WO2019021427A1 - 同相抑制回路 - Google Patents

同相抑制回路 Download PDF

Info

Publication number
WO2019021427A1
WO2019021427A1 PCT/JP2017/027280 JP2017027280W WO2019021427A1 WO 2019021427 A1 WO2019021427 A1 WO 2019021427A1 JP 2017027280 W JP2017027280 W JP 2017027280W WO 2019021427 A1 WO2019021427 A1 WO 2019021427A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
signal
output terminal
phase
suppression circuit
Prior art date
Application number
PCT/JP2017/027280
Other languages
English (en)
French (fr)
Inventor
隆二 稲垣
一郎 杣田
津留 正臣
充弘 下澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019532297A priority Critical patent/JP6625290B2/ja
Priority to US16/627,478 priority patent/US20200220243A1/en
Priority to PCT/JP2017/027280 priority patent/WO2019021427A1/ja
Priority to EP17919228.1A priority patent/EP3648347A4/en
Publication of WO2019021427A1 publication Critical patent/WO2019021427A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/22Attenuating devices
    • H01P1/222Waveguide attenuators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/22Attenuating devices
    • H01P1/227Strip line attenuators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/42Networks for transforming balanced signals into unbalanced signals and vice versa, e.g. baluns
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/42Networks for transforming balanced signals into unbalanced signals and vice versa, e.g. baluns
    • H03H7/425Balance-balance networks

Definitions

  • the present invention relates to an in-phase suppression circuit including a plurality of lines having a length of a quarter wavelength at the frequency of an input signal.
  • a common mode suppression circuit applied to a microwave band or millimeter wave band circuit may use a differential signal for signal transmission.
  • a transmission method using differential signals is a method of transmitting signals with equal amplitude and 180 degrees of phase difference on two signal lines, and superimposing information on the potential difference between the signals on the two signal lines. Can. Therefore, the device on the reception side of the differential signal acquires information by detecting the potential difference between the signals on the two signal lines. At this time, even if in-phase noise is applied to the two signal lines, the potential difference between the signals on the two signal lines does not change, so the transmission quality is not affected.
  • the two signals that make up the differential signal are ideally equal in amplitude and opposite in phase
  • an in-phase component called common mode when superimposed, an amplitude difference occurs and a phase difference occurs.
  • Each of the amplitude difference and the phase difference in the two signals constituting the differential signal breaks the balance of the differential signal, which causes unnecessary oscillation, spurious or non-linearity. Therefore, it is necessary to remove the superimposed in-phase component, and there is a method of using a differential amplifier having a high common mode rejection ratio as a method of removing the in-phase component.
  • a method using a balun to convert an unbalanced signal may be employed.
  • Non-Patent Document 1 discloses an in-phase suppression circuit including a first merchant balun and a second merchant balun as a balun for converting a balanced signal and an unbalanced signal.
  • the first merchant balun includes first to fourth transmission lines having a length of a quarter wavelength at the frequency of the input signal, as shown below. (1)
  • a first transmission line whose one end is connected to the first signal input terminal (2) One end is grounded and the other end is connected to the second signal output terminal
  • the second transmission line (3) to be electromagnetically coupled is connected to the other end of the first transmission line at one end, and the third transmission line (4) one end at which the other end is open is the first signal output terminal
  • a fourth transmission line connected and having the other end grounded and electromagnetically coupled to the third transmission line
  • the second merchant balun includes the fifth to eighth transmission lines having a length of a quarter wavelength at the frequency of the input signal, as described below.
  • the fifth transmission line whose one end is connected to the second signal input terminal (2) One end is grounded and the other end is connected to the first signal output terminal
  • the sixth transmission line (3) to be electromagnetically coupled is connected at one end to the other end of the fifth transmission line and the other end is open at the seventh transmission line (4) one end is the second signal output terminal
  • An eighth transmission line connected, the other end being grounded, and electromagnetically coupled to the seventh transmission line
  • the conventional common mode suppression circuit is configured as described above, it is possible to suppress the output of the common mode signal from the first signal output terminal and the second signal output terminal.
  • eight transmission lines having a length of a quarter wavelength at the frequency of the input signal need to be mounted.
  • the present invention has been made to solve the above problems, and it is an object of the present invention to provide an in-phase suppression circuit capable of reducing the number of transmission lines as compared with the case of using two merchant baluns independent of each other. I assume.
  • the first line whose one end is connected to the first signal input terminal, the one end is grounded, and the other end is connected to the first signal output terminal
  • a second line electromagnetically coupled to the second line
  • a third line open at one end and electromagnetically coupled to the second line, one end connected to the other end of the first line, and the other end Is connected to the second signal output terminal at one end
  • the fifth line is grounded at the other end, and is electromagnetically coupled to the fourth line, and one end is connected to the third line.
  • a sixth line connected to the other end of the second line, the other end connected to the second signal input terminal, and electromagnetically coupled to the fifth line, the first to sixth lines being The frequency of the signal input from the first and second signal input terminals is set to have a quarter wavelength length.
  • the first line whose one end is connected to the first signal input terminal, the one end is grounded, and the other end is connected to the first signal output terminal.
  • a fifth line connected at one end to the second signal output terminal and grounded at the other end and electromagnetically coupled to the fourth line, and one end of the third line.
  • the sixth line is connected to the other end, the other end is connected to the second signal input terminal, and the sixth line is electromagnetically coupled to the fifth line.
  • FIG. 16 is a block diagram showing a conventional common-mode suppression circuit including a first Marchort balun including first to sixth transmission lines and a second Marchorth balun including seventh to twelfth transmission lines.
  • FIG. 16 is a block diagram showing a conventional common-mode suppression circuit including a first Marchort balun including first to eighth transmission lines and a second Marchor balun including ninth to sixteenth transmission lines. It is a block diagram which shows the in-phase suppression circuit by Embodiment 3 of this invention. It is a block diagram which shows the in-phase suppression circuit by Embodiment 4 of this invention. It is a block diagram which shows the in-phase suppression circuit by Embodiment 5 of this invention. It is a block diagram which shows the in-phase suppression circuit by Embodiment 6 of this invention.
  • FIG. 1 is a block diagram showing an in-phase suppression circuit according to a first embodiment of the present invention.
  • a first signal input terminal 1a is, for example, a terminal for inputting a signal DS 1 in a microwave band or millimeter wave band.
  • the second signal input terminal 1 b is a terminal to which, for example, the signal DS 2 of the microwave band or the millimeter wave band is input.
  • Signal DS 1 and the signal DS 2 is a signal of the same frequency
  • the signal DS 1 phase is different phase and 180-degree signal DS 2.
  • the signal DS 1 and the signal DS 2 constitute a differential signal.
  • the phase is 0 degree signal DS 1
  • the phase of the signal DS 2 is assumed to be 180 degrees.
  • the first coupled line 2 includes a first line 11, a second line 12 and a third line 13.
  • the first line 11 is a transmission line whose one end 11a is connected to the first signal input terminal 1a.
  • the second line 12 is a transmission line whose one end 12 a is grounded and whose other end 12 b is connected to the first signal output terminal 4 a and which is electromagnetically coupled to the first line 11.
  • the third line 13 is a transmission line open at one end 13 a and electromagnetically coupled to the second line 12.
  • the second coupled line 3 includes a fourth line 21, a fifth line 22 and a sixth line 23.
  • Each of the fourth line 21, the fifth line 22 and the sixth line 23 has a quarter wavelength length at the center frequency of the signal DS 1 and the signal DS 2 .
  • the fourth line 21 is a transmission line in which one end 21 a is connected to the other end 11 b of the first line 11 and the other end 21 b is open.
  • the fifth line 22 is a transmission line whose one end 22 a is connected to the second signal output terminal 4 b and whose other end 22 b is grounded and which is electromagnetically coupled to the fourth line 21.
  • the sixth line 23 has one end 23 a connected to the other end 13 b of the third line 13 and the other end 23 b connected to the second signal input terminal 1 b and is electromagnetically coupled to the fifth line 22. It is a transmission line.
  • the first signal output terminal 4 a is a terminal that outputs a signal DS 3 output from the first coupled line 2.
  • the second signal output terminal 4 b is a terminal that outputs a signal DS 4 output from the second coupled line 3.
  • the common-mode suppression circuit of FIG. 1 includes the first line 11 and the second line 12 included in the first coupled line 2 and the fourth line 21 and the fourth line included in the second coupled line 3.
  • the five lines 22 constitute a first merchant balun.
  • the passing phase of the first merchant balun is ⁇ .
  • the second line 12 and the third line 13 included in the first coupled line 2 and the fifth line 22 included in the second combined line 3 are included.
  • the sixth line 23 constitute a second merchant balun.
  • the passing phase of the second merchant balun is ⁇ .
  • the second line 12 connected to the first signal output terminal 4a is shared by the first merchant balun and the second merchant balun.
  • the fifth line 22 connected to the second signal output terminal 4 b is shared by the first merchant balun and the second merchant balun.
  • the signal DS 2 is inputted from the second signal input terminal 1b. If that, the one end 22a of the fifth line 22, phase (180 + ⁇ ) of the signal DS 2-1 appears. At the other end 12 b of the second line 12, a signal DS 2-2 with a phase of (0 + ⁇ ) degrees appears.
  • phase is (0 + ⁇ ) of the signal DS 3 is output.
  • the second signal output terminal 4b as a combined signal of the signal DS 1-2 and the signal DS 2-1, phase is (180 + ⁇ ) of the signal DS 4 is output. Since the signal DS 3 output from the first signal output terminal 4a, the phase difference between the signal DS 4 outputted from the second signal output terminal 4b is 180 degrees, the signal DS 3 and the signal DS 4 is It is a differential signal.
  • the phase of the in-phase signal C is ⁇ . Since the first line 11, the second line 12, the fourth line 21 and the fifth line 22 constitute a first merchant balun, the in-phase signal C is inputted from the first signal input terminal 1a. Then, at the other end 12 b of the second line 12, a signal C 1-1 having a phase of ( ⁇ + ⁇ ) degrees appears. At one end 22a of the fifth line 22, a signal C1-2 having a phase of (180 + ⁇ + ⁇ ) degrees appears.
  • the in-phase signal C is inputted from the second signal input terminal 1b. Then, the signal C 2-1 of ( ⁇ + ⁇ ) degrees appears at one end 22 a of the fifth line 22. Further, the other end 12b of the second line 12, the phase is (180 + ⁇ + ⁇ ) degrees signal C 2-2 appears in.
  • FIG. 2 is an explanatory view showing the amplitude of the S parameter S21 and the amplitude of the S parameter S31 when the differential signal is input.
  • FIG. 3 is an explanatory view showing the phase difference between the S parameter S21 and the S parameter S31 when the differential signal is input.
  • the lengths of the first line 11, the second line 12, the third line 13, the fourth line 21, the fifth line 22, and the sixth line 23 are set to frequencies. It has a quarter wavelength length at 20 GHz. Therefore, as shown in FIG. 2, it can be seen that the transmission loss of the common mode suppression circuit is about -3 dB around the frequency of 20 GHz, and the differential signal is transmitted with almost no loss. Further, as shown in FIG. 3, it can be seen that the phase difference between the S parameter S21 and the S parameter S31 is 180 degrees at a frequency of 20 GHz and is transmitted as a differential signal.
  • FIG. 4 is an explanatory view showing the amplitude of the S parameter S 54 and the amplitude of the S parameter S 64 when the in-phase signal is input. As shown in FIG. 4, it can be seen that the in-phase signal is attenuated by about 20 dB at a frequency of 20 GHz.
  • the first line 11 whose one end 11a is connected to the first signal input terminal 1a, the one end 12a are grounded, and the other end 12b is the first A second line 12 connected to the signal output terminal 4a of the first line 11 and electromagnetically coupled to the first line 11, and a third line open at one end 13a and electromagnetically coupled to the second line 12 13, the fourth line 21 whose one end 21a is connected to the other end 11b of the first line 11 and whose other end 21b is open, and one end 22a is connected to the second signal output terminal 4b, the other end 22b is grounded, the fifth line 22 electromagnetically coupled to the fourth line 21, one end 23a is connected to the other end 13b of the third line 13, and the other end 23b is a second signal input terminal A sixth line connected to the first line 22 and electromagnetically coupled to the fifth line 22; And a line 23.
  • the first line 11, the second line 12, the third line 13, the fourth line 21, the fifth line 22, and the sixth line 23 correspond to the first signal input terminal 1a and the second line.
  • the frequency of the signal input from the signal input terminal 1 b is configured to have a length of 1 ⁇ 4 wavelength.
  • the number of transmission lines can be reduced as compared to the case where two merchant baluns independent of each other are used.
  • the in-phase suppression circuit disclosed in Non-Patent Document 1 includes eight transmission lines, in the first embodiment, the number of transmission lines included in the in-phase suppression circuit is six. The number of transmission lines is reduced by two. Therefore, the first embodiment can be made smaller than the common mode suppression circuit disclosed in Non-Patent Document 1.
  • the first line 11, the second line 12, the third line 13, the fourth line 21, and the fifth line are formed on a plane of a dielectric substrate including an IC (Integrated Circuit). It is assumed that the line 22 and the sixth line 23 are arranged. However, the arrangement of the first line 11, the second line 12, the third line 13, the fourth line 21, the fifth line 22, and the sixth line 23 is disposed on the plane of the dielectric substrate It is not limited to things. For example, in a multilayer dielectric substrate including an IC, the first line 11, the second line 12, the third line 13, the fourth line 21, the fifth line 22, and the sixth line 23 The lines arranged in different layers may be electromagnetically coupled.
  • the first merchant balun includes the first to fourth transmission lines
  • the second merchant balun includes the fifth to eighth transmission lines.
  • the first to eighth transmission lines When forming the first to eighth transmission lines on a dielectric substrate, if the distance between the lines is extremely narrow, manufacturing may be difficult.
  • FIG. 5 if one transmission line is added to each of the coupled lines in the first and second merchant baluns, even if the amount of coupling between adjacent lines is small, It may be possible to configure the first and second merchant baluns. Even if the amount of coupling between adjacent lines is reduced, if it is possible to configure the first and second merchant baluns, it is possible to widen the line-to-line spacing, thereby facilitating manufacturing be able to.
  • FIG. 5 is a block diagram showing a conventional common-mode suppression circuit including a first merchant balun including first to sixth transmission lines and a second merchant balun including seventh to twelfth transmission lines. .
  • the first to twelfth transmission lines have a quarter wavelength length at the frequency of the input differential signal.
  • FIG. 6 is a block diagram showing an in-phase suppression circuit according to a second embodiment of the present invention.
  • the seventh line 31 has one end 31 a grounded and the other end 31 b connected to the first signal output terminal 4 a, and is disposed between the second line 12 and the third line 13.
  • the transmission line is electromagnetically coupled to each of the line 12 and the third line 13.
  • the eighth line 32 has one end 32 a connected to the second signal output terminal 4 b and the other end 32 b grounded, and is disposed between the fifth line 22 and the sixth line 23.
  • the transmission line is electromagnetically coupled to the line 22 and the sixth line 23, respectively.
  • Each of the seventh line 31 and the eighth line 32 at the center frequency of the signal DS 1 and the signal DS 2, and has a length of one-quarter wavelength.
  • the common-mode suppression circuit of FIG. 6 includes the first line 11, the second line 12 and the seventh line 31 included in the first coupled line 2, and the second included line 3.
  • the fourth line 21, the fifth line 22 and the eighth line 32 constitute a first merchant balun.
  • the common-mode suppression circuit of FIG. 6 is included in the second line 12, the seventh line 31 and the third line 13 included in the first coupled line 2, and the second coupled line 3.
  • the fifth line 22, the eighth line 32, and the sixth line 23 constituting the second line constitute a second merchant balun.
  • the second line 12 and the seventh line 31 connected to the first signal output terminal 4a are shared by the first merchant balun and the second merchant balun.
  • the fifth line 22 and the eighth line 32 connected to the second signal output terminal 4b are shared by the first merchant balun and the second merchant balun.
  • the first line 11, the second line 12, the seventh line 31, the fourth line 21, the fifth line 22, and the eighth line 32 constitute a first merchant balun
  • the first line When the signal DS 1 from the signal input terminal 1a of is inputted to the other end 31b of the line 31 the other end 12b and the seventh second line 12, the signal DS 1-1 in phase (0 + ⁇ ) degrees appear. Further, the one end 22a and the end 32a of the eighth line 32 of the fifth line 22, phase (180 + ⁇ ) degrees signal DS 1-2 appears in.
  • the second line 12 Since the second line 12, the seventh line 31, the third line 13, the fifth line 22, the eighth line 32, and the sixth line 23 constitute a second merchant balun, the second line
  • the signal input signal DS 2 from the terminal 1b of is inputted to one end 22a and the end 32a of the eighth line 32 of the fifth line 22, phase (180 + ⁇ ) of the signal DS 2-1 appears.
  • a signal DS 2-2 with a phase of (0 + ⁇ ) degrees appears at the other end 12 b of the second line 12 and the other end 31 b of the seventh line 31 .
  • the signal DS 1-1 and the signal DS 2-2 appearing at the other end 12 b of the second line 12 and the other end 31 b of the seventh line 31 are both signals of (0 + ⁇ ) degrees in phase. Because of this, they are combined in phase.
  • phase is (0 + ⁇ ) of the signal DS 3 is output.
  • the second signal output terminal 4b as a combined signal of the signal DS 1-2 and the signal DS 2-1, phase is (180 + ⁇ ) of the signal DS 4 is output. Since the signal DS 3 output from the first signal output terminal 4a, the phase difference between the signal DS 4 outputted from the second signal output terminal 4b is 180 degrees, the signal DS 3 and the signal DS 4 is It is a differential signal.
  • the first line 11, the second line 12, the seventh line 31, the fourth line 21, the fifth line 22, and the eighth line 32 constitute a first merchant balun
  • the first line When the in-phase signal C is input from the signal input terminal 1a of the second line 12, the other end 12b of the second line 12 and the other end 31b of the seventh line 31 receive the signal C 1-1 with phase ( ⁇ + ⁇ ) degrees. Will appear.
  • a signal C1-2 having a phase of (180 + ⁇ + ⁇ ) degrees appears.
  • the second line 12 Since the second line 12, the seventh line 31, the third line 13, the fifth line 22, the eighth line 32, and the sixth line 23 constitute a second merchant balun, the second line
  • phase signal C from the signal input terminal 1b of is inputted to one end 22a and the end 32a of the eighth line 32 of the fifth line 22, it appears phase is ( ⁇ + ⁇ ) of the signal C 2-1 .
  • a signal C 2-2 with a phase of (180 + ⁇ + ⁇ ) degrees appears at the other end 12 b of the second line 12 and the other end 31 b of the seventh line 31.
  • the seventh line 31 is added to the first coupled line 2 and the eighth line 32 is added to the second coupled line 3, so that the conventional in-phase shown in FIG.
  • the first and second merchant baluns can be configured even if the amount of coupling between adjacent lines is reduced. Even if the amount of coupling between adjacent lines is reduced, if it is possible to configure the first and second merchant baluns, it is possible to widen the line-to-line spacing, thereby facilitating manufacturing be able to.
  • one end 31a is grounded, the other end 31b is connected to the first signal output terminal 4a, and the second line 12 and the third line 13 are connected.
  • a seventh line 31 disposed between the second line 12 and the third line 13 and electromagnetically coupled to each of the second line 12 and the third line 13
  • one end 32a is connected to the second signal output terminal 4b, and the other end 32b is
  • an eighth line 32 grounded and disposed between the fifth line 22 and the sixth line 23 and electromagnetically coupled to each of the fifth line 22 and the sixth line 23; each line 32 of the seventh line 31 and eighth, the center frequency of the signal DS 1 and the signal DS 2, and has a length of one-quarter wavelength.
  • the number of transmission lines can be reduced as compared to the case where two merchant baluns independent of each other are used.
  • the conventional common-mode suppression circuit shown in FIG. 5 includes 12 transmission lines
  • the number of transmission lines included in the common-mode suppression circuit is eight, and the transmission line The number of has decreased by four. Therefore, the second embodiment can be made smaller than the conventional common-mode suppression circuit shown in FIG.
  • the first merchant balun includes the first to fourth transmission lines
  • the second merchant balun includes the fifth to eighth transmission lines.
  • the first to eighth transmission lines When forming the first to eighth transmission lines on a dielectric substrate, if the distance between the lines is extremely narrow, manufacturing may be difficult. As shown in FIG. 7, if two transmission lines are added to each of the coupled lines in the first and second merchant baluns, even if the amount of coupling between adjacent lines is small, It may be possible to configure the first and second merchant baluns. Even if the amount of coupling between adjacent lines is reduced, if it is possible to configure the first and second merchant baluns, it is possible to widen the line-to-line spacing, thereby facilitating manufacturing be able to.
  • FIG. 7 is a block diagram showing a conventional common-mode suppression circuit including a first merchant balun including first to eighth transmission lines and a second merchant balun including ninth to sixteenth transmission lines. .
  • the first to sixteenth transmission lines have a quarter wavelength length at the frequency of the input differential signal.
  • the ninth line 41 has one end 41 a connected to the first signal input terminal 1 a and the other end 41 b connected to the other end 11 b of the first line 11, and the second line 12 and the seventh line 31. And a transmission line electromagnetically coupled to each of the second line 12 and the seventh line 31.
  • the tenth line 42 has one end 42 a connected to one end 21 a of the fourth line 21 and the other end 42 b open, and is disposed between the fifth line 22 and the eighth line 32. These transmission lines are electromagnetically coupled to the fifth line 22 and the eighth line 32, respectively.
  • Each of lines 41 and 10 of the line 42 of the ninth, the center frequency of the signal DS 1 and the signal DS 2 and has a length of one-quarter wavelength.
  • the common-mode suppression circuit of FIG. 8 includes the first line 11, the second line 12, the ninth line 41 and the seventh line 31 included in the first coupled line 2, and the second coupled line 3.
  • the fourth line 21, the fifth line 22, the tenth line 42, and the eighth line 32 included in the above constitute a first merchant balun.
  • a second connection is made between the second line 12, the ninth line 41, the seventh line 31 and the third line 13 which are included in the first coupled line 2.
  • the fifth line 22, the tenth line 42, the eighth line 32 and the sixth line 23 included in the line 3 constitute a second merchant balun.
  • the second line 12, the ninth line 41 and the seventh line 31 connected to the first signal output terminal 4a are shared by the first merchant balun and the second merchant balun.
  • the fifth line 22, the tenth line 42 and the eighth line 32 connected to the second signal output terminal 4 b are common to the first merchant balun and the second merchant balun.
  • the second line 12, the ninth line 41, the seventh line 31, the third line 13, the fifth line 22, the tenth line 42, the eighth line 32 and the sixth line 23 are second because it constitutes a merchant balun, the signal DS 2 from the second signal input terminal 1b is input to one end 22a and the end 32a of the eighth line 32 of the fifth line 22, phase ( 180 + theta) of the signal DS 2-1 appears. Further, at the other end 12 b of the second line 12 and the other end 31 b of the seventh line 31, a signal DS 2-2 with a phase of (0 + ⁇ ) degrees appears.
  • the signal DS 1-1 and the signal DS 2-2 appearing at the other end 12 b of the second line 12 and the other end 31 b of the seventh line 31 are both signals of (0 + ⁇ ) degrees in phase. Because of this, they are combined in phase.
  • phase is (0 + ⁇ ) of the signal DS 3 is output.
  • the second signal output terminal 4b as a combined signal of the signal DS 1-2 and the signal DS 2-1, phase is (180 + ⁇ ) of the signal DS 4 is output. Since the signal DS 3 output from the first signal output terminal 4a, the phase difference between the signal DS 4 outputted from the second signal output terminal 4b is 180 degrees, the signal DS 3 and the signal DS 4 is It is a differential signal.
  • the first line 11, the second line 12, the ninth line 41, the seventh line 31, the fourth line 21, the fifth line 22, the tenth line 42 and the eighth line 32 When the in-phase signal C is input from the first signal input terminal 1a, the other end 12b of the second line 12 and the other end 31b of the seventh line 31 A signal C 1-1 with a phase of ( ⁇ + ⁇ ) degrees appears. At one end 22a of the fifth line 22 and one end 32a of the eighth line 32, a signal C1-2 having a phase of (180 + ⁇ + ⁇ ) degrees appears.
  • the second line 12, the ninth line 41, the seventh line 31, the third line 13, the fifth line 22, the tenth line 42, the eighth line 32 and the sixth line 23 are second Therefore, when the in-phase signal C is input from the second signal input terminal 1b, one end 22a of the fifth line 22 and one end 32a of the eighth line 32 have phases. ( ⁇ + ⁇ ) degrees signal C 2-1 appears in. A signal C 2-2 with a phase of (180 + ⁇ + ⁇ ) degrees appears at the other end 12 b of the second line 12 and the other end 31 b of the seventh line 31.
  • the seventh line 31 and the ninth line 41 are added to the first coupled line 2, and the eighth line 32 and the tenth line 42 are added to the second coupled line 3. Therefore, as in the conventional common-mode suppression circuit shown in FIG. 7, it is possible to configure the first and second merchant baluns even if the coupling amount between adjacent lines is reduced. Even if the amount of coupling between adjacent lines is reduced, if it is possible to configure the first and second merchant baluns, it is possible to widen the line-to-line spacing, thereby facilitating manufacturing be able to.
  • one end 41a is connected to the first signal input terminal 1a
  • the other end 41b is connected to the other end 11b of the first line 11
  • the second A ninth line 41 disposed between the line 12 and the seventh line 31 and electromagnetically coupled to each of the second line 12 and the seventh line 31, and one end 42a of the fourth line 21.
  • the fifth line 22 and the eighth line 32 and is electromagnetically coupled to each of the fifth line 22 and the eighth line 32.
  • a tenth line 42 that is, each line 42 of the ninth line 41 and the tenth is the center frequency of the signal DS 1 and the signal DS 2, have a length of one quarter wavelength There is.
  • the number of transmission lines can be reduced as compared to the case where two merchant baluns independent of each other are used.
  • the conventional common-mode suppression circuit shown in FIG. 7 includes 16 transmission lines
  • the number of transmission lines included in the common-mode suppression circuit is 10, and the transmission lines The number of has decreased by six. Therefore, the third embodiment can be made smaller than the conventional common-mode suppression circuit shown in FIG.
  • FIG. 9 is a block diagram showing an in-phase suppression circuit according to a fourth embodiment of the present invention.
  • the in-phase suppression circuit of FIG. 9 is included in the first line 11 and the second line 12 included in the first coupled line 2 and the second coupled line 3 as in the first embodiment.
  • the fourth line 21 and the fifth line 22 forming the first line constitute a first merchant balun.
  • the second line 12 and the third line 13 included in the first coupled line 2 and the second coupled line 3 are the same as in the first embodiment.
  • the included fifth line 22 and sixth line 23 constitute a second merchant balun.
  • the second line 12 connected to the first signal output terminal 4a is made common to the first merchant balun and the second merchant balun as in the first embodiment.
  • the fifth line 22 connected to the second signal output terminal 4b is made common to the first merchant balun and the second merchant balun as in the first embodiment.
  • the second embodiment is the same as the first embodiment in that the first line 11, the second line 12, the fourth line 21 and the fifth line 22 constitute a first merchant balun.
  • the first merchant balun according to the fourth embodiment is different from the first merchant balun according to the first embodiment in the state of the end portion of the line. Specifically, in the first embodiment, the other end 21b of the fourth line 21 is opened, one end 12a of the second line 12 is grounded, and the other end 22b of the fifth line 22 is grounded. One end 13a of the third line 13 is open. In the fourth embodiment, the other end 21 b of the fourth line 21 is grounded, the one end 12 a of the second line 12 is opened, and the other end 22 b of the fifth line 22 is opened. One end 13a of the is connected to ground. However, the operations themselves of the first merchant balun according to the fourth embodiment and the first merchant balun according to the first embodiment are the same.
  • differential signals are output from the first signal output terminal 4a and the second signal output terminal 4b, and from the first signal output terminal 4a and the second signal output terminal 4b. Does not output the in-phase component.
  • the first line 11 whose one end 11a is connected to the first signal input terminal 1a and the one end 12a are opened, and the other end 12b is the first A second line 12 connected to the signal output terminal 4a of the first line 11 and electromagnetically coupled to the first line 11, and a third line electromagnetically coupled to the second line 12 with one end 13a grounded.
  • a fourth line 21 whose one end 21a is connected to the other end 11b of the first line 11 and whose other end 21b is grounded, and one end 22a is connected to the second signal output terminal 4b, the other end 22b is open, the fifth line 22 electromagnetically coupled to the fourth line 21, one end 23a is connected to the other end 13b of the third line 13, and the other end 23b is a second signal input terminal A sixth line connected to the first line 22 and electromagnetically coupled to the fifth line 22; And a line 23.
  • the first line 11, the second line 12, the third line 13, the fourth line 21, the fifth line 22, and the sixth line 23 correspond to the first signal input terminal 1a and the second line.
  • the frequency of the signal input from the signal input terminal 1 b is configured to have a length of 1 ⁇ 4 wavelength.
  • the number of transmission lines can be reduced as compared to the case where two merchant baluns independent of each other are used.
  • the common mode suppression circuit disclosed in Non-Patent Document 1 includes eight transmission lines, in the fourth embodiment, the number of transmission lines included in the common mode suppression circuit is six. The number of transmission lines is reduced by two. Therefore, in the fourth embodiment, the size can be reduced as compared with the common mode suppression circuit disclosed in Non-Patent Document 1.
  • Embodiment 5 In the second embodiment, the other end 21b of the fourth line 21 is opened, the one end 12a of the second line 12 is grounded, and the other end 22b of the fifth line 22 is grounded.
  • An example is shown in which one end 13a of the is open.
  • one end 31a of the seventh line 31 is grounded, and the other end 32b of the eighth line 32 is grounded.
  • the other end 21b of the fourth line 21 is grounded, one end 12a of the second line 12 is opened, and the other end 22b of the fifth line 22 is opened.
  • And one end 13a of the third line 13 is grounded.
  • 10 is a block diagram showing an in-phase suppression circuit according to a fifth embodiment of the present invention.
  • the common-mode suppression circuit of FIG. 10 includes the first line 11, the second line 12 and the seventh line 31, and the second line 31, which are included in the first coupled line 2.
  • the fourth line 21, the fifth line 22, and the eighth line 32 included in the coupled line 3 constitute a first merchant balun.
  • the common-mode suppression circuit of FIG. 10 is included in the second line 12, the seventh line 31 and the third line 13 included in the first coupled line 2, and the second coupled line 3.
  • the fifth line 22, the eighth line 32, and the sixth line 23 constituting the second line constitute a second merchant balun.
  • the second line 12 and the seventh line 31 connected to the first signal output terminal 4a are shared by the first merchant balun and the second merchant balun.
  • the fifth line 22 and the eighth line 32 connected to the second signal output terminal 4b are shared by the first merchant balun and the second merchant balun.
  • the first line 11, the second line 12, the seventh line 31, the fourth line 21, the fifth line 22, and the eighth line 32 constitute a first merchant balun, The same as in the second embodiment.
  • the first merchant balun according to the fifth embodiment differs from the first merchant balun according to the second embodiment in the state of the end of the line. Specifically, in the second embodiment, the other end 21b of the fourth line 21 is opened, one end 12a of the second line 12 is grounded, and the other end 22b of the fifth line 22 is grounded. One end 13a of the third line 13 is open. Further, one end 31 a of the seventh line 31 is grounded, and the other end 32 b of the eighth line 32 is grounded.
  • the other end 21b of the fourth line 21 is grounded, the one end 12a of the second line 12 is opened, and the other end 22b of the fifth line 22 is opened.
  • One end 13a of the is connected to ground.
  • one end 31 a of the seventh line 31 is open, and the other end 32 b of the eighth line 32 is open.
  • the operations themselves of the first merchant balun according to the fifth embodiment and the first merchant balun according to the second embodiment are the same.
  • differential signals are output from the first signal output terminal 4a and the second signal output terminal 4b, and from the first signal output terminal 4a and the second signal output terminal 4b. Does not output the in-phase component.
  • one end 31a is opened, the other end 31b is connected to the first signal output terminal 4a, and the second line 12 and the third line 13 And a seventh line 31 disposed between the second line 12 and the third line 13 and electromagnetically coupled to each of the second line 12 and the third line 13, one end 32a is connected to the second signal output terminal 4b, and the other end 32b is And an eighth line 32 opened and disposed between the fifth line 22 and the sixth line 23 and electromagnetically coupled to each of the fifth line 22 and the sixth line 23; each line 32 of the seventh line 31 and eighth, the center frequency of the signal DS 1 and the signal DS 2, and has a length of one-quarter wavelength.
  • the number of transmission lines can be reduced as compared to the case where two merchant baluns independent of each other are used.
  • the conventional common-mode suppression circuit shown in FIG. 5 includes 12 transmission lines
  • the number of transmission lines included in the common-mode suppression circuit is eight, and the transmission lines The number of has decreased by four. Therefore, the fifth embodiment can be made smaller than the conventional common-mode suppression circuit shown in FIG.
  • the other end 21b of the fourth line 21 is opened, the one end 12a of the second line 12 is grounded, and the other end 22b of the fifth line 22 is grounded.
  • An example is shown in which one end 13a of the is open.
  • one end 31a of the seventh line 31 is grounded, the other end 32b of the eighth line 32 is grounded, and the other end 42b of the tenth line 42 is opened is described. It shows.
  • the other end 21b of the fourth line 21 is grounded, one end 12a of the second line 12 is opened, and the other end 22b of the fifth line 22 is opened.
  • one end 13a of the third line 13 is grounded.
  • FIG. 11 is a block diagram showing an in-phase suppression circuit according to a sixth embodiment of the present invention.
  • the common-mode suppression circuit of FIG. 11 includes the first line 11, the second line 12, the ninth line 41, and the seventh line included in the first coupled line 2. 31 and the fourth line 21, the fifth line 22, the tenth line 42 and the eighth line 32 included in the second coupled line 3 constitute a first merchant balun. . Further, in the common-mode suppression circuit of FIG. 11, the second coupling 12, the ninth coupling 41, the seventh coupling 31 and the third coupling 13 included in the first coupling transmission line 2 are used as a second coupling. The fifth line 22, the tenth line 42, the eighth line 32 and the sixth line 23 included in the line 3 constitute a second merchant balun.
  • the second line 12, the ninth line 41 and the seventh line 31 connected to the first signal output terminal 4a are shared by the first merchant balun and the second merchant balun.
  • the fifth line 22, the tenth line 42 and the eighth line 32 connected to the second signal output terminal 4 b are common to the first merchant balun and the second merchant balun.
  • the third embodiment is the same as the third embodiment in that a merchant balun is formed.
  • the first merchant balun according to the sixth embodiment differs from the first merchant balun according to the third embodiment in the state of the end of the line. Specifically, in the third embodiment, the other end 21b of the fourth line 21 is opened, one end 12a of the second line 12 is grounded, and the other end 22b of the fifth line 22 is grounded. One end 13a of the third line 13 is open.
  • one end 31 a of the seventh line 31 is grounded, the other end 32 b of the eighth line 32 is grounded, and the other end 42 b of the tenth line 42 is opened.
  • the other end 21b of the fourth line 21 is grounded, the one end 12a of the second line 12 is opened, and the other end 22b of the fifth line 22 is opened.
  • One end 13a of the is connected to ground.
  • one end 31 a of the seventh line 31 is opened, the other end 32 b of the eighth line 32 is opened, and the other end 42 b of the tenth line 42 is grounded.
  • the operations themselves of the first merchant balun according to the sixth embodiment and the first merchant balun according to the third embodiment are the same.
  • differential signals are output from the first signal output terminal 4a and the second signal output terminal 4b, and from the first signal output terminal 4a and the second signal output terminal 4b. Does not output the in-phase component.
  • one end 41a is connected to the first signal input terminal 1a
  • the other end 41b is connected to the other end 11b of the first line 11
  • the second A ninth line 41 disposed between the line 12 and the seventh line 31 and electromagnetically coupled to each of the second line 12 and the seventh line 31, and one end 42a of the fourth line 21.
  • the other end 42b is grounded, and is disposed between the fifth line 22 and the eighth line 32, and is electromagnetically coupled to each of the fifth line 22 and the eighth line 32.
  • a tenth line 42 that is, each line 42 of the ninth line 41 and the tenth is the center frequency of the signal DS 1 and the signal DS 2, have a length of one quarter wavelength There is.
  • the number of transmission lines can be reduced as compared to the case where two merchant baluns independent of each other are used.
  • the conventional common-mode suppression circuit shown in FIG. 7 includes 16 transmission lines
  • the number of transmission lines included in the common-mode suppression circuit is 10, and the transmission lines The number of has decreased by six. Therefore, the sixth embodiment can be made smaller than the conventional common-mode suppression circuit shown in FIG.
  • the present invention allows free combination of each embodiment, or modification of any component of each embodiment, or omission of any component in each embodiment. .
  • the present invention is suitable for a common mode suppression circuit including a plurality of lines having a length of a quarter wavelength at the frequency of an input signal.

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Noise Elimination (AREA)

Abstract

一端(11a)が第1の信号入力端子(1a)と接続されている第1の線路(11)と、一端(12a)が接地され、他端(12b)が第1の信号出力端子(4a)と接続されており、第1の線路(11)と電磁結合される第2の線路(12)と、一端(13a)が開放されており、第2の線路(12)と電磁結合される第3の線路(13)と、一端(21a)が第1の線路(11)の他端(11b)と接続され、他端(21b)が開放されている第4の線路(21)と、一端(22a)が第2の信号出力端子(4b)と接続され、他端(22b)が接地されており、第4の線路(21)と電磁結合される第5の線路(22)と、一端(23a)が第3の線路(13)の他端(13b)と接続され、他端(23b)が第2の信号入力端子(1b)と接続されており、第5の線路(22)と電磁結合される第6の線路(23)とを備えている。

Description

同相抑制回路
 この発明は、入力される信号の周波数で4分の1波長の長さを有する複数の線路を備える同相抑制回路に関するものである。
 例えば、マイクロ波帯又はミリ波帯の回路に適用される同相抑制回路は、信号の伝送に差動信号が用いられることがある。
 差動信号を用いる伝送方式は、2本の信号線上に、等振幅で、かつ、位相が180度異なる信号を伝送する方式であり、2本の信号線上の信号の電位差に情報を重畳することができる。
 このため、差動信号の受信側の装置は、2本の信号線上の信号の電位差を検出することで、情報を取得する。
 このとき、2本の信号線に同相の雑音が印加されても、2本の信号線上の信号の電位差は変化しないため、伝送品質に影響が及ばない。
 ただし、差動信号を構成する2つの信号は、理想的には等振幅かつ逆相であるが、コモンモードと呼ばれる同相成分が重畳された場合、振幅差が生じ、かつ、位相差が生じることがある。
 差動信号を構成する2つの信号における振幅差及び位相差のそれぞれは、差動信号のバランスを崩すため、不要発振、スプリアス又は非線形性などが発生する原因となる。
 したがって、重畳された同相成分を除去する必要があり、同相成分を除去する方法として、コモンモードの除去比が高い差動増幅器を用いる方法がある。
 しかし、コモンモードの除去比が高い差動増幅器を用いる場合、差動増幅器によって生じる信号の歪又は差動増幅器から生じる雑音を抑制する必要があるため、マイクロ波帯又はミリ波帯では、平衡信号と不平衡信号を変換するバランを用いる方法が採用されることがある。
 以下の非特許文献1には、平衡信号と不平衡信号を変換するバランとして、第1のマーチャントバラン及び第2のマーチャントバランを備える同相抑制回路が開示されている。
 第1のマーチャントバランは、以下に示すように、入力信号の周波数で4分の1波長の長さを有する第1~第4の伝送線路を備えている。
(1)一端が第1の信号入力端子と接続されている第1の伝送線路
(2)一端が接地され、他端が第2の信号出力端子と接続されており、第1の伝送線路と電磁結合される第2の伝送線路
(3)一端が第1の伝送線路の他端と接続され、他端が開放されている第3の伝送線路
(4)一端が第1の信号出力端子と接続され、他端が接地されており、第3の伝送線路と電磁結合される第4の伝送線路
 第2のマーチャントバランは、以下に示すように、入力信号の周波数で4分の1波長の長さを有する第5~第8の伝送線路を備えている。
(1)一端が第2の信号入力端子と接続されている第5の伝送線路
(2)一端が接地され、他端が第1の信号出力端子と接続されており、第5の伝送線路と電磁結合される第6の伝送線路
(3)一端が第5の伝送線路の他端と接続され、他端が開放されている第7の伝送線路
(4)一端が第2の信号出力端子と接続され、他端が接地されており、第7の伝送線路と電磁結合される第8の伝送線路
 この同相抑制回路では、第1の信号入力端子及び第2の信号入力端子から差動信号が入力されると、第1の信号出力端子及び第2の信号出力端子から差動信号が出力される。
 また、第1の信号入力端子及び第2の信号入力端子から入力された同相信号は、相殺されるため、第1の信号出力端子及び第2の信号出力端子から出力されない。
K.S. Ang nad I.D.Rebertson,"Analysis and Design of Impedance-Transforming Planar Marchand Baluns," IEEE Trans. On Microwave Theory and Techniques, vol.49, no.2, pp.402-406, Feb.2001.
 従来の同相抑制回路は以上のように構成されているので、第1の信号出力端子及び第2の信号出力端子からの同相信号の出力を抑えることができる。
 しかし、入力信号の周波数で4分の1波長の長さを有する伝送線路を8本実装する必要があるという課題があった。
 この発明は上記のような課題を解決するためになされたもので、互いに独立している2つのマーチャントバランを用いる場合よりも、伝送線路の本数を減らすことができる同相抑制回路を得ることを目的とする。
 この発明に係る同相抑制回路は、一端が第1の信号入力端子と接続されている第1の線路と、一端が接地され、他端が第1の信号出力端子と接続されており、第1の線路と電磁結合される第2の線路と、一端が開放されており、第2の線路と電磁結合される第3の線路と、一端が第1の線路の他端と接続され、他端が開放されている第4の線路と、一端が第2の信号出力端子と接続され、他端が接地されており、第4の線路と電磁結合される第5の線路と、一端が第3の線路の他端と接続され、他端が第2の信号入力端子と接続されており、第5の線路と電磁結合される第6の線路とを備え、第1から第6の線路が、第1及び第2の信号入力端子から入力される信号の周波数で4分の1波長の長さを有しているようにしたものである。
 この発明によれば、一端が第1の信号入力端子と接続されている第1の線路と、一端が接地され、他端が第1の信号出力端子と接続されており、第1の線路と電磁結合される第2の線路と、一端が開放されており、第2の線路と電磁結合される第3の線路と、一端が第1の線路の他端と接続され、他端が開放されている第4の線路と、一端が第2の信号出力端子と接続され、他端が接地されており、第4の線路と電磁結合される第5の線路と、一端が第3の線路の他端と接続され、他端が第2の信号入力端子と接続されており、第5の線路と電磁結合される第6の線路とを備えるように構成したので、互いに独立している2つのマーチャントバランを用いる場合よりも、伝送線路の本数を減らすことができる効果がある。
この発明の実施の形態1による同相抑制回路を示す構成図である。 差動信号の入力時におけるSパラメータS21の振幅及びSパラメータS31の振幅を示す説明図である。 差動信号の入力時におけるSパラメータS21とSパラメータS31との位相差を示す説明図である。 同相信号の入力時におけるSパラメータS54の振幅及びSパラメータS64の振幅を示す説明図である。 第1~第6の伝送線路を含む第1のマーチャントバランと、第7~第12の伝送線路を含む第2のマーチャントバランとを備える従来の同相抑制回路を示す構成図である。 この発明の実施の形態2による同相抑制回路を示す構成図である。 第1~第8の伝送線路を含む第1のマーチャントバランと、第9~第16の伝送線路を含む第2のマーチャントバランとを備える従来の同相抑制回路を示す構成図である。 この発明の実施の形態3による同相抑制回路を示す構成図である。 この発明の実施の形態4による同相抑制回路を示す構成図である。 この発明の実施の形態5による同相抑制回路を示す構成図である。 この発明の実施の形態6による同相抑制回路を示す構成図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明の実施の形態1による同相抑制回路を示す構成図である。
 図1において、第1の信号入力端子1aは、例えば、マイクロ波帯又はミリ波帯の信号DSを入力する端子である。
 第2の信号入力端子1bは、例えば、マイクロ波帯又はミリ波帯の信号DSを入力する端子である。
 信号DSと信号DSは、同一周波数の信号であり、信号DSの位相は、信号DSの位相と180度異なっている。
 したがって、信号DSと信号DSは、差動信号を構成している。ここでは、説明の便宜上、信号DSの位相が0度、信号DSの位相が180度であるとする。
 第1の結合線路2は、第1の線路11、第2の線路12及び第3の線路13を備えている。
 第1の線路11、第2の線路12及び第3の線路13のそれぞれは、信号DS及び信号DSの中心周波数で、4分の1波長の長さを有している。
 第1の線路11は、一端11aが第1の信号入力端子1aと接続されている伝送線路である。
 第2の線路12は、一端12aが接地され、他端12bが第1の信号出力端子4aと接続されており、第1の線路11と電磁結合される伝送線路である。
 第3の線路13は、一端13aが開放されており、第2の線路12と電磁結合される伝送線路である。
 第2の結合線路3は、第4の線路21、第5の線路22及び第6の線路23を備えている。
 第4の線路21、第5の線路22及び第6の線路23のそれぞれは、信号DS及び信号DSの中心周波数で、4分の1波長の長さを有している。
 第4の線路21は、一端21aが第1の線路11の他端11bと接続され、他端21bが開放されている伝送線路である。
 第5の線路22は、一端22aが第2の信号出力端子4bと接続され、他端22bが接地されており、第4の線路21と電磁結合される伝送線路である。
 第6の線路23は、一端23aが第3の線路13の他端13bと接続され、他端23bが第2の信号入力端子1bと接続されており、第5の線路22と電磁結合される伝送線路である。
 第1の信号出力端子4aは、第1の結合線路2から出力される信号DSを出力する端子である。
 第2の信号出力端子4bは、第2の結合線路3から出力される信号DSを出力する端子である。
 次に動作について説明する。
 図1の同相抑制回路は、第1の結合線路2に含まれている第1の線路11及び第2の線路12と、第2の結合線路3に含まれている第4の線路21及び第5の線路22とが、第1のマーチャントバランを構成している。この実施の形態1では、第1のマーチャントバランの通過位相はθである。
 また、図1の同相抑制回路は、第1の結合線路2に含まれている第2の線路12及び第3の線路13と、第2の結合線路3に含まれている第5の線路22及び第6の線路23とが、第2のマーチャントバランを構成している。この実施の形態1では、第2のマーチャントバランの通過位相はθである。
 第1の信号出力端子4aと接続されている第2の線路12は、第1のマーチャントバランと第2のマーチャントバランにおいて共通化されている。
 第2の信号出力端子4bと接続されている第5の線路22は、第1のマーチャントバランと第2のマーチャントバランにおいて共通化されている。
 第1の線路11、第2の線路12、第4の線路21及び第5の線路22が第1のマーチャントバランを構成しているため、第1の信号入力端子1aから信号DSが入力されると、第2の線路12の他端12bには、位相が(0+θ)度の信号DS1-1が現れる。
 また、第5の線路22の一端22aには、位相が(180+θ)度の信号DS1-2が現れる。
 第2の線路12、第3の線路13、第5の線路22及び第6の線路23が第2のマーチャントバランを構成しているため、第2の信号入力端子1bから信号DSが入力されると、第5の線路22の一端22aには、位相が(180+θ)度の信号DS2-1が現れる。
 また、第2の線路12の他端12bには、位相が(0+θ)度の信号DS2-2が現れる。
 ここで、第2の線路12の他端12bに現れている信号DS1-1と信号DS2-2は、位相が共に(0+θ)度の信号であるため同相合成される。
 これにより、第1の信号出力端子4aから、信号DS1-1と信号DS2-2の合成信号として、位相が(0+θ)度の信号DSが出力される。
 また、第5の線路22の一端22aに現れている信号DS1-2と信号DS2-1は、位相が共に(180+θ)度の信号であるため同相合成される。
 これにより、第2の信号出力端子4bから、信号DS1-2と信号DS2-1の合成信号として、位相が(180+θ)度の信号DSが出力される。
 第1の信号出力端子4aから出力される信号DSと、第2の信号出力端子4bから出力される信号DSとの位相差が180度であるため、信号DSと信号DSは、差動信号である。
 次に、第1の信号入力端子1a及び第2の信号入力端子1bから、雑音などの同相信号Cが入力された場合の動作を説明する。
 ここでは、説明の便宜上、同相信号Cの位相がαであるとする。
 第1の線路11、第2の線路12、第4の線路21及び第5の線路22が第1のマーチャントバランを構成しているため、第1の信号入力端子1aから同相信号Cが入力されると、第2の線路12の他端12bには、位相が(α+θ)度の信号C1-1が現れる。
 また、第5の線路22の一端22aには、位相が(180+α+θ)度の信号C1-2が現れる。
 第2の線路12、第3の線路13、第5の線路22及び第6の線路23が第2のマーチャントバランを構成しているため、第2の信号入力端子1bから同相信号Cが入力されると、第5の線路22の一端22aには、位相が(α+θ)度の信号C2-1が現れる。
 また、第2の線路12の他端12bには、位相が(180+α+θ)度の信号C2-2が現れる。
 ここで、第2の線路12の他端12bに現れている信号C1-1と信号C2-2は、位相差が180度(=|(α+θ)-(180+α+θ)|)であり、かつ、振幅が同一であるため、相殺される。
 また、第5の線路22の一端22aに現れている信号C1-2と信号C2-1は、位相差が180度(=|(180+α+θ)-(α+θ)|)であり、かつ、振幅が同一であるため、相殺される。
 これにより、第1の信号出力端子4a及び第2の信号出力端子4bからは、同相成分が出力されない。
 次に、差動信号と同相信号が図1の同相抑制回路に入力された場合の特性を説明する。
 ここでは、差動信号を第1の信号出力端子4a及び第2の信号出力端子4bに入力する場合、差動信号を生成することが可能な理想バランの平衡信号端子を第1の信号出力端子4a及び第2の信号出力端子4bと接続する。
 また、理想バランの不平衡信号端子を特性計算回路のポート(1)として、ポート(1)に不平衡信号を入力するものとする。
 また、第1の信号出力端子4aを特性計算回路のポート(2)、第2の信号出力端子4bを特性計算回路のポート(3)として、ポート(1)とポート(2)の間のSパラメータS21と、ポート(1)とポート(3)の間のSパラメータS31とを計算するものとする。
 次に、同相信号を第1の信号出力端子4a及び第2の信号出力端子4bに入力する場合、第1の信号出力端子4aと第2の信号出力端子4bを接続し、特性計算回路のポート(4)に不平衡信号を入力するものとする。
 また、第1の信号出力端子4aを特性計算回路のポート(5)、第2の信号出力端子4bを特性計算回路のポート(6)として、ポート(4)とポート(5)の間のSパラメータS54と、ポート(4)とポート(6)の間のSパラメータS64とを計算するものとする。
 図2は、差動信号の入力時におけるSパラメータS21の振幅及びSパラメータS31の振幅を示す説明図である。
 図3は、差動信号の入力時におけるSパラメータS21とSパラメータS31との位相差を示す説明図である。
 図2及び図3では、第1の線路11、第2の線路12、第3の線路13、第4の線路21、第5の線路22及び第6の線路23のそれぞれの長さを、周波数20GHzで4分の1波長の長さとしている。
 このため、図2に示すように、周波数20GHzを中心として、同相抑制回路の通過損失が約-3dBとなり、差動信号がほとんど損失されずに伝送されていることが分かる。
 また、図3に示すように、周波数20GHzで、SパラメータS21とSパラメータS31との位相差が180度になっており、差動信号として伝送されていることが分かる。
 図4は、同相信号の入力時におけるSパラメータS54の振幅及びSパラメータS64の振幅を示す説明図である。
 図4に示すように、周波数20GHzで、同相信号が20dB程度減衰されていることが分かる。
 以上で明らかなように、この実施の形態1によれば、一端11aが第1の信号入力端子1aと接続されている第1の線路11と、一端12aが接地され、他端12bが第1の信号出力端子4aと接続されており、第1の線路11と電磁結合される第2の線路12と、一端13aが開放されており、第2の線路12と電磁結合される第3の線路13と、一端21aが第1の線路11の他端11bと接続され、他端21bが開放されている第4の線路21と、一端22aが第2の信号出力端子4bと接続され、他端22bが接地されており、第4の線路21と電磁結合される第5の線路22と、一端23aが第3の線路13の他端13bと接続され、他端23bが第2の信号入力端子1bと接続されており、第5の線路22と電磁結合される第6の線路23とを備えている。
 また、第1の線路11、第2の線路12、第3の線路13、第4の線路21、第5の線路22及び第6の線路23が、第1の信号入力端子1a及び第2の信号入力端子1bから入力される信号の周波数で4分の1波長の長さを有しているように構成している。
 これにより、互いに独立している2つのマーチャントバランを用いる場合よりも、伝送線路の本数を減らすことができる効果を奏する。
 例えば、非特許文献1に開示されている同相抑制回路は、8本の伝送線路を備えているが、この実施の形態1では、同相抑制回路が備えている伝送線路の本数が6本であり、伝送線路の本数が2本減少している。
 したがって、この実施の形態1では、非特許文献1に開示されている同相抑制回路よりも小型化を図ることができる。
 この実施の形態1では、IC(Integrated Circuit)を含む誘電体基板の平面上に、第1の線路11、第2の線路12、第3の線路13、第4の線路21、第5の線路22及び第6の線路23を配置することを想定している。
 しかし、第1の線路11、第2の線路12、第3の線路13、第4の線路21、第5の線路22及び第6の線路23の配置は、誘電体基板の平面上に配置するものに限るものではない。
 例えば、ICを含む多層誘電体基板において、第1の線路11、第2の線路12、第3の線路13、第4の線路21、第5の線路22及び第6の線路23を複数の層に分散配置し、異なる層に配置されている線路が電磁結合するものであってもよい。
実施の形態2.
 非特許文献1に開示されている同相抑制回路は、第1のマーチャントバランが第1~第4の伝送線路を備え、第2のマーチャントバランが第5~第8の伝送線路を備えている。
 第1~第8の伝送線路を誘電体基板に形成する際、線路と線路の間隔が極めて狭い場合、製造が困難になることがある。
 図5に示すように、第1及び第2のマーチャントバランにおける各々の結合線路に対して、伝送線路を1本ずつ追加するようにすれば、隣り合う線路間の結合量を小さくても、第1及び第2のマーチャントバランを構成することが可能になることがある。
 隣り合う線路間の結合量を小さくしても、第1及び第2のマーチャントバランを構成することが可能であれば、線路と線路の間隔を広げることが可能になり、製造の容易化を図ることができる。
 図5は、第1~第6の伝送線路を含む第1のマーチャントバランと、第7~第12の伝送線路を含む第2のマーチャントバランとを備える従来の同相抑制回路を示す構成図である。
 第1~第12の伝送線路は、入力される差動信号の周波数で4分の1波長の長さを有している。
 図6は、この発明の実施の形態2による同相抑制回路を示す構成図である。図6において、図1と同一符号は同一または相当部分を示すので説明を省略する。
 第7の線路31は、一端31aが接地され、他端31bが第1の信号出力端子4aと接続され、第2の線路12と第3の線路13との間に配置されており、第2の線路12及び第3の線路13のそれぞれと電磁結合される伝送線路である。
 第8の線路32は、一端32aが第2の信号出力端子4bと接続され、他端32bが接地され、第5の線路22と第6の線路23との間に配置されており、第5の線路22及び第6の線路23のそれぞれと電磁結合される伝送線路である。
 第7の線路31及び第8の線路32のそれぞれは、信号DS及び信号DSの中心周波数で、4分の1波長の長さを有している。
 次に動作について説明する。
 図6の同相抑制回路は、第1の結合線路2に含まれている第1の線路11、第2の線路12及び第7の線路31と、第2の結合線路3に含まれている第4の線路21、第5の線路22及び第8の線路32とが、第1のマーチャントバランを構成している。
 また、図6の同相抑制回路は、第1の結合線路2に含まれている第2の線路12、第7の線路31及び第3の線路13と、第2の結合線路3に含まれている第5の線路22、第8の線路32及び第6の線路23が、第2のマーチャントバランを構成している。
 第1の信号出力端子4aと接続されている第2の線路12及び第7の線路31は、第1のマーチャントバランと第2のマーチャントバランにおいて共通化されている。
 第2の信号出力端子4bと接続されている第5の線路22及び第8の線路32は、第1のマーチャントバランと第2のマーチャントバランにおいて共通化されている。
 第1の線路11、第2の線路12、第7の線路31、第4の線路21、第5の線路22及び第8の線路32が第1のマーチャントバランを構成しているため、第1の信号入力端子1aから信号DSが入力されると、第2の線路12の他端12b及び第7の線路31の他端31bには、位相が(0+θ)度の信号DS1-1が現れる。
 また、第5の線路22の一端22a及び第8の線路32の一端32aには、位相が(180+θ)度の信号DS1-2が現れる。
 第2の線路12、第7の線路31、第3の線路13、第5の線路22、第8の線路32及び第6の線路23が第2のマーチャントバランを構成しているため、第2の信号入力端子1bから信号DSが入力されると、第5の線路22の一端22a及び第8の線路32の一端32aには、位相が(180+θ)度の信号DS2-1が現れる。
 また、第2の線路12の他端12b及び第7の線路31の他端31bには、位相が(0+θ)度の信号DS2-2が現れる。
 ここで、第2の線路12の他端12b及び第7の線路31の他端31bに現れている信号DS1-1と信号DS2-2は、位相が共に(0+θ)度の信号であるため同相合成される。
 これにより、第1の信号出力端子4aから、信号DS1-1と信号DS2-2の合成信号として、位相が(0+θ)度の信号DSが出力される。
 また、第5の線路22の一端22a及び第8の線路32の一端32aに現れている信号DS1-2と信号DS2-1は、位相が共に(180+θ)度の信号であるため同相合成される。
 これにより、第2の信号出力端子4bから、信号DS1-2と信号DS2-1の合成信号として、位相が(180+θ)度の信号DSが出力される。
 第1の信号出力端子4aから出力される信号DSと、第2の信号出力端子4bから出力される信号DSとの位相差が180度であるため、信号DSと信号DSは、差動信号である。
 次に、第1の信号入力端子1a及び第2の信号入力端子1bから、雑音などの同相信号Cが入力された場合の動作を説明する。
 第1の線路11、第2の線路12、第7の線路31、第4の線路21、第5の線路22及び第8の線路32が第1のマーチャントバランを構成しているため、第1の信号入力端子1aから同相信号Cが入力されると、第2の線路12の他端12b及び第7の線路31の他端31bには、位相が(α+θ)度の信号C1-1が現れる。
 また、第5の線路22の一端22a及び第8の線路32の一端32aには、位相が(180+α+θ)度の信号C1-2が現れる。
 第2の線路12、第7の線路31、第3の線路13、第5の線路22、第8の線路32及び第6の線路23が第2のマーチャントバランを構成しているため、第2の信号入力端子1bから同相信号Cが入力されると、第5の線路22の一端22a及び第8の線路32の一端32aには、位相が(α+θ)度の信号C2-1が現れる。
 また、第2の線路12の他端12b及び第7の線路31の他端31bには、位相が(180+α+θ)度の信号C2-2が現れる。
 ここで、第2の線路12の他端12b及び第7の線路31の他端31bに現れている信号C1-1と信号C2-2は、位相差が180度(=|(α+θ)-(180+α+θ)|)であり、かつ、振幅が同一であるため、相殺される。
 また、第5の線路22の一端22a及び第8の線路32の一端32aに現れている信号C1-2と信号C2-1は、位相差が180度(=|(180+α+θ)-(α+θ)|)であり、かつ、振幅が同一であるため、相殺される。
 これにより、第1の信号出力端子4a及び第2の信号出力端子4bからは、同相成分が出力されない。
 図6の同相抑制回路は、第1の結合線路2に第7の線路31を追加し、第2の結合線路3に第8の線路32を追加しているので、図5に示す従来の同相抑制回路と同様に、隣り合う線路間の結合量を小さくしても、第1及び第2のマーチャントバランを構成することが可能になる。
 隣り合う線路間の結合量を小さくしても、第1及び第2のマーチャントバランを構成することが可能であれば、線路と線路の間隔を広げることが可能になり、製造の容易化を図ることができる。
 以上で明らかなように、この実施の形態2によれば、一端31aが接地され、他端31bが第1の信号出力端子4aと接続され、第2の線路12と第3の線路13との間に配置されており、第2の線路12及び第3の線路13のそれぞれと電磁結合される第7の線路31と、一端32aが第2の信号出力端子4bと接続され、他端32bが接地され、第5の線路22と第6の線路23との間に配置されており、第5の線路22及び第6の線路23のそれぞれと電磁結合される第8の線路32とを備え、第7の線路31及び第8の線路32のそれぞれが、信号DS及び信号DSの中心周波数で、4分の1波長の長さを有している。
 これにより、互いに独立している2つのマーチャントバランを用いる場合よりも、伝送線路の本数を減らすことができる効果を奏する。
 例えば、図5に示す従来の同相抑制回路は、12本の伝送線路を備えているが、この実施の形態2では、同相抑制回路が備えている伝送線路の本数が8本であり、伝送線路の本数が4本減少している。
 したがって、この実施の形態2では、図5に示す従来の同相抑制回路よりも小型化を図ることができる。
実施の形態3.
 非特許文献1に開示されている同相抑制回路は、第1のマーチャントバランが第1~第4の伝送線路を備え、第2のマーチャントバランが第5~第8の伝送線路を備えている。
 第1~第8の伝送線路を誘電体基板に形成する際、線路と線路の間隔が極めて狭い場合、製造が困難になることがある。
 図7に示すように、第1及び第2のマーチャントバランにおける各々の結合線路に対して、伝送線路を2本ずつ追加するようにすれば、隣り合う線路間の結合量を小さくても、第1及び第2のマーチャントバランを構成することが可能になることがある。
 隣り合う線路間の結合量を小さくしても、第1及び第2のマーチャントバランを構成することが可能であれば、線路と線路の間隔を広げることが可能になり、製造の容易化を図ることができる。
 図7は、第1~第8の伝送線路を含む第1のマーチャントバランと、第9~第16の伝送線路を含む第2のマーチャントバランとを備える従来の同相抑制回路を示す構成図である。
 第1~第16の伝送線路は、入力される差動信号の周波数で4分の1波長の長さを有している。
 図8は、この発明の実施の形態3による同相抑制回路を示す構成図である。図8において、図1及び図6と同一符号は同一または相当部分を示すので説明を省略する。
 第9の線路41は、一端41aが第1の信号入力端子1aと接続され、他端41bが第1の線路11の他端11bと接続され、第2の線路12と第7の線路31との間に配置されており、第2の線路12及び第7の線路31のそれぞれと電磁結合される伝送線路である。
 第10の線路42は、一端42aが第4の線路21の一端21aと接続され、他端42bが開放され、第5の線路22と第8の線路32との間に配置されており、第5の線路22及び第8の線路32のそれぞれと電磁結合される伝送線路である。
 第9の線路41及び第10の線路42のそれぞれは、信号DS及び信号DSの中心周波数で、4分の1波長の長さを有している。
 次に動作について説明する。
 図8の同相抑制回路は、第1の結合線路2に含まれている第1の線路11、第2の線路12、第9の線路41及び第7の線路31と、第2の結合線路3に含まれている第4の線路21、第5の線路22、第10の線路42及び第8の線路32とが、第1のマーチャントバランを構成している。
 また、図8の同相抑制回路は、第1の結合線路2に含まれている第2の線路12、第9の線路41、第7の線路31及び第3の線路13と、第2の結合線路3に含まれている第5の線路22、第10の線路42、第8の線路32及び第6の線路23が、第2のマーチャントバランを構成している。
 第1の信号出力端子4aと接続されている第2の線路12、第9の線路41及び第7の線路31は、第1のマーチャントバランと第2のマーチャントバランにおいて共通化されている。
 第2の信号出力端子4bと接続されている第5の線路22、第10の線路42及び第8の線路32は、第1のマーチャントバランと第2のマーチャントバランにおいて共通化されている。
 第1の線路11、第2の線路12、第9の線路41、第7の線路31、第4の線路21、第5の線路22、第10の線路42及び第8の線路32が第1のマーチャントバランを構成しているため、第1の信号入力端子1aから信号DSが入力されると、第2の線路12の他端12b及び第7の線路31の他端31bには、位相が(0+θ)度の信号DS1-1が現れる。
 また、第5の線路22の一端22a及び第8の線路32の一端32aには、位相が(180+θ)度の信号DS1-2が現れる。
 第2の線路12、第9の線路41、第7の線路31、第3の線路13、第5の線路22、第10の線路42、第8の線路32及び第6の線路23が第2のマーチャントバランを構成しているため、第2の信号入力端子1bから信号DSが入力されると、第5の線路22の一端22a及び第8の線路32の一端32aには、位相が(180+θ)度の信号DS2-1が現れる。
 また、第2の線路12の他端12b及び第7の線路31の他端31bには、位相が(0+θ)度の信号DS2-2が現れる。
 ここで、第2の線路12の他端12b及び第7の線路31の他端31bに現れている信号DS1-1と信号DS2-2は、位相が共に(0+θ)度の信号であるため同相合成される。
 これにより、第1の信号出力端子4aから、信号DS1-1と信号DS2-2の合成信号として、位相が(0+θ)度の信号DSが出力される。
 また、第5の線路22の一端22a及び第8の線路32の一端32aに現れている信号DS1-2と信号DS2-1は、位相が共に(180+θ)度の信号であるため同相合成される。
 これにより、第2の信号出力端子4bから、信号DS1-2と信号DS2-1の合成信号として、位相が(180+θ)度の信号DSが出力される。
 第1の信号出力端子4aから出力される信号DSと、第2の信号出力端子4bから出力される信号DSとの位相差が180度であるため、信号DSと信号DSは、差動信号である。
 次に、第1の信号入力端子1a及び第2の信号入力端子1bから、雑音などの同相信号Cが入力された場合の動作を説明する。
 第1の線路11、第2の線路12、第9の線路41、第7の線路31、第4の線路21、第5の線路22、第10の線路42及び第8の線路32が第1のマーチャントバランを構成しているため、第1の信号入力端子1aから同相信号Cが入力されると、第2の線路12の他端12b及び第7の線路31の他端31bには、位相が(α+θ)度の信号C1-1が現れる。
 また、第5の線路22の一端22a及び第8の線路32の一端32aには、位相が(180+α+θ)度の信号C1-2が現れる。
 第2の線路12、第9の線路41、第7の線路31、第3の線路13、第5の線路22、第10の線路42、第8の線路32及び第6の線路23が第2のマーチャントバランを構成しているため、第2の信号入力端子1bから同相信号Cが入力されると、第5の線路22の一端22a及び第8の線路32の一端32aには、位相が(α+θ)度の信号C2-1が現れる。
 また、第2の線路12の他端12b及び第7の線路31の他端31bには、位相が(180+α+θ)度の信号C2-2が現れる。
 ここで、第2の線路12の他端12b及び第7の線路31の他端31bに現れている信号C1-1と信号C2-2は、位相差が180度(=|(α+θ)-(180+α+θ)|)であり、かつ、振幅が同一であるため、相殺される。
 また、第5の線路22の一端22a及び第8の線路32の一端32aに現れている信号C1-2と信号C2-1は、位相差が180度(=|(180+α+θ)-(α+θ)|)であり、かつ、振幅が同一であるため、相殺される。
 これにより、第1の信号出力端子4a及び第2の信号出力端子4bからは、同相成分が出力されない。
 図8の同相抑制回路は、第1の結合線路2に第7の線路31及び第9の線路41を追加し、第2の結合線路3に第8の線路32及び第10の線路42を追加しているので、図7に示す従来の同相抑制回路と同様に、隣り合う線路間の結合量を小さくしても、第1及び第2のマーチャントバランを構成することが可能になる。
 隣り合う線路間の結合量を小さくしても、第1及び第2のマーチャントバランを構成することが可能であれば、線路と線路の間隔を広げることが可能になり、製造の容易化を図ることができる。
 以上で明らかなように、この実施の形態3によれば、一端41aが第1の信号入力端子1aと接続され、他端41bが第1の線路11の他端11bと接続され、第2の線路12と第7の線路31との間に配置されており、第2の線路12及び第7の線路31のそれぞれと電磁結合される第9の線路41と、一端42aが第4の線路21の一端21aと接続され、他端42bが開放され、第5の線路22と第8の線路32との間に配置されており、第5の線路22及び第8の線路32のそれぞれと電磁結合される第10の線路42とを備え、第9の線路41及び第10の線路42のそれぞれが、信号DS及び信号DSの中心周波数で、4分の1波長の長さを有している。
 これにより、互いに独立している2つのマーチャントバランを用いる場合よりも、伝送線路の本数を減らすことができる効果を奏する。
 例えば、図7に示す従来の同相抑制回路は、16本の伝送線路を備えているが、この実施の形態3では、同相抑制回路が備えている伝送線路の本数が10本であり、伝送線路の本数が6本減少している。
 したがって、この実施の形態3では、図7に示す従来の同相抑制回路よりも小型化を図ることができる。
実施の形態4.
 上記実施の形態1では、第4の線路21の他端21bが開放され、第2の線路12の一端12aが接地され、第5の線路22の他端22bが接地され、第3の線路13の一端13aが開放されている例を示している。
 この実施の形態4では、図9に示すように、第4の線路21の他端21bが接地され、第2の線路12の一端12aが開放され、第5の線路22の他端22bが開放され、第3の線路13の一端13aが接地されている例を説明する。
 図9は、この発明の実施の形態4による同相抑制回路を示す構成図である。
 図9の同相抑制回路は、上記実施の形態1と同様に、第1の結合線路2に含まれている第1の線路11及び第2の線路12と、第2の結合線路3に含まれている第4の線路21及び第5の線路22とが、第1のマーチャントバランを構成している。
 また、図9の同相抑制回路は、上記実施の形態1と同様に、第1の結合線路2に含まれている第2の線路12及び第3の線路13と、第2の結合線路3に含まれている第5の線路22及び第6の線路23とが、第2のマーチャントバランを構成している。
 第1の信号出力端子4aと接続されている第2の線路12は、上記実施の形態1と同様に、第1のマーチャントバランと第2のマーチャントバランにおいて共通化されている。
 第2の信号出力端子4bと接続されている第5の線路22は、上記実施の形態1と同様に、第1のマーチャントバランと第2のマーチャントバランにおいて共通化されている。
 第1の線路11、第2の線路12、第4の線路21及び第5の線路22が第1のマーチャントバランを構成している点で、上記実施の形態1と同様である。
 この実施の形態4における第1のマーチャントバランは、上記実施の形態1における第1のマーチャントバランとは、線路の端部の状態が相違している箇所がある。
 具体的には、上記実施の形態1では、第4の線路21の他端21bが開放され、第2の線路12の一端12aが接地され、第5の線路22の他端22bが接地され、第3の線路13の一端13aが開放されている。
 この実施の形態4では、第4の線路21の他端21bが接地され、第2の線路12の一端12aが開放され、第5の線路22の他端22bが開放され、第3の線路13の一端13aが接地されている。
 しかし、この実施の形態4における第1のマーチャントバランと、上記実施の形態1における第1のマーチャントバランとの動作自体は同様である。
 したがって、上記実施の形態1と同様に、第1の信号出力端子4a及び第2の信号出力端子4bから差動信号が出力され、第1の信号出力端子4a及び第2の信号出力端子4bからは同相成分が出力されない。
 以上で明らかなように、この実施の形態4によれば、一端11aが第1の信号入力端子1aと接続されている第1の線路11と、一端12aが開放され、他端12bが第1の信号出力端子4aと接続されており、第1の線路11と電磁結合される第2の線路12と、一端13aが接地されており、第2の線路12と電磁結合される第3の線路13と、一端21aが第1の線路11の他端11bと接続され、他端21bが接地されている第4の線路21と、一端22aが第2の信号出力端子4bと接続され、他端22bが開放されており、第4の線路21と電磁結合される第5の線路22と、一端23aが第3の線路13の他端13bと接続され、他端23bが第2の信号入力端子1bと接続されており、第5の線路22と電磁結合される第6の線路23とを備えている。
 また、第1の線路11、第2の線路12、第3の線路13、第4の線路21、第5の線路22及び第6の線路23が、第1の信号入力端子1a及び第2の信号入力端子1bから入力される信号の周波数で4分の1波長の長さを有しているように構成している。
 これにより、互いに独立している2つのマーチャントバランを用いる場合よりも、伝送線路の本数を減らすことができる効果を奏する。
 例えば、非特許文献1に開示されている同相抑制回路は、8本の伝送線路を備えているが、この実施の形態4では、同相抑制回路が備えている伝送線路の本数が6本であり、伝送線路の本数が2本減少している。
 したがって、この実施の形態4では、非特許文献1に開示されている同相抑制回路よりも小型化を図ることができる。
実施の形態5.
 上記実施の形態2では、第4の線路21の他端21bが開放され、第2の線路12の一端12aが接地され、第5の線路22の他端22bが接地され、第3の線路13の一端13aが開放されている例を示している。
 また、上記実施の形態2では、第7の線路31の一端31aが接地され、第8の線路32の他端32bが接地されている例を示している。
 この実施の形態5では、図10に示すように、第4の線路21の他端21bが接地され、第2の線路12の一端12aが開放され、第5の線路22の他端22bが開放され、第3の線路13の一端13aが接地されている。
 また、第7の線路31の一端31aが開放され、第8の線路32の他端32bが開放されている例を説明する。
 図10は、この発明の実施の形態5による同相抑制回路を示す構成図である。
 図10の同相抑制回路は、上記実施の形態2と同様に、第1の結合線路2に含まれている第1の線路11、第2の線路12及び第7の線路31と、第2の結合線路3に含まれている第4の線路21、第5の線路22及び第8の線路32とが、第1のマーチャントバランを構成している。
 また、図10の同相抑制回路は、第1の結合線路2に含まれている第2の線路12、第7の線路31及び第3の線路13と、第2の結合線路3に含まれている第5の線路22、第8の線路32及び第6の線路23が、第2のマーチャントバランを構成している。
 第1の信号出力端子4aと接続されている第2の線路12及び第7の線路31は、第1のマーチャントバランと第2のマーチャントバランにおいて共通化されている。
 第2の信号出力端子4bと接続されている第5の線路22及び第8の線路32は、第1のマーチャントバランと第2のマーチャントバランにおいて共通化されている。
 第1の線路11、第2の線路12、第7の線路31、第4の線路21、第5の線路22及び第8の線路32が第1のマーチャントバランを構成している点で、上記実施の形態2と同様である。
 この実施の形態5における第1のマーチャントバランは、上記実施の形態2における第1のマーチャントバランとは、線路の端部の状態が相違している箇所がある。
 具体的には、上記実施の形態2では、第4の線路21の他端21bが開放され、第2の線路12の一端12aが接地され、第5の線路22の他端22bが接地され、第3の線路13の一端13aが開放されている。また、第7の線路31の一端31aが接地され、第8の線路32の他端32bが接地されている。
 この実施の形態5では、第4の線路21の他端21bが接地され、第2の線路12の一端12aが開放され、第5の線路22の他端22bが開放され、第3の線路13の一端13aが接地されている。また、第7の線路31の一端31aが開放され、第8の線路32の他端32bが開放されている。
 しかし、この実施の形態5における第1のマーチャントバランと、上記実施の形態2における第1のマーチャントバランとの動作自体は同様である。
 したがって、上記実施の形態2と同様に、第1の信号出力端子4a及び第2の信号出力端子4bから差動信号が出力され、第1の信号出力端子4a及び第2の信号出力端子4bからは同相成分が出力されない。
 以上で明らかなように、この実施の形態5によれば、一端31aが開放され、他端31bが第1の信号出力端子4aと接続され、第2の線路12と第3の線路13との間に配置されており、第2の線路12及び第3の線路13のそれぞれと電磁結合される第7の線路31と、一端32aが第2の信号出力端子4bと接続され、他端32bが開放され、第5の線路22と第6の線路23との間に配置されており、第5の線路22及び第6の線路23のそれぞれと電磁結合される第8の線路32とを備え、第7の線路31及び第8の線路32のそれぞれが、信号DS及び信号DSの中心周波数で、4分の1波長の長さを有している。
 これにより、互いに独立している2つのマーチャントバランを用いる場合よりも、伝送線路の本数を減らすことができる効果を奏する。
 例えば、図5に示す従来の同相抑制回路は、12本の伝送線路を備えているが、この実施の形態5では、同相抑制回路が備えている伝送線路の本数が8本であり、伝送線路の本数が4本減少している。
 したがって、この実施の形態5では、図5に示す従来の同相抑制回路よりも小型化を図ることができる。
実施の形態6.
 上記実施の形態3では、第4の線路21の他端21bが開放され、第2の線路12の一端12aが接地され、第5の線路22の他端22bが接地され、第3の線路13の一端13aが開放されている例を示している。
 また、上記実施の形態3では、第7の線路31の一端31aが接地され、第8の線路32の他端32bが接地され、第10の線路42の他端42bが開放されている例を示している。
 この実施の形態6では、図11に示すように、第4の線路21の他端21bが接地され、第2の線路12の一端12aが開放され、第5の線路22の他端22bが開放され、第3の線路13の一端13aが接地されている。
 また、第7の線路31の一端31aが開放され、第8の線路32の他端32bが開放され、第10の線路42の他端42bが接地されている例を説明する。
 図11は、この発明の実施の形態6による同相抑制回路を示す構成図である。
 図11の同相抑制回路は、上記実施の形態3と同様に、第1の結合線路2に含まれている第1の線路11、第2の線路12、第9の線路41及び第7の線路31と、第2の結合線路3に含まれている第4の線路21、第5の線路22、第10の線路42及び第8の線路32とが、第1のマーチャントバランを構成している。
 また、図11の同相抑制回路は、第1の結合線路2に含まれている第2の線路12、第9の線路41、第7の線路31及び第3の線路13と、第2の結合線路3に含まれている第5の線路22、第10の線路42、第8の線路32及び第6の線路23が、第2のマーチャントバランを構成している。
 第1の信号出力端子4aと接続されている第2の線路12、第9の線路41及び第7の線路31は、第1のマーチャントバランと第2のマーチャントバランにおいて共通化されている。
 第2の信号出力端子4bと接続されている第5の線路22、第10の線路42及び第8の線路32は、第1のマーチャントバランと第2のマーチャントバランにおいて共通化されている。
 第1の線路11、第2の線路12、第9の線路41、第7の線路31、第4の線路21、第5の線路22、第10の線路42及び第8の線路32が第1のマーチャントバランを構成している点で、上記実施の形態3と同様である。
 この実施の形態6における第1のマーチャントバランは、上記実施の形態3における第1のマーチャントバランとは、線路の端部の状態が相違している箇所がある。
 具体的には、上記実施の形態3では、第4の線路21の他端21bが開放され、第2の線路12の一端12aが接地され、第5の線路22の他端22bが接地され、第3の線路13の一端13aが開放されている。また、第7の線路31の一端31aが接地され、第8の線路32の他端32bが接地され、第10の線路42の他端42bが開放されている。
 この実施の形態6では、第4の線路21の他端21bが接地され、第2の線路12の一端12aが開放され、第5の線路22の他端22bが開放され、第3の線路13の一端13aが接地されている。また、第7の線路31の一端31aが開放され、第8の線路32の他端32bが開放され、第10の線路42の他端42bが接地されている。
 しかし、この実施の形態6における第1のマーチャントバランと、上記実施の形態3における第1のマーチャントバランとの動作自体は同様である。
 したがって、上記実施の形態3と同様に、第1の信号出力端子4a及び第2の信号出力端子4bから差動信号が出力され、第1の信号出力端子4a及び第2の信号出力端子4bからは同相成分が出力されない。
 以上で明らかなように、この実施の形態6によれば、一端41aが第1の信号入力端子1aと接続され、他端41bが第1の線路11の他端11bと接続され、第2の線路12と第7の線路31との間に配置されており、第2の線路12及び第7の線路31のそれぞれと電磁結合される第9の線路41と、一端42aが第4の線路21の一端21aと接続され、他端42bが接地され、第5の線路22と第8の線路32との間に配置されており、第5の線路22及び第8の線路32のそれぞれと電磁結合される第10の線路42とを備え、第9の線路41及び第10の線路42のそれぞれが、信号DS及び信号DSの中心周波数で、4分の1波長の長さを有している。
 これにより、互いに独立している2つのマーチャントバランを用いる場合よりも、伝送線路の本数を減らすことができる効果を奏する。
 例えば、図7に示す従来の同相抑制回路は、16本の伝送線路を備えているが、この実施の形態6では、同相抑制回路が備えている伝送線路の本数が10本であり、伝送線路の本数が6本減少している。
 したがって、この実施の形態6では、図7に示す従来の同相抑制回路よりも小型化を図ることができる。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明は、入力される信号の周波数で4分の1波長の長さを有する複数の線路を備える同相抑制回路に適している。
 1a 第1の信号入力端子、1b 第2の信号入力端子、2 第1の結合線路、3 第2の結合線路、4a 第1の信号出力端子、4b 第2の信号出力端子、11 第1の線路、11a 第1の線路11の一端、11b 第1の線路11の他端、12 第2の線路、12a 第2の線路12の一端、12b 第2の線路12の他端、13 第3の線路、13a 第3の線路13の一端、13b 第3の線路13の他端、21 第4の線路、21a 第4の線路21の一端、21b 第4の線路21の他端、22 第5の線路、22a 第5の線路22の一端、22b 第5の線路22の他端、23 第6の線路、23a 第6の線路23の一端、23b 第6の線路23の他端、31 第7の線路、31a 第7の線路31の一端、31b 第7の線路31の他端、32 第8の線路、32a 第8の線路32の一端、32b 第8の線路32の他端、41 第9の線路、41a 第9の線路41の一端、41b 第9の線路41の他端、42 第10の線路、42a 第10の線路42の一端、42b 第10の線路42の他端。

Claims (6)

  1.  一端が第1の信号入力端子と接続されている第1の線路と、
     一端が接地され、他端が第1の信号出力端子と接続されており、前記第1の線路と電磁結合される第2の線路と、
     一端が開放されており、前記第2の線路と電磁結合される第3の線路と、
     一端が前記第1の線路の他端と接続され、他端が開放されている第4の線路と、
     一端が第2の信号出力端子と接続され、他端が接地されており、前記第4の線路と電磁結合される第5の線路と、
     一端が前記第3の線路の他端と接続され、他端が第2の信号入力端子と接続されており、前記第5の線路と電磁結合される第6の線路とを備え、
     前記第1から第6の線路は、前記第1及び第2の信号入力端子から入力される信号の周波数で4分の1波長の長さを有していることを特徴とする同相抑制回路。
  2.  一端が接地され、他端が前記第1の信号出力端子と接続され、前記第2の線路と前記第3の線路との間に配置されており、前記第2の線路及び前記第3の線路のそれぞれと電磁結合される第7の線路と、
     一端が前記第2の信号出力端子と接続され、他端が接地され、前記第5の線路と前記第6の線路との間に配置されており、前記第5の線路及び前記第6の線路のそれぞれと電磁結合される第8の線路とを備え、
     前記第7及び第8の線路は、前記第1及び第2の信号入力端子から入力される信号の周波数で4分の1波長の長さを有していることを特徴とする請求項1記載の同相抑制回路。
  3.  一端が前記第1の信号入力端子と接続され、他端が前記第1の線路の他端と接続され、前記第2の線路と前記第7の線路との間に配置されており、前記第2の線路及び前記第7の線路のそれぞれと電磁結合される第9の線路と、
     一端が前記第4の線路の一端と接続され、他端が開放され、前記第5の線路と前記第8の線路との間に配置されており、前記第5の線路及び前記第8の線路のそれぞれと電磁結合される第10の線路とを備え、
     前記第9及び第10の線路は、前記第1及び第2の信号入力端子から入力される信号の周波数で4分の1波長の長さを有していることを特徴とする請求項2記載の同相抑制回路。
  4.  一端が第1の信号入力端子と接続されている第1の線路と、
     一端が開放され、他端が第1の信号出力端子と接続されており、前記第1の線路と電磁結合される第2の線路と、
     一端が接地されており、前記第2の線路と電磁結合される第3の線路と、
     一端が前記第1の線路の他端と接続され、他端が接地されている第4の線路と、
     一端が第2の信号出力端子と接続され、他端が開放されており、前記第4の線路と電磁結合される第5の線路と、
     一端が前記第3の線路の他端と接続され、他端が第2の信号入力端子と接続されており、前記第5の線路と電磁結合される第6の線路とを備え、
     前記第1から第6の線路は、前記第1及び第2の信号入力端子から入力される信号の周波数で4分の1波長の長さを有していることを特徴とする同相抑制回路。
  5.  一端が開放され、他端が前記第1の信号出力端子と接続され、前記第2の線路と前記第3の線路との間に配置されており、前記第2の線路及び前記第3の線路のそれぞれと電磁結合される第7の線路と、
     一端が前記第2の信号出力端子と接続され、他端が開放され、前記第5の線路と前記第6の線路との間に配置されており、前記第5の線路及び前記第6の線路のそれぞれと電磁結合される第8の線路とを備え、
     前記第7及び第8の線路は、前記第1及び第2の信号入力端子から入力される信号の周波数で4分の1波長の長さを有していることを特徴とする請求項4記載の同相抑制回路。
  6.  一端が前記第1の信号入力端子と接続され、他端が前記第1の線路の他端と接続され、前記第2の線路と前記第7の線路との間に配置されており、前記第2の線路及び前記第7の線路のそれぞれと電磁結合される第9の線路と、
     一端が前記第4の線路の一端と接続され、他端が接地され、前記第5の線路と前記第8の線路との間に配置されており、前記第5の線路及び前記第8の線路のそれぞれと電磁結合される第10の線路とを備え、
     前記第9及び第10の線路は、前記第1及び第2の信号入力端子から入力される信号の周波数で4分の1波長の長さを有していることを特徴とする請求項5記載の同相抑制回路。
PCT/JP2017/027280 2017-07-27 2017-07-27 同相抑制回路 WO2019021427A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019532297A JP6625290B2 (ja) 2017-07-27 2017-07-27 同相抑制回路
US16/627,478 US20200220243A1 (en) 2017-07-27 2017-07-27 In-phase suppression circuit
PCT/JP2017/027280 WO2019021427A1 (ja) 2017-07-27 2017-07-27 同相抑制回路
EP17919228.1A EP3648347A4 (en) 2017-07-27 2017-07-27 EQUAL PHASE SUPPRESSION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/027280 WO2019021427A1 (ja) 2017-07-27 2017-07-27 同相抑制回路

Publications (1)

Publication Number Publication Date
WO2019021427A1 true WO2019021427A1 (ja) 2019-01-31

Family

ID=65041041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027280 WO2019021427A1 (ja) 2017-07-27 2017-07-27 同相抑制回路

Country Status (4)

Country Link
US (1) US20200220243A1 (ja)
EP (1) EP3648347A4 (ja)
JP (1) JP6625290B2 (ja)
WO (1) WO2019021427A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11791860B2 (en) * 2022-01-19 2023-10-17 Swiftlink Technologies Inc. Ultra compact and wide band folded Marchand Balun for millimeter-wave and beyond wireless communication

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214943A (ja) * 1998-01-26 1999-08-06 Murata Mfg Co Ltd バルントランス
JP2002329611A (ja) * 2001-05-02 2002-11-15 Murata Mfg Co Ltd 積層型複合バラントランス

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3576754B2 (ja) * 1997-03-31 2004-10-13 日本電信電話株式会社 バラン回路及びバランス型周波数変換器
WO2005076404A1 (ja) * 2004-02-06 2005-08-18 Murata Manufacturing Co., Ltd. 平衡型分配器
US8547186B2 (en) * 2005-09-09 2013-10-01 Anaren, Inc. Compact balun
US7408424B2 (en) * 2006-04-05 2008-08-05 Tdk Corporation Compact RF circuit with high common mode attenuation
US7936234B2 (en) * 2006-06-08 2011-05-03 National Taiwan University Marchand balun with air bridge
CN101689844A (zh) * 2007-07-03 2010-03-31 双信电机株式会社 不平衡-平衡变换器
CN103367845B (zh) * 2013-06-24 2015-03-25 南京航空航天大学 一种超宽带微带平衡滤波器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214943A (ja) * 1998-01-26 1999-08-06 Murata Mfg Co Ltd バルントランス
JP2002329611A (ja) * 2001-05-02 2002-11-15 Murata Mfg Co Ltd 積層型複合バラントランス

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
K.S. ANGI. D. REBERTSON: "Analysis and Design of Impedance-Transforming Planar Marchand Baluns", IEEE TRANS. ON MICROWAVE THEORY AND TECHNIQUES, vol. 49, no. 2, February 2001 (2001-02-01), pages 402 - 406
See also references of EP3648347A4 *

Also Published As

Publication number Publication date
EP3648347A4 (en) 2020-08-12
EP3648347A1 (en) 2020-05-06
JP6625290B2 (ja) 2019-12-25
JPWO2019021427A1 (ja) 2019-11-14
US20200220243A1 (en) 2020-07-09

Similar Documents

Publication Publication Date Title
US8290453B2 (en) Power combiner, amplifier, and transmitter
US10347813B2 (en) Driving the common-mode of a Josephson parametric converter using a three-port power divider
US20090261901A1 (en) Decade bandwidth planar mmic four port transformer
WO2013128795A1 (ja) 電磁共鳴結合器
CN110460310A (zh) 一种超宽带高谐波抑制太赫兹倍频器
US20190245255A1 (en) Circulator Device With Two Magnet-Free Circulators
CN112073023A (zh) 新型宽带高平衡度巴伦
JP2011101341A (ja) 水平及び垂直キャパシタンスを形成するマーチャンドバランディバイス
JP2014204381A (ja) マーチャントバラン
JP6625290B2 (ja) 同相抑制回路
Moura Radio frequency implementation of the fractional Hilbert transform with transversal filters
KR100982441B1 (ko) 평판형 더블 밸런스드 믹서를 위한 3방향 발룬
US9148113B2 (en) Balanced-to-unbalanced converter
JP6407473B1 (ja) 高周波ミクサ
US8362835B2 (en) Decade bandwidth planar MMIC four port transformer
US8994435B2 (en) Switching core layout
US9019037B2 (en) Six-port circuit
US7323950B2 (en) Balanced hybrid coupler network
JP2020010193A (ja) 周波数変換器
US20150311882A1 (en) A filter assembly and a method of filtering
JP4173488B2 (ja) フィルタ回路及び周波数逓倍器
CN105305969B (zh) 超宽带中频的双平衡混频器电路
JP2017158174A (ja) マーチャントバラン
JP5553927B2 (ja) 半導体装置及び無線通信機
US11038282B2 (en) Energy absorbing circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919228

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532297

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017919228

Country of ref document: EP

Effective date: 20200128