JP6652657B2 - 空気調和機および空気調和機の制御方法 - Google Patents

空気調和機および空気調和機の制御方法 Download PDF

Info

Publication number
JP6652657B2
JP6652657B2 JP2018547062A JP2018547062A JP6652657B2 JP 6652657 B2 JP6652657 B2 JP 6652657B2 JP 2018547062 A JP2018547062 A JP 2018547062A JP 2018547062 A JP2018547062 A JP 2018547062A JP 6652657 B2 JP6652657 B2 JP 6652657B2
Authority
JP
Japan
Prior art keywords
connection
coil
connection state
air conditioner
rotation speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018547062A
Other languages
English (en)
Other versions
JPWO2018078835A1 (ja
Inventor
昌弘 仁吾
昌弘 仁吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2018078835A1 publication Critical patent/JPWO2018078835A1/ja
Priority to JP2020008521A priority Critical patent/JP6899935B2/ja
Application granted granted Critical
Publication of JP6652657B2 publication Critical patent/JP6652657B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/26Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual polyphase induction motor
    • H02P1/32Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual polyphase induction motor by star-delta switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • H02P25/184Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays wherein the motor speed is changed by switching from a delta to a star, e.g. wye, connection of its windings, or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/09Machines characterised by the presence of elements which are subject to variation, e.g. adjustable bearings, reconfigurable windings, variable pitch ventilators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Ac Motors In General (AREA)
  • Air Conditioning Control Device (AREA)
  • Motor And Converter Starters (AREA)

Description

本発明は、電動機を有する空気調和機に関する。
空気調和機等で用いられる電動機に関し、低速回転時および高速回転時の運転効率を向上するため、電動機のコイルの結線状態をY結線(スター結線)とデルタ結線(三角結線またはΔ結線とも称する)とで切り替えることが行われている(例えば、特許文献1参照)。
具体的には、電動機の回転数を閾値と比較し、回転数が閾値よりも大きいかまたは小さい状態が一定時間経過した場合に、Y結線からデルタ結線に切り替えるという制御が行われている(例えば、特許文献2参照)。
特開2009−216324号公報 特許第4619826号公報
しかしながら、電動機の停止中に結線のためのリレー回路等に障害が発生した場合、電動機を再び起動させるときに、空調負荷に対して迅速に対応できないという問題がある。
本発明は、上記の課題を解決するためになされたものであり、空調負荷を考慮して電動機を適切に起動させることを目的とする。
本発明の一態様に係る空気調和機は、運転指示信号を受信する信号受信部と、コイルを有する電動機を有する圧縮機と、前記コイルに接続されたインバータと、前記コイルの結線状態を、第1の結線状態と第2の結線状態との間で切り替える結線切り替え部と、前記インバータ及び前記結線切り替え部を制御する制御装置とを有し、前記第2の結線状態における前記インバータの線間電圧は、前記第1の結線状態における前記インバータの線間電圧よりも低く、前記信号受信部が運転停止信号を受信した場合、前記結線切り替え部は、前記コイルの結線状態を、前記第1の結線状態から前記第2の結線状態に切り替える。
本発明の他の態様に係る空気調和機は、運転指示信号を受信する信号受信部と、コイルを有する電動機を有する圧縮機と、前記コイルに接続されたインバータと、前記コイルの結線状態を、第1の結線状態と第2の結線状態との間で切り替える結線切り替え部と、前記空気調和機の起動時に、前記コイルの結線状態が前記第2の結線状態である前記電動機に印加される電圧を昇圧させるコンバータと、前記インバータ及び前記結線切り替え部を制御する制御装置とを有し、前記信号受信部が運転停止信号を受信した場合、前記結線切り替え部は、前記コイルの結線状態を、前記第1の結線状態から前記第2の結線状態に切り替える。
本発明の他の態様に係る空気調和機は、運転指示信号を受信する信号受信部と、コイルを有する電動機を有する圧縮機と、前記コイルに接続されたインバータと、前記コイルの結線状態を、第1の結線状態と第2の結線状態との間で切り替える結線切り替え部と、前記インバータ及び前記結線切り替え部を制御する制御装置とを有し、前記コイルは、Y結線またはΔ結線によって結線された3相コイルであり、前記第1の結線状態は、前記3相コイルが相毎に直列に結線された状態であり、前記第2の結線状態は、前記3相コイルが相毎に並列に結線された状態であり、前記信号受信部が運転停止信号を受信した場合、前記結線切り替え部は、前記コイルの結線状態を、前記第1の結線状態から前記第2の結線状態に切り替える。
本発明の他の態様に係る空気調和機の制御方法は、コイルを有する電動機と前記コイルに接続されたインバータとを備えた空気調和機の制御方法であって、前記空気調和機の運転停止信号を受信するステップと、前記運転停止信号に基づいて、前記コイルの結線状態を第1の結線状態から第2の結線状態に切り替えるステップとを備え、前記第2の結線状態における前記インバータの線間電圧は、前記第1の結線状態における前記インバータの線間電圧よりも低い。
本発明の他の態様に係る空気調和機の制御方法は、コイルを有する電動機を備えた空気調和機の制御方法であって、前記空気調和機の運転停止信号を受信するステップと、前記運転停止信号に基づいて、前記コイルの結線状態を第1の結線状態から第2の結線状態に切り替えるステップと、前記空気調和機の起動時に、前記コイルの結線状態が前記第2の結線状態である前記電動機に印加される電圧を昇圧させるステップとを備える。
本発明の他の態様に係る空気調和機の制御方法は、コイルを有する電動機を備えた空気調和機の制御方法であって、前記空気調和機の運転停止信号を受信するステップと、前記運転停止信号に基づいて、前記コイルの結線状態を第1の結線状態から第2の結線状態に切り替えるステップとを備え、前記コイルは、Y結線またはΔ結線によって結線された3相コイルであり、前記第1の結線状態は、前記3相コイルが相毎に直列に結線された状態であり、前記第2の結線状態は、前記3相コイルが相毎に並列に結線された状態である。
本発明によれば、コイルの結線状態が適切な状態で電動機を起動させるので、空調負荷を考慮して電動機を適切に起動させることができる。
実施の形態1の電動機の構成を示す断面図である。 実施の形態1のロータリー圧縮機の構成を示す断面図である。 実施の形態1の空気調和機の構成を示すブロック図である。 実施の形態1の空気調和機の制御系の基本構成を示す概念図である。 実施の形態1の空気調和機の制御系を示すブロック図(A)、および室内温度に基づいて圧縮機の電動機を制御する部分を示すブロック図(B)である。 実施の形態1の駆動装置の構成を示すブロック図である。 実施の形態1の駆動装置の構成を示すブロック図である。 実施の形態1のコイルの結線状態の切り替え動作を示す模式図(A)および(B)である。 実施の形態1のコイルの結線状態を示す模式図である。 実施の形態1の空気調和機の基本動作を示すフローチャートである。 実施の形態1の空気調和機の結線切り替え動作を示すフローチャートである。 実施の形態1の空気調和機の結線切り替え動作を示すフローチャートである。 実施の形態1の空気調和機の結線切り替え動作の他の例を示すフローチャート(A)および(B)である。 実施の形態1の空気調和機の動作の一例を示すタイミングチャートである。 電動機において、コイルをY結線で結線した場合の線間電圧と回転数との関係を示すグラフである。 電動機において、コイルをY結線で結線し、弱め界磁制御を行った場合の線間電圧と回転数との関係を示すグラフである。 図16に示した弱め界磁制御を行った場合の電動機効率と回転数との関係を示すグラフである。 図16に示した弱め界磁制御を行った場合の電動機トルクと回転数との関係を示すグラフである。 コイルの結線状態をY結線とした場合とデルタ結線とした場合のそれぞれにおいて、線間電圧と回転数との関係を示すグラフである。 Y結線からデルタ結線への切り替えを行った場合の線間電圧と回転数との関係を示すグラフである。 コイルの結線状態をY結線とした場合とデルタ結線とした場合のそれぞれにおいて、電動機効率と回転数との関係を示すグラフである。 コイルの結線状態をY結線とし、暖房中間条件よりも僅かに小さい回転数で線間電圧がインバータ最大出力電圧に達するように巻き数を調整し、Y結線からデルタ結線に切り替えた場合の電動機効率と回転数との関係を示すグラフである。 コイルの結線状態をY結線とした場合とデルタ結線とした場合のそれぞれにおいて、電動機トルクと回転数との関係を示すグラフである。 コイルの結線状態をY結線とし、暖房中間条件よりも僅かに小さい回転数で線間電圧がインバータ最大出力電圧に達するように巻き数を調整し、Y結線からデルタ結線に切り替えた場合の電動機トルクと回転数との関係を示すグラフである。 コンバータで母線電圧を切り替えた場合の線間電圧と回転数との関係を示すグラフである。 実施の形態1において、コイルの結線状態の切り替えと、コンバータの母線電圧の切り替えを行った場合の線間電圧と回転数との関係を示すグラフである。 コイルの結線状態をY結線とした場合とデルタ結線とした場合のそれぞれにおいて、電動機効率と回転数との関係を示すグラフである。 実施の形態1において、コイルの結線状態の切り替えと、コンバータの母線電圧の切り替えを行った場合の電動機効率と回転数との関係を示すグラフである。 コイルの結線状態をY結線とした場合とデルタ結線とした場合のそれぞれにおいて、電動機トルクと回転数との関係を示すグラフである。 実施の形態1において、コイルの結線状態の切り替えと、コンバータの母線電圧の切り替えを行った場合の電動機効率と回転数との関係を示すグラフである。 実施の形態1の第1の変形例における電動機効率と回転数との関係を示すグラフ(A)、(B)である。 実施の形態1の第2の変形例における線間電圧と回転数との関係を示すグラフである。 実施の形態1の第3の変形例のコイルの結線状態の切り替え動作を説明するための模式図(A)、(B)である。 実施の形態1の第3の変形例のコイルの結線状態の切り替え動作の他の例を説明するための模式図(A)、(B)である。 実施の形態1の第4の変形例における結線切り替え動作を示すフローチャートである。 実施の形態1の第5の変形例における結線切り替え動作を示すフローチャートである。 実施の形態2の空気調和機の構成を示すブロック図である。 実施の形態2の空気調和機の制御系を示すブロック図である。 実施の形態2の駆動装置の制御系を示すブロック図である。 実施の形態2の空気調和機の基本動作を示すフローチャートである。 実施の形態2の変形例の空気調和機の基本動作を示すフローチャートである。
実施の形態1.
<電動機の構成>
本発明の実施の形態1について説明する。図1は、本発明の実施の形態1の電動機1の構成を示す断面図である。この電動機1は、永久磁石埋込型電動機であり、例えばロータリー圧縮機に用いられる。電動機1は、ステータ10と、ステータ10の内側に回転可能に設けられたロータ20とを備えている。ステータ10とロータ20との間には、例えば0.3〜1mmのエアギャップが形成されている。なお、図1は、ロータ20の回転軸に直交する面における断面図である。
以下では、ロータ20の軸方向(回転軸の方向)を、単に「軸方向」と称する。また、ステータ10およびロータ20の外周(円周)に沿った方向を、単に「周方向」と称する。ステータ10およびロータ20の半径方向を、単に「径方向」と称する。
ステータ10は、ステータコア11と、ステータコア11に巻き付けられたコイル3とを備えている。ステータコア11は、厚さ0.1〜0.7mm(ここでは0.35mm)の複数の電磁鋼板を回転軸方向に積層し、カシメにより締結したものである。
ステータコア11は、環状のヨーク部13と、ヨーク部13から径方向内側に突出する複数(ここでは9つ)のティース部12とを有している。隣り合うティース部12の間には、スロットが形成される。各ティース部12は、径方向内側の先端に、幅(ステータコア11の周方向の寸法)の広い歯先部を有している。
各ティース部12には、絶縁体(インシュレータ)14を介して、ステータ巻線であるコイル3が巻き付けられている。コイル3は、例えば、線径(直径)が0.8mmのマグネットワイヤを、各ティース部12に集中巻きで110巻き(110ターン)巻き付けたものである。コイル3の巻き数および線径は、電動機1に要求される特性(回転数、トルク等)、供給電圧、またはスロットの断面積に応じて決定される。
コイル3は、U相、V相およびW相の3相巻線(コイル3U,3V,3Wと称する)で構成されている。各相のコイル3の両端子は開放されている。すなわち、コイル3は、合計6つの端子を有している。コイル3の結線状態は、後述するように、Y結線とデルタ結線とで切り替え可能に構成されている。絶縁体14は、例えば、PET(ポリエチレンテレフタレート)により形成されたフィルムで構成され、厚さは0.1〜0.2mmである。
ステータコア11は、複数(ここでは9つ)のブロックが薄肉部を介して連結された構成を有している。ステータコア11を帯状に展開した状態で、各ティース部12にマグネットワイヤを巻き付け、その後、ステータコア11を環状に曲げて両端部を溶接する。
このように絶縁体14を薄いフィルムで構成し、また巻線しやすいようにステータコア11を分割構造とすることは、スロット内のコイル3の巻き数を増加する上で有効である。なお、ステータコア11は、上記のように複数のブロック(分割コア)が連結された構成を有するものには限定されない。
ロータ20は、ロータコア21と、ロータコア21に取り付けられた永久磁石25とを有する。ロータコア21は、厚さ0.1〜0.7mm(ここでは0.35mm)の複数の電磁鋼板を回転軸方向に積層し、カシメにより締結したものである。
ロータコア21は、円筒形状を有しており、その径方向中心にはシャフト孔27(中心孔)が形成されている。シャフト孔27には、ロータ20の回転軸となるシャフト(例えばロータリー圧縮機8のシャフト90)が、焼嵌または圧入等によって固定されている。
ロータコア21の外周面に沿って、永久磁石25が挿入される複数(ここでは6つ)の磁石挿入孔22が形成されている。磁石挿入孔22は空隙であり、1磁極に1つの磁石挿入孔22が対応している。ここでは6つの磁石挿入孔22が設けられているため、ロータ20全体で6極となる。
磁石挿入孔22は、ここでは、周方向の中央部が径方向内側に突出するV字形状を有している。なお、磁石挿入孔22は、V字形状に限定されるものではなく、例えばストレート形状であってもよい。
1つの磁石挿入孔22内には、2つの永久磁石25が配置される。すなわち、1磁極について2つの永久磁石25が配置される。ここでは、上記の通りロータ20が6極であるため、合計12個の永久磁石25が配置される。
永久磁石25は、ロータコア21の軸方向に長い平板状の部材であり、ロータコア21の周方向に幅を有し、径方向に厚さを有している。永久磁石25は、例えば、ネオジウム(Nd)、鉄(Fe)およびボロン(B)を主成分とする希土類磁石で構成されている。
永久磁石25は、厚さ方向に着磁されている。また、1つの磁石挿入孔22内に配置された2つの永久磁石25は、互いに同一の磁極が径方向の同じ側を向くように着磁されている。
磁石挿入孔22の周方向両側には、フラックスバリア26がそれぞれ形成されている。フラックスバリア26は、磁石挿入孔22に連続して形成された空隙である。フラックスバリア26は、隣り合う磁極間の漏れ磁束(すなわち、極間を通って流れる磁束)を抑制するためのものである。
ロータコア21において、各磁石挿入孔22の周方向の中央部には、突起である第1の磁石保持部23が形成されている。また、ロータコア21において、磁石挿入孔22の周方向の両端部には、突起である第2の磁石保持部24がそれぞれ形成されている。第1の磁石保持部23および第2の磁石保持部24は、各磁石挿入孔22内において永久磁石25を位置決めして保持するものである。
上記の通り、ステータ10のスロット数(すなわちティース部12の数)は9であり、ロータ20の極数は6である。すなわち、電動機1は、ロータ20の極数とステータ10のスロット数との比が、2:3である。
電動機1では、コイル3の結線状態がY結線とデルタ結線とで切り替えられるが、デルタ結線を用いる場合に、循環電流が流れて電動機1の性能が低下する可能性がある。循環電流は、各相の巻線における誘起電圧に発生する3次高調波に起因する。極数とスロット数との比が2:3である集中巻きの場合には、磁気飽和等の影響がなければ、誘起電圧に3次高調波が発生せず、従って循環電流による性能低下が生じないことが知られている。
<ロータリー圧縮機の構成>
次に、電動機1を用いたロータリー圧縮機8について説明する。図2は、ロータリー圧縮機8の構成を示す断面図である。ロータリー圧縮機8は、シェル80と、シェル80内に配設された圧縮機構9と、圧縮機構9を駆動する電動機1とを備えている。ロータリー圧縮機8は、さらに、電動機1と圧縮機構9とを動力伝達可能に連結するシャフト90(クランクシャフト)を有している。シャフト90は、電動機1のロータ20のシャフト孔27(図1)に嵌合する。
シェル80は、例えば鋼板で形成された密閉容器であり、電動機1および圧縮機構9を覆う。シェル80は、上部シェル80aと下部シェル80bとを有している。上部シェル80aには、ロータリー圧縮機8の外部から電動機1に電力を供給するための端子部としてのガラス端子81と、ロータリー圧縮機8内で圧縮された冷媒を外部に吐出するための吐出管85とが取り付けられている。ここでは、ガラス端子81から、電動機1(図1)のコイル3のU相、V相およびW相のそれぞれ2本ずつに対応する、合計6本の引き出し線が引き出されている。下部シェル80bには、電動機1および圧縮機構9が収容されている。
圧縮機構9は、シャフト90に沿って、円環状の第1シリンダ91および第2シリンダ92を有している。第1シリンダ91および第2シリンダ92は、シェル80(下部シェル80b)の内周部に固定されている。第1シリンダ91の内周側には、円環状の第1ピストン93が配置され、第2シリンダ92の内周側には、円環状の第2ピストン94が配置されている。第1ピストン93および第2ピストン94は、シャフト90と共に回転するロータリーピストンである。
第1シリンダ91と第2シリンダ92との間には、仕切板97が設けられている。仕切板97は、中央に貫通穴を有する円板状の部材である。第1シリンダ91および第2シリンダ92のシリンダ室には、シリンダ室を吸入側と圧縮側とに分けるベーン(図示せず)が設けられている。第1シリンダ91、第2シリンダ92および仕切板97は、ボルト98によって一体に固定されている。
第1シリンダ91の上側には、第1シリンダ91のシリンダ室の上側を塞ぐように、上部フレーム95が配置されている。第2シリンダ92の下側には、第2シリンダ92のシリンダ室の下側を塞ぐように、下部フレーム96が配置されている。上部フレーム95および下部フレーム96は、シャフト90を回転可能に支持している。
シェル80の下部シェル80bの底部には、圧縮機構9の各摺動部を潤滑する冷凍機油(図示せず)が貯留されている。冷凍機油は、シャフト90の内部に軸方向に形成された孔90a内を上昇し、シャフト90の複数箇所に形成された給油孔90bから各摺動部に供給される。
電動機1のステータ10は、焼き嵌めによりシェル80の内側に取り付けられている。ステータ10のコイル3には、上部シェル80aに取り付けられたガラス端子81から、電力が供給される。ロータ20のシャフト孔27(図1)には、シャフト90が固定されている。
シェル80には、冷媒ガスを貯蔵するアキュムレータ87が取り付けられている。アキュムレータ87は、例えば、下部シェル80bの外側に設けられた保持部80cによって保持されている。シェル80には、一対の吸入パイプ88,89が取り付けられ、この吸入パイプ88,89を介してアキュムレータ87からシリンダ91,92に冷媒ガスが供給される。
冷媒としては、例えば、R410A、R407CまたはR22等を用いてもよいが、地球温暖化防止の観点からは、低GWP(地球温暖化係数)の冷媒を用いることが望ましい。低GWPの冷媒としては、例えば、以下の冷媒を用いることができる。
(1)まず、組成中に炭素の二重結合を有するハロゲン化炭化水素、例えばHFO(Hydro−Fluoro−Orefin)−1234yf(CF3CF=CH2)を用いることができる。HFO−1234yfのGWPは4である。
(2)また、組成中に炭素の二重結合を有する炭化水素、例えばR1270(プロピレン)を用いてもよい。R1270のGWPは3であり、HFO−1234yfより低いが、可燃性はHFO−1234yfより高い。
(3)また、組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくとも何れかを含む混合物、例えばHFO−1234yfとR32との混合物を用いてもよい。上述したHFO−1234yfは低圧冷媒のため圧損が大きくなる傾向があり、冷凍サイクル(特に蒸発器)の性能低下を招く可能性がある。そのため、HFO−1234yfよりも高圧冷媒であるR32またはR41との混合物を用いることが実用上は望ましい。
ロータリー圧縮機8の基本動作は、以下の通りである。アキュムレータ87から供給された冷媒ガスは、吸入パイプ88,89を通って第1シリンダ91および第2シリンダ92の各シリンダ室に供給される。電動機1が駆動されてロータ20が回転すると、ロータ20と共にシャフト90が回転する。そして、シャフト90に嵌合する第1ピストン93および第2ピストン94が各シリンダ室内で偏心回転し、各シリンダ室内で冷媒を圧縮する。圧縮された冷媒は、電動機1のロータ20に設けられた穴(図示せず)を通ってシェル80内を上昇し、吐出管85から外部に吐出される。
<空気調和機の構成>
次に、実施の形態1の駆動装置を含む空気調和機5について説明する。図3は、空気調和機5の構成を示すブロック図である。空気調和機5は、室内(空調対象空間)に設置される室内機5Aと、屋外に設置される室外機5Bとを備えている。室内機5Aと室外機5Bとは、冷媒が流れる接続配管40a,40bによって接続されている。接続配管40aには、凝縮器を通過した液冷媒が流れる。接続配管40bには、蒸発器を通過したガス冷媒が流れる。
室外機5Bには、冷媒を圧縮して吐出する圧縮機41と、冷媒の流れ方向を切り替える四方弁(冷媒流路切替弁)42と、外気と冷媒との熱交換を行う室外熱交換器43と、高圧の冷媒を低圧に減圧する膨張弁(減圧装置)44とが配設されている。圧縮機41は、上述したロータリー圧縮機8(図2)で構成されている。室内機5Aには、室内空気と冷媒との熱交換を行う室内熱交換器45が配置される。
これら圧縮機41、四方弁42、室外熱交換器43、膨張弁44および室内熱交換器45は、上述した接続配管40a,40bを含む配管40によって接続され、冷媒回路を構成している。これらの構成要素により、圧縮機41により冷媒を循環させる圧縮式冷凍サイクル(圧縮式ヒートポンプサイクル)が構成される。
空気調和機5の運転を制御するため、室内機5Aには室内制御装置50aが配置され、室外機5Bには室外制御装置50bが配置されている。室内制御装置50aおよび室外制御装置50bは、それぞれ、空気調和機5を制御するための各種回路が形成された制御基板を有している。室内制御装置50aと室外制御装置50bとは、連絡ケーブル50cによって互いに接続されている。連絡ケーブル50cは、上述した接続配管40a,40bと共に束ねられている。
室外機5Bには、室外熱交換器43に対向するように、送風機である室外送風ファン46が配置される。室外送風ファン46は、回転により、室外熱交換器43を通過する空気流を生成する。室外送風ファン46は、例えばプロペラファンで構成される。
四方弁42は、室外制御装置50bによって制御され、冷媒の流れる方向を切り替える。四方弁42が図3に実線で示す位置にあるときには、圧縮機41から吐出されたガス冷媒を室外熱交換器43(凝縮器)に送る。一方、四方弁42が図3に破線で示す位置にあるときには、室外熱交換器43(蒸発器)から流入したガス冷媒を圧縮機41に送る。膨張弁44は、室外制御装置50bによって制御され、開度を変更することにより高圧の冷媒を低圧に減圧する。
室内機5Aには、室内熱交換器45に対向するように、送風機である室内送風ファン47が配置される。室内送風ファン47は、回転により、室内熱交換器45を通過する空気流を生成する。室内送風ファン47は、例えばクロスフローファンで構成される。
室内機5Aには、室内(空調対象空間)の空気温度である室内温度Taを測定し、測定した温度情報(情報信号)を室内制御装置50aに送る温度センサとしての室内温度センサ54が設けられている。室内温度センサ54は、一般的な空気調和機で用いられる温度センサで構成してもよく、室内の壁または床等の表面温度を検出する輻射温度センサを用いてもよい。
室内機5Aには、また、ユーザが操作するリモコン55(遠隔操作装置)から発信された指示信号(運転指示信号)を受信する信号受信部56が設けられている。リモコン55は、ユーザが空気調和機5に運転入力(運転開始および停止)または運転内容(設定温度、風速等)の指示を行うものである。
圧縮機41は、通常運転時では、20〜130rpsの範囲で運転回転数を変更できるように構成されている。圧縮機41の回転数の増加に伴って、冷媒回路の冷媒循環量が増加する。圧縮機41の回転数は、室内温度センサ54によって得られる現在の室内温度Taと、ユーザがリモコン55で設定した設定温度Tsとの温度差ΔTに応じて、制御装置50(より具体的には、室外制御装置50b)が制御する。温度差ΔTが大きいほど圧縮機41が高回転で回転し、冷媒の循環量を増加させる。
室内送風ファン47の回転は、室内制御装置50aによって制御される。室内送風ファン47の回転数は、複数段階に切り替え可能である。ここでは、例えば、強風、中風および弱風の3段階に回転数を切り替えることができる。また、リモコン55で風速設定が自動モードに設定されている場合には、測定した室内温度Taと設定温度Tsとの温度差ΔTに応じて、室内送風ファン47の回転数が切り替えられる。
室外送風ファン46の回転は、室外制御装置50bによって制御される。室外送風ファン46の回転数は、複数段階に切り替え可能である。ここでは、測定された室内温度Taと設定温度Tsとの温度差ΔTに応じて、室外送風ファン46の回転数が切り替えられる。
室内機5Aは、また、左右風向板48と上下風向板49とを備えている。左右風向板48および上下風向板49は、室内熱交換器45で熱交換した調和空気が室内送風ファン47によって室内に吹き出されるときの吹き出し方向を変更するものである。左右風向板48は吹き出し方向を左右に変更し、上下風向板49は吹出し方向を上下に変更する。左右風向板48および上下風向板49のそれぞれの角度、すなわち吹出し気流の風向は、室内制御装置50aが、リモコン55の設定に基づいて制御する。
空気調和機5の基本動作は、次の通りである。冷房運転時には、四方弁42が実線で示す位置に切り替えられ、圧縮機41から吐出された高温高圧のガス冷媒は室外熱交換器43に流入する。この場合、室外熱交換器43は凝縮器として動作する。室外送風ファン46の回転により空気が室外熱交換器43を通過する際に、熱交換により冷媒の凝縮熱を奪う。冷媒は凝縮して高圧低温の液冷媒となり、膨張弁44で断熱膨張して低圧低温の二相冷媒となる。
膨張弁44を通過した冷媒は、室内機5Aの室内熱交換器45に流入する。室内熱交換器45は蒸発器として動作する。室内送風ファン47の回転により空気が室内熱交換器45を通過する際に、熱交換により冷媒に蒸発熱を奪われ、これにより冷却された空気が室内に供給される。冷媒は蒸発して低温低圧のガス冷媒となり、圧縮機41で再び高温高圧な冷媒に圧縮される。
暖房運転時には、四方弁42が点線で示す位置に切り替えられ、圧縮機41から吐出された高温高圧のガス冷媒は室内熱交換器45に流入する。この場合、室内熱交換器45は凝縮器として動作する。室内送風ファン47の回転により空気が室内熱交換器45を通過する際に、熱交換により冷媒から凝縮熱を奪い、これにより加熱された空気が室内に供給される。また、冷媒は凝縮して高圧低温の液冷媒となり、膨張弁44で断熱膨張して低圧低温の二相冷媒となる。
膨張弁44を通過した冷媒は、室外機5Bの室外熱交換器43に流入する。室外熱交換器43は蒸発器として動作する。室外送風ファン46の回転により空気が室外熱交換器43を通過する際に、熱交換により冷媒に蒸発熱を奪われる。冷媒は蒸発して低温低圧のガス冷媒となり、圧縮機41で再び高温高圧な冷媒に圧縮される。
図4は、空気調和機5の制御系の基本構成を示す概念図である。上述した室内制御装置50aと室外制御装置50bとは、連絡ケーブル50cを介して互いに情報をやり取りして空気調和機5を制御している。ここでは、室内制御装置50aと室外制御装置50bとを合わせて、制御装置50と称する。
図5(A)は、空気調和機5の制御系を示すブロック図である。制御装置50は、例えばマイクロコンピュータで構成されている。制御装置50には、入力回路51、演算回路52および出力回路53が組み込まれている。
入力回路51には、信号受信部56がリモコン55から受信した指示信号が入力される。指示信号は、例えば、運転入力、運転モード、設定温度、風量または風向を設定する信号を含む。入力回路51には、また、室内温度センサ54が検出した室内の温度を表す温度情報が入力される。入力回路51は、入力されたこれらの情報を、演算回路52に出力する。
演算回路52は、CPU(Central Processing Unit)57とメモリ58とを有する。CPU57は、演算処理および判断処理を行う。メモリ58は、空気調和機5の制御に用いる各種の設定値およびプログラムを記憶している。演算回路52は、入力回路51から入力された情報に基づいて演算および判断を行い、その結果を出力回路53に出力する。
出力回路53は、演算回路52から入力された情報に基づいて、圧縮機41、結線切り替え部60(後述)、コンバータ102、インバータ103、圧縮機41、四方弁42、膨張弁44、室外送風ファン46、室内送風ファン47、左右風向板48および上下風向板49に、制御信号を出力する。
上述したように、室内制御装置50aおよび室外制御装置50b(図4)は、連絡ケーブル50cを介して相互に情報をやりとりし、室内機5Aおよび室外機5Bの各種機器を制御しているため、ここでは室内制御装置50aと室外制御装置50bとを合わせて制御装置50と表現している。実際には、室内制御装置50aおよび室外制御装置50bのそれぞれが、マイクロコンピュータで構成されている。なお、室内機5Aおよび室外機5Bの何れか一方にのみ制御装置を搭載し、室内機5Aおよび室外機5Bの各種機器を制御するようにしてもよい。
図5(B)は、制御装置50において、室内温度Taに基づいて圧縮機41の電動機1を制御する部分を示すブロック図である。制御装置50の演算回路52は、受信内容解析部52aと、室内温度取得部52bと、温度差算出部52cと、圧縮機制御部52dとを備える。これらは、例えば、演算回路52のCPU57に含まれる。
受信内容解析部52aは、リモコン55から信号受信部56および入力回路51を経て入力された指示信号を解析する。受信内容解析部52aは、解析結果に基づき、例えば運転モードおよび設定温度Tsを、温度差算出部52cに出力する。室内温度取得部52bは、室内温度センサ54から入力回路51を経て入力された室内温度Taを取得し、温度差算出部52cに出力する。
温度差算出部52cは、室内温度取得部52bから入力された室内温度Taと、受信内容解析部52aから入力された設定温度Tsとの温度差ΔTを算出する。受信内容解析部52aから入力された運転モードが暖房運転である場合は、温度差ΔT=Ts−Taで算出される。運転モードが冷房運転である場合は、温度差ΔT=Ta−Tsで算出される。温度差算出部52cは、算出した温度差ΔTを、圧縮機制御部52dに出力する。
圧縮機制御部52dは、温度差算出部52cから入力された温度差ΔTに基づいて、駆動装置100を制御し、これにより電動機1の回転数(すなわち圧縮機41の回転数)を制御する。
<駆動装置の構成>
次に、電動機1を駆動する駆動装置100について説明する。図6は、駆動装置100の構成を示すブロック図である。駆動装置100は、電源101の出力を整流するコンバータ102と、電動機1のコイル3に交流電圧を出力するインバータ103と、コイル3の結線状態を切り替える結線切り替え部60と、制御装置50とを備えて構成される。コンバータ102には、交流(AC)電源である電源101から電力が供給される。
電源101は、例えば200V(実効電圧)の交流電源である。コンバータ102は、整流回路であり、例えば280Vの直流(DC)電圧を出力する。コンバータ102から出力される電圧を、母線電圧と称する。インバータ103は、コンバータ102から母線電圧を供給され、電動機1のコイル3に線間電圧(電動機電圧とも称する)を出力する。インバータ103には、コイル3U,3V,3Wにそれぞれ接続された配線104,105,106が接続されている。
コイル3Uは、端子31U,32Uを有する。コイル3Vは、端子31V,32Vを有する。コイル3Wは、端子31W,32Wを有する。配線104は、コイル3Uの端子31Uに接続されている。配線105は、コイル3Vの端子31Vに接続されている。配線106は、コイル3Wの端子31Wに接続されている。
結線切り替え部60は、スイッチ61,62,63を有する。スイッチ61は、コイル3Uの端子32Uを、配線105および中性点33の何れかに接続する。スイッチ62は、コイル3Vの端子32Vを、配線106および中性点33の何れかに接続する。スイッチ63は、コイル3Vの端子32Wを、配線104および中性点33の何れかに接続する。結線切り替え部60のスイッチ61,62,63は、ここではリレー接点で構成されている。但し、半導体スイッチで構成してもよい。
制御装置50は、コンバータ102、インバータ103および結線切り替え部60を制御する。制御装置50の構成は、図5を参照して説明した通りである。制御装置50には、信号受信部56が受信したリモコン55からの運転指示信号と、室内温度センサ54が検出した室内温度とが入力される。制御装置50は、これらの入力情報に基づき、コンバータ102に電圧切り替え信号を出力し、インバータ103にインバータ駆動信号を出力し、結線切り替え部60に結線切り替え信号を出力する。
図6に示した状態では、スイッチ61は、コイル3Uの端子32Uを中性点33に接続しており、スイッチ62は、コイル3Vの端子32Vを中性点33に接続しており、スイッチ63は、コイル3Wの端子32Wを中性点33に接続している。すなわち、コイル3U,3V,3Wの端子31U,31V,31Wはインバータ103に接続され、端子32U,32V,32Wは中性点33に接続されている。
図7は、駆動装置100において、結線切り替え部60のスイッチ61,62,63が切り替えられた状態を示すブロック図である。図7に示した状態では、スイッチ61は、コイル3Uの端子32Uを配線105に接続しており、スイッチ62は、コイル3Vの端子32Vを配線106に接続しており、スイッチ63は、コイル3Wの端子32Wを配線104に接続している。
図8(A)は、スイッチ61,62,63が図6に示した状態にあるときのコイル3U,3V,3Wの結線状態を示す模式図である。コイル3U、3V,3Wは、それぞれ端子32U,32V,32Wにおいて中性点33に接続されている。そのため、コイル3U、3V,3Wの結線状態は、Y結線(スター結線)となる。
図8(B)は、スイッチ61,62,63が図7に示した状態にあるときのコイル3U,3V,3Wの結線状態を示す模式図である。コイル3Uの端子32Uは、配線105(図7)を介してコイル3Vの端子31Vに接続される。コイル3Vの端子32Vは、配線106(図7)を介してコイル3Wの端子31Wに接続される。コイル3Wの端子32Wは、配線104(図7)を介してコイル3Uの端子31Uに接続される。そのため、コイル3U、3V,3Wの結線状態は、デルタ結線(三角結線)となる。
このように、結線切り替え部60は、スイッチ61,62,63の切り替えにより、電動機1のコイル3U,3V,3Wの結線状態を、Y結線(第1の結線状態)およびデルタ結線(第2の結線状態)との間で切り替えることができる。
図9は、コイル3U,3V,3Wのそれぞれのコイル部分を示す模式図である。上述したように、電動機1は、9つのティース部12(図1)を有しており、コイル3U,3V,3Wはそれぞれ3つのティース部12に巻かれている。すなわち、コイル3Uは、3つのティース部12に巻かれたU相のコイル部分Ua,Ub,Ucを直列に接続したものである。同様に、コイル3Vは、3つのティース部12に巻かれたV相のコイル部分Va,Vb,Vcを直列に接続したものである。また、コイル3Wは、3つのティース部12に巻かれたW相のコイル部分Wa,Wb,Wcを直列に接続したものである。
<空気調和機の動作>
図10〜12は、空気調和機5の基本動作を示すフローチャートである。空気調和機5の制御装置50は、信号受信部56によりリモコン55から起動信号を受信することにより、運転を開始する(ステップS101)。ここでは、制御装置50のCPU57が起動する。後述するように、空気調和機5は、前回終了時にコイル3の結線状態をデルタ結線に切り替えて終了しているため、運転開始時(起動時)にはコイル3の結線状態がデルタ結線となっている。
次に、制御装置50は、空気調和機5の起動処理を行う(ステップS102)。具体的には、例えば、室内送風ファン47および室外送風ファン46の各ファンモータを駆動する。
次に、制御装置50は、コンバータ102に電圧切り替え信号を出力し、コンバータ102の母線電圧を、デルタ結線に対応した母線電圧(例えば390V)に昇圧する(ステップS103)。コンバータ102の母線電圧は、インバータ103から電動機1に印加される最大電圧である。
次に、制御装置50は、電動機1を起動する(ステップS104)。これにより、電動機1は、コイル3の結線状態がデルタ結線で起動される。また、制御装置50は、インバータ103の出力電圧を制御して、電動機1の回転数を制御する。
具体的には、制御装置50は、温度差ΔTに応じて、電動機1の回転数を予め定められた速度で段階的に上昇させる。電動機1の回転速度の許容最大回転数は、例えば130rpsである。これにより、圧縮機41による冷媒循環量を増加させ、冷房運転の場合には冷房能力を高め、暖房運転の場合には暖房能力を高める。
また、空調効果により室内温度Taが設定温度Tsに接近し、温度差ΔTが減少傾向を示すようになると、制御装置50は、温度差ΔTに応じて電動機1の回転数を減少させる。温度差ΔTが予め定められたゼロ近傍温度(但し0より大)まで減少すると、制御装置50は、電動機1を許容最小回転数(例えば20rps)で運転する。
また、室内温度Taが設定温度Tsに達した場合(すなわち温度差ΔTが0以下となる場合)には、制御装置50は、過冷房(または過暖房)防止のために電動機1の回転を停止する。これにより、圧縮機41が停止した状態となる。そして、温度差ΔTが再び0より大きくなった場合には、制御装置50は電動機1の回転を再開する。なお、制御装置50は、電動機1の回転と停止を短時間で繰り返さないように、電動機1の短時間での回転再開を規制する。
また、電動機1の回転数が予め設定した回転数に達すると、インバータ103が弱め界磁制御を開始する。弱め界磁制御については、図15〜30を参照して後述する。
制御装置50は、リモコン55から信号受信部56を介して運転停止信号(空気調和機5の運転停止信号)を受信したか否かを判断する(ステップS105)。運転停止信号を受信していない場合には、ステップS106に進む。一方、運転停止信号を受信した場合には、制御装置50は、ステップS109に進む。
制御装置50は、室内温度センサ54で検出した室内温度Taと、リモコン55により設定された設定温度Tsとの温度差ΔTを取得し(ステップS106)、この温度差ΔTに基づき、コイル3のデルタ結線からY結線への切り替えの要否を判断する。すなわち、コイル3の結線状態がデルタ結線であって、なお且つ、上記の温度差ΔTの絶対値が閾値ΔTr以下か否かを判断する(ステップS107)。閾値ΔTrは、Y結線に切り替え可能な程度に小さい空調負荷(単に「負荷」とも称する)に相当する温度差である。
上記の通り、ΔTは、運転モードが暖房運転の場合にはΔT=Ts−Taで表され、冷房運転の場合にはΔT=Ta−Tsで表されるため、ここではΔTの絶対値と閾値ΔTrとを比較してY結線への切り替えの要否を判断している。
ステップS107での比較の結果、コイル3の結線状態がデルタ結線で、且つ、温度差ΔTの絶対値が閾値ΔTr以下であれば、ステップS121(図11)に進む。
図11に示すように、ステップS121では、制御装置50は、インバータ103に停止信号を出力し、電動機1の回転を停止する。その後、制御装置50は、結線切り替え部60に結線切り替え信号を出力し、コイル3の結線状態をデルタ結線からY結線に切り替える(ステップS122)。続いて、制御装置50は、コンバータ102に電圧切り替え信号を出力し、コンバータ102の母線電圧をY結線に対応した電圧(280V)に降圧し(ステップS123)、電動機1の回転を再開する(ステップS124)。その後、上述したステップS105(図10)に戻る。
上記ステップS107での比較の結果、コイル3の結線状態がデルタ結線でない場合(Y結線である場合)、あるいは、温度差ΔTの絶対値が閾値ΔTrより大きい場合(すなわちY結線に切り替える必要がない場合)には、ステップS108に進む。
ステップS108では、Y結線からデルタ結線への切り替えの要否を判断する。すなわち、コイル3の結線状態がY結線であって、なお且つ、上記の温度差ΔTの絶対値が閾値ΔTrより大きいか否かを判断する。
ステップS108での比較の結果、コイル3の結線状態がY結線で、且つ、温度差ΔTの絶対値が閾値ΔTrより大きければ、ステップS131(図12)に進む。
図12に示すように、ステップS131では、制御装置50は、電動機1の回転を停止する。その後、制御装置50は、結線切り替え部60に結線切り替え信号を出力し、コイル3の結線状態をY結線からデルタ結線に切り替える(ステップS132)。続いて、制御装置50は、コンバータ102に電圧切り替え信号を出力し、コンバータ102の母線電圧をデルタ結線に対応した電圧(390V)に昇圧し(ステップS133)、電動機1の回転を再開する(ステップS134)。
デルタ結線の場合、Y結線と比べて、電動機1をより高い回転数まで駆動できるため、より大きい負荷に対応することができる。そのため、室内温度と設定温度との温度差ΔTを短時間で収束させることができる。その後、上述したステップS105(図10)に戻る。
上記ステップS108での比較の結果、コイル3の結線状態がY結線でない場合(デルタ結線である場合)、あるいは、温度差ΔTの絶対値が閾値ΔTr以下である場合(すなわちデルタ結線に切り替える必要がない場合)には、ステップS105に戻る。
上記のステップS105で運転停止信号を受信した場合には、電動機1の回転を停止する(ステップS109)。その後、制御装置50は、コイル3の結線状態をY結線からデルタ結線に切り替える(ステップS110)。コイル3の結線状態が既にデルタ結線である場合には、その結線状態を維持する。なお、図10では省略するが、ステップS106〜S108の間においても、運転停止信号を受信した場合には、ステップS109に進んで電動機1の回転を停止する。
その後、制御装置50は、空気調和機5の停止処理を行う(ステップS111)。具体的には、室内送風ファン47および室外送風ファン46の各ファンモータを停止する。その後、制御装置50のCPU57が停止し、空気調和機5の運転が終了する。
以上のように、室内温度Taと設定温度Tsとの温度差ΔTの絶対値が比較的小さい場合(すなわち閾値ΔTr以下である場合)には、高効率なY結線で電動機1を運転する。そして、より大きい負荷への対応が必要な場合、すなわち温度差ΔTの絶対値が閾値ΔTrより大きい場合には、より大きい負荷への対応が可能なデルタ結線で電動機1を運転する。そのため、空気調和機5の運転効率を向上することができる。
なお、Y結線からデルタ結線への切り替え動作(図12)において、図13(A)に示すように、電動機1の回転を停止するステップS131の前に、電動機1の回転数を検出し(ステップS135)、検出した回転数が閾値(回転数の基準値)以上か否かを判断してもよい(ステップS136)。電動機1の回転数は、インバータ103の出力電流の周波数として検出される。
ステップS136では、電動機1の回転数の閾値として、例えば、後述する暖房中間条件に相当する回転数35rpsと暖房定格条件に相当する回転数85rpsの中間の60rpsを用いる。電動機1の回転数が閾値以上であれば、電動機1の回転を停止してデルタ結線への切り替えを行い、コンバータ102の母線電圧を昇圧する(ステップS131,S132,S133)。電動機1の回転数が閾値未満であれば、図10のステップS105に戻る。
このように温度差ΔTに基づく結線切り替え要否の判断(ステップS108)に加えて、電動機1の回転数に基づいて結線切り替え要否の判断を行うことで、結線切り替えが頻繁に繰り返されることを確実に抑制することができる。
また、図13(B)に示すように、電動機1の回転を停止するステップS131の前に、インバータ103の出力電圧を検出し(ステップS137)、検出した出力電圧が閾値(出力電圧の基準値)以上か否かを判断してもよい(ステップS138)。
図13(A)および(B)には、Y結線からデルタ結線への切り替え動作を示したが、デルタ結線からY結線への切り替え時に、電動機1の回転数またはインバータ103の出力電圧に基づく判断を行ってもよい。
図14は、空気調和機5の動作の一例を示すタイミングチャートである。図14には、空気調和機5の運転状態、並びに室外送風ファン46および電動機1(圧縮機41)の駆動状態を示している。室外送風ファン46は、空気調和機5の電動機1以外の構成要素の一例として示している。
信号受信部56がリモコン55から運転起動信号(ON指令)を受信することにより、CPU57が起動し、空気調和機5が起動状態(ON状態)となる。空気調和機5が起動状態になると、時間t0が経過した後に、室外送風ファン46のファンモータが回転を開始する。時間t0は、室内機5Aと室外機5Bとの間の通信による遅延時間である。
空気調和機5の起動後、時間t1が経過した後に、デルタ結線による電動機1の回転が開始される。時間t1は、室外送風ファン46のファンモータの回転が安定するまでの待ち時間である。電動機1の回転開始前に室外送風ファン46を回転させることで、冷凍サイクルの温度が必要以上に上昇することが防止される。
図14の例では、デルタ結線からY結線への切り替えが行われ、さらにY結線からデルタ結線への切り替えが行われたのち、リモコン55から運転停止信号(OFF指令)を受信している。結線の切り替えに要する時間t2は、電動機1の再起動に必要な待ち時間であり、冷凍サイクルにおける冷媒圧力が概ね均等になるまでに必要な時間に設定される。
リモコン55から運転停止信号を受信すると、電動機1の回転が停止し、その後、時間t3が経過したのちに室外送風ファン46のファンモータの回転が停止する。時間t3は、冷凍サイクルの温度を十分低下させるために必要な待ち時間である。その後、時間t4が経過したのち、CPU57が停止し、空気調和機5が運転停止状態(OFF状態)となる。時間t4は、予め設定された待ち時間である。
<温度検出に基づく結線切り替えについて>
以上の空気調和機5の動作において、コイル3の結線状態の切り替え要否の判断(ステップS107,S108)は、例えば、電動機1の回転速度、またはインバータ出力電圧に基づいて判断することもできる。但し、電動機1の回転速度は短い時間で変動する可能性があるため、回転速度が閾値以下(または閾値以上)である状態が一定時間継続するか否かを判断する必要がある。インバータ出力電圧についても同様である。
特に、リモコン55による設定温度が大きく変更された場合、あるいは、部屋の窓を開けたこと等によって空気調和機5の負荷が急激に変化した場合には、コイル3の結線状態の切り替え要否の判断に時間を要すると、負荷変動に対する圧縮機41の運転状態の対応が遅れる。その結果、空気調和機5による快適性が低下する可能性がある。
これに対し、この実施の形態では、室内温度センサ54で検出した室内温度Taと設定温度Tsとの温度差ΔT(絶対値)を閾値と比較している。温度は短い時間での変動が少ないため、温度差ΔTの検出および閾値との比較を継続する必要がなく、結線切り替え要否の判断を短い時間で行うことができる。そのため、圧縮機41の運転状態を負荷変動に迅速に対応させ、空気調和機5による快適性を向上することができる。
なお、上記の空気調和機5の動作では、デルタ結線からY結線への切り替え要否の判断(ステップS107)と、Y結線からデルタ結線への切り替え要否の判断(ステップS108)とを続けて行っているが、デルタ結線からY結線への切り替えが行われるのは、空調負荷が低下している(室内温度が設定温度に接近している)場合であり、その後に空調負荷が急に増加する可能性は低いため、結線の切り替えが頻繁に行われるという事態は生じくい。
また、上記の空気調和機5の動作では、コイル3の結線状態の切り替え(ステップS122,S132)を、電動機1の回転を停止した状態(すなわちインバータ103の出力を停止した状態)で行っている。電動機1への電力供給を続けながらコイル3の結線状態を切り替えることも可能であるが、結線切り替え部60のスイッチ61,62,63(図6)を構成するリレー接点の信頼性の簡単から、電動機1への電力供給を停止した状態で切り替えを行うことが望ましい。
なお、電動機1の回転数を十分に低下させた状態でコイル3の結線状態の切り替えを行い、その後に元の回転数に戻すことも可能である。
また、ここでは結線切り替え部60のスイッチ61,62,63をリレー接点で構成しているが、半導体スイッチで構成した場合には、コイル3の結線状態の切り替え時に電動機1の回転を停止する必要はない。
また、室内温度Taと設定温度Tsとの温度差ΔT(絶対値)が閾値ΔTr以下となる状態が複数回(予め設定した回数)繰り返された場合に、コイル3の結線状態を切り替えてもよい。このようにすれば、小さな温度変化によって結線切り替えが繰り返されることを抑制することができる。
なお、上記の通り、室内温度と設定温度との温度差ΔTが0以下(ΔT≦0)になると、制御装置50は過冷房(または過暖房)防止のために電動機1の回転を停止するが、このタイミングでコイル3の結線状態をデルタ結線からY結線に切り替えてもよい。具体的には、上述したステップS107で温度差ΔTが0以下か否かを判断するようにし、温度差ΔTが0以下の場合には電動機1の回転を停止してコイル3の結線状態をY結線に切り替えるようにすればよい。
また、上記の空気調和機5の動作では、Y結線からデルタ結線への切り替え時に、コンバータ102の母線電圧を昇圧しているため、電動機1により高いトルクを発生することができる。そのため、室内温度と設定温度との差ΔTを、より短時間で収束させることができる。コンバータ102の母線電圧の昇圧については、後述する。
<起動時の結線状態について>
上記の通り、実施の形態1の空気調和機5は、運転起動信号を受信して電動機1を起動する際には、コイル3の結線状態をデルタ結線として制御を開始する。また、空気調和機5の運転停止時には、コイル3の結線状態はデルタ結線に切り替えられる。
空気調和機5の運転開始時は空調負荷の正確な検出が困難である。特に、空気調和機5の運転開始時には、室内温度と設定温度との差が大きく、空調負荷が大きいのが一般的である。そこで、この実施の形態1では、コイル3の結線状態を、より大きい負荷に対応可能な(すなわち、より高回転数まで回転可能な)デルタ結線とした状態で、電動機1を起動している。これにより、空気調和機5の運転開始時に、室内温度Taと設定温度Tsとの差ΔTを、より短時間で収束させることができる。
また、空気調和機5を長期間停止し、停止中に結線切り替え部60に異常(例えば、スイッチ61〜63のリレーが貼りついて動作しなくなる等)が発生した場合にも、空気調和機5の運転停止前にY結線からデルタ結線への切り替えが行われているため、デルタ結線で電動機1を起動することができる。そのため、空気調和機5の能力の低下を防ぐことができ、快適性を損なうことはない。
なお、コイル3の結線状態をデルタ結線として電動機1を起動し、Y結線への切り替えを行わない場合には、コイルの結線状態が常にデルタ結線である(結線切り替え機能を有さない)一般的な電動機と同等の電動機効率を得ることができる。
<電動機効率および電動機トルク>
次に、電動機効率および電動機トルクの改善について説明する。一般に、家庭用の空気調和機は、省エネルギー法の規制対象となっており、地球環境の視点からCO排出削減が義務づけられている。技術の進歩により、圧縮機の圧縮効率、圧縮機の電動機の運転効率、および熱交換器の熱伝達率等が改善され、空気調和機のエネルギー消費効率COP(Coefficient Of Performance)は年々向上し、ランニングコスト(消費電力)およびCO排出量も低減している。
COPは、ある一定の温度条件で運転した場合の性能を評価するものであり、季節に応じた空気調和機の運転状況は加味されていない。しかしながら、空気調和機の実際の使用時には、外気温度の変化により、冷房または暖房に必要な能力および消費電力が変化する。そこで、実際の使用時に近い状態での評価を行うため、あるモデルケースを定め、年間を通じた総合負荷と総消費電力量を算出し、効率を求めるAPF(Annual Performance Factor:通年エネルギー消費効率)が省エネルギーの指標として用いられている。
特に、現在の主流であるインバータ電動機では、圧縮機の回転数によって能力が変化するため、定格条件だけで実際の使用に近い評価を行うには課題がある。
家庭用の空気調和機のAPFは、冷房定格、冷房中間、暖房定格、暖房中間および暖房低温の5つの評価点において、年間の総合負荷に応じた消費電力量を算出する。この値が大きいほど省エネルギー性が高いと評価される。
年間の総合負荷の内訳としては、暖房中間条件の比率が非常に大きく(50%)、次に暖房定格条件の比率が大きい(25%)。そのため、暖房中間条件と暖房定格条件において電動機効率を向上させることが、空気調和機の省エネルギー性の向上に有効である。
APFの評価負荷条件における圧縮機の電動機の回転数は、空気調和機の能力および熱交換器の性能により変化する。例えば、冷凍能力6.3kWの家庭用の空気調和機においては、暖房中間条件での回転数N1(第1の回転数)が35rpsであり、暖房定格条件での回転数N2(第2の回転数)が85rpsである。
この実施の形態の電動機1は、暖房中間条件に相当する回転数N1および暖房定格条件に相当する回転数N2において、高い電動機効率および電動機トルクを得ることを目的としている。すなわち、性能改善の対象となる2つの負荷条件のうち、低速側の回転数がN1であり、高速側の回転数がN2である。
ロータ20に永久磁石25を搭載した電動機1では、ロータ20が回転すると、永久磁石25の磁束がステータ10のコイル3に鎖交し、コイル3に誘起電圧が発生する。誘起電圧は、ロータ20の回転数(回転速度)に比例し、また、コイル3の巻き数にも比例する。電動機1の回転数が大きく、コイル3の巻き数が多いほど、誘起電圧は大きくなる。
インバータ103から出力される線間電圧(電動機電圧)は、上記の誘起電圧と、コイル3の抵抗およびインダクタンスにより生じる電圧との和と等しい。コイル3の抵抗およびインダクタンスは、誘起電圧と比較すると無視できる程度に小さいため、事実上、線間電圧は誘起電圧に支配される。また、電動機1のマグネットトルクは、誘起電圧と、コイル3に流れる電流との積に比例する。
誘起電圧は、コイル3の巻き数を多くするほど高くなる。そのため、コイル3の巻き数を多くするほど、必要なマグネットトルクを発生するための電流が少なくて済む。その結果、インバータ103の通電による損失を低減し、電動機1の運転効率を向上することができる。その一方、誘起電圧の上昇により、誘起電圧に支配される線間電圧が、より低い回転数でインバータ最大出力電圧(すなわちコンバータ102からインバータ103に供給される母線電圧)に達し、回転数をそれ以上に速くすることができない。
また、コイル3の巻き数を少なくすると、誘起電圧が低下するため、誘起電圧に支配される線間電圧がより高い回転数までインバータ最大出力電圧に到達せず、高速回転が可能となる。しかしながら、誘起電圧の低下により、必要なマグネットトルクを発生するための電流が増加するため、インバータ103の通電による損失が増加し、電動機1の運転効率が低下する。
また、インバータ103のスイッチング周波数の観点では、線間電圧がインバータ最大出力電圧に近い方が、インバータ103のスイッチングのON/OFFデューティーに起因する高調波成分が減少するため、電流の高調波成分に起因する鉄損を低減することができる。
図15および図16は、電動機1における線間電圧と回転数との関係を示すグラフである。コイル3の結線状態は、Y結線とする。線間電圧は、界磁磁界と回転数との積に比例する。界磁磁界が一定であれば、図15に示すように、線間電圧と回転数とは比例する。なお、図15において、回転数N1は暖房中間条件に対応し、回転数N2は暖房定格条件に対応する。
回転数の増加と共に線間電圧も増加するが、図16に示すように、線間電圧がインバータ最大出力電圧に達すると、それ以上線間電圧を高くすることはできないため、インバータ103による弱め界磁制御が開始される。ここでは、回転数N1,N2の間の回転数で、弱め界磁制御を開始したものとする。
弱め界磁制御では、コイル3にd軸位相(永久磁石25の磁束を打ち消す向き)の電流を流すことによって、誘起電圧を弱める。この電流を、弱め電流と称する。通常の電動機トルクを発生させるための電流に加えて、弱め電流を流す必要があるため、コイル3の抵抗に起因する銅損が増加し、インバータ103の通電損失も増加する。
図17は、図16に示した弱め界磁制御を行った場合の電動機効率と回転数との関係を示すグラフである。図17に示すように、電動機効率は回転数と共に増加し、弱め界磁制御を開始した直後に、矢印Pで示すように電動機効率がピークに達する。
回転数がさらに増加すると、コイル3に流す弱め電流も増加するため、これによる銅損が増加し、電動機効率が低下する。なお、電動機効率とインバータ効率との積である総合効率においても、図17と同様の曲線で表される変化が見られる。
図18は、図16に示した弱め界磁制御を行った場合の電動機の最大トルクと回転数との関係を示すグラフである。弱め界磁制御を開始する前は、電動機の最大トルクは一定である(例えば電流閾値による制約のため)。弱め界磁制御を開始すると、回転数の増加とともに電動機1の最大トルクが低下する。電動機1の最大トルクは、製品使用時で電動機1が実際に発生する負荷(必要とされる負荷)よりも大きくなるように設定されている。以下では、説明の便宜上、電動機の最大トルクを、電動機トルクと称する。
図19は、Y結線とデルタ結線のそれぞれについて、線間電圧と回転数との関係を示すグラフである。コイル3の結線状態がデルタ結線である場合のコイル3の相インピーダンスは、巻き数を同数とすると、コイル3の結線状態がY結線である場合の1/√3倍となる。そのため、コイル3の結線状態がデルタ結線である場合の相間電圧(一点鎖線)は、回転数を同じとすると、コイル3の結線状態がY結線である場合の相間電圧(実線)の1/√3倍となる。
すなわち、コイル3をデルタ結線により結線した場合、巻き数をY結線の場合の√3倍にすれば、同じ回転数Nに対して、線間電圧(電動機電圧)がY結線の場合と等価となり、従ってインバータ103の出力電流もY結線の場合と等価となる。
ティースへの巻き数が数十巻以上となる電動機では、次のような理由で、デルタ結線よりもY結線を採用することが多い。一つは、デルタ結線はY結線に比べてコイルの巻き数が多いため、製造工程においてコイルの巻線に要する時間が長くなるという理由である。もう一つは、デルタ結線の場合に循環電流が発生する可能性があるという理由である。
一般に、Y結線を採用する電動機では、回転数N2(すなわち、性能向上の対象となる回転数のうち、高速側の回転数)で、線間電圧(電動機電圧)がインバータ最大出力電圧に達するように、コイルの巻き数を調整している。しかしながら、この場合、回転数N1(すなわち、性能向上の対象となる回転数のうち、低速側の回転数)では、線間電圧がインバータ最大出力電圧よりも低い状態で電動機を運転することとなり、高い電動機効率を得ることが難しい。
そこで、コイルの結線状態をY結線とし、回転数N1よりも僅かに低い回転数で線間電圧がインバータ最大出力電圧に達するように巻き数を調整し、回転数N2に到達するまでの間に、コイルの結線状態をデルタ結線に切り替えるという制御が行われている。
図20は、Y結線からデルタ結線への切り替えを行った場合の線間電圧と回転数との関係を示すグラフである。図20に示した例では、回転数N1(暖房中間条件)よりも僅かに低い回転数(回転数N11とする)に達すると、上述した弱め界磁制御を開始する。回転数Nがさらに増加して回転数N0に達すると、Y結線からデルタ結線への切り替えを行う。回転数N11は、ここでは、回転数N1よりも5%低い回転数(すなわちN11=N1×0.95)である。
デルタ結線への切り替えにより、線間電圧がY結線の1/√3倍に低下するため、弱め界磁の程度を小さく抑える(すなわち弱め電流を小さくする)ことができる。これにより、弱め電流に起因する銅損を抑制し、電動機効率および電動機トルクの低下を抑制することができる。
図21は、Y結線とデルタ結線のそれぞれについて、電動機効率と回転数との関係を示すグラフである。上記のようにコイル3の結線状態をY結線とし、回転数N1よりも僅かに低い回転数N11で線間電圧がインバータ最大出力電圧に達するように巻き数を調整しているため、図21に実線で示すように、回転数N1で高い電動機効率が得られる。
一方、コイル3の巻き数を同数とすると、デルタ結線の場合には、図21に一点鎖線で示すように、回転数N2で、Y結線の場合よりも高い電動機効率が得られる。そのため、図21に示す実線と一点鎖線との交点でY結線からデルタ結線に切り替えれば、回転数N1(暖房中間条件)と回転数N2(暖房定格条件)の両方で高い電動機効率が得られる。
そのため、図20を参照して説明したように、コイル3の結線状態をY結線とし、回転数N11(回転数N1よりも僅かに低い回転数)のときに線間電圧がインバータ最大出力電圧に達するように巻き数を調整し、回転数N1よりも高い回転数N0でY結線からデルタ結線に切り替える制御を行う。
しかしながら、単にコイル3の結線状態をY結線からデルタ結線に切り換えるだけでは、電動機効率を十分に向上することができない。この点について以下に説明する。
図22は、コイル3の結線状態をY結線とし、回転数N11のときに線間電圧がインバータ最大出力電圧に達するように巻き数を調整し、回転数N0でY結線からデルタ結線に切り替えた場合(実線)の電動機効率と回転数との関係を示すグラフである。なお、破線は、図17に示したようにコイル3の結線状態をY結線とし、弱め界磁制御を行った場合の電動機効率と回転数との関係を示すグラフである。
線間電圧は、回転数に比例する。例えば、冷凍能力6.3kWの家庭用の空気調和機では、回転数N1(暖房中間条件)が35rpsであり、回転数N2(暖房定格条件)が85rpsであるため、暖房中間条件における線間電圧を基準とすると、暖房定格条件における線間電圧は、2.4倍(=85/35)となる。
コイル3の結線状態をデルタ結線に切り替えた後の、暖房定格条件(回転数N2)における線間電圧は、インバータ最大出力電圧に対して1.4倍(=85/35/√3)となる。線間電圧をインバータ最大出力電圧よりも大きくすることはできないため、弱め界磁制御を開始する。
弱め界磁制御では、界磁を弱めるために必要な弱め電流をコイル3に流すため、銅損が増加し、電動機効率および電動機トルクが低下する。そのため、図22に実線で示したように、暖房定格条件(回転数N2)における電動機効率を改善することができない。
暖房定格条件(回転数N2)での弱め界磁の程度を抑える(弱め電流を小さくする)ためには、コイル3の巻き数を少なくして相間電圧を低くする必要があるが、その場合、暖房中間条件(回転数N1)における相間電圧も低下し、結線の切り替えによる電動機効率の改善効果が小さくなる。
すなわち、性能改善の対象となる負荷条件が2つあり、低速側の回転数N1と、高速側の回転数N2とが、(N2/N1)>√3を満足する場合には、Y結線からデルタ結線に切り替えても弱め界磁制御が必要となるため、単にY結線からデルタ結線に切り替えただけでは、電動機効率の十分な改善効果を得ることができない。
図23は、Y結線とデルタ結線のそれぞれについて、電動機トルクと回転数との関係を示すグラフである。Y結線の場合には、図18を参照して説明したように、回転数Nの増加に対して電動機トルクは一定であるが、弱め界磁制御が開始されると、回転数Nの増加とともに電動機トルクが低下する。デルタ結線の場合には、Y結線の場合(N11)よりも高い回転数で弱め界磁制御を開始するが、弱め界磁制御を開始すると、回転数Nの増加とともに電動機トルクが低下する。
図24は、コイル3の結線状態をY結線とし、回転数N11(回転数N1よりも僅かに低い回転数)のときに線間電圧がインバータ最大出力電圧に達するように巻き数を調整し、回転数N1よりも高い回転数N0でY結線からデルタ結線に切り替えた場合の電動機トルクと回転数との関係を示すグラフである。図24に示すように、回転数が回転数N11に達して弱め界磁制御が開始されると、回転数Nの増加とともに電動機トルクが低下する。
回転数がさらに増加して回転数N0に達し、Y結線からデルタ結線への切り替えが行われると、弱め界磁制御が一時的に停止するため、電動機トルクは上昇する。しかしながら、回転数Nがさらに増加して弱め界磁制御が開始されると、回転数Nの増加とともに電動機トルクが低下する。このように、単にY結線からデルタ結線に切り替えただけでは、特に高回転数域での電動機トルクの低下を抑制することができない。
そこで、この実施の形態1の駆動装置100は、結線切り替え部60によるコイル3の結線状態の切り替えに加えて、コンバータ102により母線電圧を切り替えている。コンバータ102は、電源101から電源電圧(200V)を供給され、インバータ103に母線電圧を供給するものである。コンバータ102は、電圧上昇(昇圧)に伴う損失の小さい素子、例えばSiC素子またはGaN素子で構成することが望ましい。
具体的には、コイル3の結線状態がY結線である場合の母線電圧V1(第1の母線電圧)は、280V(DC)に設定されている。これに対し、コイル3の結線状態がデルタ結線である場合の母線電圧V2(第2の母線電圧)は、390V(DC)に設定されている。つまり、デルタ結線の場合の母線電圧V2は、Y結線の場合の母線電圧V1の1.4倍に設定されている。なお、母線電圧V2は、母線電圧V1に対し、V2≧(V1/√3)×N2/N1であればよい。コンバータ102から母線電圧を供給されたインバータ103は、コイル3に線間電圧を供給する。インバータ最大出力電圧は、母線電圧の1/√2である。
図25は、Y結線とデルタ結線のそれぞれについて、コンバータ102で母線電圧を切り替えた場合の線間電圧と回転数との関係を示すグラフである。図25に示すように、コイル3の結線状態がY結線である場合の線間電圧(実線)は、最大で、母線電圧V1の1/√2(すなわちV1×1/√2)となる。コイル3の結線状態がデルタ結線である場合の線間電圧(一点鎖線)は、最大で、母線電圧V2の1/√2(すなわちV2×1/√2)となる。
図26は、結線切り替え部60による結線状態の切り替えと、コンバータ102による母線電圧の切り替えを行った場合の線間電圧と回転数との関係を示すグラフである。図26に示すように、回転数N1(暖房中間条件)を含む回転数域では、コイル3の結線状態がY結線である。回転数の増加と共に線間電圧が増加し、回転数N1よりも僅かに低い回転数N11で、線間電圧がインバータ最大出力(V1×1/√2)に達する。これにより、弱め界磁制御が開始される。
回転数がさらに上昇して回転数N0に達すると、結線切り替え部60がコイル3の結線状態をY結線からデルタ結線に切り替える。同時に、コンバータ102が、母線電圧をV1からV2に昇圧する。昇圧により、インバータ最大出力はV2×1/√2となる。この時点では、相間電圧がインバータ最大出力よりも低いため、弱め界磁制御は行われない。
その後、回転数Nの増加と共に線間電圧が増加し、回転数N2(暖房定格条件)よりも僅かに低い回転数N21で、線間電圧がインバータ最大出力(V2×1/√2)に達し、これにより弱め界磁制御が開始される。なお、回転数N21は、回転数N2よりも5%低い回転数(すなわちN21=N2×0.95)である。
この実施の形態1では、上記の通り、室内温度Taと設定温度Tsとの温度差ΔTと閾値ΔTrとの比較結果に基づいて、コイル3の結線状態を切り替えている。回転数N0におけるY結線からデルタ結線への切り替えは、図10のステップS108および図12のステップS131〜S134に示したY結線からデルタ結線への切り替えに対応している。
この場合の電動機効率の改善効果について説明する。図27は、Y結線とデルタ結線のそれぞれについて、電動機効率と回転数との関係を示すグラフである。図27において、コイル3の結線状態がY結線である場合の電動機効率(実線)は、図21に示したY結線での電動機効率と同様である。一方、コイル3の結線状態がデルタ結線である場合の電動機効率(一点鎖線)は、コンバータ102の母線電圧が上昇するため、図21に示したデルタ結線での電動機効率よりも高い。
図28は、結線切り替え部60による結線状態の切り替えと、コンバータ102による母線電圧の切り替えを行った場合の電動機効率と回転数との関係を示すグラフである。コイル3の結線状態をY結線とし、回転数N11(回転数N1よりも僅かに低い回転数)のときに線間電圧がインバータ最大出力電圧に達するように巻き数が設定されているため、回転数N1を含む回転数域で高い電動機効率が得られる。
回転数が上記の回転数N11に達すると、弱め界磁制御が開始され、さらに回転数N0に達すると、コイル3の結線状態がY結線からデルタ結線に切り替えられ、また、コンバータ102により母線電圧が上昇する。
母線電圧の上昇によってインバータ最大出力電圧も上昇するため、線間電圧はインバータ最大出力電圧よりも低くなり、その結果、弱め界磁制御は停止する。弱め界磁制御の停止により、弱め電流に起因する銅損が低減するため、電動機効率は上昇する。
さらに、回転数Nが回転数N2(暖房定格条件)よりも僅かに小さい回転数N21に達すると、線間電圧がインバータ最大出力電圧に達し、弱め界磁制御が開始される。弱め界磁制御の開始により銅損が増加するが、コンバータ102により母線電圧が上昇しているため、高い電動機効率が得られる。
すなわち、図28に実線で示すように、回転数N1(暖房中間条件)および回転数N2(暖房定格条件)の両方で、高い電動機効率が得られる。
次に、電動機トルクの改善効果について説明する。図29は、コイル3の結線状態がY結線の場合とデルタ結線の場合のそれぞれについて、電動機トルクと回転数との関係を示すグラフである。Y結線の場合の電動機トルク(実線)は、図18と同様である。デルタ結線の場合の電動機トルク(一点鎖線)は、回転数N2(暖房定格条件)よりも僅かに低い回転数N21で弱め界磁制御が開始されると、回転数Nの増加とともに低下する。
図30は、コイル3の結線状態をY結線とし、回転数N11のときに線間電圧がインバータ最大出力電圧に達するように巻き数を調整し、回転数N0(>N1)でY結線からデルタ結線に切り替え、さらに母線電圧を昇圧させた場合の電動機トルクと回転数との関係を示すグラフである。図30に示すように、回転数N1(暖房中間条件)よりも僅かに低い回転数N11で弱め界磁制御が開始されると、回転数Nの増加とともに電動機トルクが低下する。
回転数Nがさらに増加して回転数N0に達すると、コイル3の結線状態がY結線からデルタ結線に切り替えられ、さらに母線電圧が上昇する。デルタ結線への切り替えと母線電圧の上昇により、線間電圧がインバータ最大出力電圧よりも低くなるため、弱め界磁制御が停止する。これにより、電動機トルクは上昇する。その後、回転数N2(暖房定格条件)よりも僅かに低い回転数N21で弱め界磁制御が開始されると、回転数Nの増加とともに電動機トルクが低下する。
このように、デルタ結線への切り替え後、回転数Nが回転数N21(回転数N2よりも僅かに小さい回転数)に達するまでは弱め界磁制御が行われないため、特に回転数N2(暖房定格条件)を含む回転数域において、電動機トルクの低下を抑制することができる。
すなわち、図30に実線で示すように、回転数N1(暖房中間条件)および回転数N2(暖房定格条件)の両方で、高い電動機トルクが得られる。つまり、空気調和機5の暖房中間条件および暖房定格条件の両方において、高い性能(電動機効率および電動機トルク)を得ることができる。
なお、コンバータ102の電圧を昇圧すると、昇圧に伴う損失が発生するため、電動機効率への寄与率の最も大きい暖房中間条件での結線状態(すなわちY結線)では、電源電圧を昇圧せずに利用することが好ましい。電源101の電源電圧は200V(実効値)であり、最大値は280V(=200V×√2)である。そのため、Y結線の場合のコンバータ102の母線電圧(280V)は、電源電圧の最大値と同じと言うことができる。
また、インバータ103に供給される母線電圧の切り替えは、電源電圧を昇圧または降圧させることにより行っても良い。
また、上記の空気調和機5の運転制御では、回転数N1(暖房中間条件)でY結線とし、回転数N2(暖房定格条件)でデルタ結線としたが、具体的な負荷条件が決まっていない場合には、回転数N1をY結線で運転する最大回転数とし、回転数N2をデルタ結線で運転する最大回転数として、電圧レベルを調整してもよい。このように制御しても、電動機1の効率を向上することができる。
上述したように、家庭用の空気調和機5では、回転数N1を暖房中間条件の回転数とし、回転数N2を暖房定格条件の回転数とすることで、電動機1の効率を向上することができる。
<実施の形態1の効果>
以上説明したように、実施の形態1では、室内温度Taに基づいてコイル3の結線状態を切り替えているため、短い時間で結線状態を切り替えることができる。そのため、例えば部屋の窓を開けた場合のような空気調和機5の急激な負荷変動に対して、圧縮機41の運転状態を迅速に対応させることができ、快適性を向上することができる。
また、コイル3の結線状態を切り替える前に電動機1の回転を停止させるため、結線切り替え部60をリレー接点で構成した場合であっても、結線切り替え動作の信頼性を確保することができる。
また、コイル3の結線状態を、Y結線(第1の結線状態)と、第1の結線状態よりも線間電圧が低いデルタ結線(第2の結線状態)とで切り替えるため、電動機1の回転数に合った結線状態を選択することができる。
また、室内温度センサ54により検出した室内温度Taと設定温度Tsとの差(温度差ΔT)の絶対値が閾値ΔTrより大きい場合に、コイル3の結線状態をデルタ結線(第2の結線状態)に切り替えるため、空調負荷が大きい場合に電動機1の回転数を増加させ、高い出力を発生することができる。
また、温度差ΔTの絶対値が閾値ΔTr以下である場合に、コイル3の結線状態をY結線(第1の結線状態)に切り替えるため、空調負荷が低い場合の運転効率を向上することができる。
また、Y結線(第1の結線状態)およびデルタ結線(第2の結線状態)のそれぞれにおいて、電動機1の回転数に応じて弱め界磁制御を行うため、線間電圧がインバータ最大出力電圧に達しても電動機1の回転数を上昇させることができる。
また、結線切り替え部60によるコイル3の結線状態の切り替えに応じて、コンバータ102が母線電圧の大きさを変化させるため、結線状態の切り替えの前後のいずれにおいても、高い電動機効率および高い電動機トルクを得ることができる。
また、室内温度Taと設定温度Tsとの差と閾値との比較に加えて、電動機1の回転数を基準値と比較し、その比較結果に基づいてコイル3の結線状態を切り替えるようにすれば、結線切り替えが頻繁に繰り返されることを効果的に抑制できる。
また、室内温度Taと設定温度Tsとの比較に加えて、インバータ103の出力電圧を基準値と比較し、その比較結果に基づいてコイル3の結線状態を切り替えるようにすれば、結線切り替えが頻繁に繰り返されることを効果的に抑制できる。
また、制御装置50が、リモコン55から信号受信部56を介して運転停止信号を受信した場合、コイル3の結線状態がY結線からデルタ結線に切り替わった後、制御装置50は空気調和機5の運転を終了させる。コイル3の結線状態が既にデルタ結線である場合には、その結線状態が維持される。したがって、空気調和機5の運転開始時(起動時)に、コイル3の結線状態がデルタ結線の状態で空気調和機5の運転を開始させることができる。これにより、室内温度Taと設定温度Tsとの温度差ΔTが大きい場合でも、デルタ結線の状態で空気調和機5の運転を開始させることができ、室内温度Taを迅速に設定温度Tsに近づけることができる。
第1の変形例.
次に、実施の形態1の第1の変形例について説明する。上記の実施の形態1では、コイルの結線状態をY結線からデルタ結線に切り替える回転数N0(すなわち、温度差ΔTと閾値ΔTrとが同じになるときの回転数)と、デルタ結線からY結線に切り替える回転数N0(温度差)とが同じであったが、異なる回転数であってもよい。
図31(A)および(B)は、結線切り替え部60による結線状態の切り替えおよびコンバータ102による母線電圧の切り替えを行った場合の電動機効率と回転数との関係を示すグラフである。図31(A)および(B)に示すように、コイル3の結線状態をY結線からデルタ結線に切り替える回転数N4と、デルタ結線からY結線に切り替える回転数N5とは、互いに異なっている。
また、コンバータ102による母線電圧の切り替えは、コイル3の結線状態の切り替えと同時に行われる。すなわち、Y結線からデルタ結線に切り替える回転数N4では、母線電圧が昇圧される。一方、デルタ結線からY結線に切り替える回転数N5では、母線電圧が降圧される。
このような制御は、例えば、図10のステップS107の閾値ΔTrと、ステップS108の閾値ΔTrを、互いに異なる値に設定することによって実行することができる。図31(A)および(B)に示した例では、Y結線からデルタ結線に切り替える回転数N4が、デルタ結線からY結線に切り替える回転数N5よりも大きいが、大小が逆であってもよい。第1の変形例における他の動作および構成は、実施の形態1と同様である。
この第1の変形例においても、室内温度Taに基づいてコイル3の結線状態を切り替えることで、空気調和機5の急激な負荷変動に対して、圧縮機41の運転状態を迅速に対応させることができる。また、コイル3の結線状態の切り替えに応じてコンバータ102の母線電圧を切り替えることにより、高い電動機効率を得ることができる。
第2の変形例.
次に、実施の形態1の第2の変形例について説明する。上記の実施の形態1では、コンバータ102の母線電圧を2段階(V1/V2)に切り替えたが、図32に示すように、3段階に切り替えてもよい。
図32は、第2の変形例において、結線状態の切り替えと、コンバータ102の母線電圧の切り替えを行った場合の線間電圧と回転数との関係を示すグラフである。図32の例では、暖房中間条件に相当する回転数N1(Y結線)ではコンバータ102の母線電圧をV1とし、回転数N1と回転数N2(暖房定格条件)との間の回転数N6で、Y結線からデルタ結線に切り替え、同時に、母線電圧をV2に昇圧している。
さらに、回転数N2よりも高い回転数N7において、結線状態はそのままで、コンバータ102の母線電圧をV3に昇圧している。この回転数N7から最高回転数N8までは、コンバータ102の母線電圧はV3である。第2の変形例における他の動作および構成は、実施の形態1と同様である。
このように、第2の変形例では、コンバータ102の母線電圧をV1、V2、V3の3段階に切り替えているため、特に高回転速度域において、高い電動機効率および高い電動機トルクを得ることができる。
なお、母線電圧の切り替えは、2段階または3段階に限らず、4段階以上であってもよい。また、第1の変形例(図31)において、コンバータ102の母線電圧を3段階以上に切り替えてもよい。
第3の変形例.
次に、実施の形態1の第3の変形例について説明する。上記の実施の形態1では、コイル3の結線状態をY結線とデルタ結線とで切り替えた。しかしながら、コイル3の結線状態を直列接続と並列接続とで切り替えてもよい。
図33(A)および(B)は、第3の変形例のコイル3の結線状態の切り替えを説明するための模式図である。図33(A)では、3相のコイル3U,3V,3WはY結線により結線されている。さらに、コイル3Uのコイル部分Ua,Ub,Ucは直列に接続され、コイル3Vのコイル部分Va,Vb,Vcは直列に接続され、コイル3Wのコイル部分Wa,Wb,Wcは直列に接続されている。すなわち、コイル3の各相のコイル部分は直列に接続されている。
一方、図33(B)では、3相のコイル3U,3V,3WはY結線により結線されているが、コイル3Uのコイル部分Ua,Ub,Ucは並列に接続され、コイル3Vのコイル部分Va,Vb,Vcは並列に接続され、コイル3Wのコイル部分Wa,Wb,Wcは並列に接続されている。すなわち、コイル3の各相のコイル部分は並列に接続されている。図33(A)および(B)に示したコイル3の結線状態の切り替えは、例えば、コイル3U,3V,3Wの各コイル部分に切り替えスイッチを設けることによって、実現することができる。
各相において並列接続されたコイル部分の数(すなわち列数)をnとすると、直列接続(図33(A))から並列接続(図33(B))に切り替えることにより、線間電圧は1/n倍に低下する。従って、線間電圧がインバータ最高出力電圧に接近した際に、コイル3の結線状態を直列接続から並列接続に切り替えることにより、弱め界磁の程度を小さく抑える(すなわち弱め電流を小さくする)ことができる。
性能改善の対象となる負荷条件が2つあり、低速側の回転数N1と、高速側の回転数N2とが、(N2/N1)>nを満足する場合には、コイル3の結線状態を直列接続から並列接続に切り替えただけでは線間電圧がインバータ最大出力電圧よりも大きくなるため、弱め界磁制御が必要となる。そこで、実施の形態1で説明したように、コイル3の結線状態を直列接続から並列接続に切り替えると同時に、コンバータ102の母線電圧を昇圧する。これにより、回転数N1を含む回転数域と回転数N2を含む回転数域の何れにおいても、高い電動機効率および高い電動機トルクが得られる。
図34(A)および(B)は、第3の変形例の別の構成例を説明するための模式図である。図34(A)では、3相のコイル3U,3V,3Wはデルタ結線により結線されている。さらに、コイル3Uのコイル部分Ua,Ub,Ucは直列に接続され、コイル3Vのコイル部分Va,Vb,Vcは直列に接続され、コイル3Wのコイル部分Wa,Wb,Wcは直列に接続されている。すなわち、コイル3の各相のコイル部分は直列に接続されている。
一方、図34(B)では、3相のコイル3U,3V,3Wはデルタ結線により結線されているが、コイル3Uのコイル部分Ua,Ub,Ucは並列に接続され、コイル3Vのコイル部分Va,Vb,Vcは並列に接続され、コイル3Wのコイル部分Wa,Wb,Wcは並列に接続されている。すなわち、コイル3の各相のコイル部分は並列に接続されている。
この場合も、図33(A)および(B)に示した例と同様に、性能改善の対象となる2つの負荷条件のうち、低速側の回転数N1と高速側の回転数N2とが(N2/N1)>nを満足する場合に、コイル3の結線状態を直列接続(図33(A))から並列接続(図33(B))に切り替え、同時にコンバータ102の母線電圧を昇圧する。第3の変形例における他の動作および構成は、実施の形態1と同様である。昇圧後の母線電圧V2は、昇圧前の母線電圧V1に対し、V2≧(V1/n)×N2/N1であればよい。
このように、第3の変形例では、コンバータ102の結線状態を直列接続と並列接続とで切り替えることにより、弱め界磁の程度を小さく抑え、電動機効率を向上することができる。また、母線電圧V1,V2および回転数N1,N2が、V2≧(V1/n)×N2/N1を満足することにより、回転数N1,N2において高い電動機効率および電動機トルクを得ることができる。
なお、第1の変形例および第2の変形例において、直列接続(第1の結線状態)と並列接続(第2の結線状態)とを切り替えてもよい。
第4の変形例.
上述した実施の形態1では、室内温度センサ54によって検出した室内温度Taと設定温度Tsとの差ΔTの絶対値を閾値ΔTrと比較して、コイル3の結線状態およびコンバータ102の母線電圧を切り替えたが、室内温度Taに基づいて空調負荷を算出し、空調負荷に基づいてコイル3の結線状態およびコンバータ102の母線電圧を切り替えてもよい。
図35は、第4の変形例の空気調和機の基本動作を示すフローチャートである。ステップS101〜S105は、実施の形態1と同様である。ステップS104で電動機1を起動したのち、運転停止信号を受信していなければ(ステップS105)、制御装置50は、室内温度センサ54で検出した室内温度Taと、リモコン55により設定された設定温度Tsとの温度差ΔTを取得し(ステップS201)、この温度差ΔTに基づき、空調負荷を算出する(ステップS202)。
次に、算出した空調負荷に基づき、コイル3のデルタ結線からY結線への切り替えの要否を判断する。すなわち、コイル3の結線状態がデルタ結線であって、なお且つ、ステップS202で算出した空調負荷が閾値(空調負荷の基準値)以下か否かを判断する(ステップS203)。
ステップS203での比較の結果、コイル3の結線状態がデルタ結線で、且つ空調負荷が閾値以下であれば、図11に示したステップS121〜S124の処理を行う。図11のステップS121〜S124では、実施の形態1で説明したように、デルタ結線からY結線への切り替えおよびコンバータ102による母線電圧の昇圧を行う。
上記ステップS203での比較の結果、コイル3の結線状態がデルタ結線でない場合(Y結線である場合)、あるいは、空調負荷が閾値より大きい場合(すなわちY結線に切り替える必要がない場合)には、ステップS204に進む。
ステップS204では、Y結線からデルタ結線への切り替えの要否を判断する。すなわち、コイル3の結線状態がY結線であって、なお且つ、ステップS202で算出した空調負荷が閾値より大きいか否かを判断する。
ステップS204での比較の結果、コイル3の結線状態がY結線で、且つ、空調負荷が閾値より大きければ、図12に示したステップS131〜S134の処理を行う。図12のステップS131〜S134では、実施の形態1で説明したように、Y結線からデルタ結線への切り替えおよびコンバータ102による母線電圧の降圧を行う。
上記ステップS204での比較の結果、コイル3の結線状態がY結線でない場合(デルタ結線である場合)、あるいは、空調負荷が閾値より大きい場合(すなわちデルタ結線に切り替える必要がない場合)には、ステップS105に戻る。運転停止信号を受信した場合の処理(ステップS109〜S111)は、実施の形態1と同様である。第4の変形例における他の動作および構成は、実施の形態1と同様である。
このように、第4の変形例では、室内温度Taに基づいて空調負荷を算出し、算出した空調負荷に基づいてコイル3の結線状態およびコンバータ102の母線電圧を切り替えているため、空気調和機5の負荷変動に対して、圧縮機41の運転状態を迅速に対応させることができ、快適性を向上することができる。
なお、第1の変形例、第2の変形例および第3の変形例において、空調負荷に基づいてコイル3の結線状態およびコンバータ102の母線電圧の切り替えを行ってもよい。
第5の変形例.
上述した実施の形態1では、室内温度センサ54によって検出した室内温度Taと設定温度Tsとの温度差ΔTに基づいてコイル3の結線状態およびコンバータ102の母線電圧を切り替えたが、電動機1の回転数に基づいてコイル3の結線状態およびコンバータ102の母線電圧を切り替えてもよい。
図36は、第5の変形例の空気調和機の基本動作を示すフローチャートである。ステップS101〜S105は、実施の形態1と同様である。ステップS104で電動機1を起動したのち、運転停止信号を受信していなければ(ステップS105)、制御装置50は、電動機1の回転数を取得する(ステップS301)。電動機1の回転数は、インバータ103の出力電流の周波数であり、電動機1に取り付けた電流センサ等を用いて検出することができる。
次に、この電動機1の回転数に基づき、コイル3のデルタ結線からY結線への切り替えの要否を判断する。すなわち、コイル3の結線状態がデルタ結線であって、なお且つ、電動機1の回転数が閾値(回転数の基準値)以下か否かを判断する(ステップS302)。
暖房運転の場合、ステップS302で用いる閾値は、暖房中間条件に相当する回転数N1と、暖房定格条件に相当する回転数N2との間の値(より望ましくは中間値)であることが望ましい。また、冷房運転の場合、ステップS302で用いる閾値は、冷房中間条件に相当する回転数N1と、冷房定格条件に相当する回転数N2との間の値(より望ましくは中間値)であることが望ましい。
例えば冷凍能力6.3kWの家庭用の空気調和機の場合、暖房中間条件に相当する回転数N1が35rpsであり、暖房定格条件に相当する回転数N2が85rpsであるため、ステップS302で用いる閾値は、回転数N1と回転数N2との中間値である60rpsが望ましい。
但し、電動機1の回転数は変動する可能性がある。そのため、このステップS302では、電動機1の回転数が閾値以上である状態が、予め設定した時間に亘って継続するか否かを判断する。
ステップS302での比較の結果、コイル3の結線状態がデルタ結線で、且つ電動機1の回転数が閾値以下であれば、図11に示したステップS121〜S124の処理を行う。図11のステップS121〜S124では、実施の形態1で説明したように、デルタ結線からY結線への切り替えおよびコンバータ102の母線電圧の昇圧を行う。
上記ステップS302での比較の結果、コイル3の結線状態がデルタ結線でない場合(Y結線である場合)、あるいは、電動機1の回転数が閾値より大きい場合(すなわちY結線に切り替える必要がない場合)には、ステップS303に進む。
ステップS303では、Y結線からデルタ結線への切り替えの要否を判断する。すなわち、コイル3の結線状態がY結線であって、なお且つ、電動機1の回転数が閾値より大きいか否かを判断する。
ステップS303での比較の結果、コイル3の結線状態がY結線で、且つ、電動機1の回転数が閾値より大きければ、図12に示したステップS131〜S134の処理を行う。図12のステップS131〜S134では、実施の形態1で説明したように、Y結線からデルタ結線への切り替えおよびコンバータ102の母線電圧の降圧を行う。
上記ステップS303での比較の結果、コイル3の結線状態がY結線でない場合(デルタ結線である場合)、あるいは、電動機1の回転数が閾値より大きい場合(すなわちデルタ結線に切り替える必要がない場合)には、ステップS105に戻る。運転停止信号を受信した場合の処理(ステップS109〜S111)は、実施の形態1と同様である。第5の変形例における他の動作および構成は、実施の形態1と同様である。
このように、第5の変形例では、電動機1の回転数に基づいてコイル3の結線状態およびコンバータ102の母線電圧を切り替えることにより、高い電動機効率および高い電動機トルクを得ることができる。
なお、第1の変形例、第2の変形例および第3の変形例において、電動機1の回転数に基づいてコイル3の結線状態およびコンバータ102の母線電圧の切り替えを行ってもよい。
なお、ここでは、圧縮機の一例としてロータリー圧縮機8について説明したが、各実施の形態の電動機は、ロータリー圧縮機8以外の圧縮機に適用してもよい。
実施の形態2.
次に、本発明の実施の形態2について説明する。
<空気調和機の構成>
図37は、実施の形態2の空気調和機500の構成を示すブロック図である。図38は、実施の形態2の空気調和機500の制御系を示すブロック図である。図39は、実施の形態2の駆動装置100aの制御系を示すブロック図である。実施の形態2の空気調和機500は、圧縮機状態検出部としての圧縮機温度センサ71をさらに備える。圧縮機温度センサ71は、ロータリー圧縮機8の状態を示す圧縮機温度Tを検出する温度センサである。ただし、圧縮機状態検出部は、ロータリー圧縮機8の状態を検出可能な検出器であればよく、温度センサに限られない。
圧縮機温度センサ71を除いて、実施の形態2の空気調和機500および駆動装置100aの構成は、実施の形態1の空気調和機5および駆動装置100とそれぞれ同様である。
図39に示される例では、駆動装置100aは、電源101の出力を整流するコンバータ102と、電動機1のコイル3に交流電圧を出力するインバータ103と、コイル3の結線状態を切り替える結線切り替え部60と、制御装置50と、圧縮機温度センサ71とを備えて構成される。コンバータ102には、交流(AC)電源である電源101から電力が供給される。
圧縮機温度センサ71を除いて、実施の形態2の駆動装置100aの構成は、実施の形態1の駆動装置100と同様である。ただし、圧縮機温度センサ71は、駆動装置100aの構成要素でなくてもよい。駆動装置100aは、ロータリー圧縮機8と共に用いられ、電動機1を駆動する。
永久磁石型電動機に用いられる、Nd−Fe−B(ネオジウム−鉄−ボロン)を主成分とするネオジウム希土類磁石の保磁力は、温度により低下する性質を持つ。圧縮機のような140℃の高温雰囲気中でネオジウム希土類磁石を用いた電動機を使用する場合、磁石の保磁力は温度により劣化(−0.5〜−0.6%/ΔK)するため、Dy(ディスプロシウム)元素を添加して保磁力を向上させる必要性がある。
Dy元素を磁石に添加すると、保磁力特性は向上するが、残留磁束密度特性が低下するというデメリットがある。残留磁束密度が低下すると、電動機のマグネットトルクが低下し、通電電流が増加するため、銅損が増加する。そのため、効率面でもDy添加量を低減したいという要求は大きい。
例えば、圧縮機の駆動中における圧縮機の最高温度を下げれば、磁石最高温度を低減でき、磁石の減磁を緩和することができる。そのため、圧縮機の温度を制限するための閾値としての圧縮機温度閾値に基づいて圧縮機(例えば、電動機の回転数)を制御することが有効である。
しかしながら、圧縮機温度閾値を低く設定すると、設定値によっては低い負荷(空調負荷)の状態で、電動機の回転数を下げる指令、または、電動機を停止する指令が出されることがある。この場合、電動機の最大運転範囲が狭くなり、空気調和機が備えられた室内の状況(例えば、上記の温度差ΔT)に関わらず、電動機の運転が制限される。
そこで、実施の形態2では、制御装置50は、コイル3の結線状態により異なる閾値(圧縮機温度閾値)に基づいて電動機1の駆動方法を変更する指令を発する。具体的には、制御装置50は、圧縮機温度センサ71によって検出された圧縮機温度Tが、圧縮機温度閾値よりも大きいと判定した場合に、電動機1の駆動方法を変更する指令を出す。これにより、ロータリー圧縮機8の温度を低下させ、ロータリー圧縮機8を保護する。
圧縮機温度センサ71は、ロータリー圧縮機8の状態を示す圧縮機温度Tを検出する。本実施の形態では、圧縮機温度センサ71は、ロータリー圧縮機8の吐出管85に固定されている。ただし、圧縮機温度センサ71が固定される位置は、吐出管85に限られない。
圧縮機温度Tは、例えば、ロータリー圧縮機8のシェル80、ロータリー圧縮機8の吐出管85(例えば、吐出管85の上部)、ロータリー圧縮機8内の冷媒(例えば、吐出管85を通る冷媒)およびロータリー圧縮機8の内部に備えられた電動機1のうちの少なくとも1つの温度である。圧縮機温度Tは、これらの要素以外の要素の温度でもよい。
圧縮機温度Tは、例えば、予め定められた時間内において計測された最高温度である。圧縮機温度Tの測定対象ごとに、予め計測されたロータリー圧縮機8内の温度データと圧縮機温度Tとの相関関係を、制御装置50内のメモリ58に記憶させておいてもよい。予め計測されたロータリー圧縮機8内の温度データとは、冷媒の循環量および電動機1の発熱温度等によって変動するロータリー圧縮機8内の温度(最高温度)を示すデータである。この場合、圧縮機温度センサ71によって検出された圧縮機温度Tを、後述する第1の検出値または第2の検出値として用いてもよく、圧縮機温度Tとの相関関係に基づいて算出された温度データを、後述する第1の検出値または第2の検出値として用いてもよい。
コイル3の結線状態が第1の結線状態(例えば、Y結線)のとき、制御装置50は、圧縮機温度センサ71によって検出された第1の検出値と、圧縮機温度閾値としての閾値T(第1の閾値)とに基づいて電動機1を制御する。閾値Tは、例えば、90℃である。温度センサ以外の検出器を圧縮機状態検出部として用いる場合は、温度以外の値を閾値として設定してもよい。
具体的には、第1の検出値が閾値Tよりも大きいとき、制御装置50は、圧縮機温度センサ71によって検出された少なくとも1つの温度(圧縮機温度T)が低下するように電動機1を制御する。例えば、制御装置50は、電動機1の回転数が少なくなるように電動機1の回転数を変更する指令を出すか、または、電動機1の駆動(回転)を停止させる。これにより、圧縮機温度Tを低下させることができる。
コイル3の結線状態が第2の結線状態(例えば、デルタ結線)のとき、制御装置50は、圧縮機温度センサ71によって検出された第2の検出値と、圧縮機温度閾値としての閾値TΔ(第2の閾値)とに基づいて電動機1を制御する。
具体的には、第2の検出値が閾値TΔよりも大きいとき、制御装置50は、圧縮機温度センサ71によって検出された少なくとも1つの温度(圧縮機温度T)が低下するように電動機1を制御する。例えば、制御装置50は、電動機1の回転数が少なくなるように電動機1の回転数を変更する指令を出すか、または、電動機1の駆動(回転)を停止させる。これにより、圧縮機温度Tを低下させることができる。
電動機1は、電動機1の発熱による温度変化、冷媒による冷却効果等を考慮して、磁石が到達し得る最高温度(圧縮機温度閾値)において減磁しないように設計されている。例えば、本実施の形態では、電動機1の永久磁石25は、磁石最高温度である140℃付近で減磁しないように設計されている。この場合、閾値TΔが140℃に設定される。
結線切り替え部60によって切り替え可能なコイル3の結線状態のうち、線間電圧が低い結線状態ほど圧縮機温度閾値を高く設定する。本実施の形態では、デルタ結線におけるインバータ103の線間電圧は、Y結線におけるインバータ103の線間電圧よりも低い。したがって、閾値TΔは、閾値Tよりも大きくなるように設定される。これにより、電動機1の最大運転範囲(特に、デルタ結線での電動機1の最大回転数)が狭まらないようにすることができる。
<空気調和機の動作>
次に、実施の形態2の空気調和機500の基本動作(電動機1、ロータリー圧縮機8および空気調和機500の制御方法)について説明する。
図40は、実施の形態2の空気調和機500の基本動作を示すフローチャートである。
ステップS101〜S105は、実施の形態1(図10)と同様である。ステップS105で運転停止信号を受信していない場合には、ステップS401に進む。
結線切り替え部60は、上記の温度差ΔTまたは電動機1の回転数などに応じて、コイル3の結線状態を、デルタ結線(本実施の形態では、第2の結線状態)とY結線(本実施の形態では、第1の結線状態)との間で切り替えることができる。
圧縮機温度センサ71は、ロータリー圧縮機8の状態を検出する(ステップS401)。本実施の形態では、ロータリー圧縮機8の状態を示す圧縮機温度T(例えば、吐出管85の温度)を検出する。
ステップS401では、コイル3の結線状態がY結線のとき、圧縮機温度Tを第1の検出値として検出する。一方、コイル3の結線状態がデルタ結線のとき、圧縮機温度Tを第2の検出値として検出する。
さらに、制御装置50は、コイル3の結線状態がY結線であって、なお且つ、圧縮機温度Tが閾値Tよりも大きいか否かを判断する(ステップS402)。
ステップS402での比較の結果、コイル3の結線状態がY結線で、且つ、圧縮機温度Tが閾値Tよりも大きければ、ステップS404に進む。
上記ステップS402の比較の結果、コイル3の結線状態がY結線でない場合(デルタ結線である場合)、あるいは、圧縮機温度Tが閾値T以下である場合には、ステップS403に進む。
ステップS403では、制御装置50は、コイル3の結線状態がデルタ結線であって、なお且つ、圧縮機温度Tが閾値TΔよりも大きいか否かを判断する。
ステップS403での比較の結果、コイル3の結線状態がデルタ結線で、且つ、圧縮機温度Tが閾値TΔよりも大きければ、ステップS404に進む。
上記ステップS403での比較の結果、コイル3の結線状態がデルタ結線でない場合(Y結線である場合)、あるいは、圧縮機温度Tが閾値TΔ以下である場合には、ステップS105に戻る。
ステップS404では、制御装置50は、電動機1の回転数を低下させる。ただし、電動機1の回転数を低下させる代わりに電動機1を停止させてもよい。ステップS404で電動機1を停止させる場合は、コイル3の結線状態を変更せずに電動機1を停止させる。ステップS404で電動機1を停止させた場合は、例えば、予め定められた時間経過後に電動機1を起動してからステップS105に戻る。
すなわち、ステップS401〜S404では、コイル3の結線状態がY結線のとき、第1の検出値と第1の閾値(閾値T)とに基づいて電動機1を制御し、コイル3の結線状態がデルタ結線のとき、第2の検出値と第2の閾値(閾値TΔ)とに基づいて電動機1を制御する。これにより、圧縮機温度Tが閾値Tまたは閾値TΔよりも低くなるようにロータリー圧縮機8を制御することができる。
上記のステップS105で運転停止信号を受信した場合には、制御装置50は、電動機1の回転を停止する(ステップS109)。なお、ステップS404において電動機1を停止させた状態で運転停止信号を受信した場合には、電動機1を停止させた状態でステップS110に進む。なお、図40では省略するが、ステップS401〜S404の間においても、運転停止信号を受信した場合には、ステップS109に進んで電動機1の回転を停止する。
その後、制御装置50は、空気調和機500の停止処理を行う(ステップS110)。具体的には、室内送風ファン47および室外送風ファン46の各ファンモータを停止する。その後、制御装置50のCPU57が停止し、空気調和機500の運転が終了する。
ステップS110で、空気調和機500の停止処理を行う場合、コイル3の結線状態がデルタ結線であることが望ましい。例えば、ステップS110で、コイル3の結線状態がY結線であるとき、制御装置50は、結線切り替え部60に結線切り替え信号を出力し、コイル3の結線状態をY結線からデルタ結線に切り替える。
<実施の形態2の効果>
実施の形態2によれば、コイル3の結線状態を考慮して、圧縮機温度閾値を用いて電動機1を制御する。例えば、圧縮機温度センサ71によって検出された検出値が圧縮機温度閾値よりも大きいとき、圧縮機温度T(すなわち、ロータリー圧縮機8内の温度)が低下するように電動機1が制御される。これにより、電動機1における減磁を防ぐことができ、ロータリー圧縮機8の状態に応じて、電動機1を適切に制御することができる。
実施の形態1で説明したように、コイル3の結線状態をY結線とデルタ結線とで切り替えて運転する駆動装置においては、デルタ結線では従来通りの高回転数の運転を行い、Y結線では空調負荷の小さい低回転数で運転を行う。そのため、コイル3の結線状態をデルタ結線からY結線に切り替えることにより、通常負荷運転を行う際のロータリー圧縮機8の最高温度(圧縮機温度Tの最大値)について、デルタ結線での運転時よりもY結線での運転時のロータリー圧縮機8の最高温度の方が低くなるように構成することができる。
例えば、コイル3の結線状態を考慮せずに、予め定められた1つの圧縮機温度閾値(例えば、閾値Tと同じ値)に基づいて電動機1を制御する場合、電動機1の最大運転範囲(特に、デルタ結線での電動機1の最大回転数)が狭まる場合がある。そこで、実施の形態2では、コイル3の結線状態を考慮して、複数の圧縮機温度閾値を用いて電動機1を制御する。
具体的には、コイル3の結線状態により異なる圧縮機温度閾値(例えば、閾値Tおよび閾値TΔ)に基づいて電動機1を制御する。したがって、圧縮機温度閾値をデルタ結線での運転時よりもY結線での運転時において低く設定しても、電動機1の最大運転範囲(特に、デルタ結線での電動機1の最大回転数)が狭まらないようにすることができる。
例えば、実施の形態1で説明したコイル3の結線状態の切り替えを行う構成では、コイル3の結線状態がY結線で、且つ、電動機1が低い回転数(暖房中間条件)のときに、線間電圧(電動機電圧)がインバータ最大出力電圧とほぼ等しくなるように構成し、高効率化を図っている。この場合、結線切り替え回数を減らすために、電動機1をできるだけ高速回転まで回転させたい場合がある。そのため、弱め界磁で運転が行われるが、弱め電流が増加し、減磁が悪化する。
温度が低い方が永久磁石25の保磁力が高く、電流を増やしても減磁しにくくすることができる。そこで、実施の形態2によれば、コイル3の結線状態がY結線のときの圧縮機温度閾値Tが、デルタ結線のときの圧縮機温度閾値TΔよりも低く設定されている。これにより、デルタ結線での運転時よりもY結線での運転時のロータリー圧縮機8の最高温度の方が低くなるように構成することができる。したがって、弱め電流が増えても減磁しない構成にすることができ、より高速回転までY結線での駆動が可能となり、結線の切り替え自由度が大きくなるという利点がある。言い換えると、電動機1の磁石の保磁力が高い状態で電動機1を駆動させることができ、電動機1により大きい電流を流しても減磁しにくくすることができる。さらに、コイル3の結線状態がY結線のときに、弱め界磁でより高速回転まで電動機1を駆動させることができる。
また、結線切り替えを行わない従来のコイルの巻き数(ターン数)と近い巻き数であるコイルのY結線から、デルタ結線に切り替えた場合、高速回転における弱め界磁を抑制することができ、従来よりもデルタ結線において減磁に強い構成を得ることができる。
さらに、Y結線においては、従来よりも圧縮機温度閾値を低く設定することができるので、Y結線およびデルタ結線の双方で減磁特性を向上させることができ、ディスプロシウム(Dy)が添加されていない磁石を用いることが可能となる。
例えば、永久磁石25として、ネオジウム(Nd)、鉄(Fe)およびボロン(B)を主成分とする希土類磁石を用いることができ、この永久磁石25は、保磁力を向上させるための添加物としてのディスプロシウム(Dy)を含まない。この場合、永久磁石25の残留磁束密度は、1.36Tから1.42Tであり、保磁力は、1671kA/mから1989kA/mであり、最大エネルギー積は、354kJ/mから398kJ/mである。
実施の形態2の変形例.
次に、本発明の実施の形態2の変形例について説明する。上記の実施の形態2は、実施の形態1(各変形例を含む)と組み合わせることができる。そこで、実施の形態2の変形例では、実施の形態2で説明した空気調和機の動作(電動機1、ロータリー圧縮機8および空気調和機500の制御方法)の他の例について説明する。実施の形態2の変形例の空気調和機の構成は、実施の形態2の空気調和機500の構成と同じである。したがって、実施の形態2の変形例の空気調和機を、空気調和機500と称する。
図41は、実施の形態2の変形例の空気調和機500の基本動作を示すフローチャートである。
ステップS101〜S106は、実施の形態1(図10)と同様である。
ステップS107では、制御装置50は、室内温度センサ54で検出した室内温度Taと、リモコン55により設定された設定温度Tsとの温度差ΔTに基づき、コイル3のデルタ結線からY結線への切り替えの要否を判断する。すなわち、コイル3の結線状態がデルタ結線であって、なお且つ、上記の温度差ΔTの絶対値が閾値ΔTr以下か否かを判断する(ステップS107)。
ステップS107での比較の結果、コイル3の結線状態がデルタ結線で、且つ、温度差ΔTの絶対値が閾値ΔTr以下であれば、ステップS121(図11)に進む。
上記ステップS107での比較の結果、コイル3の結線状態がデルタ結線でない場合(Y結線である場合)、あるいは、温度差ΔTの絶対値が閾値ΔTrより大きい場合(すなわちY結線に切り替える必要がない場合)には、ステップS108に進む。
ステップS108では、コイル3のY結線からデルタ結線への切り替えの要否を判断する。例えば、実施の形態1(ステップS108)と同様に、制御装置50は、コイル3の結線状態がY結線であって、なお且つ、上記の温度差ΔTの絶対値が、閾値ΔTrより大きいか否かを判断する。
ステップS108での比較の結果、コイル3の結線状態がY結線で、且つ、温度差ΔTの絶対値が閾値ΔTrより大きければ、ステップS131(図12)に進む。実施の形態2の変形例において、図12に示されるステップS131〜S134における処理は、図13(A)に示される処理(ステップS135,S136およびS131〜S134)、または図13(B)に示される処理(ステップS137,S138およびS131〜S134)に置き換えてもよい。
図41に示されるステップS106〜S108における処理は、実施の形態1の各変形における処理(例えば、図35に示されるステップS201〜S204、または図36に示されるステップS301〜S303)に置き換えてもよい。
上記ステップS108での比較の結果、コイル3の結線状態がY結線でない場合(デルタ結線である場合)、あるいは、温度差ΔTの絶対値が閾値ΔTr以下である場合(すなわちデルタ結線に切り替える必要がない場合)には、ステップS401に進む。
ステップS401〜S404は、実施の形態2(図40)と同様である。
上記のステップS105で運転停止信号を受信した場合には、制御装置50は、電動機1の回転を停止する(ステップS109)。なお、ステップS404において電動機1を停止させた状態で運転停止信号を受信した場合には、電動機1を停止させた状態でステップS110に進む。なお、図41では省略するが、ステップS105〜S108またはステップS401〜S404においても、運転停止信号を受信した場合には、ステップS109に進んで電動機1の回転を停止する。
その後、制御装置50(具体的には、結線切り替え部60)は、コイル3の結線状態をY結線からデルタ結線に切り替える(ステップS110)。コイル3の結線状態が既にデルタ結線である場合には、その結線状態を維持する。
ステップS111は、実施の形態1(図10)と同様である。
実施の形態2の変形例によれば、実施の形態1(各変形例を含む)および実施の形態2で説明した効果と同じ効果を有する。
以上に説明した各実施の形態及び各変形例における特徴は、互いに適宜組み合わせることができる。
以上、本発明の望ましい実施の形態について具体的に説明したが、本発明は上記の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の改良または変形を行なうことができる。
1 電動機、 3,3U,3V,3W コイル、 5,500 空気調和機、 5A 室内機、 5B 室外機、 8 ロータリー圧縮機(圧縮機)、 9 圧縮機構、 10 ステータ、 11 ステータコア、 12 ティース部、 20 ロータ、 21 ロータコア、 25 永久磁石、 41 圧縮機、 42 四方弁、 43 室外熱交換器、 44 膨張弁、 45 室内熱交換器、 46 室外送風ファン、 47 室内送風ファン、 50 制御装置、 50a 室内制御装置、 50b 室外制御装置、 50c 連絡ケーブル、 51 入力回路、 52 演算回路、 53 出力回路、 54 室内温度センサ、 55 リモコン、 56 信号受信部、 57 CPU、 58 メモリ、 60 結線切り替え部、 61,62,63 スイッチ、 71 圧縮機温度センサ、 80 シェル、 81 ガラス端子、 85 吐出管、 90 シャフト、 100,100a 駆動装置、 101 電源、 102 コンバータ、 103 インバータ。

Claims (19)

  1. 運転指示信号を受信する信号受信部と、
    コイルを有する電動機を有する圧縮機と、
    前記コイルに接続されたインバータと、
    前記コイルの結線状態を、第1の結線状態と第2の結線状態との間で切り替える結線切り替え部と、
    前記インバータ及び前記結線切り替え部を制御する制御装置と
    を有し、
    前記第2の結線状態における前記インバータの線間電圧は、前記第1の結線状態における前記インバータの線間電圧よりも低く、
    前記信号受信部が運転停止信号を受信した場合、前記結線切り替え部は、前記コイルの結線状態を、前記第1の結線状態から前記第2の結線状態に切り替える
    空気調和機。
  2. 前記空気調和機の起動時に、前記コイルの結線状態が前記第2の結線状態である前記電動機に印加される電圧を昇圧させるコンバータをさらに有する請求項1に記載の空気調和機。
  3. 前記コイルは、Y結線またはΔ結線によって結線された3相コイルであり、
    前記第1の結線状態は、前記3相コイルが相毎に直列に結線された状態であり、
    前記第2の結線状態は、前記3相コイルが相毎に並列に結線された状態である
    請求項1又は2に記載の空気調和機。
  4. 空気調和機であって、
    運転指示信号を受信する信号受信部と、
    コイルを有する電動機を有する圧縮機と、
    前記コイルに接続されたインバータと、
    前記コイルの結線状態を、第1の結線状態と第2の結線状態との間で切り替える結線切り替え部と、
    前記空気調和機の起動時に、前記コイルの結線状態が前記第2の結線状態である前記電動機に印加される電圧を昇圧させるコンバータと、
    前記インバータ及び前記結線切り替え部を制御する制御装置と
    を有し、
    前記信号受信部が運転停止信号を受信した場合、前記結線切り替え部は、前記コイルの結線状態を、前記第1の結線状態から前記第2の結線状態に切り替える
    空気調和機。
  5. 前記コイルは、Y結線またはΔ結線によって結線された3相コイルであり、
    前記第1の結線状態は、前記3相コイルが相毎に直列に結線された状態であり、
    前記第2の結線状態は、前記3相コイルが相毎に並列に結線された状態である
    請求項4に記載の空気調和機。
  6. 運転指示信号を受信する信号受信部と、
    コイルを有する電動機を有する圧縮機と、
    前記コイルに接続されたインバータと、
    前記コイルの結線状態を、第1の結線状態と第2の結線状態との間で切り替える結線切り替え部と、
    前記インバータ及び前記結線切り替え部を制御する制御装置と
    を有し、
    前記コイルは、Y結線またはΔ結線によって結線された3相コイルであり、
    前記第1の結線状態は、前記3相コイルが相毎に直列に結線された状態であり、
    前記第2の結線状態は、前記3相コイルが相毎に並列に結線された状態であり、
    前記信号受信部が運転停止信号を受信した場合、前記結線切り替え部は、前記コイルの結線状態を、前記第1の結線状態から前記第2の結線状態に切り替える
    空気調和機。
  7. 前記信号受信部が前記空気調和機の前記運転停止信号を受信した場合、前記制御装置が前記電動機を停止させる請求項1から6のいずれか1項に記載の空気調和機。
  8. 前記コイルの結線状態が、前記第1の結線状態から前記第2の結線状態に切り替わった後、前記空気調和機の運転が停止する請求項1から7のいずれか1項に記載の空気調和機。
  9. 前記電動機が停止した後、前記コイルの結線状態が前記第2の結線状態である請求項1からのいずれか1項に記載の空気調和機。
  10. 前記空気調和機の起動時は、前記コイルの結線状態が前記第2の結線状態であり、前記空気調和機の起動後に、前記結線切り替え部は、前記コイルの結線状態を前記第2の結線状態から前記第1の結線状態に切り替える請求項1からのいずれか1項に記載の空気調和機。
  11. 前記電動機の回転数が予め定められた回転数に到達したときに、前記結線切り替え部は前記コイルの結線状態を前記第2の結線状態から前記第1の結線状態に切り替える請求項10に記載の空気調和機。
  12. 前記コイルは、3相コイルである請求項1から11のいずれか1項に記載の空気調和機。
  13. 前記第1の結線状態は、前記3相コイルがY結線によって結線された状態である請求項12に記載の空気調和機。
  14. 前記第2の結線状態は、前記3相コイルがΔ結線によって結線された状態である請求項12又は13に記載の空気調和機。
  15. 前記空気調和機の起動時は、前記3相コイルが相毎に並列に結線された状態である請求項13又は14に記載の空気調和機。
  16. 前記信号受信部を有する室内機と、
    前記圧縮機と前記結線切り替え部とを有する室外機と
    をさらに備える請求項1から15のいずれか1項に記載の空気調和機。
  17. コイルを有する電動機と前記コイルに接続されたインバータとを備えた空気調和機の制御方法であって、
    前記空気調和機の運転停止信号を受信するステップと、
    前記運転停止信号に基づいて、前記コイルの結線状態を第1の結線状態から第2の結線状態に切り替えるステップと
    を備え
    前記第2の結線状態における前記インバータの線間電圧は、前記第1の結線状態における前記インバータの線間電圧よりも低い
    空気調和機の制御方法。
  18. コイルを有する電動機を備えた空気調和機の制御方法であって、
    前記空気調和機の運転停止信号を受信するステップと、
    前記運転停止信号に基づいて、前記コイルの結線状態を第1の結線状態から第2の結線状態に切り替えるステップと
    前記空気調和機の起動時に、前記コイルの結線状態が前記第2の結線状態である前記電動機に印加される電圧を昇圧させるステップと
    を備える空気調和機の制御方法。
  19. コイルを有する電動機を備えた空気調和機の制御方法であって、
    前記空気調和機の運転停止信号を受信するステップと、
    前記運転停止信号に基づいて、前記コイルの結線状態を第1の結線状態から第2の結線状態に切り替えるステップと
    を備え
    前記コイルは、Y結線またはΔ結線によって結線された3相コイルであり、
    前記第1の結線状態は、前記3相コイルが相毎に直列に結線された状態であり、
    前記第2の結線状態は、前記3相コイルが相毎に並列に結線された状態である
    空気調和機の制御方法。
JP2018547062A 2016-10-31 2016-10-31 空気調和機および空気調和機の制御方法 Active JP6652657B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020008521A JP6899935B2 (ja) 2016-10-31 2020-01-22 空気調和機および空気調和機の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/082197 WO2018078835A1 (ja) 2016-10-31 2016-10-31 空気調和機および空気調和機の制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020008521A Division JP6899935B2 (ja) 2016-10-31 2020-01-22 空気調和機および空気調和機の制御方法

Publications (2)

Publication Number Publication Date
JPWO2018078835A1 JPWO2018078835A1 (ja) 2019-04-18
JP6652657B2 true JP6652657B2 (ja) 2020-02-26

Family

ID=62023241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018547062A Active JP6652657B2 (ja) 2016-10-31 2016-10-31 空気調和機および空気調和機の制御方法

Country Status (7)

Country Link
US (1) US11101763B2 (ja)
EP (1) EP3534532B1 (ja)
JP (1) JP6652657B2 (ja)
KR (1) KR102261053B1 (ja)
CN (1) CN109863691B (ja)
AU (1) AU2016428277C1 (ja)
WO (1) WO2018078835A1 (ja)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6652657B2 (ja) 2016-10-31 2020-02-26 三菱電機株式会社 空気調和機および空気調和機の制御方法
WO2018078840A1 (ja) 2016-10-31 2018-05-03 三菱電機株式会社 駆動装置、空気調和機および電動機の駆動方法
JP6899935B2 (ja) * 2016-10-31 2021-07-07 三菱電機株式会社 空気調和機および空気調和機の制御方法
CN109863690B (zh) 2016-10-31 2023-04-04 三菱电机株式会社 驱动装置、空调机以及电动机的驱动方法
WO2018078838A1 (ja) 2016-10-31 2018-05-03 三菱電機株式会社 駆動装置および空気調和機、並びに圧縮機の制御方法
JP6710336B2 (ja) 2017-07-25 2020-06-17 三菱電機株式会社 駆動装置、空気調和機および駆動方法
JP6942184B2 (ja) 2017-07-25 2021-09-29 三菱電機株式会社 駆動装置、圧縮機、空気調和機および駆動方法
CN110915127B (zh) * 2017-07-28 2022-10-28 三菱电机株式会社 空气调节机
ES2913801T3 (es) * 2018-01-03 2022-06-06 Guangdong Meizhi Compressor Co Ltd Compresor y dispositivo de refrigeración
CN109210716A (zh) * 2018-08-23 2019-01-15 青岛海尔空调器有限总公司 基于冷热度控制空调压缩机的方法、装置及空调
CN109210725A (zh) * 2018-08-23 2019-01-15 青岛海尔空调器有限总公司 基于内机风速控制空调器压缩机的方法和装置
CN109210719A (zh) * 2018-08-23 2019-01-15 青岛海尔空调器有限总公司 基于内机风速控制空调器压缩机的方法
CN109210723B (zh) * 2018-08-23 2021-07-23 重庆海尔空调器有限公司 基于距离控制空调压缩机的方法
CN109210708A (zh) * 2018-08-23 2019-01-15 青岛海尔空调器有限总公司 空调器压缩机控制方法、控制装置和空调器
CN109210722A (zh) * 2018-08-23 2019-01-15 青岛海尔空调器有限总公司 空调器的运行控制方法和控制装置
CN109210721A (zh) * 2018-08-23 2019-01-15 青岛海尔空调器有限总公司 空调器运行控制方法及控制装置
CN109210724A (zh) * 2018-08-23 2019-01-15 青岛海尔空调器有限总公司 基于内机风速控制空调压缩机的方法
CN109210720A (zh) * 2018-08-23 2019-01-15 青岛海尔空调器有限总公司 空调器运行控制方法和控制装置
CN109210715A (zh) * 2018-08-23 2019-01-15 青岛海尔空调器有限总公司 空调器及其压缩机控制方法和控制装置
CN109210717A (zh) * 2018-08-23 2019-01-15 青岛海尔空调器有限总公司 基于冷热度控制压缩机的方法、装置及空调
CN109210710A (zh) * 2018-08-23 2019-01-15 青岛海尔空调器有限总公司 基于人体舒适度控制空调压缩机的方法及装置
CN109210681A (zh) * 2018-08-23 2019-01-15 青岛海尔空调器有限总公司 空调器自清洁控制方法
CN109210718B (zh) * 2018-08-23 2021-07-23 重庆海尔空调器有限公司 基于距离控制空调器压缩机的方法和装置
CN109210713A (zh) * 2018-08-23 2019-01-15 青岛海尔空调器有限总公司 基于内机风速控制空调压缩机的方法和装置
CN109210712B (zh) * 2018-08-23 2021-07-23 重庆海尔空调器有限公司 基于距离控制空调器压缩机的方法
CN109210709A (zh) * 2018-08-23 2019-01-15 青岛海尔空调器有限总公司 基于人体舒适度控制空调压缩机的方法和装置
CN109210714A (zh) * 2018-08-23 2019-01-15 青岛海尔空调器有限总公司 空调器压缩机控制方法、控制装置及空调器
KR102245793B1 (ko) * 2019-01-08 2021-04-28 현대모비스 주식회사 모터장치
JP7022282B2 (ja) * 2019-03-28 2022-02-18 ダイキン工業株式会社 電動機およびそれを備えた電動機システム
CN113811723A (zh) 2019-05-20 2021-12-17 三菱电机株式会社 室外机、空气调节装置以及空气调节装置的运转控制方法
JPWO2021090414A1 (ja) * 2019-11-06 2021-05-14
JP7392737B2 (ja) * 2019-12-06 2023-12-06 三菱電機株式会社 空気調和システム、および空気調和システムの制御方法
DE102020101990A1 (de) * 2020-01-28 2021-07-29 Aesculap Ag Multi Betriebsspannungsmotor
CN111147000A (zh) * 2020-02-21 2020-05-12 纳恩博(北京)科技有限公司 一种电机绕组工作状态的切换装置
WO2022034665A1 (ja) * 2020-08-13 2022-02-17 三菱電機株式会社 電動機、駆動装置、圧縮機、及び空気調和機
KR102478880B1 (ko) * 2021-01-13 2022-12-16 엘지전자 주식회사 모터 구동 장치 및 이를 구비하는 공기조화기

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4619826Y1 (ja) 1970-01-06 1971-07-09
JPH03265489A (ja) * 1990-03-15 1991-11-26 Canon Electron Inc モータ駆動回路
DE69721817D1 (de) 1996-12-03 2003-06-12 Elliott Energy Systems Inc Elektrische anordnung für turbine/alternator auf gemeinsamer achse
JP4619826B2 (ja) 2005-03-07 2011-01-26 三菱電機株式会社 電動機駆動装置、電動機駆動方法及び圧縮機
JP2008190828A (ja) * 2007-02-07 2008-08-21 Toshiba Carrier Corp 空気調和機及び吸着・脱離装置
JP4722069B2 (ja) * 2007-03-15 2011-07-13 三菱電機株式会社 電動機駆動装置および電動機駆動方法並びに冷凍空調装置
JP4609474B2 (ja) * 2007-10-10 2011-01-12 株式会社デンソー 回転電機装置
JP2009216324A (ja) 2008-03-11 2009-09-24 Toshiba Carrier Corp 空気調和機
JP5501132B2 (ja) * 2010-07-22 2014-05-21 日立アプライアンス株式会社 空気調和機
CN202160137U (zh) * 2011-07-22 2012-03-07 江苏国力锻压机床有限公司 电机星-三角形启动电路
JP5585556B2 (ja) 2011-08-30 2014-09-10 三菱電機株式会社 空気調和機
WO2014002251A1 (ja) * 2012-06-29 2014-01-03 三菱電機株式会社 ヒートポンプ装置、ヒートポンプシステム、空気調和機および冷凍機
WO2014112109A1 (ja) * 2013-01-18 2014-07-24 トヨタ自動車株式会社 車両用電動機の制御装置
JP5569606B1 (ja) * 2013-02-01 2014-08-13 株式会社安川電機 インバータ装置および電動機ドライブシステム
WO2015045076A1 (ja) * 2013-09-26 2015-04-02 三菱電機株式会社 電力変換装置及び空気調和装置
WO2016015147A1 (en) * 2014-07-29 2016-02-04 Tm4 Inc. Multiple phase electric machine, drive and control
WO2016051456A1 (ja) * 2014-09-29 2016-04-07 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー (ホンコン) リミテッド 巻線切替モータ駆動装置、巻線切替モータの駆動制御方法、及びそれらを用いた冷凍空調機器
JP6491455B2 (ja) * 2014-10-28 2019-03-27 シャープ株式会社 電動機
JP6530174B2 (ja) 2014-10-28 2019-06-12 シャープ株式会社 冷凍サイクル装置
JP2016099029A (ja) * 2014-11-19 2016-05-30 シャープ株式会社 空気調和機
CN205545021U (zh) * 2016-01-18 2016-08-31 广州大学城华电新能源有限公司 机力冷却塔风机减速机软启动控制系统
JP6721476B2 (ja) * 2016-09-28 2020-07-15 シャープ株式会社 モータ駆動システムおよび空気調和機
CN109863690B (zh) 2016-10-31 2023-04-04 三菱电机株式会社 驱动装置、空调机以及电动机的驱动方法
WO2018078840A1 (ja) 2016-10-31 2018-05-03 三菱電機株式会社 駆動装置、空気調和機および電動機の駆動方法
JP6652657B2 (ja) 2016-10-31 2020-02-26 三菱電機株式会社 空気調和機および空気調和機の制御方法
WO2018078838A1 (ja) 2016-10-31 2018-05-03 三菱電機株式会社 駆動装置および空気調和機、並びに圧縮機の制御方法

Also Published As

Publication number Publication date
EP3534532B1 (en) 2021-09-15
WO2018078835A1 (ja) 2018-05-03
EP3534532A1 (en) 2019-09-04
JPWO2018078835A1 (ja) 2019-04-18
AU2016428277C1 (en) 2020-10-01
AU2016428277B2 (en) 2020-05-28
AU2016428277A1 (en) 2019-04-04
US11101763B2 (en) 2021-08-24
CN109863691B (zh) 2023-04-04
CN109863691A (zh) 2019-06-07
EP3534532A4 (en) 2019-10-30
KR102261053B1 (ko) 2021-06-04
KR20190039235A (ko) 2019-04-10
US20190245471A1 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
JP6652657B2 (ja) 空気調和機および空気調和機の制御方法
JP6625762B2 (ja) 駆動装置、空気調和機および電動機の駆動方法
JP6636170B2 (ja) 駆動装置、空気調和機および電動機の駆動方法
JP6719577B2 (ja) 駆動装置および空気調和機、並びに圧縮機の制御方法
JP6710336B2 (ja) 駆動装置、空気調和機および駆動方法
JP6942184B2 (ja) 駆動装置、圧縮機、空気調和機および駆動方法
JP6800301B2 (ja) 駆動装置、空気調和機および電動機の駆動方法
JP6689464B2 (ja) 駆動装置、圧縮機、及び空気調和機、並びに永久磁石埋込型電動機の駆動方法
JP6899935B2 (ja) 空気調和機および空気調和機の制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200123

R150 Certificate of patent or registration of utility model

Ref document number: 6652657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250