WO2019019669A1 - 光学成像系统 - Google Patents

光学成像系统 Download PDF

Info

Publication number
WO2019019669A1
WO2019019669A1 PCT/CN2018/079945 CN2018079945W WO2019019669A1 WO 2019019669 A1 WO2019019669 A1 WO 2019019669A1 CN 2018079945 W CN2018079945 W CN 2018079945W WO 2019019669 A1 WO2019019669 A1 WO 2019019669A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging system
optical imaging
focal length
effective
Prior art date
Application number
PCT/CN2018/079945
Other languages
English (en)
French (fr)
Inventor
贾远林
黄林
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201720914752.8U external-priority patent/CN206930828U/zh
Priority claimed from CN201710617770.4A external-priority patent/CN107179599B/zh
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Publication of WO2019019669A1 publication Critical patent/WO2019019669A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only

Definitions

  • the present invention relates to an optical imaging system, and more particularly to an optical imaging system having a large field of view and a large aperture consisting of five lenses.
  • three-dimensional depth measurement generally has three technical solutions, namely, dual-shot, structured light, and TOF (Time of Flight) technology.
  • TOF technology is widely used because of its fast response, high depth information accuracy, small size, and low environmental sensitivity.
  • the present invention aims to provide an optical imaging system that can be applied to a large aperture, a large field of view, and a high imaging quality that can be applied to various fields, particularly in the field of three-dimensional depth measurement.
  • the present invention provides an optical imaging system.
  • One aspect of the present invention provides an optical imaging system including, in order from the object side to the image side, a first lens group and a second lens group.
  • the first lens group includes at least a first lens having a negative power and a second lens having a power
  • the second lens group includes at least a third lens having a positive power and a fourth lens having a power
  • a fifth lens having a power is provided.
  • the image side surface of the third lens is a convex surface
  • the object side surface of the fifth lens is a convex surface. 0 ⁇ DT32/f3 ⁇ 0.6 is satisfied between the effective half aperture DT32 of the side of the third lens image and the focal length f3 of the third lens.
  • the effective focal length f of the optical imaging system and the entrance pupil diameter EPD of the optical imaging system satisfy f/EPD ⁇ 1.6.
  • the effective half-diameter DT51 of the side surface of the fifth lens object satisfies 0.8 ⁇ DT51 / ImgH ⁇ 1.2 between half of the diagonal length ImgH of the effective pixel area of the electro-optic element.
  • 0.7 ⁇ DT12/DT51 ⁇ 1.7 is satisfied between the effective half aperture DT12 of the side of the first lens image and the effective half aperture DT51 of the side surface of the fifth lens.
  • the fifth lens has a positive power.
  • f2/f5>0 is satisfied between the effective focal length f2 of the second lens and the effective focal length f5 of the fifth lens.
  • -3 ⁇ f1/f ⁇ 0 is satisfied between the effective focal length f1 of the first lens and the effective focal length f of the optical imaging system.
  • the first lens group has a negative power.
  • the combined focal length f12 of the first lens and the second lens satisfies -4 ⁇ f12 / f ⁇ -2 between the effective focal length f of the optical imaging system.
  • the second lens group has a positive power.
  • the combined focal length f345 of the third lens, the fourth lens and the fifth lens and the effective focal length f of the optical imaging system satisfy 1 ⁇ f345 / f ⁇ 2.
  • an electron photoreceptive element satisfies 1 ⁇ ImgH/f ⁇ 2.5 between half the ImgH of the effective pixel area diagonal and the effective focal length f of the optical imaging system.
  • the on-axis distance TTL of the side surface of the first lens to the imaging surface and the half ImgH of the diagonal length of the effective pixel area of the electro-optic element satisfy TTL/ImgH ⁇ 4.5.
  • the radius of curvature R6 of the side of the third lens image satisfies -4 ⁇ R6 / f ⁇ -0.7 between the effective focal length f of the optical imaging system.
  • the total thickness ⁇ CT of the first to fourth lenses on the optical axis and the on-axis distance TTL from the side of the first lens to the imaging surface satisfy 0.4 ⁇ CT/TTL ⁇ 0.7. .
  • an infrared band pass filter is disposed between the fifth lens and the imaging surface.
  • Yet another aspect of the present invention provides an optical imaging system including, in order from the object side to the image side, a first lens group and a second lens group.
  • the first lens group includes at least a first lens having a negative power and a second lens having a power
  • the second lens group includes at least a third lens having a positive power and a fourth lens having a power
  • a fifth lens having a power.
  • the image side surface of the third lens is a convex surface
  • the object side surface of the fifth lens is a convex surface.
  • the effective half-diameter DT51 of the side surface of the fifth lens object satisfies 0.8 ⁇ DT51 / ImgH ⁇ 1.2 between half of the diagonal length ImgH of the effective pixel area of the electro-optic element.
  • Yet another aspect of the present invention provides an optical imaging system including, in order from the object side to the image side, a first lens group and a second lens group.
  • the first lens group includes at least a first lens having a negative power and a second lens having a power
  • the second lens group includes at least a third lens having a positive power and a fourth lens having a power
  • a fifth lens having a power The image side surface of the third lens is a convex surface
  • the object side surface of the fifth lens is a convex surface.
  • the effective half-diameter DT12 of the side of the first lens image and the effective half-diameter DT51 of the side surface of the fifth lens satisfy 0.7 ⁇ DT12/DT51 ⁇ 1.7.
  • the optical imaging system according to the present invention employs five lenses and can be applied to various fields, especially in the field of three-dimensional depth measurement, and has at least one of a large aperture, a large field of view, and high imaging quality.
  • FIG. 1 is a schematic structural view of an optical imaging system of Embodiment 1;
  • FIG. 6 is a schematic structural view of an optical imaging system of Embodiment 2;
  • Figure 11 is a block diagram showing the structure of an optical imaging system of Embodiment 3.
  • Figure 16 is a block diagram showing the structure of an optical imaging system of Embodiment 4.
  • FIG. 21 is a schematic structural view of an optical imaging system of Embodiment 5.
  • Figure 26 is a block diagram showing the structure of an optical imaging system of Embodiment 6;
  • Figure 31 is a block diagram showing the structure of an optical imaging system of Embodiment 7;
  • a first element, component, region, layer or layer s s ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • the present application provides an optical imaging system including, in order from the object side to the image side, a first lens group and a second lens group.
  • the first lens group includes at least a first lens having a negative power and a second lens having a power
  • the second lens group includes at least a third lens having a positive power, and a fourth lens having a power
  • a fifth lens having a power is provided.
  • the image side surface of the third lens is a convex surface
  • the object side surface of the fifth lens is a convex surface.
  • 0 ⁇ DT32/f3 ⁇ 0.6 is satisfied between the effective half aperture DT32 of the third lens image side and the focal length f3 of the third lens, and more specifically, 0.21 ⁇ DT32/f3 ⁇ 0.53 is satisfied. Satisfying the above relationship is beneficial to improve the correction of the third lens to the full field of view aperture aberration, and improve the imaging quality of the optical imaging system.
  • the effective focal length f of the optical imaging system and the entrance pupil diameter EPD of the optical imaging system satisfy f/EPD ⁇ 1.6, and more specifically, f/EPD ⁇ 1.20.
  • An optical imaging system that satisfies the above relationship can achieve a large aperture, a large angle of view, and high imaging quality.
  • the effective half aperture DT51 of the side surface of the fifth lens object and the half ImgH of the diagonal length of the effective pixel area of the electronic light sensing element satisfy 0.8 ⁇ DT51/ImgH ⁇ 1.2, and more specifically, 0.89. ⁇ DT51 / ImgH ⁇ 1.10. Satisfying the above relationship is advantageous for reducing the aperture of the fifth lens while ensuring that the chief ray entering the sensor has a smaller angle and increasing the reception of energy.
  • 0.7 ⁇ DT12/DT51 ⁇ 1.7 is satisfied between the effective half-diameter DT12 of the side of the first lens image and the effective half-diameter DT51 of the side surface of the fifth lens, and more specifically, 0.74 ⁇ DT12/DT51 is satisfied. ⁇ 1.63. Satisfying the above relationship is beneficial to ensure the consistency of the lens aperture size, and it is convenient for the lens to be assembled from the image side to the object side to ensure assembly precision.
  • the fifth lens has positive power.
  • f2/f5>0 is satisfied between the effective focal length f2 of the second lens and the effective focal length f5 of the fifth lens, and more specifically, f2/f5 ⁇ 0.43 is satisfied.
  • -3 ⁇ f1/f ⁇ 0 is satisfied between the effective focal length f1 of the first lens and the effective focal length f of the optical imaging system, and more specifically - 2.87 ⁇ f1/f ⁇ -1.05 is satisfied.
  • the first lens group has a negative power.
  • the combined focal length f12 of the first lens and the second lens satisfies -4 ⁇ f12/f ⁇ -2 between the effective focal length f of the optical imaging system, and more specifically, -3.87 ⁇ f12/ f ⁇ -2.50.
  • the second lens group has positive power.
  • the combined focal length f345 of the third lens, the fourth lens and the fifth lens and the effective focal length f of the optical imaging system satisfy 1 ⁇ f345/f ⁇ 2, more specifically, 1.03 ⁇ f345 /f ⁇ 1.58.
  • the focal length of the wide-angle lens is short, and the working distance is large.
  • the second lens group is assigned a large positive power and the convergence of the light is increased, so that the wide-angle lens is largely moved back to the main plane, which is beneficial to ensure the working distance.
  • the electronic photosensor element satisfies 1 ⁇ ImgH/f ⁇ 2.5 between the half of the diagonal length of the effective pixel area ImgH and the effective focal length f of the optical imaging system, and more specifically, satisfies 1.07 ⁇ ImgH/ f ⁇ 1.80.
  • the on-axis distance TTL from the side of the first lens to the imaging surface and the half ImgH of the diagonal length of the effective pixel area of the electronic photosensitive element satisfy TTL/ImgH ⁇ 4.5, and more specifically, satisfy TTL/ImgH ⁇ 4.31.
  • the radius of curvature R6 of the side surface of the third lens image satisfies -4 ⁇ R6/f ⁇ -0.7 between the effective focal length f of the optical imaging system, and more specifically, satisfies -3.83 ⁇ R6/f ⁇ -0.82.
  • the radius of curvature of the side surface of the third lens that satisfies the above conditions is a negative value, and is bent toward the side of the object to improve the convergence of the light, which is advantageous for the correction of the aberration.
  • the total thickness ⁇ CT of the first lens to the fourth lens on the optical axis and the on-axis distance TTL of the first lens object side to the imaging surface respectively satisfy 0.4 ⁇ CT/TTL ⁇ 0.7. More specifically, it satisfies 0.49 ⁇ ⁇ CT / TTL ⁇ 0.60.
  • an infrared band pass filter is disposed between the fifth lens and the imaging surface.
  • the infrared band is beneficial to the system to introduce chromatic aberration and control the diameter of the diffuse spot.
  • the infrared band is beneficial to reduce the interference of ambient visible light and improve the signal-to-noise ratio of the image sensor output signal.
  • the optical imaging system includes five lenses.
  • the five lenses are a first lens L1 having an object side surface S1 and an image side surface S2, a second lens L2 having an object side surface S3 and an image side surface S4, and a third lens L3 having an object side surface S5 and an image side surface S6, respectively.
  • the side surface S7 and the fourth lens L4 of the image side surface S8 and the fifth lens L5 having the object side surface S9 and the image side surface S10.
  • the first lens L1 to the fifth lens L5 are disposed in order from the object side to the image side of the optical imaging system.
  • the power of the fifth lens may have a positive power or a negative power, and the object side is a convex surface.
  • the optical imaging system further includes a filter L6 having an object side S11 and an image side S12 for filtering out infrared light.
  • the optical imaging system further includes an aperture between the second lens L2 and the third lens L3. In an embodiment, light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • the first lens L1 to the fifth lens L5 have respective effective focal lengths f1 to f5.
  • the first lens L1 to the fifth lens L5 are sequentially arranged along the optical axis and collectively determine the total effective focal length f of the optical imaging system.
  • Effective focal lengths f1 to f5 of the first to fifth lenses L1 to L5 in Embodiments 1 to 7, the total effective focal length f of the optical imaging system, the aperture number Fno of the optical imaging system, the total length TTL of the optical imaging system, Half of the maximum field of view of the optical imaging system, HFOV, and half of the diagonal length of the effective pixel area of the electronic photosensitive element, ImgH can be, for example, as shown in Table 1 above.
  • FIG. 1 is a schematic structural view showing an optical imaging system of Embodiment 1.
  • the optical imaging system according to Embodiment 1 includes five lenses.
  • the five lenses are a first lens L1 having an object side surface S1 and an image side surface S2, a second lens L2 having an object side surface S3 and an image side surface S4, and a third lens L3 having an object side surface S5 and an image side surface S6, respectively.
  • the side surface S7 and the fourth lens L4 of the image side surface S8 and the fifth lens L5 having the object side surface S9 and the image side surface S10.
  • Table 2 shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the optical imaging system in this embodiment.
  • the unit of curvature radius and thickness are all millimeters.
  • each aspherical surface type x is defined by the following formula (1):
  • x is the distance of the aspherical surface at height h from the optical axis, and the distance from the aspherical vertex is high;
  • R is the middle;
  • k is the conic coefficient (given in Table 2);
  • Ai is the correction factor of the a-th order of the aspheric surface.
  • Table 3 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 of the respective aspheric surfaces S1 - S10 of the respective aspherical lenses usable in this embodiment.
  • the optical imaging system according to Embodiment 1 is a large aperture, a large angle of view, and a high imaging quality that can be applied to various fields, especially in the field of three-dimensional depth measurement.
  • Fig. 6 is a schematic structural view showing an optical imaging system of Embodiment 2.
  • the optical imaging system according to Embodiment 2 includes, in order from the object side to the image side, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens. L5.
  • Table 4 shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the optical imaging system in this embodiment.
  • the unit of curvature radius and thickness are all millimeters.
  • Table 5 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 of the respective aspheric surfaces S1 - S10 which can be used for the respective aspherical lenses in this embodiment.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 7 is a graph showing the axial chromatic aberration curve of the optical imaging system of Embodiment 2, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 8 shows an astigmatism curve of the optical imaging system of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 9 is a view showing a distortion curve of the optical imaging system of Embodiment 2, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 10 is a view showing a phase contrast curve of the optical imaging system of Embodiment 2, which shows the brightness of the peripheral picture and the center picture, reflecting the brightness uniformity of the picture.
  • the optical imaging system according to Embodiment 2 is a large aperture, a large angle of view, and a high imaging quality that can be applied to various fields, especially in the field of three-dimensional depth measurement.
  • Fig. 11 is a schematic structural view showing an optical imaging system of Embodiment 3.
  • the optical imaging system includes, in order from the object side to the image side, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5.
  • Table 6 shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the optical imaging system in this embodiment.
  • the unit of curvature radius and thickness are all millimeters.
  • Table 7 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 of the respective aspheric surfaces S1 - S10 of the respective aspherical lenses usable in this embodiment.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 12 is a view showing an axial chromatic aberration curve of the optical imaging system of Embodiment 3, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 13 is a view showing an astigmatism curve of the optical imaging system of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 14 is a view showing a distortion curve of the optical imaging system of Embodiment 3, which shows distortion magnitude values in the case of different viewing angles.
  • Figure 15 is a graph showing the contrast curve of the optical imaging system of Embodiment 3, which shows the peripheral picture brightness and the center picture brightness ratio, reflecting the picture brightness uniformity.
  • the optical imaging system according to Embodiment 3 is a large aperture, a large angle of view, and a high imaging quality that can be applied to various fields, especially in the field of three-dimensional depth measurement.
  • Optical imaging system is a large aperture, a large angle of view, and a high imaging quality that can be applied to various fields, especially in the field of three-dimensional depth measurement.
  • Fig. 16 is a view showing the configuration of an optical imaging system of Embodiment 4.
  • the optical imaging system according to Embodiment 4 includes, in order from the object side to the image side, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens. L5.
  • Table 8 below shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the optical imaging system in this embodiment. Among them, the unit of curvature radius and thickness are all millimeters.
  • Table 9 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 of the respective aspheric surfaces S1 - S10 of the respective aspherical lenses usable in this embodiment.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Figure 17 is a graph showing the axial chromatic aberration of the optical imaging system of Example 4, which shows that the light of different wavelengths is deflected by the focus point after passing through the optical system.
  • Fig. 18 is a view showing an astigmatism curve of the optical imaging system of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 19 is a view showing a distortion curve of the optical imaging system of Embodiment 4, which shows distortion magnitude values in the case of different viewing angles.
  • Figure 20 is a graph showing the contrast curve of the optical imaging system of Embodiment 4, which shows the peripheral picture brightness and the center picture brightness ratio, reflecting the picture brightness uniformity.
  • the optical imaging system according to Embodiment 4 is a large aperture, a large angle of view, and a high imaging quality that can be applied to various fields, especially in the field of three-dimensional depth measurement.
  • the optical imaging system according to Embodiment 5 includes, in order from the object side to the image side, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens. L5.
  • Table 10 below shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the optical imaging system in this embodiment. Among them, the unit of curvature radius and thickness are all millimeters.
  • Table 11 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 of the respective aspheric surfaces S1 - S10 which can be used for the respective aspherical lenses in this embodiment.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 22 is a view showing an axial chromatic aberration curve of the optical imaging system of Embodiment 5, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 23 is a view showing an astigmatism curve of the optical imaging system of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 24 is a view showing a distortion curve of the optical imaging system of Embodiment 5, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 25 is a view showing a phase contrast curve of the optical imaging system of Embodiment 5, which shows the peripheral picture brightness and the center picture brightness ratio, reflecting the picture brightness uniformity.
  • the optical imaging system according to Embodiment 5 is a large aperture, a large angle of view, and a high imaging quality applicable to various fields, particularly in the field of three-dimensional depth measurement.
  • Optical imaging system is a large aperture, a large angle of view, and a high imaging quality applicable to various fields, particularly in the field of three-dimensional depth measurement.
  • Fig. 26 is a view showing the configuration of an optical imaging system of Embodiment 6.
  • the optical imaging system of Embodiment 6 includes, in order from the object side to the image side, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5. .
  • Table 12 below shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the optical imaging system in this embodiment. Among them, the unit of curvature radius and thickness are all millimeters.
  • Table 13 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 of the respective aspheric surfaces S1 - S10 which can be used for the respective aspherical lenses in this embodiment.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Figure 27 is a graph showing the axial chromatic aberration of the optical imaging system of Example 6, which shows that the light of different wavelengths is deflected by the focus point after passing through the optical system.
  • Fig. 28 is a view showing an astigmatism curve of the optical imaging system of Embodiment 6, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 29 is a view showing the distortion curve of the optical imaging system of Embodiment 6, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 30 is a view showing a phase contrast curve of the optical imaging system of Embodiment 6, which shows a peripheral screen lightness and a center screen lightness ratio, reflecting the screen brightness uniformity.
  • the optical imaging system according to Embodiment 6 is a large aperture, a large angle of view, and a high imaging quality applicable to various fields, particularly in the field of three-dimensional depth measurement.
  • Optical imaging system is a large aperture, a large angle of view, and a high imaging quality applicable to various fields, particularly in the field of three-dimensional depth measurement.
  • the optical imaging system of Embodiment 7 includes, in order from the object side to the image side, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5. .
  • Table 14 below shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the optical imaging system in this embodiment. Among them, the unit of curvature radius and thickness are all millimeters.
  • Table 15 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 of the respective aspheric surfaces S1 - S10 which can be used for the respective aspherical lenses in this embodiment.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 32 shows an axial chromatic aberration curve of the optical imaging system of Embodiment 7, which indicates that light of different wavelengths is deviated from a focus point after passing through the optical system.
  • Fig. 33 is a view showing an astigmatism curve of the optical imaging system of Embodiment 7, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 34 is a view showing the distortion curve of the optical imaging system of Embodiment 7, which shows the distortion magnitude value in the case of different viewing angles.
  • Figure 35 is a graph showing the contrast curve of the optical imaging system of Embodiment 7, which shows the peripheral picture brightness and the center picture brightness ratio, reflecting the picture brightness uniformity.
  • the optical imaging system according to Embodiment 7 is a large aperture, a large angle of view, and a high imaging quality that can be applied to various fields, especially in the field of three-dimensional depth measurement.
  • each conditional expression satisfies the conditions of Table 16 below.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像系统,由物侧至像侧依次包括第一透镜组和第二透镜组。其中,第一透镜组至少包括具有负光焦度的第一透镜(L1)和具有光焦度的第二透镜(L2);第二透镜组至少包括具有正光焦度的第三透镜(L3)、具有光焦度的第四透镜(L4)以及具有光焦度的第五透镜(L5)。第三透镜(L3)像侧面(S6)为凸面,第五透镜(L5)物侧面(S9)为凸面。第三透镜(L3)像侧面(S6)的有效半口径DT32与第三透镜(L3)的焦距f3之间满足0<DT32/f3<0.6。

Description

光学成像系统
相关申请的交叉引用
本申请要求于2017年7月26日提交于中国国家知识产权局(SIPO)的、专利申请号为201710617770.4的中国专利申请以及于2017年7月26日提交至SIPO的、专利申请号为201720914752.8的中国专利申请的的优先权和权益,该中国专利申请通过引用整体并入本文。
技术领域
本发明涉及一种光学成像系统,特别是由五片镜片组成的具有大视场和大孔径的光学成像系统。
背景技术
现代光学系统的发展,除了向高分辨率发展,还不断地向大视场和大孔径发展。因为大视场和大孔径能够包含更多的物方信息。因此,大视场和大孔径的相机镜头已成为一种趋势。特别是近年来,在VR/AR(虚拟现实/增强现实)、机器人、安防、自动驾驶等前沿运用领域,三维深度摄像头备受依赖。与普通摄像头相比,三维深度摄像头除了能够获取平面图像,还可以获得拍摄对象的深度信息,包括三维位置和尺寸信息,于是整个计算系统就获得了环境和对象的三维立体数据,这些数据可以运用在人体跟踪、三维重建、人机交互、SLAM(即时定位与地图构建)等技术领域。
目前,三维深度测量一般有三种技术方案,分别是双摄、结构光以及TOF(Time of Flight;飞行时间)技术。TOF技术因其具有响应速度快、深度信息精度高、结构尺寸小、不容易受环境光线干扰等优点,而被广泛运用。
此本发明旨在提供一种可应用于多领域,特别是三维深度测量领域的大孔径、大视场角、高成像品质的光学成像系统。
发明内容
为了解决现有技术中的至少一些问题,本发明提供了一种光学成像系统。
本发明的一个方面提供了一种光学成像系统,由物侧至像侧依次包括:第一透镜组和第二透镜组。其中,第一透镜组至少包括具有负光焦度的第一透镜和具有光焦度的第二透镜;第二透镜组至少包括具有正光焦度的第三透镜、具有光焦度的第四透镜以及具有光焦度的第五透镜。第三透镜的像侧面为凸面,第五透镜的物侧面为凸面。第三透镜像侧面的有效半口径DT32与第三透镜的焦距f3之间满足0<DT32/f3<0.6。
根据本发明的一实施方式,光学成像系统的有效焦距f与光学成像系统的入瞳直径EPD之间满足f/EPD<1.6。
根据本发明的一实施方式,第五透镜物侧面的有效半口径DT51与电子光感元件有效像素区域对角线长的一半ImgH之间满足0.8<DT51/ImgH<1.2。
根据本发明的一实施方式,第一透镜像侧面的有效半口径DT12与第五透镜物侧面的有效半口径DT51之间满足0.7<DT12/DT51<1.7。
根据本发明的一实施方式,第五透镜具有正光焦度。
根据本发明的一实施方式,第二透镜的有效焦距f2与第五透镜的有效焦距f5之间满足f2/f5>0。
根据本发明的一实施方式,第一透镜的有效焦距f1与光学成像系统的有效焦距f之间满足-3<f1/f<0。
根据本发明的一实施方式,第一透镜组具有负光焦度。
根据本发明的一实施方式,第一透镜与第二透镜的组合焦距f12与光学成像系统的有效焦距f之间满足-4<f12/f<-2。
根据本发明的一实施方式,第二透镜组具有正光焦度。
根据本发明的一实施方式,第三透镜、第四透镜与第五透镜的组合焦距f345与光学成像系统的有效焦距f之间满足1≤f345/f<2。
根据本发明的一实施方式,电子光感元件有效像素区域对角线长的一半ImgH与光学成像系统的有效焦距f之间满足1<ImgH/f<2.5。
根据本发明的一实施方式,第一透镜物侧面至成像面的轴上距离TTL 与电子光感元件有效像素区域对角线长的一半ImgH之间满足TTL/ImgH<4.5。
根据本发明的一实施方式,第三透镜像侧面的曲率半径R6与光学成像系统的有效焦距f之间满足-4<R6/f<-0.7。
根据本发明的一实施方式,第一透镜至第四透镜分别于光轴上的厚度总和∑CT与第一透镜物侧面至成像面的轴上距离TTL之间满足0.4<∑CT/TTL<0.7。
根据本发明的一实施方式,第五透镜与成像面之间设置有红外带通滤光片。
本发明的又一方面提供了一种光学成像系统,由物侧至像侧依次包括:第一透镜组和第二透镜组。其中,第一透镜组至少包括具有负光焦度的第一透镜和具有光焦度的第二透镜;第二透镜组至少包括具有正光焦度的第三透镜、具有光焦度的第四透镜以及具有光焦度的第五透镜。第三透镜的像侧面为凸面,第五透镜的物侧面为凸面。第五透镜物侧面的有效半口径DT51与电子光感元件有效像素区域对角线长的一半ImgH之间满足0.8<DT51/ImgH<1.2。
本发明的又一方面提供了一种光学成像系统,由物侧至像侧依次包括:第一透镜组和第二透镜组。其中,第一透镜组至少包括具有负光焦度的第一透镜和具有光焦度的第二透镜;第二透镜组至少包括具有正光焦度的第三透镜、具有光焦度的第四透镜以及具有光焦度的第五透镜。第三透镜的像侧面为凸面,第五透镜的物侧面为凸面。第一透镜像侧面的有效半口径DT12与第五透镜物侧面的有效半口径DT51之间满足0.7<DT12/DT51<1.7。
根据本发明的光学成像系统采用5片镜片,可应用于多领域,尤其是三维深度测量领域,具有大孔径、大视场角、高成像品质中的至少一个特点。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本发明的其它特征、目的和优点将变得更加明显。在附图中:
图1示出了实施例1的光学成像系统的结构示意图;
图2至图5分别示出了实施例1的光学成像系统的轴上色差曲线、象散曲线、畸变曲线和相对照度曲线;
图6示出了实施例2的光学成像系统的结构示意图;
图7至图10分别示出了实施例2的光学成像系统的轴上色差曲线、象散曲线、畸变曲线和相对照度曲线;
图11示出了实施例3的光学成像系统的结构示意图;
图12至图15分别示出了实施例3的光学成像系统的轴上色差曲线、象散曲线、畸变曲线和相对照度曲线;
图16示出了实施例4的光学成像系统的结构示意图;
图17至图20分别示出了实施例4的光学成像系统的轴上色差曲线、象散曲线、畸变曲线和相对照度曲线;
图21示出了实施例5的光学成像系统的结构示意图;
图22至图25分别示出了实施例5的光学成像系统的轴上色差曲线、象散曲线、畸变曲线和相对照度曲线;
图26示出了实施例6的光学成像系统的结构示意图;
图27至图30分别示出了实施例6的光学成像系统的轴上色差曲线、象散曲线、畸变曲线和相对照度曲线;
图31示出了实施例7的光学成像系统的结构示意图;以及
图32至图35分别示出了实施例7的光学成像系统的轴上色差曲线、象散曲线、畸变曲线和相对照度曲线。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。
应理解的是,在本申请中,当元件或层被描述为在另一元件或层“上”、“连接至”或“联接至”另一元件或层时,其可直接在另一元件或层上、直接连接至或联接至另一元件或层,或者可存在介于中间的元件或层。当元件称为“直接位于”另一元件或层“上”、“直接连接至”或“直接联接 至”另一元件或层时,不存在介于中间的元件或层。在说明书全文中,相同的标号指代相同的元件。如本文中使用的,用语“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应理解的是,虽然用语第1、第2或第一、第二等在本文中可以用来描述各种元件、部件、区域、层和/或段,但是这些元件、部件、区域、层和/或段不应被这些用语限制。这些用语仅用于将一个元件、部件、区域、层或段与另一个元件、部件、区域、层或段区分开。因此,在不背离本申请的教导的情况下,下文中讨论的第一元件、部件、区域、层或段可被称作第二元件、部件、区域、层或段。
本文中使用的用辞仅用于描述具体实施方式的目的,并不旨在限制本申请。如在本文中使用的,除非上下文中明确地另有指示,否则没有限定单复数形式的特征也意在包括复数形式的特征。还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组。如在本文中使用的,用语“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。诸如“...中的至少一个”的表述当出现在元件的列表之后时,修饰整个元件列表,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
本申请提供了一种光学成像系统,由物侧至像侧依次包括:第一透镜组和第二透镜组。其中,第一透镜组至少包括具有负光焦度的第一透镜和具有光焦度的第二透镜;第二透镜组至少包括具有正光焦度的第三透镜、 具有光焦度的第四透镜以及具有光焦度的第五透镜。第三透镜的像侧面为凸面,第五透镜的物侧面为凸面。
在本申请的实施例中,第三透镜像侧面的有效半口径DT32与第三透镜的焦距f3之间满足0<DT32/f3<0.6,更具体地,满足0.21≤DT32/f3≤0.53。满足上述关系有利于提高第三透镜对全视场口径像差的校正,提高光学成像系统的成像质量。
在本申请的实施例中,光学成像系统的有效焦距f与光学成像系统的入瞳直径EPD之间满足f/EPD<1.6,更具体地,满足f/EPD≤1.20。满足上述关系的光学成像系统能够实现大孔径、大视场角、高成像品质。
在本申请的实施例中,第五透镜物侧面的有效半口径DT51与电子光感元件有效像素区域对角线长的一半ImgH之间满足0.8<DT51/ImgH<1.2,更具体地,满足0.89≤DT51/ImgH≤1.10。满足上述关系有利于减小第五透镜的口径,同时保证进入传感器的主光线具有较小的角度,增大能量的接收。
在本申请的实施例中,第一透镜像侧面的有效半口径DT12与第五透镜物侧面的有效半口径DT51之间满足0.7<DT12/DT51<1.7,更具体地,满足0.74≤DT12/DT51≤1.63。满足上述关系有利于保证镜片口径大小的一致性,便于镜头实现从像方到物方一头装配,保证装配精度。
在本申请的实施例中,第五透镜具有正光焦度。
在本申请的实施例中,第二透镜的有效焦距f2与第五透镜的有效焦距f5之间满足f2/f5>0,更具体地,满足f2/f5≥0.43。通过满足上述关系,第二透镜与第五透镜的光焦度同为正或同为负,在广角大孔径的系统中,合理的光焦度分布,能有效的校正像差提高成像品质。
在本申请的实施例中,第一透镜的有效焦距f1与光学成像系统的有效焦距f之间满足-3<f1/f<0,更具体地,满足-2.87≤f1/f≤-1.05。通过满足上述关系,有利于提高第一透镜对视场的分担,减小后续透镜光线倾角,有利于像差校正。
在本申请的实施例中,第一透镜组具有负光焦度。
在本申请的实施例中,第一透镜与第二透镜的组合焦距f12与光学成像系统的有效焦距f之间满足-4<f12/f<-2,更具体地,满足-3.87≤f12/f≤-2.50。通过满足上述关系,轴外大视场光线经过第一透镜组的发散之后,使得后 续透镜通过的光线倾角明显变小,有利于轴外像差校正
在本申请的实施例中,第二透镜组具有正光焦度。
在本申请的实施例中,第三透镜、第四透镜与第五透镜的组合焦距f345与光学成像系统的有效焦距f之间满足1≤f345/f<2,更具体地,满足1.03≤f345/f≤1.58。广角镜头的焦距短,而后工作距较大,给第二透镜组分配较大的正光焦度,增大光线的汇聚度,使得广角镜头像方主平面大大后移,有利保证后工作距离。
在本申请的实施例中,电子光感元件有效像素区域对角线长的一半ImgH与光学成像系统的有效焦距f之间满足1<ImgH/f<2.5,更具体地,满足1.07≤ImgH/f≤1.80。通过满足上述关系,有利于在保证小型化的同时提高视场角,实现广角的特性,提高深度测量范围,并有效修正各类像差,提升成像品质。
在本申请的实施例中,第一透镜物侧面至成像面的轴上距离TTL与电子光感元件有效像素区域对角线长的一半ImgH之间满足TTL/ImgH<4.5,更具体地,满足TTL/ImgH≤4.31。通过满足上述关系,能够合理分配各镜片中心厚度以及各镜片之间空气间隙,有利于保证镜头的加工性以及降低公差的敏感性,同时也有利于减小镜头的体积。
在本申请的实施例中,第三透镜像侧面的曲率半径R6与光学成像系统的有效焦距f之间满足-4<R6/f<-0.7,更具体地,满足-3.83≤R6/f≤-0.82。满足上述条件的第三透镜物侧面曲率半径为负值,弯向物侧面,提高光线汇聚度,有利于像差的校正。
在本申请的实施例中,第一透镜至第四透镜分别于光轴上的厚度总和∑CT与第一透镜物侧面至成像面的轴上距离TTL之间满足0.4<∑CT/TTL<0.7,更具体地,满足0.49≤∑CT/TTL≤0.60。通过满足上述关系,有利于降低模组整体长度,同时增加透镜之间距离,有利于降低公差敏感性,提升批量生产镜头的品质与一致性。
在本申请的实施例中,第五透镜与成像面之间设置有红外带通滤光片。红外波段有利于系统不引入色差,控制弥散斑直径,同时红外波段有利于减少环境可见光的干扰,提高像方传感器输出信号信躁比。
根据本申请实施例1至实施例7的光学成像系统包括5片透镜。这5 片透镜分别为具有物侧面S1和像侧面S2的第一透镜L1、具有物侧面S3和像侧面S4的第二透镜L2、具有物侧面S5和像侧面S6的第三透镜L3、具有物侧面S7和像侧面S8的第四透镜L4以及具有物侧面S9和像侧面S10的第五透镜L5。第一透镜L1至第五透镜L5从光学成像系统的物侧到像侧依次设置。第一透镜L1可具有负光焦度;第二透镜L2可具有正光焦度或负光焦度;第三透镜L3可具有正光焦度,其像侧面S6为凸面;第四透镜L4可具有正光焦度;第五透镜可具有正光焦度或负光焦度,其物侧面为凸面。该光学成像系统还包括用于滤除红外光的具有物侧面S11和像侧面S12的滤光片L6。该光学成像系统还包括位于第二透镜L2与第三透镜L3之间的光阑。在实施例中,来自物体的光依次穿过各表面S1至S12并最终成像在成像表面S13上。
参数\实施例 1 2 3 4 5 6 7
ImgH(mm) 2.32 2.32 2.32 2.32 2.47 2.32 2.32
HFOV(°) 60.84 52.86 52.93 52.56 57.50 54.61 54.54
Fno 1.20 1.18 1.20 1.20 1.21 1.20 1.20
f(mm) 1.62 2.10 2.14 2.16 2.09 2.12 1.29
f1(mm) -2.77 -4.08 -2.95 -12.79 -2.19 -3.61 -3.70
f2(mm) 7.74 8.40 4.98 -39.37 3.65 10.81 44.90
f3(mm) 3.93 3.67 3.87 3.68 3.11 8.29 4.08
f4(mm) 5.65 6.90 112.71 3.68 1440.29 4.56 3.91
f5(mm) 17.87 14.27 4.99 -10.51 5.98 13.32 7.62
TTL(mm) 8.00 7.92 7.92 7.72 7.90 10.00 9.25
表1
在本申请的实施例中,第一透镜L1至第五透镜L5分别具有各自的有效焦距f1至f5。第一透镜L1至第五透镜L5沿着光轴依次排列并共同决定了光学成像系统的总有效焦距f。实施例1至实施例7中的第一透镜L1至第五透镜L5的有效焦距f1至f5、光学成像系统的总有效焦距f、光学成像系统的光圈数Fno、光学成像系统的总长度TTL、光学成像系统的最大视场角的一半HFOV和电子光感元件有效像素区域对角线长的一半ImgH可例如如上表1所示。
以下结合具体实施例进一步描述本申请。
实施例1
图1为示出了实施例1的光学成像系统的结构示意图。如上文所描述的以及参照图1,根据实施例1的光学成像系统包括5片透镜。这5片透镜分别为具有物侧面S1和像侧面S2的第一透镜L1、具有物侧面S3和像侧面S4的第二透镜L2、具有物侧面S5和像侧面S6的第三透镜L3、具有物侧面S7和像侧面S8的第四透镜L4以及具有物侧面S9和像侧面S10的第五透镜L5。
表2示出了该实施例中的光学成像系统中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数。其中,曲率半径和厚度的单位均为毫米。
Figure PCTCN2018079945-appb-000001
表2
在本实施例中,各非球面面型x由以下公式(1)限定:
Figure PCTCN2018079945-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表2 中曲率半径R的倒数);k为圆锥系数(在表2中已给出);Ai是非球面第i-th阶的修正系数。下表3示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A 4、A 6、A 8、A 10、A 12、A 14和A 16
面号 A4 A6 A8 A10 A12 A14 A16
S1 5.2382E-02 -1.3405E-02 2.6498E-03 -3.4924E-04 2.8951E-05 -1.3523E-06 2.7314E-08
S2 3.9662E-03 4.0330E-02 -4.0600E-02 2.2670E-02 -7.6133E-03 1.3703E-03 -1.0533E-04
S3 -2.6884E-02 3.2713E-02 -4.0185E-02 3.8377E-02 -2.1383E-02 5.1539E-03 -4.4090E-04
S4 9.2872E-02 -1.9152E-01 6.1377E-01 -8.9513E-01 7.1608E-01 -2.8708E-01 4.4829E-02
S5 5.5621E-03 -1.4195E-02 3.4423E-02 -4.2473E-02 2.6288E-02 -7.7618E-03 8.4478E-04
S6 -5.5330E-02 1.1909E-01 -1.5361E-01 1.1555E-01 -5.2066E-02 1.2786E-02 -1.3074E-03
S7 -6.4872E-02 7.1825E-02 -5.6744E-02 2.0776E-02 -2.5470E-03 -6.8837E-04 1.6621E-04
S8 -2.1015E-02 -3.2837E-02 5.8281E-02 -4.3850E-02 1.7297E-02 -3.6222E-03 3.1405E-04
S9 -1.1188E-01 6.7530E-02 -5.7673E-02 2.6719E-02 -6.8858E-03 9.3793E-04 -5.3432E-05
S10 -1.1939E-01 8.3192E-02 -5.9265E-02 2.2802E-02 -4.8075E-03 5.2616E-04 -2.3630E-05
表3
图2示出了实施例1的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图3示出了实施例1的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4示出了实施例1的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图5示出了实施例1的光学成像系统的相对照度曲线,其表示周边画面光亮与中心画面光亮比,反映了画面光亮均匀性。综上所述并参照图2至图5可以看出,根据实施例1的光学成像系统是一种可应用于多领域,尤其是三维深度测量领域的大孔径、大视场角、高成像品质的光学成像系统。
实施例2
图6为示出了实施例2的光学成像系统的结构示意图。参照图6以及根据上文所描述的,根据实施例2的光学成像系统由物侧至像侧依次包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5。
表4示出了该实施例中的光学成像系统中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数。其中,曲率半径和厚度的单位均为毫米。
面号 表面类型 曲率 厚度 材料 圆锥系数
         折射率 色散系数  
OBJ 球面 无穷 无穷      
S1 非球面 -7.3276 0.5000 1.53 55.8 -91.3152
S2 非球面 3.1700 0.5060     -0.0189
S3 非球面 1.7830 0.7050 1.62 23.5 -2.0812
S4 非球面 2.3043 0.4957     2.6271
STO 球面 无穷 0.1609      
S5 非球面 -10.6980 1.1478 1.53 55.8 40.5239
S6 非球面 -1.7168 0.4630     -2.2526
S7 非球面 -2.9437 1.3018 1.53 55.8 -34.6280
S8 非球面 -1.8865 0.0300     -1.0176
S9 非球面 1.5055 0.7123 1.53 55.8 -2.2812
S10 非球面 1.5684 1.3096     -2.1689
S11 球面 无穷 0.2100 1.52 64.2  
S12 球面 无穷 0.3820      
S13 球面 无穷        
表4
下表5示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A 4、A 6、A 8、A 10、A 12、A 14和A 16。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 2.4683E-02 -4.2011E-03 5.1507E-04 -7.1178E-06 -6.1646E-06 7.4331E-07 -2.7805E-08
S2 6.2146E-03 -2.7958E-03 -1.2397E-03 4.8935E-04 -7.3669E-05 5.3542E-06 -1.5955E-07
S3 1.0963E-03 -1.8286E-03 -6.4473E-03 9.9287E-04 5.3262E-04 -1.0391E-04 -1.6135E-06
S4 2.8387E-02 -1.5541E-01 5.1685E-01 -1.0268E+00 1.1383E+00 -6.6264E-01 1.5947E-01
S5 -2.2761E-02 5.4498E-02 -1.5992E-01 2.6747E-01 -2.5740E-01 1.3010E-01 -2.5768E-02
S6 2.9664E-02 -1.0031E-01 1.4563E-01 -1.5148E-01 9.0733E-02 -2.8944E-02 3.7650E-03
S7 1.7854E-02 1.2740E-02 -2.5722E-02 1.5463E-02 -4.8857E-03 7.8749E-04 -4.9453E-05
S8 1.8613E-02 -2.8378E-02 2.4670E-02 -1.2972E-02 3.9123E-03 -6.3500E-04 4.3029E-05
S9 6.5258E-03 -4.9568E-03 1.7512E-04 2.1120E-04 -5.8944E-05 7.3347E-06 -3.4448E-07
S10 -4.9719E-03 -1.6156E-03 -1.3133E-03 7.2341E-04 -1.7030E-04 1.9606E-05 -8.6439E-07
表5
图7示出了实施例2的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图8示出了实施例2的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图9示出了实施例2的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图10示出了实施例2的光学成像系统的相对照度曲线,其表示周边画面光亮与中心画面光亮比,反映了画面光亮均匀性。综上所述并参照图7至图10可以看出,根据实施例2的光学成像系统是一种可应用于多领域,尤其是三维深度测量领域的大孔径、大视场角、高成像品质的光学成像系统。
实施例3
图11为示出了实施例3的光学成像系统的结构示意图。参照图11以及根据上文所描述的,光学成像系统由物侧至像侧依次包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5。
表6示出了该实施例中的光学成像系统中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数。其中,曲率半径和厚度的单位均为毫米。
Figure PCTCN2018079945-appb-000003
表6
下表7示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A 4、A 6、A 8、A 10、A 12、A 14和A 16。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 4.7558E-02 -1.2995E-02 2.9353E-03 -4.1870E-04 3.3606E-05 -1.0802E-06 -2.6541E-09
S2 -1.5252E-02 3.9968E-04 -3.3937E-03 1.1143E-03 -1.8647E-04 1.7727E-05 -7.4275E-07
S3 -4.1379E-02 -1.2346E-02 -4.1370E-03 4.4015E-03 -1.2466E-03 1.5483E-04 -7.7413E-06
S4 2.4906E-02 -4.0372E-02 7.1496E-02 -1.2208E-01 1.2484E-01 -6.1124E-02 1.1770E-02
S5 6.5377E-03 -8.4109E-03 3.4949E-03 -4.4050E-04 -3.4876E-04 1.6778E-04 -2.0465E-05
S6 1.6066E-03 -2.0761E-02 1.8881E-02 -1.0924E-02 3.7867E-03 -7.1623E-04 5.6578E-05
S7 -1.0104E-02 -3.1811E-04 -3.2608E-04 3.2361E-04 -1.4970E-04 2.3594E-05 -1.3832E-06
S8 -4.4614E-02 2.1906E-02 -1.2828E-02 4.9478E-03 -1.2471E-03 1.6587E-04 -8.8308E-06
S9 -2.5842E-02 3.0389E-03 -5.0075E-03 2.4667E-03 -7.9064E-04 1.2756E-04 -7.7842E-06
S10 3.9773E-02 -2.1264E-02 6.3970E-03 -2.1231E-03 4.3609E-04 -4.3550E-05 1.6165E-06
表7
图12示出了实施例3的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图13示出了实施例3的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14示出了实施例3的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图15示出了实施例3的光学成像系统的相对照度曲线,其表示周边画面光亮与中心画面光亮比,反映了画面光亮均匀性。综上所述并参照图12至图15可以看出,根据实施例3的光学成像系统是一种可应用于多领域,尤其是三维深度测量领域的大孔径、大视场角、高成像品质的光学成像系统。
实施例4
图16为示出了实施例4的光学成像系统的结构示意图。参照图16以及根据上文所描述的,根据实施例4的光学成像系统由物侧至像侧依次包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5。
下表8示出了该实施例中的光学成像系统中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数。其中,曲率半径和厚度的单位均为毫米。
Figure PCTCN2018079945-appb-000004
表8
下表9示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的 高次项系数A 4、A 6、A 8、A 10、A 12、A 14和A 16。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 2.3031E-02 -3.7633E-03 4.4162E-04 -3.0932E-05 1.2558E-06 -2.4911E-08 1.6997E-10
S2 8.6137E-02 -3.7674E-02 1.0578E-02 -1.7890E-03 1.7560E-04 -9.2288E-06 2.0000E-07
S3 -5.9641E-02 1.1107E-01 -1.2126E-01 7.1191E-02 -2.3142E-02 4.0630E-03 -3.1898E-04
S4 3.9714E-02 3.9751E-02 1.9432E-01 -5.6890E-01 6.8113E-01 -3.8911E-01 9.2328E-02
S5 -1.5049E-02 1.5345E-02 -2.6417E-02 2.2410E-02 -1.0740E-02 3.0165E-03 -3.6413E-04
S6 5.3838E-02 -3.1682E-02 1.5938E-02 -1.8051E-02 1.1816E-02 -3.5841E-03 4.1644E-04
S7 5.8065E-03 2.4971E-02 -3.7127E-02 1.9493E-02 -5.7356E-03 9.1883E-04 -6.0908E-05
S8 -1.8392E-02 1.9006E-02 -1.2985E-02 4.2186E-03 -8.2252E-04 8.6818E-05 -3.1454E-06
S9 -9.6699E-03 2.9312E-02 -2.0053E-02 6.7606E-03 -1.2687E-03 1.2555E-04 -5.0707E-06
S10 -6.8645E-02 6.6068E-02 -3.4322E-02 1.0263E-02 -1.8066E-03 1.7158E-04 -6.7221E-06
表9
图17示出了实施例4的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图18示出了实施例4的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图19示出了实施例4的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图20示出了实施例4的光学成像系统的相对照度曲线,其表示周边画面光亮与中心画面光亮比,反映了画面光亮均匀性。综上所述并参照图17至图20可以看出,根据实施例4的光学成像系统是一种可应用于多领域,尤其是三维深度测量领域的大孔径、大视场角、高成像品质的光学成像系统。
实施例5
图21为示出了实施例5的光学成像系统的结构示意图。参照图21以及根据上文所描述的,根据实施例5的光学成像系统由物侧至像侧依次包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5。
下表10示出了该实施例中的光学成像系统中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数。其中,曲率半径和厚度的单位均为毫米。
Figure PCTCN2018079945-appb-000005
Figure PCTCN2018079945-appb-000006
表10
下表11示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A 4、A 6、A 8、A 10、A 12、A 14和A 16。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 5.2829E-02 -1.7404E-02 4.7049E-03 -8.8182E-04 1.0450E-04 -6.7098E-06 1.6618E-07
S2 -5.6451E-02 9.5019E-02 -6.6068E-02 2.5697E-02 -2.4888E-03 -2.1433E-03 5.1680E-04
S3 -1.6071E-02 2.8992E-02 -2.1920E-02 2.0477E-02 -1.7997E-02 6.4178E-03 -7.4298E-04
S4 1.5970E-02 -1.3857E-01 3.7655E-01 -6.0937E-01 5.5914E-01 -2.7858E-01 5.7666E-02
S5 1.3985E-02 -1.9962E-02 1.0062E-02 -2.2129E-03 -5.3789E-04 3.6688E-04 -4.9316E-05
S6 -6.5393E-03 -1.1355E-03 1.0215E-02 -1.0526E-02 4.8559E-03 -1.1048E-03 9.9115E-05
S7 -3.0604E-02 1.4920E-02 -5.8318E-03 1.7501E-03 -5.4870E-04 9.6762E-05 -6.8051E-06
S8 -2.7417E-02 3.2874E-03 4.2498E-03 -2.7933E-03 5.5672E-04 -4.0501E-05 2.7929E-07
S9 -1.4104E-02 -2.1365E-03 -4.9526E-03 3.3118E-03 -1.1775E-03 1.9880E-04 -1.2598E-05
S10 2.9614E-02 -2.2896E-02 8.0483E-03 -2.3557E-03 3.9408E-04 -3.3940E-05 1.3216E-06
表11
图22示出了实施例5的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图23示出了实施例5的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图24示出了实施例5的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图25示出了实施例5的光学成像系统的相对照度曲线,其表示周边画面光亮与中心画面光亮比,反映了画面光亮均匀性。综上所述并参照图22至图25可以看出,根据实施例5的光学成像系统是一种可应用于多领域,尤其是三维深度测量领域的大孔径、大视场角、高成像品质的光学成像系统。
实施例6
图26为示出了实施例6的光学成像系统的结构示意图。参照图26以及根据上文所描述的,实施例6的光学成像系统由物侧至像侧依次包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5。
下表12示出了该实施例中的光学成像系统中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数。其中,曲率半径和厚度的单位均为毫米。
Figure PCTCN2018079945-appb-000007
表12
下表13示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A 4、A 6、A 8、A 10、A 12、A 14和A 16。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S3 -1.1173E-02 1.1860E-02 7.3129E-04 -8.5333E-04 -1.6490E-14 -1.4689E-17 -2.9501E-20
S4 2.6365E-02 2.9082E-03 2.8369E-03 -8.9403E-04 -6.2967E-15 -1.4736E-17 -2.9501E-20
S5 8.9459E-03 -3.4211E-03 2.7402E-04 1.4085E-05 -6.3011E-15 -1.4689E-17 -2.9501E-20
S6 -4.8954E-02 1.1523E-02 -3.2621E-03 6.1933E-04 -6.1590E-05 2.9719E-06 -5.5218E-08
S7 -2.8720E-02 6.1217E-03 -3.4740E-03 1.0532E-03 -2.1596E-04 2.6160E-05 -1.3090E-06
S8 -2.7615E-02 6.2946E-03 -2.0857E-03 4.4798E-04 -5.8126E-05 3.8102E-06 -6.5256E-08
S9 -3.5977E-02 -6.7385E-03 -7.4306E-03 4.3796E-03 -1.3628E-03 2.6045E-04 -2.2727E-05
S10 3.7837E-02 -5.9554E-02 2.3913E-02 -6.3883E-03 1.0798E-03 -1.0099E-04 3.7690E-06
表13
图27示出了实施例6的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图28示出了实施例6的光学成 像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图29示出了实施例6的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图30示出了实施例6的光学成像系统的相对照度曲线,其表示周边画面光亮与中心画面光亮比,反映了画面光亮均匀性。综上所述并参照图27至图30可以看出,根据实施例6的光学成像系统是一种可应用于多领域,尤其是三维深度测量领域的大孔径、大视场角、高成像品质的光学成像系统。
实施例7
图31为示出了实施例7的光学成像系统的结构示意图。参照图31以及根据上文所描述的,实施例7的光学成像系统由物侧至像侧依次包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5。
下表14示出了该实施例中的光学成像系统中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数。其中,曲率半径和厚度的单位均为毫米。
Figure PCTCN2018079945-appb-000008
表14
下表15示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A 4、A 6、A 8、A 10、A 12、A 14和A 16。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2018079945-appb-000009
Figure PCTCN2018079945-appb-000010
表15
图32示出了实施例7的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图33示出了实施例7的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图34示出了实施例7的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图35示出了实施例7的光学成像系统的相对照度曲线,其表示周边画面光亮与中心画面光亮比,反映了画面光亮均匀性。综上所述并参照图32至图35可以看出,根据实施例7的光学成像系统是一种可应用于多领域,尤其是三维深度测量领域的大孔径、大视场角、高成像品质的光学成像系统。
概括地说,在上述实施例1至7中,各条件式满足下面表16的条件。
条件式\实施例 1 2 3 4 5 6 7
f/EPD 1.20 1.18 1.20 1.20 1.21 1.20 1.20
f2/f5 0.43 0.59 1.00 3.74 0.61 0.81 5.89
f1/f -1.71 -1.95 -1.38 -- -1.05 -1.70 -2.87
f12/f -2.90 -3.49 -3.35 -3.87 -2.50 -3.49 -3.01
f345/f 1.30 1.06 1.09 1.03 1.12 1.32 1.58
ImgH/f 1.43 1.11 1.08 1.07 1.18 1.09 1.80
TTL/ImgH 3.45 3.42 3.42 3.33 3.20 4.31 3.99
R6/f -1.51 -0.82 -1.11 -1.02 -0.89 -3.83 -1.90
∑CT/TTL 0.49 0.55 0.54 0.60 0.54 0.52 0.57
DT32/f3 0.41 0.40 0.48 0.47 0.53 0.21 0.41
DT51/ImgH 0.94 1.10 1.06 1.09 0.89 0.90 0.92
DT52/ImgH 1.04 1.09 1.12 1.09 0.96 1.03 1.04
DT21/DT41 0.97 0.92 0.81 0.85 0.78 0.64 0.84
DT12/DT51 1.63 1.16 0.89 1.06 0.76 0.74 0.96
表16
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能 的技术特征进行互相替换而形成的技术方案。

Claims (41)

  1. 一种光学成像系统,由物侧至像侧依次包括第一透镜组和第二透镜组,其特征在于,
    所述第一透镜组至少包括具有负光焦度的第一透镜,以及具有光焦度的第二透镜;
    所述第二透镜组至少包括:
    具有正光焦度的第三透镜,其像侧面为凸面;
    具有光焦度的第四透镜;以及
    具有光焦度的第五透镜,其物侧面为凸面;
    所述第三透镜像侧面的有效半口径DT32与所述第三透镜的焦距f3之间满足0<DT32/f3<0.6。
  2. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统的有效焦距f与所述光学成像系统的入瞳直径EPD之间满足f/EPD<1.6。
  3. 根据权利要求1所述的光学成像系统,其特征在于,所述第五透镜物侧面的有效半口径DT51与电子光感元件有效像素区域对角线长的一半ImgH之间满足0.8<DT51/ImgH<1.2。
  4. 根据权利要求1所述的光学成像系统,其特征在于,所述第一透镜像侧面的有效半口径DT12与所述第五透镜物侧面的有效半口径DT51之间满足0.7<DT12/DT51<1.7。
  5. 根据权利要求1-4中任一项所述的光学成像系统,其特征在于,所述第五透镜具有正光焦度。
  6. 根据权利要求1-4中任一项所述的光学成像系统,其特征在于,所述第二透镜的有效焦距f2与所述第五透镜的有效焦距f5之间满足f2/f5>0。
  7. 根据权利要求1-4中任一项所述的光学成像系统,其特征在于,所述第一透镜的有效焦距f1与所述光学成像系统的有效焦距f之间满足-3<f1/f<0。
  8. 根据权利要求7所述的光学成像系统,其特征在于,所述第一透镜组具有负光焦度。
  9. 根据权利要求8所述的光学成像系统,其特征在于,所述第一透镜与所述第二透镜的组合焦距f12与所述光学成像系统的有效焦距f之间满足-4<f12/f<-2。
  10. 根据权利要求7所述的光学成像系统,其特征在于,所述第二透镜组具有正光焦度。
  11. 根据权利要求10所述的光学成像系统,其特征在于,所述第三透镜、所述第四透镜与所述第五透镜的组合焦距f345与所述光学成像系统的有效焦距f之间满足1≤f345/f<2。
  12. 根据权利要求11所述的光学成像系统,其特征在于,电子光感元件有效像素区域对角线长的一半ImgH与所述光学成像系统的有效焦距f之间满足1<ImgH/f<2.5。
  13. 根据权利要求11所述的光学成像系统,其特征在于,所述第一透镜物侧面至成像面的轴上距离TTL与电子光感元件有效像素区域对角线长的一半ImgH之间满足TTL/ImgH<4.5。
  14. 根据权利要求11所述的光学成像系统,其特征在于,所述第三透镜像侧面的曲率半径R6与所述光学成像系统的有效焦距f之间满足-4<R6/f<-0.7。
  15. 根据权利要求11所述的光学成像系统,其特征在于,所述第一透镜至所述第四透镜分别于光轴上的厚度总和∑CT与所述第一透镜物侧面至成像面的轴上距离TTL之间满足0.4<∑CT/TTL<0.7。
  16. 根据权利要求15所述的光学成像系统,其特征在于,所述第五透镜与成像面之间设置有红外带通滤光片。
  17. 一种光学成像系统,由物侧至像侧依次包括第一透镜组和第二透镜组,其特征在于,
    所述第一透镜组至少包括具有负光焦度的第一透镜,以及具有光焦度的第二透镜;
    所述第二透镜组至少包括:
    具有正光焦度的第三透镜,其像侧面为凸面;
    具有光焦度的第四透镜;以及
    具有光焦度的第五透镜,其物侧面为凸面;
    所述第五透镜物侧面的有效半口径DT51与电子光感元件有效像素区域对角线长的一半ImgH之间满足0.8<DT51/ImgH<1.2。
  18. 根据权利要求17所述的光学成像系统,其特征在于,所述光学成像系统的有效焦距f与所述光学成像系统的入瞳直径EPD之间满足f/EPD<1.6。
  19. 根据权利要求18所述的光学成像系统,其特征在于,所述第三透镜像侧面的有效半口径DT32与所述第三透镜的焦距f3之间满足0<DT32/f3<0.6。
  20. 根据权利要求17所述的光学成像系统,其特征在于,所述第一透镜像侧面的有效半口径DT12与所述第五透镜物侧面的有效半口径DT51之间满足0.7<DT12/DT51<1.7。
  21. 根据权利要求17-20中任一项所述的光学成像系统,其特征在于,所述第二透镜的有效焦距f2与所述第五透镜的有效焦距f5之间满足f2/f5>0。
  22. 根据权利要求17-20中任一项所述的光学成像系统,其特征在于,所述第一透镜的有效焦距f1与所述光学成像系统的有效焦距f之间满足-3<f1/f<0。
  23. 根据权利要求22所述的光学成像系统,其特征在于,所述第一透镜与所述第二透镜的组合焦距f12与所述光学成像系统的有效焦距f之间满足-4<f12/f<-2。
  24. 根据权利要求22所述的光学成像系统,其特征在于,所述第三透镜、所述第四透镜与所述第五透镜的组合焦距f345与所述光学成像系统的有效焦距f之间满足1≤f345/f<2。
  25. 根据权利要求24所述的光学成像系统,其特征在于,电子光感元件有效像素区域对角线长的一半ImgH与所述光学成像系统的有效焦距f之间满足1<ImgH/f<2.5。
  26. 根据权利要求24所述的光学成像系统,其特征在于,所述第三透镜像侧面的曲率半径R6与所述光学成像系统的有效焦距f之间满足-4<R6/f<-0.7。
  27. 根据权利要求24所述的光学成像系统,其特征在于,所述第一透镜至所述第四透镜分别于光轴上的厚度总和∑CT与所述第一透镜物侧面至成像面的轴上距离TTL之间满足0.4<∑CT/TTL<0.7。
  28. 根据权利要求27所述的光学成像系统,其特征在于,所述第五透镜与成像面之间设置有红外带通滤光片。
  29. 一种光学成像系统,由物侧至像侧依次包括第一透镜组和第二透镜组,其特征在于,
    所述第一透镜组至少包括具有负光焦度的第一透镜,以及具有光焦度的第二透镜;
    所述第二透镜组至少包括:
    具有正光焦度的第三透镜,其像侧面为凸面;
    具有光焦度的第四透镜;以及
    具有光焦度的第五透镜,其物侧面为凸面;
    所述第一透镜像侧面的有效半口径DT12与所述第五透镜物侧面的有效半口径DT51之间满足0.7<DT12/DT51<1.7。
  30. 根据权利要求29所述的光学成像系统,其特征在于,所述光学成像系统的有效焦距f与所述光学成像系统的入瞳直径EPD之间满足f/EPD<1.6。
  31. 根据权利要求30所述的光学成像系统,其特征在于,所述第三透镜像侧面的有效半口径DT32与所述第三透镜的焦距f3之间满足0<DT32/f3<0.6。
  32. 根据权利要求30所述的光学成像系统,其特征在于,所述第五透镜物侧面的有效半口径DT51与电子光感元件有效像素区域对角线长的一半ImgH之间满足0.8<DT51/ImgH<1.2。
  33. 根据权利要求29-32中任一项所述的光学成像系统,其特征在于,所述第二透镜的有效焦距f2与所述第五透镜的有效焦距f5之间满足f2/f5>0。
  34. 根据权利要求29-32中任一项所述的光学成像系统,其特征在于,所述第一透镜的有效焦距f1与所述光学成像系统的有效焦距f之间满足-3<f1/f<0。
  35. 根据权利要求34所述的光学成像系统,其特征在于,所述第一透镜与所述第二透镜的组合焦距f12与所述光学成像系统的有效焦距f之间满足-4<f12/f<-2。
  36. 根据权利要求34所述的光学成像系统,其特征在于,所述第三透镜、所述第四透镜与所述第五透镜的组合焦距f345与所述光学成像系统的有效焦距f之间满足1≤f345/f<2。
  37. 根据权利要求36所述的光学成像系统,其特征在于,电子光感元件有效像素区域对角线长的一半ImgH与所述光学成像系统的有效焦距f之间满足1<ImgH/f<2.5。
  38. 根据权利要求36所述的光学成像系统,其特征在于,所述第一透镜物侧面至成像面的轴上距离TTL与电子光感元件有效像素区域对角线长的一半ImgH之间满足TTL/ImgH<4.5。
  39. 根据权利要求36所述的光学成像系统,其特征在于,所述第三透镜像侧面的曲率半径R6与所述光学成像系统的有效焦距f之间满足-4<R6/f<-0.7。
  40. 根据权利要求36所述的光学成像系统,其特征在于,所述第一透镜至所述第四透镜分别于光轴上的厚度总和∑CT与所述第一透镜物侧面至成像面的轴上距离TTL之间满足0.4<∑CT/TTL<0.7。
  41. 根据权利要求40所述的光学成像系统,其特征在于,所述第五透镜与成像面之间设置有红外带通滤光片。
PCT/CN2018/079945 2017-07-26 2018-03-22 光学成像系统 WO2019019669A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710617770.4 2017-07-26
CN201720914752.8 2017-07-26
CN201720914752.8U CN206930828U (zh) 2017-07-26 2017-07-26 光学成像系统
CN201710617770.4A CN107179599B (zh) 2017-07-26 2017-07-26 光学成像系统

Publications (1)

Publication Number Publication Date
WO2019019669A1 true WO2019019669A1 (zh) 2019-01-31

Family

ID=65041146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079945 WO2019019669A1 (zh) 2017-07-26 2018-03-22 光学成像系统

Country Status (1)

Country Link
WO (1) WO2019019669A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10859801B2 (en) 2017-08-01 2020-12-08 Largan Precision Co., Ltd. Optical image capturing system, imaging apparatus and electronic device
US20220276468A1 (en) * 2021-02-26 2022-09-01 Largan Precision Co., Ltd. Optical image capturing lens assembly, imaging apparatus and electronic device
US12000991B2 (en) * 2021-02-26 2024-06-04 Largan Precision Co., Ltd. Optical image capturing lens assembly, imaging apparatus and electronic device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003029142A (ja) * 2001-07-19 2003-01-29 Pentax Corp 内視鏡対物レンズ系
CN102289052A (zh) * 2011-08-22 2011-12-21 宁波舜宇车载光学技术有限公司 一种超广角镜头
CN202230237U (zh) * 2011-08-22 2012-05-23 宁波舜宇车载光学技术有限公司 一种超广角镜头
CN104360462A (zh) * 2014-10-20 2015-02-18 宁波舜宇车载光学技术有限公司 广角镜头
CN106291871A (zh) * 2015-06-26 2017-01-04 先进光电科技股份有限公司 光学成像系统
CN107179599A (zh) * 2017-07-26 2017-09-19 浙江舜宇光学有限公司 光学成像系统
CN206930828U (zh) * 2017-07-26 2018-01-26 浙江舜宇光学有限公司 光学成像系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003029142A (ja) * 2001-07-19 2003-01-29 Pentax Corp 内視鏡対物レンズ系
CN102289052A (zh) * 2011-08-22 2011-12-21 宁波舜宇车载光学技术有限公司 一种超广角镜头
CN202230237U (zh) * 2011-08-22 2012-05-23 宁波舜宇车载光学技术有限公司 一种超广角镜头
CN104360462A (zh) * 2014-10-20 2015-02-18 宁波舜宇车载光学技术有限公司 广角镜头
CN106291871A (zh) * 2015-06-26 2017-01-04 先进光电科技股份有限公司 光学成像系统
CN107179599A (zh) * 2017-07-26 2017-09-19 浙江舜宇光学有限公司 光学成像系统
CN206930828U (zh) * 2017-07-26 2018-01-26 浙江舜宇光学有限公司 光学成像系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10859801B2 (en) 2017-08-01 2020-12-08 Largan Precision Co., Ltd. Optical image capturing system, imaging apparatus and electronic device
US20220276468A1 (en) * 2021-02-26 2022-09-01 Largan Precision Co., Ltd. Optical image capturing lens assembly, imaging apparatus and electronic device
US12000991B2 (en) * 2021-02-26 2024-06-04 Largan Precision Co., Ltd. Optical image capturing lens assembly, imaging apparatus and electronic device

Similar Documents

Publication Publication Date Title
CN107167901B (zh) 摄像镜头
WO2020001066A1 (zh) 摄像镜头
WO2019091170A1 (zh) 摄像透镜组
WO2020107936A1 (zh) 光学成像系统
WO2021042992A1 (zh) 光学成像系统
WO2019062136A1 (zh) 摄像透镜组
WO2018223651A1 (zh) 摄像镜头
TWI638183B (zh) 光學成像鏡頭
CN206930828U (zh) 光学成像系统
WO2018218889A1 (zh) 光学成像系统
US11199699B2 (en) Camera lens assembly
WO2021057229A1 (zh) 光学成像镜头
WO2019019626A1 (zh) 成像镜头
WO2019007065A1 (zh) 光学成像镜头
WO2019037420A1 (zh) 摄像透镜组
CN110687665A (zh) 摄像镜头组
WO2019085524A1 (zh) 光学成像系统
CN114755802A (zh) 成像镜头
CN113608336A (zh) 一种光学成像镜头
CN113589489A (zh) 一种光学成像镜头
WO2019114189A1 (zh) 光学成像系统
CN111679402A (zh) 光学成像镜头
CN115248496B (zh) 一种高清晰度光学镜头及高性能激光雷达
WO2019024493A1 (zh) 成像镜头
WO2019019669A1 (zh) 光学成像系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18837185

Country of ref document: EP

Kind code of ref document: A1