals A to H indicating the operating state of the first oil pump 31 are sent to the system controller 65.
  • the system controller 65 is configured to detect an emergency state of the first oil pump 31 based on the signals A to H, and send an instruction signal I to the standby power supply 48 and the power shutoff device 70.
  • the instruction signal I starts the second oil pump 42 by activating the standby power supply 48 and switching the power shutoff device 70 to energization.
  • the system controller 65 instructs the second oil pump 42 to issue the instruction signal J for activating the second oil pump 42 b. Send to Thus, the second oil pump 42 as a spare pump is operated.
  • the pressure detector 72, the rotational speed detector 73, the power failure detector 101, the current measuring device 102, the voltage measuring device 103, the power measuring device 104, and the power shutoff device 70 are signals A indicating the operating state of the second oil pump 42. It is an operating condition detector that emits 'to H'. The signals A 'to H' from these operating condition detectors are also sent to the system controller 65.
  • the system controller 65 detects an emergency state of the second oil pump 42 based on the signals A 'to H' and sends an instruction signal I 'for activating the third oil pump 91 to the steam supply valve 77 to supply steam.
  • the valve 77 is opened, the instruction signal J 'is sent to the clutch 80, and the clutch 80 is connected to start the third oil pump 91. If steam has already been supplied to the steam turbine 75, the system controller 65 sends an instruction signal J ′ to the clutch 80 to connect the clutch 80.
  • the third oil pump 91 provided with the steam turbine 75 as a prime mover is operated. Therefore, the third oil pump 91 can maintain the oil circulation and maintain the oil pressure in the seal chamber 25. As a result, the main pump can continue to operate while sealing the fluid safely, and redundancy can be increased.
  • the closing valve 35 is closed at the same time the main pump is stopped, whereby the pressure in the seal chamber 25 Can be maintained at a higher pressure than the fluid pumped by the main pump. Therefore, the main pump can be stopped while safely preventing the leakage of the fluid to the outside.
  • the system controller 65 may close the shutoff valve 35 when the discharge pressure of the third oil pump 91 falls below a threshold.
  • a threshold value is a value higher than 15 MPa and lower than 16 MPa (e.g. 15.8 MPa) Set to
  • the discharge pressure of the third oil pump 91 is detected by a pressure detector 110 disposed between the third oil pump 91 and the third check valve 93.
  • the pressure detector 110 is configured to detect the discharge pressure of the third oil pump 91 and to transmit a signal A ′ ′ indicating the detected discharge pressure to the system controller 65.
  • the system controller 65 is a signal A ′ ′.
  • the shutoff valve 35 is closed when the discharge pressure of the third oil pump 91 shown in FIG.
  • the system controller 65 may close the shutoff valve 35 when the rotational speed of the third oil pump 91 falls below a threshold. For example, if the rated rotational speed of the third oil pump 91 is 1500 min -1 , the pressure is proportional to the square of the rotational speed, so the threshold is set to 1470 min -1, which is 2% lower than 1500 min -1. Ru.
  • the rotational speed of the third oil pump 91 is detected by a rotational speed detector 111 attached to the rotation shaft of the third oil pump 91.
  • the rotational speed detector 111 is configured to detect the rotational speed of the third oil pump 91 and to transmit a signal B ′ ′ indicating the detected rotational speed to the system controller 65.
  • the system controller 65 is a signal B. When the rotational speed of the third oil pump 91 indicated by “1” becomes lower than the threshold value, the shutoff valve 35 is closed.
  • the first check valve 32 located between the first oil pump 31 and the seal chamber 25 described above, and the second check valve located between the second oil pump 42 and the seal chamber 25.
  • the two accumulators 34 and the shutoff valve 35 attached to the oil outlet line 27 constitute a pressure holding mechanism for holding the pressure of the oil in the seal chamber 25 when the oil pumps 31, 42, 91 are stopped.
  • FIG. 5 is a schematic view showing an embodiment of a seal system including the mechanical seal 20 shown in FIG.
  • the mechanical seal 20 of this embodiment is a double mechanical seal basically constituted of two pairs of rotating side sealing members and stationary side sealing members arranged in back-to-back alignment. is there. More specifically, the mechanical seal 20 is in sliding contact with the two seal rings (first and second rotation side seal members) 21A and 21B that rotate integrally with the rotary shaft 1 and the seal rings 21A and 21B, respectively.
  • a sleeve 24 is fixed on the rotary shaft 1, and the seal rings 21A and 21B are fixed on the outer peripheral surface of the sleeve 24.
  • the seal ring bodies 22A and 22B are supported by the stationary side member.
  • the two pairs of seal rings 21A and 21B and the seal ring bodies 22A and 22B are disposed symmetrically with respect to a plane perpendicular to the rotation axis 1.
  • the mechanical seal 20 is disposed in the seal chamber 25.
  • the sealing chamber 25 is formed between the stuffing box 12A (or 12B) and the rotating shaft 1.
  • An oil supply line 126 is connected to the seal chamber 25, and an end of the oil supply line 126 is connected to an oil tank (oil reservoir) 130.
  • the oil supply line 126 is provided with an oil pump 131 which pressurizes the oil supplied from the oil tank 130 and transfers it to the seal chamber 25, and a check valve 132 located between the oil pump 131 and the seal chamber 25. It is done.
  • a branch line 133 is connected to the oil supply line 126, and three accumulators 134 are connected in parallel to the branch line 133.
  • a connection point between the oil supply line 126 and the branch line 133 is located between the check valve 132 and the seal chamber 25.
  • a diaphragm (partition wall) (not shown) is disposed inside each accumulator 134, and a gas such as nitrogen gas is sealed therein.
  • a portion of the oil transferred to the seal chamber 25 is introduced into the three accumulators 134 through the branch line 133 and accumulated in the accumulators 134.
  • the oil accumulated in the accumulator 134 is pressurized by the pressure of the gas. Therefore, the accumulator 134 has a function of holding the pressure of the oil supplied to the seal chamber 25.
  • the present invention is not limited to this.
  • it may be a single accumulator, or two or more accumulators may be provided. It is important that the pressure of the oil held by the accumulator is higher than the pressure of the fluid boosted by the rotation of the impeller 3 (see FIG. 1).
  • the check valve 132 allows oil to flow only in the direction from the oil tank 130 toward the seal chamber 25.
  • An oil outlet line 127 is further connected to the seal chamber 25, and the oil outlet line 127 is in communication with the oil tank 130.
  • oil is supplied from the oil tank 130 to the seal chamber 25 to fill the seal chamber 25, and then returned to the oil tank 130 through the oil outlet line 127.
  • the oil outlet line 127 is provided with a shutoff valve 135, and in the case of an emergency such as a power failure, the shutoff valve 135 is closed to stop oil circulation.
  • the pressure of the oil supplied to the seal chamber 25 is set to be higher than the pressure of the fluid pressurized by the main pump.
  • the fluid eg, supercritical fluid
  • the pressure of the oil in the seal chamber 25 is maintained at about 16 MPa.
  • a small amount of oil passes between the seal rings 21A and 21B and the seal ring main bodies 22A and 22B to form the seal chamber 25. Flow outside. Therefore, the fluid pressurized by the rotating impeller 3 does not enter the seal chamber 25 and the fluid leakage to the outside of the pump is prevented.
  • the oil that has passed between the low pressure side seal ring 21B and the low pressure side seal ring main body 22B is discharged from the drain (not shown) to the outside of the pump.
  • the shutoff valve 135 When the oil pump 131 is stopped due to a power failure or the like, the shutoff valve 135 is closed and the flow of oil is stopped. In this state, the pressurization of the oil by the oil pump 131 is stopped, but the pressure of the oil between the check valve 132 and the shutoff valve 135 (that is, the pressure of the oil in the seal chamber 25) is maintained by the accumulator 134. Be done. Therefore, even when the oil pump 131 is stopped, the pressurized fluid does not enter the seal chamber 25 and the fluid is prevented from leaking to the outside of the pump.
  • the oil pump 131 is a pump capable of supplying oil to the seal chamber 25 by setting the pressure of the oil higher than the pressure of the fluid in the pump, and further circulating the oil, and a gear pump or the like is used.
  • the shutoff valve 135 is an explosion-proof valve so that there is no risk of ignition.
  • a pneumatically operated valve, a hydraulically operated valve or the like can be used as the explosion-proof type shutoff valve 135, but it is not limited thereto.
  • Pneumatically actuated valves and hydraulically actuated valves have the advantage of being simple in structure and capable of obtaining a large valve driving force. Therefore, the pneumatically operated valve and the hydraulically operated valve can be reliably closed in an emergency.
  • pneumatically operated valves and hydraulically operated valves are advantageous in that they can be used as they are in an explosion-proof designated area.
  • the electric shutoff valve needs to be equipped with a special explosion-proof structure to prevent ignition caused by a short circuit or a short circuit.
  • shutoff valve 135 configured of a pneumatically operated valve or a hydraulically operated valve can reliably perform an emergency closing operation, and can continue its closed state.
  • the shutoff valve 135 is required to be provided with a valve body excellent in quick operation and sealability.
  • a ball butterfly valve etc. can be considered as a valve body which satisfies this requirement, it is not limited to this, and should just be a thing excellent in rapid operation nature and seal nature.
  • the valve body of the shutoff valve 135 may be a globe valve.
  • the shutoff valve 135 is a pneumatically actuated valve or a hydraulically actuated valve.
  • the shutoff valve 135 is connected to a working fluid supply line 137 that sends air or oil to an actuator (eg, piston) 135a of the shutoff valve 135.
  • a working fluid supply valve 138 is attached to the working fluid supply line 137.
  • the working fluid supply valve 138 is disposed in the non-explosion-free area isolated by the isolation wall 140 from the explosion-proof designated area. Therefore, as the working fluid supply valve 138, a solenoid valve or a motor-operated valve can be used.
  • the hydraulic fluid supply valve 138 When the hydraulic fluid supply valve 138 is open, air or oil is supplied to the actuator 135 a of the shutoff valve 135 through the hydraulic fluid supply line 137 to close the shutoff valve 135.
  • the oil pump 131 includes an electric motor 131a as its prime mover.
  • the oil pump 131 is connected to the main power supply 147 and the standby power supply 148. Electric power is normally supplied from the main power supply 147 to the oil pump 131.
  • the backup power supply 148 can be configured of a battery, a diesel engine drive generator, or the like.
  • oil pump 131 may be provided, including a regular pump and a spare pump.
  • the electric motor of the regular pump may be supplied with power from the main power supply 147
  • the electric motor of the spare pump may be supplied with power from the spare power supply 148.
  • the prime mover of the spare pump may not be an electric motor but a steam turbine.
  • the discharge pressure of the oil pump 131 is detected between the oil pump 131 and the check valve 132 to detect an emergency state in which the oil pump 131 has to be stopped, and a signal A indicating the detected discharge pressure is output.
  • the pressure detector 151 is disposed.
  • a pressure sensor, a pressure switch, a pressure transmitter or the like can be used.
  • the oil pump 131 is provided with a rotational speed detector 152 that detects the rotational speed and outputs a signal B indicating the detected rotational speed.
  • a rotational speed detector 152 for example, a speedometer with a transmission function such as a speed transmitter can be used.
  • the oil pump 131 is provided with a pump controller 131 b that controls its operation.
  • an interlock signal C is output from the pump controller 131 b.
  • the interlock signal C is used as a signal for detecting the above-mentioned emergency condition of the oil pump 131.
  • a power failure detector 157, a current measuring device 158, a voltage measuring device 159, and a power measuring device 160 are attached to a main power line 155 extending from the main power supply 147 to the oil pump 131.
  • the power failure detector 157 is configured to output a power failure detection signal G when a power failure is detected.
  • the current measuring device 158, the voltage measuring device 159, and the power measuring device 160 are configured to output signals D, E, F indicating the current, voltage, and power supplied to the oil pump 131, respectively.
  • a power shutoff device 161 is disposed on the main power line 155.
  • the power shutoff device 161 has a function of detecting an overcurrent and cutting off the power.
  • the power shutoff device 161 may be configured to operate the power shutoff / power connection in response to an external power shutoff / power connection indication.
  • the power shutoff device 161 may be configured to output a signal indicating a power shutoff state and a power connection state. In FIG. 5, the signal output from the power shutoff device 161 and the signal input from the outside are collectively denoted as H.
  • a backup power failure detector 172 is attached to a backup power line 171 extending from the backup power supply 148 to the oil pump 131.
  • the standby power failure detector 172 is configured to detect a failure of the standby power supply 148 and to output a signal L indicating the failure of the standby power supply 148.
  • the vessel 172 has an explosion proof structure and is disposed in the designated explosion proof area.
  • the pressure detector 151, the rotational speed detector 152, the power failure detector 157, the current measuring device 158, the voltage measuring device 159, the power measuring device 160, the power interrupting device 161, and the standby power failure detector 172 operate the oil pump 131. It is an operating condition detector that emits signals A to H and L indicating a condition. The signals A to H and the signal L from these operating condition detectors are sent to the system controller 165.
  • the system controller 165 is configured to detect an emergency state of the oil pump 131 based on the signals A to H and the signal L and to transmit an instruction signal M to the working fluid supply valve 138. When the instruction signal M is received, the working fluid supply valve 138 is opened, and air or oil is supplied to the actuator 135 a of the shutoff valve 135 through the working fluid supply line 137. As a result, the shutoff valve 135 is closed.
  • the system controller 165 like the working fluid supply valve 138, is disposed within the explosion proof unnecessary area isolated by the isolation wall 140 from the explosion proof designated area where the shut off valve 135 and the like are disposed. The worker can also operate the shutoff valve 135 remotely from a safe place to close the shutoff valve 135.
  • the system controller 165 can quickly close the shutoff valve 135 by opening the working fluid supply valve 138 when the oil pump 131 is in an emergency state. That is, even when both the main power supply 147 and the standby power supply 148 can not be used, it is possible to provide a configuration of a seal system capable of preventing the leakage of the fluid from the main pump while avoiding the danger such as flammable gas etc. .
  • the shutoff valve 135 constitutes a pressure holding mechanism that holds the pressure of the oil in the seal chamber 25 when the oil pump 131 is stopped.
  • the system controller 165 may close the shutoff valve 135 when the discharge pressure of the oil pump 131 falls below a threshold.
  • a threshold For example, when the main pump internal pressure is 15 MPa and the oil pressure pressurized by the oil pump 131 is 16 MPa, the threshold is set to a value higher than 15 MPa and lower than 16 MPa (for example, 15.8 MPa) Be done.
  • the discharge pressure of the oil pump 131 is detected by a pressure detector 151 disposed between the oil pump 131 and the check valve 132.
  • the pressure detector 151 detects the discharge pressure of the oil pump 131, and sends a signal A indicating the detected discharge pressure to the system controller 165.
  • the system controller 165 opens the working fluid supply valve 138 to supply air or oil to the actuator 135a of the shutoff valve 135 when the discharge pressure of the oil pump 131 indicated by the signal A becomes lower than the threshold, and shuts it down.
  • the valve 135 is closed.
  • the system controller 165 may close the shutoff valve 135 when the rotational speed of the oil pump 131 falls below a threshold.
  • a threshold For example, when the rated rotational speed of the oil pump 131 is 1500 min ⁇ 1 , the pressure is proportional to the square of the rotational speed, so the threshold is set to 1470 min ⁇ 1 which is 2% lower than 1500 min ⁇ 1 .
  • the rotational speed of the oil pump 131 is detected by a rotational speed detector 152 attached to the rotational shaft of the oil pump 131.
  • the rotational speed detector 152 detects the rotational speed of the oil pump 131, and transmits a signal B indicating the detected rotational speed to the system controller 165.
  • the system controller 165 opens the working fluid supply valve 138 to supply air or oil to the actuator 135a of the shutoff valve 135 when the rotation speed of the oil pump 131 indicated by the signal B becomes lower than the threshold value, and shuts it down.
  • the valve 135 is closed.
  • FIG. 6 is a schematic view showing an embodiment of a seal system including the mechanical seal 20 shown in FIG.
  • the mechanical seal 20 of this embodiment is a double mechanical seal basically constituted of two pairs of rotating side sealing members and stationary side sealing members arranged in back-to-back alignment. is there. More specifically, the mechanical seal 20 is in sliding contact with the two seal rings (first and second rotation side seal members) 21A and 21B that rotate integrally with the rotary shaft 1 and the seal rings 21A and 21B, respectively.
  • a sleeve 24 is fixed on the rotary shaft 1, and the seal rings 21A and 21B are fixed on the outer peripheral surface of the sleeve 24.
  • the seal ring bodies 22A and 22B are supported by the stationary side member.
  • the two pairs of seal rings 21A and 21B and the seal ring bodies 22A and 22B are disposed symmetrically with respect to a plane perpendicular to the rotation axis 1.
  • the mechanical seal 20 is disposed in the seal chamber 25.
  • the sealing chamber 25 is formed between the stuffing box 12A (or 12B) and the rotating shaft 1.
  • An oil supply line 226 is connected to the seal chamber 25, and an end of the oil supply line 226 is connected to an oil tank (oil reservoir) 230.
  • the oil supply line 226 is provided with an oil pump 231 for pressurizing the oil supplied from the oil tank 230 and transferring it to the seal chamber 25, and a check valve 232 located between the oil pump 231 and the seal chamber 25. It is done.
  • a branch line 233 is connected to the oil supply line 226, and three accumulators 234 are connected in parallel to the branch line 233.
  • a connection point between the oil supply line 226 and the branch line 233 is located between the check valve 232 and the seal chamber 25.
  • a diaphragm (partition wall) (not shown) is disposed inside each accumulator 234, and a gas such as nitrogen gas is enclosed.
  • a portion of the oil transferred to the seal chamber 25 is introduced into the three accumulators 234 through the branch line 233 and accumulated in the accumulators 234.
  • the oil accumulated in the accumulator 234 is pressurized by the pressure of the gas. Therefore, the accumulator 234 has a function of holding the pressure of the oil supplied to the seal chamber 25.
  • the present invention is not limited to this.
  • it may be a single accumulator, or two or more accumulators may be provided. It is important that the pressure of the oil held by the accumulator is higher than the pressure of the fluid boosted by the rotation of the impeller 3 (see FIG. 1).
  • the check valve 232 allows oil to flow only in the direction from the oil tank 230 toward the seal chamber 25.
  • An oil outlet line 227 is further connected to the seal chamber 25, and the oil outlet line 227 is in communication with the oil tank 230.
  • oil is supplied from the oil tank 230 to the seal chamber 25 to fill the seal chamber 25, and then returned to the oil tank 230 through the oil outlet line 227.
  • the oil outlet line 227 is provided with a shutoff valve 235, and in case of an emergency such as a power failure, the shutoff valve 235 is closed to stop the oil circulation.
  • the pressure of the oil supplied to the seal chamber 25 is set to be higher than the pressure of the fluid pressurized by the main pump.
  • the fluid eg, supercritical fluid
  • the pressure of the oil in the seal chamber 25 is maintained at about 16 MPa.
  • a small amount of oil passes between the seal rings 21A and 21B and the seal ring main bodies 22A and 22B to form the seal chamber 25. Flow outside. Therefore, the fluid pressurized by the rotating impeller 3 does not enter the seal chamber 25 and the fluid leakage to the outside of the pump is prevented.
  • the oil that has passed between the low pressure side seal ring 21B and the low pressure side seal ring main body 22B is discharged from the drain (not shown) to the outside of the pump.
  • the shutoff valve 235 is closed and the flow of oil is stopped. In this state, the pressurization of the oil by the oil pump 231 is stopped, but the pressure of the oil between the check valve 232 and the shutoff valve 235 (that is, the pressure of the oil in the seal chamber 25) is maintained by the accumulator 234. Be done. Therefore, even when the oil pump 231 is stopped, the pressurized fluid does not enter the seal chamber 25 and the fluid is prevented from leaking to the outside of the pump.
  • the oil pump 231 is a pump capable of supplying oil to the seal chamber 25 by setting the pressure of the oil higher than the pressure of the fluid in the pump and further circulating the oil, and a gear pump or the like is used.
  • the shutoff valve 235 is a motorized valve or solenoid valve having a high response speed so as to quickly maintain a safe state in an emergency.
  • the motor-operated valve and the solenoid valve are valves that open and close in response to the supply of electricity.
  • the motor-operated valve performs opening and closing operations of the valve body by the operation of the electric motor and the solenoid valve operates the solenoid.
  • the solenoid valve is generally small in diameter and suitable for medium and low pressure fluids. As the fluid becomes higher in pressure, it is necessary to adopt a special design such as a pilot type using fluid pressure. However, since the solenoid valve has high responsiveness, it is preferable when importance is attached to the responsiveness.
  • the motor-operated valve is slightly inferior in response to the solenoid valve, but has the advantages of being able to obtain a large valve driving force by the electric motor and having high sealing performance at the time of closing. For this reason, as in the seal system according to the present embodiment, the pressure of the fluid is high, and it is preferable when it is required to reliably seal and hold the pressure of the fluid when closing.
  • the power supply for supplying power to the shutoff valve 235 may be a power supply different from the power supply for the oil pump 231. According to this structure, the closing operation of the shutoff valve 235 can be assured when the oil pump 231 is stopped due to the power failure.
  • the shutoff valve 235 is required to be equipped with a valve body excellent in quick operation and sealing. Although a ball butterfly valve etc. can be considered as a valve body which satisfies this requirement, it is not limited to this, and should just be a thing excellent in rapid operation nature and seal nature.
  • the valve body of the shutoff valve 235 may be a glove valve.
  • the oil pump 231 is provided with an electric motor 231a as its prime mover.
  • the oil pump 231 and the shutoff valve 235 are connected to the main power supply 247 and the standby power supply 248. Electric power is normally supplied from the main power supply 247 to the oil pump 231 and the shutoff valve 235.
  • the backup power supply 248 can be configured of a battery, a diesel engine drive generator, or the like.
  • oil pump 231 may be installed, including a regular pump and a spare pump.
  • the electric motor of the regular pump may be supplied with power from the main power supply 247
  • the electric motor of the spare pump may be supplied with power from the spare power supply 248.
  • the prime mover of the spare pump may not be an electric motor but a steam turbine.
  • the discharge pressure of the oil pump 231 is detected between the oil pump 231 and the check valve 232 to detect an emergency condition in which the oil pump 231 has to be stopped, and a signal A indicating the detected discharge pressure is output.
  • the pressure detector 251 is disposed.
  • a pressure sensor, a pressure switch, a pressure transmitter, or the like can be used.
  • the oil pump 231 is provided with a rotational speed detector 252 that detects the rotational speed and outputs a signal B indicating the detected rotational speed.
  • a speedometer with a transmission function such as a speed transmitter can be used.
  • the oil pump 231 is provided with a pump controller 231b that controls its operation.
  • an interlock signal C is output from the pump controller 231b.
  • the interlock signal C is used as a signal for detecting the above-mentioned emergency condition of the oil pump 231.
  • a power failure detector 257, a current measuring device 258, a voltage measuring device 259, and a power measuring device 260 are attached to the main power line 255 extending from the main power supply 247 to the oil pump 231.
  • the power failure detector 257 is configured to output a power failure detection signal G when a power failure is detected.
  • the current measuring device 258, the voltage measuring device 259 and the power measuring device 260 are configured to output signals D, E and F indicating the current, voltage and power supplied to the oil pump 231, respectively.
  • a power shutoff device 261 is disposed on the main power line 255.
  • the power shutoff device 261 has a function of detecting an overcurrent and cutting off the power.
  • the power shutoff device 261 may be configured to operate the power shutoff / power connection in response to an external power shutoff / power connection indication.
  • the power shutoff device 261 may be configured to output a signal indicating a power shutoff state and a power connection state.
  • the signal output from the power shutoff device 261 and the signal input from the outside are collectively denoted as H.
  • a backup power failure detector 272 is attached to a backup power line 271 extending from the backup power supply 248 to the oil pump 231.
  • the standby power failure detector 272 is configured to detect a failure of the standby power supply 248 and output a signal L indicating the failure of the standby power supply 248.
  • the pressure detector 251, the rotational speed detector 252, the power failure detector 257, the current measuring device 258, the voltage measuring device 259, the power measuring device 260, the power shutoff device 261, and the standby power failure detector 272 operate the oil pump 231. It is an operating condition detector that emits signals A to H and L indicating a condition. The signals A to H and the signal L from these operating condition detectors are sent to the system controller 265.
  • the system controller 265 is configured to detect an emergency state of the oil pump 231 based on the signals A to H and the signal L, and to transmit an instruction signal N to the shutoff valve 235. When the instruction signal N is received, the shutoff valve 235 is closed.
  • the system controller 265 can quickly close the shutoff valve 235 when the oil pump 231 is in an emergency state.
  • the shutoff valve 235 constitutes a pressure holding mechanism that holds the pressure of the oil in the seal chamber 25 when the oil pump 231 is stopped.
  • the system controller 265 may close the shutoff valve 235 when the discharge pressure of the oil pump 231 falls below a threshold.
  • a threshold is set to a value higher than 15 MPa and lower than 16 MPa (for example, 15.8 MPa) Be done.
  • the discharge pressure of the oil pump 231 is detected by a pressure detector 251 disposed between the oil pump 231 and the check valve 232.
  • the pressure detector 251 detects the discharge pressure of the oil pump 231, and sends a signal A indicating the detected discharge pressure to the system controller 265.
  • the system controller 265 closes the shutoff valve 235 when the discharge pressure of the oil pump 231 indicated by the signal A becomes lower than the threshold value.
  • system controller 265 may close shutoff valve 235 when the rotational speed of oil pump 231 falls below a threshold.
  • a threshold For example, when the rated rotational speed of the oil pump 231 is 1500 min ⁇ 1 , the pressure is proportional to the square of the rotational speed, so the threshold is set to 1470 min ⁇ 1 which is 2% lower than 1500 min ⁇ 1 .
  • the rotational speed of the oil pump 231 is detected by a rotational speed detector 252 attached to the rotational shaft of the oil pump 231.
  • the rotational speed detector 252 detects the rotational speed of the oil pump 231, and transmits a signal B indicating the detected rotational speed to the system controller 265.
  • the system controller 265 closes the shutoff valve 235 when the rotational speed of the oil pump 231 indicated by the signal B becomes lower than the threshold value.
  • FIG. 7 is a schematic view showing another embodiment of the seal system.
  • the power supply 80 for supplying power to the shutoff valve 235 which is an electrically operated valve or a solenoid valve, is provided as a power supply different from the power supplies 247 and 248 for the oil pump 231. According to this structure, the closing operation of the shutoff valve 235 can be assured when the oil pump 231 is stopped due to the power failure.
  • the power source 80 can be composed of a battery or the like.
  • each embodiment of the present invention can be applied to a high pressure pump for handling a supercritical fluid such as CO 2 or H 2 S.
  • a supercritical fluid such as CO 2 or H 2 S.
  • the present invention is applicable to a pump provided with a seal system for preventing leakage of fluid containing harmful components such as volatile combustible components and hydrogen sulfide.

Abstract

ポンプは、回転軸(1)と、回転軸(1)に固定された羽根車(3)と、羽根車(3)を収容するケーシング(2)と、ダブルメカニカルシール(20)と、ダブルメカニカルシール(20)を収容するシール室(25)と、オイルを貯留するオイル貯留部(30)と、オイル貯留部(30)とシール室(25)とを連通させるオイル供給ライン(26)と、オイル貯留部(30)から供給されるオイルを加圧してシール室(25)に移送する第1オイルポンプ(31)と、第1オイルポンプ(31)と並列に配置された第2オイルポンプ(42)と、シール室(25)に接続されたオイル出口ライン(27)と、シール室(25)内のオイルの圧力を保持する圧力保持機構とを備える。

Description

ポンプおよびシールシステム
 本発明は、メカニカルシールを備えたポンプに係り、特に揮発性可燃成分や硫化水素などの有害成分を含む流体の漏洩を防止するためのシールシステムを備えたポンプに関するものである。
 石油や天然ガスなどの化石燃料を精製する際には、二酸化炭素(CO)や、硫黄(S)などの不純物を取り除く必要がある。硫黄は精製過程において硫化水素(HS)として回収されることが多く、精製過程に用いられるポンプが扱う流体にも、この硫化水素が多く含まれる場合がある。硫化水素は極めて毒性が高く、万一大気中に漏れ出した場合には、人体に深刻な被害をおよぼすため、硫化水素を扱うポンプにおいては、硫化水素が決して外部へ漏れ出すことが無い様に、ポンプの設計に万全の配慮を払う必要がある。
 メカニカルシールは、ポンプの回転軸がケーシングを貫通する箇所をシールする重要な部品である。メカニカルシールは、回転軸に取り付けられる回転環と、ケーシング側に取り付けられる固定環とが、適度な面圧で押し付けられながら摺動して、流体がポンプの外部へ漏れるのを防ぐ装置である。回転環と固定環が、ドライ状態で摺動すると、発熱により摺動面が短期間で損傷してシール機能を維持できなくなるため、摺動面には冷却と潤滑を目的として適量の液体を供給する必要がある。これをフラッシングといい、摺動面に供給される液体をフラッシング液という。メカニカルシールにフラッシング液を供給する配管と機器・計装品の組合せをシールシステムまたはシールプランと呼ぶ。ポンプの構造や取り扱う流体の種類に応じて様々なシールシステムがある。ポンプ取扱液が毒性、発火性などの有害性を有しない場合には、自液すなわちポンプ取扱液をフラッシング液として供給することが可能である。これをセルフフラッシングという。
 特許文献1には、ポンプによって加圧された毒性や可燃性のある液体を、回転軸と静止部材との隙間を通じて、内側シールと外側シールの間に設けられたコンパートメントに入れさせ、コンパートメントに別途供給される流体(空気、蒸気)と混合させて、シール室からポンプ外の再生システムに移送する構造が開示されている。
 ポンプによって加圧された毒性や可燃性のある液体をコンパートメント内に流入させるため、コンパートメントに供給される流体(空気、蒸気)は、ポンプ内の圧力より低くなっているが、外気に比べて高い圧力を有している。そのため、コンパートメント入った毒性や可燃性のある液体は、外側シールを通って外部に流出する虞がある。
 特許文献2には、内側のオイルフィルムシールと外側のオイルフィルムシールの間に設けられた空間にシール用のオイルを供給し、固定側にも回転側にも組み込まれずにあるシールリングと固定側と回転側の間の隙間にオイル膜を生成するシール構造が開示されている。オイルフィルムシールから押し出されたオイルは、コンプレッサあるいはポンプが加圧する流体と接し、そののち回収され再度使用される。すなわち、コンプレッサあるいはポンプが加圧する流体が毒性または可燃性流体を含む場合には、オイルは毒性や可燃性流体に汚染された状態で使用される。このオイルは外側のオイルフィルムシールにも流れるので、毒性や可燃性流体に汚染されたオイルが媒体となって毒性や可燃性流体が外気に運び出される危険性がある。
 特許文献3には、ポンプが取扱うポンプ液自体を加圧してシール機構に供給し、シール機構の漏れ防止液体として用いる技術が開示されている。ポンプ停止時においてシール機構に加わる圧力は、ポンプの吐出圧相当の圧力であり、シール機構の外気側の摺動リングと対向リングの摺動面にもかかっている。すなわち、ポンプ液が毒性や可燃性流体を含む場合には、外気のすぐそばに危険な液体があり、外部に漏れる虞がある。
 ポンプ取扱液が有害成分を含む場合には、有害液が摺動面の隙間から漏洩した時に外部へ漏れ出てしまう虞があるため、セルフフラッシングを採用することは出来ない。そこで、メカニカルシールの摺動面から有害液が外部へ漏れ出すことを防止するために、ポンプ内側のメカニカルシールと外気側のメカニカルシールを背面合せ(バックトウバック)に配列したダブルメカニカルシールが採用される。このダブルメカニカルシールでは、ポンプ内側のメカニカルシールと外気側のメカニカルシールとの間に、無害なフラッシング液を、ポンプ内部圧力すなわちポンプ取扱液の圧力より高い圧力で供給する必要がある。そうするためには、何らかの加圧手段によりフラッシング液を加圧する必要がある。加圧手段には、フラッシング液加圧ポンプを用いるものや、アキュムレータを用いる方式などが、実用化されている。これらのフラッシングプランはAPI682に規格化されている。
 特許文献4には、ポンプで加圧された毒性や可燃性のある流体をポンプ外に漏洩することを防止するためのシール技術が開示されている。このシール技術では、停電などで主ポンプが停止した場合に、ポンプが取り扱う流体とは別のフラッシング液をポンプ内の流体より高く保つことで流体の漏洩を防止する。すなわち、オイルポンプによりフラッシング液としてのオイルを高い圧力でシール室に供給する。さらに停電時などの非常時にもシール機能を継続させるため、シール室から高圧オイルを排出するラインの緊急閉止弁を閉止することにより、シール室のオイル圧力を保持する。
米国特許第5865441号明細書 米国特許第3994503号明細書 英国特許第1441653号明細書 欧州特許第2110558号明細書
 ところで、毒性や可燃性のある流体をポンピングしている上記ポンプ(以下、主ポンプという)は、通常は6.6kV程度の高圧電源からの電力の供給で運転される。一方オイルポンプは400V程度の低圧電源からの電力の供給で運転される。仮にシール室にオイルを供給しているときにオイルポンプが停電あるいは故障などで停止しても、プラントが停止できないなどの事情で、主ポンプの運転は継続しなければならない場合がある。しかしながら、従来の技術では、停電時にはシール室内の圧力を保持することが可能であるものの、主ポンプ運転の冗長性にやや欠ける面があった。
 そこで、本発明の一態様は、石油や天然ガスなどの化石燃料を精製するプラントなどにおいて、硫化水素などの有害成分を含有する流体の漏洩を防止しながら、運転を継続できるように冗長性を高めたポンプを提供する。また、本発明の一態様は、そのようなポンプに使用されるシールシステムを提供する。
 石油や天然ガスなどの化石燃料を精製するプラントでは、可燃性ガス等の引火を防止するための対策が厳しく要求される。そこで、本発明の一態様は、石油や天然ガスなどの化石燃料を精製するプラントなどの防爆指定地域でも安全に使用することができるポンプおよびシールシステムを提供する。
 石油や天然ガスなどの化石燃料を精製するプラントでは、可燃性ガスや、有毒ガスを扱うので、小さな事故から大事故に発展することがないよう、非常時において必要な対応を速やかに行うことが要求されることが多い。そこで、本発明の一態様は、非常時において流体の漏洩を防止するのに必要な対策を速やかに行えるポンプおよびシールシステムを提供する。
 本発明の一態様は、回転軸と、前記回転軸に固定された羽根車と、前記羽根車を収容するケーシングと、ダブルメカニカルシールと、前記ダブルメカニカルシールを収容するシール室と、オイルを貯留するオイル貯留部と、前記オイル貯留部と前記シール室とを連通させるオイル供給ラインと、前記オイル貯留部から供給される前記オイルを加圧して前記シール室に移送する第1オイルポンプと、前記第1オイルポンプと並列に配置され、前記オイル貯留部から供給される前記オイルを加圧して前記シール室に移送する第2オイルポンプと、前記シール室に接続されたオイル出口ラインと、前記シール室内のオイルの圧力を保持する圧力保持機構とを備えたことを特徴とするポンプである。
 本発明の好ましい態様は、前記第1オイルポンプの運転状態を示す信号に基づいて、前記第2オイルポンプを起動させるシステムコントローラをさらに備えたことを特徴とする。
 本発明の好ましい態様は、前記第2オイルポンプは、原動機として蒸気タービンを有していることを特徴とする。
 本発明の好ましい態様は、前記圧力保持機構は、前記第1オイルポンプと前記シール室との間に位置する第1逆止弁と、前記第2オイルポンプと前記シール室との間に位置する第2逆止弁と、前記第1および第2逆止弁と前記シール室との間に配置された少なくとも1つのアキュムレータと、前記オイル出口ラインに取り付けられた閉止弁とを備えることを特徴とする。
 本発明の好ましい態様は、前記第1オイルポンプに接続された主電源と、前記第2オイルポンプに接続された予備電源をさらに備え、前記第1オイルポンプおよび前記第2オイルポンプは、それぞれ原動機として電動モータを有していることを特徴とする。
 本発明の好ましい態様は、前記第1オイルポンプと並列に配置され、前記オイル貯留部から供給される前記オイルを加圧して前記シール室に移送する第3オイルポンプをさらに備え、前記第3オイルポンプは、原動機として蒸気タービンを有していることを特徴とする。
 本発明の好ましい態様は、前記圧力保持機構は、前記第1オイルポンプと前記シール室との間に位置する第1逆止弁と、前記第2オイルポンプと前記シール室との間に位置する第2逆止弁と、前記第3オイルポンプと前記シール室との間に位置する第3逆止弁と、前記第1,第2,および第3逆止弁と前記シール室との間に配置された少なくとも1つのアキュムレータと、前記オイル出口ラインに取り付けられた閉止弁とを備えることを特徴とする。
 本発明の一態様は、ダブルメカニカルシールを収容するためのシール室と、オイルを貯留するオイル貯留部と、前記オイル貯留部と前記シール室とを連通させるオイル供給ラインと、前記オイル貯留部から供給される前記オイルを加圧して前記シール室に移送する第1オイルポンプと、前記第1オイルポンプと並列に配置され、前記オイル貯留部から供給される前記オイルを加圧して前記シール室に移送する第2オイルポンプと、前記シール室に接続されたオイル出口ラインと、前記シール室内のオイルの圧力を保持する圧力保持機構とを備えたことを特徴とするシールシステムである。
 本発明によれば、常用ポンプとしての第1オイルポンプと、予備ポンプとしての第2オイルポンプが設けられるので、第1オイルポンプが停電または故障などで停止した場合に、速やかに第2オイルポンプを起動することでシール室内圧力を維持することが可能となる。結果として、停電時に主ポンプ運転を継続することが可能となり冗長性を高めることが可能となる。
 本発明の一態様は、回転軸と、前記回転軸に固定された羽根車と、前記羽根車を収容するケーシングと、ダブルメカニカルシールと、前記ダブルメカニカルシールを収容するシール室と、オイルを貯留するオイル貯留部と、前記オイル貯留部と前記シール室とを連通させるオイル供給ラインと、前記オイル貯留部から供給される前記オイルを加圧して前記シール室に移送するオイルポンプと、前記オイルポンプと前記シール室との間に位置する逆止弁と、前記シール室に接続されたオイル出口ラインと、前記逆止弁と前記シール室との間に配置された少なくとも1つのアキュムレータと、前記オイル出口ラインに取り付けられた閉止弁とを備え、前記閉止弁は、防爆弁であることを特徴とするポンプである。
 本発明の好ましい態様は、前記オイルポンプの非常状態を検出して、前記閉止弁を閉じるシステムコントローラをさらに備えたことを特徴とする。
 本発明の好ましい態様は、前記閉止弁が空気圧駆動弁または油圧駆動弁であることを特徴とする。
 本発明の好ましい態様は、前記閉止弁に接続された作動流体供給ラインと、前記作動流体供給ラインに取り付けられた作動流体供給弁をさらに備えたことを特徴とする。
 本発明の好ましい態様は、前記システムコントローラは、前記オイルポンプの非常状態を検出したときに、指示信号を前記作動流体供給弁に送信して該作動流体供給弁を開くことを特徴とする。
 本発明の好ましい態様は、前記システムコントローラおよび前記作動流体供給弁は、隔離壁で前記閉止弁から隔離された領域に配置されていることを特徴とする。
 本発明の好ましい態様は、前記システムコントローラは、前記オイルポンプの吐出圧力がしきい値よりも低くなったときに、前記閉止弁を閉じるように構成されていることを特徴とする。
 本発明の好ましい態様は、前記システムコントローラは、前記オイルポンプの吐出圧力がしきい値よりも低くなったときに、前記作動流体供給弁を開くように構成されていることを特徴とする。
 本発明の好ましい態様は、前記システムコントローラは、前記オイルポンプの回転速度がしきい値よりも低くなったときに、前記閉止弁を閉じるように構成されていることを特徴とする。
 本発明の好ましい態様は、前記システムコントローラは、前記オイルポンプの回転速度がしきい値よりも低くなったときに、前記作動流体供給弁を開くように構成されていることを特徴とする。
 本発明の一態様は、ダブルメカニカルシールを収容するためのシール室と、オイルを貯留するオイル貯留部と、前記オイル貯留部と前記シール室とを連通させるオイル供給ラインと、前記オイル貯留部から供給される前記オイルを加圧して前記シール室に移送するオイルポンプと、前記オイルポンプと前記シール室との間に位置する逆止弁と、前記シール室に接続されたオイル出口ラインと、前記逆止弁と前記シール室との間に配置された少なくとも1つのアキュムレータと、前記オイル出口ラインに取り付けられた閉止弁とを備え、前記閉止弁は、防爆弁であることを特徴とするシールシステムである。
 本発明によれば、閉止弁を防爆弁としたので、可燃性ガス等の引火による事故を引き起こすことがない。また、特に閉止弁を空気圧駆動弁または油圧駆動弁とすることで、電力供給事情が十分でない地域でも、安全に動作できるシールシステムを実現することができる。
 本発明の一態様は、回転軸と、前記回転軸に固定された羽根車と、前記羽根車を収容するケーシングと、ダブルメカニカルシールと、前記ダブルメカニカルシールを収容するシール室と、オイルを貯留するオイル貯留部と、前記オイル貯留部と前記シール室とを連通させるオイル供給ラインと、前記オイル貯留部から供給される前記オイルを加圧して前記シール室に移送するオイルポンプと、前記オイルポンプと前記シール室との間に位置する逆止弁と、前記シール室に接続されたオイル出口ラインと、前記逆止弁と前記シール室との間に配置された少なくとも1つのアキュムレータと、前記オイル出口ラインに取り付けられた閉止弁とを備え、前記閉止弁は、電動弁または電磁弁であることを特徴とするポンプである。
 本発明の好ましい態様は、前記オイルポンプの非常状態を検出して、前記閉止弁を閉じるシステムコントローラをさらに備えたことを特徴とする。
 本発明の好ましい態様は、前記システムコントローラは、前記オイルポンプの非常状態を検出したときに、指示信号を前記閉止弁に送信して該閉止弁を閉じることを特徴とする。
 本発明の好ましい態様は、前記システムコントローラは、前記オイルポンプの吐出圧力がしきい値よりも低くなったときに、前記閉止弁を閉じるように構成されていることを特徴とする。
 本発明の好ましい態様は、前記システムコントローラは、前記オイルポンプの回転速度がしきい値よりも低くなったときに、前記閉止弁を閉じるように構成されていることを特徴とする。
 本発明の一態様は、ダブルメカニカルシールを収容するためのシール室と、オイルを貯留するオイル貯留部と、前記オイル貯留部と前記シール室とを連通させるオイル供給ラインと、前記オイル貯留部から供給される前記オイルを加圧して前記シール室に移送するオイルポンプと、前記オイルポンプと前記シール室との間に位置する逆止弁と、前記シール室に接続されたオイル出口ラインと、前記逆止弁と前記シール室との間に配置された少なくとも1つのアキュムレータと、前記オイル出口ラインに取り付けられた閉止弁とを備え、前記閉止弁は、電動弁または電磁弁であることを特徴とするシールシステムである。
 本発明によれば、閉止弁を電動弁または電磁弁としたので、非常時に閉止弁を速やかに閉止することができ、大事故に発展する前に流体の漏洩を防止することができる。
本発明の一実施形態に係る遠心式多段ポンプ(主ポンプ)を示す断面図である。 図1に示すメカニカルシールを含むシャフトシールユニットを示す拡大図であり、本発明に係るシールシステムの一実施形態を示す模式図である。 シールシステムの別の実施形態を示す模式図である。 シールシステムのさらに別の実施形態を示す模式図である。 図1に示すメカニカルシールを含むシールシステムの一実施形態を示す模式図である。 図1に示すメカニカルシールを含むシールシステムの一実施形態を示す模式図である。 シールシステムの他の実施形態を示す模式図である。
 以下、本発明の実施形態について図面を参照して説明する。図1は本発明の一実施形態に係る遠心式多段ポンプ(主ポンプ)を示す断面図である。このポンプは、石油や天然ガスなどの化石燃料を精製するプラントなどに用いられ、揮発性可燃成分や硫化水素などの有害成分を含む流体(液体)を加圧するポンプである。このポンプは、ラジアル軸受8A,8Bおよびスラスト軸受9に回転自在に支持された回転軸1と、この回転軸1上に直列に配置された複数の羽根車3と、これらの羽根車3を収容する複数のインナーケーシング2Aと、これらのインナーケーシング2Aを収容するバレル型のアウターケーシング2Bとを備えている。このインナーケーシング2Aおよびアウターケーシング2Bにより、二重ケーシング構造を有するケーシング2が構成される。
 複数の羽根車3は同一方向を向いて配列され、各羽根車3は各インナーケーシング2Aに1つずつ収容されている。インナーケーシング2Aとガイドベーン14との間にはピン4が装着されており、これによりインナーケーシング2Aとガイドベーン14との相対位置が固定される。さらに、それぞれのインナーケーシング2Aは、回転軸1に沿って延びる複数の通しボルト5によって互いに固定されている。アウターケーシング2Bには吸込口6および吐出口7が形成されている。回転軸1の端部は図示しない駆動機(例えばモータ)に連結され、この駆動機により羽根車3が回転するようになっている。
 上述の構成において、羽根車3が回転すると、吸込口6から流体(例えばCOやHSなどを含む液体や、それらの超臨界流体)が吸い込まれて羽根車3に導かれ、各羽根車3によって順次昇圧される。インナーケーシング2Aとアウターケーシング2Bとの間の空間は昇圧された流体で満たされ、吐出口7から流体が排出される。このような二重ケーシング構造には、アウターケーシング2Bは昇圧された流体の圧力と引張応力とを受け、インナーケーシング2Aは圧縮応力のみを受けるという利点がある。一方、ケーシングが1つであると、「流体を圧縮する最適な形状」と「高圧に耐える形状」とを同時に満たすケーシング構造は複雑になってしまう。この点、二重ケーシング構造であると、インナーケーシングを「流体を圧縮する最適な形状」とし、アウターケーシングを「圧力を保持する形状(シールしやすい形状、流体を外に漏らすことのない安全性の高い形状)として、別々に設計し、製作することができる。なお、本実施形態では、インナーケーシング2A、アウターケーシング2B、羽根車3などの流体と接触する構成部材は、耐食性を有する材料から形成されている。
 ケーシング2の吐出側端部にはケーシングカバー13が固定されており、さらにケーシングカバー13の側端部にはスタッフィングボックス12Aが固定されている。また、ケーシング2の吸込側端部にはスタッフィングボックス12Bが固定されている。ケーシング2(図1の例ではアウターケーシング2B)とケーシングカバー13との間にはOリング15Aが設けられており、同様に、ケーシングカバー13とスタッフィングボックス12Aとの間にはOリング15Bが設けられている。また、ケーシング2(図1の例ではアウターケーシング2B)とスタッフィングボックス12Bとの間にもOリング15Cが設けられている。
 ケーシング2とケーシングカバー13との接触面、ケーシングカバー13とスタッフィングボックス12Aとの接触面、およびケーシング2とスタッフィングボックス12Bとの接触面には、それぞれ環状溝16A,16B,16Cが形成されている。これらの環状溝16A,16B,16Cはそれぞれ圧力検出ポート17A,17B,17Cに連通している。これらの圧力検出ポート17A,17B,17Cは図示しない圧力センサにそれぞれ接続されており、さらに各圧力センサは図示しない警報装置に接続されている。この警報装置は圧力センサの出力値が上昇して所定の値に達したときに警報を発するように構成されている。
 上記構成において、流体がケーシング2から漏れると、圧力センサの出力値が上昇する。この圧力センサの出力値が上述の所定値に達すると、警報装置よりアラームが発せられ、これにより流体の漏洩が検出される。したがって、上記構成により、安全性の高いポンプを提供することができる。
 ケーシング2の吐出側には、吸込側と吐出側との圧力差に起因して発生するスラスト荷重をバランスさせるバランス室10が設けられている。より詳しくは、ケーシングカバー13内にバランス室10が形成されている。このバランス室10は回転軸1を囲む形状を有し、連通ライン11を通じて吸込口6に連通している。したがって、バランス室10内の圧力は、吸込口6の圧力(吸込圧力)と同じとなっている。一般に超臨界流体の比重は圧力に応じて変化する。軸方向のスラスト荷重のバランスをとる構成として、羽根車を背中合わせに配置する、羽根車を同一方向に配列させつつバランスピストンを取り付ける、などが挙げられるが、超臨界流体を取り扱うポンプにおいては、本実施形態の構成(すなわちバランス室10及び連通ライン11)が最適である。
 図1に示すように、ケーシング2の吸込側および吐出側には、それぞれメカニカルシール20が配置されている。これらのメカニカルシール20は、それぞれスタッフィングボックス12A,12B内に配置されている。以下、メカニカルシール20を含むシャフトシールユニットについて図2を参照して説明する。
 図2は図1に示すメカニカルシール20を含むシャフトシールユニットを示す拡大図であり、本発明に係るシールシステムの一実施形態を示す模式図である。図2に示すように、本実施形態のメカニカルシール20は、背面合せ(バックトウバック)に配列された2対の回転側シール部材および固定側シール部材から基本的に構成されるダブルメカニカルシールである。より詳しくは、メカニカルシール20は、回転軸1と一体に回転する2つのシールリング(第1および第2の回転側シール部材)21A,21Bと、これらのシールリング21A,21Bにそれぞれに摺接する2つのシールリング本体(第1および第2の固定側シール部材)22A,22Bと、これらのシールリング本体22A,22Bをシールリング21A,21Bにそれぞれ押し付けるスプリング(押圧機構)23,23とを備えている。
 回転軸1上にはスリーブ24が固定され、このスリーブ24の外周面上に上記シールリング21A,21Bが固定されている。上記シールリング本体22A,22Bは、固定側部材に支持されている。2対のシールリング21A,21Bおよびシールリング本体22A,22Bは、回転軸1に垂直な平面に関して対称に配置される。
 メカニカルシール20は、シール室25内に配置されている。シール室25は、スタッフィングボックス12A(または12B)と回転軸1との間に形成されている。このシール室25にはオイル供給ライン26が接続され、その端部はオイルタンク(オイル貯留部)30に接続されている。オイル供給ライン26には、オイルタンク30から供給されるオイルを加圧してシール室25に移送する第1オイルポンプ31と、第1オイルポンプ31とシール室25との間に位置して第1逆止弁(Non Return Valve)32が設けられている。第1オイルポンプ31は、その原動機として電動モータ31aを備えている。
 オイル供給ライン26にはバイパスライン40が接続されている。バイパスライン40の両端はオイル供給ライン26に接続されており、バイパスライン40は第1オイルポンプ31および第1逆止弁32をバイパスして延びている。バイパスライン40の一端は、オイルタンク30と第1オイルポンプ31の間に位置しており、バイパスライン40の他端は第1逆止弁32とシール室25の間に位置している。このバイパスライン40には、第2オイルポンプ42および第2逆止弁44が設けられている。第2オイルポンプ42および第2逆止弁44は、第1オイルポンプ31および第1逆止弁32と並列に配置されている。第2オイルポンプ42は、オイルタンク30からバイパスライン40を通じて供給されるオイルを加圧してシール室25に移送できるように配置されている。第2逆止弁44は第2オイルポンプ42とシール室25との間に位置し、第2オイルポンプ42によって加圧されたオイルの逆流は、第2逆止弁44によって防止される。第2オイルポンプ42は、その原動機として電動モータ42aを備えている。
 第1逆止弁32および第2逆止弁44は、オイルタンク30からシール室25に向かう方向にのみオイルが流れることを許容する。シール室25にはオイル出口ライン27がさらに接続され、このオイル出口ライン27はオイルタンク30に連通している。このような構成により、オイルは、オイルタンク30からシール室25に供給されて該シール室25を満たした後、オイル出口ライン27を通じて再びオイルタンク30に戻される。このようにして、オイルはオイルタンク30とシール室25との間を循環する。
 第1オイルポンプ31と第2オイルポンプ42は、図1に示す主ポンプの原動機とは別の原動機である電動モータ31a,42aにより駆動される。第1オイルポンプ31と第2オイルポンプ42は、オイルの圧力を主ポンプ内の流体の圧力よりも高くして、シール室25にオイルを供給することができるポンプであり、ギアポンプなどが用いられる。本実施形態では、第1オイルポンプ31は常用ポンプとして用いられ、第2オイルポンプ42は予備ポンプとして用いられる。予備ポンプは、常用ポンプが不具合などで停止した場合に運転される。第1オイルポンプ31または第2オイルポンプ42を運転すると、オイルはオイルタンク30からシール室25に供給され、さらにシール室25からオイル出口ライン27を通ってオイルタンク30に戻される。
 第1オイルポンプ31と第2オイルポンプ42の各々の吸込側と吐出側に閉止弁を設けてもよい。このような閉止弁は、故障したオイルポンプの交換のときに、オイル供給ライン26およびオイル出口ライン27内のオイルを全て抜き出すことなく、またオイル循環を停止することなく交換作業を行うことを可能とする。すなわち、故障したオイルポンプの吸込側と吐出側の閉止弁を閉じることで、故障したオイルポンプとは別のオイルポンプを運転したまま、故障したオイルポンプの交換ができる。
 オイル供給ライン26には、分岐ライン33が接続され、この分岐ライン33には3つのアキュムレータ34が並列に接続されている。オイル供給ライン26と分岐ライン33との接続点は、逆止弁32,44とシール室25との間に位置している。
 各アキュムレータ34の内部には図示しないダイヤフラム(隔壁)が配置され、窒素ガスなどの気体が封入されている。シール室25に移送されるオイルの一部は分岐ライン33を通って3つのアキュムレータ34内に導入され、アキュムレータ34内に蓄積される。アキュムレータ34内に蓄積されたオイルは、上記気体の圧力により加圧される。したがって、アキュムレータ34は、シール室25に供給されたオイルの圧力を保持する機能を有している。
 本実施形態では、3つのアキュムレータ34が設けられているが、本発明はこれに限られない。例えば、単数のアキュムレータであってもよく、あるいは、2つまたは4つ以上のアキュムレータを設けてもよい。要は、アキュムレータによって保持されるオイルの圧力が、羽根車3(図1参照)の回転によって昇圧された流体の圧力よりも高いことが重要である。
 シール室25に供給されるオイルの圧力は、主ポンプによって昇圧される流体の圧力よりも高くなるように設定される。例えば、主ポンプによって流体(例えば超臨界流体)が約15MPaにまで昇圧される場合には、シール室25内のオイルの圧力は16MPa程度に維持される。このように、シール室25内のオイルは主ポンプによって昇圧される流体の圧力よりも高いため、微量のオイルがシールリング21A,21Bとシールリング本体22A,22Bとの間を通ってシール室25の外部に流れる。したがって、回転する羽根車3によって昇圧された流体は、シール室25に入り込むことがなく、ポンプ外部への流体の漏洩が防止される。なお、低圧側のシールリング21Bと低圧側のシールリング本体22Bとの間を通過したオイルは図示しないドレインからポンプ外部に排出される。
 オイル出口ライン27には閉止弁35が設けられている。主ポンプ、第1オイルポンプ31、および第2オイルポンプ42のすべてが停止する時には、この閉止弁35が閉じられる。これにより、シール室25内のオイルの圧力を主ポンプ内の流体よりも高い圧力に保てるので、オイルポンプ31,42の停止時においても流体の漏洩を防止できる。閉止弁35には、電磁弁、電動弁、空気圧駆動弁、油圧駆動弁などを使用することができる。
 第1オイルポンプ31および第2オイルポンプ42は、異なる電源系統から電力が供給される。本実施形態では、第1オイルポンプ31は主電源47に接続されており、電力は主電源47から第1オイルポンプ31に供給される。一方、第2オイルポンプ42は予備電源48に接続されており、電力は予備電源48から第2オイルポンプ42に供給される。予備電源48は、バッテリー、あるいはデイーゼルエンジン駆動発電機などから構成することができる。
 停電などで第1オイルポンプ31が停止した場合や、第1オイルポンプ31に何らかの不具合が生じたことが検出され、第1オイルポンプ31の運転を停止しなければならない場合は、予備電源48から電力を予備ポンプとしての第2オイルポンプ42に供給して第2オイルポンプ42を起動する。第2オイルポンプ42は、オイルの循環を維持しつつシール室25内のオイル圧力を維持することが可能となる。結果として、主ポンプは、流体を安全にシールしたまま運転を継続することが可能となり、冗長性が高まる。
 本実施形態では、第1オイルポンプ31が停電や故障などで停止した、または停止せざるを得ない非常状態を検出するために、第1オイルポンプ31と第1逆止弁32の間に、第1オイルポンプ31の吐出圧力を検出し、検出した吐出圧力を示す信号Aを出力する圧力検出器51が配置されている。圧力検出器51としては、圧力センサ、圧力スイッチ、圧力トランスミッタなどを使用することができる。さらに、第1オイルポンプ31には、その回転速度を検出し、検出した回転速度を示す信号Bを出力する回転速度検出器52が設けられている。回転速度検出器52として、例えば、速度トランスミッタなどの発信機能付き速度計を使用することができる。
 第1オイルポンプ31は、その運転を制御する第1ポンプコントローラ31bを備えている。第1オイルポンプ31自体の運転に関するインターロックが構成されると、第1ポンプコントローラ31bからインターロック信号Cが出力される。このインターロック信号Cは、第1オイルポンプ31の上記非常状態を検出するための信号として使用される。
 主電源47から第1オイルポンプ31まで延びる主電力ライン55には、停電検出器57、電流測定器58、電圧測定器59、電力測定器60が取り付けられている。停電検出器57は停電を検出したときに停電検出信号Gを出力するように構成されている。電流測定器58、電圧測定器59、および電力測定器60は、それぞれ、第1オイルポンプ31に供給される電流、電圧、および電力を示す信号D,E,Fを出力するように構成されている。さらに、主電力ライン55には、電力遮断装置61が配置されている。この電力遮断装置61は、過電流を検出して電力を遮断する機能を備えている。加えて、電力遮断装置61は、外部からの電力遮断/電力接続の指示により電力遮断/電力接続の動作をするように構成されてもよい。また、電力遮断装置61は、電力遮断状態および電力接続状態を示す信号を出力するように構成されてもよい。図2においては、電力遮断装置61から出力される信号、および外部から入力される信号をまとめてHと表記する。
 圧力検出器51、回転速度検出器52、停電検出器57、電流測定器58、電圧測定器59、電力測定器60、および電力遮断装置61は、第1オイルポンプ31の運転状態を示す信号A乃至Hを発する運転状態検出器である。これらの運転状態検出器からの信号A乃至Hは、システムコントローラ65に送られる。システムコントローラ65は、信号A乃至Hに基づき、第1オイルポンプ31の非常状態を検出し、指示信号Iを予備電源48および電力遮断装置70に送るように構成される。電力遮断装置70は、予備電源48から第2オイルポンプ42まで延びる予備電力ライン71に取り付けられている。指示信号Iは、予備電源48を起動させ、電力遮断装置70を通電に切り替えることで第2オイルポンプ42を起動させる。すでに予備電源48の電力が第2オイルポンプ42に供給されている場合は、システムコントローラ65は、第2オイルポンプ42を起動させるための指示信号Jを第2オイルポンプ42の第2ポンプコントローラ42bに送信する。
 システムコントローラ65は、第1オイルポンプ31が非常状態にあるときに、速やかに第2オイルポンプ42を起動することで、第2オイルポンプ42はシール室25内の圧力を維持することが可能となる。結果として、主ポンプは、流体を安全にシールしたまま運転を継続することが可能となり、冗長性を高めることが可能となる。
 閉止弁35として、電力が供給されているときに開状態となり、電力が供給されていないときに閉状態となる電磁弁を使用してもよい。この場合、運転中の第1オイルポンプ31または第2オイルポンプ42に供給される電力の一部を、切り替えスイッチ(図示せず)を経由して閉止弁35に供給することが好ましい。このように構成すれば、仮に、主電源47および予備電源48の両方が電力を閉止弁35に供給出来なくなったとき、速やかに閉止弁35が閉止することができるので、シール室25内のオイルを高圧状態に維持することができる。
 一実施形態では、第2オイルポンプ42の吐出圧力がしきい値よりも低くなった時に、システムコントローラ65は閉止弁35を閉止してもよい。例えば、主ポンプ内部圧力が15MPaで、第2オイルポンプ42により加圧されたオイル圧力が16MPaである場合は、しきい値は、15MPaよりも高くかつ16MPaよりも低い値(例えば15.8MPa)に設定される。第2オイルポンプ42の吐出圧力は、第2オイルポンプ42と第2逆止弁44の間に配置された圧力検出器72によって検出される。この圧力検出器72は、第2オイルポンプ42の吐出圧力を検出し、検出した吐出圧力を示す信号A’をシステムコントローラ65に送信するように構成されている。システムコントローラ65は、信号A’に示される第2オイルポンプ42の吐出圧力がしきい値よりも低くなった時に、閉止弁35を閉止する。
 一実施形態では、第2オイルポンプ42の回転速度がしきい値よりも低くなった時に、システムコントローラ65は閉止弁35を閉止してもよい。例えば、第2オイルポンプ42の定格回転速度が1500min-1である場合は、圧力は回転速度の二乗に比例するので、しきい値は、1500min-1よりも2%低い1470min-1に設定される。第2オイルポンプ42の回転速度は、第2オイルポンプ42の回転軸に取り付けられた回転速度検出器73によって検出される。この回転速度検出器73は、第2オイルポンプ42の回転速度を検出し、検出した回転速度を示す信号B’をシステムコントローラ65に送信するように構成されている。回転速度検出器73として、例えば、速度トランスミッタなどの発信機能付き速度計を使用することができる。システムコントローラ65は、信号B’に示される第2オイルポンプ42の回転速度がしきい値よりも低くなった時に、閉止弁35を閉止する。
 上述した第1オイルポンプ31とシール室25との間に位置する第1逆止弁32と、第2オイルポンプ42とシール室25との間に位置する第2逆止弁44と、逆止弁32,44とシール室25との間に配置された少なくとも1つのアキュムレータ34と、オイル出口ライン27に取り付けられた閉止弁35は、オイルポンプ31,42が停止しているときにシール室25内のオイルの圧力を保持する圧力保持機構を構成する。
 プラントによっては予備電源48が設置できない場合がある。図3は、予備電源48を使用しないシールシステムの別の実施形態を示す模式図である。特に説明しない本実施形態の構成および動作は、図2に示す実施形態と同じであるので、その重複する説明を省略する。本実施形態では、予備ポンプとしての第2オイルポンプ42の原動機は電動モータではなく、蒸気タービン75である。すなわち、蒸気が膨張する際のエネルギーを蒸気タービン75で回転力に変え、その回転力を第2オイルポンプ42の駆動力に利用するものである。
 蒸気タービン75は、蒸気供給ライン76に接続されており、蒸気供給ライン76には蒸気供給弁77が取り付けられている。蒸気供給弁77には、電磁弁、電動弁、空気圧駆動弁、油圧駆動弁などを使用することができる。蒸気供給弁77を開くと、高圧の蒸気は蒸気供給ライン76を通じて蒸気タービン75に供給される。蒸気タービン75の駆動軸と第2オイルポンプ42の羽根車(図示せず)との間にはクラッチ80が配置されている。クラッチ80を接続すると、蒸気タービン75のトルクが第2オイルポンプ42の羽根車に伝達され、第2オイルポンプ42が起動する。
 本実施形態では、第2オイルポンプ42を駆動するために電力を使用しない。常用ポンプとしての第1オイルポンプ31が停電または故障などで停止した場合は、蒸気タービン75を原動機として備えた第2オイルポンプ42が運転される。したがって、第2オイルポンプ42は、オイルの循環を維持してシール室25内のオイル圧力を維持することが可能となる。結果として、主ポンプは流体を安全にシールしたまま運転を継続することが可能となり、冗長性を高めることができる。
 第1オイルポンプ31が停電や故障などで停止した、または停止せざるを得ない非常状態を検出するための構成は、図2に示す実施形態と基本的に同じである。すなわち、上述した信号A乃至Hは、システムコントローラ65に送られる。システムコントローラ65は、信号A乃至Hに基づき、第1オイルポンプ31の非常状態を検出し、指示信号Iを蒸気供給弁77に送って蒸気供給弁77を開き、さらに指示信号Jをクラッチ80に送ってクラッチ80を接続することで第2オイルポンプ42を起動させる。すでに蒸気が蒸気タービン75に供給されている場合は、システムコントローラ65は、指示信号Jをクラッチ80に送ってクラッチ80を接続する。
 図4は、シールシステムのさらに別の実施形態を示す模式図である。図2および図3に示す構成要素と同じ構成要素には同じ符号を付し、その重複する説明を省略する。本実施形態では、常用ポンプとしての1台の第1オイルポンプ31と、予備ポンプとしての第2オイルポンプ42および第3オイルポンプ91が設けられている。第2オイルポンプ42は予備電源48により駆動されるモータ駆動型オイルポンプであり、第3オイルポンプ91は蒸気タービン75により駆動されるタービン駆動型オイルポンプである。本実施形態の第2オイルポンプ42は、図2に示す実施形態の第2オイルポンプ42と同じ構成であり、本実施形態の第3オイルポンプ91は、図3に示す実施形態の第2オイルポンプ42と同じ構成である。
 オイル供給ライン26には、第1バイパスライン40Aおよび第2バイパスライン40Bが接続されている。第1バイパスライン40Aおよび第2バイパスライン40Bの両端はオイル供給ライン26に接続されている。より具体的には、第1バイパスライン40Aおよび第2バイパスライン40Bの一端は、オイルタンク30と第1オイルポンプ31の間に位置しており、第1バイパスライン40Aおよび第2バイパスライン40Bの他端は第1逆止弁32とシール室25の間に位置している。第1バイパスライン40Aには、第2オイルポンプ42および第2逆止弁44が設けられており、第2バイパスライン40Bには、第3オイルポンプ91および第3逆止弁93が設けられている。第2逆止弁44は第2オイルポンプ42とシール室25との間に位置し、第3逆止弁93は第3オイルポンプ91とシール室25との間に位置している。
 第2オイルポンプ42および第2逆止弁44は、第1オイルポンプ31および第1逆止弁32と並列に配置されており、第2オイルポンプ42は、オイルタンク30から第1バイパスライン40Aを通じて供給されるオイルを加圧してシール室25に移送できるように配置されている。第3オイルポンプ91および第3逆止弁93も、第1オイルポンプ31および第1逆止弁32と並列に配置されており、第3オイルポンプ91は、オイルタンク30から第2バイパスライン40Bを通じて供給されるオイルを加圧してシール室25に移送できるように配置されている。第3逆止弁93は、オイルタンク30からシール室25に向かう方向にのみオイルが流れることを許容する。
 本実施形態では、第2オイルポンプ42が停止した、または停止せざるを得ない非常状態を検出するために、第2オイルポンプ42と第2逆止弁44の間に、第2オイルポンプ42の吐出圧力を検出し、検出した吐出圧力を示す信号A’を出力する圧力検出器72が配置されている。さらに、第2オイルポンプ42には、その回転速度を検出し、検出した回転速度を示す信号B’を出力する回転速度検出器73が設けられている。
 第2オイルポンプ42は、その運転を制御する第2ポンプコントローラ42bを備えている。第2オイルポンプ42自体の運転に関するインターロックが構成されると、第2ポンプコントローラ42bからインターロック信号C’が出力される。このインターロック信号C’は、第2オイルポンプ42の上記非常状態を検出するための信号として使用される。
 予備電源48から第2オイルポンプ42まで延びる予備電力ライン71には、停電検出器101、電流測定器102、電圧測定器103、電力測定器104が取り付けられている。停電検出器101は予備電源48の停電を検出したときに停電検出信号G’を出力するように構成されている。電流測定器102、電圧測定器103、電力測定器104は、それぞれ、第2オイルポンプ42に供給される電流、電圧、および電力を示す信号D’,E’,F’を出力するように構成されている。さらに、予備電力ライン71には、電力遮断装置70が配置されている。この電力遮断装置70は、過電流を検出して電力を遮断する機能を備えている。加えて、電力遮断装置70は、外部からの電力遮断/電力接続の指示により電力遮断/電力接続の動作をするように構成されてもよい。また、電力遮断装置70は、電力遮断状態および電力接続状態を示す信号を出力するように構成されてもよい。図4においては、電力遮断装置70から出力される信号、および外部から入力される信号をまとめてH’と表記する。
 第1オイルポンプ31の運転状態を示す信号A乃至Hは、システムコントローラ65に送られる。システムコントローラ65は、信号A乃至Hに基づき、第1オイルポンプ31の非常状態を検出し、指示信号Iを予備電源48および電力遮断装置70に送るように構成される。指示信号Iは、予備電源48を起動させ、電力遮断装置70を通電に切り替えることで第2オイルポンプ42を起動させる。すでに予備電源48の電力が第2オイルポンプ42に供給されている場合は、システムコントローラ65は、第2オイルポンプ42を起動させるための指示信号Jを第2オイルポンプ42の第2ポンプコントローラ42bに送信する。このようにして、予備ポンプとしての第2オイルポンプ42が運転される。
 圧力検出器72、回転速度検出器73、停電検出器101、電流測定器102、電圧測定器103、電力測定器104、および電力遮断装置70は、第2オイルポンプ42の運転状態を示す信号A’乃至H’を発する運転状態検出器である。これらの運転状態検出器からの信号A’乃至H’も、システムコントローラ65に送られる。システムコントローラ65は、信号A’乃至H’に基づき、第2オイルポンプ42の非常状態を検出し、第3オイルポンプ91を起動させるための指示信号I’を蒸気供給弁77に送って蒸気供給弁77を開き、さらに指示信号J’をクラッチ80に送ってクラッチ80を接続することで第3オイルポンプ91を起動させる。すでに蒸気が蒸気タービン75に供給されている場合は、システムコントローラ65は、指示信号J’をクラッチ80に送ってクラッチ80を接続する。
 本実施形態によれば、主電源47と予備電源48の両方が使用不可能となった場合に、蒸気タービン75を原動機として備えた第3オイルポンプ91が運転される。したがって、第3オイルポンプ91は、オイルの循環を維持してシール室25内のオイル圧力を維持することが可能となる。結果として、主ポンプは流体を安全にシールしたまま運転を継続することが可能となり、冗長性を高めることができる。
 さらに、万一、第1オイルポンプ31、第2オイルポンプ42、および第3オイルポンプ91のすべてが停止した場合には、主ポンプ停止とともに閉止弁35が閉止され、これによりシール室25の圧力を主ポンプで昇圧された流体よりも高い圧力に維持できる。したがって、主ポンプは、流体の外部への漏洩を安全に防止したまま停止できる。
 一実施形態では、第3オイルポンプ91の吐出圧力がしきい値よりも低くなった時に、システムコントローラ65は閉止弁35を閉止してもよい。例えば、主ポンプ内部圧力が15MPaで、第3オイルポンプ91により加圧されたオイル圧力が16MPaである場合は、しきい値は、15MPaよりも高くかつ16MPaよりも低い値(例えば15.8MPa)に設定される。第3オイルポンプ91の吐出圧力は、第3オイルポンプ91と第3逆止弁93の間に配置された圧力検出器110によって検出される。この圧力検出器110は、第3オイルポンプ91の吐出圧力を検出し、検出した吐出圧力を示す信号A”をシステムコントローラ65に送信するように構成されている。システムコントローラ65は、信号A”に示される第3オイルポンプ91の吐出圧力がしきい値よりも低くなった時に、閉止弁35を閉止する。
 一実施形態では、第3オイルポンプ91の回転速度がしきい値よりも低くなった時に、システムコントローラ65は閉止弁35を閉止してもよい。例えば、第3オイルポンプ91の定格回転速度が1500min-1である場合は、圧力は回転速度の二乗に比例するので、しきい値は、1500min-1よりも2%低い1470min-1に設定される。第3オイルポンプ91の回転速度は、第3オイルポンプ91の回転軸に取り付けられた回転速度検出器111によって検出される。この回転速度検出器111は、第3オイルポンプ91の回転速度を検出し、検出した回転速度を示す信号B”をシステムコントローラ65に送信するように構成されている。システムコントローラ65は、信号B”に示される第3オイルポンプ91の回転速度がしきい値よりも低くなった時に、閉止弁35を閉止する。
 図4に示す実施形態において、上述した第1オイルポンプ31とシール室25との間に位置する第1逆止弁32と、第2オイルポンプ42とシール室25との間に位置する第2逆止弁44と、第3オイルポンプ91とシール室25との間に位置する第3逆止弁93と、逆止弁32,44,93とシール室25との間に配置された少なくとも1つのアキュムレータ34と、オイル出口ライン27に取り付けられた閉止弁35は、オイルポンプ31,42,91が停止しているときにシール室25内のオイルの圧力を保持する圧力保持機構を構成する。
 図5は図1に示すメカニカルシール20を含むシールシステムの一実施形態を示す模式図である。図5に示すように、本実施形態のメカニカルシール20は、背面合せ(バックトウバック)に配列された2対の回転側シール部材および固定側シール部材から基本的に構成されるダブルメカニカルシールである。より詳しくは、メカニカルシール20は、回転軸1と一体に回転する2つのシールリング(第1および第2の回転側シール部材)21A,21Bと、これらのシールリング21A,21Bにそれぞれに摺接する2つのシールリング本体(第1および第2の固定側シール部材)22A,22Bと、これらのシールリング本体22A,22Bをシールリング21A,21Bにそれぞれ押し付けるスプリング(押圧機構)23,23とを備えている。
 回転軸1上にはスリーブ24が固定され、このスリーブ24の外周面上に上記シールリング21A,21Bが固定されている。上記シールリング本体22A,22Bは、固定側部材に支持されている。2対のシールリング21A,21Bおよびシールリング本体22A,22Bは、回転軸1に垂直な平面に関して対称に配置される。
 メカニカルシール20は、シール室25内に配置されている。シール室25は、スタッフィングボックス12A(または12B)と回転軸1との間に形成されている。このシール室25にはオイル供給ライン126が接続され、その端部はオイルタンク(オイル貯留部)130に接続されている。オイル供給ライン126には、オイルタンク130から供給されるオイルを加圧してシール室25に移送するオイルポンプ131と、オイルポンプ131とシール室25との間に位置して逆止弁132が設けられている。さらに、オイル供給ライン126には分岐ライン133が接続され、この分岐ライン133には3つのアキュムレータ134が並列に接続されている。オイル供給ライン126と分岐ライン133との接続点は、逆止弁132とシール室25との間に位置している。
 各アキュムレータ134の内部には図示しないダイヤフラム(隔壁)が配置され、窒素ガスなどの気体が封入されている。シール室25に移送されるオイルの一部は分岐ライン133を通って3つのアキュムレータ134内に導入され、アキュムレータ134内に蓄積される。アキュムレータ134内に蓄積されたオイルは、上記気体の圧力により加圧される。したがって、アキュムレータ134は、シール室25に供給されたオイルの圧力を保持する機能を有している。
 本実施形態では、3つのアキュムレータ134が設けられているが、本発明はこれに限られない。例えば、単数のアキュムレータであってもよく、あるいは、2つまたは4つ以上のアキュムレータを設けてもよい。要は、アキュムレータによって保持されるオイルの圧力が、羽根車3(図1参照)の回転によって昇圧された流体の圧力よりも高いことが重要である。
 逆止弁132は、オイルタンク130からシール室25に向かう方向にのみオイルが流れることを許容する。シール室25にはオイル出口ライン127がさらに接続され、このオイル出口ライン127はオイルタンク130に連通している。このような構成により、オイルは、オイルタンク130からシール室25に供給されて該シール室25を満たした後、オイル出口ライン127を通じて再びオイルタンク130に戻される。このようにして、オイルはオイルタンク130とシール室25との間を循環する。オイル出口ライン127には閉止弁135が設けられており、停電などの緊急時には、この閉止弁135が閉られ、オイルの循環が停止されるようになっている。
 シール室25に供給されるオイルの圧力は、主ポンプによって昇圧される流体の圧力よりも高くなるように設定される。例えば、主ポンプによって流体(例えば超臨界流体)が約15MPaにまで昇圧される場合には、シール室25内のオイルの圧力は16MPa程度に維持される。このように、シール室25内のオイルは主ポンプによって昇圧される流体の圧力よりも高いため、微量のオイルがシールリング21A,21Bとシールリング本体22A,22Bとの間を通ってシール室25の外部に流れる。したがって、回転する羽根車3によって昇圧された流体は、シール室25に入り込むことがなく、ポンプ外部への流体の漏洩が防止される。なお、低圧側のシールリング21Bと低圧側のシールリング本体22Bとの間を通過したオイルは図示しないドレインからポンプ外部に排出される。
 停電などに起因してオイルポンプ131が停止すると、閉止弁135が閉じられ、オイルの流通が停止される。この状態では、オイルポンプ131によるオイルの加圧が停止されるが、逆止弁132と閉止弁135との間のオイルの圧力(すなわち、シール室25内のオイルの圧力)はアキュムレータ134によって維持される。したがって、オイルポンプ131が停止した場合であっても、昇圧された流体がシール室25に入り込むことがなく、流体のポンプ外部への漏洩が防止される。
 オイルポンプ131はオイルの圧力をポンプ内の流体の圧力より高くして、シール室25にオイルを供給し、さらにはオイルを循環させることのできるポンプであり、ギアポンプなどが用いられる。
 万一、プラント内の可燃性ガスが漏れ、仮に可燃性ガスが閉止弁135に接触しても、引火の虞が無いように、閉止弁135は防爆弁である。防爆型の閉止弁135としては、例えば、空気圧駆動弁、油圧駆動弁などを使用することができるが、それに限らない。空気圧駆動弁や油圧駆動弁は、構造が簡単で、大きな弁駆動力を得ることができるという利点を有する。したがって、空気圧駆動弁や油圧駆動弁は、緊急時に確実に閉止することが可能である。さらに、空気圧駆動弁や油圧駆動弁は、そのまま防爆指定地域で使用ができるという利点がある。一方、電気式閉止弁は、漏電、ショートなどに起因する引火を防止するために特別な防爆構造を備える必要がある。
 さらに、電力供給事情が不安定な地域で、電源が機能しない場合であっても、電源とは無関係に独立した空気供給システムや油供給システムから、閉止弁135に空気または油を供給することが可能である。したがって、空気圧駆動弁または油圧駆動弁から構成される閉止弁135は、非常時の閉止動作を確実に行うことができ、かつその閉止状態を継続することができる。
 閉止弁135は、急速動作性とシール性に優れた弁体を備えることが要求される。この要件を満足する弁体としてはボールバタフライ弁などが考えられるが、これに限ったものではなく、急速動作性とシール性に優れたものであればよい。例えば、閉止弁135の弁体はグローブ弁であってもよい。
 図5に示す一実施形態では、閉止弁135は、空気圧駆動弁または油圧駆動弁である。閉止弁135は、空気またはオイルを閉止弁135のアクチュエータ(例えばピストン)135aに送る作動流体供給ライン137に接続されている。作動流体供給ライン137には作動流体供給弁138が取り付けられている。作動流体供給弁138は、防爆指定地域から隔離壁140で隔離された防爆不要領域内に配置されている。したがって、作動流体供給弁138としては、電磁弁または電動弁を使用することができる。作動流体供給弁138が開くと、空気またはオイルは作動流体供給ライン137を通って閉止弁135のアクチュエータ135aに供給され、閉止弁135を閉じる。
 オイルポンプ131は、その原動機として電動モータ131aを備えている。本実施形態では、オイルポンプ131は主電源147および予備電源148に接続されている。通常は、電力は主電源147からオイルポンプ131に供給される。停電などにより主電源147が電力を供給できなくなった場合には、電力は予備電源148からオイルポンプ131に供給される。予備電源148は、バッテリー、あるいはデイーゼルエンジン駆動発電機などから構成することができる。
 図5において1台のオイルポンプ131が図示されているが、常用ポンプと予備ポンプを含む、2台またはそれよりも多いオイルポンプ131を設置してもよい。この場合、常用ポンプの電動モータは主電源147から給電され、予備ポンプの電動モータは予備電源148から給電される構成としてもよい。また予備ポンプの原動機は、電動モータではなく、蒸気タービンであってもよい。
 オイルポンプ131を停止せざるを得ない非常状態を検出するために、オイルポンプ131と逆止弁132の間に、オイルポンプ131の吐出圧力を検出し、検出した吐出圧力を示す信号Aを出力する圧力検出器151が配置されている。圧力検出器151としては、圧力センサ、圧力スイッチ、圧力トランスミッタなどを使用することができる。さらに、オイルポンプ131には、その回転速度を検出し、検出した回転速度を示す信号Bを出力する回転速度検出器152が設けられている。回転速度検出器152として、例えば、速度トランスミッタなどの発信機能付き速度計を使用することができる。
 オイルポンプ131は、その運転を制御するポンプコントローラ131bを備えている。オイルポンプ131自体の運転に関するインターロックが構成されると、ポンプコントローラ131bからインターロック信号Cが出力される。このインターロック信号Cは、オイルポンプ131の上記非常状態を検出するための信号として使用される。
 主電源147からオイルポンプ131まで延びる主電力ライン155には、停電検出器157、電流測定器158、電圧測定器159、電力測定器160が取り付けられている。停電検出器157は停電を検出したときに停電検出信号Gを出力するように構成されている。電流測定器158、電圧測定器159、および電力測定器160は、それぞれ、オイルポンプ131に供給される電流、電圧、および電力を示す信号D,E,Fを出力するように構成されている。
 さらに、主電力ライン155には、電力遮断装置161が配置されている。この電力遮断装置161は、過電流を検出して電力を遮断する機能を備えている。加えて、電力遮断装置161は、外部からの電力遮断/電力接続の指示により電力遮断/電力接続の動作をするように構成されてもよい。また、電力遮断装置161は、電力遮断状態および電力接続状態を示す信号を出力するように構成されてもよい。図5においては、電力遮断装置161から出力される信号、および外部から入力される信号をまとめてHと表記する。
 予備電源148からオイルポンプ131まで延びる予備電力ライン171には、予備電源故障検出器172が取り付けられている。予備電源故障検出器172は予備電源148の故障を検出し、予備電源148の故障を示す信号Lを出力するように構成されている。
 オイルポンプ131、電源147,148、圧力検出器151、回転速度検出器152、停電検出器157、電流測定器158、電圧測定器159、電力測定器160、電力遮断装置161、および予備電源故障検出器172は、防爆構造を有しており、防爆指定領域内に配置されている。
 圧力検出器151、回転速度検出器152、停電検出器157、電流測定器158、電圧測定器159、電力測定器160、電力遮断装置161、および予備電源故障検出器172は、オイルポンプ131の運転状態を示す信号A乃至Hおよび信号Lを発する運転状態検出器である。これらの運転状態検出器からの信号A乃至Hおよび信号Lは、システムコントローラ165に送られる。システムコントローラ165は、信号A乃至Hおよび信号Lに基づき、オイルポンプ131の非常状態を検出し、指示信号Mを作動流体供給弁138に送信するように構成される。指示信号Mを受けると、作動流体供給弁138が開き、空気またはオイルは作動流体供給ライン137を通って閉止弁135のアクチュエータ135aに供給される。その結果、閉止弁135が閉じられる。
 システムコントローラ165は、作動流体供給弁138と同様に、閉止弁135などが配置される防爆指定地域から隔離壁140で隔離された防爆不要領域内に配置されている。作業員は、安全な場所から閉止弁135を遠隔操作して閉止弁135を閉じることも可能である。
 本実施形態によれば、システムコントローラ165は、オイルポンプ131が非常状態にあるときに、作動流体供給弁138を開くことで、閉止弁135を速やかに閉じることができる。すなわち、主電源147および予備電源148の両方が使用できない場合でも、可燃性ガス等の引火などの危険を回避し、主ポンプからの流体の漏洩を防止できるシールシステムの構成を提供することができる。
 上述したオイルポンプ131とシール室25との間に位置する逆止弁132と、逆止弁132とシール室25との間に配置された少なくとも1つのアキュムレータ134と、オイル出口ライン127に取り付けられた閉止弁135は、オイルポンプ131が停止しているときにシール室25内のオイルの圧力を保持する圧力保持機構を構成する。
 一実施形態では、オイルポンプ131の吐出圧力がしきい値よりも低くなった時に、システムコントローラ165は閉止弁135を閉止してもよい。例えば、主ポンプ内部圧力が15MPaで、オイルポンプ131により加圧されたオイル圧力が16MPaである場合は、しきい値は、15MPaよりも高くかつ16MPaよりも低い値(例えば15.8MPa)に設定される。オイルポンプ131の吐出圧力は、オイルポンプ131と逆止弁132の間に配置された圧力検出器151によって検出される。この圧力検出器151は、オイルポンプ131の吐出圧力を検出し、検出した吐出圧力を示す信号Aをシステムコントローラ165に送信する。システムコントローラ165は、信号Aに示されるオイルポンプ131の吐出圧力がしきい値よりも低くなった時に、作動流体供給弁138を開いて空気またはオイルを閉止弁135のアクチュエータ135aに供給し、閉止弁135を閉止する。
 一実施形態では、オイルポンプ131の回転速度がしきい値よりも低くなった時に、システムコントローラ165は閉止弁135を閉止してもよい。例えば、オイルポンプ131の定格回転速度が1500min-1である場合は、圧力は回転速度の二乗に比例するので、しきい値は、1500min-1よりも2%低い1470min-1に設定される。オイルポンプ131の回転速度は、オイルポンプ131の回転軸に取り付けられた回転速度検出器152によって検出される。この回転速度検出器152は、オイルポンプ131の回転速度を検出し、検出した回転速度を示す信号Bをシステムコントローラ165に送信する。システムコントローラ165は、信号Bに示されるオイルポンプ131の回転速度がしきい値よりも低くなった時に、作動流体供給弁138を開いて空気またはオイルを閉止弁135のアクチュエータ135aに供給し、閉止弁135を閉止する。
 図6は図1に示すメカニカルシール20を含むシールシステムの一実施形態を示す模式図である。図6に示すように、本実施形態のメカニカルシール20は、背面合せ(バックトウバック)に配列された2対の回転側シール部材および固定側シール部材から基本的に構成されるダブルメカニカルシールである。より詳しくは、メカニカルシール20は、回転軸1と一体に回転する2つのシールリング(第1および第2の回転側シール部材)21A,21Bと、これらのシールリング21A,21Bにそれぞれに摺接する2つのシールリング本体(第1および第2の固定側シール部材)22A,22Bと、これらのシールリング本体22A,22Bをシールリング21A,21Bにそれぞれ押し付けるスプリング(押圧機構)23,23とを備えている。
 回転軸1上にはスリーブ24が固定され、このスリーブ24の外周面上に上記シールリング21A,21Bが固定されている。上記シールリング本体22A,22Bは、固定側部材に支持されている。2対のシールリング21A,21Bおよびシールリング本体22A,22Bは、回転軸1に垂直な平面に関して対称に配置される。
 メカニカルシール20は、シール室25内に配置されている。シール室25は、スタッフィングボックス12A(または12B)と回転軸1との間に形成されている。このシール室25にはオイル供給ライン226が接続され、その端部はオイルタンク(オイル貯留部)230に接続されている。オイル供給ライン226には、オイルタンク230から供給されるオイルを加圧してシール室25に移送するオイルポンプ231と、オイルポンプ231とシール室25との間に位置して逆止弁232が設けられている。さらに、オイル供給ライン226には分岐ライン233が接続され、この分岐ライン233には3つのアキュムレータ234が並列に接続されている。オイル供給ライン226と分岐ライン233との接続点は、逆止弁232とシール室25との間に位置している。
 各アキュムレータ234の内部には図示しないダイヤフラム(隔壁)が配置され、窒素ガスなどの気体が封入されている。シール室25に移送されるオイルの一部は分岐ライン233を通って3つのアキュムレータ234内に導入され、アキュムレータ234内に蓄積される。アキュムレータ234内に蓄積されたオイルは、上記気体の圧力により加圧される。したがって、アキュムレータ234は、シール室25に供給されたオイルの圧力を保持する機能を有している。
 本実施形態では、3つのアキュムレータ234が設けられているが、本発明はこれに限られない。例えば、単数のアキュムレータであってもよく、あるいは、2つまたは4つ以上のアキュムレータを設けてもよい。要は、アキュムレータによって保持されるオイルの圧力が、羽根車3(図1参照)の回転によって昇圧された流体の圧力よりも高いことが重要である。
 逆止弁232は、オイルタンク230からシール室25に向かう方向にのみオイルが流れることを許容する。シール室25にはオイル出口ライン227がさらに接続され、このオイル出口ライン227はオイルタンク230に連通している。このような構成により、オイルは、オイルタンク230からシール室25に供給されて該シール室25を満たした後、オイル出口ライン227を通じて再びオイルタンク230に戻される。このようにして、オイルはオイルタンク230とシール室25との間を循環する。オイル出口ライン227には閉止弁235が設けられており、停電などの緊急時には、この閉止弁235が閉られ、オイルの循環が停止されるようになっている。
 シール室25に供給されるオイルの圧力は、主ポンプによって昇圧される流体の圧力よりも高くなるように設定される。例えば、主ポンプによって流体(例えば超臨界流体)が約15MPaにまで昇圧される場合には、シール室25内のオイルの圧力は16MPa程度に維持される。このように、シール室25内のオイルは主ポンプによって昇圧される流体の圧力よりも高いため、微量のオイルがシールリング21A,21Bとシールリング本体22A,22Bとの間を通ってシール室25の外部に流れる。したがって、回転する羽根車3によって昇圧された流体は、シール室25に入り込むことがなく、ポンプ外部への流体の漏洩が防止される。なお、低圧側のシールリング21Bと低圧側のシールリング本体22Bとの間を通過したオイルは図示しないドレインからポンプ外部に排出される。
 停電などに起因してオイルポンプ231が停止すると、閉止弁235が閉じられ、オイルの流通が停止される。この状態では、オイルポンプ231によるオイルの加圧が停止されるが、逆止弁232と閉止弁235との間のオイルの圧力(すなわち、シール室25内のオイルの圧力)はアキュムレータ234によって維持される。したがって、オイルポンプ231が停止した場合であっても、昇圧された流体がシール室25に入り込むことがなく、流体のポンプ外部への漏洩が防止される。
 オイルポンプ231はオイルの圧力をポンプ内の流体の圧力より高くして、シール室25にオイルを供給し、さらにはオイルを循環させることのできるポンプであり、ギアポンプなどが用いられる。
 閉止弁235は、緊急時に速やかに安全な状態を保てるようにするため、応答速度の速い電動弁あるいは電磁弁である。電動弁と電磁弁は、電気の供給に伴って開閉動作する弁である。電動弁は電動モータの回転により、電磁弁はソレノイドの動作により、弁体の開閉動作を行なう。電磁弁は、一般的には小径であり、中低圧の流体に適している。流体が高圧になるほど、流体の圧力を利用したパイロット式などの特殊設計を採用する必要がある。しかし、電磁弁は応答性がよいので、応答性を重視する場合には好適である。
 電動弁は、電磁弁に比較すると応答性は若干劣るが、電動モータにより大きな弁駆動力を得ることが出来ることと、閉止時のシール性が高いという利点がる。このため、本実施形態に係るシールシステムのように、流体の圧力が高く、閉止時に確実にシールして流体の圧力を保持することが要求される場合に好適である。
 高圧に適している弁の動作方式として空気圧駆動方式など、流体を作動媒体に用いたバルブがある。しかしながら、作動媒体が供給ラインを通してバルブに到達し、さらに駆動力を発生させる始動圧力まで圧力が上昇するのに時間がかかる。特に作動媒体の供給ラインやシリンダの容積が大きいほど時間のかかる傾向がある。それに対して、電動弁や電磁弁は、通電すると瞬時に駆動力が発生して弁体が動くので、応答性が非常に良い。また、流体を作動媒体に用いたバルブの場合には、流体を送り出すためにある程度の流路面積が必要だが、流路面積を大きくすると流路の容積も大きくなり、圧力の伝播速度の確保と圧力の上昇速度の関係がトレードオフの関係になって流路設計が難しい。電動弁や電磁弁は、そのような問題はなく、電気配線のみが実質的に必要な工事であり、維持管理が容易かつ安価である。
 閉止弁235に電力を供給するための電源は、オイルポンプ231用の電源とは別の電源としてもよい。このように構成すれば、停電によりオイルポンプ231が停止したときの閉止弁235の閉止動作を確実とすることができる。
 閉止弁235は、急速動作性とシール性に優れた弁体を備えることが要求される。この要件を満足する弁体としてはボールバタフライ弁などが考えられるが、これに限ったものではなく、急速動作性とシール性に優れたものであればよい。たとえば閉止弁235の弁体はグローブ弁であってもよい。
 オイルポンプ231は、その原動機として電動モータ231aを備えている。本実施形態では、オイルポンプ231および閉止弁235は主電源247および予備電源248に接続されている。通常は、電力は主電源247からオイルポンプ231および閉止弁235に供給される。停電などにより主電源247が電力を供給できなくなった場合には、電力は予備電源248からオイルポンプ231および閉止弁235に供給される。予備電源248は、バッテリー、あるいはデイーゼルエンジン駆動発電機などから構成することができる。
 図6において1台のオイルポンプ231が図示されているが、常用ポンプと予備ポンプを含む、2台またはそれよりも多いオイルポンプ231を設置してもよい。この場合、常用ポンプの電動モータは主電源247から給電され、予備ポンプの電動モータは予備電源248から給電される構成としてもよい。また予備ポンプの原動機は、電動モータではなく、蒸気タービンであってもよい。
 オイルポンプ231を停止せざるを得ない非常状態を検出するために、オイルポンプ231と逆止弁232の間に、オイルポンプ231の吐出圧力を検出し、検出した吐出圧力を示す信号Aを出力する圧力検出器251が配置されている。圧力検出器251としては、圧力センサ、圧力スイッチ、圧力トランスミッタなどを使用することができる。さらに、オイルポンプ231には、その回転速度を検出し、検出した回転速度を示す信号Bを出力する回転速度検出器252が設けられている。回転速度検出器252として、例えば、速度トランスミッタなどの発信機能付き速度計を使用することができる。
 オイルポンプ231は、その運転を制御するポンプコントローラ231bを備えている。オイルポンプ231自体の運転に関するインターロックが構成されると、ポンプコントローラ231bからインターロック信号Cが出力される。このインターロック信号Cは、オイルポンプ231の上記非常状態を検出するための信号として使用される。
 主電源247からオイルポンプ231まで延びる主電力ライン255には、停電検出器257、電流測定器258、電圧測定器259、電力測定器260が取り付けられている。停電検出器257は停電を検出したときに停電検出信号Gを出力するように構成されている。電流測定器258、電圧測定器259、および電力測定器260は、それぞれ、オイルポンプ231に供給される電流、電圧、および電力を示す信号D,E,Fを出力するように構成されている。
 さらに、主電力ライン255には、電力遮断装置261が配置されている。この電力遮断装置261は、過電流を検出して電力を遮断する機能を備えている。加えて、電力遮断装置261は、外部からの電力遮断/電力接続の指示により電力遮断/電力接続の動作をするように構成されてもよい。また、電力遮断装置261は、電力遮断状態および電力接続状態を示す信号を出力するように構成されてもよい。図6においては、電力遮断装置261から出力される信号、および外部から入力される信号をまとめてHと表記する。
 予備電源248からオイルポンプ231まで延びる予備電力ライン271には、予備電源故障検出器272が取り付けられている。予備電源故障検出器272は予備電源248の故障を検出し、予備電源248の故障を示す信号Lを出力するように構成されている。
 圧力検出器251、回転速度検出器252、停電検出器257、電流測定器258、電圧測定器259、電力測定器260、電力遮断装置261、および予備電源故障検出器272は、オイルポンプ231の運転状態を示す信号A乃至Hおよび信号Lを発する運転状態検出器である。これらの運転状態検出器からの信号A乃至Hおよび信号Lは、システムコントローラ265に送られる。システムコントローラ265は、信号A乃至Hおよび信号Lに基づき、オイルポンプ231の非常状態を検出し、指示信号Nを閉止弁235に送信するように構成される。指示信号Nを受けると、閉止弁235が閉じられる。
 本実施形態によれば、システムコントローラ265は、オイルポンプ231が非常状態にあるときに、閉止弁235を速やかに閉じることができる。
 上述したオイルポンプ231とシール室25との間に位置する逆止弁232と、逆止弁232とシール室25との間に配置された少なくとも1つのアキュムレータ234と、オイル出口ライン227に取り付けられた閉止弁235は、オイルポンプ231が停止しているときにシール室25内のオイルの圧力を保持する圧力保持機構を構成する。
 一実施形態では、オイルポンプ231の吐出圧力がしきい値よりも低くなった時に、システムコントローラ265は閉止弁235を閉止してもよい。例えば、主ポンプ内部圧力が15MPaで、オイルポンプ231により加圧されたオイル圧力が16MPaである場合は、しきい値は、15MPaよりも高くかつ16MPaよりも低い値(例えば15.8MPa)に設定される。オイルポンプ231の吐出圧力は、オイルポンプ231と逆止弁232の間に配置された圧力検出器251によって検出される。この圧力検出器251は、オイルポンプ231の吐出圧力を検出し、検出した吐出圧力を示す信号Aをシステムコントローラ265に送信する。システムコントローラ265は、信号Aに示されるオイルポンプ231の吐出圧力がしきい値よりも低くなった時に、閉止弁235を閉止する。
 一実施形態では、オイルポンプ231の回転速度がしきい値よりも低くなった時に、システムコントローラ265は閉止弁235を閉止してもよい。例えば、オイルポンプ231の定格回転速度が1500min-1である場合は、圧力は回転速度の二乗に比例するので、しきい値は、1500min-1よりも2%低い1470min-1に設定される。オイルポンプ231の回転速度は、オイルポンプ231の回転軸に取り付けられた回転速度検出器252によって検出される。この回転速度検出器252は、オイルポンプ231の回転速度を検出し、検出した回転速度を示す信号Bをシステムコントローラ265に送信する。システムコントローラ265は、信号Bに示されるオイルポンプ231の回転速度がしきい値よりも低くなった時に、閉止弁235を閉止する。
 図7は、シールシステムの他の実施形態を示す模式図である。特に説明しない本実施形態の構成および動作は、図6に示す実施形態と同じであるので、その重複する説明を省略する。図7に示す実施形態では、電動弁または電磁弁からなる閉止弁235に電力を供給するための電源80は、オイルポンプ231用の電源247,248とは別の電源として設けられている。このように構成すれば、停電によりオイルポンプ231が停止したときの閉止弁235の閉止動作を確実とすることができる。電源80は、バッテリーなどから構成することができる。
 以上述べたように、本発明の各実施形態は、COやHSなどの超臨界流体を取り扱うための高圧ポンプに適用することができる。これまで本発明の実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。
 本発明は、揮発性可燃成分や硫化水素などの有害成分を含む流体の漏洩を防止するためのシールシステムを備えたポンプに利用可能である。
 1   回転軸
 2   ケーシング
 2A  インナーケーシング
 2B  アウターケーシング
 3   羽根車
 4   ピン
 5   通しボルト
 6   吸込口
 7   吐出口
 8A,8B  ラジアル軸受
 9   スラスト軸受
10   バランス室
11   連通ライン
12A,12B   スタッフィングボックス
13   ケーシングカバー
14   ガイドベーン
15A,15B,15C  Oリング
16A,16B,16C  環状溝
17A,17B,17C  圧力検知ポート
20   メカニカルシール
21A  シールリング(第1の回転側シール部材)
21B  シールリング(第2の回転側シール部材)
22A  シールリング本体(第1の固定側シール部材)
22B  シールリング本体(第2の固定側シール部材)
23   スプリング(押圧機構)
24   スリーブ
25   シール室
26   オイル供給ライン
27   オイル出口ライン
30   オイルタンク(オイル貯留部)
31   第1オイルポンプ
32   第1逆止弁
33   分岐ライン
34   アキュムレータ
35   閉止弁
40,40A,40B  バイパスライン
42   第2オイルポンプ
44   第2逆止弁
47   主電源
48   予備電源
51   圧力検出器
52   回転速度検出器
55   主電力ライン
57   停電検出器
58   電流測定器
59   電圧測定器
60   電力測定器
61   電力遮断装置
65   システムコントローラ
70   電力遮断装置
71   予備電力ライン
72   圧力検出器
73   回転速度検出器
75   蒸気タービン
76   蒸気供給ライン
77   蒸気供給弁
80   クラッチ
91   第3オイルポンプ
93   第3逆止弁
101  停電検出器
102  電流測定器
103  電圧測定器
104  電力測定器
110  圧力検出器
111  回転速度検出器

Claims (8)

  1.  回転軸と、
     前記回転軸に固定された羽根車と、
     前記羽根車を収容するケーシングと、
     ダブルメカニカルシールと、
     前記ダブルメカニカルシールを収容するシール室と、
     オイルを貯留するオイル貯留部と、
     前記オイル貯留部と前記シール室とを連通させるオイル供給ラインと、
     前記オイル貯留部から供給される前記オイルを加圧して前記シール室に移送する第1オイルポンプと、
     前記第1オイルポンプと並列に配置され、前記オイル貯留部から供給される前記オイルを加圧して前記シール室に移送する第2オイルポンプと、
     前記シール室に接続されたオイル出口ラインと、
     前記シール室内のオイルの圧力を保持する圧力保持機構とを備えたことを特徴とするポンプ。
  2.  前記第1オイルポンプの運転状態を示す信号に基づいて、前記第2オイルポンプを起動させるシステムコントローラをさらに備えたことを特徴とする請求項1に記載のポンプ。
  3.  前記第2オイルポンプは、原動機として蒸気タービンを有していることを特徴とする請求項1または2に記載のポンプ。
  4.  前記圧力保持機構は、
      前記第1オイルポンプと前記シール室との間に位置する第1逆止弁と、
      前記第2オイルポンプと前記シール室との間に位置する第2逆止弁と、
      前記第1および第2逆止弁と前記シール室との間に配置された少なくとも1つのアキュムレータと、
      前記オイル出口ラインに取り付けられた閉止弁とを備えることを特徴とする請求項1乃至3のいずれか一項に記載のポンプ。
  5.  前記第1オイルポンプに接続された主電源と、
     前記第2オイルポンプに接続された予備電源をさらに備え、
     前記第1オイルポンプおよび前記第2オイルポンプは、それぞれ原動機として電動モータを有していることを特徴とする請求項1または2に記載のポンプ。
  6.  前記第1オイルポンプと並列に配置され、前記オイル貯留部から供給される前記オイルを加圧して前記シール室に移送する第3オイルポンプをさらに備え、
     前記第3オイルポンプは、原動機として蒸気タービンを有していることを特徴とする請求項5に記載のポンプ。
  7.  前記圧力保持機構は、
      前記第1オイルポンプと前記シール室との間に位置する第1逆止弁と、
      前記第2オイルポンプと前記シール室との間に位置する第2逆止弁と、
      前記第3オイルポンプと前記シール室との間に位置する第3逆止弁と、
      前記第1,第2,および第3逆止弁と前記シール室との間に配置された少なくとも1つのアキュムレータと、
      前記オイル出口ラインに取り付けられた閉止弁とを備えることを特徴とする請求項6に記載のポンプ。
  8.  ダブルメカニカルシールを収容するためのシール室と、
     オイルを貯留するオイル貯留部と、
     前記オイル貯留部と前記シール室とを連通させるオイル供給ラインと、
     前記オイル貯留部から供給される前記オイルを加圧して前記シール室に移送する第1オイルポンプと、
     前記第1オイルポンプと並列に配置され、前記オイル貯留部から供給される前記オイルを加圧して前記シール室に移送する第2オイルポンプと、
     前記シール室に接続されたオイル出口ラインと、
     前記シール室内のオイルの圧力を保持する圧力保持機構とを備えたことを特徴とするシールシステム。
PCT/JP2018/027267 2017-07-26 2018-07-20 ポンプおよびシールシステム WO2019021958A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880048536.7A CN110945249A (zh) 2017-07-26 2018-07-20 泵以及密封系统
JP2019532565A JPWO2019021958A1 (ja) 2017-07-26 2018-07-20 ポンプおよびシールシステム
EP18838382.2A EP3660324A4 (en) 2017-07-26 2018-07-20 PUMP AND SEALING SYSTEM
US16/632,620 US20200408219A1 (en) 2017-07-26 2018-07-20 Pump and sealing system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017-144409 2017-07-26
JP2017144308 2017-07-26
JP2017-144410 2017-07-26
JP2017-144308 2017-07-26
JP2017144410 2017-07-26
JP2017144409 2017-07-26

Publications (1)

Publication Number Publication Date
WO2019021958A1 true WO2019021958A1 (ja) 2019-01-31

Family

ID=65040717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027267 WO2019021958A1 (ja) 2017-07-26 2018-07-20 ポンプおよびシールシステム

Country Status (5)

Country Link
US (1) US20200408219A1 (ja)
EP (1) EP3660324A4 (ja)
JP (1) JPWO2019021958A1 (ja)
CN (1) CN110945249A (ja)
WO (1) WO2019021958A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110906003A (zh) * 2019-12-11 2020-03-24 天津长瑞大通流体控制系统有限公司 具有收集装置的用于密封装置的免于泄漏检测系统及方法
CN111963905A (zh) * 2020-08-03 2020-11-20 西安泵阀总厂有限公司 一种用于有压双重密封的阻封液自动调压系统
CN112032099A (zh) * 2020-08-07 2020-12-04 安徽埃斯克制泵有限公司 一种潜水泵泵轴轴向密封结构
CN112923061A (zh) * 2021-02-04 2021-06-08 柏燕 一种多端面自调控启用的汽轮机轴端密封装置
CN112923060A (zh) * 2021-02-04 2021-06-08 柏燕 一种多端面自调控启用的汽轮机轴端密封方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110894910A (zh) * 2019-12-11 2020-03-20 天津长瑞大通流体控制系统有限公司 一种用于具有报警的密封装置的免于泄漏检测系统及方法
CA3196438A1 (en) * 2020-10-23 2022-04-28 Colin O'CALLAGHAN Monitoring system for pump with mechanical seal lubrication arrangement
CN112240394B (zh) * 2020-11-03 2023-02-10 陆云鹏 一种驱动轴总成密封结构组件
CN114837955B (zh) * 2022-05-23 2023-12-05 山东省章丘鼓风机股份有限公司 一种渣浆泵密封泄漏监测装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50155802A (ja) * 1974-06-07 1975-12-16
GB1441653A (en) 1972-06-09 1976-07-07 Burgmann Dichtungswerk Feodor Cooled dual mechanical seal
US3994503A (en) 1975-07-11 1976-11-30 Creusot-Loire Sealing assembly
JPS56122796U (ja) * 1980-02-19 1981-09-18
JPS61112869A (ja) * 1984-11-07 1986-05-30 Ishikawajima Harima Heavy Ind Co Ltd オイルフイルムシ−ル用シ−ル油供給装置
JPS62288777A (ja) * 1986-06-04 1987-12-15 Teikoku Denki Seisakusho:Kk 高圧流体機械の軸封装置
JPH074386A (ja) * 1993-06-17 1995-01-10 Toshiba Corp 高温ポンプ用軸封水供給装置
US5865441A (en) 1995-02-02 1999-02-02 Orlowski; David C. Emission seal
JP2008175182A (ja) * 2007-01-22 2008-07-31 Ebara Corp 多段高圧ポンプ
WO2016083196A1 (en) * 2014-11-24 2016-06-02 Vetco Gray Scandinavia As Method for regulation of a differential pressure across a seal and associated system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH449355A (de) * 1966-12-23 1967-12-31 Bbc Brown Boveri & Cie Flüssigkeitsgesperrte Stopfbüchse
US4058320A (en) * 1976-07-26 1977-11-15 Westinghouse Electric Corporation Generator seal oil supply system
US5529315A (en) * 1994-02-14 1996-06-25 John Crane Inc. Tandem seal arrangement for mechanical face seals
JP3710702B2 (ja) * 2000-11-14 2005-10-26 イーグル工業株式会社 タンデムシール
NO325803B1 (no) * 2006-10-13 2008-07-21 Framo Eng As Anordning ved tetningssystem
CN201372816Y (zh) * 2009-03-26 2009-12-30 杭州汽轮机股份有限公司 汽轮机直联主油泵
NO333684B1 (no) * 2011-03-07 2013-08-12 Aker Subsea As Undervanns trykkøkningsmaskin
CN106870441B (zh) * 2015-12-11 2019-01-15 中广核工程有限公司 核电站主泵轴封注入水系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1441653A (en) 1972-06-09 1976-07-07 Burgmann Dichtungswerk Feodor Cooled dual mechanical seal
JPS50155802A (ja) * 1974-06-07 1975-12-16
US3994503A (en) 1975-07-11 1976-11-30 Creusot-Loire Sealing assembly
JPS56122796U (ja) * 1980-02-19 1981-09-18
JPS61112869A (ja) * 1984-11-07 1986-05-30 Ishikawajima Harima Heavy Ind Co Ltd オイルフイルムシ−ル用シ−ル油供給装置
JPS62288777A (ja) * 1986-06-04 1987-12-15 Teikoku Denki Seisakusho:Kk 高圧流体機械の軸封装置
JPH074386A (ja) * 1993-06-17 1995-01-10 Toshiba Corp 高温ポンプ用軸封水供給装置
US5865441A (en) 1995-02-02 1999-02-02 Orlowski; David C. Emission seal
JP2008175182A (ja) * 2007-01-22 2008-07-31 Ebara Corp 多段高圧ポンプ
EP2110558A1 (en) 2007-01-22 2009-10-21 Ebara Corporation Multi-stage high-pressure pump
WO2016083196A1 (en) * 2014-11-24 2016-06-02 Vetco Gray Scandinavia As Method for regulation of a differential pressure across a seal and associated system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3660324A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110906003A (zh) * 2019-12-11 2020-03-24 天津长瑞大通流体控制系统有限公司 具有收集装置的用于密封装置的免于泄漏检测系统及方法
CN111963905A (zh) * 2020-08-03 2020-11-20 西安泵阀总厂有限公司 一种用于有压双重密封的阻封液自动调压系统
CN111963905B (zh) * 2020-08-03 2021-11-16 西安泵阀总厂有限公司 一种用于有压双重密封的阻封液自动调压系统
CN112032099A (zh) * 2020-08-07 2020-12-04 安徽埃斯克制泵有限公司 一种潜水泵泵轴轴向密封结构
CN112923061A (zh) * 2021-02-04 2021-06-08 柏燕 一种多端面自调控启用的汽轮机轴端密封装置
CN112923060A (zh) * 2021-02-04 2021-06-08 柏燕 一种多端面自调控启用的汽轮机轴端密封方法

Also Published As

Publication number Publication date
CN110945249A (zh) 2020-03-31
EP3660324A4 (en) 2021-04-14
EP3660324A1 (en) 2020-06-03
JPWO2019021958A1 (ja) 2020-07-30
US20200408219A1 (en) 2020-12-31

Similar Documents

Publication Publication Date Title
WO2019021958A1 (ja) ポンプおよびシールシステム
JP4642788B2 (ja) 多段高圧ポンプ
EP2683944B1 (en) Subsea motor-turbomachine
CN111051704B (zh) 密封系统
NO328603B1 (no) Undervanns hybrid ventilaktuatorsystem og fremgangsmate.
CN101624992B (zh) 一种液压驱动式立式离心泵
WO2020017635A1 (ja) シールシステム、および該シールシステムを備えたポンプシステム
US10697421B2 (en) Integrated turbomachine with an axial locking device
NO338790B1 (no) Fremgangsmåte og system for regulering av fluid
US11306750B2 (en) Universal vane actuator system with corner seals and differential rotation mechanisms
EP3971432A1 (en) Seal device
NO335529B1 (no) Turbomaskinsammenstilling med magnetkobling og magnetløft
JP6948189B2 (ja) シールシステム
US20230059905A1 (en) Pump configuration including a purge valve
CN103352867B (zh) 一种泵轴密封装置
Grossel Pump hazardous liquids safely
RU2000482C1 (ru) Насосна установка дл закачки сжиженного газа в нефт ной пласт
CN115111186A (zh) 一种动力和气体复合密封装置
CN102088221A (zh) 安全性提高的密封电机
Ionita TECHNICAL ASPECTS REGARDING THE FUNCTIONING OF THE PSI 50/8 PUMP, FUNCTIONALLY-HYDRAULIC DISTURBANCES

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838382

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532565

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018838382

Country of ref document: EP

Effective date: 20200226