WO2019024493A1 - 成像镜头 - Google Patents

成像镜头 Download PDF

Info

Publication number
WO2019024493A1
WO2019024493A1 PCT/CN2018/077349 CN2018077349W WO2019024493A1 WO 2019024493 A1 WO2019024493 A1 WO 2019024493A1 CN 2018077349 W CN2018077349 W CN 2018077349W WO 2019024493 A1 WO2019024493 A1 WO 2019024493A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging lens
imaging
focal length
effective
Prior art date
Application number
PCT/CN2018/077349
Other languages
English (en)
French (fr)
Inventor
黄林
Original Assignee
浙江舜宇光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710637489.7A external-priority patent/CN107329235B/zh
Priority claimed from CN201720938617.7U external-priority patent/CN207008163U/zh
Application filed by 浙江舜宇光学有限公司 filed Critical 浙江舜宇光学有限公司
Priority to US16/224,713 priority Critical patent/US10996439B2/en
Publication of WO2019024493A1 publication Critical patent/WO2019024493A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the present invention relates to an imaging lens, particularly a large aperture imaging lens composed of five lenses.
  • the present invention provides an optical system that is applicable to portable electronic products, has a large aperture, high relative brightness, wide angle, good imaging quality, and low sensitivity.
  • the present invention provides an imaging lens.
  • An aspect of the invention provides an imaging lens comprising, in order from the object side to the image side, a first lens having a positive power; a second lens having a power having a convex side and a concave side a third lens having a positive power, the image side being a convex surface; a fourth lens having a power; a fifth lens having a power having a convex side; wherein the effective focal length f of the imaging lens A effective focal length f1 of a lens satisfies 5.5 ⁇ f1/f ⁇ 25.
  • f/EPD ⁇ 1.6 is satisfied between the effective focal length f of the imaging lens and the incident pupil diameter EPD of the imaging lens.
  • 1.8 ⁇ DT11 / DT52 ⁇ 2.8 is satisfied between the effective radius DT11 of the side surface of the first lens object and the effective radius DT52 of the side surface of the fifth lens image.
  • the effective radius DT11 of the side surface of the first lens object satisfies 1.3 ⁇ DT11 / ImgH ⁇ 3 between half ImgH of the diagonal length of the effective pixel area on the imaging surface.
  • the combined focal length f12 of the first lens and the second lens satisfies -3.5 ⁇ f12 / f ⁇ -2.6 between the effective focal length f of the imaging lens.
  • the radius of curvature R3 of the side surface of the second lens object and the radius of curvature R6 of the side surface of the third lens image satisfy -1.2 ⁇ R3 / R6 ⁇ -0.5.
  • At least one of the first lens object side surface and the image side surface has at least one inflection point.
  • ImgH/f ⁇ 1.1 is satisfied between a half ImgH of the diagonal length of the effective pixel area on the imaging plane and an effective focal length f of the imaging lens.
  • 1.5 ⁇ f1/f3 ⁇ 8 is satisfied between the effective focal length f1 of the first lens and the effective focal length f3 of the third lens.
  • the effective focal length f3 of the third lens satisfies 1.4 ⁇ f3 / f ⁇ 3.8 between the effective focal length f of the imaging lens.
  • 2 ⁇ DT11/DT21 ⁇ 3.4 is satisfied between the effective radius DT11 of the side surface of the first lens object and the effective radius DT21 of the side surface of the second lens object.
  • ⁇ f/f5 ⁇ 0.2 is satisfied between the effective focal length f5 of the fifth lens and the effective focal length f of the imaging lens.
  • an infrared band pass filter is disposed between the fifth lens and the imaging surface.
  • a diaphragm is disposed between the second lens and the third lens.
  • an imaging lens includes: a first lens having positive refractive power; a second lens having optical power, a convex surface of the object side, and an image side surface from the object side to the image side a concave surface; a third lens having a positive power, the image side being a convex surface; a fourth lens having a power; a fifth lens having a power, the object side being a convex surface; wherein the first lens side
  • the effective radius DT11 satisfies 1.3 ⁇ DT11/ImgH ⁇ 3 between half of the diagonal length of the effective pixel area on the imaging surface, ImgH.
  • f/EPD ⁇ 1.6 is satisfied between the effective focal length f of the imaging lens and the incident pupil diameter EPD of the imaging lens.
  • 1.8 ⁇ DT11 / DT52 ⁇ 2.8 is satisfied between the effective radius DT11 of the side surface of the first lens object and the effective radius DT52 of the side surface of the fifth lens image.
  • 5.5 ⁇ f1/f ⁇ 25 is satisfied between the effective focal length f of the imaging lens and the effective focal length f1 of the first lens.
  • the combined focal length f12 of the first lens and the second lens satisfies -3.5 ⁇ f12 / f ⁇ -2.6 between the effective focal length f of the imaging lens.
  • the radius of curvature R3 of the side surface of the second lens object and the radius of curvature R6 of the side surface of the third lens image satisfy -1.2 ⁇ R3 / R6 ⁇ -0.5.
  • At least one of the first lens object side surface and the image side surface has at least one inflection point.
  • ImgH/f ⁇ 1.1 is satisfied between a half ImgH of the diagonal length of the effective pixel area on the imaging plane and an effective focal length f of the imaging lens.
  • 1.5 ⁇ f1/f3 ⁇ 8 is satisfied between the effective focal length f1 of the first lens and the effective focal length f3 of the third lens.
  • the effective focal length f3 of the third lens satisfies 1.4 ⁇ f3 / f ⁇ 3.8 between the effective focal length f of the imaging lens.
  • 2 ⁇ DT11/DT21 ⁇ 3.4 is satisfied between the effective radius DT11 of the side surface of the first lens object and the effective radius DT21 of the side surface of the second lens object.
  • ⁇ f/f5 ⁇ 0.2 is satisfied between the effective focal length f5 of the fifth lens and the effective focal length f of the imaging lens.
  • an infrared band pass filter is disposed between the fifth lens and the imaging surface.
  • a diaphragm is disposed between the second lens and the third lens.
  • an imaging lens includes: a first lens having positive refractive power; a second lens having optical power, a convex surface of the object side, and an image side surface from the object side to the image side a concave surface; a third lens having a positive power, the image side being a convex surface; a fourth lens having a power; a fifth lens having a power, the object side being a convex surface; wherein the first lens side
  • the effective radius DT11 and the effective radius DT52 of the side of the fifth lens image satisfy 1.8 ⁇ DT11 / DT52 ⁇ 2.8.
  • an imaging lens includes: a first lens having positive refractive power; a second lens having optical power, a convex surface of the object side, and an image side surface from the object side to the image side a concave surface; a third lens having a positive power, a convex surface of the image side; a fourth lens having a power; a fifth lens having a power, the object side being a convex surface; wherein the first lens and the first lens The combined focal length f12 of the two lenses satisfies -3.5 ⁇ f12 / f ⁇ -2.6 between the effective focal length f of the imaging lens.
  • an imaging lens includes: a first lens having positive refractive power; a second lens having optical power, a convex surface of the object side, and an image side surface from the object side to the image side a concave surface; a third lens having a positive power, the image side being a convex surface; a fourth lens having a power; a fifth lens having a power, the object side being a convex surface; wherein the first lens side
  • the effective radius DT11 and the effective radius DT21 of the second lens object side satisfy 2 ⁇ DT11/DT21 ⁇ 3.4.
  • an imaging lens includes: a first lens having positive refractive power; a second lens having optical power, a convex surface of the object side, and an image side surface from the object side to the image side a concave surface; a third lens having a positive power, the image side being a convex surface; a fourth lens having a power; a fifth lens having a power, the object side being a convex surface; wherein the fifth lens is effective ⁇ f/f5 ⁇ 0.2 is satisfied between the focal length f5 and the effective focal length f of the imaging lens.
  • the imaging lens according to the present invention employs five lenses having at least one of a large aperture, a high relative brightness, a wide angle, and a good imaging quality.
  • FIG. 1 is a schematic structural view of an imaging lens of Embodiment 1;
  • FIG. 2 to FIG. 5 respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a phase contrast curve of the imaging lens of Embodiment 1;
  • FIG. 6 is a schematic structural view of an imaging lens of Embodiment 2;
  • FIG. 11 is a schematic structural view of an imaging lens of Embodiment 3.
  • FIG. 16 is a schematic structural view of an imaging lens of Embodiment 4.
  • 17 to 20 respectively show an axial chromatic aberration curve, an astigmatism curve, a distortion curve, and a phase contrast curve of the imaging lens of Example 4;
  • FIG. 21 is a schematic structural view of an imaging lens of Embodiment 5.
  • 26 is a schematic structural view of an imaging lens of Embodiment 6;
  • 27 to 30 show axial chromatic aberration curves, astigmatism curves, distortion curves, and phase contrast curves of the imaging lens of Example 6, respectively.
  • a first element, component, region, layer or layer s s ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • the application provides an imaging lens.
  • the imaging lens according to the present application is sequentially provided from the object side to the image side of the imaging lens: a first lens, a second lens, a third lens, a fourth lens, and a fifth lens.
  • f/EPD ⁇ 1.6 is satisfied between the effective focal length f of the imaging lens and the incident pupil diameter EPD of the imaging lens, and the effective focal length f of the imaging lens and the effective focal length f1 of the first lens satisfy 5.5. ⁇ f1/f ⁇ 25, specifically, 5.82 ⁇ f1/f ⁇ 12.05 is satisfied.
  • the imaging lens that satisfies the above relationship can achieve wide-angle, large-aperture, high-phase contrast, and high resolution.
  • 1.8 ⁇ DT11/DT52 ⁇ 2.8 is satisfied between the effective radius DT11 of the side surface of the first lens object and the effective radius DT52 of the side surface of the fifth lens image, and more specifically, 1.86 ⁇ DT11/DT52 ⁇ 2.75 is satisfied.
  • the imaging lens that satisfies the above relationship can achieve wide-angle and high-phase contrast.
  • the effective radius DT11 of the side surface of the first lens object satisfies 1.3 ⁇ DT11/ImgH ⁇ 3 between the diagonal length ImgH of the effective pixel area on the imaging surface, and more specifically, satisfies 1.31 ⁇ DT11. /ImgH ⁇ 2.89.
  • the imaging lens that satisfies the above relationship can achieve wide-angle and high-phase contrast effects.
  • the combined focal length f12 of the first lens and the second lens satisfies -3.5 ⁇ f12 / f ⁇ -2.6 between the effective focal length f of the imaging lens, and more specifically, -3.4 ⁇ f12 / f ⁇ -2.48.
  • the imaging lens that satisfies the above relationship can achieve wide-angle effect.
  • the radius of curvature R3 of the side surface of the second lens object and the radius of curvature R6 of the side surface of the third lens image satisfy -1.2 ⁇ R3 / R6 ⁇ -0.5, and more specifically, -1.1 ⁇ R3 / R6 ⁇ -0.6.
  • An imaging lens that satisfies the above relationship can achieve a large aperture and high image quality.
  • 1.5 ⁇ f1/f3 ⁇ 8 is satisfied between the effective focal length f1 of the first lens and the effective focal length f3 of the third lens, and more specifically, 1.6 ⁇ f1/f3 ⁇ 5.02 is satisfied.
  • An imaging lens that satisfies the above relationship can achieve wide-angle, high-pixel effects.
  • ImgH/f ⁇ 1.1 is satisfied between half of the diagonal length ImgH of the effective pixel area on the imaging plane and the effective focal length f of the imaging lens, and more specifically, ImgH/f ⁇ 1.11 is satisfied.
  • An imaging lens that satisfies the above relationship can achieve wide-angle effects.
  • the effective focal length f3 of the third lens satisfies 1.4 ⁇ f3 / f ⁇ 3.8 between the effective focal length f of the imaging lens, and more specifically, 1.42 ⁇ f3 / f ⁇ 3.63.
  • An imaging lens that satisfies the above relationship can achieve high image quality and wide-angle effects.
  • the effective radius DT11 of the side surface of the first lens object and the effective radius DT21 of the side surface of the second lens object satisfy 2 ⁇ DT11/DT21 ⁇ 3.4, and more specifically, satisfy 2.06 ⁇ DT11/DT21 ⁇ 3.28. .
  • An imaging lens that satisfies the above relationship can achieve wide-angle effects.
  • ⁇ f/f5 ⁇ 0.2 is satisfied between the effective focal length f5 of the fifth lens and the effective focal length f of the imaging lens, and more specifically, ⁇ f/f5 ⁇ 0.18 is satisfied.
  • the imaging lens that satisfies the above relationship can achieve high phase contrast efficiency.
  • an infrared band pass filter is disposed between the fifth lens and the imaging surface.
  • the infrared band is beneficial to the system to introduce chromatic aberration and control the diameter of the diffuse spot.
  • the infrared band is beneficial to reduce the interference of ambient visible light and improve the signal-to-noise ratio of the image sensor output signal.
  • At least one of the first lens object side surface and the image side surface has at least one inflection point, which is advantageous for reducing distortion effect.
  • the imaging lens according to Embodiments 1 to 6 of the present application includes five lenses.
  • the five lenses are a first lens E1 having an object side surface S1 and an image side surface S2, a second lens E2 having an object side surface S3 and an image side surface S4, and a third lens E3 having an object side surface S5 and an image side surface S6, respectively.
  • the side surface S7 and the fourth lens E4 of the image side surface S8 and the fifth lens E5 having the object side surface S9 and the image side surface S10.
  • the first lens E1 to the fifth lens E5 are disposed in order from the object side to the image side of the imaging lens.
  • the first lens E1 may have a positive power, at least one of the object side surface and the image side surface having at least one inflection point; the second lens E2 may have a negative power, and the object side S3 is a convex surface, and the image side S4 The concave surface; the third lens E3 may have a positive power, the image side surface S6 is a convex surface; the fourth lens E4 may have a positive power; and the fifth lens may have a positive power or a negative power.
  • the imaging lens further includes a filter E6 having an object side S11 and an image side S12 for filtering out infrared light.
  • the imaging lens further includes an aperture between the second lens E2 and the third lens E3. In an embodiment, light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6 ImgH(mm) 2.47 2.47 2.47 2.47 3.01 HFOV(°) 56.23 55.36 51.31 54.55 53.47 51.19 f(mm) 2.20 2.18 1.99 2.19 2.12 2.71 F1 (mm) 15.67 13.64 24.01 12.74 13.87 18.40 F2 (mm) -5.38 -4.21 -5.54 -4.50 -4.29 -5.48 F3 (mm) 3.13 6.55 6.16 7.95 6.18 7.86 F4(mm) 11.72 4.39 4.12 3.65 4.22 4.93 F5 (mm) 12.49 18.55 -94.74 630.30 12.67 34.51 TTL (mm) 7.67 8.50 10.49 9.08 8.14 10.71
  • the first to fifth lenses E1 to E5 have respective effective focal lengths f1 to f5.
  • the first lens E1 to the fifth lens E5 are sequentially arranged along the optical axis and collectively determine the total effective focal length f of the imaging lens.
  • the half ImgH of the diagonal length of the effective pixel area on the image plane can be, for example, as shown in Table 1 above.
  • FIG. 1 is a schematic structural view showing an imaging lens of Embodiment 1.
  • the imaging lens according to Embodiment 1 includes five lenses.
  • the five lenses are a first lens E1 having an object side surface S1 and an image side surface S2, a second lens E2 having an object side surface S3 and an image side surface S4, and a third lens E3 having an object side surface S5 and an image side surface S6, respectively.
  • the side surface S7 and the fourth lens E4 of the image side surface S8 and the fifth lens E5 having the object side surface S9 and the image side surface S10.
  • Table 2 shows the surface type, the radius of curvature, the thickness, the refractive index, the dispersion coefficient, and the conic coefficient of each lens in the imaging lens in this embodiment, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • each aspherical surface type x is defined by the following formula (1):
  • x is the distance of the aspherical surface at height h from the optical axis, and the distance from the aspherical vertex is high;
  • k is the conic coefficient (given in Table 2);
  • Ai is the correction coefficient of the a-th order of the aspherical surface.
  • Table 3 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 of the respective aspheric surfaces S1 - S10 of the respective aspherical lenses usable in this embodiment.
  • Fig. 2 shows an axial chromatic aberration curve of the imaging lens of Embodiment 1, which indicates that light beams of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 3 shows an astigmatism curve of the imaging lens of Embodiment 1, which shows meridional field curvature and sagittal image plane curvature.
  • 4 shows a distortion curve of the imaging lens of Embodiment 1, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 5 is a view showing a contrast curve of the imaging lens of Embodiment 1, which shows a peripheral screen lightness and a center screen lightness ratio, reflecting the screen brightness uniformity.
  • the imaging lens according to Embodiment 1 is an imaging lens having a large aperture, a high relative brightness, a wide angle, and a good imaging quality.
  • Fig. 6 is a schematic structural view showing an imaging lens of Embodiment 2.
  • the imaging lens according to Embodiment 2 includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5. .
  • Table 4 shows the surface type, the radius of curvature, the thickness, the refractive index, the dispersion coefficient, and the conic coefficient of each lens in the imaging lens in this embodiment, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • Table 5 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 of the respective aspheric surfaces S1 - S10 which can be used for the respective aspherical lenses in this embodiment.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 7 is a view showing an axial chromatic aberration curve of the imaging lens of Embodiment 2, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 8 shows an astigmatism curve of the imaging lens of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 9 is a view showing a distortion curve of the imaging lens of Embodiment 2, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 10 is a view showing a contrast curve of the imaging lens of Embodiment 2, which shows a peripheral screen lightness and a center screen light ratio, reflecting the screen brightness uniformity.
  • the imaging lens according to Embodiment 2 is an imaging lens having a large aperture, a high relative brightness, a wide angle, and a good imaging quality.
  • Fig. 11 is a schematic structural view showing an imaging lens of Embodiment 3.
  • the imaging lens includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5.
  • Table 6 shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the imaging lens in this embodiment, wherein the units of the radius of curvature and the thickness are all in millimeters (mm).
  • Table 7 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 of the respective aspheric surfaces S1 - S10 of the respective aspherical lenses usable in this embodiment.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 12 is a view showing an axial chromatic aberration curve of the imaging lens of Embodiment 3, which shows that the light beams of different wavelengths are deviated from the focus point after passing through the optical system.
  • Fig. 13 is a view showing an astigmatism curve of the imaging lens of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 14 is a view showing a distortion curve of the imaging lens of Embodiment 3, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 15 is a view showing a contrast curve of the imaging lens of Embodiment 3, which shows the peripheral screen lightness and the center screen lightness ratio, reflecting the screen brightness uniformity.
  • the imaging lens according to Embodiment 3 is an imaging lens having a large aperture, a high relative brightness, a wide angle, and a good imaging quality.
  • Fig. 16 is a schematic structural view showing an imaging lens of Embodiment 4.
  • the imaging lens according to Embodiment 4 includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5. .
  • Table 8 below shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the imaging lens in this embodiment, wherein the unit of curvature radius and thickness are both millimeters (mm).
  • Table 9 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 of the respective aspheric surfaces S1 - S10 of the respective aspherical lenses usable in this embodiment.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 17 is a view showing an axial chromatic aberration curve of the imaging lens of Embodiment 4, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 18 is a view showing an astigmatism curve of the imaging lens of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 19 is a view showing the distortion curve of the imaging lens of Embodiment 4, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 20 is a view showing a contrast curve of the imaging lens of Embodiment 4, which shows a peripheral screen lightness and a center screen lightness ratio, reflecting the screen brightness uniformity.
  • the imaging lens according to Embodiment 4 is an imaging lens having a large aperture, a high relative brightness, a wide angle, and a good imaging quality.
  • the imaging lens according to Embodiment 5 includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5. .
  • Table 10 below shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the imaging lens in this embodiment, wherein the units of the radius of curvature and the thickness are each mm (mm).
  • Table 11 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 of the respective aspheric surfaces S1 - S10 which can be used for the respective aspherical lenses in this embodiment.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 22 is a view showing an axial chromatic aberration curve of the imaging lens of Embodiment 5, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
  • Fig. 23 is a view showing an astigmatism curve of the imaging lens of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 24 is a view showing a distortion curve of the imaging lens of Embodiment 5, which shows distortion magnitude values in the case of different viewing angles.
  • Fig. 25 is a view showing a contrast curve of the imaging lens of Embodiment 5, which shows a peripheral screen lightness and a center screen lightness ratio, reflecting the screen brightness uniformity.
  • the imaging lens according to Embodiment 5 is an imaging lens having a large aperture, a high relative brightness, a wide angle, and a good imaging quality.
  • Fig. 26 is a view showing the configuration of an imaging lens of Embodiment 6.
  • the imaging lens of Embodiment 6 includes, in order from the object side to the image side, a first lens E1, a second lens E2, a third lens E3, a fourth lens E4, and a fifth lens E5.
  • Table 12 below shows the surface type, radius of curvature, thickness, refractive index, dispersion coefficient, and conic coefficient of each lens in the imaging lens in this embodiment, wherein the unit of curvature radius and thickness are all millimeters (mm).
  • Table 13 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 and A 16 of the respective aspheric surfaces S1 - S10 which can be used for the respective aspherical lenses in this embodiment.
  • each aspherical surface type can be defined by the formula (1) given in the above embodiment 1.
  • Fig. 27 is a view showing the axial chromatic aberration curve of the imaging lens of Example 6, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
  • Fig. 28 is a view showing an astigmatism curve of the imaging lens of Embodiment 6, which shows meridional field curvature and sagittal image plane curvature.
  • Fig. 29 is a view showing the distortion curve of the imaging lens of Embodiment 6, which shows the distortion magnitude value in the case of different viewing angles.
  • Fig. 30 is a view showing a phase contrast curve of the imaging lens of Embodiment 6, which shows a peripheral screen lightness and a center screen lightness ratio, reflecting the screen brightness uniformity.
  • the imaging lens according to Embodiment 6 is an imaging lens having a large aperture, a high relative brightness, a wide angle, and a good imaging quality.
  • each conditional expression satisfies the conditions of Table 14 below.
  • Example 6 f/EPD 1.20 1.20 1.20 1.20 1.60 1.55 F1/f 7.11 6.25 12.05 5.82 6.55 6.80 DT11/DT52 2.08 1.86 2.75 2.05 1.93 2.03 DT11/ImgH 1.31 1.95 2.89 2.03 2.01 2.07 F12/f -3.40 -2.48 -2.90 -2.89 -2.56 -2.55 R3/R6 -0.97 -0.74 -0.89 -1.10 -0.61 -0.60 F1/f3 5.02 2.08 3.90 1.60 2.25 2.34 ImgH/f 1.12 1.13 1.24 1.13 1.16 1.11 F3/f 1.42 3.00 3.09 3.63 2.91 2.90 DT11/DT21 2.06 2.50 3.28 2.64 2.51 2.54 ⁇ f/f5 ⁇ 0.18 0.12 0.02 0.00 0.17 0.08

Abstract

一种成像镜头,由物侧至像侧依序包括:具有正光焦度的第一透镜;具有光焦度的第二透镜,其物侧面为凸面,像侧面为凹面;具有正光焦度的第三透镜,其像侧面为凸面;具有光焦度的第四透;具有光焦度的第五透镜,其物侧面为凸面;其中,所述成像镜头的有效焦距f与所述第一透镜的有效焦距f1之间满足5.5<f1/f<25。本申请的成像镜头采用5片镜片,具有大孔径、高相对亮度、广角化、良好成像质量的特点。

Description

成像镜头
相关申请的交叉引用
本申请要求于2017年7月31日提交于中国国家知识产权局(SIPO)的、专利申请号为201710637489.7的中国专利申请以及于2017年7月31日提交至SIPO的、专利申请号为201720938617.7的中国专利申请的优先权和权益,以上中国专利申请通过引用整体并入本文。
技术领域
本发明涉及一种成像镜头,特别是由五片镜片组成的大孔径成像镜头。
背景技术
现代光学系统的发展,除了向高分辨率发展,还不断地向大视场和大孔径发展。因为大视场和大孔径能够包含更多的物方信息。因此,大视场和大孔径的相机镜头已成为一种趋势。
目前,由于便携式电子产品的日益发展,对摄像镜头的大视场、大孔径、高相对亮度及成像质量等性能提出了进一步更高的要求。为了满足结构紧凑、高相对亮度的要求,现有镜头通常配置的F数均在2.0或2.0以上,实现镜头结构紧凑的同时具有良好的光学性能。但是随着智能手机等便携式电子产品的不断发展,对成像镜头提出了更高的要求,特别是针对光线不足(如阴雨天、黄昏等),手抖等情况,故此2.0或2.0以上的F数已经无法满足更高阶的成像要求。
因此,本发明提供了一种可适用于便携式电子产品,具有大孔径,高相对亮度,广角化,良好的成像质量且低敏感度的光学系统。
发明内容
为了解决现有技术中的至少一些问题,本发明提供了一种成像镜头。
本发明的一个方面提供了一种成像镜头,由物侧至像侧依序包括:具 有正光焦度的第一透镜;具有光焦度的第二透镜,其物侧面为凸面,像侧面为凹面;具有正光焦度的第三透镜,其像侧面为凸面;具有光焦度的第四透镜;具有光焦度的第五透镜,其物侧面为凸面;其中,成像镜头的有效焦距f与第一透镜的有效焦距f1之间满足5.5<f1/f<25。
根据本发明的一实施方式,成像镜头的有效焦距f与成像镜头的入射瞳直径EPD之间满足f/EPD≤1.6。
根据本发明的一实施方式,第一透镜物侧面的有效半径DT11与第五透镜像侧面的有效半径DT52之间满足1.8<DT11/DT52<2.8。
根据本发明的一实施方式,第一透镜物侧面的有效半径DT11与成像面上有效像素区域对角线长的一半ImgH之间满足1.3<DT11/ImgH<3。
根据本发明的一实施方式,第一透镜和第二透镜的组合焦距f12与成像镜头的有效焦距f之间满足-3.5<f12/f<-2.6。
根据本发明的一实施方式,第二透镜物侧面的曲率半径R3与第三透镜像侧面的曲率半径R6之间满足-1.2<R3/R6<-0.5。
根据本发明的一实施方式,第一透镜物侧表面及像侧表面中至少一表面具有至少一反曲点。
根据本发明的一实施方式,成像面上有效像素区域对角线长的一半ImgH与成像镜头的有效焦距f之间满足ImgH/f≥1.1。
根据本发明的一实施方式,第一透镜的有效焦距f1与第三透镜的有效焦距f3之间满足1.5<f1/f3<8。
根据本发明的一实施方式,第三透镜的有效焦距f3与成像镜头的有效焦距f之间满足1.4≤f3/f<3.8。
根据本发明的一实施方式,第一透镜物侧面的有效半径DT11与第二透镜物侧面的有效半径DT21之间满足2<DT11/DT21<3.4。
根据本发明的一实施方式,第五透镜的有效焦距f5与成像镜头的有效焦距f之间满足∣f/f5∣<0.2。
根据本发明的一实施方式,第五透镜与成像面之间设置有红外带通滤光片。
根据本发明的一实施方式,在第二透镜与第三透镜之间设置有光阑。
本发明的又一方面提供了一种成像镜头,由物侧至像侧依序包括:具 有正光焦度的第一透镜;具有光焦度的第二透镜,其物侧面为凸面,像侧面为凹面;具有正光焦度的第三透镜,其像侧面为凸面;具有光焦度的第四透镜;具有光焦度的第五透镜,其物侧面为凸面;其特征在于,第一透镜物侧面的有效半径DT11与成像面上有效像素区域对角线长的一半ImgH之间满足1.3<DT11/ImgH<3。
根据本发明的一实施方式,成像镜头的有效焦距f与成像镜头的入射瞳直径EPD之间满足f/EPD≤1.6。
根据本发明的一实施方式,第一透镜物侧面的有效半径DT11与第五透镜像侧面的有效半径DT52之间满足1.8<DT11/DT52<2.8。
根据本发明的一实施方式,成像镜头的有效焦距f与第一透镜的有效焦距f1之间满足5.5<f1/f<25。
根据本发明的一实施方式,第一透镜和第二透镜的组合焦距f12与成像镜头的有效焦距f之间满足-3.5<f12/f<-2.6。
根据本发明的一实施方式,第二透镜物侧面的曲率半径R3与第三透镜像侧面的曲率半径R6之间满足-1.2<R3/R6<-0.5。
根据本发明的一实施方式,第一透镜物侧表面及像侧表面中至少一表面具有至少一反曲点。
根据本发明的一实施方式,成像面上有效像素区域对角线长的一半ImgH与成像镜头的有效焦距f之间满足ImgH/f≥1.1。
根据本发明的一实施方式,第一透镜的有效焦距f1与第三透镜的有效焦距f3之间满足1.5<f1/f3<8。
根据本发明的一实施方式,第三透镜的有效焦距f3与成像镜头的有效焦距f之间满足1.4≤f3/f<3.8。
根据本发明的一实施方式,第一透镜物侧面的有效半径DT11与第二透镜物侧面的有效半径DT21之间满足2<DT11/DT21<3.4。
根据本发明的一实施方式,第五透镜的有效焦距f5与成像镜头的有效焦距f之间满足∣f/f5∣<0.2。
根据本发明的一实施方式,第五透镜与成像面之间设置有红外带通滤光片。
根据本发明的一实施方式,在第二透镜与第三透镜之间设置有光阑。
本发明的又一方面提供了一种成像镜头,由物侧至像侧依序包括:具有正光焦度的第一透镜;具有光焦度的第二透镜,其物侧面为凸面,像侧面为凹面;具有正光焦度的第三透镜,其像侧面为凸面;具有光焦度的第四透镜;具有光焦度的第五透镜,其物侧面为凸面;其特征在于,第一透镜物侧面的有效半径DT11与第五透镜像侧面的有效半径DT52之间满足1.8<DT11/DT52<2.8。
本发明的又一方面提供了一种成像镜头,由物侧至像侧依序包括:具有正光焦度的第一透镜;具有光焦度的第二透镜,其物侧面为凸面,像侧面为凹面;具有正光焦度的第三透镜,其像侧面为凸面;具有光焦度的第四透镜;具有光焦度的第五透镜,其物侧面为凸面;其特征在于,第一透镜和第二透镜的组合焦距f12与成像镜头的有效焦距f之间满足-3.5<f12/f<-2.6。
本发明的又一方面提供了一种成像镜头,由物侧至像侧依序包括:具有正光焦度的第一透镜;具有光焦度的第二透镜,其物侧面为凸面,像侧面为凹面;具有正光焦度的第三透镜,其像侧面为凸面;具有光焦度的第四透镜;具有光焦度的第五透镜,其物侧面为凸面;其特征在于,第一透镜物侧面的有效半径DT11与第二透镜物侧面的有效半径DT21之间满足2<DT11/DT21<3.4。
本发明的又一方面提供了一种成像镜头,由物侧至像侧依序包括:具有正光焦度的第一透镜;具有光焦度的第二透镜,其物侧面为凸面,像侧面为凹面;具有正光焦度的第三透镜,其像侧面为凸面;具有光焦度的第四透镜;具有光焦度的第五透镜,其物侧面为凸面;其特征在于,第五透镜的有效焦距f5与成像镜头的有效焦距f之间满足∣f/f5∣<0.2。
根据本发明的成像镜头采用5片镜片,具有大孔径、高相对亮度、广角化、良好成像质量中的至少一个特点。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本发明的其它特征、目的和优点将变得更加明显。在附图中:
图1示出了实施例1的成像镜头的结构示意图;
图2至图5分别示出了实施例1的成像镜头的轴上色差曲线、象散曲线、畸变曲线和相对照度曲线;
图6示出了实施例2的成像镜头的结构示意图;
图7至图10分别示出了实施例2的成像镜头的轴上色差曲线、象散曲线、畸变曲线和相对照度曲线;
图11示出了实施例3的成像镜头的结构示意图;
图12至图15分别示出了实施例3的成像镜头的轴上色差曲线、象散曲线、畸变曲线和相对照度曲线;
图16示出了实施例4的成像镜头的结构示意图;
图17至图20分别示出了实施例4的成像镜头的轴上色差曲线、象散曲线、畸变曲线和相对照度曲线;
图21示出了实施例5的成像镜头的结构示意图;
图22至图25分别示出了实施例5的成像镜头的轴上色差曲线、象散曲线、畸变曲线和相对照度曲线;
图26示出了实施例6的成像镜头的结构示意图;以及
图27至图30分别示出了实施例6的成像镜头的轴上色差曲线、象散曲线、畸变曲线和相对照度曲线。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。
应理解的是,在本申请中,当元件或层被描述为在另一元件或层“上”、“连接至”或“联接至”另一元件或层时,其可直接在另一元件或层上、直接连接至或联接至另一元件或层,或者可存在介于中间的元件或层。当元件称为“直接位于”另一元件或层“上”、“直接连接至”或“直接联接至”另一元件或层时,不存在介于中间的元件或层。在说明书全文中,相同的标号指代相同的元件。如本文中使用的,用语“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应理解的是,虽然用语第1、第2或第一、第二等在本文中可以用来描述各种元件、部件、区域、层和/或段,但是这些元件、部件、区域、层和/或段不应被这些用语限制。这些用语仅用于将一个元件、部件、区域、层或段与另一个元件、部件、区域、层或段区分开。因此,在不背离本申请的教导的情况下,下文中讨论的第一元件、部件、区域、层或段可被称作第二元件、部件、区域、层或段。
本文中使用的用辞仅用于描述具体实施方式的目的,并不旨在限制本申请。如在本文中使用的,除非上下文中明确地另有指示,否则没有限定单复数形式的特征也意在包括复数形式的特征。还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组。如在本文中使用的,用语“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。诸如“...中的至少一个”的表述当出现在元件的列表之后时,修饰整个元件列表,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
本申请提供了一种成像镜头。根据本申请的成像镜头从成像镜头的物侧至像侧依序设置有:第一透镜、第二透镜、第三透镜、第四透镜以及第五透镜。
在本申请的实施例中,成像镜头的有效焦距f与成像镜头的入射瞳直径EPD之间满足f/EPD≤1.6,并且成像镜头的有效焦距f与第一透镜的有效焦距f1之间满足5.5<f1/f<25,具体地,满足5.82≤f1/f≤12.05。满足上述关系 的成像镜头能够实现广角、大孔径、高相对照度、高解像力的功效。
在本申请的实施例中,第一透镜物侧面的有效半径DT11与第五透镜像侧面的有效半径DT52之间满足1.8<DT11/DT52<2.8,更具体地,满足1.86≤DT11/DT52≤2.75。满足上述关系的成像镜头能够实现广角化,高相对照度的功效。
在本申请的实施例中,第一透镜物侧面的有效半径DT11与成像面上有效像素区域对角线长的一半ImgH之间满足1.3<DT11/ImgH<3,更具体地,满足1.31≤DT11/ImgH≤2.89。满足上述关系的成像镜头能够实现广角化,高相对照度功效。
在本申请的实施例中,第一透镜和第二透镜的组合焦距f12与成像镜头的有效焦距f之间满足-3.5<f12/f<-2.6,更具体地,满足-3.4≤f12/f≤-2.48。满足上述关系的成像镜头能够实现广角化功效。
在本申请的实施例中,第二透镜物侧面的曲率半径R3与第三透镜像侧面的曲率半径R6之间满足-1.2<R3/R6<-0.5,更具体地,满足-1.1≤R3/R6≤-0.6。满足上述关系的成像镜头能够实现大孔径,高像质功效。
在本申请的实施例中,第一透镜的有效焦距f1与第三透镜的有效焦距f3之间满足1.5<f1/f3<8,更具体地,满足1.6≤f1/f3≤5.02。满足上述关系的成像镜头能够实现广角、高像素功效。
在本申请的实施例中,成像面上有效像素区域对角线长的一半ImgH与成像镜头的有效焦距f之间满足ImgH/f≥1.1,更具体地,满足ImgH/f≥1.11。满足上述关系的成像镜头能够实现广角功效。
在本申请的实施例中,第三透镜的有效焦距f3与成像镜头的有效焦距f之间满足1.4≤f3/f<3.8,更具体地,满足1.42≤f3/f≤3.63。满足上述关系的成像镜头能够实现高像质,广角功效。
在本申请的实施例中,第一透镜物侧面的有效半径DT11与第二透镜物侧面的有效半径DT21之间满足2<DT11/DT21<3.4,更具体地,满足2.06≤DT11/DT21≤3.28。满足上述关系的成像镜头能够实现广角功效。
在本申请的实施例中,第五透镜的有效焦距f5与成像镜头的有效焦距f之间满足∣f/f5∣<0.2,更具体地,满足∣f/f5∣≤0.18。满足上述关系的成像镜头能够实现高相对照度功效。
在本申请的实施例中,第五透镜与成像面之间设置有红外带通滤光片。红外波段有利于系统不引入色差,控制弥散斑直径,同时红外波段有利于减少环境可见光的干扰,提高像方传感器输出信号信躁比。
在本申请的实施例中,第一透镜物侧表面及像侧表面中至少一表面具有至少一反曲点,这有利于减小畸变功效。
根据本申请实施例1至实施例6的成像镜头包括5片透镜。这5片透镜分别为具有物侧面S1和像侧面S2的第一透镜E1、具有物侧面S3和像侧面S4的第二透镜E2、具有物侧面S5和像侧面S6的第三透镜E3、具有物侧面S7和像侧面S8的第四透镜E4以及具有物侧面S9和像侧面S10的第五透镜E5。第一透镜E1至第五透镜E5从成像镜头的物侧到像侧依次设置。第一透镜E1可具有正光焦度,其物侧表面及像侧表面中至少一表面具有至少一反曲点;第二透镜E2可具有负光焦度,其物侧面S3为凸面,像侧面S4为凹面;第三透镜E3可具有正光焦度,其像侧面S6为凸面;第四透镜E4可具有正光焦度;第五透镜可具有正光焦度或负光焦度。该成像镜头还包括用于滤除红外光的具有物侧面S11和像侧面S12的滤光片E6。该成像镜头还包括位于第二透镜E2与第三透镜E3之间的光阑。在实施例中,来自物体的光依次穿过各表面S1至S12并最终成像在成像表面S13上。
参数\实施例 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
ImgH(mm) 2.47 2.47 2.47 2.47 2.47 3.01
HFOV(°) 56.23 55.36 51.31 54.55 53.47 51.19
f(mm) 2.20 2.18 1.99 2.19 2.12 2.71
f1(mm) 15.67 13.64 24.01 12.74 13.87 18.40
f2(mm) -5.38 -4.21 -5.54 -4.50 -4.29 -5.48
f3(mm) 3.13 6.55 6.16 7.95 6.18 7.86
f4(mm) 11.72 4.39 4.12 3.65 4.22 4.93
f5(mm) 12.49 18.55 -94.74 630.30 12.67 34.51
TTL(mm) 7.67 8.50 10.49 9.08 8.14 10.71
表1
在本申请的实施例中,第一透镜E1至第五透镜E5分别具有各自的有效焦距f1至f5。第一透镜E1至第五透镜E5沿着光轴依次排列并共同决定了成像镜头的总有效焦距f。实施例1至实施例5中的第一透镜E1至第五透镜E5的有效焦距f1至f5、成像镜头的总有效焦距f、成像镜头的 总长度TTL、成像镜头的最大视场角的一半HFOV和成像面上有效像素区域对角线长的一半ImgH可例如如上表1所示。
以下结合具体实施例进一步描述本申请。
实施例1
图1为示出了实施例1的成像镜头的结构示意图。如上文所描述的以及参照图1,根据实施例1的成像镜头包括5片透镜。这5片透镜分别为具有物侧面S1和像侧面S2的第一透镜E1、具有物侧面S3和像侧面S4的第二透镜E2、具有物侧面S5和像侧面S6的第三透镜E3、具有物侧面S7和像侧面S8的第四透镜E4以及具有物侧面S9和像侧面S10的第五透镜E5。
表2示出了该实施例中的成像镜头中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018077349-appb-000001
表2
在本实施例中,各非球面面型x由以下公式(1)限定:
Figure PCTCN2018077349-appb-000002
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表2中曲率半径R的倒数);k为圆锥系数(在表2中已给出);Ai是非球面第i-th阶的修正系数。下表3示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A 4、A 6、A 8、A 10、A 12、A 14和A 16
面号 A4 A6 A8 A10 A12 A14 A16
S1 -4.9089E-02 4.8674E-01 -4.6896E+00 2.5620E+01 -8.6729E+01 1.8321E+02 -2.3553E+02
S2 -1.0662E-02 2.0801E-02 -2.8151E+00 2.1883E+01 -1.0415E+02 3.0157E+02 -5.2395E+02
S3 -2.6526E-01 3.2853E-01 -5.3928E+00 4.0465E+01 -1.9272E+02 5.7966E+02 -1.0628E+03
S4 -1.8173E-02 -2.2361E-01 2.3298E+00 -1.5195E+01 6.5109E+01 -1.6769E+02 2.5812E+02
S5 -8.7746E-02 2.3830E-02 9.9586E-01 -7.8194E+00 3.3087E+01 -7.9110E+01 1.1006E+02
S6 -2.3238E-01 6.3312E-01 -1.5467E+00 3.6129E+00 -6.1881E+00 7.2066E+00 -5.1493E+00
S7 -5.8897E-01 6.0048E-01 -3.9682E-01 2.0766E-01 -8.2185E-02 2.2711E-02 -4.0942E-03
S8 -3.0468E-01 3.1884E-01 -2.4608E-01 1.3565E-01 -5.1678E-02 1.3066E-02 -2.0669E-03
S9 -3.0468E-01 3.1884E-01 -2.4608E-01 1.3565E-01 -5.1678E-02 1.3066E-02 -2.0669E-03
S10 -3.0468E-01 3.1884E-01 -2.4608E-01 1.3565E-01 -5.1678E-02 1.3066E-02 -2.0669E-03
表3
图2示出了实施例1的成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图3示出了实施例1的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4示出了实施例1的成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图5示出了实施例1的成像镜头的相对照度曲线,其表示周边画面光亮与中心画面光亮比,反映了画面光亮均匀性。综上所述并参照图2至图5可以看出,根据实施例1的成像镜头是一种大孔径、高相对亮度、广角化、良好成像质量的的成像镜头。
实施例2
图6为示出了实施例2的成像镜头的结构示意图。参照图6以及根据上文所描述的,根据实施例2的成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4以及第五透镜E5。
表4示出了该实施例中的成像镜头中各透镜的表面类型、曲率半径、 厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018077349-appb-000003
表4
下表5示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A 4、A 6、A 8、A 10、A 12、A 14和A 16。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 1.3444E-02 -2.1683E-03 2.6176E-04 -2.0196E-05 9.4504E-07 -2.4285E-08 2.6692E-10
S2 1.4391E-02 -3.1393E-03 5.7988E-04 -7.1213E-05 5.2216E-06 -2.0165E-07 3.1301E-09
S3 3.3415E-02 -6.8953E-02 5.2354E-02 -2.3181E-02 5.9166E-03 -8.1041E-04 4.5750E-05
S4 -1.4153E-01 2.4727E-01 -4.6011E-01 6.1033E-01 -4.9301E-01 2.1376E-01 -3.7935E-02
S5 -1.1570E-03 -5.7705E-03 3.3514E-03 -1.5279E-03 4.0230E-04 -4.4255E-05 3.2768E-07
S6 -4.2088E-02 1.4316E-02 -6.5834E-03 1.8045E-03 -2.6685E-04 7.5067E-06 1.7583E-06
S7 -1.5253E-02 1.1563E-02 -5.6169E-03 1.6007E-03 -2.5882E-04 2.1654E-05 -7.2460E-07
S8 -4.0492E-02 2.3683E-02 -8.3671E-03 1.9269E-03 -2.5104E-04 1.5829E-05 -3.4332E-07
S9 -7.6142E-02 1.5510E-02 -1.0099E-02 4.3318E-03 -9.0325E-04 9.2739E-05 -3.8153E-06
S10 8.3394E-03 -3.1734E-02 1.5169E-02 -4.1147E-03 6.6814E-04 -5.8466E-05 2.0611E-06
表5
图7示出了实施例2的成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图8示出了实施例2的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图9示出了实施例2的成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图10示出了实施例2的成像镜头的相对照度曲线,其表示周边画面光亮与中心画面光 亮比,反映了画面光亮均匀性。综上所述并参照图7至图10可以看出,根据实施例2的成像镜头是一种大孔径、高相对亮度、广角化、良好成像质量的的成像镜头。
实施例3
图11为示出了实施例3的成像镜头的结构示意图。参照图11以及根据上文所描述的,成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4以及第五透镜E5。
表6示出了该实施例中的成像镜头中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018077349-appb-000004
表6
下表7示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A 4、A 6、A 8、A 10、A 12、A 14和A 16。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
Figure PCTCN2018077349-appb-000005
Figure PCTCN2018077349-appb-000006
表7
图12示出了实施例3的成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图13示出了实施例3的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14示出了实施例3的成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图15示出了实施例3的成像镜头的相对照度曲线,其表示周边画面光亮与中心画面光亮比,反映了画面光亮均匀性。综上所述并参照图12至图15可以看出,根据实施例3的成像镜头是一种大孔径、高相对亮度、广角化、良好成像质量的成像镜头。
实施例4
图16为示出了实施例4的成像镜头的结构示意图。参照图16以及根据上文所描述的,根据实施例4的成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4以及第五透镜E5。
下表8示出了该实施例中的成像镜头中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018077349-appb-000007
表8
下表9示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的 高次项系数A 4、A 6、A 8、A 10、A 12、A 14和A 16。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 1.0156E-02 -1.4977E-03 1.4820E-04 -8.8274E-06 3.0248E-07 -5.2620E-09 3.4787E-11
S2 9.7091E-03 -2.4556E-03 4.2540E-04 -4.4346E-05 2.6869E-06 -8.6024E-08 1.1185E-09
S3 5.0675E-02 -1.0399E-01 8.5904E-02 -4.1348E-02 1.1657E-02 -1.7798E-03 1.1218E-04
S4 -9.8009E-02 2.2559E-01 -5.4619E-01 9.2848E-01 -9.0115E-01 4.6089E-01 -9.5070E-02
S5 -4.8695E-03 -1.9755E-02 2.5941E-02 -2.1526E-02 1.0056E-02 -2.2828E-03 1.9711E-04
S6 -3.5884E-03 -2.7430E-02 2.0257E-02 -1.1456E-02 4.3734E-03 -9.7333E-04 9.1202E-05
S7 1.3251E-02 -1.7221E-02 7.7291E-03 -1.9590E-03 2.9088E-04 -2.2677E-05 6.8497E-07
S8 -1.3452E-02 1.5465E-02 -7.7917E-03 2.2246E-03 -3.6746E-04 3.3340E-05 -1.2833E-06
S9 -3.2401E-02 9.3521E-03 -7.0611E-03 2.0442E-03 -2.8026E-04 1.8974E-05 -5.1376E-07
S10 9.3496E-03 -1.3000E-02 2.1260E-03 -2.3146E-05 -3.4319E-05 4.8825E-06 -2.1859E-07
表9
图17示出了实施例4的成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图18示出了实施例4的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图19示出了实施例4的成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图20示出了实施例4的成像镜头的相对照度曲线,其表示周边画面光亮与中心画面光亮比,反映了画面光亮均匀性。综上所述并参照图17至图20可以看出,根据实施例4的成像镜头是一种大孔径、高相对亮度、广角化、良好成像质量的成像镜头。
实施例5
图21为示出了实施例5的成像镜头的结构示意图。参照图21以及根据上文所描述的,根据实施例5的成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4以及第五透镜E5。
下表10示出了该实施例中的成像镜头中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018077349-appb-000008
Figure PCTCN2018077349-appb-000009
表10
下表11示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A 4、A 6、A 8、A 10、A 12、A 14和A 16。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 1.2707E-02 -1.9511E-03 2.2354E-04 -1.6499E-05 7.5069E-07 -1.9038E-08 2.0878E-10
S2 1.5174E-02 -3.1832E-03 5.3507E-04 -5.9884E-05 4.1174E-06 -1.5277E-07 2.3078E-09
S3 1.2690E-02 -3.2960E-02 2.5731E-02 -1.1304E-02 2.7434E-03 -3.5229E-04 1.7918E-05
S4 -1.6970E-01 3.3129E-01 -5.9784E-01 8.0103E-01 -6.6950E-01 2.9886E-01 -5.3808E-02
S5 -1.0676E-02 7.6770E-03 -1.6177E-02 1.6991E-02 -8.5129E-03 2.0034E-03 -1.7996E-04
S6 -8.8309E-02 3.7772E-02 -1.6240E-02 -3.3808E-04 2.9500E-03 -8.8405E-04 7.9929E-05
S7 -2.4350E-02 2.1144E-02 -1.2339E-02 4.0102E-03 -7.2379E-04 6.7526E-05 -2.5316E-06
S8 -7.7622E-02 5.1981E-02 -2.2034E-02 6.3112E-03 -1.0535E-03 9.1247E-05 -3.1842E-06
S9 -1.1137E-01 1.7140E-02 -1.0223E-02 6.4028E-03 -1.7771E-03 2.3058E-04 -1.1685E-05
S10 3.1667E-03 -4.1313E-02 2.1930E-02 -6.4894E-03 1.1313E-03 -1.0496E-04 3.9159E-06
表11
图22示出了实施例5的成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图23示出了实施例5的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图24示出了实施例5的成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图25示出了实施例5的成像镜头的相对照度曲线,其表示周边画面光亮与中心画面光亮比,反映了画面光亮均匀性。综上所述并参照图22至图25可以看出,根据实施例5的成像镜头是一种大孔径、高相对亮度、广角化、良好成像质量的成像镜头。
实施例6
图26为示出了实施例6的成像镜头的结构示意图。参照图26以及根据上文所描述的,实施例6的成像镜头由物侧至像侧依次包括第一透镜E1、第二透镜E2、第三透镜E3、第四透镜E4以及第五透镜E5。
下表12示出了该实施例中的成像镜头中各透镜的表面类型、曲率半径、厚度、折射率、色散系数和圆锥系数,其中,曲率半径和厚度的单位均为毫米(mm)。
Figure PCTCN2018077349-appb-000010
表12
下表13示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A 4、A 6、A 8、A 10、A 12、A 14和A 16。其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
面号 A4 A6 A8 A10 A12 A14 A16
S1 6.2659E-03 -5.9802E-04 4.2501E-05 -1.9293E-06 5.4198E-08 -8.5643E-10 5.9122E-12
S2 7.3792E-03 -1.0189E-03 1.1126E-04 -7.6866E-06 3.1636E-07 -6.9773E-09 6.2871E-11
S3 1.3749E-02 -1.5143E-02 6.4321E-03 -1.6159E-03 2.2106E-04 -1.5090E-05 3.4670E-07
S4 -6.1876E-02 7.6986E-02 -1.1055E-01 1.1076E-01 -6.5856E-02 2.0040E-02 -2.3824E-03
S5 -7.5171E-03 4.5988E-03 -5.2098E-03 3.1366E-03 -9.6631E-04 1.4611E-04 -8.6597E-06
S6 -5.2585E-02 1.9331E-02 -7.4046E-03 1.5242E-03 -1.0935E-04 -6.4066E-06 9.2434E-07
S7 -1.0349E-02 5.2755E-03 -2.1270E-03 4.7350E-04 -5.6499E-05 3.3914E-06 -8.0435E-08
S8 -4.4764E-02 1.7924E-02 -4.7375E-03 8.4271E-04 -8.6118E-05 4.5183E-06 -9.4324E-08
S9 -6.2792E-02 4.6520E-03 -8.8900E-04 5.5959E-04 -1.1964E-04 1.0970E-05 -3.8216E-07
S10 -1.9007E-02 -7.5421E-03 4.3545E-03 -1.0907E-03 1.4769E-04 -1.0150E-05 2.7401E-07
表13
图27示出了实施例6的成像镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图28示出了实施例6的成像镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图29示出了实施例6的成像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图30示出了实施例6的成像镜头的相对照度曲线,其表示周边画面光亮与中心画面光亮比,反映了画面光亮均匀性。综上所述并参照图27至图30可以看出, 根据实施例6的成像镜头是一种大孔径、高相对亮度、广角化、良好成像质量的成像镜头。
概括地说,在上述实施例1至6中,各条件式满足下面表14的条件。
条件式/实施例 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
f/EPD 1.20 1.20 1.20 1.20 1.60 1.55
f1/f 7.11 6.25 12.05 5.82 6.55 6.80
DT11/DT52 2.08 1.86 2.75 2.05 1.93 2.03
DT11/ImgH 1.31 1.95 2.89 2.03 2.01 2.07
f12/f -3.40 -2.48 -2.90 -2.89 -2.56 -2.55
R3/R6 -0.97 -0.74 -0.89 -1.10 -0.61 -0.60
f1/f3 5.02 2.08 3.90 1.60 2.25 2.34
ImgH/f 1.12 1.13 1.24 1.13 1.16 1.11
f3/f 1.42 3.00 3.09 3.63 2.91 2.90
DT11/DT21 2.06 2.50 3.28 2.64 2.51 2.54
∣f/f5∣ 0.18 0.12 0.02 0.00 0.17 0.08
表14
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (28)

  1. 一种成像镜头,由物侧至像侧依序包括:
    具有正光焦度的第一透镜;
    具有光焦度的第二透镜,其物侧面为凸面,像侧面为凹面;
    具有正光焦度的第三透镜,其像侧面为凸面;
    具有光焦度的第四透镜;
    具有光焦度的第五透镜,其物侧面为凸面;
    其特征在于,所述成像镜头的有效焦距f与所述第一透镜的有效焦距f1之间满足5.5<f1/f<25。
  2. 根据权利要求1所述的成像镜头,其特征在于,所述成像镜头的有效焦距f与所述成像镜头的入射瞳直径EPD之间满足f/EPD≤1.6。
  3. 根据权利要求1或2所述的成像镜头,其特征在于,所述第一透镜物侧面的有效半径DT11与所述第五透镜像侧面的有效半径DT52之间满足1.8<DT11/DT52<2.8。
  4. 根据权利要求1所述的成像镜头,其特征在于,所述第一透镜物侧面的有效半径DT11与成像面上有效像素区域对角线长的一半ImgH之间满足1.3<DT11/ImgH<3。
  5. 根据权利要求1所述的成像镜头,其特征在于,所述第一透镜和所述第二透镜的组合焦距f12与所述成像镜头的有效焦距f之间满足-3.5<f12/f<-2.6。
  6. 根据权利要求5所述的成像镜头,其特征在于,所述第二透镜物侧面的曲率半径R3与所述第三透镜像侧面的曲率半径R6之间满足-1.2<R3/R6<-0.5。
  7. 根据权利要求4-6中任一项所述的成像镜头,其特征在于,所述 第一透镜物侧表面及像侧表面中至少一表面具有至少一反曲点。
  8. 根据权利要求4-6中任一项所述的成像镜头,其特征在于,所述成像面上有效像素区域对角线长的一半ImgH与所述成像镜头的有效焦距f之间满足ImgH/f≥1.1。
  9. 根据权利要求4-6中任一项所述的成像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第三透镜的有效焦距f3之间满足1.5<f1/f3<8。
  10. 根据权利要求4-6中任一项所述的成像镜头,其特征在于,所述第三透镜的有效焦距f3与所述成像镜头的有效焦距f之间满足1.4≤f3/f<3.8。
  11. 根据权利要求1所述的成像镜头,其特征在于,所述第一透镜物侧面的有效半径DT11与所述第二透镜物侧面的有效半径DT21之间满足2<DT11/DT21<3.4。
  12. 根据权利要求11所述的成像镜头,其特征在于,所述第五透镜的有效焦距f5与所述成像镜头的有效焦距f之间满足∣f/f5∣<0.2。
  13. 根据权利要求12所述的成像镜头,其特征在于,所述第五透镜与所述成像面之间设置有红外带通滤光片。
  14. 根据权利要求11-13中任一项所述的成像镜头,其特征在于,在所述第二透镜与所述第三透镜之间设置有光阑。
  15. 一种成像镜头,由物侧至像侧依序包括:
    具有正光焦度的第一透镜;
    具有光焦度的第二透镜,其物侧面为凸面,像侧面为凹面;
    具有正光焦度的第三透镜,其像侧面为凸面;
    具有光焦度的第四透镜;
    具有光焦度的第五透镜,其物侧面为凸面;
    其特征在于,所述第一透镜物侧面的有效半径DT11与成像面上有效像素区域对角线长的一半ImgH之间满足1.3<DT11/ImgH<3。
  16. 根据权利要求15所述的成像镜头,其特征在于,所述成像镜头的有效焦距f与所述成像镜头的入射瞳直径EPD之间满足f/EPD≤1.6。
  17. 根据权利要求15或16所述的成像镜头,其特征在于,所述第一透镜物侧面的有效半径DT11与所述第五透镜像侧面的有效半径DT52之间满足1.8<DT11/DT52<2.8。
  18. 根据权利要求16所述的成像镜头,其特征在于,所述成像镜头的有效焦距f与所述第一透镜的有效焦距f1之间满足5.5<f1/f<25。
  19. 根据权利要求15所述的成像镜头,其特征在于,所述第一透镜和所述第二透镜的组合焦距f12与所述成像镜头的有效焦距f之间满足-3.5<f12/f<-2.6。
  20. 根据权利要求19所述的成像镜头,其特征在于,所述第二透镜物侧面的曲率半径R3与所述第三透镜像侧面的曲率半径R6之间满足-1.2<R3/R6<-0.5。
  21. 根据权利要求18-20中任一项所述的成像镜头,其特征在于,所述第一透镜物侧表面及像侧表面中至少一表面具有至少一反曲点。
  22. 根据权利要求18-20中任一项所述的成像镜头,其特征在于,所述成像面上有效像素区域对角线长的一半ImgH与所述成像镜头的有效焦距f之间满足ImgH/f≥1.1。
  23. 根据权利要求18-20中任一项所述的成像镜头,其特征在于,所述第一透镜的有效焦距f1与所述第三透镜的有效焦距f3之间满足1.5<f1/f3<8。
  24. 根据权利要求18-20中任一项所述的成像镜头,其特征在于,所述第三透镜的有效焦距f3与所述成像镜头的有效焦距f之间满足1.4≤f3/f<3.8。
  25. 根据权利要求15所述的成像镜头,其特征在于,所述第一透镜物侧面的有效半径DT11与所述第二透镜物侧面的有效半径DT21之间满足2<DT11/DT21<3.4。
  26. 根据权利要求25所述的成像镜头,其特征在于,所述第五透镜的有效焦距f5与所述成像镜头的有效焦距f之间满足∣f/f5∣<0.2。
  27. 根据权利要求26所述的成像镜头,其特征在于,所述第五透镜与所述成像面之间设置有红外带通滤光片。
  28. 根据权利要求25-27中任一项所述的成像镜头,其特征在于,在所述第二透镜与所述第三透镜之间设置有光阑。
PCT/CN2018/077349 2017-07-31 2018-02-27 成像镜头 WO2019024493A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/224,713 US10996439B2 (en) 2017-07-31 2018-12-18 Imaging lens assembly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710637489.7 2017-07-31
CN201710637489.7A CN107329235B (zh) 2017-07-31 2017-07-31 成像镜头
CN201720938617.7U CN207008163U (zh) 2017-07-31 2017-07-31 成像镜头
CN201720938617.7 2017-07-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/224,713 Continuation US10996439B2 (en) 2017-07-31 2018-12-18 Imaging lens assembly

Publications (1)

Publication Number Publication Date
WO2019024493A1 true WO2019024493A1 (zh) 2019-02-07

Family

ID=65232505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077349 WO2019024493A1 (zh) 2017-07-31 2018-02-27 成像镜头

Country Status (2)

Country Link
US (1) US10996439B2 (zh)
WO (1) WO2019024493A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110658611A (zh) * 2019-11-08 2020-01-07 浙江舜宇光学有限公司 光学成像镜头
CN116841007A (zh) * 2020-09-24 2023-10-03 玉晶光电(厦门)有限公司 光学透镜组

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130002920A1 (en) * 2011-06-30 2013-01-03 Konica Minolta Advanced Layers, Inc. Image Pickup Lens
US20130335835A1 (en) * 2012-06-15 2013-12-19 Shih-Yuan Chang Imaging lens assembly
CN103676087A (zh) * 2013-07-10 2014-03-26 玉晶光电(厦门)有限公司 光学成像镜头及应用此镜头的电子装置
CN105319674A (zh) * 2014-06-10 2016-02-10 光燿科技股份有限公司 成像镜头组
CN105988192A (zh) * 2015-05-08 2016-10-05 浙江舜宇光学有限公司 广角成像镜头
CN107329235A (zh) * 2017-07-31 2017-11-07 浙江舜宇光学有限公司 成像镜头
CN207008163U (zh) * 2017-07-31 2018-02-13 浙江舜宇光学有限公司 成像镜头

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI438479B (zh) 2012-02-08 2014-05-21 Largan Precision Co Ltd 影像擷取光學透鏡組
TWI438478B (zh) 2012-02-08 2014-05-21 Largan Precision Co Ltd 取像光學鏡片系統
TWI524087B (zh) 2014-10-01 2016-03-01 光燿科技股份有限公司 光學成像鏡頭
TWI553371B (zh) 2014-11-19 2016-10-11 先進光電科技股份有限公司 光學成像系統(四)
KR102424361B1 (ko) * 2015-02-04 2022-07-25 삼성전자주식회사 촬영 렌즈계 및 이를 포함한 촬영 장치
TWI563283B (en) 2015-03-18 2016-12-21 Ability Opto Electronics Technology Co Ltd Optical image capturing system
TWI609195B (zh) * 2015-09-24 2017-12-21 先進光電科技股份有限公司 光學成像系統(二)

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130002920A1 (en) * 2011-06-30 2013-01-03 Konica Minolta Advanced Layers, Inc. Image Pickup Lens
US20130335835A1 (en) * 2012-06-15 2013-12-19 Shih-Yuan Chang Imaging lens assembly
CN103676087A (zh) * 2013-07-10 2014-03-26 玉晶光电(厦门)有限公司 光学成像镜头及应用此镜头的电子装置
CN105319674A (zh) * 2014-06-10 2016-02-10 光燿科技股份有限公司 成像镜头组
CN105988192A (zh) * 2015-05-08 2016-10-05 浙江舜宇光学有限公司 广角成像镜头
CN107329235A (zh) * 2017-07-31 2017-11-07 浙江舜宇光学有限公司 成像镜头
CN207008163U (zh) * 2017-07-31 2018-02-13 浙江舜宇光学有限公司 成像镜头

Also Published As

Publication number Publication date
US20190121097A1 (en) 2019-04-25
US10996439B2 (en) 2021-05-04

Similar Documents

Publication Publication Date Title
WO2019210738A1 (zh) 光学成像镜头
WO2020001066A1 (zh) 摄像镜头
TWI418877B (zh) 成像用光學系統
CN108681034B (zh) 光学成像镜头
CN110109236B (zh) 光学成像镜头及电子设备
WO2018192126A1 (zh) 摄像镜头
CN107976788B (zh) 光学成像镜头
CN108152923B (zh) 光学成像镜头
TW201805682A (zh) 光學成像鏡頭
TWI638183B (zh) 光學成像鏡頭
WO2019052220A1 (zh) 光学成像镜头
WO2019019626A1 (zh) 成像镜头
WO2019062136A1 (zh) 摄像透镜组
WO2018218889A1 (zh) 光学成像系统
WO2019052144A1 (zh) 光学成像镜头
WO2018209855A1 (zh) 光学成像系统
WO2019052179A1 (zh) 成像透镜组
WO2018209890A1 (zh) 成像镜头
TW201303349A (zh) 拾像透鏡系統
WO2019037420A1 (zh) 摄像透镜组
WO2019024490A1 (zh) 光学成像镜头
WO2017113557A1 (zh) 摄像镜头
CN109725406B (zh) 光学镜头
WO2019052180A1 (zh) 摄像镜头组
WO2019019530A1 (zh) 光学成像镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18842096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18842096

Country of ref document: EP

Kind code of ref document: A1