WO2019019794A1 - 板式模块化控温反应器 - Google Patents

板式模块化控温反应器 Download PDF

Info

Publication number
WO2019019794A1
WO2019019794A1 PCT/CN2018/088927 CN2018088927W WO2019019794A1 WO 2019019794 A1 WO2019019794 A1 WO 2019019794A1 CN 2018088927 W CN2018088927 W CN 2018088927W WO 2019019794 A1 WO2019019794 A1 WO 2019019794A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature control
plate
pair
control module
plates
Prior art date
Application number
PCT/CN2018/088927
Other languages
English (en)
French (fr)
Inventor
余圣婴
刘英民
倪昊尹
徐月亭
方晨辰
Original Assignee
德艾柯工程技术(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德艾柯工程技术(上海)有限公司 filed Critical 德艾柯工程技术(上海)有限公司
Priority to EP18837285.8A priority Critical patent/EP3620231A4/en
Publication of WO2019019794A1 publication Critical patent/WO2019019794A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0207Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal
    • B01J8/0214Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal in a cylindrical annular shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/249Plate-type reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/001Controlling catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/0015Plates; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00761Discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00884Means for supporting the bed of particles, e.g. grids, bars, perforated plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/021Processes carried out in the presence of solid particles; Reactors therefor with stationary particles comprising a plurality of beds with flow of reactants in parallel
    • B01J2208/022Plate-type reactors filled with granular catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/185Details relating to the spatial orientation of the reactor vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • B01J2219/1941Details relating to the geometry of the reactor round circular or disk-shaped
    • B01J2219/1943Details relating to the geometry of the reactor round circular or disk-shaped cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2456Geometry of the plates
    • B01J2219/2458Flat plates, i.e. plates which are not corrugated or otherwise structured, e.g. plates with cylindrical shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2477Construction materials of the catalysts
    • B01J2219/2481Catalysts in granular from between plates

Definitions

  • the present disclosure relates to the field of chemical reaction equipment, for example, to a plate type modular temperature control reactor.
  • a multiphase particulate catalyst is typically loaded in a catalyst tube through which a fluid reactant is reacted while indirectly removing the heat of reaction released by the reaction by a heat carrier surrounding the catalyst tube.
  • the plate reactor in which a geometric hot plate is used as a heat transfer device.
  • the plate reactor typically comprises a continuous catalyst bed with a plate heat exchanger embedded in the catalyst bed.
  • the plate isothermal reactor avoids some shortcomings of the tubular radial reactor, it also has drawbacks.
  • the plate structure will have the problem of uneven fluid distribution in the plate, which directly leads to heat exchange. The effect is uneven and the temperature distribution of the reaction bed is uneven.
  • the bottom of the catalyst chamber of the plate isothermal reactor is sealed by a large grid. When the catalyst is unloaded, the catalyst can be completely discharged by disassembling the grid, and the catalyst cannot be partially replaced, and the flexibility is poor; the heat exchange medium inlet and outlet branches are tightly arranged.
  • the pipe diameter is limited, and the flow rate of the heat exchange medium is not satisfied, and the design of the bottom grid for the plate reactor is very difficult for the catalyst discharge and inspection and maintenance.
  • the invention provides a plate type modular temperature control reactor, which can partially load and unload the catalyst in the reaction chamber, has good flexibility, and is convenient for loading and unloading of the catalyst, and is convenient for inspection and maintenance.
  • the application provides a plate type modular temperature control reactor comprising:
  • a temperature control module is disposed in the reaction chamber, the temperature control module includes at least two pairs of temperature control plates, the temperature control plate pair includes two temperature control plates, and the sides of the two temperature control plates are fixedly formed a cavity open and closed, an upper end of the cavity is in communication with a heat medium inlet on the casing, and a lower end of the cavity is in communication with a heat medium outlet on the casing, and the adjacent temperature control plate The space between the pairs is set to hold the catalyst;
  • a grille detachably coupled to the bottom of the temperature control module and located between adjacent pairs of the temperature control plates, the grid being configured to support the catalyst.
  • the temperature control module further includes: a frame, the frame includes at least two thick plates, and the at least two thick plates are connected two to two and disposed parallel to a central axis of the casing, The pair of temperature control plates are fixed to the frame.
  • the method further includes: at least one fixing frame, the fixing frame is provided with a pair of protrusions, and a distance between the pair of protrusions is adapted to a width of the pair of temperature control plates; A through hole is disposed on the pair, and the fixing frame sequentially passes through the through holes of the at least two pairs of the temperature control plates, and the pair of temperature control plates are caught between the pair of protrusions.
  • the method further includes: an upper plate slotted tube and a lower plate slotted tube, the upper plate slotted tube being perpendicular to the pair of temperature control plates and embedded in an upper end of the pair of temperature control plates, The upper plate slotted tube is in communication with the heat medium inlet; the lower plate slotted tube is perpendicular to the pair of temperature control plates and is embedded in a lower end of the pair of temperature control plates, the lower plate slotted tube and the The heat medium outlet is connected.
  • the method further includes: a first annular tube disposed at an upper end of the reaction chamber; and a second annular tube disposed at a lower end of the reaction chamber, the first annular tube being in communication with the heat medium inlet And communicating with the upper plate slit pipe through the first branch pipe; the second annular pipe is in communication with the heat medium outlet, and communicates with the lower plate slit pipe through the second branch pipe.
  • the branch tube is a serpentine tube.
  • the grille comprises an arc segment and a straight segment, the arc segment connecting two adjacent straight segments, the number of the arc segments and the number of the lower plate slot tubes Consistently, the grid is disposed above the lower plate slot tube, and the arc segment is matched and fixed with the lower plate slot tube, and the end of the straight segment and the temperature control module fixed.
  • the two ends of the straight section are provided with a fixing plate, and the fixing plate is fixed to the temperature control module by bolts.
  • the method further includes: a cover plate disposed around the temperature control module, configured to fill a gap between the temperature control module and the housing.
  • the method further includes: a bent pipe, one end of the curved pipe passes through the cover plate from below the cover plate, and the other end protrudes outside the casing, and the bent pipe is provided with an on-off valve.
  • the elbow is configured to pass an inert gas into the reaction chamber.
  • the present invention provides a plate type modular reactor, comprising a casing, a temperature control module and a grille, wherein the casing is provided with a reaction chamber; the temperature control module is disposed in the reaction chamber, and the temperature control module comprises at least two a pair of temperature control plates, the pair of temperature control plates comprising two temperature control plates, the sides of the two temperature control plates are fixed to form a cavity with upper and lower openings, the upper end of the cavity and the upper end of the cavity
  • the heat medium inlet communicates with the lower end communicating with the heat medium outlet on the casing, and the adjacent pair of the temperature control plates are disposed to hold the catalyst; the grille is detachably connected to the bottom of the temperature control module And located between adjacent pairs of temperature control plates, the grid being arranged to support the catalyst.
  • the separate loading and unloading of the catalyst between adjacent pairs of temperature control plates can be realized, the flexibility of the reactor can be improved, the problems of inspection and maintenance of the plate reactor in the related art can be solved, and the worker can be locally detected. , maintenance, and partial replacement of the catalyst.
  • FIG. 1 is a schematic structural view of a plate type modular reactor provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural view of a pair of temperature control plates and a fixing frame provided by an embodiment of the present application;
  • FIG. 3 is a schematic structural view of a grid provided by an embodiment of the present application.
  • FIG. 4 is a front view of a grid provided by an embodiment of the present application.
  • Figure 5 is a plan view of a grid provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural view of a pair of temperature control plates and a frame provided by an embodiment of the present application
  • FIG. 7 is a distribution diagram 1 of a temperature control module provided in an embodiment of the present application.
  • FIG. 8 is a second distribution diagram of a temperature control module provided in an embodiment of the present application.
  • FIG. 9 is a distribution diagram 3 of a temperature control module provided in an embodiment of the present application.
  • FIG. 10 is a distribution diagram 4 of a temperature control module provided in an embodiment of the present application.
  • FIG 11 is a distribution diagram 5 of the temperature control module provided in the embodiment of the present application.
  • FIG. 12 is a distribution diagram 6 of a temperature control module provided in an embodiment of the present application.
  • FIG. 13 is a seventh diagram of the distribution of the temperature control module in the reaction chamber provided by the embodiment of the present application.
  • thermocontrol module 31, temperature control board pair; 311, temperature control board; 312, cavity; 32, frame; 321, thick plate; 33, fixed frame;
  • each temperature control module 3 includes at least two temperature control plate pairs 31.
  • the temperature control plate pair 31 includes two temperature control plates 311, and the side edges of the two temperature control plates 311 are fixedly connected to form a cavity 312 that is open and closed.
  • the upper end of the cavity 312 is in communication with the heat medium inlet 11 on the casing 1, and the lower end of the cavity 312 is in communication with the heat medium outlet 12 on the casing 1, and the space between the adjacent temperature control plate pairs 31 is set to be filled.
  • the grille 4 is detachably connected to the bottom of the temperature control module 3 and is located between adjacent pairs of temperature control plates 31 which are arranged to support the catalyst.
  • the grid 4 By providing the grid 4, the separate loading and unloading of the catalyst between the adjacent temperature control plate pairs 31 can be realized, the flexibility of the reactor can be improved, and the problems of inspection and maintenance of the plate reactor in the related art can be solved, and the worker can be partially localized. Inspection, maintenance, and partial replacement of the catalyst.
  • the plate type modular reactor is a large-scale chemical equipment, which is convenient for workers to enter the interior for component layout, inspection and maintenance.
  • the upper and lower ends of the casing 1 are respectively provided with manholes 15, and the worker enters the inside of the reactor through the manholes 15, which is convenient for operation.
  • the plate type modular reactor comprises a main body and an upper head connected to the upper end of the main body, a lower head connected to the lower end of the main body, the upper head, the lower head and the main body constitute the casing 1, and the inside of the casing 1 forms a reaction chamber 2 . It is convenient to arrange each structure inside the casing 1 by providing an upper head and a lower head, and the upper head and the lower head are fixed to the main body to form an inner closed reaction chamber 2.
  • the upper end of the casing 1 is provided with a reaction gas inlet and a heat medium inlet 11, and the lower end of the casing 1 is provided with a reaction gas outlet 14 and a heat medium outlet 12.
  • the adjacent temperature control plate pair 31 is filled with a catalyst, and a reaction gas is introduced into the reaction chamber 2 from the reaction gas inlet, and the reaction gas flows from the top to the bottom, and the reaction fully takes place under the action of the catalyst.
  • the gas exits the reactor from the reactor outlet.
  • the cavity 312 in the temperature control plate pair 31 passes through the heat medium inlet 11 to the heat medium, and after the endothermic or exothermic heat in the reaction process, the heat medium outlet 12 flows out to better support the reaction. get on.
  • FIG. 6 is a schematic structural diagram of a pair of temperature control plates and a frame provided by the embodiment.
  • the temperature control module 3 further includes a frame 32 that is disposed as a fixed temperature control plate pair 31.
  • the frame 32 may include at least two thick plates 321 which are connected in two parallel and parallel to the central axis of the casing 1, and the pair of temperature control plates 31 are fixed to the frame 32.
  • the pair of temperature control plates 31 are vertically fixed to one of the thick plates 321 and parallel to the other of the thick plates 321 to fix the temperature control plate pair 31 to the frame 32.
  • the temperature control plate pair 31 and the frame 32 can be fixed by snapping.
  • the one side thick plate 321 of the frame 32 is provided with a card slot extending in the axial direction of the casing 1, and the end of the temperature control plate pair 31 is provided with
  • the card slot is matched with the card slot, and the card block of the temperature control plate pair 31 is slid into and engaged with the card slot, and the number of the card slots on the thick plate 321 corresponds to the number of the temperature control plate pair 31.
  • the card slot and the card block are fixed and fixed, the fixing is convenient, the structure is simple, and the disassembly is convenient, and the installation difficulty of the worker can be reduced.
  • the temperature control plate pair 31 and the frame 32 can also be fixed by screw connection, etc., the fixing effect of the screw connection is reliable, and the operation is convenient.
  • the pair of temperature control plates 31 is generally a rectangular parallelepiped structure, and the plurality of temperature control plate pairs 31 may have the same shape and size, so that the plurality of temperature control plate pairs 31 form a large rectangular parallelepiped structure.
  • the frame 32 may be composed of 2, 3 or 4 thick plates 321 .
  • the thick plates 321 are vertically connected to each other to form a frame 32 having an L-shaped, U-shaped or rectangular cross-sectional shape, thereby fixing a plurality of temperature-control plate pairs 31.
  • the shape and size of the plurality of temperature control plate pairs 31 may also be different.
  • the plurality of temperature control plate pairs 31 may be formed into a polygonal shape or a fan shape, and the frame 32 may be adapted to the shape of the plurality of temperature control plate pairs 31 by a plurality of thick plates.
  • the corresponding shape of the 321 siege can be achieved as long as the temperature control plate pair 31 can be fixed.
  • the thick plate 321 can meet the bearing requirements of the frame 32 for the plurality of temperature control plate pairs 31, improve the strength of the frame 32, and prevent the frame 32 from being damaged due to excessive load bearing.
  • the temperature control module 3 in this embodiment further includes: at least one fixing frame 33. As shown in FIG.
  • the fixing frame 33 is provided with a pair of protrusions 331, and the distance between the pair of protrusions 331 is adapted to the width of the pair of temperature control plates 31; the pair of temperature control plates 31 are provided with through holes, and the fixing frame 33 is in turn After passing through the through holes of the at least two temperature control plate pairs 31, the temperature control plate pair 31 is caught between the protrusion pairs 331.
  • the fixing frame 33 can support and fix the temperature control plate pair 31, and avoid the vibration of the temperature control plate pair 31, thereby preventing structural damage inside the reactor.
  • the number of the fixing frames 33 may be plural, and the plurality of fixing frames 33 are distributed along at least one of the length horizontal direction and the height vertical direction of the temperature control plate pair 31, thereby better supporting the temperature control plate pair 31.
  • the size of the through hole formed in the pair of temperature control plates 31 can be adjusted according to the size of the temperature control plate pair 31 and the size of the catalyst particles.
  • the through holes may be rectangular holes or elliptical holes to facilitate the passage of the holder 33 with the pair of protrusions 331.
  • the width of the through hole can be selected from 5 mm to 30 mm, and the length is from 8 mm to 70 mm. The size is determined according to actual needs, as long as the mounting of the fixing frame 33 can be satisfied and the catalyst is not leaked.
  • the distance between the protrusion pairs 331 is adapted to the width of the temperature control plate pair 31 so as to clamp the fixed temperature control plate pair 31.
  • the spacing of the through holes on the temperature control plate pair 31 may be 50 cm to 150 cm. The spacing can both increase the support effect of the fixing frame 33 on the temperature control plate pair 31, and can also prevent the opening of the through hole from being too dense and reduce the strength of the temperature control plate pair 31.
  • the thermal medium is only circulated in the cavity 312 of the temperature control plate pair 31, and the boundary of the frame 32, that is, the position of the thick plate 321 is free from heat medium, which cannot be realized. Effective heat exchange, temperature control effect is poor.
  • the temperature plate 311 may be disposed on the thick plate 321 on the side parallel to the pair of the temperature control plate 31, and the two sides of the temperature control plate 311 are fixed and formed by the thick plate 321 In the cavity 312, the heat medium is introduced into the cavity 312, thereby improving the heat exchange effect of the frame 32, ensuring that the edge of the temperature control module 3 can also well control the reaction temperature, and solving the common edge heat exchange difference of the plate reactor.
  • the problem caused by high temperature creep In order to form the thick plate 321 of the frame 32 and the temperature control plate 311 to form the cavity 312, the size of the thick plate 321 is not smaller than the size of the temperature control plate 311 to facilitate the cooperation of the thick plate 321 and the temperature control plate 311.
  • the temperature control plate pair 31 is made of two temperature control plates 311, and the temperature control plate 311 may be a flat plate or a curved plate. The specific shape may be determined according to the viscosity and properties of the heat medium and the pressure bearing requirements of the temperature control plate 311. .
  • the temperature control plate 311 is fixed by welding to form a pair of temperature control plates 31 having an opening at the upper and lower ends, and the cavity 312 in the pair of temperature control plates 31 is a heat medium passage.
  • the two temperature control plates 311 can be fixed by welding at the edge, or there can be at least one welding in the middle.
  • the welding method can be spot welding, strip welding or special shape welding such as triangle or rectangle, as long as the welding positions are staggered.
  • the surface of the temperature control plate pair 31 has a shape in which the unevenness is formed.
  • the shape of the concavities and convexities can increase the contact area between the thermal medium and the temperature control plate pair 31, and at the same time form a turbulent flow to achieve a better heat exchange effect, and the catalyst is generally a granular structure, and the shape of the concavities and convexities can make the granular catalyst more uniformly mixed.
  • the temperature control plate increases the amount of catalyst storage between 31 and better supports the reaction. Considering the amount of the catalyst and the heat medium, the height of the protrusion of the temperature control plate 31 may be 1 to 10 mm.
  • the reactor in this embodiment further includes: an upper plate slit pipe and a lower plate slit pipe, the upper plate slit pipe is perpendicular to the temperature control plate pair 31 and is embedded in the upper end of the temperature control plate pair 31, and the upper plate slit pipe
  • the lower plate slotted tube is perpendicular to the temperature control plate pair 31 and is embedded in the lower end of the temperature control plate pair 31, and the lower plate slotted tube is in communication with the heat medium outlet 12.
  • the reactor further includes: a first annular tube 51 disposed at an upper end of the reaction chamber 2 and a second annular tube 52 disposed at a lower end of the reaction chamber 2, the first annular tube 51 being in communication with the heat medium inlet 11 And communicating with the upper plate slit pipe through the branch pipe 53; the second annular pipe 52 communicates with the heat medium outlet 12, and communicates with the lower plate slit pipe through the branch pipe 53.
  • the heat medium inlet After the hot medium inlet enters the first annular tube 51 through the heat medium inlet 11, the heat medium is transferred to the upper plate slit tube through the branch pipe 53, and the upper plate slit tube is disposed perpendicular to the temperature control plate pair 31, and the upper plate slit tube is controlled at each A through hole is disposed at an opening position of the cavity 312 corresponding to the pair of the warm plates 31.
  • the heat medium in the upper annular pipe is branched to the plurality of portions of the upper plate slit pipe through the first branch pipe 53 and enters the corresponding cavity 312.
  • the thermal medium passes through the through hole corresponding to the opening of the bottom end of the cavity 312 into the lower plate slit pipe, and merges into the second annular pipe 52 through the second branch pipe 53 at the bottom end. , flowing out of the heat medium outlet 12.
  • the upper plate slit pipe and the lower plate slit pipe may be disposed in plurality, and the plurality of plate slit pipes are evenly distributed, and the heat medium mass is branched by the first branch pipe 53 and the heat medium mass is collected through the second branch pipe 54, thereby ensuring A heat medium is uniformly distributed in the cavity 312 of each of the temperature control plate pairs 31 to ensure the temperature control effect of each part in the entire reactor.
  • first branch pipe 53 and the second branch pipe 54 may each be a serpentine pipe, and the serpentine pipe is evenly distributed on the first annular pipe 51 and the second annular pipe 52, and is connected to the corresponding slotted pipe.
  • the serpentine tube can alleviate the partial impact of the thermal medium and, to a certain extent, alleviate the vibration of the temperature control plate 31 inside the reactor, thereby avoiding damage to multiple components in the reactor.
  • the adjacent two temperature control plate pairs 31 are provided with a grid 4 that is independently installed and disassembled.
  • the grille 4 includes an arcuate section 41 and a straight section 42, which connects the adjacent two straight sections 42, the number of arcuate sections 41 and the lower plate slotted tube Corresponding to the number, the grille 4 is disposed above the lower plate slot tube, and the arc segment 41 is matched and fixed with the lower plate slot tube, and the end of the straight segment 42 is fixed to the temperature control module 3.
  • the grille 4 is provided with an arc segment 41 to avoid the lower plate slotted tube, and can also support and position the grille 4 by cooperation with the lower plate slotted tube, thereby improving the weight bearing effect and fixing of the grille 4. The effect is to avoid deformation of the grille 4.
  • two lower plate slotted tubes are arranged, so that the grille 4 is correspondingly provided with two arc segments 41 and three straight segments 42, respectively, and the two arc segments 41 and the corresponding lower plate slot tubes respectively
  • the arcuate section 41 and the straight section 42 are connected.
  • the two ends of the straight section 42 are provided with a fixing plate, and one end fixing plate is fixed by the bolt to the temperature control module 3, and the fixing plate of the other end and the other straight section 42 is fixed.
  • the fixed, fixed section of the curved section 41 can be fixed to the lower plate slotted tube. It is easy to disassemble by bolt connection, which is convenient for the staff to disassemble, inspect and repair the local device.
  • the flat between the two curved segments 41 may be first The straight section 42 is removed to remove most of the catalyst between the pair of temperature control plates 31, after which the bolts between the ends of the straight sections 42 and the temperature control module 3 are removed to remove the remaining catalyst.
  • the grille 4 is in close contact with the bottom of the temperature control module 3 and is located at the upper part of the lower plate slot tube. During the inspection, the initial inspection can be performed without removing other components, and there is no connection between the plurality of grilles 4, Independent replacement of the grid 4 and catalyst can be achieved.
  • the grid 4 can also be detachably connected to the temperature control module 3 by other means.
  • the card slot can be fixed by the card slot and the card block, as long as the single grid 4 can be independently loaded and unloaded.
  • the reactor in this embodiment further includes a cover plate 6 disposed around the temperature control module 3 and configured to fill a gap between the temperature control module 3 and the housing 1 .
  • a cover plate 6 disposed around the temperature control module 3 and configured to fill a gap between the temperature control module 3 and the housing 1 .
  • the gap between the temperature control module 3 and the casing 1 can be filled with mixed porcelain balls of different sizes, and after mixing the large and small ceramic balls, the void ratio in the reaction chamber 2 is smaller, and the reaction gas naturally passes through the control.
  • the temperature module 3 reacts.
  • An elbow 7 can also be connected to the cover plate 6. One end of the elbow 7 passes through the cover plate 6 from below the cover plate 6, and the other end extends out of the casing 1.
  • the elbow 7 is provided with an on-off valve, and the elbow 7 is set to An inert gas is introduced into the reaction chamber 2. Before the reaction, the on-off valve can be opened, and an inert gas is introduced into the reaction chamber 2 through the elbow 7 to perform a purging operation to improve the activation of the catalyst.
  • the temperature control module 3 can be plural and arranged in multiple ways.
  • the temperature control module 3 may include a larger temperature control module 3 and a plurality of smaller temperature control modules 3.
  • the larger temperature control module 3 is disposed in the middle of the housing 1 , and a space between the four sides of the rectangular large temperature control module 3 and the housing 1 can be placed with a smaller volume temperature control module 3, and so on.
  • a variety of arrangements can be obtained, making full use of the space of the reaction chamber 2, and effectively utilizing resources.
  • the temperature control module 3 can also be a fan shape, a plurality of fan shapes are formed into a cylindrical shape, filled in the reaction chamber 2, or a plurality of equal-sized temperature control modules 3 are arranged in a matrix, and the specific arrangement manner can be set as needed, here No restrictions.
  • the present invention provides a plate type modular temperature control reactor, which realizes separate loading and unloading of catalysts between adjacent pairs of temperature control plates, improves reactor flexibility, and solves problems such as difficulty in inspection and maintenance of plate reactors in related art. It is convenient for the staff to perform local inspection, maintenance and partial replacement of the catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

一种板式模块化反应器,包括壳体(1)、控温模块(3)和格栅(4),壳体(1)内设置有反应腔(2);控温模块(3)设置于反应腔(2),控温模块(3)包括至少两个控温板对(31),控温板对(31)包括两块控温板(311),两块控温板(311)的侧边固定形成上下开口的腔体(312),腔体(312)的上端与壳体(1)上的热媒进口(11)连通、下端与壳体(1)上的热媒出口(12)连通,相邻的控温板对(31)之间的空间设置为盛放催化剂;格栅(4)可拆卸连接于控温模块(3)的底部,且位于相邻的控温板对(31)之间,格栅(4)设置为支撑催化剂。

Description

板式模块化控温反应器 技术领域
本公开涉及化工反应设备技术领域,例如涉及一种板式模块化控温反应器。
背景技术
在化学工艺工程中,绝大多数反应伴随着热量的吸收和释放。在一些强放热反应中,列管式反应器作为一种常规固定床化学反应器。在工业规模生产中,通常在催化剂管中装载有多相颗粒催化剂,流体反应物通过该催化剂管进行反应,同时通过包围在催化剂管周围的热载体间接的除去反应所释放的反应热。
此外,还有一种采用几何形状热板作为传热器形式的板式反应器。板式反应器一般包含连续的催化剂床层,板式传热器嵌入催化剂床层中。
对于列管式反应器,由于其多管式的几何形状,存在以下的缺点:由于固定管板的存在,对于催化剂的装料和卸料,涉及相对复杂且冗长的操作,这导致生产力损失。同时,由于列管式反应器在传热方面的局限性,一般列管式反应器的重量和体积都很大,在制造、运输方面有很大的局限性。
板式等温反应器虽然避免了列管式径向反应器的某些缺点,但同时也存在弊端,比如在大型工业化规模生产中,板式结构会存在板内流体分布不均的问题,直接导致换热效果不均匀,反应床层温度分布不均。并且板式等温反应器催化剂腔的底部通过大型的格栅封堵,卸载催化剂时,只能通过拆卸格栅,将催化剂完全卸出,不能局部更换催化剂,灵活性差;换热介质进出支管设置紧密,且管径受限,不能满足换热介质流量大的情况,而且对于板式反应器来说底部格栅的设计对于催化剂卸料和检查维修造成很大的困难。
发明内容
本申请提出一种板式模块化控温反应器,该反应器可以对反应腔内的催化剂进行局部装卸,灵活性好,且催化剂的装卸方便,便于检查维修。
本申请提供了一种板式模块化控温反应器,包括:
壳体,所述壳体内设置有反应腔;
控温模块,设置于所述反应腔,所述控温模块包括至少两个控温板对,所述控温板对包括两块控温板,两块所述控温板的侧边固定形成上下开口的腔体, 所述腔体的上端与所述壳体上的热媒进口连通、所述腔体的下端与所述壳体上的热媒出口连通,相邻的所述控温板对之间的空间设置为盛放催化剂;
格栅,所述格栅可拆卸连接于所述控温模块的底部,且位于相邻的所述控温板对之间,所述格栅设置为支撑所述催化剂。
在一实施例中,所述控温模块还包括:框架,所述框架包括至少两块厚板块,所述至少两块厚板块两两连接并平行于所述壳体的中心轴设置,所述控温板对与所述框架固定。
在一实施例中,还包括:至少一个固定架,所述固定架设置有凸起对,所述凸起对之间的距离与所述控温板对的宽度相适应;所述控温板对上设置有通孔,所述固定架依次穿过至少两个所述控温板对的通孔后,所述控温板对卡入所述凸起对之间。
在一实施例中,还包括:上板缝式管和下板缝式管,所述上板缝式管垂直于所述控温板对并嵌于所述控温板对的上端,所述上板缝式管与所述热媒进口连通;所述下板缝式管垂直于所述控温板对并嵌于所述控温板对的下端,所述下板缝式管与所述热媒出口连通。
在一实施例中,还包括:设置于所述反应腔的上端的第一环形管以及设置于所述反应腔的下端的第二环形管,所述第一环形管与所述热媒进口连通,并通过第一支管与所述上板缝式管连通;所述第二环形管与所述热媒出口连通,并通过第二支管与所述下板缝式管连通。
在一实施例中,所述支管为蛇形管。
在一实施例中,所述格栅包括弧形段和平直段,所述弧形段连接相邻的两个平直段,所述弧形段的数量与所述下板缝式管的数量一致,所述格栅设置于所述下板缝式管的上方,且所述弧形段与所述下板缝式管配合并固定,所述平直段的端部与所述控温模块固定。
在一实施例中,所述平直段的两端均设置有固定板,所述固定板通过螺栓与所述控温模块固定。
在一实施例中,还包括:盖板,所述盖板环绕所述控温模块设置,设置为填充所述控温模块与所述壳体之间的空隙。
在一实施例中,还包括:弯管,所述弯管的一端由所述盖板的下方穿过所述盖板,另一端伸出所述壳体外,所述弯管设置有开关阀,所述弯管设置为向所述反应腔内通入惰性气体。
本申请提供了一种板式模块化反应器,包括壳体、控温模块和格栅,所述壳体内设置有反应腔;控温模块设置于所述反应腔,所述控温模块包括至少两个控温板对,所述控温板对包括两块控温板,两块所述控温板的侧边固定形成上下开口的腔体,所述腔体的上端与所述壳体上的热媒进口连通、下端与所述壳体上的热媒出口连通,相邻的所述控温板对之间设置为盛放催化剂;所述格栅可拆卸连接于所述控温模块的底部,且位于相邻的所述控温板对之间,所述格栅设置为支撑所述催化剂。通过设置格栅,可以实现相邻的控温板对之间的催化剂的单独装卸,提高反应器的灵活性,解决了相关技术中板式反应器检查维修困难等问题,方便工作人员进行局部的检测、维修以及局部更换催化剂的操作。
附图概述
图1是本申请实施例提供的板式模块化反应器的结构示意图;
图2是本申请实施例提供的控温板对与固定架的结构示意图;
图3是本申请实施例提供的格栅的结构示意图;
图4是本申请实施例提供的格栅的主视图;
图5是本申请实施例提供的格栅的俯视图;
图6是本申请实施例提供的控温板对与框架的结构示意图;
图7是本申请实施例提供的控温模块在反应腔内的分布图一;
图8是本申请实施例提供的控温模块在反应腔内的分布图二;
图9是本申请实施例提供的控温模块在反应腔内的分布图三;
图10是本申请实施例提供的控温模块在反应腔内的分布图四;
图11是本申请实施例提供的控温模块在反应腔内的分布图五;
图12是本申请实施例提供的控温模块在反应腔内的分布图六;
图13是本申请实施例提供的控温模块在反应腔内的分布图七。
其中:
1、壳体;11、热媒进口;12、热媒出口;13、反应气进口;14、反应气出口;15、人孔;2、反应腔;
3、控温模块;31、控温板对;311、控温板;312、腔体;32、框架;321、厚板块;33、固定架;331、凸起对;
4、格栅;41、弧形段;42、平直段;
51、第一环形管;52、第二环形管;53、第一支管;54、第二支管;6、盖板;7、弯管。
具体实施方式
图1-图13所示,本实施例提供了一种板式模块化反应器,包括壳体1、控温模块3和格栅4,壳体1内设置有反应腔2;控温模块3设置于反应腔2,每个控温模块3包括至少两个控温板对31。控温板对31包括两块控温板311,两块控温板311的侧边固定相连形成上下开口的腔体312。腔体312的上端与壳体1上的热媒进口11连通、腔体312的下端与壳体1上的热媒出口12连通,相邻的控温板对31之间的空间设置为盛放催化剂。格栅4可拆卸连接于控温模块3的底部,且位于相邻的控温板对31之间,格栅4设置为支撑催化剂。通过设置格栅4,可以实现相邻的控温板对31之间的催化剂的单独装卸,提高反应器的灵活性,解决了相关技术中板式反应器检查维修困难等问题,方便工作人员进行局部的检测、维修以及局部更换催化剂的操作。
板式模块化反应器是一种大型的化工设备,为方便工作人员进入内部进行部件的布置、检查及维修。如图1所示,壳体1的上、下两端分别设置有人孔15,工作人员通过人孔15进入反应器内部,方便操作。
板式模块化反应器包括主体以及与主体的上端连接的上封头、与主体的下端连接的下封头,上封头、下封头和主体构成壳体1,壳体1内部形成反应腔2。通过设置上封头和下封头,便于布置壳体1内部的每个结构,上封头和下封头与主体固定后形成内部封闭的反应腔2。
壳体1上端设置有反应气入口和热媒进口11,壳体1的下端设置有反应气出口14和热媒出口12。反应时,相邻的控温板对31之间填充催化剂,由反应气入口向反应腔2内的通入反应气体,反应气体自上而下流动,在催化剂的作用下充分发生反应,反应过后的气体由反应器出口排出反应器外。此过程中,控温板对31内的腔体312通过热媒进口11通入热媒,在反应过程中进行吸热或放热后,由热媒出口12流出,以便更好地支持反应的进行。
图6为本实施例提供的控温板对与框架的结构示意图。如图6所示,控温模块3还包括:框架32,框架32设置为固定控温板对31。框架32可以包括至少两块厚板块321,至少两块厚板块321两两连接并平行于所述壳体1的中心轴设置,控温板对31与框架32固定。控温板对31垂直固定于其中一块厚板块321 并平行于另一块厚板块321,从而将控温板对31与框架32固定。控温板对31与框架32可以通过卡接固定,例如框架32的一侧厚板块321上设置有沿壳体1的轴向方向延伸的卡槽,控温板对31的端部设置有与卡槽配合的卡块,控温板对31的卡块由卡槽的一端滑入并与卡槽配合固定,厚板块321上的卡槽的数量与控温板对31的数量对应。通过卡槽与卡块配合固定,固定方便,结构简单,且便于拆卸,可以降低工作人员的安装难度。控温板对31与框架32也可以通过螺纹连接等方式固定,螺纹连接的固定效果可靠,操作便捷。
本实施例中控温板对31一般为长方体结构,多个控温板对31可以具有相同的形状及大小,从而使多个控温板对31组成一个大的长方体结构。为适应多个控温板对31的形状,框架32可以有2块、3块或4块厚板块321组成。厚板块321两两垂直连接,形成截面形状为L型、U型或矩形的框架32,从而固定多个控温板对31。当然,多个控温板对31的形状及大小也可以不同,例如多个控温板对31可以组成多边形或扇形等,框架32可以适应多个控温板对31的形状由多块厚板块321围城相应的形状,只要可以实现控温板对31的固定即可。厚板块321可以满足框架32对多个控温板对31的承重需求,提高框架32的强度,避免框架32因承重过大而损坏。
由于在反应过程中,控温板对31的腔体312内持续通入热媒介质,且热媒介质通入的流速较大。高流速状态下,热媒介质对控温板对31的冲击较大,将引起控温板对31振动。为了避免控温板对31振动而引起的反应器内部结构的损坏,本实施例中的控温模块3还包括:至少一个固定架33。如图2所示,固定架33设置有凸起对331,凸起对331之间的距离与控温板对31的宽度相适应;控温板对31上设置有通孔,固定架33依次穿过至少两个控温板对31的通孔后,控温板对31卡入凸起对331之间。固定架33可以对控温板对31起到支撑、固定的作用,避免控温板对31振动,从而防止反应器内部的结构损坏。固定架33的数量可以为多个,多个固定架33沿控温板对31的长度水平方向和高度竖直方向中至少一个方向分布,从而更好的支撑控温板对31。
在一实施例中,控温板对31上开设的通孔的大小可以根据控温板对31的尺寸以及催化剂颗粒的大小进行调整。例如,通孔可以为矩形孔或椭圆形孔,以方便带有凸起对331的固定架33穿过。通孔的宽度可以选取为5mm~30mm,长度为8mm~70mm,尺寸根据实际需要确定,只要能够满足固定架33的安装且不会泄露催化剂即可。为使固定架33在热媒介质的冲击下能够稳定的固定控温 板对31,凸起对331之间的距离与控温板对31的宽度相适应,以便夹持固定控温板对31。为避免设置多个固定架33,即控温板对31上开设多个通孔降低控温板对31的强度和使用寿命,控温板对31上的通孔的间距可以为50cm~150cm,该间距既可以提高固定架33对控温板对31的支撑作用,也可以防止开设通孔过密而降低控温板对31的强度。
由于反应过程中会伴随大量的吸热或放热过程,热媒介质仅在控温板对31的腔体312中流通,框架32的边界,即厚板块321位置处无热媒介质,无法实现有效的换热,控温效果较差。为解决上述问题,本实施例中,框架32与控温板对31平行的一侧的厚板块321上可以设置有一个控温板311,控温板311的两侧与厚板块321固定并形成腔体312,腔体312内通入热媒介质,从而提高框架32的换热效果,保证控温模块3的边缘也能够很好的控制反应温度,解决了板式反应器普遍的边缘换热差导致的高温蠕变的问题。为使框架32的厚板块321与控温板311组成腔体312,厚板块321的大小不小于控温板311的大小,以方便厚板块321与控温板311的配合。
控温板对31由两块控温板311制成,控温板311可以是平板,也可以是曲面板,具体形状可以根据热媒介质的粘度、性质和控温板311的承压需要确定。控温板311通过焊接固定形成上下两端分别具有一个开口的控温板对31,控温板对31内的腔体312为热媒介质通道。两块控温板311可以在边缘通过焊接固定,也可以在中部存在至少一处焊接,焊接方式可以为点焊、条形焊或三角形、矩形等特殊形状焊接,只要保证焊接的位置交错设置,使得控温板对31的表面形成凹凸间隔的形状即可。凹凸的形状可以增加热媒介质与控温板对31的接触面积,同时形成湍流,达到更好的换热效果,且催化剂一般为颗粒状结构,凹凸的形状可以使颗粒状的催化剂混合更加均匀,控温板对31之间的催化剂存储量增加,更好的支持反应的进行。综合考虑催化剂和热媒介质的用量,控温板对31的凸起的高度可以为1~10mm。
本实施例中的反应器还包括:上板缝式管和下板缝式管,上板缝式管垂直于控温板对31并嵌于控温板对31的上端,上板缝式管与热媒进口11连通;下板缝式管垂直于控温板对31并嵌于控温板对31的下端,下板缝式管与热媒出口12连通所。通过板缝式管传递热媒介质,可以节省反应器内部占用的空间,简化结构,例如在需要通入高流速、大流量的热媒介质时,板缝式管可以使热媒介质分布的更均匀。
在一实施例中,反应器还包括:设置于反应腔2的上端的第一环形管51以及设置于反应腔2的下端的第二环形管52,第一环形管51与热媒进口11连通,并通过支管53与上板缝式管连通;第二环形管52与热媒出口12连通,并通过支管53与下板缝式管连通。热媒介质通过热媒进口11进入第一环形管51内后,通过支管53传递至上板缝式管内,上板缝式管垂直于控温板对31设置,上板缝式管在每个控温板对31对应的腔体312的开口位置处设置有通孔,上环形管内的热媒介质通过第一支管53分流至上板缝式管的多个部分,并进入对应的腔体312内。经过换热反应后,热媒介质通过下板缝式管与腔体312底端的开口对应设置的通孔进入下板缝式管内,通过底端的第二支管53汇合至第二环形管52内后,由热媒出口12流出。上板缝式管和下板缝式管可以设置为多个,多个板缝式管均匀分布,通过第一支管53将热媒介质分流并通过第二支管54将热媒介质汇总,可以保证每个控温板对31的腔体312内均匀流通有热媒介质,保证整个反应器内每个部分的温度控制效果。
在一实施例中,第一支管53和第二支管54均可以为蛇形管,蛇形管均布于第一环形管51和第二环形管52上,并连接到板缝式管对应的多个部分,蛇形管可以缓解热媒介质的部分冲击,并在一定程度上缓解反应器内部的控温板对31的振动,从而避免反应器内多个部件的损坏。
本实施例中,相邻的两个控温板对31之间设置有独立安装和拆卸的格栅4。如图3-图5所示,格栅4包括弧形段41和平直段42,弧形段41连接相邻的两个平直段42,弧形段41的数量与下板缝式管的数量对应,格栅4设置于下板缝式管的上方,且弧形段41与下板缝式管配合并固定,平直段42的端部与控温模块3固定。格栅4设置有弧形段41既可以避让下板缝式管,也可以通过与下板缝式管的配合,对格栅4起到支撑和定位作用,提高格栅4的承重效果以及固定效果,避免格栅4变形。
本实施例设置了两根下板缝式管,因此格栅4上对应设置有两个弧形段41及三个平直段42,两个弧形段41分别与对应的下板缝式管配合,弧形段41和平直段42连接,平直段42的两端均设置有固定板,一端固定板通过螺栓与控温模块3固定,另一端与另一平直段42上的固定板固定,弧形段41的固定板可以和下板缝式管固定。通过螺栓连接,方便拆卸,从而方便工作人员进行局部装置的拆卸、检查和维修。例如当需要卸掉某一对相邻的控温板对31之间的催化剂,需要拆卸对应控温板对31之间的格栅4时,可以先将两段弧形段41 之间的平直段42拆除,从而卸掉控温板对31之间大部分的催化剂,之后拆除平直段42的端部与控温模块3之间的螺栓,从而将剩余的催化剂卸除。
该格栅4紧贴于控温模块3的底部且位于下板缝式管的上部,在检修时无需拆除其他部件即可无障碍进行初步检修,且多个格栅4之间没有任何连接,可实现独立更换格栅4和催化剂。格栅4也可以通过其他方式与控温模块3可拆卸连接,例如可以通过卡槽和卡块配合实现卡接固定,只要能够满足单个格栅4可以独立装卸即可。
在一实施例中,本实施例中的反应器还包括:盖板6,盖板6环绕控温模块3设置,设置为填充控温模块3与壳体1之间的空隙。通过设置盖板6,可以封堵反应腔2内处控温模块3的其他通道,由反应气进口13进入反应腔2的反应气体只能通过控温模块3内的催化剂后才能够由反应气出口14排除,避免反应气体的短路,提高反应气体的转化率。盖板6的上方、控温模块3与壳体1之间的空隙可以填充有不同大小的混合瓷球,大小瓷球混合后,使得反应腔2内的空隙率更小,反应气体自然通过控温模块3进行反应。
盖板6上还可以连接弯管7,弯管7的一端由盖板6的下方穿过盖板6,另一端伸出壳体1外,弯管7设置有开关阀,弯管7设置为向反应腔2内通入惰性气体。反应前,可以打开开关阀,并通过弯管7向反应腔2内通入惰性气体,以进行吹扫作业,提高催化剂的活化性。
如图7-图13所示,为更好的利用反应器内部的空间,控温模块3可以为多个,并进行多种排列。例如,控温模块3可以包括一个体积较大的控温模块3和多个体积较小的控温模块3。较大的控温模块3设置于壳体1的中部,矩形的体积较大的控温模块3的四边与壳体1之间的空隙可以放置一个较小体积的控温模块3,依次类推,可以得到多种布置方案,充分利用反应腔2的空间,有效利用资源。
当然,控温模块3也可以为扇形,多个扇形拼成圆柱形,填充在反应腔2内,或多个大小相等的控温模块3矩阵排列,具体的排列方式可以根据需要设置,此处不作限制。
工业实用性
本公开提供的一种板式模块化控温反应器,实现相邻的控温板对之间的催化剂的单独装卸,提高反应器的灵活性,解决了相关技术中板式反应器检查维修困难等问题,方便工作人员进行局部的检测、维修以及局部更换催化剂的操作。

Claims (10)

  1. 一种板式模块化控温反应器,包括:
    壳体(1),所述壳体(1)内设置有反应腔(2);
    控温模块(3),设置于所述反应腔(2),所述控温模块(3)包括至少两个控温板对(31),每个所述控温板对(31)包括两块控温板(311),两块所述控温板(311)的侧边固定相连形成上下开口的腔体(312),所述腔体(312)的上端与所述壳体(1)上的热媒进口(11)连通、所述腔体(312)的下端与所述壳体(1)上的热媒出口(12)连通,相邻的所述控温板对(31)之间的空间设置为盛放催化剂;
    格栅(4),所述格栅(4)可拆卸连接于所述控温模块(3)的底部,且位于相邻的所述控温板对(31)之间,所述格栅(4)设置为支撑所述催化剂。
  2. 如权利要求1所述的板式模块化控温反应器,其中,所述控温模块(3)还包括:框架(32),所述框架(32)包括至少两块厚板块(321),所述厚板块(321)两两连接并平行于所述壳体(1)的中心轴设置,所述控温板对(31)与所述框架(32)固定。
  3. 如权利要求1或2所述的板式模块化控温反应器,其中,所述控温模块(3)还包括:至少一个固定架(33),所述固定架(33)设置有凸起对(331),所述凸起对(331)之间的距离与所述控温板对(31)的宽度相适应;所述控温板对(31)上设置有通孔,所述固定架(33)依次穿过至少两个所述控温板对(31)的通孔后,所述控温板对(31)卡入所述凸起对(331)之间。
  4. 如权利要求1、2或3所述的板式模块化控温反应器,还包括:上板缝式管和下板缝式管,所述上板缝式管垂直于所述控温板对(31)并嵌于所述控温板对(31)的上端,所述上板缝式管与所述热媒进口(11)连通;所述下板缝式管垂直于所述控温板对(31)并嵌于所述控温板对(31)的下端,所述下板缝式管与所述热媒出口(12)连通。
  5. 如权利要求4所述的板式模块化控温反应器,还包括:设置于所述反应腔(2)的上端的第一环形管(51)以及设置于所述反应腔(2)的下端的第二环形管(52),所述第一环形管(51)与所述热媒进口(11)连通,并通过第一支管(53)与所述上板缝式管连通;所述第二环形管(52)与所述热媒出口(12)连通,并通过第二支管(54)与所述下板缝式管连通。
  6. 如权利要求5所述的板式模块化控温反应器,其中,所述第一支管(53)和所述第二支管(54)均为蛇形管。
  7. 如权利要求4、5或6所述的板式模块化控温反应器,其中,所述格栅(4)包括弧形段(41)和平直段(42),所述弧形段(41)连接相邻的两个平直段(42),所述弧形段(41)的数量与所述下板缝式管的数量一致,所述格栅(4)设置于所述下板缝式管的上方,且所述弧形段(41)与所述下板缝式管配合并固定,所述平直段(42)的端部与所述控温模块(3)固定。
  8. 如权利要求7所述的板式模块化控温反应器,其中,所述平直段(42)的两端均设置有固定板,所述固定板通过螺栓与所述控温模块(3)固定。
  9. 如权利要求1-8任一项所述的板式模块化控温反应器,还包括:盖板(6),所述盖板(6)环绕所述控温模块(3)设置,设置为填充所述控温模块(3)与所述壳体(1)之间的空隙。
  10. 如权利要求9所述的板式模块化控温反应器,还包括:弯管(7),所述弯管(7)的一端由所述盖板(6)的下方穿过所述盖板(6),另一端伸出所述壳体(1)外,所述弯管(7)设置有开关阀,所述弯管(7)设置为向所述反应腔(2)内通入惰性气体。
PCT/CN2018/088927 2017-07-24 2018-05-30 板式模块化控温反应器 WO2019019794A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP18837285.8A EP3620231A4 (en) 2017-07-24 2018-05-30 PLATE-LIKE MODULAR REACTOR WITH TEMPERATURE CONTROL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710605985.4A CN107243297A (zh) 2017-07-24 2017-07-24 一种板式模块化控温反应器
CN201710605985.4 2017-07-24

Publications (1)

Publication Number Publication Date
WO2019019794A1 true WO2019019794A1 (zh) 2019-01-31

Family

ID=60015422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088927 WO2019019794A1 (zh) 2017-07-24 2018-05-30 板式模块化控温反应器

Country Status (3)

Country Link
EP (1) EP3620231A4 (zh)
CN (1) CN107243297A (zh)
WO (1) WO2019019794A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107243297A (zh) * 2017-07-24 2017-10-13 德艾柯工程技术(上海)有限公司 一种板式模块化控温反应器
DE102018007737A1 (de) * 2018-10-01 2020-04-02 Hitachi Zosen Inova Etogas Gmbh Festbettanordnung
CN111701548B (zh) * 2020-06-19 2021-06-08 宁波巨化化工科技有限公司 一种固定床丙醛合成反应器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006133796A1 (en) * 2005-06-17 2006-12-21 Methanol Casale S.A. Process for carrying out mass transfer between a liquid phase and a gaseous phase
CN101080266A (zh) * 2004-12-17 2007-11-28 赫多特普索化工设备公司 用于催化转化反应的反应器
CN102844101A (zh) * 2010-04-08 2012-12-26 卡萨尔甲醛公司 具有板式热交换器的化学反应器
CN107243297A (zh) * 2017-07-24 2017-10-13 德艾柯工程技术(上海)有限公司 一种板式模块化控温反应器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1279915A1 (en) * 2001-07-24 2003-01-29 Methanol Casale S.A. Heat exchange unit, in particular for isothermal reactors
EP1300190A1 (en) * 2001-10-04 2003-04-09 Methanol Casale S.A. Heterogeneous catalytic reactor with modular catalytic cartridge
EP1306126A1 (en) * 2001-10-19 2003-05-02 Methanol Casale S.A. Heat exchange unit for isothermal chemical reactors
JP4212888B2 (ja) * 2002-12-26 2009-01-21 三菱化学エンジニアリング株式会社 プレート型触媒反応器
US7268254B2 (en) * 2003-07-24 2007-09-11 Basf Aktiengesellschaft Preparation of (meth)acrolein and/or (meth)acrylic acid by heterogeneously catalyzed partial oxidation of C3 and/or C4 precursor compounds in a reactor having thermoplate modules
US7410622B2 (en) * 2003-07-24 2008-08-12 Basf Aktiengesellschaft Reactor for partial oxidations having thermoplate modules
EP2070590A1 (en) * 2007-12-11 2009-06-17 Methanol Casale S.A. Supporting system of heat-exchange plates in isothermal chemical reactors
CN104801240B (zh) * 2015-03-24 2017-04-05 德艾柯工程技术(上海)有限公司 一种板式换热反应器
CN204996424U (zh) * 2015-08-14 2016-01-27 湖北侨光石化装备股份有限公司 一种催化剂支撑装置
CN105879790A (zh) * 2016-06-06 2016-08-24 江苏怡达化学股份有限公司 一种hppo新型反应器
CN206965702U (zh) * 2017-07-24 2018-02-06 德艾柯工程技术(上海)有限公司 一种板式模块化控温反应器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101080266A (zh) * 2004-12-17 2007-11-28 赫多特普索化工设备公司 用于催化转化反应的反应器
WO2006133796A1 (en) * 2005-06-17 2006-12-21 Methanol Casale S.A. Process for carrying out mass transfer between a liquid phase and a gaseous phase
CN102844101A (zh) * 2010-04-08 2012-12-26 卡萨尔甲醛公司 具有板式热交换器的化学反应器
CN107243297A (zh) * 2017-07-24 2017-10-13 德艾柯工程技术(上海)有限公司 一种板式模块化控温反应器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3620231A4 *

Also Published As

Publication number Publication date
EP3620231A4 (en) 2020-05-06
EP3620231A1 (en) 2020-03-11
CN107243297A (zh) 2017-10-13

Similar Documents

Publication Publication Date Title
WO2019019794A1 (zh) 板式模块化控温反应器
CN106040102B (zh) 带有混合和交换地带的混合和分布设备
RU2265480C2 (ru) Реактор для проведения экзотермических или эндотермических гетерогенных реакций и способ его изготовления
PL209104B1 (pl) Sposób prowadzenia reakcji i urządzenie do prowadzenia reakcji
CN203916623U (zh) 热交换反应器
JP6254974B2 (ja) 触媒プロセスのための反応装置パネル
CN101304803B (zh) 等温化学反应器
KR20100114909A (ko) 다중 통로 열 시트 및 그것을 장착한 열교환기
CN108837780B (zh) 一种多层网状交错肋板的储氢反应装置
CN105032305A (zh) 一种新型径向板式反应器
US7807115B2 (en) Chemical reactor
CN104841339A (zh) 一种用于合成气制乙二醇工艺的新型加氢反应器
RU2482909C2 (ru) Изотермический химический реактор с пластинчатым теплообменником
CN206965702U (zh) 一种板式模块化控温反应器
JP2010069355A (ja) プレート式反応器及びそれを用いる反応生成物の製造方法
CN105107434A (zh) 一种用于过氧化氢氧化丙烯制环氧丙烷的新型反应器
US2291762A (en) Catalytic apparatus
JP2013154310A (ja) 多管式反応器
US2225634A (en) Regulation of temperature of chemical reactions
CN218339749U (zh) 一种用于费托合成烯烃制备烷基苯的反应器
RU2701307C2 (ru) Радиально-сильфонный теплообменно-контактный аппарат
CN217410715U (zh) 一种列管式加氢反应器
CN217383905U (zh) 一种加热器及加热罐
CN100435924C (zh) 伪等温催化反应器
JP2006322646A (ja) 熱交換器群支持具とこれを使用した充填材ユニット及びこの充填材ユニットにおける密閉式熱交換器の交換又は保守方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837285

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018837285

Country of ref document: EP

Effective date: 20191204

NENP Non-entry into the national phase

Ref country code: DE