WO2019019925A1 - 一种交直流变换电路的控制方法、装置和计算机存储介质 - Google Patents

一种交直流变换电路的控制方法、装置和计算机存储介质 Download PDF

Info

Publication number
WO2019019925A1
WO2019019925A1 PCT/CN2018/095509 CN2018095509W WO2019019925A1 WO 2019019925 A1 WO2019019925 A1 WO 2019019925A1 CN 2018095509 W CN2018095509 W CN 2018095509W WO 2019019925 A1 WO2019019925 A1 WO 2019019925A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
converter unit
voltage
conversion circuit
converter
Prior art date
Application number
PCT/CN2018/095509
Other languages
English (en)
French (fr)
Inventor
邓占锋
赵国亮
宋洁莹
陆振纲
刘海军
李卫国
Original Assignee
全球能源互联网研究院有限公司
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 全球能源互联网研究院有限公司, 国家电网有限公司 filed Critical 全球能源互联网研究院有限公司
Priority to US16/613,268 priority Critical patent/US10951110B2/en
Publication of WO2019019925A1 publication Critical patent/WO2019019925A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/143Arrangements for reducing ripples from dc input or output using compensating arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/2173Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a biphase or polyphase circuit arrangement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/285Single converters with a plurality of output stages connected in parallel

Definitions

  • the present invention relates to the field of power technologies, and in particular, to a method, an apparatus, and a computer storage medium for controlling an AC/DC conversion circuit.
  • power electronic transformers realize the conversion of AC and DC by using power electronic converter technology and high-frequency transformers.
  • the power electronic transformer not only greatly reduces the volume and weight of the device, but also reduces the pollution to the environment.
  • the secondary side output voltage is constant, it does not change due to load changes, so it has a high degree of Controllability, the voltage, current and power factor of the original and secondary sides of the transformer can be controlled.
  • the high-voltage side adopts an H-bridge chain structure
  • the DC side of the H-bridge module adopts a dual active bridge (DAB) structure, and realizes a direct current/direct current (DC/DC) conversion through a single-phase high-frequency transformer
  • DAB dual active bridge
  • Another implementation achieves DC/DC conversion by using a conventional modular multilevel converter (MMC), and then divides the capacitors to form a DAB structure using a single-phase high-frequency transformer.
  • MMC modular multilevel converter
  • both of these implementations have the following problems: due to power fluctuations in the single phase, the DC-side capacitors generate voltage fluctuations. Excessive voltage fluctuations can have a very adverse effect on the device.
  • the medium voltage DC side is series-regulated by the capacitor, which is not only bulky, but also difficult to perform voltage equalization control.
  • the submodules DC/AC in the modular structure power electronic transformer are cascaded together, and the fluctuating power between the three phase modules can be cancelled by the coupling unit, but the module Capacitance, the reactance of the coupling unit, and the operating frequency of the DC/AC stage all affect the module capacitor voltage fluctuation and the voltage and current phase of the coupling unit.
  • Embodiments of the present invention are directed to a control method, apparatus, and computer storage medium for an AC/DC conversion circuit, which at least solves a capacitor voltage fluctuation in an AC/DC converter circuit of a power electronic transformer, so that a large reactive power oscillation occurs inside the AC/DC conversion circuit. A defect that causes an adverse effect on the device.
  • An embodiment of the present invention provides a control method for an AC/DC conversion circuit, where the AC/DC conversion circuit includes a first converter unit, a second converter unit, and a coupling unit, and the first converter unit is coupled to the coupling unit The second converter unit is connected to the output end of the coupling unit, and the control method includes:
  • Controlling according to the voltage information and the current information of the AC/DC conversion circuit, the controllable device of the first converter unit to be turned on or off in advance; and simultaneously controlling the second converter unit to operate in a controlled rectifier or Control the inverter state or the uncontrolled rectifier state.
  • the first converter unit is a DC/AC conversion unit
  • the second converter unit is an AC/DC conversion unit
  • the voltage information and current information of the AC/DC conversion circuit are acquired.
  • controllable device that controls the first converter unit is turned on or off in advance, including:
  • the controllable device that controls the first converter unit is turned on or turned off in advance.
  • the method further includes:
  • At least one phase trigger pulse blocking is determined according to the voltage deviation.
  • controlling the second converter unit to operate in a controlled rectification or a controllable inverter state or an uncontrolled rectification state includes:
  • the second commutating unit trigger pulse is blocked, and the second commutating unit is controlled to operate in uncontrollable rectification a state; when receiving an instruction that the power flow of the second converter unit is bidirectional, unlocking the second converter unit trigger pulse, and controlling the second converter unit to operate in a controlled rectification or a controllable inverse Change state.
  • the coupling unit includes an intermediate frequency transformer, and the controlling the second converter unit to operate in a controlled rectification or controllable inverter state, including:
  • the embodiment of the invention further provides a control device for the AC/DC conversion circuit, comprising:
  • At least one processor At least one processor
  • a memory communicatively coupled to the at least one processor
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to cause the at least one processor to perform the control method of the AC/DC conversion circuit.
  • the AC/DC conversion circuit includes a first commutation unit, a second commutation unit and a coupling unit, and the first commutation unit is connected To the input end of the coupling unit, the second converter unit is connected to the output end of the coupling unit, and the voltage information and current information of the AC/DC conversion circuit are acquired to control the first converter unit.
  • the controllable device is turned on or turned off in advance, and controls the second converter unit to operate in a controlled rectification or controllable inverter state or an uncontrolled rectification state.
  • 1 is a schematic diagram of an AC/DC conversion circuit
  • FIG. 2 is a flowchart of a method for controlling an AC/DC conversion circuit according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a control device for an AC/DC conversion circuit according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a coupling unit of an AC/DC conversion circuit according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a coupling unit applied to an AC/DC power electronic transformer according to an embodiment of the present invention.
  • the AC/DC conversion circuit includes at least one AC/DC conversion module 1 , and each of the AC/DC conversion modules 1 includes at least one conversion branch.
  • the conversion branch includes: a plurality of commutating subunits 11, a plurality of first DC/AC converting units 12, a coupling unit 13 and an AC/DC converting unit 14, each of the commutating subunits 11 respectively corresponding to three-phase alternating current;
  • a DC/AC conversion unit 12 is respectively connected to the DC side of the DC side of the commutation subunit 11 or the DC side of the converter subunit 11 in series or in parallel;
  • the coupling unit 13 will be the first DC in each phase
  • the instantaneous power coupling output by the /AC conversion unit 12 is added to cancel the fluctuation of the instantaneous power in the single phase;
  • the AC/DC conversion unit 14 is connected to one or more outputs of the coupling unit 13; and the AC/DC conversion module 1
  • Adjacent adjacent commutative subunits 11 of the same phase are connected in cascade, and the AC interface is taken out from the alternating current side of the commutating subunit 11 in each phase, and is connected to the
  • the AC/DC conversion circuit shown in FIG. 1 includes a first commutation unit, a second commutation unit, and a coupling unit, the first commutation unit is connected to an input end of the coupling unit, and the second A commutation unit is coupled to the output of the coupling unit.
  • the first converter unit is a DC/AC conversion unit, that is, a DC/AC converter unit, and has a function of converting DC power into AC power and allowing power to flow in both directions, and can be combined with a half bridge module and an H bridge module.
  • the half-bridge double clamp module, single clamp module and other modules are connected in parallel with the DC side, and the DC power of the DC capacitor is converted into AC power and connected to the input end of the coupling unit.
  • the second converter unit is an AC/DC converter unit, that is, an AC/DC converter unit, and has a function of converting AC power into DC power.
  • the coupling unit may adopt a connection manner as shown in FIG. 4, including at least one coupling subunit.
  • the coupling unit includes a plurality of inputs and at least one output, each of which can be connected to the output of the DC/AC converter unit as needed, or in series or in parallel with a plurality of DC/AC converter units in the same phase.
  • the total output connection is connected; the output terminals of the coupling unit can be connected to the AC/DC converter unit separately or in parallel or in series after being connected individually or in series or in parallel.
  • the coupling unit can be applied to AC/DC power electronic transformer and AC power electronic transformer.
  • the coupling unit used in AC/DC power electronic transformer is shown in Figure 5. It is connected in the form of multi-winding transformer to DC/AC converter unit and AC/DC. Converter unit.
  • the control method of the AC/DC conversion circuit provided in this embodiment can control the AC/DC conversion circuit through the valve level controller of the modular AC/DC conversion circuit of the co-coupling unit structure.
  • the flow chart of the method is shown in Figure 2 and includes the following steps:
  • step S1 Acquire voltage information and current information of the AC/DC converting circuit.
  • the voltage information and current information of the AC/DC conversion circuit can be obtained by a measuring device such as a sensor.
  • step S1 may include the following sub-steps:
  • S12 determining a range of capacitance voltage fluctuations of the first converter unit and a power flow direction of the coupling unit, respectively. Specifically, according to the three-phase capacitor voltage and current of the first converter unit detected in a certain period of time, the fluctuation range of the capacitor voltage can be obtained to take further control measures to suppress large fluctuations and obtain a current. The flow direction thus knows the power flow direction for control.
  • S2 controlling, according to the voltage information and the current information of the AC/DC converting circuit, the controllable device of the first converter unit to be turned on or off in advance; and simultaneously controlling the second converter unit to operate in the controlled rectifier Or controllable inverter state or uncontrolled rectifier state.
  • control of the AC/DC converting circuit is realized by judging the fluctuation range of the capacitor voltage.
  • the controllable device that controls the first converter unit is turned on or off in advance, and includes the following substeps:
  • S21 Determine whether a range of a capacitor voltage fluctuation of the first converter unit exceeds a preset voltage range.
  • the voltage fluctuation of the actual AC/DC converter circuit is controlled by setting a voltage range in which the power device is safely operated in advance.
  • the controllable device that controls the first converter unit is turned on or off in advance. Specifically, duty control is performed on the controllable device of the first converter unit, that is, duty ratio control is performed on the three-phase DC/AC converter unit connected to the input end of the high frequency coupling unit.
  • the controllable device in which the control is controlled is turned on, and the delay time can be specifically determined according to the circuit parameters. By controlling the delay-on of the controllable device, the reactive power can be effectively avoided by the current commutation in the switching cycle.
  • the controllable device therein can also be controlled to be turned off in advance, and the time for early shutdown can be specifically determined according to circuit parameters. Delayed turn-on or early turn-off can be controlled by the controller.
  • controlling the second converter unit to operate in a controlled rectification or controllable inverter state or an uncontrolled rectification state includes the following substeps:
  • S21' determining whether the power flow direction of the coupling unit is unidirectional and is from an input end to an output end or a bidirectional direction of the coupling unit.
  • the power flow direction of the coupling unit is determined according to the voltage and current signals of the collected DC/AC converter unit.
  • the power flow sent by the upper computer can also be judged by the signal command, that is, whether the power flow direction control command is received by the valve level controller.
  • the AC/DC converter unit is controlled to operate in an uncontrolled rectification state. If the flow is not unidirectional, that is, bidirectional flow, the AC/DC converter unit is controlled to operate in a controlled rectification or controllable inverter state, that is, the same duty cycle control state as the DC/AC converter unit.
  • the coupling unit includes an intermediate frequency transformer, and the controlling the second converter unit in the step S22' to operate in a controlled rectification or controllable inverter state, and the following substeps:
  • the AC/DC conversion circuit includes a first commutation unit, a second commutation unit, and a coupling unit, the first commutation unit being connected to an input of the coupling unit End, the second converter unit is connected to the output end of the coupling unit, and by controlling the voltage information and the current information of the AC/DC conversion circuit, controlling the delay of the controllable device of the first converter unit or Turning off in advance while controlling the second converter unit to operate in a controlled rectification or controllable inverter state or an uncontrolled rectification state.
  • step S1 the following steps are further included:
  • S3 respectively calculating a capacitance voltage deviation of the first converter unit connected to each phase of the same coupling unit, that is, calculating a difference between capacitor voltages of a three-phase DC/AC converter unit connected to the same coupling unit ;
  • the capacitance voltage of the three-phase DC/AC converter unit of the same coupling unit is detected.
  • the voltage deviation exceeds the set value at least one phase DC/AC converter unit with a lower capacitor voltage is blocked.
  • the AC/DC converter unit for the output of the coupling unit can be controlled according to the power flow direction of the coupling unit.
  • the control method of the AC/DC conversion circuit can solve the DC-side capacitor voltage imbalance in the AC-DC conversion circuit, effectively suppress fluctuations of the DC-side capacitor voltage of the module caused by single-phase fluctuation power, and prevent over-stress of the device.
  • the embodiment also provides a control device for the AC/DC conversion circuit.
  • the hardware structure of the device is shown in FIG. 3, and includes at least one processor 31 and a memory 32 communicatively coupled to the at least one processor.
  • One processor 31 is taken as an example.
  • the device may also include an input device 33 and an output device 34.
  • the processor 31, the memory 32, the input device 33, and the output device 34 may be connected by a bus or the like, as exemplified by a bus connection in Fig. 3.
  • the processor 31 can be a Central Processing Unit (CPU).
  • the processor 31 can also be another general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or Other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc., or a combination of the above various types of chips.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the input device 33 can receive parameter information for controlling the AC/DC converting circuit and a control command sent by the host computer.
  • the output device 34 may include a display device such as a display screen for outputting information such as an operating state of the AC/DC converting circuit.
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to cause the at least one processor to perform the control method of the AC/DC conversion circuit.
  • control device of the AC/DC conversion circuit provided in the above embodiment performs the control of the AC/DC conversion circuit, only the division of each of the above-mentioned program modules is illustrated. In practical applications, the above processing may be performed as needed. The assignment is done by different program modules, dividing the internal structure of the device into different program modules to perform all or part of the processing described above.
  • control device of the AC/DC conversion circuit and the control method of the AC/DC conversion circuit provided by the above embodiments are in the same concept, and the specific implementation process is described in detail in the method embodiment, and details are not described herein again.
  • the AC/DC conversion circuit includes a first commutation unit, a second commutation unit, and a coupling unit, the first commutation unit being connected to an input of the coupling unit End, the second converter unit is connected to the output end of the coupling unit, and by controlling the voltage information and the current information of the AC/DC conversion circuit, controlling the delay of the controllable device of the first converter unit or Turning off in advance while controlling the second converter unit to operate in a controlled rectification or controllable inverter state or an uncontrolled rectification state.
  • the embodiment further provides a computer readable storage medium having stored thereon a computer program, wherein the computer program is executed by the processor to implement the steps of the control method of the AC/DC conversion circuit according to the embodiment of the present invention.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be separately used as one unit, or two or more units may be integrated into one unit;
  • the unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing storage medium includes: a mobile storage device, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk or an optical disk.
  • optical disk A medium that can store program code.
  • the above-described integrated unit of the present invention may be stored in a computer readable storage medium if it is implemented in the form of a software function module and sold or used as a standalone product.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a mobile storage device, a ROM, a RAM, a magnetic disk, or an optical disk.

Abstract

本发明实施例公开了一种交直流变换电路的控制方法、装置和计算机存储介质,所述交直流变换电路包括第一换流单元、第二换流单元和耦合单元,通过获取所述交直流变换电路的电压信息和电流信息,控制所述第一换流单元的可控器件延时开通或提前关断,同时控制所述第二换流单元工作在可控整流或可控逆变状态或者不可控整流状态。

Description

一种交直流变换电路的控制方法、装置和计算机存储介质
相关申请的交叉引用
本申请基于申请号为201710610608.X、申请日为2017年07月25日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本发明涉及电力技术领域,具体涉及一种交直流变换电路的控制方法、装置和计算机存储介质。
背景技术
电力电子变压器作为新型配电变压装置,通过采用电力电子变流技术及高频变压器实现交直流的转换,供电网用户使用。电力电子变压器通过采用高频变压器,不仅大大减小了装置的体积和重量,并且降低了对环境的污染,同时由于副边输出电压恒定,不会因负载的变化而变化,因此具有高度的可控性,变压器原、副边的电压、电流及功率因数均可控。
现有技术中,模块化结构电力电子变压器的交直流变换电路主要有两种实现方式。一种实现方式为高压侧采用H桥链式结构,H桥模块直流侧采用双有源桥(Dual Active Bridge,DAB)结构,通过单相高频变压器实现直流/直流(DC/DC)变换;另一种实现方式通过采用传统的模块化多电平换流器(MMC)完成交流/直流(AC/DC)变换,再通过电容分压,进而采用单相高频变压器构成DAB结构完成DC/DC变换。但是,这两种实现方式均存在以下问题:由于单相存在功率波动,导致直流侧电容器产生电压波动。过大的电压波动会对器件产生极为不利的影响。另外,采用MMC 结构的电力电子变压器中,中压直流侧通过电容串联稳压,不仅体积大,而且难以进行均压控制。
通过采用各种形式的中频或高频变压器作为耦合单元,将模块化结构电力电子变压器中的子模块DC/AC级联在一起,可以通过耦合单元抵消三相模块之间的波动功率,但模块电容、耦合单元的电抗、DC/AC级的工作频率,均会对模块电容电压波动及耦合单元的电压、电流相位造成影响。
发明内容
本发明实施例期望提供一种交直流变换电路的控制方法、装置和计算机存储介质,至少解决电力电子变压器的交直流变换电路中电容电压波动使得交直流变换电路内部出现较大的无功功率振荡导致对设备产生不利影响的缺陷。
本发明实施例提供一种交直流变换电路的控制方法,所述交直流变换电路包括第一换流单元、第二换流单元和耦合单元,所述第一换流单元连接至所述耦合单元的输入端,所述第二换流单元连接至所述耦合单元的输出端,所述控制方法包括:
获取所述交直流变换电路的电压信息和电流信息;
根据所述交直流变换电路的电压信息和电流信息,控制所述第一换流单元的可控器件延时开通或提前关断;同时控制所述第二换流单元工作在可控整流或可控逆变状态或者不可控整流状态。
在一实施例中,所述第一换流单元为直流/交流转换单元,所述第二换流单元为交流/直流转换单元,所述获取所述交直流变换电路的电压信息和电流信息,包括:
检测所述第一换流单元的电容电压和电流;
分别确定所述第一换流单元的电容电压波动范围以及所述耦合单元的功率流向。
在一实施例中,所述控制所述第一换流单元的可控器件延时开通或提前关断,包括:
判断所述第一换流单元的电容电压波动范围是否超过预设电压范围;
当所述第一换流单元的电容电压波动范围超过预设电压范围时,控制所述第一换流单元的可控器件延时开通或提前关断。
在一实施例中,在所述获取所述交直流变换电路的电压信息和电流信息之后,还包括:
分别计算连接至同一所述耦合单元的各相所述第一换流单元的电容电压偏差;
判断所述电压偏差是否超过预设值;
当所述电压偏差超过预设值时,根据所述电压偏差确定至少一相触发脉冲闭锁。
在一实施例中,所述控制所述第二换流单元工作在可控整流或可控逆变状态或者不可控整流状态,包括:
判断所述耦合单元的功率流向是否为单向且为由所述耦合单元的输入端至输出端或双向;
当所述耦合单元的功率流向为单向且为由所述耦合单元的输入端至输出端时,闭锁所述第二换流单元触发脉冲,控制所述第二换流单元工作在不可控整流状态;当接收到所述第二换流单元的功率流向为双向流动的指令时,解锁所述第二换流单元触发脉冲,控制所述第二换流单元工作在可控整流或可控逆变状态。
在一实施例中,所述耦合单元包括中频变压器,所述控制所述第二换流单元工作在可控整流或可控逆变状态,包括:
当所述功率流向为从所述第二换流单元流向所述中频变压器时,控制所述第二换流单元工作在可控整流状态;当所述功率流向为从所述中频变 压器流向所述第二换流单元时,控制所述第二换流单元工作在可控逆变状态。
本发明实施例还提供一种交直流变换电路的控制装置,包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;
其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器执行上述交直流变换电路的控制方法。
本发明实施例提供的交直流变换电路的控制方法、装置和计算机存储介质,所述交直流变换电路包括第一换流单元、第二换流单元和耦合单元,所述第一换流单元连接至所述耦合单元的输入端,所述第二换流单元连接至所述耦合单元的输出端,通过获取所述交直流变换电路的电压信息和电流信息,控制所述第一换流单元的可控器件延时开通或提前关断,同时控制所述第二换流单元工作在可控整流或可控逆变状态或者不可控整流状态。通过对电容电压波动和所述交直流变换电路的耦合单元电压、电流进行控制,能够有效抑制单相波动功率造成的模块直流侧电容电压的波动,防止器件过应力,解决交直流变换电路中直流侧电容电压不平衡,避免模块化交直流变换电路内部出现较大的无功功率振荡,减小对设备产生的不利影响。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一种交直流变换电路的示意图;
图2为本发明实施例的交直流变换电路的控制方法的流程图;
图3为本发明实施例的交直流变换电路的控制装置的示意图;
图4为本发明实施例的交直流变换电路的耦合单元的示意图;
图5为本发明实施例的应用于交直流电力电子变压器的耦合单元的示意图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
本实施例提供一种交直流变换电路的控制方法。交直流变换电路的一种具体结构参见图1所示,该交直流变换电路包括至少一组交直流转换模块1,每组所述交直流转换模块1中包括至少一条转换支路,每条所述转换支路包括:多个换流子单元11、多个第一DC/AC转换单元12、耦合单元13和AC/DC转换单元14,每个换流子单元11分别对应三相交流电;第一DC/AC转换单元12分别与换流子单元11的直流侧或者所述换流子单元11的直流侧串联或者并联后构成的总直流侧连接;耦合单元13将每相中的第一DC/AC转换单元12输出的瞬时功率耦合相加以消除单相中的瞬时功率的波动;AC/DC转换单元14与耦合单元13的一个或者多个输出端连接;且所述交直流转换模块1中同一相的相邻所述换流子单元11间级联连接, 交流接口从每相中的换流子单元11的交流侧引出,与对应相的交流电连接。
由此可知,图1所示的交直流变换电路包括第一换流单元、第二换流单元和耦合单元,所述第一换流单元连接至所述耦合单元的输入端,所述第二换流单元连接至所述耦合单元的输出端。具体地,所述第一换流单元为直流/交流转换单元,也即DC/AC换流单元,具备将直流电转换为交流电,并允许功率双向流动的功能,可与半桥模块、H桥模块、半桥双箝位模块、单箝位模块等各类模块直流侧并联,将其直流电容的直流电转换为交流电,与耦合单元输入端连接。所述第二换流单元为交流/直流转换单元,也即AC/DC换流单元,具备将交流电转换为直流电的功能。
作为一个具体的实施方式,耦合单元可以采取如图4所示的连接方式,包括至少一个耦合子单元。耦合单元包括多个输入端和至少一个输出端,每个输入端可以根据需要与DC/AC换流单元的输出端连接,或者与同一相中的多个DC/AC换流单元串联或者并联后的总输出端连接;耦合单元的输出端可单独或串联或并联后与AC/DC换流单元单独或并联或串联后相连。耦合单元可应用于交直流电力电子变压器以及交流电力电子变压器,应用于交直流电力电子变压器的耦合单元如图5所示,采用多绕组变压器的形式,连接DC/AC换流单元和AC/DC换流单元。
本实施例提供的交直流变换电路的控制方法,可以通过共耦合单元结构的模块化交直流变换电路的阀级控制器,对交直流变换电路进行控制。该方法的流程图如图2所示,包括如下步骤:
S1:获取所述交直流变换电路的电压信息和电流信息。可以通过传感器等测量设备获取交直流变换电路的电压信息和电流信息。具体地,步骤S1可以包括如下子步骤:
S11:检测所述第一换流单元的电容电压和电流。
S12:分别确定所述第一换流单元的电容电压波动范围以及所述耦合单 元的功率流向。具体地,根据某一时间段内检测到的所述第一换流单元的三相的电容电压和电流,可以得到电容电压的波动范围从而采取进一步的控制措施以抑制较大波动,并得到电流流向从而获知功率流向以进行控制。
S2:根据所述交直流变换电路的电压信息和电流信息,控制所述第一换流单元的可控器件延时开通或提前关断;同时控制所述第二换流单元工作在可控整流或可控逆变状态或者不可控整流状态。
具体地,通过对电容电压的波动范围进行判断以实现对所述交直流变换电路的控制。所述控制所述第一换流单元的可控器件延时开通或提前关断,包括如下子步骤:
S21:判断所述第一换流单元的电容电压波动范围是否超过预设电压范围。通过预先设定确保电力设备安全运行的电压范围,以控制实际交直流变换电路的电压波动。
S22:当所述第一换流单元的电容电压波动范围超过预设电压范围时,控制所述第一换流单元的可控器件延时开通或提前关断。具体地,对所述第一换流单元的可控器件进行占空比控制,即对连接至高频耦合单元输入端的三相DC/AC换流单元进行占空比控制。当电容电压波动范围超过预设电压范围时,控制其中的可控器件延时开通,延时时间可根据电路参数具体确定。通过对可控器件进行延时开通的控制,可有效地避免开关周期内电流换向造成无功功率的传递。进一步地,还可控制其中的可控器件提前关断,提前关断的时间可根据电路参数具体确定。延时开通或提前关断可以通过控制器进行控制。
具体地,所述控制所述第二换流单元工作在可控整流或可控逆变状态或者不可控整流状态,包括如下子步骤:
S21′:判断所述耦合单元的功率流向是否为单向且为由所述耦合单元的输入端至输出端或双向。具体地,根据采集到的DC/AC换流单元的电压、 电流信号判断所述耦合单元的功率流向。优选地,还可以通过上位机发送的功率流向信号指令进行判断,即通过阀级控制器监测是否接收到功率流向控制指令。
S22′:当所述耦合单元的功率流向为单向且为由所述耦合单元的输入端至输出端时,闭锁所述第二换流单元触发脉冲,控制所述第二换流单元工作在不可控整流状态;当接收到所述第二换流单元的功率流向为双向流动的指令时,解锁所述第二换流单元触发脉冲,控制所述第二换流单元工作在可控整流或可控逆变状态。
若功率流向为高频耦合单元的输入端至输出端方向,且为单向流动,则控制AC/DC换流单元工作在不可控整流状态。若非单向流动即双向流动,则控制AC/DC换流单元工作在可控整流或可控逆变状态,即与DC/AC换流单元相同的占空比控制状态。
作为一个具体的实施方式,所述耦合单元包括中频变压器,上述步骤S22′中的所述控制所述第二换流单元工作在可控整流或可控逆变状态,还包括如下子步骤:
S221′:当所述功率流向为从所述第二换流单元流向所述中频变压器时,控制所述第二换流单元工作在可控整流状态;当所述功率流向为从所述中频变压器流向所述第二换流单元时,控制所述第二换流单元工作在可控逆变状态。从而根据功率流向进一步控制所述第二换流单元工作在可控整流或可控逆变状态。
本实施例提供的交直流变换电路的控制方法,所述交直流变换电路包括第一换流单元、第二换流单元和耦合单元,所述第一换流单元连接至所述耦合单元的输入端,所述第二换流单元连接至所述耦合单元的输出端,通过获取所述交直流变换电路的电压信息和电流信息,控制所述第一换流单元的可控器件延时开通或提前关断,同时控制所述第二换流单元工作在 可控整流或可控逆变状态或者不可控整流状态。通过对电容电压波动和所述交直流变换电路的耦合单元电压、电流进行控制,能够有效抑制单相波动功率造成的模块直流侧电容电压的波动,防止器件过应力,解决交直流变换电路中直流侧电容电压不平衡,避免模块化交直流变换电路内部出现较大的无功功率振荡,减小对设备产生的不利影响。
作为一个优选的实施方式,在上述步骤S1之后还包括以下步骤:
S3:分别计算连接至同一所述耦合单元的各相所述第一换流单元的电容电压偏差,即计算连接至同一耦合单元的三相DC/AC换流单元的电容电压之间的差值;
S4:判断所述电压偏差是否超过预设值;
S5:当所述电压偏差超过预设值时,根据所述电压偏差确定至少一相触发脉冲闭锁,也即选择电容电压较低的至少一相DC/AC换流单元触发脉冲闭锁,从而实现控制所述第一换流单元的电容电压较低的至少一相触发脉冲闭锁。
对同一耦合单元的三相DC/AC换流单元的电容电压进行检测,当电压偏差超过设定值后,至少闭锁电容电压较低的一相DC/AC换流单元。对于耦合单元输出端的AC/DC换流单元可以根据耦合单元的功率流向进行控制。该交直流变换电路的控制方法能够解决交直流变换电路中直流侧电容电压不平衡,有效抑制单相波动功率造成的模块直流侧电容电压的波动,防止器件过应力。
本实施例还提供了一种交直流变换电路的控制装置,该装置的硬件结构示意图如图3所示,包括至少一个处理器31以及与所述至少一个处理器通信连接的存储器32,图3中以一个处理器31为例。该装置还可以包括输入设备33和输出设备34。
处理器31、存储器32、输入设备33和输出设备34可以通过总线或者 其他方式连接,图3中以通过总线连接为例。
处理器31可以为中央处理器(Central Processing Unit,CPU)。处理器31还可以为其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等芯片,或者上述各类芯片的组合。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
输入设备33可接收控制交直流变换电路的参数信息及上位机发送的控制指令等。输出设备34可包括显示屏等显示设备,用于输出交直流变换电路的工作状态等信息。
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器执行上述交直流变换电路的控制方法。
需要说明的是:上述实施例提供的交直流变换电路的控制装置在进行交直流变换电路的控制时,仅以上述各程序模块的划分进行举例说明,实际应用中,可以根据需要而将上述处理分配由不同的程序模块完成,即将装置的内部结构划分成不同的程序模块,以完成以上描述的全部或者部分处理。另外,上述实施例提供的交直流变换电路的控制装置与交直流变换电路的控制方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
本实施例提供的交直流变换电路的控制装置,所述交直流变换电路包括第一换流单元、第二换流单元和耦合单元,所述第一换流单元连接至所述耦合单元的输入端,所述第二换流单元连接至所述耦合单元的输出端,通过获取所述交直流变换电路的电压信息和电流信息,控制所述第一换流 单元的可控器件延时开通或提前关断,同时控制所述第二换流单元工作在可控整流或可控逆变状态或者不可控整流状态。通过对电容电压波动和所述交直流变换电路的耦合单元电压、电流进行控制,能够有效抑制单相波动功率造成的模块直流侧电容电压的波动,防止器件过应力,解决交直流变换电路中直流侧电容电压不平衡,避免模块化交直流变换电路内部出现较大的无功功率振荡,减小对设备产生的不利影响。
本实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现本发明实施例上述的交直流变换电路的控制方法的步骤。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本发明上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (8)

  1. 一种交直流变换电路的控制方法,所述交直流变换电路包括第一换流单元、第二换流单元和耦合单元,所述第一换流单元连接至所述耦合单元的输入端,所述第二换流单元连接至所述耦合单元的输出端,所述控制方法包括:
    获取所述交直流变换电路的电压信息和电流信息;
    根据所述交直流变换电路的电压信息和电流信息,控制所述第一换流单元的可控器件延时开通或提前关断;同时控制所述第二换流单元工作在可控整流或可控逆变状态或者不可控整流状态。
  2. 根据权利要求1所述的方法,其中,所述第一换流单元为直流/交流转换单元,所述第二换流单元为交流/直流转换单元,所述获取所述交直流变换电路的电压信息和电流信息,包括:
    检测所述第一换流单元的电容电压和电流;
    分别确定所述第一换流单元的电容电压波动范围以及所述耦合单元的功率流向。
  3. 根据权利要求2所述的方法,其中,所述控制所述第一换流单元的可控器件延时开通或提前关断,包括:
    判断所述第一换流单元的电容电压波动范围是否超过预设电压范围;
    当所述第一换流单元的电容电压波动范围超过预设电压范围时,控制所述第一换流单元的可控器件延时开通或提前关断。
  4. 根据权利要求1所述的方法,其中,在所述获取所述交直流变换电路的电压信息和电流信息之后,还包括:
    分别计算连接至同一所述耦合单元的各相所述第一换流单元的电容电压偏差;
    判断所述电压偏差是否超过预设值;
    当所述电压偏差超过预设值时,根据所述电压偏差确定至少一相触发脉冲闭锁。
  5. 根据权利要求1所述的方法,其中,所述控制所述第二换流单元工作在可控整流或可控逆变状态或者不可控整流状态,包括:
    判断所述耦合单元的功率流向是否为单向且为由所述耦合单元的输入端至输出端或双向;
    当所述耦合单元的功率流向为单向且为由所述耦合单元的输入端至输出端时,闭锁所述第二换流单元触发脉冲,控制所述第二换流单元工作在不可控整流状态;当接收到所述第二换流单元的功率流向为双向流动的指令时,解锁所述第二换流单元触发脉冲,控制所述第二换流单元工作在可控整流或可控逆变状态。
  6. 根据权利要求5所述的方法,其中,所述耦合单元包括中频变压器,所述控制所述第二换流单元工作在可控整流或可控逆变状态,包括:
    当所述功率流向为从所述第二换流单元流向所述中频变压器时,控制所述第二换流单元工作在可控整流状态;当所述功率流向为从所述中频变压器流向所述第二换流单元时,控制所述第二换流单元工作在可控逆变状态。
  7. 一种交直流变换电路的控制装置,包括:
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器;
    其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器执行权利要求1-6中任一项所述的交直流变换电路的控制方法。
  8. 一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现权利要求1-6中任一项所述的交直流变换电路的控制 方法的步骤。
PCT/CN2018/095509 2017-07-25 2018-07-12 一种交直流变换电路的控制方法、装置和计算机存储介质 WO2019019925A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/613,268 US10951110B2 (en) 2017-07-25 2018-07-12 Control method and device for alternating-current and direct-current conversion circuit, and computer storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710610608.XA CN107565834B (zh) 2017-07-25 2017-07-25 一种交直流变换电路的控制方法及装置
CN201710610608.X 2017-07-25

Publications (1)

Publication Number Publication Date
WO2019019925A1 true WO2019019925A1 (zh) 2019-01-31

Family

ID=60974605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095509 WO2019019925A1 (zh) 2017-07-25 2018-07-12 一种交直流变换电路的控制方法、装置和计算机存储介质

Country Status (3)

Country Link
US (1) US10951110B2 (zh)
CN (1) CN107565834B (zh)
WO (1) WO2019019925A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107565834B (zh) 2017-07-25 2020-03-24 全球能源互联网研究院有限公司 一种交直流变换电路的控制方法及装置
KR102235397B1 (ko) * 2018-05-02 2021-04-05 현대일렉트릭앤에너지시스템(주) 스콧 트랜스포머를 갖는 전력 변환 장치
US10971934B2 (en) 2018-12-31 2021-04-06 Abb Schweiz Ag Distribution networks with flexible direct current interconnection system
US11121543B2 (en) 2018-12-31 2021-09-14 Abb Schweiz Ag Fault mitigation in medium voltage distribution networks
US10819112B1 (en) 2019-03-27 2020-10-27 Abb Schweiz Ag Feeder line fault response using direct current interconnection system
US11031773B2 (en) 2019-03-27 2021-06-08 Abb Power Grids Switzerland Ag Transformer isolation response using direct current link
CN114070076B (zh) * 2020-08-04 2023-08-08 明纬(广州)电子有限公司 直流电压转换装置
CN117639471B (zh) * 2024-01-25 2024-04-02 北京交通大学 一种供配电电压转换电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203039584U (zh) * 2012-10-29 2013-07-03 旭隼科技股份有限公司 可调节输出电压的转换器
US20150365005A1 (en) * 2014-06-13 2015-12-17 Delta Electronics, Inc. Bidirectional converters and flux-balancing control methods thereof
CN107565834A (zh) * 2017-07-25 2018-01-09 全球能源互联网研究院有限公司 一种交直流变换电路的控制方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066976A (ja) * 1992-06-16 1994-01-14 Hitachi Ltd 電力変換装置及び無停電電源装置
CN103904908A (zh) * 2012-12-31 2014-07-02 国家电网公司 一种直流侧电压稳定控制方法
JP6201319B2 (ja) * 2013-01-15 2017-09-27 住友電気工業株式会社 変換装置、故障判定方法及び制御プログラム
WO2015056503A1 (ja) * 2013-10-18 2015-04-23 東芝三菱電機産業システム株式会社 双方向絶縁型dc/dcコンバータおよびそれを用いたスマートネットワーク
US9887616B2 (en) * 2015-07-01 2018-02-06 Hella Corporate Center Usa, Inc. Electric power conversion apparatus with active filter
JP6651795B2 (ja) * 2015-11-06 2020-02-19 住友電気工業株式会社 力率改善装置、双方向ac/dc変換装置及びコンピュータプログラム
CN109196766B (zh) * 2016-05-31 2020-09-29 东芝三菱电机产业系统株式会社 双向绝缘型dc/dc转换器及智能电网
WO2017208789A1 (ja) * 2016-06-02 2017-12-07 三菱電機株式会社 電力変換システム
CN106100361B (zh) * 2016-06-27 2018-10-09 全球能源互联网研究院有限公司 一种交直流变换电路及电力电子变压器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203039584U (zh) * 2012-10-29 2013-07-03 旭隼科技股份有限公司 可调节输出电压的转换器
US20150365005A1 (en) * 2014-06-13 2015-12-17 Delta Electronics, Inc. Bidirectional converters and flux-balancing control methods thereof
CN107565834A (zh) * 2017-07-25 2018-01-09 全球能源互联网研究院有限公司 一种交直流变换电路的控制方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Research on Dual-Phase-Shift Control Based on Optimized Backflow Power", ELECTRICAL & ENERGY MANAGEMENT TECHNOLOGY, 30 March 2017 (2017-03-30), pages 68, ISSN: 2095-8188 *

Also Published As

Publication number Publication date
CN107565834A (zh) 2018-01-09
CN107565834B (zh) 2020-03-24
US10951110B2 (en) 2021-03-16
US20200195126A1 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
WO2019019925A1 (zh) 一种交直流变换电路的控制方法、装置和计算机存储介质
US9825549B2 (en) Multi-level inverter
JPH04190633A (ja) インバータの並列運転方法および並列運転インバータ装置
JPWO2015056571A1 (ja) 電力変換装置及び電力変換方法
JP6957196B2 (ja) 電力変換装置
US11855460B2 (en) Photovoltaic inverter and corresponding switching frequency control method
WO2019150443A1 (ja) 直列多重インバータ
Zare Harmonics issues of three-phase diode rectifiers with a small DC link capacitor
JP2016174490A (ja) 電力変換装置
CN107425710A (zh) 基于负载电流前馈的pfc电路控制方法及装置
KR20170102722A (ko) 전력계통 시뮬레이터
US10581336B2 (en) Three-phase AC/AC converter with quasi-sine wave HF series resonant link
JP2016063687A (ja) 電力変換装置
US9590484B2 (en) Inverter device and power converting method thereof
EP3591828B1 (en) Power supply control device, power conversion system, and power supply control method
Liu et al. Simplified quasi‐Z source indirect matrix converter
JP2010110179A (ja) 整流回路
EP3329584B1 (en) Arrangement, method and computer program product for limiting circulating currents
TW201440406A (zh) 多階交流/直流電力轉換方法及其裝置
WO2013135088A1 (zh) 辅助变流器
JP2017060243A (ja) 誘導加熱装置とその出力電力制御方法。
Farhadi et al. Predictive control of neutral-point clamped indirect matrix converter
Sousa et al. Unified architecture of single-phase active power filter with battery interface for UPS operation
JP6819818B1 (ja) 電力変換装置
WO2022216279A1 (en) Regenerative multicell drive system with overlap angle in fundamental frequency modulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838255

Country of ref document: EP

Kind code of ref document: A1