WO2019021365A1 - Component-mounting device - Google Patents

Component-mounting device Download PDF

Info

Publication number
WO2019021365A1
WO2019021365A1 PCT/JP2017/026815 JP2017026815W WO2019021365A1 WO 2019021365 A1 WO2019021365 A1 WO 2019021365A1 JP 2017026815 W JP2017026815 W JP 2017026815W WO 2019021365 A1 WO2019021365 A1 WO 2019021365A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement object
component
height
unit
imaging unit
Prior art date
Application number
PCT/JP2017/026815
Other languages
French (fr)
Japanese (ja)
Inventor
国宗 駒池
宏二 山積
一義 家泉
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2019532245A priority Critical patent/JP6889778B2/en
Priority to PCT/JP2017/026815 priority patent/WO2019021365A1/en
Publication of WO2019021365A1 publication Critical patent/WO2019021365A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages

Definitions

  • the present invention relates to a component mounting apparatus, and more particularly to a component mounting apparatus for acquiring the height of a measurement object.
  • Japanese Patent Application Laid-Open No. 2012-142347 discloses an electronic component mounting apparatus (component mounting apparatus) that acquires the height of an electronic component disposed in a feeder as the height of a measurement object.
  • the electronic component mounting apparatus is configured to obtain the height of the object to be measured by a laser displacement meter.
  • the present invention has been made to solve the problems as described above, and one object of the present invention is to provide a component mounting apparatus capable of accurately measuring the height of a small measurement object. To provide.
  • a component mounting apparatus includes a head for holding a component supplied from a component supply unit and mounting the component on a substrate, a first imaging unit for imaging a position recognition mark attached to the substrate, and A measurement target based on a second imaging unit provided separately from the imaging unit, a first captured image of the measurement target by the first imaging unit, and a second captured image of the measurement target by the second imaging unit And a control unit for acquiring the height of the object.
  • the control unit performs the first captured image of the measurement object by the first imaging unit and the second captured image of the measurement object by the second imaging unit.
  • the first imaging unit and the second imaging unit can image a wide range to some extent, the mounting positions of the first imaging unit and the second imaging unit are slightly deviated from the normal position. Even in this case, it is possible to image the measurement object. Therefore, as described above, a small measurement object is obtained by acquiring the height of the measurement object based on the first and second captured images of the measurement object by the first and second imaging units. Even the height can be measured accurately.
  • the height measurement of the measurement object can be performed using the first imaging unit that images the position recognition mark, the height measurement of the measurement object is performed at least for the first imaging unit. It is possible to suppress an increase in the number of parts.
  • the first imaging unit is configured to image the measurement object from substantially vertically above
  • the second imaging unit has a telecentric optical system and is oblique. It is comprised so that a measurement target may be imaged from upper direction.
  • the control unit is configured to obtain the height of the measurement object according to the following equation (1).
  • H S / sin ⁇ -T / tan ⁇ (1) here, H: height S of the measurement object: real space distance T corresponding to the distance from the center line to the measurement object position in the second image: corresponding to the distance from the center line to the measurement object position in the first image
  • Real space distance ⁇ the angle of the optical axis of the second imaging unit with respect to the vertical direction.
  • the control unit is configured to acquire the height of the measurement object according to the following equation (2).
  • the height of the measurement object can be acquired with only one conversion coefficient.
  • the process for acquiring the height can be performed more easily.
  • the second imaging unit is an imaging unit that images at least one of a component disposed in the component supply unit and a component mounting position of the substrate.
  • the height measurement of the object to be measured is performed using the part arranged in the part supply unit and the second imaging unit for imaging at least one of the component mounting positions of the substrate. Since the measurement can be performed, it is possible to further suppress the increase in the number of parts in order to measure the height of the measurement object.
  • the position is preferably a position where the position recognition mark is formed on the substrate or a position where the wiring pattern is formed on the substrate.
  • the position recognition mark and the wiring pattern are both characteristic and easy to recognize in the substrate. Therefore, if configured as described above, the height of the substrate is easily obtained based on the first captured image and the second captured image of the formation position of the position recognition mark on the substrate or the formation position of the wiring pattern on the substrate. can do. In this case, if the target mounting height position of the head at the time of mounting the component on the substrate is corrected based on the acquired height of the substrate, the mounting of the component on the substrate by the head can be performed with high accuracy.
  • the object to be measured is a component disposed in the component supply unit.
  • the height of the component disposed in the component supply unit can be easily obtained based on the first and second captured images of the component disposed in the component supply unit.
  • the target holding height position of the head at the time of holding the component from the component supply unit is corrected based on the acquired height of the component, the component can be held accurately from the component supply unit by the head. be able to.
  • the object to be measured is a component disposed in the component supply unit
  • the control unit is configured to perform a setup change
  • a holding error of the component by the head is
  • the first imaging unit and the second imaging unit perform control of imaging the component as the measurement object, and the first captured image of the component as the measurement object and the first (2) While acquiring a captured image, it is configured to obtain the height of a part as a measurement object based on the acquired first and second captured images.
  • the height of the part as the measuring object currently acquired is considered to be an inappropriate value because the holding error of the part by the head occurred, the height of the part as the measuring object is acquired It can be done again. That is, the height of the part as the object to be measured can be reacquired at an appropriate timing.
  • the measurement object is a component arranged in the component supply unit
  • the second imaging unit is a component from diagonally above
  • the control unit is configured to pick up an image of the component disposed in the supply unit, and the control unit causes the component disposed in the component supply unit to be displayed based on the captured image of the component disposed in the component supply unit by the second imaging unit.
  • the controller is configured to acquire a target holding horizontal position correction value for correcting a target holding horizontal position, which is a position in the horizontal direction targeted by the head when moving down for holding.
  • the first imaging unit and the second imaging unit When the target holding horizontal position correction value is equal to or greater than a predetermined threshold value, the first imaging unit and the second imaging unit perform control of imaging a component as a measurement object, and the measurement object Of parts as It acquires the captured image and the second captured image, based on the first image and the second captured image acquired, and is configured to obtain the height of the component as a measuring object.
  • the target holding horizontal position correction value when acquiring the target holding horizontal position correction value based on the captured image of the part captured from diagonally above, assuming that the height of the part is a predetermined height, the target holding horizontal position correction value You need to get In this case, if the height of the part is different from the predetermined height, it is difficult to obtain the target holding horizontal position correction value accurately.
  • the target holding horizontal position correction value when the acquired target holding horizontal position correction value is greater than or equal to the predetermined threshold value, the target holding horizontal position can be obtained by acquiring the height of the part as the measurement object. Since the position correction value is excessively large, the height of the part as the object to be measured can be re-acquired when it is considered that the target holding horizontal position correction value is not an accurate value. As a result, it is possible to accurately acquire the target holding horizontal position correction value based on the height of the reacquired part.
  • the control unit detects the same feature point of the measurement object in the first captured image and the second captured image, and the same feature of the detected measurement object
  • the height of the point is configured to be acquired as the height of the measurement object. According to this structure, the height of the measurement object can be acquired only by acquiring the height of the same feature point of the measurement object detected from each of the first captured image and the second captured image. Therefore, the height of the object to be measured can be obtained by simple processing.
  • FIG. 2 is a view showing an imaging state of a measurement object by an imaging unit. It is a figure which shows the captured image of the measurement object by the component mounting apparatus of 1st Embodiment, Comprising: (A) is a figure which shows the 1st captured image by a 1st imaging part, (B) is a 2nd imaging It is a figure which shows the 2nd captured image by a part.
  • (A) is a figure which shows the 1st captured image by a 1st imaging part
  • (B) is a 2nd imaging
  • the component mounting apparatus 100 is an apparatus which mounts components E (electronic components), such as IC, a transistor, a capacitor, and a resistance, on board
  • substrates P such as a printed circuit board, as shown in FIG.
  • the component mounting apparatus 100 includes a base 1, a transport unit 2, a head unit 3, a support unit 4, a rail unit 5, a component imaging unit 6, a first imaging unit 7, and a second imaging unit 8. , And the control unit 9.
  • the base 1 is a base on which the components are arranged in the component mounting apparatus 100.
  • a transport unit 2 On the base 1, a transport unit 2, a rail unit 5 and a component imaging unit 6 are provided. Further, in the base 1, a control unit 9 is provided. Further, in the base 1, arrangement portions 1 a capable of arranging the component supply portion 11 are provided on both sides in the Y direction (Y1 direction side and Y2 direction side).
  • the component supply unit 11 is a tape feeder that supplies components E to be mounted on the substrate P. Specifically, the component supply unit 11 holds a reel (not shown) around which a component supply tape (not shown) holding a plurality of components E is wound. Further, the component supply unit 11 is configured to supply the component E by rotating the held reel to send out the component supply tape according to the component holding operation for taking out the component E by the head unit 3. It is done. In the placement unit 1a, a plurality of component supply units 11 are arranged along the transport direction (X direction) of the substrate P.
  • the transport unit 2 is a device for transporting the substrate P in the transport direction (X direction). Specifically, the transport unit 2 carries in the substrate P before mounting from the outside of the component mounting apparatus 100, transports the substrate P in the transport direction, and carries out the mounted substrate P outside the component mounting apparatus 100. Is configured as. The transport unit 2 is configured to transport the carried-in substrate P to the mounting stop position M and to fix the substrate P at the mounting stop position M.
  • the conveyance part 2 has a pair of conveyor part 2a.
  • Each of the pair of conveyors 2a has a conveyor belt (not shown).
  • the transport unit 2 is configured to transport, in the transport direction (X direction), the substrates P placed on the transport belts of the pair of conveyors 2 a by the transport belts of the pair of conveyors 2 a.
  • the head unit 3 is a head unit for component mounting, and is configured to mount the component E on the substrate P fixed at the mounting stop position M.
  • the head unit 3 includes a plurality of heads (mounting heads) 3a arranged in a circle.
  • the head unit 3 is a rotary type head unit in which a plurality of heads 3a are arranged in a circle. In the case of a rotary type head unit 103, the head 3a is rotationally moved to a position closest to the second imaging unit 8, and the second imaging unit 8 images a component E to be held (sucked) by the head 3a. Can.
  • the plurality of heads 3a arranged in a circular shape are configured to be rotatable around the center of the circle formed by the plurality of heads 3a.
  • the plurality of heads 3a have substantially the same configuration.
  • the head 3 a is configured to hold (suck) the component E supplied from the component supply unit 11 and mount the component E on the substrate P.
  • the head 3a is connected to a vacuum generator (not shown), and holds the component E in a nozzle (not shown) attached to the tip by negative pressure supplied from the vacuum generator. It is configured to (adsorb).
  • the head 3a is configured to mount the component E held by the nozzle on the substrate P by releasing the negative pressure supplied from the vacuum generating device.
  • the head 3a is configured to be movable in the vertical direction (Z direction) by a drive mechanism (not shown).
  • the head 3a is configured to be movable between a lowered position for holding (sucking) the component E or mounting the component E on the substrate P and a raised position for movement in the horizontal plane. It is done.
  • the support 4 supports the head unit 3 so as to be movable in the transport direction (X direction).
  • the support 4 includes a ball screw shaft 41 extending in the transport direction, and an X-axis motor 42 that rotates the ball screw shaft 41.
  • the head unit 3 is provided with a ball nut (not shown) engaged with the ball screw shaft 41 of the support portion 4.
  • the head unit 3 is configured to be movable in the transport direction along the support portion 4 together with the ball nut engaged with the ball screw shaft 41 by rotating the ball screw shaft 41 by the X-axis motor 42.
  • the pair of rail portions 5 is configured to support the support portion 4 movably in the Y direction orthogonal to the X direction in the horizontal plane.
  • the rail portion 5 includes a pair of guide rails 51 for movably supporting both end portions in the X direction of the support portion 4 in the Y direction, a ball screw shaft 52 extending in the Y direction, and a ball screw shaft 52. And a Y-axis motor 53 to be rotated.
  • the support portion 4 is provided with a ball nut (not shown) engaged with the ball screw shaft 52 of the rail portion 5.
  • the support portion 4 is configured to be movable in the Y direction along the pair of rail portions 5 together with the ball nut engaged with the ball screw shaft 52 by the rotation of the ball screw shaft 52 by the Y-axis motor 53 There is.
  • the head 3 a of the head unit 3 is configured to be movable in the horizontal direction (X direction and Y direction) on the base 1.
  • the head 3 a of the head unit 3 can move above the component supply unit 11 to hold (suck) the component E supplied from the component supply unit 11.
  • the head unit 3 can move to the upper side of the substrate P fixed at the mounting stop position M, and mount the held (sucked) component E on the substrate P.
  • the component imaging unit 6 is a camera for component recognition that captures an image of the component E held (sucked) by the head 3 a prior to the mounting of the component E on the substrate P by the head 3 a.
  • the component imaging unit 6 is fixed on the upper surface of the base 1 and configured to image the component E held (sucked) by the head 3 a from below the component E (in the Z2 direction).
  • the control unit 9 is configured to acquire (recognize) the suction state (rotational posture and suction position with respect to the head 3a) of the component E based on the captured image of the component E by the component imaging unit 6.
  • the first imaging unit 7 is a camera for substrate recognition that images a position recognition mark (fiducial mark) F attached to the upper surface of the substrate P prior to the mounting of the component E on the substrate P by the head 3a.
  • the first imaging unit 7 is a camera for substrate recognition that has an application different from the application for photographing the measurement object 12 described later.
  • the position recognition mark F is a mark for recognizing the position of the substrate P.
  • the first imaging unit 7 is attached such that the optical axis 7a is oriented substantially along the vertical direction (Z direction), and imaging is performed from approximately vertically above (approximately directly above) It is configured to image an object.
  • the first imaging unit 7 is provided in the head unit 3 and is configured to be movable in the horizontal direction together with the head unit 3.
  • the control unit 9 is configured to acquire (recognize) the correct position and posture of the substrate P fixed at the mounting stop position M based on the captured image of the position recognition mark F by the first imaging unit 7 .
  • the second imaging unit 8 is a camera for component position recognition which picks up an image of the component E arranged in the component supply unit 11 prior to holding of the component E from the component supply unit 11 by the head 3a.
  • the second imaging unit 8 is provided in the head unit 3 and is configured to be movable in the horizontal direction together with the head unit 3.
  • the 2nd imaging part 8 is a camera for component position recognition which has a use different from the use which image
  • the second imaging unit 8 is attached such that the optical axis 8a is inclined with respect to the vertical direction, and is configured to image an object to be imaged from diagonally above It is done.
  • the second imaging unit 8 also has a telecentric optical system in which the chief ray is parallel to the optical axis 8a. Based on the captured image of the component E disposed in the component supply unit 11 by the second imaging unit 8, the control unit 9 causes the head 3a to move downward to hold the component E disposed in the component supply unit 11. It is configured to correct a target holding horizontal position (XY coordinate position) which is a position in the target horizontal direction.
  • the control unit 9 moves the second imaging unit 8 to a position where the component E to be taken out by the head 3a can be imaged immediately before holding (suction) the component E by the head 3a every time holding (suction) the component E
  • the second imaging unit 8 captures an image of the storage portion (pocket) of the component supply tape that stores the component E and the component E, and acquires a target holding horizontal position correction value for correcting the target holding horizontal position. It is configured.
  • the control unit 9 corrects the target holding horizontal position of the head 3a (that is, the target holding horizontal position of the nozzle) based on the acquired target holding horizontal position correction value, and controls to lower the nozzle of the head 3a. Is configured to do. If the correction is not in time, correction may be made in the case where the component E is taken out next from the component supply unit 11 (tape feeder) that supplies the same component E without correction in the imaged component E.
  • the control unit 9 is a control circuit that controls an operation of the component mounting apparatus 100, including a central processing unit (CPU), a read only memory (ROM), and a random access memory (RAM).
  • the control unit 9 mounts the component E on the substrate P by the head 3 a of the head unit 3 by controlling the transport unit 2, the component supply unit 11, the X-axis motor 42, the Y-axis motor 53 and the like according to the production program. Is configured as.
  • the control unit 9 measures the height of the measurement object 12
  • the first imaging unit 7 and the second imaging unit 8 thus, control for imaging the measurement object 12 is performed.
  • the height of the measurement object 12 means the height position of the measurement object 12 in the coordinate system set in the component mounting apparatus 100.
  • the measurement object 12 is the component E disposed in the component supply unit 11.
  • a first captured image 13 (see FIG. 3A) of the measurement object 12 by the first imaging unit 7 is an image obtained by copying the entire part E and the periphery of the part E from substantially vertically above the part E .
  • the first captured image 13 includes the upper surface of the part E indicating the height of the part E.
  • the second captured image 14 (see FIG. 3B) of the measurement object 12 by the second imaging unit 8 is an image obtained by copying the entire part E and the periphery of the part E from diagonally above the part E.
  • the second captured image 14 includes the upper surface of the part E indicating the height of the part E and the side surface of the part E.
  • control part 9 is a 1st captured image 13 of the measurement object 12 by the 1st imaging part 7, and the measurement object by the 2nd imaging part 8
  • the height of the measurement object 12 is acquired by stereo matching based on the second captured image 14 of the object 12.
  • the control unit 9 targets the head 3a when moving down to hold the component E disposed in the component supply unit 11.
  • the target holding height position (Z coordinate position), which is the position in the vertical direction, is configured to be corrected.
  • the control unit 9 determines whether the measurement object 12 (part E) in the first captured image 13 and the second captured image 14 is the same.
  • the feature point 12 a is detected, and the height of the same feature point 12 a of the detected measurement object 12 is acquired as the height of the measurement object 12.
  • the control unit 9 detects the same feature point 12 a of the measurement object 12 (part E) in the first captured image 13 and the second captured image 14 based on the lightness (pixel value) in the image. It is configured to For example, the control unit 9 detects the side E1 of the top surface of the measurement object 12 (part E) on the far side as viewed from the imaging direction by the second imaging unit 8 as the same feature point 12a.
  • the control unit 9 detects the side E1 of the top surface of the measurement object 12 (part E) on the far side as viewed from the imaging direction by the second imaging unit 8 as the same feature point 12a.
  • the control unit 9 detects the side E1 of the top surface of the measurement object 12 (part E) on the far side as viewed from the imaging direction by the second imaging unit 8 as the same feature point 12a.
  • the control unit 9 detects the side E1 of the top surface of the measurement object 12 (part E) on the far side as viewed from the imaging direction by the second imaging unit 8 as the same feature point 12a.
  • the control unit 9 is configured to detect, as the same feature point 12a, a predetermined point E4 in the side E1 that indicates a boundary between the electrode portion E2 of the component E and the mold portion E3. Thereby, it is possible to easily detect a characteristic portion having a large difference in lightness as the same feature point 12a.
  • the control unit 9 sets the height of the measurement object 12 (part E) according to the following equation (3) to the same feature points 12 a of the measurement object 12. Is configured to get the height of the.
  • H S / sin ⁇ -T / tan ⁇ (3) here, H: height S of the measurement object of the physical unit: real space distance T corresponding to the distance from the center line to the measurement object position in the second image: distance from the center line to the measurement object position in the first image
  • the distance ⁇ of the real space corresponding to : an angle of the optical axis of the second imaging unit with respect to the vertical direction.
  • the distance S is incident on the second imaging unit 8 through the center line of the real space (the line perpendicular to the page through the point B in FIG. 4) corresponding to the center line 14a passing the imaging center of the second captured image 14 It can be said that the distance from the light beam (light beam 15c to be described later) to the light beam (light beam 15d to be described later) incident on the second imaging unit 8 through the measurement target position in real space.
  • the distance S is a value acquired by the control unit 9 as a distance in physical units based on the distance in pixel units from the center line 14 a of the second captured image 14 to the feature point 12 a.
  • the distance T is incident on the first imaging unit 7 through the center line of the real space (the line perpendicular to the page through the point B in FIG. 4) corresponding to the center line 13a passing the imaging center of the first captured image 13 It can be said that the distance from the light beam (light beam 15a to be described later) to the light beam (light beam 15b to be described later) incident on the first imaging unit 7 through the measurement target position in real space.
  • the distance T is a value acquired by the control unit 9 as a physical unit distance based on the distance in pixel units from the center line 13a passing the imaging center of the first captured image 13 to the feature point 12a.
  • the angle ⁇ is a mounting angle of the second imaging unit 8 and is a known value (for example, 30 degrees).
  • a line 15a (a first imaging unit 7 center) indicating a light ray incident on the first imaging unit 7 through a center line of the real space corresponding to the center line 13a, and a first characteristic point 12a Indicates a ray incident on the second imaging unit 8 through a line 15 b (a feature point 12 a viewed from the first imaging unit 7) indicating a ray incident on the imaging unit 7 and a center line of the real space corresponding to the center line 14 a
  • a line 15c (second imaging unit 8 center) and a line 15d (feature point 12a viewed from the second imaging unit 8) indicating a light beam passing through the feature point 12a and incident on the second imaging unit 8 are defined.
  • the height H of the feature point 12a relative to the reference height is the length a of the line segment AB represented by S / sin ⁇ and the line segment BC represented by T / Tan ⁇ based on the geometrical relationship. It can be expressed by the difference with the length b of (i.e., equation (3)).
  • the control unit 9 determines the measurement object 12 (part E by the following equation (4) Is configured to obtain the height of the same feature point 12a of the measurement object 12 as the height of.
  • H S ⁇ cos ⁇ / sin ( ⁇ + ⁇ ) ⁇ T ⁇ ⁇ cos ⁇ / tan ( ⁇ + ⁇ ) + sin ⁇ (4)
  • the angle ⁇ is an angle of the optical axis 7a of the first imaging unit 7 with respect to the vertical direction, and is a known value.
  • a line 16a (first imaging unit 7 center) indicating a light beam entering the first imaging unit 7 through the center line 13a and a light beam entering the first imaging unit 7 through the feature point 12a
  • a line 16b (feature point 12a seen from the first imaging unit 7), a line 16c (second imaging unit 8 center) showing a light ray incident on the second imaging unit 8 through the center line 14a, and the feature point 12a
  • a line 16d (a feature point 12a viewed from the second imaging unit 8) indicating a light beam incident on the second imaging unit 8, two auxiliary lines 16e and 16f extending along the vertical direction, and a horizontal passing through the feature point 12a
  • an auxiliary line 16g inclined by an angle ⁇ with respect to the direction.
  • the length c of the line segment DE is represented by T / cos ( ⁇ + ⁇ ) ⁇ T.
  • the length d of the line segment EF is represented by T ⁇ tan ⁇ .
  • the length e of the line segment FG is represented by b / tan ( ⁇ + ⁇ ) -c.
  • the height H of the feature point 12a with respect to the reference height can be expressed by e ⁇ cos ⁇ (that is, equation (4)).
  • the height H can be obtained by the equation (3).
  • the angle ⁇ is 1 degree or less, it is possible to obtain the height H by the equation (3).
  • control unit 9 first obtains the distance S and the distance T as the distance in pixel units (s and t, respectively), and at the same time, obtains the distance s and the distance t obtained as the distances in pixel units Or it is comprised so that it may substitute to Formula (4).
  • the control unit 9 is configured to acquire the height h of the same feature point 12 a of the measurement object 12 in units of pixels.
  • control unit 9 converts the height h (pixel) of the same feature point 12 a of the measurement object 12 in pixel units into the height H ( ⁇ m) of the physical unit of the length by the following equation (5)
  • the second imaging unit 8 is a telecentric optical system
  • the angle of view of the first imaging unit 7 is a predetermined When the angle of view or less (about 4 degrees or less), if the height is in the range of about 1 mm, it is possible to handle the conversion coefficient as one conversion coefficient as shown in equation (5).
  • a certain height H1 (for example, 1 mm) and a reference height H0 can be represented by the following equations (6) and (7), respectively.
  • H1 (Scale-a) ⁇ s1 / sin ⁇ - (Scale-b) ⁇ t1 / tan ⁇ (6)
  • H0 (Scale-a) ⁇ s0 / sin ⁇ (Scale ⁇ b) ⁇ t0 / tan ⁇ (7)
  • the height H of the physical unit can be expressed by the following approximate expression (8).
  • the first captured image 13 which is an image obtained by capturing the measurement object 12 from substantially vertically above, the number of pixels constituting the distance T does not change significantly even if the height of the part E changes a little, so t1 easily. It is possible to obtain an approximation condition of tt0.
  • Scale-c can be expressed by the following Expression (9).
  • the control unit 9 performs the first imaging unit 7 and the second imaging unit 7 when a setup change is performed, and when a holding (suction) error of the component E by the head 3 a occurs.
  • 8 performs control of imaging the measurement object 12 (part E), acquires the first captured image 13 and the second captured image 14 of the measurement object 12, and obtains the acquired first captured image 13 and second imaging
  • the height of the measurement object 12 is configured to be acquired based on the image 14. That is, the control unit 9 is configured to re-acquire the height of the measurement object 12 when the setup change is performed and when a holding error of the component E by the head 3 a occurs.
  • the case where the setup change is performed is, for example, the case where the component supply unit 11 is replaced, the case where the reel held by the component supply unit 11 is replaced, or the like.
  • a holding error of the component E by the head 3a occurs, for example, the head 3a is lowered to hold the component disposed in the component supply unit 11, but holding the component E by the head 3a If you can not Further, the case where a holding error of the part E by the head 3a occurs may be a case where a holding error occurs once, or a case where a holding error occurs a plurality of times (for example, three times) continuously.
  • control unit 9 assumes that the height of the component E disposed in the component supply unit 11 is the height of the component E measured by the height measurement, and thus the target holding horizontal A target holding horizontal position correction value for correcting the position is configured to be acquired.
  • the control unit 9, the target holding horizontal position correction value, when the predetermined threshold value Th 1 or more predetermined, the measuring object by the first image pickup unit 7 and the second imaging unit 8 12 (part E) Control to pick up an image to obtain the first and second captured images 13 and 14 of the measurement object 12, and based on the obtained first and second captured images 13 and 14, the measurement object
  • the height of the object 12 is configured to be acquired. That is, the control unit 9, the target holding horizontal position correction value, when the predetermined threshold value Th 1 or more, and is configured to re-acquire the height of the measurement object 12.
  • the control unit 9, the target holding horizontal position correction value, if it is below a predetermined threshold Th 1 is configured so as not to perform the acquired again control the height of the measurement object 12 .
  • the predetermined threshold value Th 1 is a value for the target holding horizontal position correction value obtained to determine whether not excessive.
  • the control unit 9, a case where a predetermined threshold value Th 1 or more, the difference between the height of the measurement object 12, which is obtained this time, the height of the measurement object 12 obtained in the previous time, the predetermined If it is less than the threshold value Th 2 of is configured to perform control to notify the abnormality of the horizontal position of the disposed in the component supply section 11 part E.
  • the predetermined threshold value Th 2 the height of the measurement object 12, which is obtained this time is, the height of the measurement object 12 obtained in the previous time, in order to determine whether the changes significantly Is the value of
  • step S1 it is determined whether or not the height measurement of the measurement object 12 (the part E disposed in the part supply unit 11) is to be performed. That is, in step S1, it is determined whether or not the setup change has been performed, and whether a holding (suction) error of the component E by the head 3a has occurred. If it is determined that the height measurement of the measurement object 12 is not to be performed, the height measurement process is ended.
  • step S1 When it is determined in step S1 that the height measurement of the measurement object 12 is to be performed, the process proceeds to step S2.
  • step S2 control is performed to move the first imaging unit 7 to the imaging position of the measurement object 12 (part E). Then, the measurement object 12 is imaged by the first imaging unit 7.
  • step S3 the first captured image 13 by the first imaging unit 7 is acquired.
  • step S4 control is performed to move the second imaging unit 8 to the imaging position of the measurement object 12 (part E). Then, the measurement object 12 is imaged by the second imaging unit 8. Either of the imaging of the measurement object 12 by the first imaging unit 7 and the imaging of the measurement object 12 by the second imaging unit 8 may be performed first.
  • step S5 the second captured image 14 by the second imaging unit 8 is acquired.
  • step S6 the same feature points 12a of the measurement object 12 (part E) in the first captured image 13 and the second captured image 14 are detected based on the lightness in the image.
  • step S7 the height of the measurement object 12 is acquired based on the first captured image 13 and the second captured image 14. Specifically, the height of the same feature point 12 a of the detected measurement object 12 is acquired as the height of the measurement object 12 according to the above-described expression (3) or expression (4).
  • step S8 the target holding height position (Z coordinate position) is corrected based on the height of the measurement object 12. Thereafter, the height measurement process is ended.
  • FIG. 7 an example of the height measurement process by the component mounting apparatus 100 according to the first embodiment will be described based on a flowchart. Specifically, with reference to FIG. 7, height measurement processing of the part E in the case where the target holding horizontal position correction value is equal to or more than a predetermined threshold value Th 1 will be described.
  • the target holding horizontal position correction value is acquired for each holding operation of the component E by the head 3a. Therefore, the process of the flowchart shown in FIG. 7 is performed for each holding operation of the part E by the head 3a. Further, each process of the flowchart is performed by the control unit 9.
  • step S11 the target holding horizontal position correction value, whether the predetermined threshold value Th 1 or more is determined.
  • Target holding horizontal position correction value when it is determined to be less than the predetermined threshold value Th 1, the height measurement process is terminated.
  • step S11 when the target holding horizontal position correction value is determined to be a predetermined threshold value Th 1 or more, the process proceeds to step S12. Then, in the processes of steps S12 to S17, the same processes as the processes of steps S2 to S7 shown in FIG. 6 are performed.
  • step S18 the difference between the height of the measurement object 12 (part E disposed in the component supply unit 11) acquired this time and the height of the measurement object 12 acquired last time is a predetermined threshold value It is determined whether it is Th 2 or more.
  • step S18 if the difference between the height is determined to be a predetermined threshold value Th 2 or more, the height of the measurement object 12 from the time of previous measurement is considered to have changed significantly, the step Go to S19.
  • step S19 the height of the measurement object 12 is updated to the height of the measurement object 12 (part E) acquired this time.
  • the height of the part E disposed in the part supply unit 11 is the height of the updated measurement object 12 (part E)
  • An accurate target hold horizontal position correction value is obtained.
  • step S20 the target holding height position (Z coordinate position) is corrected based on the height of the updated measurement object 12 (part E). Thereafter, the height measurement process is ended.
  • step S18 if the difference between the height is determined to be below a predetermined threshold Th 2 is also the height of the measurement object 12 from the time of previous measurement has not changed significantly Regardless, it is considered that the target holding horizontal position correction value is an excessive value. That is, it is considered that the position in the horizontal direction of the component E disposed in the component supply unit 11 is actually largely displaced from the normal position. For this reason, the process proceeds to step S21, and in step S21, control is performed to notify of an abnormality in the position of the component E arranged in the component supply unit 11 in the horizontal direction. Thereafter, the height measurement process is ended.
  • the control unit 9 controls the first captured image 13 of the measurement object 12 (part E) by the first imaging unit 7 and the measurement object 12 by the second imaging unit 8 (
  • the height of the measurement object 12 (part E) is acquired based on the second captured image 14 of the part E).
  • the first imaging unit 7 and the second imaging unit 8 are both capable of imaging a wide range to some extent, the attachment positions of the first imaging unit 7 and the second imaging unit 8 are slightly deviated from the regular position. Even in the case, it is possible to image the measurement object 12 (part E).
  • the measurement object 12 (part E By acquiring the height of), the height can be accurately measured even with a small measurement object 12 (part E).
  • the height measurement of the measurement object 12 (part E) can be performed using the first imaging unit 7 that images the position recognition mark F, the height measurement of the measurement object 12 (part E) It is possible to suppress an increase in the number of parts in order to
  • the first imaging unit 7 is configured to image the measurement object 12 (part E) from substantially vertically above.
  • the second imaging unit 8 is configured to have a telecentric optical system and to image the measurement object 12 (part E) from diagonally above.
  • a first captured image 13 which is an image obtained by capturing the measurement target 12 (part E) from substantially vertically above
  • a second captured image 14 which is an image obtained by capturing the measurement target 12 (part E) from diagonally above
  • the height of the measurement object 12 (part E) can be easily obtained.
  • control unit 9 is configured to acquire the height of the measurement object 12 (part E) according to the above-mentioned equation (3).
  • the control unit 9 is configured to acquire the height of the measurement object 12 (part E) according to the above-mentioned equation (3).
  • control unit 9 is configured to obtain the height of the measurement object 12 (part E) by the above equation (5). Thereby, even when acquiring the height of the measurement object 12 (part E) using two imaging systems, acquiring the height of the measurement object 12 (part E) with only one conversion coefficient Since it can do, the process for acquiring the height of the measurement object 12 (part E) can be performed more easily.
  • the second imaging unit 8 is an imaging unit that images the component E disposed in the component supply unit 11.
  • the measurement object 12 In order to measure the height of the part E, the increase in the number of parts can be further suppressed.
  • the measurement object 12 is the component E disposed in the component supply unit 11.
  • the height of the component E disposed in the component supply unit 11 can be easily obtained based on the first captured image 13 and the second captured image 14 of the component E disposed in the component supply unit 11.
  • the component by the head 3 a is corrected by correcting the target holding height position (Z coordinate position) of the head 3 a at the time of holding the component E from the component supply unit 11 based on the acquired height of the component E.
  • the component E can be held from the supply unit 11 with high accuracy.
  • the first imaging unit 7 and the second imaging unit 7 perform the setup change of the control unit 9 and the holding error of the component E by the head 3a.
  • the imaging unit 8 controls the imaging of the component E as the measurement object 12, and acquires the first imaging image 13 and the second imaging image 14 of the component E as the measurement object 12, and the acquired first imaging Based on the image 13 and the second captured image 14, the height of the component E as the measurement object 12 is acquired.
  • the height of the component E as the measurement object 12 is acquired again. it can.
  • the part as the measurement object 12 when it is considered that the height of the part E as the currently obtained measurement object 12 is not an appropriate value because a holding error of the part E by the head 3a occurs, the part as the measurement object 12 You can get the height of E again. That is, the height of the part E as the measurement object 12 can be reacquired at an appropriate timing.
  • the control unit 9 corrects the target holding horizontal position based on the captured image of the part E disposed in the component supply unit 11 by the second imaging unit 8.
  • the target holding horizontal position correction value is acquired.
  • the measurement object by the first imaging unit 7 and the second imaging unit 8 Control for imaging the component E as 12 is performed, and the first captured image 13 and the second captured image 14 of the component E as the measurement object 12 are acquired, and the acquired first captured image 13 and the second captured image It is configured to acquire the height of the part E as the measurement object 12 on the basis of.
  • the target holding horizontal position correction value when acquiring the target holding horizontal position correction value based on the captured image of the part E captured from diagonally above, assuming that the height of the part E is a predetermined height, the target holding horizontal position It is necessary to obtain the correction value. In this case, if the height of the part E is different from the assumed predetermined height, it is difficult to accurately obtain the target holding horizontal position correction value. Therefore, as described above, the target holding horizontal position correction value acquired, if the predetermined threshold value Th 1 or more, if configured to obtain the height of the component E as the measurement object 12 Since the target holding horizontal position correction value is excessively large, the height of the part E as the measurement object 12 can be reacquired when it is considered that the target holding horizontal position correction value is not an accurate value. As a result, the target holding horizontal position correction value can be accurately acquired based on the height of the part E reacquired.
  • the control unit 9 detects the same feature points 12 a of the measurement object 12 (part E) in the first captured image 13 and the second captured image 14 as described above.
  • the height of the same feature point 12a of the detected measurement object 12 (part E) is obtained as the height of the measurement object 12 (part E).
  • the component mounting apparatus 200 according to the second embodiment of the present invention differs from the component mounting apparatus 100 according to the first embodiment in that a control unit 109 is provided as shown in FIG.
  • the measurement object 12 is a substrate P. Specifically, as shown in FIG. 8, the measurement object 12 is the formation position of the position recognition mark F on the substrate P and the formation position of the wiring pattern W on the substrate P.
  • the control unit 109 is configured to acquire the height of the measurement object 12 (substrate P), as in the first embodiment. That is, as shown in FIGS. 9A and 9B, the control unit 109 controls the first captured image 113 of the measurement object 12 by the first imaging unit 7 and the measurement object 12 by the second imaging unit 8.
  • the height of the measurement object 12 is acquired by stereo matching based on the second captured image 114.
  • the first captured image 113 is an image obtained by copying the entire position recognition mark F (the wiring pattern W of interest) and the periphery thereof from substantially vertically above the substrate P.
  • the first captured image 113 includes the upper surface of the substrate P indicating the height of the substrate P.
  • the distance T is the distance of the real space corresponding to the distance from the center line 113a passing the imaging center of the first pickup image 113 in the first pickup image 113 to the feature point 12a.
  • the second captured image 114 is an image in which the entire position recognition mark F (the wiring pattern W of interest) and the periphery thereof are photographed from diagonally above the substrate P.
  • the second captured image 114 includes the upper surface of the substrate P indicating the height of the substrate P.
  • the distance S is a distance in real space corresponding to the distance from the center line 114a passing through the imaging center of the second pickup image 114 in the second pickup image 114 to the feature point 12a.
  • the control unit 109 determines the position recognition mark F (target wiring pattern) as the same feature point 12a.
  • the corner F1 (W1) of W) is detected. Thereby, it is possible to easily detect a portion having a large difference in lightness as the same feature point 12a.
  • the control unit 109 is configured to acquire the height of the same feature point 12 a of the detected measurement object 12 as the height of the measurement object 12.
  • the control unit 109 acquires the heights of the plurality of positions on the measurement object 12 (substrate P), and based on the heights of the plurality of positions on the acquired measurement object 12 , It is comprised so that the curvature state of the whole measurement object 12 may be acquired. As shown in FIG. 8, for example, the control unit 109 determines the heights of the formation positions of the plurality (two) of position recognition marks F on the substrate P and the formation positions of the plurality (three) of wiring patterns W on the substrate P. Get the Then, the control unit 109 acquires the warping state of the entire substrate P based on the heights of the plurality (five) of positions in the acquired substrate P.
  • control unit 109 moves the head to mount the component E at the component mounting position of the substrate P based on the acquired warping state (height) of the substrate P as the measurement object 12. It is configured to correct a target mounting height position (Z coordinate position), which is a position in the vertical direction to be a target 3a.
  • step S31 from among the formation positions of the plurality (two) of position recognition marks F on the substrate P and the formation positions of the plurality (three) of wiring patterns W on the substrate P The measurement object 12 to be measured is determined.
  • step S32 control is performed to move the first imaging unit 7 to the imaging position of the determined measurement object 12 (the formation position of the position recognition mark F or the formation position of the wiring pattern W). Then, the measurement object 12 is imaged by the first imaging unit 7.
  • step S33 the first captured image 113 by the first imaging unit 7 is acquired.
  • step S34 control is performed to move the second imaging unit 8 to the imaging position of the determined measurement object 12 (the formation position of the position recognition mark F or the formation position of the wiring pattern W). Then, the measurement object 12 is imaged by the second imaging unit 8.
  • step S35 the second captured image 114 by the second imaging unit 8 is acquired.
  • step S36 based on the lightness in the image, the same features of the measurement object 12 (the position where the position recognition mark F is formed or the position where the wiring pattern W is formed) in the first captured image 113 and the second captured image 114. Point 12a is detected.
  • step S37 the height of the measurement object 12 is acquired based on the first captured image 113 and the second captured image 114. Specifically, the height of the same feature point 12 a of the detected measurement object 12 is acquired as the height of the measurement object 12 according to the above-described expression (3) or expression (4).
  • step S38 it is determined whether there is an unmeasured measurement object 12. If it is determined that there is an unmeasured measurement object 12, the process proceeds to step S31. Then, the processing of steps S32 to S37 is performed on the unmeasured measurement object 12, and the height is acquired.
  • step S38 when it is determined that there are no unmeasured measurement objects 12, the positions where all (two (two)) position recognition marks F are formed on the measurement objects 12 (the substrate P), and the substrate Since the formation positions of the plurality (three) of wiring patterns W in P are measured, the process proceeds to step S39.
  • step S39 the entire warped state of the substrate P is acquired based on the measurement results of the heights of all the measurement objects 12. Thereafter, the height measurement process is ended. After that, when mounting the component E on the substrate P, the target mounting height position (Z coordinate position) is corrected based on the acquired warping state (height) of the substrate P as the measurement object 12 Ru.
  • the remaining structure of the second embodiment is similar to that of the aforementioned first embodiment.
  • the control unit 109 controls the first captured image 113 of the measurement object 12 (substrate P) by the first imaging unit 7 and the measurement object 12 by the second imaging unit 8 (
  • the height of the measurement object 12 (substrate P) is obtained based on the second captured image 114 of the substrate P).
  • the height can be accurately measured even with a small measurement object 12 (e.g., the wiring pattern W for a minimal component in the substrate P).
  • the position is the position where the position recognition mark F is formed on the substrate P, or the position where the wiring pattern W is formed on the substrate P.
  • the position recognition mark F and the wiring pattern W are both characteristic and easy to recognize in the substrate P. Therefore, by configuring as described above, the substrate based on the first captured image 113 and the second captured image 114 of the formation position of the position recognition mark F on the substrate P or the formation position of the wiring pattern W on the substrate P The height of P can be easily obtained. In this case, if the target mounting height position of the head 3a at the time of mounting the component E on the substrate P is corrected based on the acquired height of the substrate P, mounting of the component E on the substrate P by the head 3a is performed. It can be done precisely.
  • the component supply unit is a tape feeder
  • the present invention is not limited to this.
  • the component supply unit may be a tray feeder that holds components on a tray.
  • the head unit is a rotary type head unit in which a plurality of heads are arranged in a circular shape, but the present invention is not limited to this.
  • the head unit may be a head unit including a plurality of heads arranged along a predetermined direction.
  • the head unit 103 includes a plurality of heads 103a arranged along a predetermined direction.
  • the head unit 103 is provided with a first imaging unit 7 and a second imaging unit 8.
  • the second imaging unit 8 is configured to be movable along the arrangement direction of the heads 103 a (nozzles) with respect to the head unit 103 so that the holding (suction) of the component E by each head 103 a can be imaged.
  • the first imaging unit captures an image of the measurement object from approximately vertically above, and the second imaging unit captures an image of the measurement object from diagonally above.
  • the present invention is not limited to this.
  • the first imaging unit may image the measurement object from any direction as long as the first imaging unit and the second imaging unit image the measurement object from different directions.
  • the unit may image the measurement object from any direction.
  • the height of a measurement object may be obtained by an equation other than the equation (3) or the equation (4).
  • the second imaging unit is an imaging unit for imaging a component arranged in the component supply unit.
  • the present invention is not limited to this.
  • the second imaging unit may be an imaging unit other than the imaging unit that images a component disposed in the component supply unit.
  • the second imaging unit may be an imaging unit that images a component mounting position of the substrate.
  • a target mounting horizontal position (XY coordinates) which is a position in the horizontal direction that the head targets when lowering to mount the component at the component mounting position. The position) may be corrected by the control unit.
  • the measurement object is a component disposed in the component supply unit
  • the measurement object is the position where the position recognition mark is formed on the substrate and the substrate
  • the present invention is not limited to this.
  • the object to be measured may be other than the components disposed in the component supply unit, the formation position of the position recognition mark on the substrate, and the formation position of the wiring pattern on the substrate.
  • the height of the substrate is measured, only one of the formation position of the position recognition mark on the substrate and the formation position of the wiring pattern on the substrate may be the object to be measured.
  • the control unit when the control unit performs the setup change, the holding error of the component by the head occurs, and the target holding horizontal position correction value is equal to or more than the predetermined threshold value.
  • the control unit performs at least one of the following cases: when a setup change is performed, when a holding error of a part by the head occurs, and when the target holding horizontal position correction value is equal to or more than a predetermined threshold value. In one case, it may be configured to obtain the height of the part as the measurement object.
  • the control unit when the control unit performs a setup change, a measurement error occurs in the case where a component holding error occurs by the head, and the target holding horizontal position correction value is equal to or more than a predetermined threshold value, the measurement target It may be configured to obtain the height of the part as an object.
  • the control unit may be configured to acquire the height of the part as the measurement object for each holding operation of the part by the head.
  • the control unit may be configured to obtain the height of the component as the measurement object when the substrate is transported.
  • the control unit detects a predetermined point indicating a boundary between the electrode portion of the component and the mold portion on a predetermined side as the same feature of the component as the measurement object.
  • the present invention is not limited to this.
  • the control unit may detect a portion other than a predetermined point indicating a boundary portion between the electrode portion of the component and the mold portion on the predetermined side as the same feature point of the component as the measurement object.
  • the control unit determines the position recognition mark (the wiring pattern of the object) as the same feature point of the formation position of the position recognition mark on the substrate as the measurement object (the formation position of the wiring pattern on the substrate).
  • the control unit determines the position other than the corner of the position recognition mark (the wiring pattern of the object) as the same feature point of the formation position of the position recognition mark on the substrate as the measurement object The part may be detected.
  • the processing operation of the control unit has been described using a flow-driven flow chart in which processing is sequentially performed along the processing flow, but the present invention is limited to this. I can not.
  • the processing operation of the control unit may be performed by event-driven (event-driven) processing that executes processing on an event-by-event basis. In this case, the operation may be completely event driven, or the combination of event driving and flow driving may be performed.

Abstract

A component-mounting device (100) comprises: a head (3a) that holds a component (E) supplied from a component supply unit (11) and mounts said component on a substrate (P); a first image pick-up unit (7) that picks up a position identification mark (F) applied to the substrate; a second image pick-up unit (8) that is provided independently of the first image pick-up unit; and a control unit (9) that acquires the height of a measurement object (12) on the basis of a first image (13) of the measurement object picked up by the first image pick-up unit and a second image (14) of the measurement object picked up by the second image pick-up unit.

Description

部品実装装置Component mounting device
 この発明は、部品実装装置に関し、特に、測定対象物の高さを取得する部品実装装置に関する。 The present invention relates to a component mounting apparatus, and more particularly to a component mounting apparatus for acquiring the height of a measurement object.
 従来、測定対象物の高さを取得する部品実装装置が知られている。このような部品実装装置は、特開2012-142347号公報に開示されている。 BACKGROUND Conventionally, there is known a component mounting apparatus for acquiring the height of an object to be measured. Such a component mounting apparatus is disclosed in Japanese Patent Application Laid-Open No. 2012-142347.
 特開2012-142347号公報には、測定対象物の高さとして、フィーダに配置された電子部品の高さを取得する電子部品装着装置(部品実装装置)が開示されている。この電子部品装着装置は、レーザ変位計により、測定対象物の高さを取得するように構成されている。 Japanese Patent Application Laid-Open No. 2012-142347 discloses an electronic component mounting apparatus (component mounting apparatus) that acquires the height of an electronic component disposed in a feeder as the height of a measurement object. The electronic component mounting apparatus is configured to obtain the height of the object to be measured by a laser displacement meter.
特開2012-142347号公報JP, 2012-142347, A
 ここで、上記特開2012-142347号公報に記載される電子部品装着装置のように、レーザ変位計を用いる構成では、レーザ変位計の取付精度が悪い場合や、レーザ変位計の取付位置が経時的に変化した場合などに、レーザ変位計の取付位置が正規の位置からずれることがある。この場合、レーザ変位計から照射されるレーザ光の照射位置が正規の位置からずれる。 Here, in the configuration using a laser displacement meter as in the electronic component mounting apparatus described in the above-mentioned JP 2012-142347 A, when the mounting accuracy of the laser displacement meter is poor or the mounting position of the laser displacement meter is elapsed with time In the case of a sudden change, the mounting position of the laser displacement gauge may deviate from the normal position. In this case, the irradiation position of the laser beam irradiated from the laser displacement meter deviates from the normal position.
 極小電子部品などの小さい測定対象物の高さを測定する場合に、レーザ光の照射位置が正規の位置からずれると、小さい測定対象物にレーザ光を正確に当てることが困難である。このため、レーザ変位計では、小さい測定対象物の高さを精度良く測定することができない場合がある。この点において、上記特開2012-142347号公報に記載された電子部品装着装置には、改善の余地がある。 When measuring the height of a small measurement object such as a microminiature electronic component, if the irradiation position of the laser light deviates from the normal position, it is difficult to accurately apply the laser light to the small measurement object. For this reason, the laser displacement meter may not be able to accurately measure the height of a small measurement object. In this respect, there is room for improvement in the electronic component mounting apparatus described in the above-mentioned JP-A-2012-142347.
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、小さい測定対象物であっても高さを精度良く測定することが可能な部品実装装置を提供することである。 The present invention has been made to solve the problems as described above, and one object of the present invention is to provide a component mounting apparatus capable of accurately measuring the height of a small measurement object. To provide.
 この発明の一の局面による部品実装装置は、部品供給部から供給される部品を保持して基板に実装するヘッドと、基板に付された位置認識マークを撮像する第1撮像部と、第1撮像部とは別個に設けられた第2撮像部と、第1撮像部による測定対象物の第1撮像画像、および、第2撮像部による測定対象物の第2撮像画像に基づいて、測定対象物の高さを取得する制御部と、を備える。 A component mounting apparatus according to one aspect of the present invention includes a head for holding a component supplied from a component supply unit and mounting the component on a substrate, a first imaging unit for imaging a position recognition mark attached to the substrate, and A measurement target based on a second imaging unit provided separately from the imaging unit, a first captured image of the measurement target by the first imaging unit, and a second captured image of the measurement target by the second imaging unit And a control unit for acquiring the height of the object.
 この発明の一の局面による部品実装装置では、上記のように、制御部を、第1撮像部による測定対象物の第1撮像画像、および、第2撮像部による測定対象物の第2撮像画像に基づいて、測定対象物の高さを取得するように構成する。ここで、第1撮像部および第2撮像部は、共に、ある程度広い範囲を撮像可能であるため、第1撮像部および第2撮像部の取付位置が正規の位置から多少ずれている場合であっても、測定対象物を撮像することが可能である。したがって、上記のように、第1撮像部および第2撮像部による測定対象物の第1撮像画像および第2撮像画像に基づいて、測定対象物の高さを取得することによって、小さい測定対象物であっても高さを精度良く測定することができる。また、位置認識マークを撮像する第1撮像部を利用して、測定対象物の高さ測定を行うことができるので、少なくとも第1撮像部の分は、測定対象物の高さ測定を行うために部品点数が増加することを抑制することができる。 In the component mounting device according to one aspect of the present invention, as described above, the control unit performs the first captured image of the measurement object by the first imaging unit and the second captured image of the measurement object by the second imaging unit. To obtain the height of the measurement object. Here, since both the first imaging unit and the second imaging unit can image a wide range to some extent, the mounting positions of the first imaging unit and the second imaging unit are slightly deviated from the normal position. Even in this case, it is possible to image the measurement object. Therefore, as described above, a small measurement object is obtained by acquiring the height of the measurement object based on the first and second captured images of the measurement object by the first and second imaging units. Even the height can be measured accurately. In addition, since the height measurement of the measurement object can be performed using the first imaging unit that images the position recognition mark, the height measurement of the measurement object is performed at least for the first imaging unit. It is possible to suppress an increase in the number of parts.
 上記一の局面による部品実装装置において、好ましくは、第1撮像部は、略鉛直上方から測定対象物を撮像するように構成されており、第2撮像部は、テレセントリック光学系を有するとともに、斜め上方から測定対象物を撮像するように構成されている。このように構成すれば、略鉛直上方から測定対象物を撮像した画像である第1撮像画像と、斜め上方から測定対象物を撮像した画像である第2撮像画像とに基づいて、容易に、測定対象物の高さを取得することができる。 In the component mounting apparatus according to the above aspect, preferably, the first imaging unit is configured to image the measurement object from substantially vertically above, and the second imaging unit has a telecentric optical system and is oblique. It is comprised so that a measurement target may be imaged from upper direction. According to this configuration, based on the first captured image, which is an image obtained by capturing the measurement object from approximately vertically above, and the second captured image, which is an image obtained by capturing the measurement object from diagonally above, The height of the object to be measured can be obtained.
 この場合、好ましくは、制御部は、以下の式(1)により、測定対象物の高さを取得するように構成されている。
H=S/sinθ-T/tanθ ・・・(1)
ここで、
H:測定対象物の高さ
S:第2撮像画像における中央線から測定対象位置までの距離に対応する実空間の距離
T:第1撮像画像における中央線から測定対象位置までの距離に対応する実空間の距離
θ:鉛直方向に対する第2撮像部の光軸の角度
である。
In this case, preferably, the control unit is configured to obtain the height of the measurement object according to the following equation (1).
H = S / sin θ-T / tan θ (1)
here,
H: height S of the measurement object: real space distance T corresponding to the distance from the center line to the measurement object position in the second image: corresponding to the distance from the center line to the measurement object position in the first image Real space distance θ: the angle of the optical axis of the second imaging unit with respect to the vertical direction.
 このように構成すれば、測定対象物の高さを取得するために、過度に複雑な処理を行う必要が無く、上記した簡単な式(1)により、測定対象物の高さを簡単かつ確実に取得することができる。 With this configuration, there is no need to perform an excessively complicated process in order to acquire the height of the measurement object, and the height of the measurement object is simple and reliable by the simple equation (1) described above. It can be acquired.
 上記式(1)により測定対象物の高さを取得する構成において、好ましくは、制御部は、以下の式(2)により、測定対象物の高さを取得するように構成されている。
H=(Scale-c)×h=(Scale-c)×s/sinθ-t/tanθ ・・・(2)
ここで、
Scale-c:ピクセル単位の距離を物理単位の距離に変換するための変換係数
h:ピクセル単位の測定対象物の高さ
s:第2撮像画像における中央線から測定対象位置までのピクセル単位の距離
t:第1撮像画像における中央線から測定対象位置までのピクセル単位の距離
である。
In the configuration for acquiring the height of the measurement object according to the above equation (1), preferably, the control unit is configured to acquire the height of the measurement object according to the following equation (2).
H = (Scale-c) x h = (Scale-c) x s / sin θ-t / tan θ (2)
here,
Scale-c: Conversion coefficient h for converting a distance in pixel units to a distance in physical units h: height of measurement object in pixel units s: distance in pixel units from the center line to the measurement target position in the second captured image t: The distance in pixel units from the center line to the measurement target position in the first captured image.
 このように構成すれば、2つの撮像系を用いて測定対象物の高さを取得する場合にも、1つの変換係数だけで測定対象物の高さを取得することができるので、測定対象物の高さを取得するための処理をより簡単に行うことができる。 With this configuration, even when acquiring the height of the measurement object using two imaging systems, the height of the measurement object can be acquired with only one conversion coefficient. The process for acquiring the height can be performed more easily.
 上記一の局面による部品実装装置において、好ましくは、第2撮像部は、部品供給部に配置された部品、および、基板の部品実装位置のうちの少なくともいずれか一方を撮像する撮像部である。このように構成すれば、部品供給部に配置された部品、および、基板の部品実装位置のうちの少なくともいずれか一方を撮像する第2撮像部を利用して、測定対象物の高さ測定を行うことができるので、測定対象物の高さ測定を行うために、部品点数が増加することをより抑制することができる。 Preferably, in the component mounting apparatus according to the above aspect, the second imaging unit is an imaging unit that images at least one of a component disposed in the component supply unit and a component mounting position of the substrate. According to this structure, the height measurement of the object to be measured is performed using the part arranged in the part supply unit and the second imaging unit for imaging at least one of the component mounting positions of the substrate. Since the measurement can be performed, it is possible to further suppress the increase in the number of parts in order to measure the height of the measurement object.
 上記一の局面による部品実装装置において、好ましくは、基板における位置認識マークの形成位置、または、基板における配線パターンの形成位置である。ここで、位置認識マークおよび配線パターンは、共に、基板において特徴的で認識しやすい部分である。したがって、上記のように構成すれば、基板における位置認識マークの形成位置、または、基板における配線パターンの形成位置の第1撮像画像および第2撮像画像に基づいて、基板の高さを容易に取得することができる。この場合、取得された基板の高さに基づいて、基板への部品の実装時におけるヘッドの目標実装高さ位置を補正すれば、ヘッドによる基板への部品の実装を精度良く行うことができる。 In the component mounting apparatus according to the above aspect, the position is preferably a position where the position recognition mark is formed on the substrate or a position where the wiring pattern is formed on the substrate. Here, the position recognition mark and the wiring pattern are both characteristic and easy to recognize in the substrate. Therefore, if configured as described above, the height of the substrate is easily obtained based on the first captured image and the second captured image of the formation position of the position recognition mark on the substrate or the formation position of the wiring pattern on the substrate. can do. In this case, if the target mounting height position of the head at the time of mounting the component on the substrate is corrected based on the acquired height of the substrate, the mounting of the component on the substrate by the head can be performed with high accuracy.
 上記一の局面による部品実装装置において、好ましくは、測定対象物は、部品供給部に配置された部品である。このように構成すれば、部品供給部に配置された部品の第1撮像画像および第2撮像画像に基づいて、部品供給部に配置された部品の高さを容易に取得することができる。この場合、取得された部品の高さに基づいて、部品供給部からの部品の保持時におけるヘッドの目標保持高さ位置を補正すれば、ヘッドによる部品供給部からの部品の保持を精度良く行うことができる。 In the component mounting apparatus according to the above aspect, preferably, the object to be measured is a component disposed in the component supply unit. According to this structure, the height of the component disposed in the component supply unit can be easily obtained based on the first and second captured images of the component disposed in the component supply unit. In this case, if the target holding height position of the head at the time of holding the component from the component supply unit is corrected based on the acquired height of the component, the component can be held accurately from the component supply unit by the head. be able to.
 上記一の局面による部品実装装置において、好ましくは、測定対象物は、部品供給部に配置された部品であり、制御部は、段取り変えが実施された場合、および、ヘッドによる部品の保持エラーが生じた場合のうちの少なくともいずれか一方の場合に、第1撮像部および第2撮像部により測定対象物としての部品を撮像する制御を行い、測定対象物としての部品の第1撮像画像および第2撮像画像を取得するとともに、取得された第1撮像画像および第2撮像画像に基づいて、測定対象物としての部品の高さを取得するように構成されている。このように構成すれば、段取り変えが実施されることにより、部品供給部に配置された部品の高さが変わったと考えられる場合に、測定対象物としての部品の高さを取得し直すことができる。また、ヘッドによる部品の保持エラーが生じたことから、現在取得している測定対象物としての部品の高さが適切な値でないと考えられる場合に、測定対象物としての部品の高さを取得し直すことができる。つまり、適切なタイミングで、測定対象物としての部品の高さを取得し直すことができる。 In the component mounting apparatus according to the above aspect, preferably, the object to be measured is a component disposed in the component supply unit, and the control unit is configured to perform a setup change, and a holding error of the component by the head is When at least one of the cases occurs, the first imaging unit and the second imaging unit perform control of imaging the component as the measurement object, and the first captured image of the component as the measurement object and the first (2) While acquiring a captured image, it is configured to obtain the height of a part as a measurement object based on the acquired first and second captured images. According to this configuration, when the height of the part disposed in the part supply unit is considered to have changed due to the implementation of the setup change, the height of the part as the object to be measured is reacquired. it can. In addition, when the height of the part as the measuring object currently acquired is considered to be an inappropriate value because the holding error of the part by the head occurred, the height of the part as the measuring object is acquired It can be done again. That is, the height of the part as the object to be measured can be reacquired at an appropriate timing.
 上記第2撮像部が部品供給部に配置された部品を撮像する構成において、好ましくは、測定対象物は、部品供給部に配置された部品であり、第2撮像部は、斜め上方から、部品供給部に配置された部品を撮像するように構成されており、制御部は、第2撮像部による部品供給部に配置された部品の撮像画像に基づいて、部品供給部に配置された部品を保持するために下降する際にヘッドが目標とする水平方向における位置である目標保持水平位置を補正するための目標保持水平位置補正値を取得するように構成されており、制御部は、取得された目標保持水平位置補正値が、予め決められた所定のしきい値以上である場合に、第1撮像部および第2撮像部により測定対象物としての部品を撮像する制御を行い、測定対象物としての部品の第1撮像画像および第2撮像画像を取得するとともに、取得された第1撮像画像および第2撮像画像に基づいて、測定対象物としての部品の高さを取得するように構成されている。ここで、斜め上方から撮像された部品の撮像画像に基づいて、目標保持水平位置補正値を取得する場合、部品の高さが所定の高さであると仮定して、目標保持水平位置補正値を取得する必要がある。この場合、部品の高さが仮定した所定の高さとは異なると、目標保持水平位置補正値を正確に取得することが困難である。そこで、上記のように、取得された目標保持水平位置補正値が、所定のしきい値以上である場合に、測定対象物としての部品の高さを取得するように構成すれば、目標保持水平位置補正値が過度に大きいことから、目標保持水平位置補正値が正確な値でないと考えられる場合に、測定対象物としての部品の高さを取得し直すことができる。その結果、取得し直した部品の高さに基づいて、目標保持水平位置補正値を正確に取得することができる。 In the configuration in which the second imaging unit picks up an image of a component arranged in the component supply unit, preferably, the measurement object is a component arranged in the component supply unit, and the second imaging unit is a component from diagonally above The control unit is configured to pick up an image of the component disposed in the supply unit, and the control unit causes the component disposed in the component supply unit to be displayed based on the captured image of the component disposed in the component supply unit by the second imaging unit. The controller is configured to acquire a target holding horizontal position correction value for correcting a target holding horizontal position, which is a position in the horizontal direction targeted by the head when moving down for holding. When the target holding horizontal position correction value is equal to or greater than a predetermined threshold value, the first imaging unit and the second imaging unit perform control of imaging a component as a measurement object, and the measurement object Of parts as It acquires the captured image and the second captured image, based on the first image and the second captured image acquired, and is configured to obtain the height of the component as a measuring object. Here, when acquiring the target holding horizontal position correction value based on the captured image of the part captured from diagonally above, assuming that the height of the part is a predetermined height, the target holding horizontal position correction value You need to get In this case, if the height of the part is different from the predetermined height, it is difficult to obtain the target holding horizontal position correction value accurately. Therefore, as described above, when the acquired target holding horizontal position correction value is greater than or equal to the predetermined threshold value, the target holding horizontal position can be obtained by acquiring the height of the part as the measurement object. Since the position correction value is excessively large, the height of the part as the object to be measured can be re-acquired when it is considered that the target holding horizontal position correction value is not an accurate value. As a result, it is possible to accurately acquire the target holding horizontal position correction value based on the height of the reacquired part.
 上記一の局面による部品実装装置において、好ましくは、制御部は、第1撮像画像と第2撮像画像とにおける、測定対象物の同一特徴点を検出するとともに、検出された測定対象物の同一特徴点の高さを、測定対象物の高さとして取得するように構成されている。このように構成すれば、第1撮像画像および第2撮像画像の各々から検出された測定対象物の同一特徴点の高さを取得するだけで、測定対象物の高さを取得することができるので、簡単な処理で測定対象物の高さを取得することができる。 In the component mounting device according to the above aspect, preferably, the control unit detects the same feature point of the measurement object in the first captured image and the second captured image, and the same feature of the detected measurement object The height of the point is configured to be acquired as the height of the measurement object. According to this structure, the height of the measurement object can be acquired only by acquiring the height of the same feature point of the measurement object detected from each of the first captured image and the second captured image. Therefore, the height of the object to be measured can be obtained by simple processing.
 本発明によれば、上記のように、小さい測定対象物であっても高さを精度良く測定することが可能な部品実装装置を提供することができる。 According to the present invention, as described above, it is possible to provide a component mounting apparatus capable of measuring the height of a small measurement object with high accuracy.
第1および第2実施形態の部品実装装置の全体構成を示す図である。It is a figure which shows the whole structure of the component mounting apparatus of 1st and 2nd embodiment. 第1実施形態の部品実装装置による測定対象物の撮像状態を示す図であって、(A)は、第1撮像部による測定対象物の撮像状態を示す図であり、(B)は、第2撮像部による測定対象物の撮像状態を示す図である。It is a figure which shows the imaging state of the measurement object by the component mounting apparatus of 1st Embodiment, Comprising: (A) is a figure which shows the imaging state of the measurement object by a 1st imaging part, (B) is a FIG. 2 is a view showing an imaging state of a measurement object by an imaging unit. 第1実施形態の部品実装装置による測定対象物の撮像画像を示す図であって、(A)は、第1撮像部による第1撮像画像を示す図であり、(B)は、第2撮像部による第2撮像画像を示す図である。It is a figure which shows the captured image of the measurement object by the component mounting apparatus of 1st Embodiment, Comprising: (A) is a figure which shows the 1st captured image by a 1st imaging part, (B) is a 2nd imaging It is a figure which shows the 2nd captured image by a part. 第1実施形態の部品実装装置による測定対象物の高さの取得方法を説明するための図である。It is a figure for demonstrating the acquisition method of the height of a measurement object by the component mounting apparatus of 1st Embodiment. 第1撮像部の取付角度がずれた場合における測定対象物の高さの取得方法を説明するための図である。It is a figure for demonstrating the acquisition method of the height of a measurement object in, when the attachment angle of a 1st imaging part shifts | deviates. 第1実施形態の部品実装装置による高さ測定処理の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the height measurement process by the component mounting apparatus of 1st Embodiment. 第1実施形態の部品実装装置による高さ測定処理の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the height measurement process by the component mounting apparatus of 1st Embodiment. 基板を説明するための平面図である。It is a top view for explaining a substrate. 第2実施形態の部品実装装置による測定対象物の撮像画像を示す図であって、(A)は、第1撮像部による第1撮像画像を示す図であり、(B)は、第2撮像部による第2撮像画像を示す図である。It is a figure which shows the captured image of the measurement object by the component mounting apparatus of 2nd Embodiment, Comprising: (A) is a figure which shows the 1st captured image by a 1st imaging part, (B) is a 2nd imaging It is a figure which shows the 2nd captured image by a part. 第2実施形態の部品実装装置による高さ測定処理の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the height measurement process by the component mounting apparatus of 2nd Embodiment. 第1および第2実施形態の変形例による部品実装装置のヘッドユニットを示す図である。It is a figure which shows the head unit of the component mounting apparatus by the modification of 1st and 2nd embodiment.
 以下、本発明を具体化した実施形態を図面に基づいて説明する。 Hereinafter, an embodiment of the present invention will be described based on the drawings.
[第1実施形態]
(部品実装装置の構成)
まず、図1および図2を参照して、本発明の第1実施形態による部品実装装置100の全体構成について説明する。
First Embodiment
(Configuration of component mounting device)
First, with reference to FIG. 1 and FIG. 2, the whole structure of the component mounting apparatus 100 by 1st Embodiment of this invention is demonstrated.
 部品実装装置100は、図1に示すように、IC、トランジスタ、コンデンサおよび抵抗などの部品E(電子部品)を、プリント基板などの基板Pに実装する装置である。 The component mounting apparatus 100 is an apparatus which mounts components E (electronic components), such as IC, a transistor, a capacitor, and a resistance, on board | substrates P, such as a printed circuit board, as shown in FIG.
 部品実装装置100は、基台1と、搬送部2と、ヘッドユニット3と、支持部4と、レール部5と、部品撮像部6と、第1撮像部7と、第2撮像部8と、制御部9とを備えている。 The component mounting apparatus 100 includes a base 1, a transport unit 2, a head unit 3, a support unit 4, a rail unit 5, a component imaging unit 6, a first imaging unit 7, and a second imaging unit 8. , And the control unit 9.
 基台1は、部品実装装置100において各構成要素を配置する基礎となる台である。基台1上には、搬送部2、レール部5および部品撮像部6が設けられている。また、基台1内には、制御部9が設けられている。また、基台1には、Y方向の両側(Y1方向側およびY2方向側)に、部品供給部11を配置可能な配置部1aがそれぞれ設けられている。 The base 1 is a base on which the components are arranged in the component mounting apparatus 100. On the base 1, a transport unit 2, a rail unit 5 and a component imaging unit 6 are provided. Further, in the base 1, a control unit 9 is provided. Further, in the base 1, arrangement portions 1 a capable of arranging the component supply portion 11 are provided on both sides in the Y direction (Y1 direction side and Y2 direction side).
 部品供給部11は、基板Pに実装される部品Eを供給するテープフィーダである。具体的には、部品供給部11は、複数の部品Eを保持した部品供給テープ(図示せず)が巻き回されたリール(図示せず)を保持している。また、部品供給部11は、ヘッドユニット3による部品Eの取出しのための部品保持動作に応じて、保持されたリールを回転させて部品供給テープを送り出すことにより、部品Eを供給するように構成されている。配置部1aでは、複数の部品供給部11が基板Pの搬送方向(X方向)に沿って配列されている。 The component supply unit 11 is a tape feeder that supplies components E to be mounted on the substrate P. Specifically, the component supply unit 11 holds a reel (not shown) around which a component supply tape (not shown) holding a plurality of components E is wound. Further, the component supply unit 11 is configured to supply the component E by rotating the held reel to send out the component supply tape according to the component holding operation for taking out the component E by the head unit 3. It is done. In the placement unit 1a, a plurality of component supply units 11 are arranged along the transport direction (X direction) of the substrate P.
 搬送部2は、搬送方向(X方向)に基板Pを搬送する装置である。具体的には、搬送部2は、部品実装装置100の外部から実装前の基板Pを搬入し、基板Pを搬送方向に搬送し、部品実装装置100の外部に実装後の基板Pを搬出するように構成されている。また、搬送部2は、搬入された基板Pを実装停止位置Mまで搬送するとともに、実装停止位置Mにおいて固定するように構成されている。 The transport unit 2 is a device for transporting the substrate P in the transport direction (X direction). Specifically, the transport unit 2 carries in the substrate P before mounting from the outside of the component mounting apparatus 100, transports the substrate P in the transport direction, and carries out the mounted substrate P outside the component mounting apparatus 100. Is configured as. The transport unit 2 is configured to transport the carried-in substrate P to the mounting stop position M and to fix the substrate P at the mounting stop position M.
 また、搬送部2は、一対のコンベア部2aを有している。一対のコンベア部2aは、それぞれ、搬送ベルト(図示せず)を有している。搬送部2は、一対のコンベア部2aの搬送ベルトにより、一対のコンベア部2aの搬送ベルト上に載置された基板Pを搬送方向(X方向)に搬送するように構成されている。 Moreover, the conveyance part 2 has a pair of conveyor part 2a. Each of the pair of conveyors 2a has a conveyor belt (not shown). The transport unit 2 is configured to transport, in the transport direction (X direction), the substrates P placed on the transport belts of the pair of conveyors 2 a by the transport belts of the pair of conveyors 2 a.
 ヘッドユニット3は、部品実装用のヘッドユニットであり、実装停止位置Mにおいて固定された基板Pに部品Eを実装するように構成されている。ヘッドユニット3は、円状に配列された複数のヘッド(実装ヘッド)3aを含んでいる。ヘッドユニット3は、複数のヘッド3aが円状に配列されたロータリ型のヘッドユニットである。ロータリ型のヘッドユニット103であれば、第2撮像部8の直近の位置にヘッド3aを回転移動させて、ヘッド3aが保持(吸着)しようとする部品Eを第2撮像部8により撮像することができる。また、円状に配列された複数のヘッド3aは、複数のヘッド3aによる円の中心周りに回転可能なように構成されている。なお、複数のヘッド3aは、実質的に同様の構成を有している。 The head unit 3 is a head unit for component mounting, and is configured to mount the component E on the substrate P fixed at the mounting stop position M. The head unit 3 includes a plurality of heads (mounting heads) 3a arranged in a circle. The head unit 3 is a rotary type head unit in which a plurality of heads 3a are arranged in a circle. In the case of a rotary type head unit 103, the head 3a is rotationally moved to a position closest to the second imaging unit 8, and the second imaging unit 8 images a component E to be held (sucked) by the head 3a. Can. Further, the plurality of heads 3a arranged in a circular shape are configured to be rotatable around the center of the circle formed by the plurality of heads 3a. The plurality of heads 3a have substantially the same configuration.
 ヘッド3aは、部品供給部11から供給される部品Eを保持(吸着)して基板Pに実装するように構成されている。具体的には、ヘッド3aは、真空発生装置(図示せず)に接続されており、真空発生装置から供給される負圧によって、先端に装着されたノズル(図示せず)に部品Eを保持(吸着)するように構成されている。また、ヘッド3aは、真空発生装置から供給される負圧を解除することによって、ノズルに保持された部品Eを基板Pに実装するように構成されている。また、ヘッド3aは、駆動機構(図示せず)により、上下方向(Z方向)に移動可能に構成されている。これにより、ヘッド3aは、部品Eを保持(吸着)するかまたは基板Pに部品Eを実装するために下降した位置と、水平面内で移動するために上昇した位置との間を移動可能に構成されている。 The head 3 a is configured to hold (suck) the component E supplied from the component supply unit 11 and mount the component E on the substrate P. Specifically, the head 3a is connected to a vacuum generator (not shown), and holds the component E in a nozzle (not shown) attached to the tip by negative pressure supplied from the vacuum generator. It is configured to (adsorb). The head 3a is configured to mount the component E held by the nozzle on the substrate P by releasing the negative pressure supplied from the vacuum generating device. The head 3a is configured to be movable in the vertical direction (Z direction) by a drive mechanism (not shown). Thus, the head 3a is configured to be movable between a lowered position for holding (sucking) the component E or mounting the component E on the substrate P and a raised position for movement in the horizontal plane. It is done.
 支持部4は、ヘッドユニット3を搬送方向(X方向)に移動可能に支持している。具体的には、支持部4は、搬送方向に延びるボールねじ軸41と、ボールねじ軸41を回転させるX軸モータ42とを含んでいる。ヘッドユニット3には、支持部4のボールねじ軸41と係合するボールナット(図示せず)が設けられている。ヘッドユニット3は、X軸モータ42によりボールねじ軸41が回転されることにより、ボールねじ軸41と係合するボールナットとともに、支持部4に沿って搬送方向に移動可能に構成されている。 The support 4 supports the head unit 3 so as to be movable in the transport direction (X direction). Specifically, the support 4 includes a ball screw shaft 41 extending in the transport direction, and an X-axis motor 42 that rotates the ball screw shaft 41. The head unit 3 is provided with a ball nut (not shown) engaged with the ball screw shaft 41 of the support portion 4. The head unit 3 is configured to be movable in the transport direction along the support portion 4 together with the ball nut engaged with the ball screw shaft 41 by rotating the ball screw shaft 41 by the X-axis motor 42.
 一対のレール部5は、支持部4を水平面内でX方向と直交するY方向に移動可能に支持するように構成されている。具体的には、レール部5は、支持部4のX方向の両端部をY方向に移動可能に支持する一対のガイドレール51と、Y方向に延びるボールねじ軸52と、ボールねじ軸52を回転させるY軸モータ53とを含んでいる。支持部4には、レール部5のボールねじ軸52と係合するボールナット(図示せず)が設けられている。支持部4は、Y軸モータ53によりボールねじ軸52が回転されることにより、ボールねじ軸52と係合するボールナットとともに、一対のレール部5に沿ってY方向に移動可能に構成されている。 The pair of rail portions 5 is configured to support the support portion 4 movably in the Y direction orthogonal to the X direction in the horizontal plane. Specifically, the rail portion 5 includes a pair of guide rails 51 for movably supporting both end portions in the X direction of the support portion 4 in the Y direction, a ball screw shaft 52 extending in the Y direction, and a ball screw shaft 52. And a Y-axis motor 53 to be rotated. The support portion 4 is provided with a ball nut (not shown) engaged with the ball screw shaft 52 of the rail portion 5. The support portion 4 is configured to be movable in the Y direction along the pair of rail portions 5 together with the ball nut engaged with the ball screw shaft 52 by the rotation of the ball screw shaft 52 by the Y-axis motor 53 There is.
 このような構成により、ヘッドユニット3のヘッド3aは、基台1上を水平方向に(X方向およびY方向に)移動可能に構成されている。これにより、ヘッドユニット3のヘッド3aは、部品供給部11の上方に移動して、部品供給部11から供給される部品Eを保持(吸着)することが可能である。また、ヘッドユニット3は、実装停止位置Mにおいて固定された基板Pの上方に移動して、保持(吸着)された部品Eを基板Pに実装することが可能である。 With such a configuration, the head 3 a of the head unit 3 is configured to be movable in the horizontal direction (X direction and Y direction) on the base 1. Thus, the head 3 a of the head unit 3 can move above the component supply unit 11 to hold (suck) the component E supplied from the component supply unit 11. Further, the head unit 3 can move to the upper side of the substrate P fixed at the mounting stop position M, and mount the held (sucked) component E on the substrate P.
 部品撮像部6は、ヘッド3aによる基板Pへの部品Eの実装に先立ってヘッド3aに保持(吸着)された部品Eを撮像する部品認識用のカメラである。部品撮像部6は、基台1の上面上に固定されており、部品Eの下方(Z2方向)から、ヘッド3aに保持(吸着)された部品Eを撮像するように構成されている。部品撮像部6による部品Eの撮像画像に基づいて、制御部9は、部品Eの吸着状態(回転姿勢およびヘッド3aに対する吸着位置)を取得(認識)するように構成されている。 The component imaging unit 6 is a camera for component recognition that captures an image of the component E held (sucked) by the head 3 a prior to the mounting of the component E on the substrate P by the head 3 a. The component imaging unit 6 is fixed on the upper surface of the base 1 and configured to image the component E held (sucked) by the head 3 a from below the component E (in the Z2 direction). The control unit 9 is configured to acquire (recognize) the suction state (rotational posture and suction position with respect to the head 3a) of the component E based on the captured image of the component E by the component imaging unit 6.
 第1撮像部7は、ヘッド3aによる基板Pへの部品Eの実装に先立って基板Pの上面に付された位置認識マーク(フィデューシャルマーク)Fを撮像する基板認識用のカメラである。第1撮像部7は、後述する測定対象物12を撮影する用途とは異なる用途を有する基板認識用のカメラである。位置認識マークFは、基板Pの位置を認識するためのマークである。図2(A)に示すように、第1撮像部7は、光軸7aが鉛直方向(Z方向)に略沿う向きになるように取り付けられており、略鉛直上方(略真上)から撮像対象物を撮像するように構成されている。また、第1撮像部7は、ヘッドユニット3に設けられており、ヘッドユニット3とともに水平方向に移動可能に構成されている。第1撮像部7による位置認識マークFの撮像画像に基づいて、制御部9は、実装停止位置Mにおいて固定された基板Pの正確な位置および姿勢を取得(認識)するように構成されている。 The first imaging unit 7 is a camera for substrate recognition that images a position recognition mark (fiducial mark) F attached to the upper surface of the substrate P prior to the mounting of the component E on the substrate P by the head 3a. The first imaging unit 7 is a camera for substrate recognition that has an application different from the application for photographing the measurement object 12 described later. The position recognition mark F is a mark for recognizing the position of the substrate P. As shown in FIG. 2A, the first imaging unit 7 is attached such that the optical axis 7a is oriented substantially along the vertical direction (Z direction), and imaging is performed from approximately vertically above (approximately directly above) It is configured to image an object. The first imaging unit 7 is provided in the head unit 3 and is configured to be movable in the horizontal direction together with the head unit 3. The control unit 9 is configured to acquire (recognize) the correct position and posture of the substrate P fixed at the mounting stop position M based on the captured image of the position recognition mark F by the first imaging unit 7 .
 第2撮像部8は、ヘッド3aによる部品供給部11からの部品Eの保持に先立って部品供給部11に配置された部品Eを撮像する部品位置認識用のカメラである。また、第2撮像部8は、ヘッドユニット3に設けられており、ヘッドユニット3とともに水平方向に移動可能に構成されている。なお、第2撮像部8は、後述する測定対象物12を撮影する用途とは異なる用途を有する部品位置認識用のカメラである。図2(B)に示すように、第2撮像部8は、光軸8aが鉛直方向に対して傾斜した向きになるように取り付けられており、斜め上方から撮像対象物を撮像するように構成されている。また、第2撮像部8は、主光線が光軸8aと平行になるテレセントリック光学系を有している。第2撮像部8による部品供給部11に配置された部品Eの撮像画像に基づいて、制御部9は、部品供給部11に配置された部品Eを保持するために下降する際にヘッド3aが目標とする水平方向における位置である目標保持水平位置(XY座標位置)を補正するように構成されている。また、制御部9は、ヘッド3aによる部品Eの保持(吸着)を行う毎に保持(吸着)を行う直前にヘッド3aが取り出そうとする部品Eが撮像できる位置に第2撮像部8を移動させて、部品Eおよび部品Eを収納する部品供給テープの収納部(ポケット)を第2撮像部8により撮像させて、目標保持水平位置を補正するための目標保持水平位置補正値を取得するように構成されている。また、制御部9は、取得された目標保持水平位置補正値に基づいて、ヘッド3aの目標保持水平位置(すなわち、ノズルの目標保持水平位置)を補正して、ヘッド3aのノズルを下降させる制御を行うように構成されている。なお、補正が間に合わない場合には、その撮像した部品Eでは補正をせずに同じ部品Eを供給する部品供給部11(テープフィーダ)から次に部品Eを取り出す場合に補正する場合もある。 The second imaging unit 8 is a camera for component position recognition which picks up an image of the component E arranged in the component supply unit 11 prior to holding of the component E from the component supply unit 11 by the head 3a. The second imaging unit 8 is provided in the head unit 3 and is configured to be movable in the horizontal direction together with the head unit 3. In addition, the 2nd imaging part 8 is a camera for component position recognition which has a use different from the use which image | photographs the measurement target object 12 mentioned later. As shown in FIG. 2 (B), the second imaging unit 8 is attached such that the optical axis 8a is inclined with respect to the vertical direction, and is configured to image an object to be imaged from diagonally above It is done. The second imaging unit 8 also has a telecentric optical system in which the chief ray is parallel to the optical axis 8a. Based on the captured image of the component E disposed in the component supply unit 11 by the second imaging unit 8, the control unit 9 causes the head 3a to move downward to hold the component E disposed in the component supply unit 11. It is configured to correct a target holding horizontal position (XY coordinate position) which is a position in the target horizontal direction. The control unit 9 moves the second imaging unit 8 to a position where the component E to be taken out by the head 3a can be imaged immediately before holding (suction) the component E by the head 3a every time holding (suction) the component E The second imaging unit 8 captures an image of the storage portion (pocket) of the component supply tape that stores the component E and the component E, and acquires a target holding horizontal position correction value for correcting the target holding horizontal position. It is configured. In addition, the control unit 9 corrects the target holding horizontal position of the head 3a (that is, the target holding horizontal position of the nozzle) based on the acquired target holding horizontal position correction value, and controls to lower the nozzle of the head 3a. Is configured to do. If the correction is not in time, correction may be made in the case where the component E is taken out next from the component supply unit 11 (tape feeder) that supplies the same component E without correction in the imaged component E.
 制御部9は、CPU(Central Processing Unit)、ROM(Read Only Memory)、およびRAM(Random Access Memory)などを含み、部品実装装置100の動作を制御する制御回路である。制御部9は、搬送部2、部品供給部11、X軸モータ42およびY軸モータ53などを生産プログラムに従って制御することにより、ヘッドユニット3のヘッド3aにより基板Pへの部品Eの実装を行うように構成されている。 The control unit 9 is a control circuit that controls an operation of the component mounting apparatus 100, including a central processing unit (CPU), a read only memory (ROM), and a random access memory (RAM). The control unit 9 mounts the component E on the substrate P by the head 3 a of the head unit 3 by controlling the transport unit 2, the component supply unit 11, the X-axis motor 42, the Y-axis motor 53 and the like according to the production program. Is configured as.
(測定対象物の高さ測定に関する構成)
 ここで、第1実施形態では、図2(A)(B)に示すように、制御部9は、測定対象物12の高さを測定する場合、第1撮像部7および第2撮像部8により、測定対象物12を撮像する制御を行うように構成されている。なお、測定対象物12の高さとは、部品実装装置100に設定された座標系における測定対象物12の高さ位置を意味する。
(Configuration for measuring the height of the object to be measured)
Here, in the first embodiment, as shown in FIGS. 2A and 2B, in the case where the control unit 9 measures the height of the measurement object 12, the first imaging unit 7 and the second imaging unit 8 Thus, control for imaging the measurement object 12 is performed. The height of the measurement object 12 means the height position of the measurement object 12 in the coordinate system set in the component mounting apparatus 100.
 また、第1実施形態では、測定対象物12は、部品供給部11に配置された部品Eである。 In the first embodiment, the measurement object 12 is the component E disposed in the component supply unit 11.
 また、第1撮像部7による測定対象物12の第1撮像画像13(図3(A)参照)は、部品Eの略鉛直上方から部品Eの全体および部品Eの周辺を写した画像である。第1撮像画像13は、部品Eの高さを示す部品Eの上面を含んでいる。また、第2撮像部8による測定対象物12の第2撮像画像14(図3(B)参照)は、部品Eの斜め上方から部品Eの全体および部品Eの周辺を写した画像である。第2撮像画像14は、部品Eの高さを示す部品Eの上面と、部品Eの側面とを含んでいる。 A first captured image 13 (see FIG. 3A) of the measurement object 12 by the first imaging unit 7 is an image obtained by copying the entire part E and the periphery of the part E from substantially vertically above the part E . The first captured image 13 includes the upper surface of the part E indicating the height of the part E. Further, the second captured image 14 (see FIG. 3B) of the measurement object 12 by the second imaging unit 8 is an image obtained by copying the entire part E and the periphery of the part E from diagonally above the part E. The second captured image 14 includes the upper surface of the part E indicating the height of the part E and the side surface of the part E.
 そして、図3(A)(B)および図4に示すように、制御部9は、第1撮像部7による測定対象物12の第1撮像画像13、および、第2撮像部8による測定対象物12の第2撮像画像14に基づいて、ステレオマッチングにより、測定対象物12の高さを取得するように構成されている。 And as shown to FIG. 3 (A) (B) and FIG. 4, the control part 9 is a 1st captured image 13 of the measurement object 12 by the 1st imaging part 7, and the measurement object by the 2nd imaging part 8 The height of the measurement object 12 is acquired by stereo matching based on the second captured image 14 of the object 12.
 そして、制御部9は、取得された測定対象物12としての部品Eの高さに基づいて、部品供給部11に配置された部品Eを保持するために下降する際にヘッド3aが目標とする上下方向における位置である目標保持高さ位置(Z座標位置)を補正するように構成されている。 Then, based on the acquired height of the component E as the measurement object 12, the control unit 9 targets the head 3a when moving down to hold the component E disposed in the component supply unit 11. The target holding height position (Z coordinate position), which is the position in the vertical direction, is configured to be corrected.
 また、第1実施形態では、図3(A)(B)に示すように、制御部9は、第1撮像画像13と第2撮像画像14とにおける、測定対象物12(部品E)の同一特徴点12aを検出するとともに、検出された測定対象物12の同一特徴点12aの高さを、測定対象物12の高さとして取得するように構成されている。 Further, in the first embodiment, as shown in FIGS. 3A and 3B, the control unit 9 determines whether the measurement object 12 (part E) in the first captured image 13 and the second captured image 14 is the same. The feature point 12 a is detected, and the height of the same feature point 12 a of the detected measurement object 12 is acquired as the height of the measurement object 12.
 具体的には、制御部9は、画像における明度(画素値)に基づいて、第1撮像画像13と第2撮像画像14とにおける、測定対象物12(部品E)の同一特徴点12aを検出するように構成されている。たとえば、制御部9は、同一特徴点12aとして、第2撮像部8による撮像方向から見て遠い側の測定対象物12(部品E)の上面の辺E1を検出する。ここで、第2撮像画像14には、測定対象物12(部品E)の上面だけでなく側面も写り込んでいるため、第2撮像部8による撮像方向から見て近い側には、互いに近接した位置に複数の辺が存在する。このため、第2撮像部8による撮像方向から見て近い側の測定対象物12(部品E)の上面の辺を特徴点12aとすると、特徴点12aを誤検出しやすい。そこで、上記のように、第2撮像部8による撮像方向から見て遠い側の測定対象物12(部品E)の上面の辺E1を検出することにより、誤検出を抑制して、第2撮像画像14における特徴点12aを精度良く検出することが可能である。また、この場合、制御部9は、同一特徴点12aとして、辺E1における、部品Eの電極部分E2とモールド部分E3との境界部分を示す所定点E4を検出するように構成されている。これにより、明度の差が大きくかつ特徴的な部分を同一特徴点12aとして容易に検出することが可能である。 Specifically, the control unit 9 detects the same feature point 12 a of the measurement object 12 (part E) in the first captured image 13 and the second captured image 14 based on the lightness (pixel value) in the image. It is configured to For example, the control unit 9 detects the side E1 of the top surface of the measurement object 12 (part E) on the far side as viewed from the imaging direction by the second imaging unit 8 as the same feature point 12a. Here, not only the upper surface but also the side surface of the measurement object 12 (part E) is reflected in the second captured image 14, and therefore, they are close to each other on the side closer to the imaging direction by the second imaging unit 8. There are multiple sides at the same position. Therefore, if the side of the top surface of the measurement object 12 (part E) on the side closer to the image pickup direction by the second imaging unit 8 is the feature point 12a, the feature point 12a is easily erroneously detected. Therefore, as described above, by detecting the side E1 of the upper surface of the measurement object 12 (part E) on the far side as viewed from the imaging direction by the second imaging unit 8, erroneous detection is suppressed and the second imaging is performed. It is possible to detect the feature point 12a in the image 14 with high accuracy. Further, in this case, the control unit 9 is configured to detect, as the same feature point 12a, a predetermined point E4 in the side E1 that indicates a boundary between the electrode portion E2 of the component E and the mold portion E3. Thereby, it is possible to easily detect a characteristic portion having a large difference in lightness as the same feature point 12a.
 また、第1実施形態では、図4に示すように、制御部9は、以下の式(3)により、測定対象物12(部品E)の高さとして、測定対象物12の同一特徴点12aの高さを取得するように構成されている。
H=S/sinθ-T/tanθ ・・・(3)
ここで、
H:物理単位の測定対象物の高さ
S:第2撮像画像における中央線から測定対象位置までの距離に対応する実空間の距離
T:第1撮像画像における中央線から測定対象位置までの距離に対応する実空間の距離
θ:鉛直方向に対する第2撮像部の光軸の角度
である。
Further, in the first embodiment, as shown in FIG. 4, the control unit 9 sets the height of the measurement object 12 (part E) according to the following equation (3) to the same feature points 12 a of the measurement object 12. Is configured to get the height of the.
H = S / sin θ-T / tan θ (3)
here,
H: height S of the measurement object of the physical unit: real space distance T corresponding to the distance from the center line to the measurement object position in the second image: distance from the center line to the measurement object position in the first image The distance θ of the real space corresponding to :: an angle of the optical axis of the second imaging unit with respect to the vertical direction.
 なお、距離Sは、第2撮像画像14の撮像中心を通る中央線14aに対応する実空間の中央線(図4の点Bを通り紙面に直交する線)を通り第2撮像部8に入射する光線(後述する光線15c)から、実空間の測定対象位置を通り第2撮像部8に入射する光線(後述する光線15d)までの距離ともいえる。また、距離Sは、第2撮像画像14の中央線14aから特徴点12aまでのピクセル単位の距離に基づいて、物理単位の距離として制御部9により取得される値である。また、距離Tは、第1撮像画像13の撮像中心を通る中央線13aに対応する実空間の中央線(図4の点Bを通り紙面に直交する線)を通り第1撮像部7に入射する光線(後述する光線15a)から、実空間の測定対象位置を通り第1撮像部7に入射する光線(後述する光線15b)までの距離ともいえる。また、距離Tは、第1撮像画像13の撮像中心を通る中央線13aから特徴点12aまでのピクセル単位の距離に基づいて、物理単位の距離として制御部9により取得される値である。また、角度θは、第2撮像部8の取付角度であって、既知の値(たとえば、30度)である。 The distance S is incident on the second imaging unit 8 through the center line of the real space (the line perpendicular to the page through the point B in FIG. 4) corresponding to the center line 14a passing the imaging center of the second captured image 14 It can be said that the distance from the light beam (light beam 15c to be described later) to the light beam (light beam 15d to be described later) incident on the second imaging unit 8 through the measurement target position in real space. The distance S is a value acquired by the control unit 9 as a distance in physical units based on the distance in pixel units from the center line 14 a of the second captured image 14 to the feature point 12 a. In addition, the distance T is incident on the first imaging unit 7 through the center line of the real space (the line perpendicular to the page through the point B in FIG. 4) corresponding to the center line 13a passing the imaging center of the first captured image 13 It can be said that the distance from the light beam (light beam 15a to be described later) to the light beam (light beam 15b to be described later) incident on the first imaging unit 7 through the measurement target position in real space. The distance T is a value acquired by the control unit 9 as a physical unit distance based on the distance in pixel units from the center line 13a passing the imaging center of the first captured image 13 to the feature point 12a. In addition, the angle θ is a mounting angle of the second imaging unit 8 and is a known value (for example, 30 degrees).
 図4に示すように、中央線13aに対応する実空間の中央線を通り第1撮像部7に入射する光線を示す線15a(第1撮像部7センタ)と、特徴点12aを通り第1撮像部7に入射する光線を示す線15b(第1撮像部7から見た特徴点12a)と、中央線14aに対応する実空間の中央線を通り第2撮像部8に入射する光線を示す線15c(第2撮像部8センタ)と、特徴点12aを通り第2撮像部8に入射する光線を示す線15d(第2撮像部8から見た特徴点12a)とを定義する。この場合、基準高さに対する特徴点12aの高さHは、幾何学的関係に基づいて、S/sinθで表される線分ABの長さaと、T/Tanθで表される線分BCの長さbとの差(つまり、式(3))により表すことが可能である。 As shown in FIG. 4, a line 15a (a first imaging unit 7 center) indicating a light ray incident on the first imaging unit 7 through a center line of the real space corresponding to the center line 13a, and a first characteristic point 12a Indicates a ray incident on the second imaging unit 8 through a line 15 b (a feature point 12 a viewed from the first imaging unit 7) indicating a ray incident on the imaging unit 7 and a center line of the real space corresponding to the center line 14 a A line 15c (second imaging unit 8 center) and a line 15d (feature point 12a viewed from the second imaging unit 8) indicating a light beam passing through the feature point 12a and incident on the second imaging unit 8 are defined. In this case, the height H of the feature point 12a relative to the reference height is the length a of the line segment AB represented by S / sinθ and the line segment BC represented by T / Tanθ based on the geometrical relationship. It can be expressed by the difference with the length b of (i.e., equation (3)).
 また、第1撮像部7が取付誤差などに起因して、取付角度αを有する場合、図5に示すように、制御部9は、以下の式(4)により、測定対象物12(部品E)の高さとしての測定対象物12の同一特徴点12aの高さを取得するように構成されている。
H=S×cosα/sin(θ+α)-T×{cosα/tan(θ+α)+sinθ} ・・・(4)
In addition, when the first imaging unit 7 has the attachment angle α due to an attachment error or the like, as shown in FIG. 5, the control unit 9 determines the measurement object 12 (part E by the following equation (4) Is configured to obtain the height of the same feature point 12a of the measurement object 12 as the height of.
H = S × cos α / sin (θ + α) −T × {cos α / tan (θ + α) + sin θ} (4)
 なお、角度αは、鉛直方向に対する第1撮像部7の光軸7aの角度であって、既知の値である。 Note that the angle α is an angle of the optical axis 7a of the first imaging unit 7 with respect to the vertical direction, and is a known value.
 図5に示すように、中央線13aを通り第1撮像部7に入射する光線を示す線16a(第1撮像部7センタ)と、特徴点12aを通り第1撮像部7に入射する光線を示す線16b(第1撮像部7から見た特徴点12a)と、中央線14aを通り第2撮像部8に入射する光線を示す線16c(第2撮像部8センタ)と、特徴点12aを通り第2撮像部8に入射する光線を示す線16d(第2撮像部8から見た特徴点12a)と、鉛直方向に沿って延びる2つの補助線16eおよび16fと、特徴点12aを通り水平方向に対して角度αだけ傾斜した補助線16gとを定義する。この場合、線分DEの長さcは、T/cos(θ+α)-Tで表される。また、線分EFの長さdは、T×tanαで表される。また、線分FGの長さeは、b/tan(θ+α)-cで表される。そして、基準高さに対する特徴点12aの高さHは、e×cosα(つまり、式(4))により表すことが可能である。 As shown in FIG. 5, a line 16a (first imaging unit 7 center) indicating a light beam entering the first imaging unit 7 through the center line 13a and a light beam entering the first imaging unit 7 through the feature point 12a A line 16b (feature point 12a seen from the first imaging unit 7), a line 16c (second imaging unit 8 center) showing a light ray incident on the second imaging unit 8 through the center line 14a, and the feature point 12a And a line 16d (a feature point 12a viewed from the second imaging unit 8) indicating a light beam incident on the second imaging unit 8, two auxiliary lines 16e and 16f extending along the vertical direction, and a horizontal passing through the feature point 12a Define an auxiliary line 16g inclined by an angle α with respect to the direction. In this case, the length c of the line segment DE is represented by T / cos (θ + α) −T. Further, the length d of the line segment EF is represented by T × tan α. Further, the length e of the line segment FG is represented by b / tan (θ + α) -c. The height H of the feature point 12a with respect to the reference height can be expressed by e × cos α (that is, equation (4)).
 なお、角度αが十分に小さい場合、式(3)により、高さHを求めることが可能である。たとえば、角度αが1度以下である場合、式(3)により、高さHを求めることが可能である。 If the angle α is sufficiently small, the height H can be obtained by the equation (3). For example, when the angle α is 1 degree or less, it is possible to obtain the height H by the equation (3).
 また、制御部9は、距離Sおよび距離Tを、まず、ピクセル単位の距離(それぞれ、s、t)として取得するとともに、ピクセル単位の距離として取得された距離sおよび距離tを式(3)または式(4)に代入するように構成されている。これにより、制御部9は、ピクセル単位の測定対象物12の同一特徴点12aの高さhを取得するように構成されている。 Furthermore, the control unit 9 first obtains the distance S and the distance T as the distance in pixel units (s and t, respectively), and at the same time, obtains the distance s and the distance t obtained as the distances in pixel units Or it is comprised so that it may substitute to Formula (4). Thus, the control unit 9 is configured to acquire the height h of the same feature point 12 a of the measurement object 12 in units of pixels.
 また、制御部9は、以下の式(5)により、ピクセル単位の測定対象物12の同一特徴点12aの高さh(ピクセル)を、長さの物理単位の高さH(μm)に変換するように構成されている。本来、2つの異なる撮像系においては、互いに変換係数(後述するScale-aおよびScale-b)が異なるが、第2撮像部8をテレセントリック光学系とし、第1撮像部7の画角を所定の画角以下(約4度以下)とした場合、高さが1mm程度の範囲であれば、式(5)のように、変換係数を1つの変換係数として扱うことが可能である。
H=(Scale-c)×h=(Scale-c)×s/sinθ-t/tanθ ・・・(5)
ここで、
Scale-c:ピクセル単位の距離を物理単位の距離に変換するための変換係数(μm/ピクセル)
h:ピクセル単位の測定対象物の高さ
s:第2撮像画像における中央線から測定対象位置までのピクセル単位の距離
t:第1撮像画像における中央線から測定対象位置までのピクセル単位の距離
である。
 つまり、S=(Scale-c)×sであり、T=(Scale-c)×tである。
Further, the control unit 9 converts the height h (pixel) of the same feature point 12 a of the measurement object 12 in pixel units into the height H (μm) of the physical unit of the length by the following equation (5) It is configured to Essentially, in two different imaging systems, although the conversion coefficients (Scale-a and Scale-b described later) are different from each other, the second imaging unit 8 is a telecentric optical system, and the angle of view of the first imaging unit 7 is a predetermined When the angle of view or less (about 4 degrees or less), if the height is in the range of about 1 mm, it is possible to handle the conversion coefficient as one conversion coefficient as shown in equation (5).
H = (Scale-c) x h = (Scale-c) x s / sin θ-t / tan θ (5)
here,
Scale-c: Conversion factor (μm / pixel) to convert distance in pixels to distance in physical units
h: height of the measurement object in pixel units s: distance in pixel units from the center line to the measurement target position in the second captured image t: distance in pixel units from the center line to the measurement target position in the first captured image is there.
That is, S = (Scale-c) × s, and T = (Scale-c) × t.
 具体的には、ある高さH1(たとえば、1mm)および基準高さH0は、それぞれ、以下の式(6)および式(7)により表すことができる。
H1=(Scale-a)×s1/sinθ-(Scale-b)×t1/tanθ ・・・(6)
H0=(Scale-a)×s0/sinθ-(Scale-b)×t0/tanθ ・・・(7)
ここで、
s1:ある高さH1における距離s(ピクセル)
t1:ある高さH1における距離t(ピクセル)
s0:基準高さH0における距離s(ピクセル)
t0:基準高さH0における距離t(ピクセル)
である。
Specifically, a certain height H1 (for example, 1 mm) and a reference height H0 can be represented by the following equations (6) and (7), respectively.
H1 = (Scale-a) × s1 / sin θ- (Scale-b) × t1 / tan θ (6)
H0 = (Scale-a) × s0 / sin θ− (Scale−b) × t0 / tan θ (7)
here,
s1: distance s (pixel) at a certain height H1
t1: distance t (pixel) at a certain height H1
s0: distance s (pixel) at reference height H0
t0: distance t (pixel) at reference height H0
It is.
 また、t1とt0とが略等しい(t1≒t0)とすると、物理単位の高さHは、以下の近似式(8)により表すことができる。測定対象物12を略鉛直上方から撮像した画像である第1撮像画像13では、部品Eの高さが多少変わっても、距離Tを構成するピクセルの数が大きく変化しないため、容易に、t1≒t0の近似条件を得ることが可能である。
H=(H1-H0)=Scale-a×(s1-s0)/sinθ ・・・(8)
Further, assuming that t1 and t0 are substantially equal (t1 ≒ t0), the height H of the physical unit can be expressed by the following approximate expression (8). In the first captured image 13 which is an image obtained by capturing the measurement object 12 from substantially vertically above, the number of pixels constituting the distance T does not change significantly even if the height of the part E changes a little, so t1 easily. It is possible to obtain an approximation condition of tt0.
H = (H1-H0) = Scale-a x (s1-s0) / sinθ (8)
 また、式(8)を変形すると、Scale-cは、以下の式(9)により表すことができる。
Scale-c=Scale-a=H×sinθ/(s1-s0) ・・・(9)
Further, when Expression (8) is transformed, Scale-c can be expressed by the following Expression (9).
Scale-c = Scale-a = H × sin θ / (s 1 −s 0) (9)
 したがって、Hが既知(即ちH0及びH1が既知)の条件(たとえば、H=1mmの条件)で、s1およびs0を取得すれば、Scale-cを求めることが可能である。これにより、ピクセル単位の高さhを物理単位の高さHに簡単に変換することが可能である。 Therefore, if s1 and s0 are obtained under the condition that H is known (ie, H0 and H1 are known) (for example, the condition of H = 1 mm), it is possible to obtain Scale-c. Thereby, it is possible to easily convert the height h in pixel units to the height H in physical units.
 また、第1実施形態では、制御部9は、段取り変えが実施された場合、および、ヘッド3aによる部品Eの保持(吸着)エラーが生じた場合に、第1撮像部7および第2撮像部8により測定対象物12(部品E)を撮像する制御を行い、測定対象物12の第1撮像画像13および第2撮像画像14を取得するとともに、取得された第1撮像画像13および第2撮像画像14に基づいて、測定対象物12の高さを取得するように構成されている。つまり、制御部9は、段取り変えが実施された場合、および、ヘッド3aによる部品Eの保持エラーが生じた場合に、測定対象物12の高さを取得し直すように構成されている。 In the first embodiment, the control unit 9 performs the first imaging unit 7 and the second imaging unit 7 when a setup change is performed, and when a holding (suction) error of the component E by the head 3 a occurs. 8 performs control of imaging the measurement object 12 (part E), acquires the first captured image 13 and the second captured image 14 of the measurement object 12, and obtains the acquired first captured image 13 and second imaging The height of the measurement object 12 is configured to be acquired based on the image 14. That is, the control unit 9 is configured to re-acquire the height of the measurement object 12 when the setup change is performed and when a holding error of the component E by the head 3 a occurs.
 段取り変えが実施された場合とは、たとえば、部品供給部11が交換された場合、部品供給部11に保持されたリールが交換された場合などである。また、ヘッド3aによる部品Eの保持エラーが生じた場合とは、たとえば、部品供給部11に配置された部品を保持するためにヘッド3aを下降させたが、ヘッド3aにより部品Eを保持することができなかった場合である。また、ヘッド3aによる部品Eの保持エラーが生じた場合とは、保持エラーが1回生じた場合でもよく、保持エラーが複数回(たとえば、3回)連続して生じた場合でもよい。 The case where the setup change is performed is, for example, the case where the component supply unit 11 is replaced, the case where the reel held by the component supply unit 11 is replaced, or the like. Further, when a holding error of the component E by the head 3a occurs, for example, the head 3a is lowered to hold the component disposed in the component supply unit 11, but holding the component E by the head 3a If you can not Further, the case where a holding error of the part E by the head 3a occurs may be a case where a holding error occurs once, or a case where a holding error occurs a plurality of times (for example, three times) continuously.
 また、第1実施形態では、制御部9は、部品供給部11に配置された部品Eの高さが、高さ測定により測定された部品Eの高さであると仮定して、目標保持水平位置を補正するための目標保持水平位置補正値を取得するように構成されている。 Further, in the first embodiment, the control unit 9 assumes that the height of the component E disposed in the component supply unit 11 is the height of the component E measured by the height measurement, and thus the target holding horizontal A target holding horizontal position correction value for correcting the position is configured to be acquired.
 そして、制御部9は、目標保持水平位置補正値が、予め決められた所定のしきい値Th1以上である場合に、第1撮像部7および第2撮像部8により測定対象物12(部品E)を撮像する制御を行い、測定対象物12の第1撮像画像13および第2撮像画像14を取得するとともに、取得された第1撮像画像13および第2撮像画像14に基づいて、測定対象物12の高さを取得するように構成されている。つまり、制御部9は、目標保持水平位置補正値が、所定のしきい値Th1以上である場合に、測定対象物12の高さを取得し直すように構成されている。一方、制御部9は、目標保持水平位置補正値が、所定のしきい値Th1未満である場合には、測定対象物12の高さを取得し直す制御を行わないように構成されている。なお、所定のしきい値Th1は、取得された目標保持水平位置補正値が過大でないかどうかを判断するための値である。 Then, the control unit 9, the target holding horizontal position correction value, when the predetermined threshold value Th 1 or more predetermined, the measuring object by the first image pickup unit 7 and the second imaging unit 8 12 (part E) Control to pick up an image to obtain the first and second captured images 13 and 14 of the measurement object 12, and based on the obtained first and second captured images 13 and 14, the measurement object The height of the object 12 is configured to be acquired. That is, the control unit 9, the target holding horizontal position correction value, when the predetermined threshold value Th 1 or more, and is configured to re-acquire the height of the measurement object 12. On the other hand, the control unit 9, the target holding horizontal position correction value, if it is below a predetermined threshold Th 1 is configured so as not to perform the acquired again control the height of the measurement object 12 . The predetermined threshold value Th 1 is a value for the target holding horizontal position correction value obtained to determine whether not excessive.
 また、制御部9は、目標保持水平位置補正値が、所定のしきい値Th1以上である場合であって、今回取得された測定対象物12の高さと、前回取得された測定対象物12の高さとの差が、予め決められた所定のしきい値Th2以上である場合には、測定対象物12の高さを、今回取得された測定対象物12(部品E)の高さに更新するように構成されている。一方、制御部9は、所定のしきい値Th1以上である場合であって、今回取得された測定対象物12の高さと、前回取得された測定対象物12の高さとの差が、所定のしきい値Th2未満である場合には、部品供給部11に配置された部品Eの水平方向の位置の異常を報知する制御を行うように構成されている。なお、所定のしきい値Th2は、今回取得された測定対象物12の高さが、前回取得された測定対象物12の高さに対して、大きく変化しているか否かを判断するための値である。 The control unit 9, the target holding horizontal position correction value, even if the predetermined threshold value Th 1 or more, and the height of the currently acquired measurement object 12, the measurement object was last acquired 12 the difference between the height of the case is predetermined a predetermined threshold value Th 2 or more, the height of the measurement object 12, the height of the acquired current measurement object 12 (part E) It is configured to update. On the other hand, the control unit 9, a case where a predetermined threshold value Th 1 or more, the difference between the height of the measurement object 12, which is obtained this time, the height of the measurement object 12 obtained in the previous time, the predetermined If it is less than the threshold value Th 2 of is configured to perform control to notify the abnormality of the horizontal position of the disposed in the component supply section 11 part E. The predetermined threshold value Th 2, the height of the measurement object 12, which is obtained this time is, the height of the measurement object 12 obtained in the previous time, in order to determine whether the changes significantly Is the value of
 次に、図6を参照して、第1実施形態の部品実装装置100による高さ測定処理の一例をフローチャートに基づいて説明する。具体的には、図6を参照して、段取り変えが実施された場合、または、ヘッド3aによる部品Eの保持(吸着)エラーが生じた場合における、部品Eの高さ測定処理を説明する。なお、フローチャートの各処理は、制御部9により行われる。 Next, with reference to FIG. 6, an example of the height measurement process by the component mounting apparatus 100 of the first embodiment will be described based on a flowchart. Specifically, the process of measuring the height of the component E will be described with reference to FIG. 6 when the setup change is performed or a holding (suction) error of the component E by the head 3a occurs. Each process of the flowchart is performed by the control unit 9.
 図6に示すように、まず、ステップS1では、測定対象物12(部品供給部11に配置された部品E)の高さ測定を行うか否かが判断される。つまり、ステップS1では、段取り変えが実施されたか否か、および、ヘッド3aによる部品Eの保持(吸着)エラーが生じたか否かが判断される。測定対象物12の高さ測定を行わないと判断される場合には、高さ測定処理が終了される。 As shown in FIG. 6, first, in step S1, it is determined whether or not the height measurement of the measurement object 12 (the part E disposed in the part supply unit 11) is to be performed. That is, in step S1, it is determined whether or not the setup change has been performed, and whether a holding (suction) error of the component E by the head 3a has occurred. If it is determined that the height measurement of the measurement object 12 is not to be performed, the height measurement process is ended.
 また、ステップS1において、測定対象物12の高さ測定を行うと判断される場合には、ステップS2に進む。 When it is determined in step S1 that the height measurement of the measurement object 12 is to be performed, the process proceeds to step S2.
 そして、ステップS2において、第1撮像部7を測定対象物12(部品E)の撮像位置に移動する制御が行われる。そして、第1撮像部7により測定対象物12が撮像される。 Then, in step S2, control is performed to move the first imaging unit 7 to the imaging position of the measurement object 12 (part E). Then, the measurement object 12 is imaged by the first imaging unit 7.
 そして、ステップS3において、第1撮像部7による第1撮像画像13が取得される。 Then, in step S3, the first captured image 13 by the first imaging unit 7 is acquired.
 そして、ステップS4において、第2撮像部8を測定対象物12(部品E)の撮像位置に移動する制御が行われる。そして、第2撮像部8により測定対象物12が撮像される。なお、第1撮像部7による測定対象物12の撮像と、第2撮像部8による測定対象物12の撮像とは、いずれが先に行われてもよい。 Then, in step S4, control is performed to move the second imaging unit 8 to the imaging position of the measurement object 12 (part E). Then, the measurement object 12 is imaged by the second imaging unit 8. Either of the imaging of the measurement object 12 by the first imaging unit 7 and the imaging of the measurement object 12 by the second imaging unit 8 may be performed first.
 そして、ステップS5において、第2撮像部8による第2撮像画像14が取得される。 Then, in step S5, the second captured image 14 by the second imaging unit 8 is acquired.
 そして、ステップS6において、画像における明度に基づいて、第1撮像画像13と第2撮像画像14とにおける、測定対象物12(部品E)の同一特徴点12aが検出される。 Then, in step S6, the same feature points 12a of the measurement object 12 (part E) in the first captured image 13 and the second captured image 14 are detected based on the lightness in the image.
 そして、ステップS7において、第1撮像画像13および第2撮像画像14に基づいて、測定対象物12の高さが取得される。具体的には、上記した式(3)または式(4)により、検出された測定対象物12の同一特徴点12aの高さが、測定対象物12の高さとして取得される。 Then, in step S7, the height of the measurement object 12 is acquired based on the first captured image 13 and the second captured image 14. Specifically, the height of the same feature point 12 a of the detected measurement object 12 is acquired as the height of the measurement object 12 according to the above-described expression (3) or expression (4).
 そして、ステップS8において、測定対象物12の高さに基づいて、目標保持高さ位置(Z座標位置)が補正される。その後、高さ測定処理が終了される。 Then, in step S8, the target holding height position (Z coordinate position) is corrected based on the height of the measurement object 12. Thereafter, the height measurement process is ended.
 次に、図7を参照して、第1実施形態の部品実装装置100による高さ測定処理の一例をフローチャートに基づいて説明する。具体的には、図7を参照して、目標保持水平位置補正値が、所定のしきい値Th1以上である場合における、部品Eの高さ測定処理を説明する。なお、目標保持水平位置補正値は、ヘッド3aによる部品Eの保持動作毎に取得される。したがって、図7に示すフローチャートの処理は、ヘッド3aによる部品Eの保持動作毎に行われる。また、フローチャートの各処理は、制御部9により行われる。 Next, referring to FIG. 7, an example of the height measurement process by the component mounting apparatus 100 according to the first embodiment will be described based on a flowchart. Specifically, with reference to FIG. 7, height measurement processing of the part E in the case where the target holding horizontal position correction value is equal to or more than a predetermined threshold value Th 1 will be described. The target holding horizontal position correction value is acquired for each holding operation of the component E by the head 3a. Therefore, the process of the flowchart shown in FIG. 7 is performed for each holding operation of the part E by the head 3a. Further, each process of the flowchart is performed by the control unit 9.
 図7に示すように、まず、ステップS11において、目標保持水平位置補正値が、所定のしきい値Th1以上であるか否かが判断される。目標保持水平位置補正値が、所定のしきい値Th1未満であると判断される場合には、高さ測定処理が終了される。 As shown in FIG. 7, first, in step S11, the target holding horizontal position correction value, whether the predetermined threshold value Th 1 or more is determined. Target holding horizontal position correction value, when it is determined to be less than the predetermined threshold value Th 1, the height measurement process is terminated.
 また、ステップS11において、目標保持水平位置補正値が、所定のしきい値Th1以上であると判断される場合には、ステップS12に進む。そして、ステップS12~S17の処理において、図6に示すステップS2~S7の処理と同様の処理が行われる。 Further, in step S11, when the target holding horizontal position correction value is determined to be a predetermined threshold value Th 1 or more, the process proceeds to step S12. Then, in the processes of steps S12 to S17, the same processes as the processes of steps S2 to S7 shown in FIG. 6 are performed.
 そして、ステップS18において、今回取得された測定対象物12(部品供給部11に配置された部品E)の高さと、前回取得された測定対象物12の高さとの差が、所定のしきい値Th2以上であるか否かが判断される。 Then, in step S18, the difference between the height of the measurement object 12 (part E disposed in the component supply unit 11) acquired this time and the height of the measurement object 12 acquired last time is a predetermined threshold value It is determined whether it is Th 2 or more.
 ステップS18において、高さ同士の差が所定のしきい値Th2以上であると判断される場合には、前回の測定時から測定対象物12の高さが大きく変化したと考えられるため、ステップS19に進む。 Since in step S18, if the difference between the height is determined to be a predetermined threshold value Th 2 or more, the height of the measurement object 12 from the time of previous measurement is considered to have changed significantly, the step Go to S19.
 そして、ステップS19において、測定対象物12の高さが、今回取得された測定対象物12(部品E)の高さに更新される。この結果、次のヘッド3aによる部品Eの保持動作では、部品供給部11に配置された部品Eの高さが更新された測定対象物12(部品E)の高さであると仮定されて、正確な目標保持水平位置補正値が取得される。 Then, in step S19, the height of the measurement object 12 is updated to the height of the measurement object 12 (part E) acquired this time. As a result, in the holding operation of the part E by the next head 3a, it is assumed that the height of the part E disposed in the part supply unit 11 is the height of the updated measurement object 12 (part E), An accurate target hold horizontal position correction value is obtained.
 そして、ステップS20において、更新された測定対象物12(部品E)の高さに基づいて、目標保持高さ位置(Z座標位置)が補正される。その後、高さ測定処理が終了される。 Then, in step S20, the target holding height position (Z coordinate position) is corrected based on the height of the updated measurement object 12 (part E). Thereafter, the height measurement process is ended.
 また、ステップS18において、高さ同士の差が所定のしきい値Th2未満であると判断される場合には、前回の測定時から測定対象物12の高さが大きく変化していないにも関わらず、目標保持水平位置補正値が過大な値であると考えられる。つまり、実際に、部品供給部11に配置された部品Eの水平方向における位置が正規の位置から大きく位置ずれしていると考えられる。このため、ステップS21に進み、ステップS21において、部品供給部11に配置された部品Eの水平方向の位置の異常を報知する制御が行われる。その後、高さ測定処理が終了される。 Further, in step S18, if the difference between the height is determined to be below a predetermined threshold Th 2 is also the height of the measurement object 12 from the time of previous measurement has not changed significantly Regardless, it is considered that the target holding horizontal position correction value is an excessive value. That is, it is considered that the position in the horizontal direction of the component E disposed in the component supply unit 11 is actually largely displaced from the normal position. For this reason, the process proceeds to step S21, and in step S21, control is performed to notify of an abnormality in the position of the component E arranged in the component supply unit 11 in the horizontal direction. Thereafter, the height measurement process is ended.
(第1実施形態の効果)
 第1実施形態では、以下のような効果を得ることができる。
(Effect of the first embodiment)
In the first embodiment, the following effects can be obtained.
 第1実施形態では、上記のように、制御部9を、第1撮像部7による測定対象物12(部品E)の第1撮像画像13、および、第2撮像部8による測定対象物12(部品E)の第2撮像画像14に基づいて、測定対象物12(部品E)の高さを取得するように構成する。ここで、第1撮像部7および第2撮像部8は、共に、ある程度広い範囲を撮像可能であるため、第1撮像部7および第2撮像部8の取付位置が正規の位置から多少ずれている場合であっても、測定対象物12(部品E)を撮像することが可能である。したがって、上記のように、第1撮像部7および第2撮像部8による測定対象物12(部品E)の第1撮像画像13および第2撮像画像14に基づいて、測定対象物12(部品E)の高さを取得することによって、小さい測定対象物12(部品E)であっても高さを精度良く測定することができる。また、位置認識マークFを撮像する第1撮像部7を利用して、測定対象物12(部品E)の高さ測定を行うことができるので、測定対象物12(部品E)の高さ測定を行うために部品点数が増加することを抑制することができる。 In the first embodiment, as described above, the control unit 9 controls the first captured image 13 of the measurement object 12 (part E) by the first imaging unit 7 and the measurement object 12 by the second imaging unit 8 ( The height of the measurement object 12 (part E) is acquired based on the second captured image 14 of the part E). Here, since the first imaging unit 7 and the second imaging unit 8 are both capable of imaging a wide range to some extent, the attachment positions of the first imaging unit 7 and the second imaging unit 8 are slightly deviated from the regular position. Even in the case, it is possible to image the measurement object 12 (part E). Therefore, as described above, based on the first captured image 13 and the second captured image 14 of the measurement object 12 (part E) by the first imaging unit 7 and the second imaging unit 8, the measurement object 12 (part E By acquiring the height of), the height can be accurately measured even with a small measurement object 12 (part E). In addition, since the height measurement of the measurement object 12 (part E) can be performed using the first imaging unit 7 that images the position recognition mark F, the height measurement of the measurement object 12 (part E) It is possible to suppress an increase in the number of parts in order to
 また、第1実施形態では、上記のように、第1撮像部7を、略鉛直上方から測定対象物12(部品E)を撮像するように構成する。そして、第2撮像部8を、テレセントリック光学系を有するとともに、斜め上方から測定対象物12(部品E)を撮像するように構成する。これにより、略鉛直上方から測定対象物12(部品E)を撮像した画像である第1撮像画像13と、斜め上方から測定対象物12(部品E)を撮像した画像である第2撮像画像14とに基づいて、容易に、測定対象物12(部品E)の高さを取得することができる。 Further, in the first embodiment, as described above, the first imaging unit 7 is configured to image the measurement object 12 (part E) from substantially vertically above. Then, the second imaging unit 8 is configured to have a telecentric optical system and to image the measurement object 12 (part E) from diagonally above. Thereby, a first captured image 13 which is an image obtained by capturing the measurement target 12 (part E) from substantially vertically above, and a second captured image 14 which is an image obtained by capturing the measurement target 12 (part E) from diagonally above And the height of the measurement object 12 (part E) can be easily obtained.
 また、第1実施形態では、上記のように、制御部9を、上記式(3)により、測定対象物12(部品E)の高さを取得するように構成する。これにより、測定対象物12(部品E)の高さを取得するために、過度に複雑な処理を行う必要が無く、上記した簡単な式(3)により、測定対象物12(部品E)の高さを簡単かつ確実に取得することができる。 Further, in the first embodiment, as described above, the control unit 9 is configured to acquire the height of the measurement object 12 (part E) according to the above-mentioned equation (3). As a result, there is no need to perform excessively complicated processing in order to obtain the height of the measurement object 12 (part E), and according to the simple equation (3) described above, the measurement object 12 (part E) The height can be acquired easily and reliably.
 また、第1実施形態では、上記のように、制御部9を、上記式(5)により、測定対象物12(部品E)の高さを取得するように構成する。これにより、2つの撮像系を用いて測定対象物12(部品E)の高さを取得する場合にも、1つの変換係数だけで測定対象物12(部品E)の高さを取得することができるので、測定対象物12(部品E)の高さを取得するための処理をより簡単に行うことができる。 Further, in the first embodiment, as described above, the control unit 9 is configured to obtain the height of the measurement object 12 (part E) by the above equation (5). Thereby, even when acquiring the height of the measurement object 12 (part E) using two imaging systems, acquiring the height of the measurement object 12 (part E) with only one conversion coefficient Since it can do, the process for acquiring the height of the measurement object 12 (part E) can be performed more easily.
 また、第1実施形態では、上記のように、第2撮像部8が、部品供給部11に配置された部品Eを撮像する撮像部である。これにより、部品供給部11に配置された部品Eを撮像する第2撮像部8を利用して、測定対象物12(部品E)の高さ測定を行うことができるので、測定対象物12(部品E)の高さ測定を行うために、部品点数が増加することをより抑制することができる。 In the first embodiment, as described above, the second imaging unit 8 is an imaging unit that images the component E disposed in the component supply unit 11. As a result, since the height measurement of the measurement object 12 (component E) can be performed using the second imaging unit 8 that images the component E disposed in the component supply unit 11, the measurement object 12 ( In order to measure the height of the part E), the increase in the number of parts can be further suppressed.
 また、第1実施形態では、上記のように、測定対象物12は、部品供給部11に配置された部品Eである。これにより、部品供給部11に配置された部品Eの第1撮像画像13および第2撮像画像14に基づいて、部品供給部11に配置された部品Eの高さを容易に取得することができる。この場合、取得された部品Eの高さに基づいて、部品供給部11からの部品Eの保持時におけるヘッド3aの目標保持高さ位置(Z座標位置)を補正することにより、ヘッド3aによる部品供給部11からの部品Eの保持を精度良く行うことができる。 In the first embodiment, as described above, the measurement object 12 is the component E disposed in the component supply unit 11. Thus, the height of the component E disposed in the component supply unit 11 can be easily obtained based on the first captured image 13 and the second captured image 14 of the component E disposed in the component supply unit 11. . In this case, the component by the head 3 a is corrected by correcting the target holding height position (Z coordinate position) of the head 3 a at the time of holding the component E from the component supply unit 11 based on the acquired height of the component E. The component E can be held from the supply unit 11 with high accuracy.
 また、第1実施形態では、上記のように、制御部9を、段取り変えが実施された場合、および、ヘッド3aによる部品Eの保持エラーが生じた場合に、第1撮像部7および第2撮像部8により測定対象物12としての部品Eを撮像する制御を行い、測定対象物12としての部品Eの第1撮像画像13および第2撮像画像14を取得するとともに、取得された第1撮像画像13および第2撮像画像14に基づいて、測定対象物12としての部品Eの高さを取得するように構成する。これにより、段取り変えが実施されることにより、部品供給部11に配置された部品Eの高さが変わったと考えられる場合に、測定対象物12としての部品Eの高さを取得し直すことができる。また、ヘッド3aによる部品Eの保持エラーが生じたことから、現在取得している測定対象物12としての部品Eの高さが適切な値でないと考えられる場合に、測定対象物12としての部品Eの高さを取得し直すことができる。つまり、適切なタイミングで、測定対象物12としての部品Eの高さを取得し直すことができる。 In the first embodiment, as described above, the first imaging unit 7 and the second imaging unit 7 perform the setup change of the control unit 9 and the holding error of the component E by the head 3a. The imaging unit 8 controls the imaging of the component E as the measurement object 12, and acquires the first imaging image 13 and the second imaging image 14 of the component E as the measurement object 12, and the acquired first imaging Based on the image 13 and the second captured image 14, the height of the component E as the measurement object 12 is acquired. Thereby, when it is considered that the height of the component E disposed in the component supply unit 11 has changed due to the implementation of the setup change, the height of the component E as the measurement object 12 is acquired again. it can. In addition, when it is considered that the height of the part E as the currently obtained measurement object 12 is not an appropriate value because a holding error of the part E by the head 3a occurs, the part as the measurement object 12 You can get the height of E again. That is, the height of the part E as the measurement object 12 can be reacquired at an appropriate timing.
 また、第1実施形態では、上記のように、制御部9を、第2撮像部8による部品供給部11に配置された部品Eの撮像画像に基づいて、目標保持水平位置を補正するための目標保持水平位置補正値を取得するように構成する。そして、制御部9を、取得された目標保持水平位置補正値が、予め決められた所定のしきい値Th1以上である場合に、第1撮像部7および第2撮像部8により測定対象物12としての部品Eを撮像する制御を行い、測定対象物12としての部品Eの第1撮像画像13および第2撮像画像14を取得するとともに、取得された第1撮像画像13および第2撮像画像14に基づいて、測定対象物12としての部品Eの高さを取得するように構成する。ここで、斜め上方から撮像された部品Eの撮像画像に基づいて、目標保持水平位置補正値を取得する場合、部品Eの高さが所定の高さであると仮定して、目標保持水平位置補正値を取得する必要がある。この場合、部品Eの高さが仮定した所定の高さとは異なると、目標保持水平位置補正値を正確に取得することが困難である。そこで、上記のように、取得された目標保持水平位置補正値が、所定のしきい値Th1以上である場合に、測定対象物12としての部品Eの高さを取得するように構成すれば、目標保持水平位置補正値が過度に大きいことから、目標保持水平位置補正値が正確な値でないと考えられる場合に、測定対象物12としての部品Eの高さを取得し直すことができる。その結果、取得し直した部品Eの高さに基づいて、目標保持水平位置補正値を正確に取得することができる。 In the first embodiment, as described above, the control unit 9 corrects the target holding horizontal position based on the captured image of the part E disposed in the component supply unit 11 by the second imaging unit 8. The target holding horizontal position correction value is acquired. Then, when the target holding horizontal position correction value obtained by the control unit 9 is equal to or greater than a predetermined threshold value Th 1 determined in advance, the measurement object by the first imaging unit 7 and the second imaging unit 8 Control for imaging the component E as 12 is performed, and the first captured image 13 and the second captured image 14 of the component E as the measurement object 12 are acquired, and the acquired first captured image 13 and the second captured image It is configured to acquire the height of the part E as the measurement object 12 on the basis of. Here, when acquiring the target holding horizontal position correction value based on the captured image of the part E captured from diagonally above, assuming that the height of the part E is a predetermined height, the target holding horizontal position It is necessary to obtain the correction value. In this case, if the height of the part E is different from the assumed predetermined height, it is difficult to accurately obtain the target holding horizontal position correction value. Therefore, as described above, the target holding horizontal position correction value acquired, if the predetermined threshold value Th 1 or more, if configured to obtain the height of the component E as the measurement object 12 Since the target holding horizontal position correction value is excessively large, the height of the part E as the measurement object 12 can be reacquired when it is considered that the target holding horizontal position correction value is not an accurate value. As a result, the target holding horizontal position correction value can be accurately acquired based on the height of the part E reacquired.
 また、第1実施形態では、上記のように、制御部9を、第1撮像画像13と第2撮像画像14とにおける、測定対象物12(部品E)の同一特徴点12aを検出するとともに、検出された測定対象物12(部品E)の同一特徴点12aの高さを、測定対象物12(部品E)の高さとして取得するように構成する。これにより、第1撮像画像13および第2撮像画像14の各々から検出された測定対象物12(部品E)の同一特徴点12aの高さを取得するだけで、測定対象物12(部品E)の高さを取得することができるので、簡単な処理で測定対象物12(部品E)の高さを取得することができる。 In the first embodiment, as described above, the control unit 9 detects the same feature points 12 a of the measurement object 12 (part E) in the first captured image 13 and the second captured image 14 as described above. The height of the same feature point 12a of the detected measurement object 12 (part E) is obtained as the height of the measurement object 12 (part E). Thereby, only by acquiring the height of the same feature point 12a of the measurement object 12 (part E) detected from each of the first captured image 13 and the second captured image 14, the measurement object 12 (part E) The height of the measurement object 12 (part E) can be obtained by simple processing.
[第2実施形態]
 次に、図1および図8~図10を参照して、第2実施形態について説明する。この第2実施形態では、測定対象物が部品供給部に配置された部品であった上記第1実施形態と異なり、測定対象物が基板である例について説明する。なお、上記第1実施形態と同一の構成については、図中において同じ符号を付して図示し、その説明を省略する。
Second Embodiment
Next, a second embodiment will be described with reference to FIG. 1 and FIGS. 8 to 10. In the second embodiment, an example in which the object to be measured is a substrate will be described, unlike the first embodiment in which the object to be measured is a component disposed in a component supply unit. About the same composition as the 1st embodiment of the above, the same numerals are attached and illustrated in the figure, and the explanation is omitted.
(部品実装装置の構成)
 本発明の第2実施形態による部品実装装置200は、図1に示すように、制御部109を備える点で、上記第1実施形態の部品実装装置100と相違する。
(Configuration of component mounting device)
The component mounting apparatus 200 according to the second embodiment of the present invention differs from the component mounting apparatus 100 according to the first embodiment in that a control unit 109 is provided as shown in FIG.
 第2実施形態では、測定対象物12は、基板Pである。具体的には、図8に示すように、測定対象物12は、基板Pにおける位置認識マークFの形成位置、および、基板Pにおける配線パターンWの形成位置である。 In the second embodiment, the measurement object 12 is a substrate P. Specifically, as shown in FIG. 8, the measurement object 12 is the formation position of the position recognition mark F on the substrate P and the formation position of the wiring pattern W on the substrate P.
 制御部109は、上記第1実施形態と同様に、測定対象物12(基板P)の高さを取得するように構成されている。つまり、図9(A)(B)に示すように、制御部109は、第1撮像部7による測定対象物12の第1撮像画像113、および、第2撮像部8による測定対象物12の第2撮像画像114に基づいて、ステレオマッチングにより、測定対象物12の高さを取得するように構成されている。第1撮像画像113は、基板Pの略鉛直上方から、位置認識マークF(対象の配線パターンW)の全体およびその周辺を写した画像である。第1撮像画像113は、基板Pの高さを示す基板Pの上面を含んでいる。なお、図9(A)において、距離Tは、第1撮像画像113における第1撮像画像113の撮像中心を通る中央線113aから特徴点12aまでの距離に対応する実空間の距離である。また、第2撮像画像114は、基板Pの斜め上方から位置認識マークF(対象の配線パターンW)の全体およびその周辺を写した画像である。第2撮像画像114は、基板Pの高さを示す基板Pの上面を含んでいる。なお、図9(B)において、距離Sは、第2撮像画像114における第2撮像画像114の撮像中心を通る中央線114aから特徴点12aまでの距離に対応する実空間の距離である。 The control unit 109 is configured to acquire the height of the measurement object 12 (substrate P), as in the first embodiment. That is, as shown in FIGS. 9A and 9B, the control unit 109 controls the first captured image 113 of the measurement object 12 by the first imaging unit 7 and the measurement object 12 by the second imaging unit 8. The height of the measurement object 12 is acquired by stereo matching based on the second captured image 114. The first captured image 113 is an image obtained by copying the entire position recognition mark F (the wiring pattern W of interest) and the periphery thereof from substantially vertically above the substrate P. The first captured image 113 includes the upper surface of the substrate P indicating the height of the substrate P. In FIG. 9A, the distance T is the distance of the real space corresponding to the distance from the center line 113a passing the imaging center of the first pickup image 113 in the first pickup image 113 to the feature point 12a. Further, the second captured image 114 is an image in which the entire position recognition mark F (the wiring pattern W of interest) and the periphery thereof are photographed from diagonally above the substrate P. The second captured image 114 includes the upper surface of the substrate P indicating the height of the substrate P. In FIG. 9B, the distance S is a distance in real space corresponding to the distance from the center line 114a passing through the imaging center of the second pickup image 114 in the second pickup image 114 to the feature point 12a.
 また、基板Pにおける位置認識マークFの形成位置(基板Pにおける配線パターンWの形成位置)を撮像した場合、たとえば、制御部109は、同一特徴点12aとして、位置認識マークF(対象の配線パターンW)の角部F1(W1)を検出する。これにより、明度の差が大きい部分を同一特徴点12aとして容易に検出することが可能である。また、制御部109は、上記第1実施形態と同様に、検出された測定対象物12の同一特徴点12aの高さを、測定対象物12の高さとして取得するように構成されている。 When the formation position of the position recognition mark F on the substrate P (the formation position of the wiring pattern W on the substrate P) is imaged, for example, the control unit 109 determines the position recognition mark F (target wiring pattern) as the same feature point 12a. The corner F1 (W1) of W) is detected. Thereby, it is possible to easily detect a portion having a large difference in lightness as the same feature point 12a. Further, as in the first embodiment, the control unit 109 is configured to acquire the height of the same feature point 12 a of the detected measurement object 12 as the height of the measurement object 12.
 また、第2実施形態では、制御部109は、測定対象物12(基板P)における複数の位置の高さを取得するとともに、取得された測定対象物12における複数の位置の高さに基づいて、測定対象物12の全体の反り状態を取得するように構成されている。図8に示すように、たとえば、制御部109は、基板Pにおける複数(2つ)の位置認識マークFの形成位置、および、基板Pにおける複数(3つ)の配線パターンWの形成位置の高さを取得する。そして、制御部109は、取得された基板Pにおける複数(5つ)の位置の高さに基づいて、基板Pの全体の反り状態を取得する。 Furthermore, in the second embodiment, the control unit 109 acquires the heights of the plurality of positions on the measurement object 12 (substrate P), and based on the heights of the plurality of positions on the acquired measurement object 12 , It is comprised so that the curvature state of the whole measurement object 12 may be acquired. As shown in FIG. 8, for example, the control unit 109 determines the heights of the formation positions of the plurality (two) of position recognition marks F on the substrate P and the formation positions of the plurality (three) of wiring patterns W on the substrate P. Get the Then, the control unit 109 acquires the warping state of the entire substrate P based on the heights of the plurality (five) of positions in the acquired substrate P.
 また、制御部109は、取得された測定対象物12としての基板Pの全体の反り状態(高さ)に基づいて、基板Pの部品実装位置に部品Eを実装するために下降する際にヘッド3aが目標とする上下方向における位置である目標実装高さ位置(Z座標位置)を補正するように構成されている。 In addition, the control unit 109 moves the head to mount the component E at the component mounting position of the substrate P based on the acquired warping state (height) of the substrate P as the measurement object 12. It is configured to correct a target mounting height position (Z coordinate position), which is a position in the vertical direction to be a target 3a.
 次に、図10を参照して、第2実施形態の部品実装装置200による高さ測定処理の一例をフローチャートに基づいて説明する。具体的には、図10を参照して、基板Pの搬入後でかつ実装前における、基板Pの高さ測定処理を説明する。なお、フローチャートの各処理は、制御部109により行われる。 Next, with reference to FIG. 10, an example of height measurement processing by the component mounting apparatus 200 of the second embodiment will be described based on a flowchart. Specifically, with reference to FIG. 10, height measurement processing of the substrate P after the loading of the substrate P and before mounting will be described. Each process in the flowchart is performed by the control unit 109.
 図10に示すように、まず、ステップS31では、基板Pにおける複数(2つ)の位置認識マークFの形成位置、および、基板Pにおける複数(3つ)の配線パターンWの形成位置のうちから、測定する測定対象物12が決定される。 As shown in FIG. 10, first, in step S31, from among the formation positions of the plurality (two) of position recognition marks F on the substrate P and the formation positions of the plurality (three) of wiring patterns W on the substrate P The measurement object 12 to be measured is determined.
 そして、ステップS32において、第1撮像部7を決定された測定対象物12(位置認識マークFの形成位置または配線パターンWの形成位置)の撮像位置に移動する制御が行われる。そして、第1撮像部7により測定対象物12が撮像される。 Then, in step S32, control is performed to move the first imaging unit 7 to the imaging position of the determined measurement object 12 (the formation position of the position recognition mark F or the formation position of the wiring pattern W). Then, the measurement object 12 is imaged by the first imaging unit 7.
 そして、ステップS33において、第1撮像部7による第1撮像画像113が取得される。 Then, in step S33, the first captured image 113 by the first imaging unit 7 is acquired.
 そして、ステップS34において、第2撮像部8を決定された測定対象物12(位置認識マークFの形成位置または配線パターンWの形成位置)の撮像位置に移動する制御が行われる。そして、第2撮像部8により測定対象物12が撮像される。 Then, in step S34, control is performed to move the second imaging unit 8 to the imaging position of the determined measurement object 12 (the formation position of the position recognition mark F or the formation position of the wiring pattern W). Then, the measurement object 12 is imaged by the second imaging unit 8.
 そして、ステップS35において、第2撮像部8による第2撮像画像114が取得される。 Then, in step S35, the second captured image 114 by the second imaging unit 8 is acquired.
 そして、ステップS36において、画像における明度に基づいて、第1撮像画像113と第2撮像画像114とにおける、測定対象物12(位置認識マークFの形成位置または配線パターンWの形成位置)の同一特徴点12aが検出される。 Then, in step S36, based on the lightness in the image, the same features of the measurement object 12 (the position where the position recognition mark F is formed or the position where the wiring pattern W is formed) in the first captured image 113 and the second captured image 114. Point 12a is detected.
 そして、ステップS37において、第1撮像画像113および第2撮像画像114に基づいて、測定対象物12の高さが取得される。具体的には、上記した式(3)または式(4)により、検出された測定対象物12の同一特徴点12aの高さが、測定対象物12の高さとして取得される。 Then, in step S37, the height of the measurement object 12 is acquired based on the first captured image 113 and the second captured image 114. Specifically, the height of the same feature point 12 a of the detected measurement object 12 is acquired as the height of the measurement object 12 according to the above-described expression (3) or expression (4).
 そして、ステップS38において、未測定の測定対象物12が有るか否かが判断される。未測定の測定対象物12が有ると判断される場合には、ステップS31に進む。そして、未測定の測定対象物12について、ステップS32~S37の処理が行われて、高さが取得される。 Then, in step S38, it is determined whether there is an unmeasured measurement object 12. If it is determined that there is an unmeasured measurement object 12, the process proceeds to step S31. Then, the processing of steps S32 to S37 is performed on the unmeasured measurement object 12, and the height is acquired.
 また、ステップS38において、未測定の測定対象物12が無いと判断される場合には、全ての測定対象物12(基板Pにおける複数(2つ)の位置認識マークFの形成位置、および、基板Pにおける複数(3つ)の配線パターンWの形成位置)が測定されているので、ステップS39に進む。 Further, in step S38, when it is determined that there are no unmeasured measurement objects 12, the positions where all (two (two)) position recognition marks F are formed on the measurement objects 12 (the substrate P), and the substrate Since the formation positions of the plurality (three) of wiring patterns W in P are measured, the process proceeds to step S39.
 そして、ステップS39において、全ての測定対象物12の高さの測定結果に基づいて、基板Pの全体の反り状態が取得される。その後、高さ測定処理が終了される。その後、基板Pに部品Eを実装する際に、取得された測定対象物12としての基板Pの全体の反り状態(高さ)に基づいて、目標実装高さ位置(Z座標位置)が補正される。 Then, in step S39, the entire warped state of the substrate P is acquired based on the measurement results of the heights of all the measurement objects 12. Thereafter, the height measurement process is ended. After that, when mounting the component E on the substrate P, the target mounting height position (Z coordinate position) is corrected based on the acquired warping state (height) of the substrate P as the measurement object 12 Ru.
 なお、第2実施形態のその他の構成は、上記第1実施形態と同様である。 The remaining structure of the second embodiment is similar to that of the aforementioned first embodiment.
(第2実施形態の効果)
 第2実施形態では、以下のような効果を得ることができる。
(Effect of the second embodiment)
In the second embodiment, the following effects can be obtained.
 第2実施形態では、上記のように、制御部109を、第1撮像部7による測定対象物12(基板P)の第1撮像画像113、および、第2撮像部8による測定対象物12(基板P)の第2撮像画像114に基づいて、測定対象物12(基板P)の高さを取得するように構成する。これにより、上記第1実施形態と同様に、小さい測定対象物12(たとえば、基板Pにおける極小部品用の配線パターンW)であっても高さを精度良く測定することができる。 In the second embodiment, as described above, the control unit 109 controls the first captured image 113 of the measurement object 12 (substrate P) by the first imaging unit 7 and the measurement object 12 by the second imaging unit 8 ( The height of the measurement object 12 (substrate P) is obtained based on the second captured image 114 of the substrate P). Thus, as in the first embodiment, the height can be accurately measured even with a small measurement object 12 (e.g., the wiring pattern W for a minimal component in the substrate P).
 また、第2実施形態では、上記のように、基板Pにおける位置認識マークFの形成位置、または、基板Pにおける配線パターンWの形成位置である。ここで、位置認識マークFおよび配線パターンWは、共に、基板Pにおいて特徴的で認識しやすい部分である。したがって、上記のように構成することにより、基板Pにおける位置認識マークFの形成位置、または、基板Pにおける配線パターンWの形成位置の第1撮像画像113および第2撮像画像114に基づいて、基板Pの高さを容易に取得することができる。この場合、取得された基板Pの高さに基づいて、基板Pへの部品Eの実装時におけるヘッド3aの目標実装高さ位置を補正すれば、ヘッド3aによる基板Pへの部品Eの実装を精度良く行うことができる。 In the second embodiment, as described above, the position is the position where the position recognition mark F is formed on the substrate P, or the position where the wiring pattern W is formed on the substrate P. Here, the position recognition mark F and the wiring pattern W are both characteristic and easy to recognize in the substrate P. Therefore, by configuring as described above, the substrate based on the first captured image 113 and the second captured image 114 of the formation position of the position recognition mark F on the substrate P or the formation position of the wiring pattern W on the substrate P The height of P can be easily obtained. In this case, if the target mounting height position of the head 3a at the time of mounting the component E on the substrate P is corrected based on the acquired height of the substrate P, mounting of the component E on the substrate P by the head 3a is performed. It can be done precisely.
 なお、第2実施形態のその他の効果は、上記第1実施形態と同様である。 The remaining effects of the second embodiment are similar to those of the aforementioned first embodiment.
[変形例]
 なお、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内での全ての変更(変形例)が含まれる。
[Modification]
It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is indicated not by the above description of the embodiment but by the scope of the claims, and further includes all modifications (variations) within the meaning and scope equivalent to the scope of the claims.
 たとえば、上記第1および第2実施形態では、部品供給部が、テープフィーダである例を示したが、本発明はこれに限られない。たとえば、部品供給部が、トレイ上に部品を保持するトレイフィーダであってもよい。 For example, in the first and second embodiments, an example in which the component supply unit is a tape feeder is shown, but the present invention is not limited to this. For example, the component supply unit may be a tray feeder that holds components on a tray.
 また、上記第1および第2実施形態では、ヘッドユニットが、複数のヘッドが円状に配列されたロータリ型のヘッドユニットである例を示したが、本発明はこれに限られない。たとえば、ヘッドユニットが、所定の方向に沿って配列された複数のヘッドを含むヘッドユニットであってもよい。図11に示す変形例では、ヘッドユニット103は、所定の方向に沿って配列された複数のヘッド103aを含んでいる。また、ヘッドユニット103には、第1撮像部7および第2撮像部8が設けられている。第2撮像部8は、各ヘッド103aによる部品Eの保持(吸着)を撮像可能なように、ヘッドユニット103に対してヘッド103a(ノズル)の配列方向に沿って移動可能に構成されている。 In the first and second embodiments, the head unit is a rotary type head unit in which a plurality of heads are arranged in a circular shape, but the present invention is not limited to this. For example, the head unit may be a head unit including a plurality of heads arranged along a predetermined direction. In the modification shown in FIG. 11, the head unit 103 includes a plurality of heads 103a arranged along a predetermined direction. Further, the head unit 103 is provided with a first imaging unit 7 and a second imaging unit 8. The second imaging unit 8 is configured to be movable along the arrangement direction of the heads 103 a (nozzles) with respect to the head unit 103 so that the holding (suction) of the component E by each head 103 a can be imaged.
 また、上記第1および第2実施形態では、第1撮像部が、略鉛直上方から測定対象物を撮像し、第2撮像部が、斜め上方から測定対象物を撮像する例を示したが、本発明はこれに限られない。本発明では、第1撮像部と第2撮像部とが互いに異なる方向から測定対象物を撮像すれば、第1撮像部がいずれの方向から測定対象物を撮像してもよいし、第2撮像部がいずれの方向から測定対象物を撮像してもよい。 In the first and second embodiments, the first imaging unit captures an image of the measurement object from approximately vertically above, and the second imaging unit captures an image of the measurement object from diagonally above. The present invention is not limited to this. In the present invention, the first imaging unit may image the measurement object from any direction as long as the first imaging unit and the second imaging unit image the measurement object from different directions. The unit may image the measurement object from any direction.
 また、上記第1および第2実施形態では、式(3)または式(4)により、測定対象物の高さが取得される例を示したが、本発明はこれに限られない。本発明では、式(3)または式(4)以外の式により、測定対象物の高さが取得されてもよい。 Moreover, in the said, 1st and 2nd embodiment, although the example from which the height of a measurement object is acquired by Formula (3) or Formula (4) was shown, this invention is not limited to this. In the present invention, the height of the measurement object may be obtained by an equation other than the equation (3) or the equation (4).
 また、上記第1および第2実施形態では、第2撮像部が、部品供給部に配置された部品を撮像する撮像部である例を示したが、本発明はこれに限られない。本発明では、第1撮像部とは別個に設けられていれば、第2撮像部が、部品供給部に配置された部品を撮像する撮像部以外の撮像部であってもよい。たとえば、第2撮像部が、基板の部品実装位置を撮像する撮像部であってもよい。この場合、第2撮像部による部品実装位置の撮像画像に基づいて、部品実装位置に部品を実装するために下降する際にヘッドが目標とする水平方向における位置である目標実装水平位置(XY座標位置)が制御部により補正されてもよい。 In the first and second embodiments, the second imaging unit is an imaging unit for imaging a component arranged in the component supply unit. However, the present invention is not limited to this. In the present invention, as long as the second imaging unit is provided separately from the first imaging unit, the second imaging unit may be an imaging unit other than the imaging unit that images a component disposed in the component supply unit. For example, the second imaging unit may be an imaging unit that images a component mounting position of the substrate. In this case, based on the captured image of the component mounting position by the second imaging unit, a target mounting horizontal position (XY coordinates) which is a position in the horizontal direction that the head targets when lowering to mount the component at the component mounting position. The position) may be corrected by the control unit.
 また、上記第1実施形態では、測定対象物が、部品供給部に配置された部品である例を示し、上記第2実施形態では、測定対象物が、基板における位置認識マークの形成位置および基板における配線パターンの形成位置である例を示したが、本発明はこれに限られない。本発明では、測定対象物が、部品供給部に配置された部品、基板における位置認識マークの形成位置および基板における配線パターンの形成位置以外であってもよい。また、基板の高さを測定する場合に、基板における位置認識マークの形成位置、および、基板における配線パターンの形成位置のうちのいずれか一方のみが測定対象物であってもよい。 Further, in the first embodiment, an example in which the measurement object is a component disposed in the component supply unit is shown, and in the second embodiment, the measurement object is the position where the position recognition mark is formed on the substrate and the substrate Although the example which is a formation position of the wiring pattern in is shown, the present invention is not limited to this. In the present invention, the object to be measured may be other than the components disposed in the component supply unit, the formation position of the position recognition mark on the substrate, and the formation position of the wiring pattern on the substrate. When the height of the substrate is measured, only one of the formation position of the position recognition mark on the substrate and the formation position of the wiring pattern on the substrate may be the object to be measured.
 また、上記第1実施形態では、制御部が、段取り変えが実施された場合、ヘッドによる部品の保持エラーが生じた場合、および、目標保持水平位置補正値が所定のしきい値以上である場合に、測定対象物としての部品の高さを取得するように構成されている例を示したが、本発明はこれに限られない。本発明では、制御部が、段取り変えが実施された場合、ヘッドによる部品の保持エラーが生じた場合、および、目標保持水平位置補正値が所定のしきい値以上である場合のうちの少なくともいずれか1つの場合に、測定対象物としての部品の高さを取得するように構成されていてもよい。また、制御部が、段取り変えが実施された場合、ヘッドによる部品の保持エラーが生じた場合、および、目標保持水平位置補正値が所定のしきい値以上である場合以外の場合に、測定対象物としての部品の高さを取得するように構成されていてもよい。たとえば、制御部が、ヘッドによる部品の保持動作毎に、測定対象物としての部品の高さを取得するように構成されていてもよい。また、たとえば、制御部が、基板が搬送される場合に、測定対象物としての部品の高さを取得するように構成されていてもよい。 In the first embodiment, when the control unit performs the setup change, the holding error of the component by the head occurs, and the target holding horizontal position correction value is equal to or more than the predetermined threshold value. Although the example which is configured to acquire the height of the part as the measurement target is shown, the present invention is not limited to this. In the present invention, the control unit performs at least one of the following cases: when a setup change is performed, when a holding error of a part by the head occurs, and when the target holding horizontal position correction value is equal to or more than a predetermined threshold value In one case, it may be configured to obtain the height of the part as the measurement object. In addition, when the control unit performs a setup change, a measurement error occurs in the case where a component holding error occurs by the head, and the target holding horizontal position correction value is equal to or more than a predetermined threshold value, the measurement target It may be configured to obtain the height of the part as an object. For example, the control unit may be configured to acquire the height of the part as the measurement object for each holding operation of the part by the head. Also, for example, the control unit may be configured to obtain the height of the component as the measurement object when the substrate is transported.
 また、上記第1実施形態では、制御部が、測定対象物としての部品の同一特徴点として、所定の辺における、部品の電極部分とモールド部分との境界部分を示す所定点を検出する例を示したが、本発明はこれに限られない。本発明では、制御部が、測定対象物としての部品の同一特徴点として、所定の辺における、部品の電極部分とモールド部分との境界部分を示す所定点以外の部分を検出してもよい。 In the first embodiment, the control unit detects a predetermined point indicating a boundary between the electrode portion of the component and the mold portion on a predetermined side as the same feature of the component as the measurement object. Although shown, the present invention is not limited to this. In the present invention, the control unit may detect a portion other than a predetermined point indicating a boundary portion between the electrode portion of the component and the mold portion on the predetermined side as the same feature point of the component as the measurement object.
 また、上記第2実施形態では、制御部が、測定対象物としての基板における位置認識マークの形成位置(基板における配線パターンの形成位置)の同一特徴点として、位置認識マーク(対象の配線パターン)の角部を検出する例を示したが、本発明はこれに限られない。本発明では、制御部が、測定対象物としての基板における位置認識マークの形成位置(基板における配線パターンの形成位置)の同一特徴点として、位置認識マーク(対象の配線パターン)の角部以外の部分を検出してもよい。 In the second embodiment, the control unit determines the position recognition mark (the wiring pattern of the object) as the same feature point of the formation position of the position recognition mark on the substrate as the measurement object (the formation position of the wiring pattern on the substrate). Although the example which detects the corner of is shown, the present invention is not limited to this. In the present invention, the control unit determines the position other than the corner of the position recognition mark (the wiring pattern of the object) as the same feature point of the formation position of the position recognition mark on the substrate as the measurement object The part may be detected.
 また、上記第1および第2実施形態では、説明の便宜上、制御部の処理動作を処理フローに沿って順番に処理を行うフロー駆動型のフローチャートを用いて説明したが、本発明はこれに限られない。本発明では、制御部の処理動作を、イベント単位で処理を実行するイベント駆動型(イベントドリブン型)の処理により行ってもよい。この場合、完全なイベント駆動型で行ってもよいし、イベント駆動およびフロー駆動を組み合わせて行ってもよい。 In the first and second embodiments, for convenience of explanation, the processing operation of the control unit has been described using a flow-driven flow chart in which processing is sequentially performed along the processing flow, but the present invention is limited to this. I can not. In the present invention, the processing operation of the control unit may be performed by event-driven (event-driven) processing that executes processing on an event-by-event basis. In this case, the operation may be completely event driven, or the combination of event driving and flow driving may be performed.
 3a、103a ヘッド
 11 部品供給部
 7 第1撮像部
 8 第2撮像部
 9、109 制御部
 12 測定対象物
 12a 特徴点
 13、113、 第1撮像画像
 14、114 第2撮像画像
 100、200 部品実装システム
 E 部品
 F 位置認識マーク
 P 基板
 W 配線パターン
3a, 103a head 11 component supply unit 7 first imaging unit 8 second imaging unit 9, 109 control unit 12 object to be measured 12a feature point 13, 113, first captured image 14, 114 second captured image 100, 200 component mounted System E parts F Position recognition mark P board W Wiring pattern

Claims (10)

  1.  部品供給部から供給される部品を保持して基板に実装するヘッドと、
     前記基板に付された位置認識マークを撮像する第1撮像部と、
     前記第1撮像部とは別個に設けられた第2撮像部と、
     前記第1撮像部による測定対象物の第1撮像画像、および、前記第2撮像部による前記測定対象物の第2撮像画像に基づいて、前記測定対象物の高さを取得する制御部と、を備える、部品実装装置。
    A head for holding a component supplied from the component supply unit and mounting it on a substrate;
    A first imaging unit for imaging the position recognition mark attached to the substrate;
    A second imaging unit provided separately from the first imaging unit;
    A control unit that acquires the height of the measurement object based on a first captured image of the measurement object by the first imaging unit and a second captured image of the measurement object by the second imaging unit; A component mounting apparatus comprising:
  2.  前記第1撮像部は、略鉛直上方から前記測定対象物を撮像するように構成されており、
     前記第2撮像部は、テレセントリック光学系を有するとともに、斜め上方から前記測定対象物を撮像するように構成されている、請求項1に記載の部品実装装置。
    The first imaging unit is configured to image the measurement object from approximately vertically above,
    The component mounting apparatus according to claim 1, wherein the second imaging unit has a telecentric optical system, and is configured to image the measurement object from obliquely above.
  3.  前記制御部は、以下の式(1)により、前記測定対象物の高さを取得するように構成されている、請求項2に記載の部品実装装置。
    H=S/sinθ-T/tanθ ・・・(1)
    ここで、
    H:物理単位の測定対象物の高さ
    S:第2撮像画像における中央線から測定対象位置までの距離に対応する実空間の距離
    T:第1撮像画像における中央線から測定対象位置までの距離に対応する実空間の距離
    θ:鉛直方向に対する第2撮像部の光軸の角度
    である。
    The component mounting apparatus according to claim 2, wherein the control unit is configured to acquire the height of the measurement object according to the following expression (1).
    H = S / sin θ-T / tan θ (1)
    here,
    H: height S of the measurement object of the physical unit: real space distance T corresponding to the distance from the center line to the measurement object position in the second image: distance from the center line to the measurement object position in the first image The real space distance θ corresponding to 対 応: the angle of the optical axis of the second imaging unit with respect to the vertical direction.
  4.  前記制御部は、以下の式(2)により、前記測定対象物の高さを取得するように構成されている、請求項3に記載の部品実装装置。
    H=(Scale-c)×h=(Scale-c)×s/sinθ-t/tanθ ・・・(2)
    ここで、
    Scale-c:ピクセル単位の距離を物理単位の距離に変換するための変換係数
    h:ピクセル単位の測定対象物の高さ
    s:第2撮像画像における中央線から測定対象位置までのピクセル単位の距離
    t:第1撮像画像における中央線から測定対象位置までのピクセル単位の距離
    である。
    The component mounting apparatus according to claim 3, wherein the control unit is configured to acquire the height of the measurement object according to the following equation (2).
    H = (Scale-c) x h = (Scale-c) x s / sin θ-t / tan θ (2)
    here,
    Scale-c: Conversion coefficient h for converting a distance in pixel units to a distance in physical units h: height of measurement object in pixel units s: distance in pixel units from the center line to the measurement target position in the second captured image t: The distance in pixel units from the center line to the measurement target position in the first captured image.
  5.  前記第2撮像部は、前記部品供給部に配置された前記部品、および、前記基板の部品実装位置のうちの少なくともいずれか一方を撮像する撮像部である、請求項1~4のいずれか1項に記載の部品実装装置。 5. The image pickup unit according to claim 1, wherein the second image pickup unit is an image pickup unit that picks up an image of at least one of the component disposed in the component supply unit and a component mounting position of the substrate. The component mounting apparatus described in the section.
  6.  前記測定対象物は、前記基板における前記位置認識マークの形成位置、または、前記基板における配線パターンの形成位置である、請求項1~5のいずれか1項に記載の部品実装装置。 The component mounting apparatus according to any one of claims 1 to 5, wherein the measurement object is a formation position of the position recognition mark on the substrate or a formation position of a wiring pattern on the substrate.
  7.  前記測定対象物は、前記部品供給部に配置された前記部品である、請求項1~6のいずれか1項に記載の部品実装装置。 The component mounting apparatus according to any one of claims 1 to 6, wherein the object to be measured is the component disposed in the component supply unit.
  8.  前記測定対象物は、前記部品供給部に配置された前記部品であり、
     前記制御部は、段取り変えが実施された場合、および、前記ヘッドによる前記部品の保持エラーが生じた場合のうちの少なくともいずれか一方の場合に、前記第1撮像部および前記第2撮像部により前記測定対象物としての前記部品を撮像する制御を行い、前記測定対象物としての前記部品の前記第1撮像画像および前記第2撮像画像を取得するとともに、取得された前記第1撮像画像および前記第2撮像画像に基づいて、前記測定対象物としての前記部品の高さを取得するように構成されている、請求項1~7のいずれか1項に記載の部品実装装置。
    The object to be measured is the component disposed in the component supply unit,
    The control unit is configured to use the first imaging unit and the second imaging unit when at least one of the case where the setup change is performed and the case where the holding error of the component by the head occurs. Control is performed to capture the part as the measurement object, and the first and second captured images of the part as the measurement object are acquired, and the acquired first captured image and the acquired image are acquired. The component mounting apparatus according to any one of claims 1 to 7, wherein the component mounting apparatus is configured to acquire the height of the component as the measurement object based on a second captured image.
  9.  前記測定対象物は、前記部品供給部に配置された前記部品であり、
     前記第2撮像部は、斜め上方から、前記部品供給部に配置された前記部品を撮像するように構成されており、
     前記制御部は、前記第2撮像部による前記部品供給部に配置された前記部品の撮像画像に基づいて、前記部品供給部に配置された前記部品を保持するために下降する際に前記ヘッドが目標とする水平方向における位置である目標保持水平位置を補正するための目標保持水平位置補正値を取得するように構成されており、
     前記制御部は、取得された前記目標保持水平位置補正値が、予め決められた所定のしきい値以上である場合に、前記第1撮像部および前記第2撮像部により前記測定対象物としての前記部品を撮像する制御を行い、前記測定対象物としての前記部品の前記第1撮像画像および前記第2撮像画像を取得するとともに、取得された前記第1撮像画像および前記第2撮像画像に基づいて、前記測定対象物としての前記部品の高さを取得するように構成されている、請求項5に記載の部品実装装置。
    The object to be measured is the component disposed in the component supply unit,
    The second imaging unit is configured to image the component disposed in the component supply unit from diagonally above,
    The control unit is configured to move the head to hold the component disposed in the component supply unit based on a captured image of the component disposed in the component supply unit by the second imaging unit. Configured to obtain a target holding horizontal position correction value for correcting a target holding horizontal position which is a position in a target horizontal direction;
    The control unit is configured to use the first imaging unit and the second imaging unit as the measurement object when the acquired target holding horizontal position correction value is equal to or greater than a predetermined threshold value determined in advance. Control is performed to capture the part, and the first and second captured images of the part as the measurement object are acquired, and the acquired first and second captured images are used. The component mounting apparatus according to claim 5, wherein the component mounting apparatus is configured to acquire the height of the component as the measurement object.
  10.  前記制御部は、前記第1撮像画像と前記第2撮像画像とにおける、前記測定対象物の同一特徴点を検出するとともに、検出された前記測定対象物の同一特徴点の高さを、前記測定対象物の高さとして取得するように構成されている、請求項1~9のいずれか1項に記載の部品実装装置。 The control unit detects the same feature point of the measurement object in the first captured image and the second captured image, and measures the height of the detected same feature point of the measurement object. The component mounting apparatus according to any one of claims 1 to 9, configured to be acquired as the height of an object.
PCT/JP2017/026815 2017-07-25 2017-07-25 Component-mounting device WO2019021365A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019532245A JP6889778B2 (en) 2017-07-25 2017-07-25 Component mounting device
PCT/JP2017/026815 WO2019021365A1 (en) 2017-07-25 2017-07-25 Component-mounting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/026815 WO2019021365A1 (en) 2017-07-25 2017-07-25 Component-mounting device

Publications (1)

Publication Number Publication Date
WO2019021365A1 true WO2019021365A1 (en) 2019-01-31

Family

ID=65040116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026815 WO2019021365A1 (en) 2017-07-25 2017-07-25 Component-mounting device

Country Status (2)

Country Link
JP (1) JP6889778B2 (en)
WO (1) WO2019021365A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021060065A1 (en) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 Mounting system, head unit, and imaging method
WO2021060064A1 (en) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 Mounting system, head unit, and imaging method
CN113574981A (en) * 2019-03-29 2021-10-29 雅马哈发动机株式会社 Component mounting system and component mounting method
US11916627B2 (en) 2010-12-10 2024-02-27 Sun Patent Trust Signal generation method and signal generation device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479874A (en) * 1987-09-21 1989-03-24 Matsushita Electric Ind Co Ltd Device for inspecting external appearance of electronic parts
JPH0455708A (en) * 1990-06-26 1992-02-24 Nec Corp Substrate-height measuring circuit of visual inspections apparatus for mounting substrate
JP2005244122A (en) * 2004-02-27 2005-09-08 Yamaha Motor Co Ltd Transfer apparatus, surface mounting machine, ic handler, and component thickness measuring method
JP2006024619A (en) * 2004-07-06 2006-01-26 Matsushita Electric Ind Co Ltd Method and apparatus for mounting electronic component
WO2012026073A1 (en) * 2010-08-26 2012-03-01 パナソニック株式会社 Component mounting device, and illumination device and illumination method for capturing images
US20140198185A1 (en) * 2013-01-17 2014-07-17 Cyberoptics Corporation Multi-camera sensor for three-dimensional imaging of a circuit board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479874A (en) * 1987-09-21 1989-03-24 Matsushita Electric Ind Co Ltd Device for inspecting external appearance of electronic parts
JPH0455708A (en) * 1990-06-26 1992-02-24 Nec Corp Substrate-height measuring circuit of visual inspections apparatus for mounting substrate
JP2005244122A (en) * 2004-02-27 2005-09-08 Yamaha Motor Co Ltd Transfer apparatus, surface mounting machine, ic handler, and component thickness measuring method
JP2006024619A (en) * 2004-07-06 2006-01-26 Matsushita Electric Ind Co Ltd Method and apparatus for mounting electronic component
WO2012026073A1 (en) * 2010-08-26 2012-03-01 パナソニック株式会社 Component mounting device, and illumination device and illumination method for capturing images
US20140198185A1 (en) * 2013-01-17 2014-07-17 Cyberoptics Corporation Multi-camera sensor for three-dimensional imaging of a circuit board

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11916627B2 (en) 2010-12-10 2024-02-27 Sun Patent Trust Signal generation method and signal generation device
CN113574981A (en) * 2019-03-29 2021-10-29 雅马哈发动机株式会社 Component mounting system and component mounting method
CN113574981B (en) * 2019-03-29 2023-06-20 雅马哈发动机株式会社 Component mounting system and component mounting method
WO2021060065A1 (en) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 Mounting system, head unit, and imaging method
WO2021060064A1 (en) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 Mounting system, head unit, and imaging method
CN114302785A (en) * 2019-09-27 2022-04-08 松下知识产权经营株式会社 Mounting system, head unit, and imaging method

Also Published As

Publication number Publication date
JPWO2019021365A1 (en) 2020-01-16
JP6889778B2 (en) 2021-06-18

Similar Documents

Publication Publication Date Title
US6744499B2 (en) Calibration methods for placement machines incorporating on-head linescan sensing
KR101472434B1 (en) Electronic component mounting apparatus and mounting position correction data creating method
JP6889778B2 (en) Component mounting device
JPH118497A (en) Electronic-component packaging method and device
JP2006339392A (en) Component mounting apparatus
JP4839535B2 (en) Coordinate correction method, coordinate correction apparatus, and reference correction jig
JP6411663B2 (en) Component mounting equipment
JP4331054B2 (en) Adsorption state inspection device, surface mounter, and component testing device
CN111096102B (en) Component mounting apparatus
JP2008070135A (en) Detecting method of optical axis shift of imaging apparatus and part position detecting method and device
JP2009212251A (en) Component transfer equipment
JP2009117488A (en) Component mounting device and component suction method and component mounting method
JP2009164276A (en) Sucking position correcting method in component mounting device
JP2013239720A (en) Method of image distortion correction
JP2011191307A (en) Correction tool
JP2019075475A (en) Component mounting device
JP3112574B2 (en) Scale adjustment method for component mounting device and device
JP2009212166A (en) Part transfer device, and part recognizing method therefor
JP5271654B2 (en) Electronic component mounting equipment
JP6804905B2 (en) Board work equipment
JP6620057B2 (en) Component mounting apparatus and method for acquiring height of object to be measured of component mounting apparatus
JP5227824B2 (en) Electronic component mounting equipment
JP2009212165A (en) Component transfer device and component recognition method for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919510

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532245

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17919510

Country of ref document: EP

Kind code of ref document: A1