WO2019021373A1 - 駆動装置、圧縮機、空気調和機および駆動方法 - Google Patents

駆動装置、圧縮機、空気調和機および駆動方法 Download PDF

Info

Publication number
WO2019021373A1
WO2019021373A1 PCT/JP2017/026877 JP2017026877W WO2019021373A1 WO 2019021373 A1 WO2019021373 A1 WO 2019021373A1 JP 2017026877 W JP2017026877 W JP 2017026877W WO 2019021373 A1 WO2019021373 A1 WO 2019021373A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
connection
motor
inverter
threshold
Prior art date
Application number
PCT/JP2017/026877
Other languages
English (en)
French (fr)
Inventor
昌弘 仁吾
勇二 廣澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/615,304 priority Critical patent/US11502634B2/en
Priority to EP17919562.3A priority patent/EP3661046B1/en
Priority to JP2019532252A priority patent/JP6942184B2/ja
Priority to AU2017424860A priority patent/AU2017424860B2/en
Priority to KR1020197037294A priority patent/KR102441627B1/ko
Priority to PCT/JP2017/026877 priority patent/WO2019021373A1/ja
Priority to CN201780093101.XA priority patent/CN110892633B/zh
Publication of WO2019021373A1 publication Critical patent/WO2019021373A1/ja
Priority to JP2021144770A priority patent/JP7203920B2/ja
Priority to JP2022201176A priority patent/JP2023021391A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • H02P25/184Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays wherein the motor speed is changed by switching from a delta to a star, e.g. wye, connection of its windings, or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/26Rotor cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0085Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed
    • H02P21/0089Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed using field weakening
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0086Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for high speeds, e.g. above nominal speed
    • H02P23/009Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for high speeds, e.g. above nominal speed using field weakening
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Definitions

  • the present invention relates to a drive device for driving an electric motor, a compressor driven by the electric motor, an air conditioner having the electric motor, and a method of driving the electric motor.
  • the wire connection state of the motor coil is Y connection (also called star connection) and delta connection (triangular connection or ⁇ Switching is also performed with the connection).
  • Patent No. 4722069 (see paragraphs 0031 to 0033 and 0042)
  • the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to reduce the demagnetization of a permanent magnet even under special operating conditions.
  • the drive device is a drive device that drives a motor having a coil, and includes an inverter that outputs a voltage to the coil, a wire connection switching unit that switches a wire connection state between Y connection and delta connection, and wire connection of the coil.
  • the state is Y connection and the inverter current value reaches a first threshold A or the coil connection state is a delta connection and the current value reaches a second threshold B
  • the output of the inverter is And a control device to stop.
  • the first threshold A and the second threshold B satisfy B ⁇ 3 ⁇ A.
  • the driving method according to the present invention is a driving method of driving a motor in which a wire connection state of a coil can be switched between Y connection and delta connection using an inverter, and detecting a current value of the inverter; If the wire connection status is Y connection and the current value reaches the first threshold A, or the coil connection status is delta connection and the current value reaches the second threshold B, the output of the inverter is And stopping.
  • the first threshold A and the second threshold B satisfy B ⁇ 3 ⁇ A.
  • the first threshold A of Y connection and the second threshold B of delta connection are set to satisfy B ⁇ B3 ⁇ A, for example, only two phases of three phase coils The demagnetization of the permanent magnet can be reduced even in the operating condition where the current flows to the
  • FIG. 1 is a cross-sectional view showing a configuration of a motor of a first embodiment.
  • FIG. 1 is a cross-sectional view showing a configuration of a rotary compressor of a first embodiment.
  • FIG. 1 is a block diagram showing a configuration of an air conditioner of a first embodiment.
  • FIG. 1 is a conceptual diagram showing a basic configuration of a control system of an air conditioner according to Embodiment 1. It is a block diagram (A) which shows the control system of the air conditioner of Embodiment 1, and a block diagram (B) which shows the part which controls the electric motor of a compressor based on room temperature.
  • FIG. 1 is a block diagram showing a configuration of a drive device of a first embodiment.
  • FIG. 1 is a block diagram showing a configuration of a drive device of a first embodiment.
  • FIG. 1 is a block diagram showing a configuration of a drive device of a first embodiment. It is the model (A) and (B) which shows the switching operation of the wire connection state of the coil of Embodiment 1.
  • FIG. FIG. 2 is a schematic view showing a wire connection state of a coil of Embodiment 1; It is a graph which shows the relationship between the voltage between lines, and the rotation speed in each of the case where the wire connection state of a coil is made into Y connection, and it is made into delta connection.
  • 7 is a graph showing the improvement effect of the demagnetizing factor according to the first embodiment.
  • 5 is a flowchart showing the basic operation of the air conditioner of the first embodiment.
  • 7 is a flowchart showing a switching operation from a delta connection to a Y connection according to the first embodiment.
  • FIG. 5 is a flowchart showing a switching operation from Y connection to delta connection according to the first embodiment. 5 is a flowchart showing an overcurrent protection operation of the first embodiment.
  • FIG. 10 is a block diagram showing a configuration of a drive device of a modification of the first embodiment.
  • FIG. 1 is a cross-sectional view showing the configuration of a motor 1 according to a first embodiment of the present invention.
  • the motor 1 is a permanent magnet embedded motor and is used, for example, in a rotary compressor.
  • the motor 1 includes a stator 10 and a rotor 20 rotatably provided inside the stator 10.
  • FIG. 1 is a cross-sectional view in a plane orthogonal to the rotation axis of the rotor 20. As shown in FIG.
  • axis C1 The rotation axis of the rotor 20 is referred to as “axis C1”.
  • the direction of the axis C1 ie, the direction of the rotation axis of the rotor 20
  • axial direction A circumferential direction (indicated by an arrow R1 in FIG. 1) centered on the axis C1 is referred to as a “circumferential direction”.
  • the radial direction centering on the axis line C1 is called "radial direction”.
  • the stator 10 includes a stator core 11 and a coil 3 wound around the stator core 11.
  • the stator core 11 is formed by axially laminating a plurality of electromagnetic steel plates having a thickness of 0.1 to 0.7 mm (here, 0.35 mm) and fastening them by caulking.
  • the stator core 11 has an annular yoke portion 13 and a plurality of teeth 12 projecting radially inward from the yoke portion 13.
  • the number of teeth 12 is nine here, but is not limited to nine. Slots are formed between adjacent teeth 12. The number of slots is the same as the number of teeth 12.
  • Each tooth 12 has a wide tip (a dimension in the circumferential direction of the stator core 11) at a radially inner end.
  • the coil 3 is obtained, for example, by winding a magnet wire having a wire diameter (diameter) of 0.8 mm around each tooth 12 in a concentrated winding of 110 turns (110 turns).
  • the number of turns and the wire diameter of the coil 3 are determined according to the characteristics (rotational speed, torque, etc.) required of the motor 1, the supplied voltage, or the cross-sectional area of the slot.
  • the coil 3 is composed of U-phase, V-phase and W-phase three-phase windings (referred to as coils 3U, 3V, 3W). Both terminals of the coil 3 of each phase are open. That is, the coil 3 has a total of six terminals.
  • the connection state of the coil 3 is configured to be switchable between the Y connection and the delta connection as described later.
  • the insulator 14 is made of, for example, a film formed of PET (polyethylene terephthalate), and has a thickness of 0.1 to 0.2 mm.
  • the stator core 11 has a configuration in which a plurality of blocks (referred to as divided cores) are connected via thin portions. Each split core has one tooth. The number of split cores is nine here, but is not limited to nine. In a state in which the stator core 11 is developed in a strip shape, magnet wires are wound around the teeth 12, and then the stator core 11 is bent in an annular shape to weld both ends.
  • stator core 11 is not limited to one having a configuration in which a plurality of divided cores are connected as described above.
  • the rotor 20 has a rotor core 21 and permanent magnets 25 attached to the rotor core 21.
  • the rotor core 21 is obtained by laminating a plurality of electromagnetic steel plates having a thickness of 0.1 to 0.7 mm (here, 0.35 mm) in the rotational axis direction and fastening them by caulking.
  • the rotor core 21 has a cylindrical shape, and a shaft hole 27 (central hole) is formed at the radial center thereof.
  • a shaft (for example, a shaft 90 of the rotary compressor 8 shown in FIG. 2), which is a rotation shaft of the rotor 20, is fixed to the shaft hole 27 by press-fitting or press-fitting.
  • a plurality of (here, six) magnet insertion holes 22 into which the permanent magnets 25 are inserted are formed.
  • the magnet insertion hole 22 is an air gap, and one magnet insertion hole 22 corresponds to one magnetic pole.
  • the rotor 20 as a whole has six poles.
  • the number of the magnet insertion holes 22 (that is, the number of poles) is not limited to six.
  • the magnet insertion hole 22 has a V-shape in which a circumferential center portion protrudes radially inward.
  • the magnet insertion hole 22 is not limited to V shape, For example, straight shape may be sufficient.
  • Two permanent magnets 25 are disposed in one magnet insertion hole 22. That is, two permanent magnets 25 are arranged for one magnetic pole. Here, since the rotor 20 has six poles as described above, a total of twelve permanent magnets 25 are disposed.
  • the permanent magnet 25 is a flat plate-like member which is long in the axial direction of the rotor core 21, has a width in the circumferential direction of the rotor core 21, and has a thickness in the radial direction.
  • the permanent magnet 25 is made of, for example, a rare earth magnet having neodymium (Nd), iron (Fe) and boron (B) as main components.
  • the permanent magnet 25 is magnetized in the thickness direction. Further, two permanent magnets 25 disposed in one magnet insertion hole 22 are magnetized such that the same magnetic poles face the same side in the radial direction.
  • Flux barriers 26 are respectively formed on both sides in the circumferential direction of the magnet insertion hole 22.
  • the flux barrier 26 is an air gap formed continuously to the magnet insertion hole 22.
  • the flux barrier 26 is for suppressing the leakage flux between adjacent magnetic poles (that is, the magnetic flux flowing through between the poles).
  • a first magnet holding portion 23 which is a protrusion is formed at a circumferential center of each magnet insertion hole 22.
  • second magnet holding portions 24 which are protrusions are respectively formed at both end portions in the circumferential direction of the magnet insertion holes 22. The first magnet holding portion 23 and the second magnet holding portion 24 position and hold the permanent magnet 25 in each magnet insertion hole 22.
  • the number of slots of the stator 10 (ie, the number of teeth 12) is nine, and the number of poles of the rotor 20 is six. That is, in the motor 1, the ratio of the number of poles of the rotor 20 to the number of slots of the stator 10 is 2: 3.
  • the connection state of the coil 3 is switched between Y connection and delta connection, when delta connection is used, circulating current may flow and the performance of the motor 1 may be degraded.
  • the circulating current is caused by the third harmonic generated in the induced voltage in the winding of each phase.
  • the third harmonic is not generated in the induced voltage and therefore the performance is reduced by the circulating current. It is known not to.
  • FIG. 2 is a cross-sectional view showing the configuration of the rotary compressor 8.
  • the rotary compressor 8 includes a shell 80, a compression mechanism 9 disposed in the shell 80, and a motor 1 for driving the compression mechanism 9.
  • the rotary compressor 8 further includes a shaft 90 (crankshaft) that couples the motor 1 and the compression mechanism 9 so as to allow power transmission.
  • the shaft 90 is fitted in the shaft hole 27 (FIG. 1) of the rotor 20 of the motor 1.
  • the shell 80 is a closed container made of, for example, a steel plate, and covers the motor 1 and the compression mechanism 9.
  • the shell 80 has an upper shell 80a and a lower shell 80b.
  • the upper shell 80a has a glass terminal 81 as a terminal for supplying power to the motor 1 from the outside of the rotary compressor 8, and a discharge pipe for discharging the refrigerant compressed in the rotary compressor 8 to the outside. 85 and is attached.
  • a total of six lead wires are drawn from the glass terminal 81 corresponding to two each of the U-phase, V-phase and W-phase of the coil 3 of the motor 1 (FIG. 1).
  • the lower shell 80b accommodates the motor 1 and the compression mechanism 9.
  • the compression mechanism 9 has an annular first cylinder 91 and a second cylinder 92 along the shaft 90.
  • the first cylinder 91 and the second cylinder 92 are fixed to the inner peripheral portion of the shell 80 (lower shell 80b).
  • An annular first piston 93 is disposed on the inner circumferential side of the first cylinder 91
  • an annular second piston 94 is disposed on the inner circumferential side of the second cylinder 92.
  • the first piston 93 and the second piston 94 are rotary pistons that rotate with the shaft 90.
  • a partition plate 97 is provided between the first cylinder 91 and the second cylinder 92.
  • the partition plate 97 is a disk-shaped member having a through hole at the center.
  • the cylinder chambers of the first cylinder 91 and the second cylinder 92 are provided with vanes (not shown) for dividing the cylinder chambers into a suction side and a compression side.
  • the first cylinder 91, the second cylinder 92 and the partition plate 97 are integrally fixed by a bolt 98.
  • An upper frame 95 is disposed on the upper side of the first cylinder 91 so as to close the upper side of the cylinder chamber of the first cylinder 91.
  • a lower frame 96 is disposed below the second cylinder 92 so as to close the lower side of the cylinder chamber of the second cylinder 92.
  • Upper frame 95 and lower frame 96 rotatably support shaft 90.
  • refrigeration oil (not shown) for lubricating the sliding portions of the compression mechanism 9 is stored.
  • the refrigeration oil ascends in the holes 90 a formed in the axial direction in the shaft 90, and is supplied to the sliding parts from the oil supply holes 90 b formed at a plurality of locations of the shaft 90.
  • the stator 10 of the motor 1 is attached to the inside of the shell 80 by shrink fitting. Electric power is supplied to the coil 3 of the stator 10 from a glass terminal 81 attached to the upper shell 80a. A shaft 90 is fixed to a shaft hole 27 (FIG. 1) of the rotor 20.
  • An accumulator 87 for storing a refrigerant gas is attached to the shell 80.
  • the accumulator 87 is held, for example, by a holding portion 80c provided outside the lower shell 80b.
  • a pair of suction pipes 88, 89 are attached to the shell 80, and refrigerant gas is supplied from the accumulator 87 to the cylinders 91, 92 via the suction pipes 88, 89.
  • refrigerant for example, R410A, R407C or R22 may be used, but from the viewpoint of preventing global warming, it is preferable to use a low GWP (global warming potential) refrigerant.
  • GWP global warming potential
  • the following refrigerant can be used as the low GWP refrigerant.
  • the GWP of HFO-1234yf is 4.
  • a hydrocarbon having a carbon double bond in its composition such as R1270 (propylene) may be used.
  • the GWP of R1270 is 3, lower than HFO-1234yf, but the flammability is higher than HFO-1234yf.
  • a mixture comprising at least one of a halogenated hydrocarbon having a carbon double bond in the composition or a hydrocarbon having a carbon double bond in the composition, for example, a mixture of HFO-1234yf and R32 You may use.
  • the above-mentioned HFO-1234yf tends to have a large pressure loss due to a low pressure refrigerant, which may cause the performance deterioration of the refrigeration cycle (particularly, the evaporator). Therefore, it is practically preferable to use a mixture with R32 or R41 which is a high pressure refrigerant than HFO-1234yf.
  • the basic operation of the rotary compressor 8 is as follows.
  • the refrigerant gas supplied from the accumulator 87 is supplied to the cylinder chambers of the first cylinder 91 and the second cylinder 92 through the suction pipes 88 and 89.
  • the shaft 90 rotates with the rotor 20.
  • the first piston 93 and the second piston 94 fitted to the shaft 90 eccentrically rotate in each cylinder chamber, and compress the refrigerant in each cylinder chamber.
  • the compressed refrigerant rises through the inside of the shell 80 through a hole (not shown) provided in the rotor 20 of the motor 1 and is discharged from the discharge pipe 85 to the outside.
  • the compressor in which the electric motor 1 is used is not limited to a rotary compressor, For example, a scroll compressor etc. may be sufficient.
  • FIG. 3 is a block diagram showing the configuration of the air conditioner 5.
  • the air conditioner 5 includes an indoor unit 5A installed indoors (air conditioning target space) and an outdoor unit 5B installed outdoors.
  • the indoor unit 5A and the outdoor unit 5B are connected by connection pipes 40a and 40b through which the refrigerant flows.
  • the liquid refrigerant having passed through the condenser flows through the connection pipe 40a.
  • the gas refrigerant having passed through the evaporator flows through the connection pipe 40b.
  • a compressor 41 for compressing and discharging the refrigerant
  • a four-way valve (refrigerant flow path switching valve) 42 for switching the flow direction of the refrigerant
  • an outdoor heat exchanger 43 for exchanging heat between the outside air and the refrigerant.
  • an expansion valve (pressure reducing device) 44 for reducing the pressure of the high pressure refrigerant to a low pressure.
  • the compressor 41 is configured of the above-described rotary compressor 8 (FIG. 2).
  • an indoor heat exchanger 45 for exchanging heat between indoor air and a refrigerant is disposed.
  • the compressor 41, the four-way valve 42, the outdoor heat exchanger 43, the expansion valve 44, and the indoor heat exchanger 45 are connected by the pipe 40 including the connection pipes 40a and 40b described above, and constitute a refrigerant circuit.
  • These components constitute a compression type refrigeration cycle (compression type heat pump cycle) in which the refrigerant is circulated by the compressor 41.
  • an indoor control device 50a is disposed in the indoor unit 5A, and an outdoor control device 50b is disposed in the outdoor unit 5B.
  • the indoor control device 50a and the outdoor control device 50b each have a control board on which various circuits for controlling the air conditioner 5 are formed.
  • the indoor control device 50a and the outdoor control device 50b are connected to each other by a communication cable 50c.
  • the connection cable 50c is bundled with the connection pipes 40a and 40b described above.
  • an outdoor blower fan 46 which is a blower, is disposed to face the outdoor heat exchanger 43.
  • the outdoor blower fan 46 generates an air flow passing through the outdoor heat exchanger 43 by rotation.
  • the outdoor blower fan 46 is configured of, for example, a propeller fan.
  • the four-way valve 42 is controlled by the outdoor control device 50b to switch the flow direction of the refrigerant.
  • the outdoor control device 50b When the four-way valve 42 is in the position shown by the solid line in FIG. 3, the gas refrigerant discharged from the compressor 41 is sent to the outdoor heat exchanger 43 (condenser).
  • the four-way valve 42 when the four-way valve 42 is in the position indicated by the broken line in FIG. 3, the gas refrigerant flowing from the outdoor heat exchanger 43 (evaporator) is sent to the compressor 41.
  • the expansion valve 44 is controlled by the outdoor control device 50b, and changes the opening degree to reduce the pressure of the high pressure refrigerant to a low pressure.
  • an indoor blower fan 47 which is a blower, is disposed to face the indoor heat exchanger 45.
  • the indoor blower fan 47 generates an air flow passing through the indoor heat exchanger 45 by rotation.
  • the indoor blower fan 47 is configured by, for example, a cross flow fan.
  • the indoor unit 5A is provided with an indoor temperature sensor 54 as a temperature sensor that measures the indoor temperature Ta, which is the air temperature in the room (air conditioning target space), and sends the measured temperature information (information signal) to the indoor control device 50a.
  • the indoor temperature sensor 54 may be a temperature sensor used in a general air conditioner, or may be a radiation temperature sensor that detects a surface temperature of a wall or floor of the room.
  • the indoor unit 5A is also provided with a signal receiving unit 56 that receives an instruction signal (operation instruction signal) transmitted from a remote control 55 (remote operation device) as an operation unit operated by the user.
  • the remote controller 55 is used by the user to input an operation input (operation start and stop) or an operation content (set temperature, wind speed, etc.) to the air conditioner 5.
  • the compressor 41 is configured to be able to change the operating rotational speed in the range of 20 to 130 rps during normal operation. As the rotation speed of the compressor 41 increases, the refrigerant circulation amount of the refrigerant circuit increases.
  • the rotational speed of the compressor 41 is controlled by the controller 50 (more specifically, according to the temperature difference .DELTA.T between the current room temperature Ta obtained by the room temperature sensor 54 and the set temperature Ts set by the user with the remote control 55). , The outdoor control device 50b) controls. As the temperature difference ⁇ T is larger, the compressor 41 is rotated at a higher rotation speed, and the circulation amount of the refrigerant is increased.
  • the rotation of the indoor blower fan 47 is controlled by the indoor control device 50a.
  • the rotational speed of the indoor blower fan 47 can be switched in multiple stages. Here, for example, the number of rotations can be switched to three stages of strong wind, medium wind and weak wind.
  • the wind speed setting is set to the automatic mode by the remote control 55, the number of rotations of the indoor blower fan 47 is switched according to the temperature difference ⁇ T between the measured indoor temperature Ta and the set temperature Ts.
  • the rotation of the outdoor blower fan 46 is controlled by the outdoor control device 50b.
  • the rotational speed of the outdoor blower fan 46 can be switched in a plurality of stages.
  • the number of rotations of the outdoor blower fan 46 is switched according to the temperature difference ⁇ T between the measured indoor temperature Ta and the set temperature Ts.
  • the indoor unit 5A also includes a left and right wind direction plate 48 and a vertical wind direction plate 49.
  • the left and right air direction plates 48 and the up and down air direction plates 49 change the blowing direction when the conditioned air, which has been heat-exchanged by the indoor heat exchanger 45, is blown out into the room by the indoor blowing fan 47.
  • the left and right wind direction plates 48 change the blowing direction to the left and right, and the up and down wind direction plates 49 change the blowing direction to the upper and lower.
  • the indoor control device 50 a controls the angle of each of the left and right air direction plates 48 and the upper and lower air direction plates 49, that is, the wind direction of the blown air, based on the setting of the remote control 55.
  • the basic operation of the air conditioner 5 is as follows. During the cooling operation, the four-way valve 42 is switched to the position indicated by the solid line, and the high temperature / high pressure gas refrigerant discharged from the compressor 41 flows into the outdoor heat exchanger 43. In this case, the outdoor heat exchanger 43 operates as a condenser. When air passes through the outdoor heat exchanger 43 by the rotation of the outdoor blower fan 46, heat of condensation is removed by heat exchange. The refrigerant is condensed to be a high pressure / low temperature liquid refrigerant, and is adiabatically expanded by the expansion valve 44 to be a low pressure / low temperature two-phase refrigerant.
  • the refrigerant that has passed through the expansion valve 44 flows into the indoor heat exchanger 45 of the indoor unit 5A.
  • the indoor heat exchanger 45 operates as an evaporator.
  • the refrigerant loses the heat of vaporization by heat exchange, and the air cooled thereby is supplied to the room.
  • the refrigerant evaporates to become a low temperature and low pressure gas refrigerant, and is compressed again into a high temperature and high pressure refrigerant by the compressor 41.
  • the four-way valve 42 is switched to the position indicated by the dotted line, and the high-temperature, high-pressure gas refrigerant discharged from the compressor 41 flows into the indoor heat exchanger 45.
  • the indoor heat exchanger 45 operates as a condenser.
  • the refrigerant is condensed to be a high pressure / low temperature liquid refrigerant, and is adiabatically expanded by the expansion valve 44 to be a low pressure / low temperature two-phase refrigerant.
  • the refrigerant that has passed through the expansion valve 44 flows into the outdoor heat exchanger 43 of the outdoor unit 5B.
  • the outdoor heat exchanger 43 operates as an evaporator.
  • the heat of heat is taken away from the refrigerant by heat exchange.
  • the refrigerant evaporates to become a low temperature and low pressure gas refrigerant, and is compressed again into a high temperature and high pressure refrigerant by the compressor 41.
  • FIG. 4 is a conceptual view showing a basic configuration of a control system of the air conditioner 5.
  • the indoor control device 50a and the outdoor control device 50b described above control the air conditioner 5 by exchanging information with each other via the communication cable 50c.
  • the indoor control device 50a and the outdoor control device 50b are collectively referred to as a control device 50.
  • FIG. 5A is a block diagram showing a control system of the air conditioner 5.
  • the control device 50 is configured of, for example, a microcomputer.
  • the control device 50 incorporates an input circuit 51, an arithmetic circuit 52, and an output circuit 53.
  • the instruction signal received by the signal receiving unit 56 from the remote control 55 is input to the input circuit 51.
  • the instruction signal includes, for example, a signal for setting an operation input, an operation mode, a set temperature, an air volume or an air direction.
  • the input circuit 51 also receives temperature information representing the temperature of the room detected by the room temperature sensor 54.
  • the input circuit 51 outputs the input information to the arithmetic circuit 52.
  • the arithmetic circuit 52 includes a CPU (Central Processing Unit) 57 and a memory 58.
  • the CPU 57 performs arithmetic processing and judgment processing.
  • the memory 58 stores various setting values and programs used to control the air conditioner 5.
  • the arithmetic circuit 52 performs arithmetic and judgment based on the information input from the input circuit 51, and outputs the result to the output circuit 53.
  • the output circuit 53 is based on the information input from the arithmetic circuit 52, and the compressor 41, the connection switching unit 60 (described later), the converter 102, the inverter 103, the compressor 41, the four-way valve 42, the expansion valve 44, and the outdoor blowing fan 46 includes a control portion for controlling the indoor blower fan 47, the left and right air direction plates 48 and the up and down air direction plates 49.
  • the output circuit 53 includes, for example, an inverter drive circuit 111 (FIG. 6) described later that controls the inverter 103.
  • the indoor control device 50a and the outdoor control device 50b mutually exchange information via the communication cable 50c to control various devices of the indoor unit 5A and the outdoor unit 5B.
  • the indoor control device 50a and the outdoor control device 50b are collectively referred to as a control device 50.
  • each of the indoor control device 50a and the outdoor control device 50b is configured by a microcomputer.
  • the control device may be mounted on only one of the indoor unit 5A and the outdoor unit 5B to control various devices of the indoor unit 5A and the outdoor unit 5B.
  • FIG. 5B is a block diagram showing a portion of the control device 50 for controlling the motor 1 of the compressor 41 based on the indoor temperature Ta.
  • the arithmetic circuit 52 of the control device 50 includes a received content analysis unit 52a, an indoor temperature acquisition unit 52b, a temperature difference calculation unit 52c, and a compressor control unit 52d. These are included, for example, in the CPU 57 of the arithmetic circuit 52.
  • the received content analysis unit 52 a analyzes the instruction signal input from the remote controller 55 through the signal reception unit 56 and the input circuit 51.
  • the reception content analysis unit 52a outputs, for example, the operation mode and the set temperature Ts to the temperature difference calculation unit 52c based on the analysis result.
  • the indoor temperature acquisition unit 52b acquires the indoor temperature Ta input from the indoor temperature sensor 54 through the input circuit 51, and outputs the indoor temperature Ta to the temperature difference calculation unit 52c.
  • the temperature difference calculation unit 52c calculates a temperature difference ⁇ T between the indoor temperature Ta input from the indoor temperature acquisition unit 52b and the set temperature Ts input from the reception content analysis unit 52a.
  • the temperature difference calculation unit 52c outputs the calculated temperature difference ⁇ T to the compressor control unit 52d.
  • the compressor control unit 52d controls the drive device 100 based on the temperature difference ⁇ T input from the temperature difference calculation unit 52c, and thereby controls the number of rotations of the motor 1 (that is, the number of rotations of the compressor 41).
  • FIG. 6 is a block diagram showing the configuration of drive device 100 and motor 1.
  • Drive device 100 includes a converter 102 for rectifying the output of power supply 101, an inverter 103 for outputting an AC voltage to coil 3 of motor 1, a wire connection switching unit 60 for switching the wire connection state of coil 3, and a control device 50.
  • the power supply 101 is, for example, an AC power supply of 200 V (effective voltage).
  • the control device 50 includes a current detection circuit 108 that detects a current on the input side or the output side of the inverter 103, an inverter drive circuit 111 that drives the inverter 103, and a CPU 110 as an inverter control unit.
  • Converter 102 is a rectifier circuit that receives an AC voltage from power supply 101 via reactor 109, rectifies and smoothes, and outputs a DC voltage from buses L1 and L2.
  • Converter 102 has bridge diodes 102a, 102b, 102c, 102d for rectifying alternating voltage, and a smoothing capacitor 102e for smoothing output voltage.
  • the voltage output from converter 102 is referred to as a bus voltage.
  • the output voltage of converter 102 is controlled by control device 50.
  • the input terminal of the inverter 103 is connected to the buses L1 and L2 of the converter 102. Further, the output terminals of the inverter 103 are connected to the three-phase coils 3U, 3V, 3W of the motor 1 through the U-phase, V-phase, W-phase interconnections (output lines) 104, 105, 106, respectively. There is.
  • the inverter 103 includes a first U-phase switching element 1Ua, a second U-phase switching element 1Ub, a first V-phase switching element 1Va, a second V-phase switching element 1Vb, a first W-phase switching element 1Wa and a first It has two W-phase switching elements 1Wb.
  • the first U-phase switching element 1Ua corresponds to a U-phase upper arm
  • the second U-phase switching element 1Ub corresponds to a U-phase lower arm.
  • the first U-phase switching element 1Ua and the second U-phase switching element 1Ub are connected to the wiring 104 of the U-phase.
  • a first U-phase diode 2Ua is connected in parallel to the first U-phase switching element 1Ua
  • a second U-phase diode 2Ub is connected in parallel to the second U-phase switching element 1Ub. There is.
  • the first V-phase switching element 1Va corresponds to a V-phase upper arm
  • the second V-phase switching element 1Vb corresponds to a V-phase lower arm.
  • the first V-phase switching element 1Va and the second V-phase switching element 1Vb are connected to the wiring 105 of the V-phase.
  • a first V-phase diode 2Va is connected in parallel to the first V-phase switching element 1Va
  • a second V-phase diode 2Vb is connected in parallel to the second V-phase switching element 1Vb.
  • the first W-phase switching element 1Wa corresponds to a W-phase upper arm
  • the second W-phase switching element 1Wb corresponds to a W-phase lower arm.
  • the first W-phase switching element 1Wa and the second W-phase switching element 1Wb are connected to the wiring 106 of the W-phase.
  • a first W-phase diode 2Wa is connected in parallel to the first W-phase switching element 1Wa
  • a second W-phase diode 2Wb is connected in parallel to the second W-phase switching element 1Wb.
  • Each of the switching elements 1Ua to 1Wb can be configured of, for example, a transistor such as an IGBT (insulated gate transistor). Further, on / off of each of switching elements 1Ua to 1Wb is controlled by a drive signal from inverter drive circuit 111.
  • IGBT insulated gate transistor
  • the inverter drive circuit 111 generates drive signals for turning on / off the switching elements 1Ua to 1Wb of the inverter 103 based on a PWM (Pulse Width Modulation) signal input from the CPU 110, and outputs the drive signals to the inverter 103.
  • the inverter drive circuit 111 is a part of the output circuit 53 (FIG. 5A) described above.
  • a resistor 107 is connected to an input side of the inverter 103 (for example, a bus L2 from the converter 102), and a current detection circuit 108 is connected to the resistor 107.
  • the current detection circuit 108 is a current detection unit that detects the current value of the current on the input side of the inverter 103 (that is, the bus current of the converter 102), and in this case, a shunt resistor is used.
  • the current detection circuit 108 is not limited to such an example, and may detect the current value of the current (phase current) on the output side of the inverter 103. Further, not only the shunt resistance but also a Hall element or a transformer (using electromagnetic induction) may be used.
  • the CPU 110 as an inverter control unit controls the inverter 103 and the connection switching unit 60.
  • the CPU 110 receives an operation instruction signal from the remote controller 55 received by the signal receiving unit 56, the indoor temperature detected by the indoor temperature sensor 54, and the current value from the current detection circuit 108.
  • the CPU 110 Based on the input information, the CPU 110 outputs a voltage switching signal to the converter 102, outputs an inverter drive signal (PWM signal) to the inverter 103, outputs a connection switching signal to the connection switching unit 60, and outputs a voltage to the converter 102. Output switching signal.
  • the CPU 110 corresponds to the CPU 57 shown in FIG.
  • FIG. 7 is a diagram showing the configuration of drive device 100, in which converter 102, inverter 103 and control device 50 are shown as one block.
  • the wire connection switching unit 60 switches the wire connection state of the coil 3 between Y connection and delta connection.
  • the coil 3U has terminals 31U, 32U.
  • the coil 3V has terminals 31V and 32V.
  • the coil 3W has terminals 31W and 32W.
  • the wire 104 is connected to the terminal 31U of the coil 3U.
  • the wiring 105 is connected to the terminal 31V of the coil 3V.
  • the wiring 106 is connected to the terminal 31W of the coil 3W.
  • the wire connection switching unit 60 includes switches 61, 62, and 63 each formed of a relay contact.
  • the switch 61 connects the terminal 32U of the coil 3U to either the wire 105 or the neutral point (common contact) 33.
  • the switch 62 connects the terminal 32V of the coil 3V to either the wire 106 or the neutral point 33.
  • the switch 63 connects the terminal 32W of the coil 3V to either the wire 104 or the neutral point 33.
  • the switches 61, 62, 63 of the connection switching unit 60 may be formed of semiconductor switches, which will be described in a modified example (FIG. 19).
  • the switch 61 connects the terminal 32 U of the coil 3 U to the neutral point 33
  • the switch 62 connects the terminal 32 V of the coil 3 V to the neutral point 33
  • the terminal 32 W of the coil 3 W is connected to the neutral point 33. That is, the terminals 31U, 31V, 31W of the coils 3U, 3V, 3W are connected to the inverter 103, and the terminals 32U, 32V, 32W are connected to the neutral point 33.
  • FIG. 8 is a block diagram showing a state where the switches 61, 62, 63 of the connection switching unit 60 are switched in the drive device 100.
  • the switch 61 connects the terminal 32U of the coil 3U to the wiring 105
  • the switch 62 connects the terminal 32V of the coil 3V to the wiring 106
  • the switch 63 connects the coil 3W
  • the terminal 32 W of this is connected to the wiring 104.
  • FIG. 9A is a schematic view showing a wire connection state of the coils 3U, 3V, 3W when the switches 61, 62, 63 are in the state shown in FIG.
  • the coils 3U, 3V, 3W are connected to the neutral point 33 at terminals 32U, 32V, 32W respectively. Therefore, the connection state of the coils 3U, 3V, 3W is Y connection (star connection).
  • FIG. 9B is a schematic view showing a connection state of the coils 3U, 3V, 3W when the switches 61, 62, 63 are in the state shown in FIG.
  • the terminal 32U of the coil 3U is connected to the terminal 31V of the coil 3V through the wiring 105 (FIG. 8).
  • the terminal 32V of the coil 3V is connected to the terminal 31W of the coil 3W via the wire 106 (FIG. 8).
  • the terminal 32W of the coil 3W is connected to the terminal 31U of the coil 3U via the wiring 104 (FIG. 8). Therefore, the connection state of the coils 3U, 3V, 3W is delta connection (triangular connection).
  • connection switching unit 60 switches the connections of the coils 3U, 3V, 3W of the motor 1 by switching the switches 61, 62, 63 into Y connection (first connection state) and delta connection (second It can be switched between the wire connection state).
  • FIG. 10 is a schematic view showing coil portions of the coils 3U, 3V, 3W.
  • the motor 1 has nine teeth 12 (FIG. 1), and the coils 3U, 3V, 3W are wound around the three teeth 12, respectively. That is, the coil 3U is a series connection of U-phase coil portions Ua, Ub and Uc wound around three teeth 12. Similarly, the coil 3V is a series connection of V-phase coil portions Va, Vb, Vc wound around three teeth 12. In addition, the coil 3W is a series connection of W-phase coil parts Wa, Wb, Wc wound around three teeth 12.
  • the ratio of the number of poles to the number of slots is 2: 3, and the coil 3 is wound by concentrated winding.
  • the coils 3 are wound around the teeth 12 with the same number of turns and the same winding direction, and the coil portions Ua, Va, Wa, Ub, Vb, Wb, Uc, Vc, Wc are arranged in the circumferential direction ( See Figure 1).
  • the over current protection means controlling so that the current value of the inverter 103 does not exceed the over current threshold (also referred to as over current protection level) in order to reduce the demagnetization of the permanent magnet 25.
  • FIG. 11 is a graph showing the relationship between the line voltage and the rotational speed for each of the Y connection and the delta connection.
  • the phase impedance of the coil 3 in the case where the wire connection state of the coil 3 is a delta connection is 1 / ⁇ 3 times that in the case where the wire connection state of the coil 3 is a Y connection, assuming that the number of turns is the same. Therefore, when the wire connection state of coil 3 is a delta connection (one-dot chain line), assuming that the number of rotations is the same, 1 of the line voltage (solid line) when the connection state of coil 3 is a Y connection / 3 3 times.
  • the inverter output current in the delta connection is equivalent by multiplying the inverter output current in the Y connection by ⁇ 3 and delaying the phase by ⁇ / 6 (that is, the magnetic flux distribution of the motor 1 is the same) And the generated torque becomes the same).
  • the U-phase, V-phase, and W-phase inverter output currents are Iu, Iv, and Iw, and the current value of the current flowing through the U-phase coil 3U is Io.
  • the inverter output currents Iu, Iv, Iw of the respective phases are expressed as follows, where ⁇ is the angular frequency and t is time.
  • Iu Io ⁇ sin ( ⁇ t)
  • Iv Io ⁇ sin ( ⁇ t ⁇ 2 ⁇ / 3)
  • Iw Io ⁇ sin ( ⁇ t ⁇ 4 ⁇ / 3).
  • Iu ', Iv' and Iw ' the inverter output currents of the U-phase, V-phase and W-phase are taken as Iu ', Iv' and Iw '.
  • Iu ', Iv' and Iw 'of each phase are expressed as follows using Io described above.
  • Iu ' ⁇ 3 ⁇ Io ⁇ sin ( ⁇ t)
  • Iv ' ⁇ 3 ⁇ Io ⁇ sin ( ⁇ t ⁇ 2 ⁇ / 3)
  • Iw ′ ⁇ 3 ⁇ Io ⁇ sin ( ⁇ t ⁇ 4 ⁇ / 3).
  • the overcurrent threshold (overcurrent protection level) in the delta connection can be It may be set to 3 times.
  • a special operating state may occur in which one of the U-phase, V-phase and W-phase inverter output currents does not flow. For example, there is a case where a power failure occurs when the inverter output current of any one phase becomes zero. In such a special operation state, the current flow to the coil is different from that in the normal operation state, so the occurrence of demagnetization also differs.
  • FIG. 12A is a schematic view showing a state in which the connection state of the coil 3 is Y connection and one phase of the inverter output current is broken.
  • W-phase inverter output current Iw does not flow.
  • the number of poles of the motor 1 is 6, the number of slots is 9, and the winding method of the coil 3 is concentrated winding.
  • the current value of the current flowing through the V-phase coil 3V also becomes Io.
  • the direction of the current flowing in the coil 3U (more specifically, the direction of the current with respect to the winding direction) and the direction of the current flowing in the coil 3V are opposite to each other. At this time, since magnetic forces in opposite directions are generated in the coils 3U and 3V, a flow of magnetic flux is generated to short between adjacent teeth.
  • FIG. 12B shows the positional relationship between the stator 10 and the rotor 20 where demagnetization of the permanent magnet 25 is most likely to occur in the state where the W phase inverter output current is not flowing as shown in FIG. 12A.
  • FIG. 12B in the case where the poles of the rotor 20 (indicated by reference numeral 201) face between the teeth 12 on which the coil 3U is wound and the teeth 12 on which the coil 3V is wound, Demagnetization of the permanent magnet 25 is most likely to occur.
  • the current of the coil 3U generates a magnetomotive force M1 directed radially inward in the teeth 12 in which the coil 3U is wound, and the current of the coil 3V radially outward in the teeth 12 in which the coil 3V is wound.
  • a magnetomotive force M2 is generated. Therefore, a magnetic flux flow F1 across the permanent magnet 25 is generated from the tip of the tooth 12 on which the coil 3U is wound toward the tip of the tooth 12 on which the coil 3V is wound.
  • the magnetizing direction (arrow N1) of the permanent magnet 25 opposed to the teeth 12 wound with the coil 3U is directed radially outward, and the permanent magnet 25 opposed to the teeth 12 wound with the coil 3V.
  • the magnetization direction (arrow N2) is directed inward in the radial direction, magnetic flux flows through the permanent magnets 25 in the direction opposite to the magnetization direction. As a result, demagnetization of the permanent magnet 25 may occur.
  • FIG. 13A is a schematic view showing a state in which the connection state of the coil 3 is delta connection and one phase of the inverter output current is broken. Here, it is assumed that W-phase inverter output current Iw does not flow.
  • a magnetic flux flow branched from the U-phase coil 3U to the adjacent V-phase and W-phase coils 3V and 3W is generated.
  • FIG. 13B shows the positional relationship between the stator 10 and the rotor 20 where demagnetization of the permanent magnet 25 is most likely to occur in the state where the W phase inverter output current is not flowing as shown in FIG. 13A.
  • FIG. 13B when the magnetic poles (indicated by reference numeral 200) of the rotor 20 face the teeth 12 on which the coil 3U is wound, demagnetization of the permanent magnet 25 is most likely to occur.
  • a magnetomotive force M3 directed radially inward is generated in the teeth 12 in which the coil 3U is wound.
  • the currents of the coils 3V and 3W generate a magnetomotive force M4 directed radially outward in the teeth 12 in which the coils 3V and 3W are respectively wound. Therefore, a magnetic flux flow F2 across the permanent magnet 25 is generated from the tip of the teeth 12 wound with the coil 3U toward the tips of the teeth 12 wound with the coils 3V and 3W.
  • the permanent magnet 25 is reverse to the magnetizing direction. Magnetic flux flows. As a result, demagnetization of the permanent magnet 25 may occur.
  • the magnetomotive force M3 generated by the current of the coil 3U is the magnetomotive force M1 (Y (Y) This is 1.15 times that of FIG. 12 (B), that is, 15%.
  • the overcurrent threshold in the delta connection is 5 to 15 times ⁇ 3 times ⁇ 3 times the overcurrent threshold in the Y connection. It needs to be set to a low value.
  • the pass / fail criterion of the demagnetizing factor of the permanent magnet is -3%. Therefore, the overcurrent threshold (overcurrent protection level) is set so that the demagnetizing factor does not fall below -3%. Assuming that the overcurrent threshold in the case of Y connection is A, if the overcurrent threshold B in the case of delta connection is set equal to (33 ⁇ A), demagnetization occurs when the inverter output current is out of phase. Can occur.
  • the overcurrent threshold B in the case of the delta connection is set to less than ( ⁇ 3 ⁇ A) (that is, B ⁇ 3 ⁇ A).
  • the overcurrent threshold A is also referred to as a first threshold A (or a first overcurrent threshold A).
  • the overcurrent threshold B is also referred to as a second threshold B (or a second overcurrent threshold B).
  • the overcurrent threshold B is preferably as small as possible ( ⁇ 3 ⁇ A), but if the overcurrent threshold B is too small, the maximum drive output of the motor 1 is limited. Ru. Therefore, it is desirable to set the overcurrent threshold B to a value as large as possible while suppressing the demagnetization of the permanent magnet 25.
  • the magnetomotive force generated by the current of the U-phase coil 3U is 15% larger in the delta connection than in the Y connection. Therefore, it is desirable to set the overcurrent threshold B in the case of the delta connection to be larger than ( ⁇ 3 ⁇ A ⁇ 0.85) and smaller than ( ⁇ 3 ⁇ A). In other words, it is desirable to satisfy ( ⁇ 3 ⁇ A ⁇ 0.85) ⁇ B ⁇ ( ⁇ 3 ⁇ A).
  • the overcurrent threshold B in the delta connection is 5 to 15%, which is an increase in the magnetomotive force, from 0 to 10%, which corresponds to the leakage flux, with respect to the overcurrent threshold A in the Y connection. 15% higher is desirable. In other words, it is desirable to satisfy ( ⁇ 3 ⁇ A ⁇ 0.85) ⁇ B ⁇ ( ⁇ 3 ⁇ A ⁇ 0.95).
  • FIG. 14 is a graph showing the demagnetization characteristics of the motor 1 of the first embodiment.
  • the demagnetization characteristic refers to the change in demagnetizing factor with respect to the current value.
  • the horizontal axis is the output current (A) of the inverter 103, and the vertical axis is the demagnetizing factor (%).
  • the demagnetizing factor (%) is determined by ⁇ (induced voltage after current application / induced voltage before current application) -1 ⁇ ⁇ 100. Further, the induced voltage corresponds to the amount of magnetic flux linked to the coil 3.
  • the output current of the inverter 103 was changed to 0 A to 30 A, and the demagnetizing factor of the permanent magnet 25 was measured.
  • a solid line indicates the demagnetization characteristic in the Y connection
  • a broken line indicates the demagnetization characteristic in the delta connection.
  • the dotted line is a point obtained by connecting the current value in the demagnetization characteristic in the Y connection by ⁇ 3 times.
  • the overcurrent threshold A is a current value when the demagnetizing factor is -3% in the Y connection.
  • the overcurrent threshold B is a current value when the demagnetizing factor is -3% in the delta connection.
  • the overcurrent threshold B is a current value that is 5 to 15% lower than a value obtained by multiplying the overcurrent threshold A by ⁇ 3 (ie, ⁇ 3 A).
  • the overcurrent threshold B is set to the same value as the value obtained by multiplying the overcurrent threshold A by ⁇ 3 (ie, ⁇ 3A)
  • demagnetization may occur, for example, in a state where one phase of the inverter output current is not flowing.
  • the overcurrent thresholds A and B are set according to the connection state, and the overcurrent threshold B is preferably B ⁇ ( ⁇ 3 ⁇ A), more preferably ( ⁇ 3 ⁇ A ⁇ 0.85) ⁇ B ⁇ ( ⁇ 3 ⁇ A), more preferably ((3 ⁇ A ⁇ 0.85) ⁇ B ⁇ ( ⁇ 3 ⁇ A ⁇ 0.95)
  • the overcurrent threshold B is preferably B ⁇ ( ⁇ 3 ⁇ A), more preferably ( ⁇ 3 ⁇ A ⁇ 0.85) ⁇ B ⁇ ( ⁇ 3 ⁇ A ⁇ 0.95)
  • the motor 1 is used in an atmosphere of 100 ° C. or higher, but the rare earth magnet constituting the permanent magnet 25 has a characteristic that it is easy to demagnetize at high temperature. Therefore, in general, it is necessary to add an expensive rare earth element called dysprosium (Dy) for suppressing the demagnetization to the rare earth magnet.
  • Dy dysprosium
  • permanent magnet 25 since demagnetization of permanent magnet 25 can be suppressed, also in motor 1 used for rotary compressor 8 or the like, permanent magnet 25 is formed of a rare earth magnet not containing dysprosium. be able to. As a result, the manufacturing cost of the motor 1 can be improved.
  • FIG. 15 is a flowchart showing the basic operation of the air conditioner 5.
  • the control device 50 of the air conditioner 5 starts the operation by receiving the activation signal from the remote control 55 by the signal receiving unit 56 (step S101).
  • the CPU 57 of the control device 50 is activated.
  • the connection state of the coil 3 becomes the delta connection at the start of operation (at startup). ing.
  • control device 50 performs start processing of the air conditioner 5 (step S102). Specifically, for example, the fan motors of the indoor blower fan 47 and the outdoor blower fan 46 are driven.
  • control device 50 outputs a voltage switching signal to converter 102, and boosts the bus voltage of converter 102 to a second bus voltage (for example, 390 V) corresponding to the delta connection (step S103).
  • the bus voltage of converter 102 is the maximum voltage applied to motor 1 from inverter 103.
  • control device 50 starts the motor 1 (step S104). Thereby, the connection state of the coil 3 of the electric motor 1 is started by delta connection.
  • Control device 50 controls the output voltage of inverter 103 to control the number of rotations of motor 1. More specifically, the CPU 110 shown in FIG. 6 controls the output voltage of the inverter 103 via the inverter drive circuit 111.
  • Control device 50 raises the rotational speed of motor 1 stepwise at a predetermined speed in accordance with temperature difference ⁇ T between room temperature Ta detected by room temperature sensor 54 and set temperature Ts.
  • the allowable maximum number of rotations of the motor 1 is, for example, 130 rps.
  • the control device 50 reduces the rotational speed of the motor 1 according to the temperature difference ⁇ T.
  • the controller 50 operates the motor 1 at an allowable minimum number of revolutions (for example, 20 rps).
  • the control device 50 stops the rotation of the motor 1 to prevent overcooling (or overheating). Do. As a result, the compressor 41 is stopped. Then, when the temperature difference ⁇ T becomes larger than 0 again, the control device 50 resumes the rotation of the motor 1.
  • the control device 50 regulates the restart of the rotation of the motor 1 in a short time so that the rotation and the stop of the motor 1 are not repeated in a short time.
  • the control device 50 determines whether the operation stop signal (the operation stop signal of the air conditioner 5) is received from the remote controller 55 via the signal receiving unit 56 (step S105). If the operation stop signal has not been received, the process proceeds to step S106. On the other hand, when the operation stop signal is received, the control device 50 proceeds to step S109.
  • Control device 50 obtains temperature difference ⁇ T between room temperature Ta detected by room temperature sensor 54 and set temperature Ts set by remote control 55 (step S106), and based on this temperature difference ⁇ T, the delta of coil 3 is determined. It is determined whether to switch from wire connection to Y connection. That is, it is determined whether the wire connection state of the coil 3 is a delta wire connection and the absolute value of the temperature difference ⁇ T is less than or equal to the threshold value ⁇ Tr (step S107).
  • the threshold value ⁇ Tr (set temperature difference) is a temperature difference corresponding to an air conditioning load (also referred to simply as “load”) small enough to be switchable to Y connection.
  • the necessity of switching to Y connection is determined by comparing with ⁇ Tr.
  • step S107 if the wire connection state of the coil 3 is delta connection and the absolute value of the temperature difference ⁇ T is less than or equal to the threshold value ⁇ Tr, the process proceeds to step S121 (FIG. 16).
  • step S121 the control device 50 outputs a stop signal to the inverter 103 to stop the rotation of the motor 1 (that is, stop the output of the inverter 103). Thereafter, the control device 50 outputs a wire connection switching signal to the wire connection switching unit 60, and switches the wire connection state of the coil 3 from the delta wire connection to the Y wire connection (step S122). Subsequently, control device 50 outputs a voltage switching signal to converter 102 to step down the bus voltage of converter 102 to a first voltage (280 V) corresponding to the Y connection (step S123), and restart rotation of motor 1 (Step S124). Then, it returns to step S105 (FIG. 15) mentioned above.
  • step S107 if the wire connection state of the coil 3 is not delta connection, or if the absolute value of the temperature difference ⁇ T is larger than the threshold ⁇ Tr (ie, it is not necessary to switch to Y connection), the process proceeds to step S108.
  • step S108 it is determined whether to switch from Y connection to delta connection. That is, it is determined whether or not the wire connection state of the coil 3 is Y connection and the absolute value of the temperature difference ⁇ T is larger than the threshold value ⁇ Tr.
  • step S108 if the wire connection state of the coil 3 is Y connection and the absolute value of the temperature difference ⁇ T is larger than the threshold value ⁇ Tr, the process proceeds to step S131 (FIG. 17).
  • step S ⁇ b> 131 the control device 50 stops the rotation of the motor 1. Thereafter, the control device 50 outputs a wire connection switching signal to the wire connection switching unit 60, and switches the wire connection state of the coil 3 from Y connection to delta connection (step S132). Subsequently, control device 50 outputs a voltage switching signal to converter 102, boosts the bus voltage of converter 102 to a second bus voltage (390 V) corresponding to the delta connection (step S133), and rotates motor 1 Resume (step S134).
  • the motor 1 can be driven to a higher rotation speed than in the Y connection, so that a larger load can be coped with. Therefore, the temperature difference ⁇ T between the room temperature and the set temperature can be converged in a short time. Then, it returns to step S105 (FIG. 15) mentioned above.
  • step S109 When the operation stop signal is received in step S105 described above, the rotation of the motor 1 is stopped (step S109). Thereafter, the control device 50 switches the connection state of the coil 3 from the Y connection to the delta connection (step S110). If the connection state of the coil 3 is already delta connection, the connection state is maintained. Although not shown in FIG. 15, when the operation stop signal is received also in steps S106 to S108, the process proceeds to step S109 to stop the rotation of the motor 1.
  • control device 50 performs a process for stopping the air conditioner 5 (step S111). Specifically, the fan motors of the indoor blower fan 47 and the outdoor blower fan 46 are stopped. Thereafter, the CPU 57 of the control device 50 stops, and the operation of the air conditioner 5 ends.
  • the motor 1 when the absolute value of the temperature difference ⁇ T between the room temperature Ta and the set temperature Ts is equal to or less than the threshold ⁇ Tr, the motor 1 is operated with highly efficient Y connection, and the absolute value of the temperature difference ⁇ T is the threshold If it is larger than ⁇ Tr, the motor 1 is operated with a delta connection capable of coping with a larger load. Therefore, the operating efficiency of the air conditioner 5 can be improved.
  • the temperature has little fluctuation in a short time, and it can be judged in a short time whether to switch the connection. Therefore, it is possible to cope with a rapid load change, for example, when the window of a room is opened, and the comfort of the air conditioner 5 can be improved.
  • the bus voltage of converter 102 when the wire connection state of coil 3 is Y connection, the bus voltage of converter 102 is set to 280 V (step S123), and when the wire connection state of coil 3 is delta connection, converter 102 The bus voltage of the circuit is set to 390 V (step S133).
  • the bus voltage in the high speed range of the motor 1 is higher than the bus voltage in the low speed range. Therefore, high motor efficiency can be obtained.
  • the wire connection state of the coil 3 at the time of starting of the electric motor 1 is made into delta connection which can respond to a bigger air conditioning load (step S110 of FIG. 15). Since accurate detection of the air conditioning load is difficult at the start of operation of the air conditioner 5, the temperature difference ⁇ T between the indoor temperature Ta and the set temperature Ts can be made in a shorter time by setting the connection state at startup to the delta connection. It can be made to converge.
  • connection switching is performed based on the temperature difference ⁇ T between the indoor temperature Ta and the set temperature Ts in steps S106 to S108 in FIG. 15, connection switching may be performed using another method. For example, the number of rotations of the motor 1 is detected, and when the number of rotations of the motor 1 is equal to or less than the set number of rotations (threshold), switching from delta connection to Y connection is performed. If it is large, switching from the delta connection to the Y connection may be performed.
  • the rotational speed of the motor 1 can be detected based on, for example, the current value detected by the current detection circuit 108.
  • the set rotational speed (threshold) is preferably 60 rps, which is an intermediate value between 35 rps corresponding to the heating intermediate condition (cooling intermediate condition) and 85 rps corresponding to the heating rating condition (cooling rating condition).
  • FIG. 18 is a flow chart showing the overcurrent protection operation of the first embodiment. This overcurrent protection operation is performed during rotation of the motor 1, that is, during steps S104 to S108 shown in FIG.
  • the CPU 110 (FIG. 6) of the control device 50 first detects the current value of the inverter 103 by the current detection circuit 108 (step S200). Next, the CPU 110 determines whether the connection state of the coil 3 is Y connection or delta connection (step S201).
  • step S202 it is determined whether the current value detected by the current detection circuit 108 is lower than the overcurrent threshold A (step S202). If the current value is lower than the overcurrent threshold A, the process returns to step S201. On the other hand, when the current value is equal to or greater than the overcurrent threshold A, a stop signal is output to the inverter 103 to stop the output of the inverter 103, in other words, stop the rotation of the motor 1 (step S204).
  • step S201 if the wire connection state of the coil 3 is delta connection, it is determined whether the current value detected by the current detection circuit 108 is lower than the overcurrent threshold B (step S203). . If the current value is lower than the overcurrent threshold B, the process returns to step S201. On the other hand, when the current value is equal to or greater than the overcurrent threshold B, a stop signal is output to the inverter 103, and the output of the inverter 103 is stopped, in other words, the rotation of the motor 1 is stopped (step S204).
  • the overcurrent thresholds A and B satisfy B ⁇ 3 ⁇ A, desirably satisfy ⁇ 3 ⁇ A ⁇ 0.85 ⁇ B ⁇ 3 ⁇ A, and more desirably ⁇ 3 ⁇ A ⁇ 0.85. ⁇ B ⁇ 3 ⁇ A ⁇ 0.95 is satisfied. Therefore, even if there is an increase in the magnetomotive force in the operating state in which no current flows in one phase of the coil 3 in the delta connection, demagnetization of the permanent magnet 25 can be suppressed.
  • the output becomes lower than that in the case where the overcurrent threshold B is set to (33 ⁇ A).
  • the range of rotational speed of motor 1 is wide, but field-weakening control is started in the high rotational speed range (for example, the state where the output of inverter 103 has reached the inverter maximum output voltage in Y connection). Ru.
  • the inverter output current is increased by the amount of the field-weakening current, so the overcurrent threshold B can be easily reached.
  • the magnetomotive force increases in the operating state in which the current does not flow in one phase of the coil 3 in the delta connection. Even in this case, demagnetization of the permanent magnet 25 can be suppressed.
  • the leakage flux at the rotor core outer peripheral portion 28 is taken into consideration. Demagnetization of the permanent magnet 25 can be suppressed.
  • control device 50 outputs a PWM signal to inverter 103 based on the current detection circuit 108 for detecting the current of inverter 103, the current detected by current detection circuit 108, and the connection state of coil 3. Since the inverter control unit 110 is further included, the rotation of the motor 1 can be controlled according to the current supplied to the motor 1 and the connection state of the coil 3.
  • the wire connection switching unit 60 sets the wire connection state of the coil 3 to Y connection in the first rotational speed range of the motor 1 (for example, when the temperature difference ⁇ T between the indoor temperature Ta and the set temperature Ts is less than the threshold ⁇ Tr).
  • the connection state of the coil 3 is delta connection. Can be rotated, and the motor efficiency can be improved in any of the Y connection and the delta connection.
  • the inverter 103 performs field weakening control according to the number of revolutions of the motor 1, the number of revolutions of the motor 1 can be increased even after the output of the inverter 103 reaches the maximum output voltage.
  • the motor 1 has the coil 3 wound by concentrated winding, and the ratio of the number of magnetic poles of the rotor 20 to the number of slots (i.e., the number of teeth 12) is 2: 3, so the third harmonic of the induced voltage The generation of waves can be suppressed, and hence the performance deterioration of the motor 1 due to the circulating current can be suppressed.
  • the demagnetization of the permanent magnet 25 is more likely to occur as the temperature is higher, when the motor 1 is used at a temperature of 100 ° C. or more, the demagnetization suppressing effect according to the first embodiment can be particularly remarkably obtained.
  • the wire connection switching unit 60 includes the switches 61, 62, and 63 configured by relay contacts, the wire connection state of the coil 3 can be switched with a relatively inexpensive configuration.
  • converter 102 changes the magnitude of the bus voltage according to the switching of the connection state of coil 3 by connection switching unit 60, high motor efficiency and high motor torque can be obtained before and after switching of the connection state. You can get it.
  • connection switching unit 60 having relay contacts (switches 61, 62, 63) is used.
  • connection switching unit 70 having the semiconductor switches 71, 72 and 73 is used.
  • FIG. 19 is a block diagram showing a configuration of a drive device 100A of the third embodiment.
  • the drive device 100A is different from the drive device 100 shown in FIG. 6 in the configuration of the connection switching unit 70.
  • the connection switching unit 70 includes semiconductor switches (semiconductor elements) 71, 72, 73.
  • Each of the semiconductor switches 71, 72, 73 is formed of a circuit including, for example, a MOS transistor (Metal-Oxide-Semiconductor Field-Effect Transistor).
  • the semiconductor switch 71 is connected to the first terminal 71a connected to the wiring 105 (V phase), the second terminal 71b connected to the neutral point 33, and the terminal 32U of the coil 3U to be a first terminal. And a third terminal 71 c connected to one of the terminals 71 a and the second terminal 71 b.
  • the semiconductor switch 72 is connected to the first terminal 72a connected to the wiring 106 (W phase), the second terminal 72b connected to the neutral point 33, and the terminal 32V of the coil 3V, and the first terminal And a third terminal 72c connected to one of the second terminal 72b and the second terminal 72b.
  • the semiconductor switch 73 is connected to the first terminal 73a connected to the wiring 104 (U phase), the second terminal 73b connected to the neutral point 33, and the terminal 32W of the coil 3W to be the first terminal. And a third terminal 73c connected to one of 73a and the second terminal 73b.
  • Semiconductor switch 71 connects terminal 32U of coil 3U to neutral point 33
  • semiconductor switch 72 connects terminal 32V of coil 3V to neutral point 33
  • semiconductor switch 73 connects terminal 32W of coil 3W to neutral point 33
  • the connection state of the coils 3U, 3V and 3W is the Y connection shown in FIG. 9A.
  • the semiconductor switch 71 connects the terminal 32U of the coil 3U to the wiring 105
  • the semiconductor switch 72 connects the terminal 32V of the coil 3V to the wiring 106
  • the semiconductor switch 73 connects the terminal 32W of the coil 3W to the wiring 104.
  • the connection state of the coils 3U, 3V and 3W is the delta connection (triangular connection) shown in FIG. 9 (B).
  • connection switching unit 70 switches the connection state of the coils 3U, 3V, 3W of the motor 1 by switching the semiconductor switches 71, 72, 73 into Y connection (first connection state) and delta connection (second connection). Can be switched between
  • connection switching unit 70 since the connection switching unit 70 includes the semiconductor switches 71, 72, 73, the reliability of the operation at the time of connection switching can be improved.
  • connection switching unit 60 (FIG. 7) having relay contacts (switches 61, 62, 63), it is desirable to stop the number of rotations of the motor 1 at the time of connection switching.
  • wire connection switching unit 70 having 73, there is an advantage that it is sufficient to reduce (decelerate) the rotational speed of the motor 1 at the time of wire connection switching.
  • the rotary compressor 8 is described as an example of the compressor, but the motor of each embodiment may be applied to a compressor other than the rotary compressor 8.
  • the motor 1 does not necessarily have to be built in the inside of a compressor (rotary compressor 8), and may be independent of a compressor. That is, the motor 1 should just drive a compressor.
  • the present invention is not limited to the above-mentioned embodiment, and performs various improvement or modification in the range which does not deviate from the gist of the present invention. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Ac Motors In General (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

駆動装置は、コイルに電圧を出力するインバータと、コイルの結線状態をY結線とデルタ結線とで切り替える結線切り替え部と、制御装置とを備える。制御装置は、コイルの結線状態がY結線で且つインバータの電流値が第1の閾値Aに達するか、または、コイルの結線状態がデルタ結線で且つ当該電流値が第2の閾値Bに達した場合に、インバータの出力を停止する。第1の閾値Aと第2の閾値Bとは、B<√3×Aを満足する。

Description

駆動装置、圧縮機、空気調和機および駆動方法
 本発明は、電動機を駆動する駆動装置、電動機により駆動される圧縮機、電動機を有する空気調和機、および、電動機の駆動方法に関する。
 空気調和機では、圧縮機を駆動する電動機の低速回転時および高速回転時の運転効率を向上するため、電動機のコイルの結線状態をY結線(スター結線とも称する)とデルタ結線(三角結線またはΔ結線とも称する)とで切り替えることが行われている。
 また、電動機の永久磁石の減磁を抑制するため、インバータの出力電流が閾値(過電流保護レベル)に達すると、電動機を停止することも行われている。さらに、コイルに流れる電流は、デルタ結線ではY結線の√3倍になるため、結線状態に応じて過電流保護レベルを切り替えることも行われている(例えば、特許文献1参照)。
特許第4722069号公報(段落0031~0033、0042参照)
 しかしながら、電動機の運転中には、例えば3相のコイルのうちの2相のみに電流が流れる場合など、特殊な運転状態も発生し得る。このような特殊な運転状態においても、永久磁石の減磁を低減する(すなわち生じにくくする)ことが求められている。
 本発明は、上記の課題を解決するためになされたものであり、特殊な運転状態でも永久磁石の減磁を低減することを目的とする。
 本発明の駆動装置は、コイルを有する電動機を駆動する駆動装置であって、コイルに電圧を出力するインバータと、コイルの結線状態をY結線とデルタ結線とで切り替える結線切り替え部と、コイルの結線状態がY結線で且つインバータの電流値が第1の閾値Aに達するか、または、コイルの結線状態がデルタ結線で且つ当該電流値が第2の閾値Bに達した場合に、インバータの出力を停止する制御装置とを備える。第1の閾値Aと第2の閾値Bとは、B<√3×Aを満足する。
 本発明の駆動方法は、コイルの結線状態がY結線とデルタ結線との間で切り替え可能な電動機を、インバータを用いて駆動する駆動方法であって、インバータの電流値を検出するステップと、コイルの結線状態がY結線で且つ電流値が第1の閾値Aに達するか、または、コイルの結線状態がデルタ結線で且つ当該電流値が第2の閾値Bに達した場合に、インバータの出力を停止するステップとを有する。第1の閾値Aと第2の閾値Bとは、B<√3×Aを満足する。
 本発明では、Y結線の第1の閾値Aと、デルタ結線の第2の閾値Bとを、B<√3×Aを満足するように設定したため、例えば3相のコイルのうちの2相のみに電流が流れるような運転状態においても、永久磁石の減磁を低減することができる。
実施の形態1の電動機の構成を示す断面図である。 実施の形態1のロータリー圧縮機の構成を示す断面図である。 実施の形態1の空気調和機の構成を示すブロック図である。 実施の形態1の空気調和機の制御系の基本構成を示す概念図である。 実施の形態1の空気調和機の制御系を示すブロック図(A)、および室内温度に基づいて圧縮機の電動機を制御する部分を示すブロック図(B)である。 実施の形態1の駆動装置の構成を示すブロック図である。 実施の形態1の駆動装置の構成を示すブロック図である。 実施の形態1の駆動装置の構成を示すブロック図である。 実施の形態1のコイルの結線状態の切り替え動作を示す模式図(A)および(B)である。 実施の形態1のコイルの結線状態を示す模式図である。 コイルの結線状態をY結線とした場合とデルタ結線とした場合のそれぞれにおいて、線間電圧と回転数との関係を示すグラフである。 Y結線で2相のコイルにのみ電流が流れる運転状態(A)と、そのときに永久磁石に作用する磁界(B)とを示す模式図である。 デルタ結線で2相のコイルにのみ電流が流れる運転状態(A)と、そのときに永久磁石に作用する磁界(B)とを示す模式図である。 実施の形態1による減磁率の改善効果を示すグラフである。 実施の形態1の空気調和機の基本動作を示すフローチャートである。 実施の形態1のデルタ結線からY結線への切り替え動作を示すフローチャートである。 実施の形態1のY結線からデルタ結線への切り替え動作を示すフローチャートである。 実施の形態1の過電流保護動作を示すフローチャートである。 実施の形態1の変形例の駆動装置の構成を示すブロック図である。
実施の形態1.
<電動機の構成>
 本発明の実施の形態1について説明する。図1は、本発明の実施の形態1の電動機1の構成を示す断面図である。この電動機1は、永久磁石埋込型電動機であり、例えばロータリー圧縮機に用いられる。電動機1は、ステータ10と、ステータ10の内側に回転可能に設けられたロータ20とを備えている。ステータ10とロータ20との間には、例えば0.3~1mmのエアギャップが形成されている。なお、図1は、ロータ20の回転軸に直交する面における断面図である。
 以下では、ロータ20の回転軸を、「軸線C1」と称する。軸線C1の方向(すなわちロータ20の回転軸の方向)を、「軸方向」と称する。軸線C1を中心とする周方向(図1に矢印R1で示す)を、「周方向」と称する。軸線C1を中心とする径方向を、「径方向」と称する。
 ステータ10は、ステータコア11と、ステータコア11に巻き付けられたコイル3とを備える。ステータコア11は、厚さ0.1~0.7mm(ここでは0.35mm)の複数の電磁鋼板を軸方向に積層し、カシメにより締結したものである。
 ステータコア11は、環状のヨーク部13と、ヨーク部13から径方向内側に突出する複数のティース12とを有している。ティース12の数は、ここでは9であるが、9に限定されるものではない。隣り合うティース12の間には、スロットが形成される。スロットの数は、ティース12の数と同じである。各ティース12は、径方向内側の先端に、幅(ステータコア11の周方向の寸法)の広い歯先部を有している。
 各ティース12には、絶縁体(インシュレータ)14を介して、ステータ巻線であるコイル3が巻き付けられている。コイル3は、例えば、線径(直径)が0.8mmのマグネットワイヤを、各ティース12に集中巻きで110巻き(110ターン)巻き付けたものである。コイル3の巻き数および線径は、電動機1に要求される特性(回転数、トルク等)、供給電圧、またはスロットの断面積に応じて決定される。
 コイル3は、U相、V相およびW相の3相巻線(コイル3U,3V,3Wと称する)で構成されている。各相のコイル3の両端子は開放されている。すなわち、コイル3は、合計6つの端子を有している。コイル3の結線状態は、後述するように、Y結線とデルタ結線とで切り替え可能に構成されている。絶縁体14は、例えば、PET(ポリエチレンテレフタレート)により形成されたフィルムで構成され、厚さは0.1~0.2mmである。
 ステータコア11は、複数のブロック(分割コアと称する)が薄肉部を介して連結された構成を有する。各分割コアは、ティースを1つ有する。分割コアの数は、ここでは9であるが、9に限定されるものではない。ステータコア11を帯状に展開した状態で、各ティース12にマグネットワイヤを巻き付け、その後、ステータコア11を環状に曲げて両端部を溶接する。
 このように絶縁体14を薄いフィルムで構成し、また巻線しやすいようにステータコア11を分割構造とすることは、スロット内のコイル3の巻き数を増加する上で有効である。なお、ステータコア11は、上記のように複数の分割コアが連結された構成を有するものには限定されない。
 ロータ20は、ロータコア21と、ロータコア21に取り付けられた永久磁石25とを有する。ロータコア21は、厚さ0.1~0.7mm(ここでは0.35mm)の複数の電磁鋼板を回転軸方向に積層し、カシメにより締結したものである。
 ロータコア21は、円筒形状を有しており、その径方向中心にはシャフト孔27(中心孔)が形成されている。シャフト孔27には、ロータ20の回転軸となるシャフト(例えば図2に示すロータリー圧縮機8のシャフト90)が、焼嵌または圧入等によって固定されている。
 ロータコア21の外周面に沿って、永久磁石25が挿入される複数(ここでは6つ)の磁石挿入孔22が形成されている。磁石挿入孔22は空隙であり、1磁極に1つの磁石挿入孔22が対応している。ここでは6つの磁石挿入孔22が設けられているため、ロータ20全体で6極となる。但し、磁石挿入孔22の数(すなわち極数)は、6に限定されるものではない。
 磁石挿入孔22は、ここでは、周方向の中央部が径方向内側に突出するV字形状を有している。なお、磁石挿入孔22は、V字形状に限定されるものではなく、例えばストレート形状であってもよい。
 1つの磁石挿入孔22内には、2つの永久磁石25が配置される。すなわち、1磁極について2つの永久磁石25が配置される。ここでは、上記の通りロータ20が6極であるため、合計12個の永久磁石25が配置される。
 永久磁石25は、ロータコア21の軸方向に長い平板状の部材であり、ロータコア21の周方向に幅を有し、径方向に厚さを有している。永久磁石25は、例えば、ネオジウム(Nd)、鉄(Fe)およびボロン(B)を主成分とする希土類磁石で構成されている。
 永久磁石25は、厚さ方向に着磁されている。また、1つの磁石挿入孔22内に配置された2つの永久磁石25は、互いに同一の磁極が径方向の同じ側を向くように着磁されている。
 磁石挿入孔22の周方向両側には、フラックスバリア26がそれぞれ形成されている。フラックスバリア26は、磁石挿入孔22に連続して形成された空隙である。フラックスバリア26は、隣り合う磁極間の漏れ磁束(すなわち、極間を通って流れる磁束)を抑制するためのものである。
 ロータコア21において、各磁石挿入孔22の周方向の中央部には、突起である第1の磁石保持部23が形成されている。また、ロータコア21において、磁石挿入孔22の周方向の両端部には、突起である第2の磁石保持部24がそれぞれ形成されている。第1の磁石保持部23および第2の磁石保持部24は、各磁石挿入孔22内において永久磁石25を位置決めして保持するものである。
 上記の通り、ステータ10のスロット数(すなわちティース12の数)は9であり、ロータ20の極数は6である。すなわち、電動機1は、ロータ20の極数とステータ10のスロット数との比が、2:3である。
 電動機1では、コイル3の結線状態がY結線とデルタ結線とで切り替えられるが、デルタ結線を用いる場合に、循環電流が流れて電動機1の性能が低下する可能性がある。循環電流は、各相の巻線における誘起電圧に発生する3次高調波に起因する。極数とスロット数との比が2:3である集中巻きの場合には、磁気飽和等の影響がなければ、誘起電圧に3次高調波が発生せず、従って循環電流による性能低下が生じないことが知られている。
<ロータリー圧縮機の構成>
 次に、電動機1を用いたロータリー圧縮機8について説明する。図2は、ロータリー圧縮機8の構成を示す断面図である。ロータリー圧縮機8は、シェル80と、シェル80内に配設された圧縮機構9と、圧縮機構9を駆動する電動機1とを備えている。ロータリー圧縮機8は、さらに、電動機1と圧縮機構9とを動力伝達可能に連結するシャフト90(クランクシャフト)を有している。シャフト90は、電動機1のロータ20のシャフト孔27(図1)に嵌合する。
 シェル80は、例えば鋼板で形成された密閉容器であり、電動機1および圧縮機構9を覆う。シェル80は、上部シェル80aと下部シェル80bとを有している。上部シェル80aには、ロータリー圧縮機8の外部から電動機1に電力を供給するための端子部としてのガラス端子81と、ロータリー圧縮機8内で圧縮された冷媒を外部に吐出するための吐出管85とが取り付けられている。ここでは、ガラス端子81から、電動機1(図1)のコイル3のU相、V相およびW相のそれぞれ2本ずつに対応する、合計6本の引き出し線が引き出されている。下部シェル80bには、電動機1および圧縮機構9が収容されている。
 圧縮機構9は、シャフト90に沿って、円環状の第1シリンダ91および第2シリンダ92を有している。第1シリンダ91および第2シリンダ92は、シェル80(下部シェル80b)の内周部に固定されている。第1シリンダ91の内周側には、円環状の第1ピストン93が配置され、第2シリンダ92の内周側には、円環状の第2ピストン94が配置されている。第1ピストン93および第2ピストン94は、シャフト90と共に回転するロータリーピストンである。
 第1シリンダ91と第2シリンダ92との間には、仕切板97が設けられている。仕切板97は、中央に貫通穴を有する円板状の部材である。第1シリンダ91および第2シリンダ92のシリンダ室には、シリンダ室を吸入側と圧縮側とに分けるベーン(図示せず)が設けられている。第1シリンダ91、第2シリンダ92および仕切板97は、ボルト98によって一体に固定されている。
 第1シリンダ91の上側には、第1シリンダ91のシリンダ室の上側を塞ぐように、上部フレーム95が配置されている。第2シリンダ92の下側には、第2シリンダ92のシリンダ室の下側を塞ぐように、下部フレーム96が配置されている。上部フレーム95および下部フレーム96は、シャフト90を回転可能に支持している。
 シェル80の下部シェル80bの底部には、圧縮機構9の各摺動部を潤滑する冷凍機油(図示せず)が貯留されている。冷凍機油は、シャフト90の内部に軸方向に形成された孔90a内を上昇し、シャフト90の複数箇所に形成された給油孔90bから各摺動部に供給される。
 電動機1のステータ10は、焼き嵌めによりシェル80の内側に取り付けられている。ステータ10のコイル3には、上部シェル80aに取り付けられたガラス端子81から、電力が供給される。ロータ20のシャフト孔27(図1)には、シャフト90が固定されている。
 シェル80には、冷媒ガスを貯蔵するアキュムレータ87が取り付けられている。アキュムレータ87は、例えば、下部シェル80bの外側に設けられた保持部80cによって保持されている。シェル80には、一対の吸入パイプ88,89が取り付けられ、この吸入パイプ88,89を介してアキュムレータ87からシリンダ91,92に冷媒ガスが供給される。
 冷媒としては、例えば、R410A、R407CまたはR22等を用いてもよいが、地球温暖化防止の観点からは、低GWP(地球温暖化係数)の冷媒を用いることが望ましい。低GWPの冷媒としては、例えば、以下の冷媒を用いることができる。
(1)まず、組成中に炭素の二重結合を有するハロゲン化炭化水素、例えばHFO(Hydro-Fluoro-Orefin)-1234yf(CF3CF=CH2)を用いることができる。HFO-1234yfのGWPは4である。
(2)また、組成中に炭素の二重結合を有する炭化水素、例えばR1270(プロピレン)を用いてもよい。R1270のGWPは3であり、HFO-1234yfより低いが、可燃性はHFO-1234yfより高い。
(3)また、組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくとも何れかを含む混合物、例えばHFO-1234yfとR32との混合物を用いてもよい。上述したHFO-1234yfは低圧冷媒のため圧損が大きくなる傾向があり、冷凍サイクル(特に蒸発器)の性能低下を招く可能性がある。そのため、HFO-1234yfよりも高圧冷媒であるR32またはR41との混合物を用いることが実用上は望ましい。
 ロータリー圧縮機8の基本動作は、以下の通りである。アキュムレータ87から供給された冷媒ガスは、吸入パイプ88,89を通って第1シリンダ91および第2シリンダ92の各シリンダ室に供給される。電動機1が駆動されてロータ20が回転すると、ロータ20と共にシャフト90が回転する。そして、シャフト90に嵌合する第1ピストン93および第2ピストン94が各シリンダ室内で偏心回転し、各シリンダ室内で冷媒を圧縮する。圧縮された冷媒は、電動機1のロータ20に設けられた穴(図示せず)を通ってシェル80内を上昇し、吐出管85から外部に吐出される。
 なお、電動機1が用いられる圧縮機は、ロータリー圧縮機に限定されるものではなく、例えばスクロール圧縮機等であってもよい。
<空気調和機の構成>
 次に、実施の形態1の駆動装置を含む空気調和機5について説明する。図3は、空気調和機5の構成を示すブロック図である。空気調和機5は、室内(空調対象空間)に設置される室内機5Aと、屋外に設置される室外機5Bとを備えている。室内機5Aと室外機5Bとは、冷媒が流れる接続配管40a,40bによって接続されている。接続配管40aには、凝縮器を通過した液冷媒が流れる。接続配管40bには、蒸発器を通過したガス冷媒が流れる。
 室外機5Bには、冷媒を圧縮して吐出する圧縮機41と、冷媒の流れ方向を切り替える四方弁(冷媒流路切替弁)42と、外気と冷媒との熱交換を行う室外熱交換器43と、高圧の冷媒を低圧に減圧する膨張弁(減圧装置)44とが配設されている。圧縮機41は、上述したロータリー圧縮機8(図2)で構成されている。室内機5Aには、室内空気と冷媒との熱交換を行う室内熱交換器45が配置される。
 これら圧縮機41、四方弁42、室外熱交換器43、膨張弁44および室内熱交換器45は、上述した接続配管40a,40bを含む配管40によって接続され、冷媒回路を構成している。これらの構成要素により、圧縮機41により冷媒を循環させる圧縮式冷凍サイクル(圧縮式ヒートポンプサイクル)が構成される。
 空気調和機5の運転を制御するため、室内機5Aには室内制御装置50aが配置され、室外機5Bには室外制御装置50bが配置されている。室内制御装置50aおよび室外制御装置50bは、それぞれ、空気調和機5を制御するための各種回路が形成された制御基板を有している。室内制御装置50aと室外制御装置50bとは、連絡ケーブル50cによって互いに接続されている。連絡ケーブル50cは、上述した接続配管40a,40bと共に束ねられている。
 室外機5Bには、室外熱交換器43に対向するように、送風機である室外送風ファン46が配置される。室外送風ファン46は、回転により、室外熱交換器43を通過する空気流を生成する。室外送風ファン46は、例えばプロペラファンで構成される。
 四方弁42は、室外制御装置50bによって制御され、冷媒の流れる方向を切り替える。四方弁42が図3に実線で示す位置にあるときには、圧縮機41から吐出されたガス冷媒を室外熱交換器43(凝縮器)に送る。一方、四方弁42が図3に破線で示す位置にあるときには、室外熱交換器43(蒸発器)から流入したガス冷媒を圧縮機41に送る。膨張弁44は、室外制御装置50bによって制御され、開度を変更することにより高圧の冷媒を低圧に減圧する。
 室内機5Aには、室内熱交換器45に対向するように、送風機である室内送風ファン47が配置される。室内送風ファン47は、回転により、室内熱交換器45を通過する空気流を生成する。室内送風ファン47は、例えばクロスフローファンで構成される。
 室内機5Aには、室内(空調対象空間)の空気温度である室内温度Taを測定し、測定した温度情報(情報信号)を室内制御装置50aに送る温度センサとしての室内温度センサ54が設けられている。室内温度センサ54は、一般的な空気調和機で用いられる温度センサで構成してもよく、室内の壁または床等の表面温度を検出する輻射温度センサを用いてもよい。
 室内機5Aには、また、ユーザが操作する操作部としてのリモコン55(遠隔操作装置)から発信された指示信号(運転指示信号)を受信する信号受信部56が設けられている。リモコン55は、ユーザが空気調和機5に運転入力(運転開始および停止)または運転内容(設定温度、風速等)の指示を行うものである。
 圧縮機41は、通常運転時では、20~130rpsの範囲で運転回転数を変更できるように構成されている。圧縮機41の回転数の上昇に伴って、冷媒回路の冷媒循環量が増加する。圧縮機41の回転数は、室内温度センサ54によって得られる現在の室内温度Taと、ユーザがリモコン55で設定した設定温度Tsとの温度差ΔTに応じて、制御装置50(より具体的には、室外制御装置50b)が制御する。温度差ΔTが大きいほど圧縮機41が高回転で回転し、冷媒の循環量を増加させる。
 室内送風ファン47の回転は、室内制御装置50aによって制御される。室内送風ファン47の回転数は、複数段階に切り替え可能である。ここでは、例えば、強風、中風および弱風の3段階に回転数を切り替えることができる。また、リモコン55で風速設定が自動モードに設定されている場合には、測定した室内温度Taと設定温度Tsとの温度差ΔTに応じて、室内送風ファン47の回転数が切り替えられる。
 室外送風ファン46の回転は、室外制御装置50bによって制御される。室外送風ファン46の回転数は、複数段階に切り替え可能である。ここでは、測定された室内温度Taと設定温度Tsとの温度差ΔTに応じて、室外送風ファン46の回転数が切り替えられる。
 室内機5Aは、また、左右風向板48と上下風向板49とを備えている。左右風向板48および上下風向板49は、室内熱交換器45で熱交換した調和空気が室内送風ファン47によって室内に吹き出されるときの吹き出し方向を変更するものである。左右風向板48は吹き出し方向を左右に変更し、上下風向板49は吹出し方向を上下に変更する。左右風向板48および上下風向板49のそれぞれの角度、すなわち吹出し気流の風向は、室内制御装置50aが、リモコン55の設定に基づいて制御する。
 空気調和機5の基本動作は、次の通りである。冷房運転時には、四方弁42が実線で示す位置に切り替えられ、圧縮機41から吐出された高温高圧のガス冷媒は室外熱交換器43に流入する。この場合、室外熱交換器43は凝縮器として動作する。室外送風ファン46の回転により空気が室外熱交換器43を通過する際に、熱交換により冷媒の凝縮熱を奪う。冷媒は凝縮して高圧低温の液冷媒となり、膨張弁44で断熱膨張して低圧低温の二相冷媒となる。
 膨張弁44を通過した冷媒は、室内機5Aの室内熱交換器45に流入する。室内熱交換器45は蒸発器として動作する。室内送風ファン47の回転により空気が室内熱交換器45を通過する際に、熱交換により冷媒に蒸発熱を奪われ、これにより冷却された空気が室内に供給される。冷媒は蒸発して低温低圧のガス冷媒となり、圧縮機41で再び高温高圧の冷媒に圧縮される。
 暖房運転時には、四方弁42が点線で示す位置に切り替えられ、圧縮機41から吐出された高温高圧のガス冷媒は室内熱交換器45に流入する。この場合、室内熱交換器45は凝縮器として動作する。室内送風ファン47の回転により空気が室内熱交換器45を通過する際に、熱交換により冷媒から凝縮熱を奪い、これにより加熱された空気が室内に供給される。また、冷媒は凝縮して高圧低温の液冷媒となり、膨張弁44で断熱膨張して低圧低温の二相冷媒となる。
 膨張弁44を通過した冷媒は、室外機5Bの室外熱交換器43に流入する。室外熱交換器43は蒸発器として動作する。室外送風ファン46の回転により空気が室外熱交換器43を通過する際に、熱交換により冷媒に蒸発熱を奪われる。冷媒は蒸発して低温低圧のガス冷媒となり、圧縮機41で再び高温高圧の冷媒に圧縮される。
 図4は、空気調和機5の制御系の基本構成を示す概念図である。上述した室内制御装置50aと室外制御装置50bとは、連絡ケーブル50cを介して互いに情報をやり取りして空気調和機5を制御している。ここでは、室内制御装置50aと室外制御装置50bとを合わせて、制御装置50と称する。
 図5(A)は、空気調和機5の制御系を示すブロック図である。制御装置50は、例えばマイクロコンピュータで構成されている。制御装置50には、入力回路51、演算回路52および出力回路53が組み込まれている。
 入力回路51には、信号受信部56がリモコン55から受信した指示信号が入力される。指示信号は、例えば、運転入力、運転モード、設定温度、風量または風向を設定する信号を含む。入力回路51には、また、室内温度センサ54が検出した室内の温度を表す温度情報が入力される。入力回路51は、入力されたこれらの情報を、演算回路52に出力する。
 演算回路52は、CPU(Central Processing Unit)57とメモリ58とを有する。CPU57は、演算処理および判断処理を行う。メモリ58は、空気調和機5の制御に用いる各種の設定値およびプログラムを記憶している。演算回路52は、入力回路51から入力された情報に基づいて演算および判断を行い、その結果を出力回路53に出力する。
 出力回路53は、演算回路52から入力された情報に基づいて、圧縮機41、結線切り替え部60(後述)、コンバータ102、インバータ103、圧縮機41、四方弁42、膨張弁44、室外送風ファン46、室内送風ファン47、左右風向板48および上下風向板49を制御する制御部分を含む。出力回路53は、例えば、インバータ103を制御する後述するインバータ駆動回路111(図6)を含む。
 上述したように、室内制御装置50aおよび室外制御装置50b(図4)は、連絡ケーブル50cを介して相互に情報をやりとりし、室内機5Aおよび室外機5Bの各種機器を制御しているため、ここでは室内制御装置50aと室外制御装置50bとを合わせて制御装置50と表現している。実際には、室内制御装置50aおよび室外制御装置50bのそれぞれが、マイクロコンピュータで構成されている。なお、室内機5Aおよび室外機5Bの何れか一方にのみ制御装置を搭載し、室内機5Aおよび室外機5Bの各種機器を制御するようにしてもよい。
 図5(B)は、制御装置50において、室内温度Taに基づいて圧縮機41の電動機1を制御する部分を示すブロック図である。制御装置50の演算回路52は、受信内容解析部52aと、室内温度取得部52bと、温度差算出部52cと、圧縮機制御部52dとを備える。これらは、例えば、演算回路52のCPU57に含まれる。
 受信内容解析部52aは、リモコン55から信号受信部56および入力回路51を経て入力された指示信号を解析する。受信内容解析部52aは、解析結果に基づき、例えば運転モードおよび設定温度Tsを、温度差算出部52cに出力する。室内温度取得部52bは、室内温度センサ54から入力回路51を経て入力された室内温度Taを取得し、温度差算出部52cに出力する。
 温度差算出部52cは、室内温度取得部52bから入力された室内温度Taと、受信内容解析部52aから入力された設定温度Tsとの温度差ΔTを算出する。受信内容解析部52aから入力された運転モードが暖房運転である場合は、温度差ΔT=Ts-Taで算出される。運転モードが冷房運転である場合は、温度差ΔT=Ta-Tsで算出される。温度差算出部52cは、算出した温度差ΔTを、圧縮機制御部52dに出力する。
 圧縮機制御部52dは、温度差算出部52cから入力された温度差ΔTに基づいて、駆動装置100を制御し、これにより電動機1の回転数(すなわち圧縮機41の回転数)を制御する。
<駆動装置の構成>
 次に、電動機1を駆動する駆動装置100について説明する。図6は、駆動装置100および電動機1の構成を示すブロック図である。駆動装置100は、電源101の出力を整流するコンバータ102と、電動機1のコイル3に交流電圧を出力するインバータ103と、コイル3の結線状態を切り替える結線切り替え部60と、制御装置50とを有する。電源101は、例えば200V(実効電圧)の交流電源である。
 制御装置50は、インバータ103の入力側または出力側の電流を検出する電流検出回路108と、インバータ103を駆動するインバータ駆動回路111と、インバータ制御部としてのCPU110とを備える。
 コンバータ102は、電源101からリアクトル109を介して交流電圧を受け、整流および平滑化を行って、直流電圧を母線L1,L2から出力する整流回路である。コンバータ102は、交流電圧を整流するブリッジダイオード102a,102b,102c,102dと、出力電圧を平滑化する平滑コンデンサ102eとを有する。コンバータ102から出力される電圧を、母線電圧と称する。コンバータ102の出力電圧は、制御装置50によって制御される。
 インバータ103は、入力端子がコンバータ102の母線L1,L2に接続されている。また、インバータ103の出力端子は、それぞれ、U相、V相、W相の配線(出力線)104,105,106を介して、電動機1の3相のコイル3U,3V,3Wに接続されている。
 インバータ103は、第1のU相スイッチング素子1Ua、第2のU相スイッチング素子1Ub、第1のV相スイッチング素子1Va、第2のV相スイッチング素子1Vb、第1のW相スイッチング素子1Waおよび第2のW相スイッチング素子1Wbを有する。
 第1のU相スイッチング素子1Uaは、U相上アームに相当し、第2のU相スイッチング素子1Ubは、U相下アームに相当する。第1のU相スイッチング素子1Uaおよび第2のU相スイッチング素子1Ubは、U相の配線104に接続されている。また、第1のU相スイッチング素子1Uaには、第1のU相ダイオード2Uaが並列に接続され、第2のU相スイッチング素子1Ubには、第2のU相ダイオード2Ubが並列に接続されている。
 第1のV相スイッチング素子1Vaは、V相上アームに相当し、第2のV相スイッチング素子1Vbは、V相下アームに相当する。第1のV相スイッチング素子1Vaおよび第2のV相スイッチング素子1Vbは、V相の配線105に接続されている。また、第1のV相スイッチング素子1Vaには、第1のV相ダイオード2Vaが並列に接続され、第2のV相スイッチング素子1Vbには、第2のV相ダイオード2Vbが並列に接続されている。
 第1のW相スイッチング素子1Waは、W相上アームに相当し、第2のW相スイッチング素子1Wbは、W相下アームに相当する。第1のW相スイッチング素子1Waおよび第2のW相スイッチング素子1Wbは、W相の配線106に接続されている。また、第1のW相スイッチング素子1Waには、第1のW相ダイオード2Waが並列に接続され、第2のW相スイッチング素子1Wbには、第2のW相ダイオード2Wbが並列に接続されている。
 各スイッチング素子1Ua~1Wbは、例えば、IGBT(絶縁ゲート形トランジスタ)等のトランジスタにより構成することができる。また、各スイッチング素子1Ua~1Wbのオンオフは、インバータ駆動回路111からの駆動信号によって制御される。
 インバータ駆動回路111は、CPU110から入力されるPWM(Pulse Width Modulation)信号に基づき、インバータ103の各スイッチング素子1Ua~1Wbをオンオフさせるための駆動信号を生成し、インバータ103に出力する。このインバータ駆動回路111は、上述した出力回路53(図5(A))の一部である。
 インバータ103の入力側(例えばコンバータ102からの母線L2)には、抵抗107が接続されており、この抵抗107には電流検出回路108が接続されている。電流検出回路108は、インバータ103の入力側の電流(すなわちコンバータ102の母線電流)の電流値を検出する電流検出部であり、ここではシャント抵抗を用いている。なお、電流検出回路108は、このような例に限らず、インバータ103の出力側の電流(相電流)の電流値を検出するようにしてもよい。また、シャント抵抗に限らず、ホール素子、トランス(電磁誘導を利用するもの)を用いてもよい。
 インバータ制御部としてのCPU110は、インバータ103および結線切り替え部60を制御するものである。CPU110には、信号受信部56が受信したリモコン55からの運転指示信号と、室内温度センサ54が検出した室内温度と、電流検出回路108からの電流値とが入力される。
 CPU110は、これらの入力情報に基づき、コンバータ102に電圧切り替え信号を出力し、インバータ103にインバータ駆動信号(PWM信号)を出力し、結線切り替え部60に結線切り替え信号を出力し、コンバータ102に電圧切り替え信号を出力する。なお、CPU110は、図5(A)に示したCPU57に対応している。
 次に、コイル3およびその結線切り替えについて説明する。図7は、駆動装置100の構成を示す図であり、コンバータ102、インバータ103および制御装置50をそれぞれ1ブロックとして示している。結線切り替え部60は、コイル3の結線状態を、Y結線とデルタ結線とで切り換える。
 電動機1の3相のコイル3U,3V,3Wのうち、コイル3Uは、端子31U,32Uを有する。コイル3Vは、端子31V,32Vを有する。コイル3Wは、端子31W,32Wを有する。配線104は、コイル3Uの端子31Uに接続されている。配線105は、コイル3Vの端子31Vに接続されている。配線106は、コイル3Wの端子31Wに接続されている。
 結線切り替え部60は、いずれもリレー接点で構成されたスイッチ61,62,63を有する。スイッチ61は、コイル3Uの端子32Uを、配線105および中性点(共通接点)33の何れかに接続する。スイッチ62は、コイル3Vの端子32Vを、配線106および中性点33の何れかに接続する。スイッチ63は、コイル3Vの端子32Wを、配線104および中性点33の何れかに接続する。なお、結線切り替え部60のスイッチ61,62,63は、半導体スイッチで構成してもよいが、これについては変形例(図19)で説明する。
 図7に示した状態では、スイッチ61は、コイル3Uの端子32Uを中性点33に接続しており、スイッチ62は、コイル3Vの端子32Vを中性点33に接続しており、スイッチ63は、コイル3Wの端子32Wを中性点33に接続している。すなわち、コイル3U,3V,3Wの端子31U,31V,31Wはインバータ103に接続され、端子32U,32V,32Wは中性点33に接続されている。
 図8は、駆動装置100において、結線切り替え部60のスイッチ61,62,63が切り替えられた状態を示すブロック図である。図8に示した状態では、スイッチ61は、コイル3Uの端子32Uを配線105に接続しており、スイッチ62は、コイル3Vの端子32Vを配線106に接続しており、スイッチ63は、コイル3Wの端子32Wを配線104に接続している。
 図9(A)は、スイッチ61,62,63が図7に示した状態にあるときのコイル3U,3V,3Wの結線状態を示す模式図である。コイル3U、3V,3Wは、それぞれ端子32U,32V,32Wにおいて中性点33に接続されている。そのため、コイル3U、3V,3Wの結線状態は、Y結線(スター結線)となる。
 図9(B)は、スイッチ61,62,63が図8に示した状態にあるときのコイル3U,3V,3Wの結線状態を示す模式図である。コイル3Uの端子32Uは、配線105(図8)を介してコイル3Vの端子31Vに接続される。コイル3Vの端子32Vは、配線106(図8)を介してコイル3Wの端子31Wに接続される。コイル3Wの端子32Wは、配線104(図8)を介してコイル3Uの端子31Uに接続される。そのため、コイル3U、3V,3Wの結線状態は、デルタ結線(三角結線)となる。
 このように、結線切り替え部60は、スイッチ61,62,63の切り替えにより、電動機1のコイル3U,3V,3Wの結線状態を、Y結線(第1の結線状態)およびデルタ結線(第2の結線状態)との間で切り替えることができる。
 図10は、コイル3U,3V,3Wのそれぞれのコイル部分を示す模式図である。上述したように、電動機1は、9つのティース12(図1)を有しており、コイル3U,3V,3Wはそれぞれ3つのティース12に巻かれている。すなわち、コイル3Uは、3つのティース12に巻かれたU相のコイル部分Ua,Ub,Ucを直列に接続したものである。同様に、コイル3Vは、3つのティース12に巻かれたV相のコイル部分Va,Vb,Vcを直列に接続したものである。また、コイル3Wは、3つのティース12に巻かれたW相のコイル部分Wa,Wb,Wcを直列に接続したものである。
 実施の形態1の電動機1では、極数とスロット数との比が2:3であり、コイル3は集中巻で巻かれている。この構成では、各ティース12には、同じ巻き数且つ同じ巻き方向でコイル3が巻かれ、周方向にコイル部分Ua,Va,Wa,Ub,Vb,Wb,Uc,Vc,Wcの順に並ぶ(図1参照)。
<過電流保護のための構成>
 次に、実施の形態1の駆動装置100における過電流保護のための構成について説明する。過電流保護とは、永久磁石25の減磁の低減を目的として、インバータ103の電流値が過電流閾値(過電流保護レベルとも称する)を超えないように制御することを言う。
 図11は、Y結線とデルタ結線のそれぞれについて、線間電圧と回転数との関係を示すグラフである。コイル3の結線状態がデルタ結線である場合のコイル3の相インピーダンスは、巻き数を同数とすると、コイル3の結線状態がY結線である場合の1/√3倍となる。そのため、コイル3の結線状態がデルタ結線である場合の線間電圧(一点鎖線)は、回転数を同じとすると、コイル3の結線状態がY結線である場合の線間電圧(実線)の1/√3倍となる。
 すなわち、コイル3をデルタ結線により結線した場合、巻き数をY結線の場合の√3倍にすれば、同じ回転数Nに対して、線間電圧がY結線の場合と等価となり、従ってインバータ103の出力電流もY結線の場合と等価となる。
 3相交流同期状態では、デルタ結線時のインバータ出力電流は、Y結線時のインバータ出力電流を√3倍して、位相をπ/6遅らせることで等価(すなわち、電動機1の磁束分布が同じになり、発生トルクも同じになる状態)となる。
 例えば、図9(A)に示したY結線において、U相、V相、W相のインバータ出力電流をIu,Iv,Iwとし、U相のコイル3Uに流れる電流の電流値をIoとする。この場合、各相のインバータ出力電流Iu,Iv,Iwは、ωを角振動数、tを時間として、以下のように表される。
 Iu=Io×sin(ωt)
 Iv=Io×sin(ωt-2π/3)
 Iw=Io×sin(ωt-4π/3)。
 一方、図9(B)に示したデルタ結線において、U相、V相、W相のインバータ出力電流をIu’,Iv’,Iw’とする。この場合、各相のIu’,Iv’,Iw’は、上記のIoを用いて、以下のように表される。
 Iu’=√3×Io×sin(ωt)
 Iv’=√3×Io×sin(ωt-2π/3)
 Iw’=√3×Io×sin(ωt-4π/3)。
 つまり、デルタ結線時のインバータ出力電流は、Y結線時のインバータ出力電流の√3倍になるため、デルタ結線時の過電流閾値(過電流保護レベル)を、Y結線時の過電流閾値の√3倍に設定すればよい。
 しかしながら、電動機1の運転中には、U相、V相、W相のインバータ出力電流のうち、いずれか1相の電流が流れないような特殊な運転状態が生じ得る。例えば、いずれか1相のインバータ出力電流が0になった時点で停電があった場合などである。このような特殊な運転状態では、通常の運転状態とはコイルへの電流の流れ方が異なるため、減磁の発生状況も異なる。
 図12(A)は、コイル3の結線状態がY結線で、インバータ出力電流の1相が欠相している状態を示す模式図である。ここでは、W相のインバータ出力電流Iwが流れていないものとする。電動機1の極数は6、スロット数は9とし、コイル3の巻き方は集中巻とする。
 図12(A)において、U相のコイル3Uに流れる電流の電流値をIoとすると、V相のコイル3Vに流れる電流の電流値も、Ioとなる。コイル3Uに流れる電流の向き(より具体的には、巻線方向に対する電流の向き)と、コイル3Vに流れる電流の向きとは、互いに逆向きである。このとき、コイル3U,3Vに互いに逆向きの起磁力が発生するため、隣接するティース間を短絡するように磁束の流れが生じる。
 図12(B)は、図12(A)に示したようにW相のインバータ出力電流が流れていない状態で、永久磁石25の減磁が最も発生しやすいステータ10とロータ20との位置関係を示す模式図である。図12(B)に示すように、ロータ20の極間(符号201で示す)が、コイル3Uが巻かれたティース12とコイル3Vが巻かれたティース12との間に対向している場合、永久磁石25の減磁が最も発生しやすい。
 すなわち、コイル3Uの電流により、コイル3Uが巻かれたティース12内に径方向内側に向かう起磁力M1が生じ、コイル3Vの電流により、コイル3Vが巻かれたティース12内に径方向外側に向かう起磁力M2が生じる。そのため、コイル3Uが巻かれたティース12の先端から、コイル3Vが巻かれたティース12の先端に向かって、永久磁石25を横切る磁束の流れF1が生じる。
 このとき、コイル3Uが巻かれたティース12に対向する永久磁石25の着磁方向(矢印N1)が径方向外側に向かう方向であり、コイル3Vが巻かれたティース12に対向する永久磁石25の着磁方向(矢印N2)が径方向内側に向かう方向である場合には、各永久磁石25に着磁方向と逆向きに磁束が流れる。その結果、永久磁石25の減磁が生じる可能性がある。
 そのため、Y結線の場合には、ステータ10とロータ20とが図12(B)に示した位置関係にあるときに、永久磁石25の減磁が生じないように過電流閾値を決定する必要がある。
 図13(A)は、コイル3の結線状態がデルタ結線で、インバータ出力電流の1相が欠相している状態を示す模式図である。ここでは、W相のインバータ出力電流Iwが流れていないものとする。
 図13(A)において、U相のコイル3Uに流れている電流の電流値は、(2×√3/3)×Io(=1.15×Io)となる。V相のコイル3Vに流れる電流の電流値およびW相のコイル3Wに流れる電流の電流値は、いずれも(√3/3)×Io(=0.58×Io)となる。この場合、U相のコイル3Uから、隣接するV相およびW相のコイル3V,3Wに向かうように分岐した磁束の流れが生じる。
 図13(B)は、図13(A)に示したようにW相のインバータ出力電流が流れていない状態で、永久磁石25の減磁が最も発生しやすいステータ10とロータ20との位置関係を示す模式図である。図13(B)に示すように、ロータ20の磁極(符号200で示す)が、コイル3Uが巻かれたティース12に対向している場合、永久磁石25の減磁が最も発生しやすい。
 すなわち、コイル3Uの電流により、コイル3Uが巻かれたティース12内に径方向内側に向かう起磁力M3が生じる。また、コイル3V,3Wの電流により、コイル3V,3Wがそれぞれ巻かれたティース12内に径方向外側に向かう起磁力M4が生じる。そのため、コイル3Uが巻かれたティース12の先端から、コイル3V,3Wがそれぞれ巻かれたティース12の各先端に向かって、永久磁石25を横切る磁束の流れF2が生じる。
 このとき、コイル3Uが巻かれたティース12に対向する永久磁石25の着磁方向(矢印N1)が径方向外側に向かう方向である場合には、この永久磁石25に着磁方向と逆向きに磁束が流れる。その結果、永久磁石25の減磁が生じる可能性がある。
 そのため、デルタ結線の場合には、ステータ10とロータ20とが図13(B)に示した位置関係にあるときに、永久磁石25の減磁が生じないように過電流閾値を決定する必要がある。
 上記のように、コイル3の結線状態がデルタ結線の場合、コイル3Uに1.15×Ioの電流が流れるため、コイル3Uの電流によって生じる起磁力M3は、Y結線の場合の起磁力M1(図12(B))の1.15倍、すなわち15%増となる。
 但し、ロータ20とステータ10とが図13(B)に示す位置関係(すなわち最も減磁が生じやすい位置関係)にあるときには、コイル3Uが巻かれたティース12に対向する永久磁石25の径方向外側に、ロータコア21の一部(ロータコア外周部28と称する)が存在する。
 そのため、コイル3Uが巻かれたティース12の先端から、コイル3Vが巻かれたティース12の先端に向かう磁束の一部は、永久磁石25を通過するのではなく、矢印F3で示すようにロータコア外周部28を通過する。同様に、コイル3Uが巻かれたティース12の先端から、コイル3Wが巻かれたティース12の先端に向かう磁束の一部も、永久磁石25を通過するのではなく、矢印F3で示すようにロータコア外周部28を通過する。
 すなわち、コイル3Uの電流による起磁力M3によって生じる磁束のうち、0~10%に相当する部分は、永久磁石25を通過しない漏れ磁束となる。そのため、デルタ結線の場合には、Y結線の場合と比較して、起磁力の増加分である15%から、漏れ磁束の0~10%を差し引いた、5~15%だけ減磁が生じやすくなるということができる。
 言い換えると、Y結線とデルタ結線とで永久磁石25の減磁を抑制するためには、デルタ結線の場合の過電流閾値は、Y結線の場合の過電流閾値の√3倍よりも5~15%低い値に設定する必要がある。
 例えば、永久磁石埋込型の電動機では、永久磁石の減磁率の合否基準は-3%である。そのため、減磁率が-3%を下回らないように、過電流閾値(過電流保護レベル)を設定する。Y結線の場合の過電流閾値をAとすると、デルタ結線の場合の過電流閾値Bを(√3×A)と同じに設定したのでは、インバータ出力電流が欠相している場合に減磁が生じる可能性がある。
 そこで、この実施の形態1では、デルタ結線の場合の過電流閾値Bを(√3×A)未満に設定している(すなわちB<√3×A)。なお、過電流閾値Aは、第1の閾値A(または第1の過電流閾値A)とも称する。また、過電流閾値Bは、第2の閾値B(または第2の過電流閾値B)とも称する。
 永久磁石25の減磁の抑制という観点では、過電流閾値Bは(√3×A)よりもできるだけ小さいことが望ましいが、過電流閾値Bがあまり小さいと、電動機1の最大駆動出力が制限される。そのため、過電流閾値Bは、永久磁石25の減磁を抑制しつつ、できるだけ大きい値に設定することが望ましい。
 U相のコイル3Uの電流によって生じる起磁力は、上記の通り、デルタ結線ではY結線よりも最大で15%大きくなる。そのため、デルタ結線の場合の過電流閾値Bを、(√3×A×0.85)よりも大きく、(√3×A)未満に設定することが望ましい。言い換えると、(√3×A×0.85)<B<(√3×A)を満足することが望ましい。
 さらに、デルタ結線で、ステータ10とロータ20とが最も減磁が生じやすい位置関係にあるとき(図13(B))、コイル3を流れる電流による起磁力M3によって生じる磁束のうちの0~10%は、ロータコア外周部28を通過する漏れ磁束となる。そのため、デルタ結線での過電流閾値Bは、Y結線での過電流閾値Aに対して、起磁力の増加分である15%から、漏れ磁束に相当する0~10%を差し引いた、5~15%高いことが望ましい。言い換えると、(√3×A×0.85)<B<(√3×A×0.95)を満足することが望ましい。
 図14は、実施の形態1の電動機1の減磁特性を示すグラフである。減磁特性とは、電流値に対する減磁率の変化を言う。横軸は、インバータ103の出力電流(A)であり、縦軸は、減磁率(%)である。減磁率(%)は、{(電流印加後の誘起電圧/電流印加前の誘起電圧)-1}×100で求められる。また、誘起電圧は、コイル3に鎖交する磁束量に対応する。ここでは、インバータ103の出力電流を0A~30Aと変化させ、永久磁石25の減磁率を測定した。
 図14において、実線は、Y結線での減磁特性を示し、破線は、デルタ結線での減磁特性を示す。点線は、Y結線での減磁特性における電流値を√3倍した点をつないだものである。
 過電流閾値Aは、Y結線で減磁率が-3%となるときの電流値である。過電流閾値Bは、デルタ結線で減磁率が-3%となるときの電流値である。過電流閾値Bは、過電流閾値Aに√3倍した値(すなわち√3A)に対して5~15%低い電流値である。
 すなわち、過電流閾値Bを、過電流閾値Aを√3倍した値(すなわち√3A)と同じに設定したのでは、例えばインバータ出力電流の1相が流れていない状態で減磁が生じ得る。過電流閾値Bを、√3Aよりも5~15%低い値とすることにより、減磁の抑制効果を高めることができる。
 以上のように、Y結線とデルタ結線との切り替えを行うと共に、結線状態に応じて過電流閾値A,Bを設定し、過電流閾値Bを、B<(√3×A)、より望ましくは(√3×A×0.85)<B<(√3×A)、さらに望ましくは(√3×A×0.85)<B<(√3×A×0.95)を満足するように設定することで、電動機1の駆動効率を高め、さらに永久磁石の減磁を低減して電動機1の信頼性を向上することができる。
 なお、ロータリー圧縮機8等では、電動機1が100℃以上の雰囲気で使用されるが、永久磁石25を構成する希土類磁石は、高温で減磁し易くなる特性を有する。そのため、一般に、希土類磁石には、減磁を抑制するためのディスプロシウム(Dy)という高価な希土類元素を添加する必要がある。
 この実施の形態1では、永久磁石25の減磁を抑制することができるため、ロータリー圧縮機8等に使用する電動機1においても、永久磁石25を、ディスプロシウムを含有しない希土類磁石で構成することができる。その結果、電動機1の製造コストを向上することができる。
<空気調和機の動作>
 図15は、空気調和機5の基本動作を示すフローチャートである。空気調和機5の制御装置50は、信号受信部56によりリモコン55から起動信号を受信することにより、運転を開始する(ステップS101)。ここでは、制御装置50のCPU57が起動する。後述するように、空気調和機5は、前回終了時にコイル3の結線状態をデルタ結線に切り替えて終了しているため、運転開始時(起動時)にはコイル3の結線状態がデルタ結線となっている。
 次に、制御装置50は、空気調和機5の起動処理を行う(ステップS102)。具体的には、例えば、室内送風ファン47および室外送風ファン46の各ファンモータを駆動する。
 次に、制御装置50は、コンバータ102に電圧切り替え信号を出力し、コンバータ102の母線電圧を、デルタ結線に対応した第2の母線電圧(例えば390V)に昇圧する(ステップS103)。コンバータ102の母線電圧は、インバータ103から電動機1に印加される最大電圧である。
 次に、制御装置50は、電動機1を起動する(ステップS104)。これにより、電動機1は、コイル3の結線状態がデルタ結線で起動される。制御装置50は、インバータ103の出力電圧を制御して、電動機1の回転数を制御する。より具体的には、図6に示したCPU110が、インバータ駆動回路111を介して、インバータ103の出力電圧を制御する。
 制御装置50は、室内温度センサ54に検出された室内温度Taと設定温度Tsとの温度差ΔTに応じて、電動機1の回転数を予め定められた速度で段階的に上昇させる。電動機1の回転数の許容最大回転数は、例えば130rpsである。これにより、圧縮機41による冷媒循環量を増加させ、冷房運転の場合には冷房能力を高め、暖房運転の場合には暖房能力を高める。
 また、空調効果により室内温度Taが設定温度Tsに接近し、温度差ΔTが減少傾向を示すようになると、制御装置50は、温度差ΔTに応じて電動機1の回転数を低下させる。温度差ΔTが予め定められたゼロ近傍温度(但し0より大)まで減少すると、制御装置50は、電動機1を許容最小回転数(例えば20rps)で運転する。
 また、室内温度Taが設定温度Tsに達した場合(すなわち温度差ΔTが0以下となる場合)には、制御装置50は、過冷房(または過暖房)防止のために電動機1の回転を停止する。これにより、圧縮機41が停止した状態となる。そして、温度差ΔTが再び0より大きくなった場合には、制御装置50は電動機1の回転を再開する。なお、制御装置50は、電動機1の回転と停止を短時間で繰り返さないように、電動機1の短時間での回転再開を規制する。
 また、電動機1の回転数が予め設定した回転数に達すると、インバータ103による弱め界磁制御が開始される。
 制御装置50は、リモコン55から信号受信部56を介して運転停止信号(空気調和機5の運転停止信号)を受信したか否かを判断する(ステップS105)。運転停止信号を受信していない場合には、ステップS106に進む。一方、運転停止信号を受信した場合には、制御装置50は、ステップS109に進む。
 制御装置50は、室内温度センサ54で検出した室内温度Taと、リモコン55により設定された設定温度Tsとの温度差ΔTを取得し(ステップS106)、この温度差ΔTに基づき、コイル3のデルタ結線からY結線に切り替えるか否かを判断する。すなわち、コイル3の結線状態がデルタ結線であって、なお且つ、上記の温度差ΔTの絶対値が閾値ΔTr以下か否かを判断する(ステップS107)。閾値ΔTr(設定温度差)は、Y結線に切り替え可能な程度に小さい空調負荷(単に「負荷」とも称する)に相当する温度差である。
 上記の通り、ΔTは、運転モードが暖房運転の場合にはΔT=Ts-Taで表され、冷房運転の場合にはΔT=Ta-Tsで表されるため、ここではΔTの絶対値と閾値ΔTrとを比較してY結線への切り替えの要否を判断している。
 ステップS107において、コイル3の結線状態がデルタ結線で、且つ、温度差ΔTの絶対値が閾値ΔTr以下であれば、ステップS121(図16)に進む。
 図16に示すように、ステップS121では、制御装置50は、インバータ103に停止信号を出力し、電動機1の回転を停止する(すなわち、インバータ103の出力を停止する)。その後、制御装置50は、結線切り替え部60に結線切り替え信号を出力し、コイル3の結線状態をデルタ結線からY結線に切り替える(ステップS122)。続いて、制御装置50は、コンバータ102に電圧切り替え信号を出力し、コンバータ102の母線電圧をY結線に対応した第1の電圧(280V)に降圧し(ステップS123)、電動機1の回転を再開する(ステップS124)。その後、上述したステップS105(図15)に戻る。
 上記ステップS107において、コイル3の結線状態がデルタ結線でない場合、あるいは、温度差ΔTの絶対値が閾値ΔTrより大きい場合(すなわちY結線に切り替える必要がない場合)には、ステップS108に進む。
 ステップS108では、Y結線からデルタ結線に切り替えるか否かを判断する。すなわち、コイル3の結線状態がY結線であって、なお且つ、上記の温度差ΔTの絶対値が閾値ΔTrより大きいか否かを判断する。
 ステップS108での比較の結果、コイル3の結線状態がY結線で、且つ、温度差ΔTの絶対値が閾値ΔTrより大きければ、ステップS131(図17)に進む。
 図17に示すように、ステップS131では、制御装置50は、電動機1の回転を停止する。その後、制御装置50は、結線切り替え部60に結線切り替え信号を出力し、コイル3の結線状態をY結線からデルタ結線に切り替える(ステップS132)。続いて、制御装置50は、コンバータ102に電圧切り替え信号を出力し、コンバータ102の母線電圧をデルタ結線に対応した第2の母線電圧(390V)に昇圧し(ステップS133)、電動機1の回転を再開する(ステップS134)。
 デルタ結線の場合、Y結線と比べて、電動機1をより高い回転数まで駆動できるため、より大きい負荷に対応することができる。そのため、室内温度と設定温度との温度差ΔTを短時間で収束させることができる。その後、上述したステップS105(図15)に戻る。
 また、コイル3の結線状態がデルタ結線で且つ温度差ΔTの絶対値が閾値ΔTrより大きい場合、および、コイル3の結線状態がY結線で且つ温度差ΔTの絶対値が閾値ΔTr以下である場合には、ステップS107,S108での判断結果がいずれもNOとなるため、ステップS105に戻る。
 上記のステップS105で運転停止信号を受信した場合には、電動機1の回転を停止する(ステップS109)。その後、制御装置50は、コイル3の結線状態をY結線からデルタ結線に切り替える(ステップS110)。コイル3の結線状態が既にデルタ結線である場合には、その結線状態を維持する。なお、図15では省略するが、ステップS106~S108の間においても、運転停止信号を受信した場合には、ステップS109に進んで電動機1の回転を停止する。
 その後、制御装置50は、空気調和機5の停止処理を行う(ステップS111)。具体的には、室内送風ファン47および室外送風ファン46の各ファンモータを停止する。その後、制御装置50のCPU57が停止し、空気調和機5の運転が終了する。
 以上のように、室内温度Taと設定温度Tsとの温度差ΔTの絶対値が閾値ΔTr以下である場合には、高効率なY結線で電動機1を運転し、温度差ΔTの絶対値が閾値ΔTrより大きい場合には、より大きい負荷への対応が可能なデルタ結線で電動機1を運転する。そのため、空気調和機5の運転効率を向上することができる。
 特に、温度は短い時間での変動が少なく、結線切り替えを行うか否かの判断を短い時間で行うことができる。そのため、例えば部屋の窓を開けた場合のような急速な負荷変動にも迅速に対応することができ、空気調和機5による快適性を向上することができる。
 また、この実施の形態1では、コイル3の結線状態がY結線の場合には、コンバータ102の母線電圧を280Vとし(ステップS123)、コイル3の結線状態がデルタ結線の場合には、コンバータ102の母線電圧を390Vとしている(ステップS133)。言い換えると、電動機1の高回転数域での母線電圧を、低回転数域での母線電圧よりも高くしている。そのため、高い電動機効率を得ることができる。
 また、この実施の形態1では、電動機1の起動時のコイル3の結線状態を、より大きな空調負荷に対応可能なデルタ結線としている(図15のステップS110)。空気調和機5の運転開始時は空調負荷の正確な検出が難しいため、起動時の結線状態をデルタ結線とすることにより、室内温度Taと設定温度Tsとの温度差ΔTを、より短時間で収束させることができる。
 なお、図15のステップS106~S108では、室内温度Taと設定温度Tsとの温度差ΔTに基づいて結線切り替えを行っているが、他の方法で結線切り替えを行ってもよい。例えば、電動機1の回転数を検出し、電動機1の回転数が設定回転数(閾値)以下である場合にはデルタ結線からY結線への切り替えを行い、電動機1の回転数が設定回転数より大きい場合にはデルタ結線からY結線への切り替えを行うようにしてもよい。
 電動機1の回転数は、例えば電流検出回路108で検出される電流値に基づいて検出することができる。また、設定回転数(閾値)は、暖房中間条件(冷房中間条件)に相当する35rpsと、暖房定格条件(冷房定格条件)に相当する85rpsとの中間値である60rpsとすることが望ましい。
<過電流保護動作>
 図18は、実施の形態1の過電流保護動作を示すフローチャートである。この過電流保護動作は、電動機1の回転中、すなわち図15に示したステップS104~S108の間に実行される。
 制御装置50のCPU110(図6)は、まず、電流検出回路108によりインバータ103の電流値を検出する(ステップS200)。次に、CPU110は、コイル3の結線状態がY結線かデルタ結線かを判断する(ステップS201)。
 コイル3の結線状態がY結線であった場合には、電流検出回路108で検出された電流値が過電流閾値Aより低いか否かを判断する(ステップS202)。電流値が過電流閾値Aより低い場合には、ステップS201に戻る。一方、電流値が過電流閾値A以上であった場合には、インバータ103に停止信号を出力し、インバータ103の出力を停止する、言い換えると電動機1の回転を停止する(ステップS204)。
 また、上記のステップS201において、コイル3の結線状態がデルタ結線であった場合には、電流検出回路108で検出された電流値が過電流閾値Bより低いか否かを判断する(ステップS203)。電流値が過電流閾値Bより低い場合には、ステップS201に戻る。一方、電流値が過電流閾値B以上であった場合には、インバータ103に停止信号を出力し、インバータ103の出力を停止する、言い換えると電動機1の回転を停止する(ステップS204)。
 過電流閾値A,Bは、B<√3×Aを満足し、望ましくは√3×A×0.85<B<√3×Aを満足し、さらに望ましくは√3×A×0.85<B<√3×A×0.95を満足する。そのため、デルタ結線でコイル3の1相に電流が流れない運転状態での起磁力の増加があっても、永久磁石25の減磁を抑制することができる。
 なお、デルタ結線の場合の過電流閾値Bを(√3×A)未満に設定すると、過電流閾値Bを(√3×A)に設定した場合よりも出力が低くなる。また、圧縮機および自動車等では、電動機1の回転数の範囲が広いが、高回転数域(例えばY結線でインバータ103の出力がインバータ最大出力電圧に達した状態)では、弱め界磁制御が開始される。弱め界磁制御では弱め電流の分だけインバータ出力電流が大きくなるため、過電流閾値Bに到達しやすくなる。
 この実施の形態1では、上記のようにY結線からデルタ結線への切り替えを行うため、高回転数域において弱め界磁制御が開始されにくい。そのため、デルタ結線の場合の過電流閾値Bを(√3×A)未満に設定しても、Y結線の場合以上のトルクを発生することができ、高出力を得ることができる。
<実施の形態1の効果>
 以上説明したように、本発明の実施の形態1の駆動装置100では、コイル3の結線状態がY結線でインバータ103の電流値が第1の閾値A(すなわち過電流閾値A)に達した場合、およびコイル3の結線状態がデルタ結線でインバータ103の電流値が第2の閾値B(すなわち過電流閾値B)に達した場合に、インバータの出力を停止する。第1の閾値Aと第2の閾値Bとは、B<√3×Aを満足する。そのため、例えばコイル3の1相に電流が流れていない運転状態においても、永久磁石25の減磁を低減する(生じにくくする)ことができる。
 また、過電流閾値A,Bが√3×A×0.85<B<√3×Aを満足することにより、デルタ結線でコイル3の1相に電流が流れない運転状態において起磁力が増加しても、永久磁石25の減磁を抑制することができる。
 また、過電流閾値A,Bが(√3×A×0.85)<B<(√3×A×0.95)を満足するため、ロータコア外周部28での漏れ磁束を考慮して、永久磁石25の減磁を抑制することができる。
 また、制御装置50は、インバータ103の電流を検出する電流検出回路108と、電流検出回路108により検出された電流とコイル3の結線状態とに基づいて、インバータ103にPWM信号を出力するCPU(インバータ制御部)110とをさらに備えるため、電動機1に供給される電流とコイル3の結線状態とに応じて、電動機1の回転を制御することができる。
 また、結線切り替え部60は、電動機1の第1の回転数域(例えば室内温度Taと設定温度Tsとの温度差ΔTが閾値ΔTr以下の場合)ではコイル3の結線状態をY結線とし、第1の回転数域よりも高速の第2の回転数域(例えば温度差ΔTが閾値ΔTrより大きい場合)ではコイル3の結線状態をデルタ結線とするため、空調負荷に応じた結線状態で電動機1を回転させることができ、Y結線とデルタ結線のいずれにおいても電動機効率を向上することができる。
 また、インバータ103が電動機1の回転数に応じて弱め界磁制御を行うため、インバータ103の出力が最大出力電圧に達した後も、電動機1の回転数を増加させることができる。
 また、電動機1は、集中巻で巻かれたコイル3を有し、ロータ20の磁極数とスロット数(すなわちティース12の数)との比が2:3であるため、誘起電圧の3次高調波の発生を抑制することができ、従って循環電流による電動機1の性能低下を抑制することができる。
 また、永久磁石25の減磁は高温ほど発生しやすいため、電動機1が100℃以上の温度で使用される場合には、この実施の形態1による減磁抑制効果が特に顕著に得られる。
 また、結線切り替え部60は、リレー接点で構成されたスイッチ61,62,63を有するため、比較的安価な構成で、コイル3の結線状態を切り替えることができる。
 また、結線切り替え部60によるコイル3の結線状態の切り替えに応じて、コンバータ102が母線電圧の大きさを変化させるため、結線状態の切り替えの前後のいずれにおいても、高い電動機効率および高い電動機トルクを得ることができる。
変形例.
 次に、実施の形態1の変形例について説明する。上述した実施の形態1では、リレー接点(スイッチ61,62,63)を有する結線切り替え部60を用いた。これに対し、この実施の形態3では、半導体スイッチ71,72,73を有する結線切り替え部70を用いる。
 図19は、実施の形態3の駆動装置100Aの構成を示すブロック図である。駆動装置100Aは、結線切り替え部70の構成が、図6に示した駆動装置100と異なるものである。
 結線切り替え部70は、半導体スイッチ(半導体素子)71,72,73を有する。半導体スイッチ71,72,73は、いずれも、例えばMOSトランジスタ(Metal-Oxide-Semiconductor Field-Effect Transisor)を含む回路により構成されている。
 半導体スイッチ71は、配線105(V相)に接続された第1の端子71aと、中性点33に接続された第2の端子71bと、コイル3Uの端子32Uに接続されて第1の端子71aおよび第2の端子71bのいずれかに接続される第3の端子71cとを有する。
 半導体スイッチ72は、配線106(W相)に接続された第1の端子72aと、中性点33に接続された第2の端子72bと、コイル3Vの端子32Vに接続されて第1の端子72aおよび第2の端子72bのいずれかに接続される第3の端子72cとを有する。
 半導体スイッチ73は、配線104(U相)に接続された第1の端子73aと、中性点33に接続された第2の端子73bと、コイル3Wの端子32Wに接続されて第1の端子73aおよび第2の端子73bのいずれかに接続される第3の端子73cとを有する。
 半導体スイッチ71がコイル3Uの端子32Uを中性点33に接続し、半導体スイッチ72がコイル3Vの端子32Vを中性点33に接続し、半導体スイッチ73がコイル3Wの端子32Wを中性点33に接続しているこの場合、コイル3U,3V,3Wの結線状態は、図9(A)に示したY結線となる。
 また、半導体スイッチ71がコイル3Uの端子32Uを配線105に接続し、半導体スイッチ72がコイル3Vの端子32Vを配線106に接続し、半導体スイッチ73がコイル3Wの端子32Wを配線104に接続しているときには、コイル3U,3V,3Wの結線状態は、図9(B)に示したデルタ結線(三角結線)となる。
 このように、結線切り替え部70は、半導体スイッチ71,72,73の切り替えにより、電動機1のコイル3U,3V,3Wの結線状態を、Y結線(第1の結線状態)およびデルタ結線(第2の結線状態)との間で切り替えることができる。
 この変形例では、結線切り替え部70が半導体スイッチ71,72,73を有するため、結線切り替え時の動作の信頼性を向上することができる。
 また、リレー接点(スイッチ61,62,63)を有する結線切り替え部60(図7)を用いる場合には、結線切り替え時に電動機1の回転数を停止することが望ましいが、半導体スイッチ71,72,73を有する結線切り替え部70を用いる場合には、結線切り替え時に電動機1の回転数を低下させる(減速する)だけでよいという利点がある。
 なお、実施の形態1および変形例では、圧縮機の一例としてロータリー圧縮機8について説明したが、各実施の形態の電動機は、ロータリー圧縮機8以外の圧縮機に適用してもよい。また、電動機1は、必ずしも圧縮機(ロータリー圧縮機8)の内部に組み込まれている必要はなく、圧縮機から独立していても良い。すなわち、電動機1は、圧縮機を駆動するものであればよい。
 以上、本発明の望ましい実施の形態について具体的に説明したが、本発明は上記の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の改良または変形を行なうことができる。
 1 電動機、 3,3U,3V,3W コイル、 5 空気調和機、 5A 室内機、 5B 室外機、 8 ロータリー圧縮機(圧縮機)、 9 圧縮機構、 10 ステータ、 11 ステータコア、 12 ティース、 20 ロータ、 21 ロータコア、 25 永久磁石、 28 ロータコア外周部、 41 圧縮機、 42 四方弁、 43 室外熱交換器、 44 膨張弁、 45 室内熱交換器、 46 室外送風ファン、 47 室内送風ファン、 50 制御装置、 50a 室内制御装置、 50b 室外制御装置、 50c 連絡ケーブル、 51 入力回路、 52 演算回路、 53 出力回路、 54 室内温度センサ、 55 リモコン(操作部)、 56 信号受信部、 57 CPU、 58 メモリ、 60,70 結線切り替え部、 61,62,63 半導体スイッチ(リレー接点)、 71,72,73 半導体スイッチ(半導体素子)、 80 シェル、 81 ガラス端子、 85 吐出管、 90 シャフト、 100,100A 駆動装置、 101 電源、 102 コンバータ(整流回路)、 103 インバータ、 104,105,106 配線(出力線)、 108 電流検出回路、 110 CPU、 111 インバータ駆動回路、 200 磁極、 201 極間。

Claims (14)

  1.  コイルを有する電動機を駆動する駆動装置であって、
     前記コイルに電圧を出力するインバータと、
     前記コイルの結線状態をY結線とデルタ結線とで切り替える結線切り替え部と、
     前記コイルの結線状態がY結線で且つ前記インバータの電流値が第1の閾値Aに達するか、または、前記コイルの結線状態がデルタ結線で且つ前記電流値が第2の閾値Bに達した場合に、前記インバータの出力を停止する制御装置と
     を備え、
     前記第1の閾値Aと前記第2の閾値Bとが、
     B<√3×A
     を満足する駆動装置。
  2.  前記第1の閾値Aと前記第2の閾値Bとが、
     √3×A×0.85<B<√3×A
     を満足する
     請求項1に記載の駆動装置。
  3.  前記第1の閾値Aと前記第2の閾値Bとが、
     √3×A×0.85<B<√3×A×0.95
     を満足する
     請求項2に記載の駆動装置。
  4.  前記制御装置は、
     前記インバータの電流値を検出する電流検出部と、
     前記電流検出部により検出された電流値と、前記コイルの結線状態とに基づいて、前記インバータをPWM制御するインバータ制御部と
     をさらに備える
     請求項1から3までの何れか1項に記載の駆動装置。
  5.  前記電動機は、第1の回転数域と、前記第1の回転数域よりも高回転数である第2の回転数域で運転可能であり、
     前記結線切り替え部は、前記電動機が前記第1の回転数域にあるときに前記コイルの結線状態をY結線とし、前記電動機が前記第2の回転数域にあるとき前記コイルの結線状態をデルタ結線とする
     請求項1から4までの何れか1項に記載の駆動装置。
  6.  前記インバータは、前記電動機の回転数に応じて弱め界磁制御を行う
     請求項1から5までの何れか1項に記載の駆動装置。
  7.  前記電動機は、回転軸を中心として回転可能なロータと、前記ロータを囲むステータとを有し、
     前記ロータは、ロータコアと、ロータコアに埋め込まれた永久磁石とを有する
     請求項1から6までの何れか1項に記載の駆動装置。
  8.  前記ステータは、前記回転軸を中心とする周方向に複数のティースを有するステータコアと、前記複数のティースに集中巻で巻かれたコイルとを有し、
     前記ロータの磁極数と、前記ティースの数との比は、2:3である
     請求項7に記載の駆動装置。
  9.  前記電動機は、100℃以上の温度で使用される
     請求項1から8までの何れか1項に記載の駆動装置。
  10.  前記結線切り替え部は、リレー接点を有する
     請求項1から9までの何れか1項に記載の駆動装置。
  11.  前記結線切り替え部は、半導体素子を有する
     請求項1から9までの何れか1項に記載の駆動装置。
  12.  請求項1から11までの何れか1項に記載の駆動装置によって駆動される電動機と、
     前記電動機によって駆動される圧縮機構と
     を備えた圧縮機。
  13.  請求項1から11までの何れか1項に記載の駆動装置によって駆動される電動機と、
     前記電動機によって駆動される圧縮機と、
     を備えた空気調和機。
  14.  コイルの結線状態がY結線とデルタ結線との間で切り替え可能な電動機を、インバータを用いて駆動する駆動方法であって、
     前記インバータの電流値を検出するステップと、
     前記コイルの結線状態がY結線で且つ前記電流値が第1の閾値Aに達するか、または、前記コイルの結線状態がデルタ結線で且つ前記電流値が第2の閾値Bに達した場合に、前記インバータの出力を停止するステップと
     を有し、
     前記第1の閾値Aと前記第2の閾値Bとが、
     B<√3×A
     を満足する駆動方法。
PCT/JP2017/026877 2017-07-25 2017-07-25 駆動装置、圧縮機、空気調和機および駆動方法 WO2019021373A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US16/615,304 US11502634B2 (en) 2017-07-25 2017-07-25 Driving device, compressor, air conditioner, and driving method
EP17919562.3A EP3661046B1 (en) 2017-07-25 2017-07-25 Drive device, compressor, air conditioner, and drive method
JP2019532252A JP6942184B2 (ja) 2017-07-25 2017-07-25 駆動装置、圧縮機、空気調和機および駆動方法
AU2017424860A AU2017424860B2 (en) 2017-07-25 2017-07-25 Driving device, compressor, air conditioner, and driving method
KR1020197037294A KR102441627B1 (ko) 2017-07-25 2017-07-25 구동 장치, 압축기, 공기 조화기 및 구동 방법
PCT/JP2017/026877 WO2019021373A1 (ja) 2017-07-25 2017-07-25 駆動装置、圧縮機、空気調和機および駆動方法
CN201780093101.XA CN110892633B (zh) 2017-07-25 2017-07-25 驱动装置、压缩机、空气调节机及驱动方法
JP2021144770A JP7203920B2 (ja) 2017-07-25 2021-09-06 駆動装置、圧縮機、空気調和機および駆動方法
JP2022201176A JP2023021391A (ja) 2017-07-25 2022-12-16 駆動装置、圧縮機、空気調和機および駆動方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/026877 WO2019021373A1 (ja) 2017-07-25 2017-07-25 駆動装置、圧縮機、空気調和機および駆動方法

Publications (1)

Publication Number Publication Date
WO2019021373A1 true WO2019021373A1 (ja) 2019-01-31

Family

ID=65040689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026877 WO2019021373A1 (ja) 2017-07-25 2017-07-25 駆動装置、圧縮機、空気調和機および駆動方法

Country Status (7)

Country Link
US (1) US11502634B2 (ja)
EP (1) EP3661046B1 (ja)
JP (3) JP6942184B2 (ja)
KR (1) KR102441627B1 (ja)
CN (1) CN110892633B (ja)
AU (1) AU2017424860B2 (ja)
WO (1) WO2019021373A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021214925A1 (ja) * 2020-04-23 2021-10-28
WO2023175893A1 (ja) * 2022-03-18 2023-09-21 三菱電機株式会社 駆動装置及び空気調和装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112332729B (zh) * 2019-07-30 2023-12-26 丹佛斯(天津)有限公司 压缩机及其控制方法
KR102287163B1 (ko) * 2020-01-10 2021-08-06 엘지전자 주식회사 전동기 및 이를 구비한 압축기
KR102478881B1 (ko) * 2020-12-28 2022-12-16 엘지전자 주식회사 모터 구동 장치 및 이를 구비하는 공기조화기
KR102478880B1 (ko) 2021-01-13 2022-12-16 엘지전자 주식회사 모터 구동 장치 및 이를 구비하는 공기조화기

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767390A (ja) * 1993-08-23 1995-03-10 Matsushita Electric Ind Co Ltd 磁石モータの保護装置
JP2008228513A (ja) * 2007-03-15 2008-09-25 Mitsubishi Electric Corp 電動機駆動装置および電動機駆動方法並びに冷凍空調装置
JP2012070531A (ja) * 2010-09-24 2012-04-05 Hitachi Appliances Inc インバータ装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005051950A (ja) * 2003-07-30 2005-02-24 Mitsuba Corp ブラシレスモータ
JP4619826B2 (ja) 2005-03-07 2011-01-26 三菱電機株式会社 電動機駆動装置、電動機駆動方法及び圧縮機
JP2012090448A (ja) 2010-10-20 2012-05-10 Panasonic Corp モータ駆動装置
JP5722683B2 (ja) * 2011-03-31 2015-05-27 株式会社安川電機 車両の制御装置
CN103872967A (zh) * 2012-12-17 2014-06-18 通力股份公司 变频器和具有变频器的扶梯控制装置
JP5769694B2 (ja) 2012-12-21 2015-08-26 株式会社ツバキE&M 過負荷検知装置
US9143066B2 (en) * 2013-02-06 2015-09-22 Texas Instruments Incorporated Permanent magnet motor with sinusoidal back-EMF waveform and related motor controller for position sensorless drives
JP6303354B2 (ja) * 2013-09-19 2018-04-04 株式会社デンソー モータ駆動装置
CN103546087B (zh) * 2013-09-30 2016-03-02 刘建平 一种异步电机的非变频电容调速及绕组联接电路
EP3084907B1 (en) * 2013-12-18 2023-06-07 Ingeteam Power Technology, S.A. Variable impedance device for a wind turbine
JP6307168B2 (ja) * 2014-09-29 2018-04-04 日立ジョンソンコントロールズ空調株式会社 巻線切替モータ駆動装置、巻線切替モータの駆動制御方法、及びそれらを用いた冷凍空調機器
JP6418244B2 (ja) * 2014-09-30 2018-11-07 富士通株式会社 無線通信システム、無線通信装置、基地局、及び、無線通信方法
WO2018078840A1 (ja) 2016-10-31 2018-05-03 三菱電機株式会社 駆動装置、空気調和機および電動機の駆動方法
CN109863691B (zh) 2016-10-31 2023-04-04 三菱电机株式会社 空气调和机以及空气调和机的控制方法
KR102278117B1 (ko) 2016-10-31 2021-07-15 미쓰비시덴키 가부시키가이샤 구동 장치, 공기 조화기 및 전동기의 구동 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767390A (ja) * 1993-08-23 1995-03-10 Matsushita Electric Ind Co Ltd 磁石モータの保護装置
JP2008228513A (ja) * 2007-03-15 2008-09-25 Mitsubishi Electric Corp 電動機駆動装置および電動機駆動方法並びに冷凍空調装置
JP4722069B2 (ja) 2007-03-15 2011-07-13 三菱電機株式会社 電動機駆動装置および電動機駆動方法並びに冷凍空調装置
JP2012070531A (ja) * 2010-09-24 2012-04-05 Hitachi Appliances Inc インバータ装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021214925A1 (ja) * 2020-04-23 2021-10-28
WO2021214925A1 (ja) * 2020-04-23 2021-10-28 三菱電機株式会社 電動機駆動装置及び空気調和機
JP7270841B2 (ja) 2020-04-23 2023-05-10 三菱電機株式会社 電動機駆動装置及び空気調和機
WO2023175893A1 (ja) * 2022-03-18 2023-09-21 三菱電機株式会社 駆動装置及び空気調和装置

Also Published As

Publication number Publication date
CN110892633A (zh) 2020-03-17
US20200144951A1 (en) 2020-05-07
JP2023021391A (ja) 2023-02-10
KR20200007045A (ko) 2020-01-21
CN110892633B (zh) 2023-06-23
JPWO2019021373A1 (ja) 2019-11-07
EP3661046A1 (en) 2020-06-03
EP3661046A4 (en) 2020-07-29
AU2017424860B2 (en) 2020-10-22
US11502634B2 (en) 2022-11-15
JP2021192584A (ja) 2021-12-16
JP6942184B2 (ja) 2021-09-29
EP3661046B1 (en) 2023-07-19
JP7203920B2 (ja) 2023-01-13
AU2017424860A1 (en) 2020-02-06
KR102441627B1 (ko) 2022-09-13

Similar Documents

Publication Publication Date Title
JP6652657B2 (ja) 空気調和機および空気調和機の制御方法
JP6625762B2 (ja) 駆動装置、空気調和機および電動機の駆動方法
JP6636170B2 (ja) 駆動装置、空気調和機および電動機の駆動方法
JP7203920B2 (ja) 駆動装置、圧縮機、空気調和機および駆動方法
JP6710336B2 (ja) 駆動装置、空気調和機および駆動方法
JP6719577B2 (ja) 駆動装置および空気調和機、並びに圧縮機の制御方法
WO2020105131A1 (ja) 駆動装置、圧縮機、及び空気調和機
JP6800301B2 (ja) 駆動装置、空気調和機および電動機の駆動方法
JP6899935B2 (ja) 空気調和機および空気調和機の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919562

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532252

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197037294

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017424860

Country of ref document: AU

Date of ref document: 20170725

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017919562

Country of ref document: EP

Effective date: 20200225