WO2019019623A1 - 背光模组及液晶显示装置 - Google Patents

背光模组及液晶显示装置 Download PDF

Info

Publication number
WO2019019623A1
WO2019019623A1 PCT/CN2018/077079 CN2018077079W WO2019019623A1 WO 2019019623 A1 WO2019019623 A1 WO 2019019623A1 CN 2018077079 W CN2018077079 W CN 2018077079W WO 2019019623 A1 WO2019019623 A1 WO 2019019623A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
liquid crystal
grating
crystal display
backlight module
Prior art date
Application number
PCT/CN2018/077079
Other languages
English (en)
French (fr)
Inventor
谭纪风
赵文卿
王维
陈小川
孟宪东
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/315,369 priority Critical patent/US11221516B2/en
Publication of WO2019019623A1 publication Critical patent/WO2019019623A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0016Grooves, prisms, gratings, scattering particles or rough surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate

Definitions

  • Embodiments of the present disclosure relate to a backlight module and a liquid crystal display device.
  • the transparent display device refers to a display device that can form a transparent display state so that the viewer can see the rear view thereof. More commonly, it can be used in various fields such as department store display windows, refrigerator door perspective, automobile front windshield, vending machines, and the like. With the effects of display, interaction, advertising, etc., transparent display devices have attracted more and more attention in the field of special display due to their unique use scenarios and intelligent scene switching.
  • a transparent display device that is currently in common is a transparent liquid crystal display device including a light guide plate, a lower polarizer, a transparent liquid crystal display panel, and an upper polarizer which are sequentially stacked.
  • a film layer for example, a prism film, a scattering film, a reflection sheet, etc.
  • the transmittance of the device causes the transparent display function of the liquid crystal display device of the transparent liquid crystal display module to be poor.
  • At least one object of the present disclosure is to provide a backlight module and a liquid crystal display device for improving transmittance of a liquid crystal display device.
  • a first aspect of the present disclosure provides a backlight module including: a light guide plate including a light incident surface, a light exit surface, and a bottom surface opposite to the light exit surface; and a light source disposed on a side of the light incident surface of the light guide plate The light emitted by the light source enters the light guide plate through the light incident surface; a plurality of collimating members are disposed on at least one of a light emitting surface of the light guide plate and a bottom surface opposite to the light emitting surface, wherein the light enters A part of the light of the light guide plate is collimated by the plurality of collimating members, and is emitted from the light emitting surface of the light guide plate.
  • a second aspect of the present disclosure provides a liquid crystal display device including the above backlight module.
  • FIG. 1 is a schematic structural diagram of a backlight module according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of another backlight module according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural view of light rays collimated from a collimating component of a backlight module according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a multi-step grating provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a hole-shaped grating provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of still another backlight module according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a liquid crystal display device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another liquid crystal display device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of still another liquid crystal display device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of an electrode layer in a liquid crystal display device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a liquid crystal grating in a liquid crystal display device according to an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram showing a positional relationship between a light shielding portion and a collimating member in a liquid crystal display device according to an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram of resolution setting of a liquid crystal display device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a liquid crystal display device for implementing a dark state display according to an embodiment of the present disclosure
  • FIG. 15 is a schematic structural diagram of a gray scale display of a liquid crystal display device according to an embodiment of the present disclosure.
  • the backlight module includes a light guide plate 1
  • the light guide plate 1 includes a light incident surface 1 a , a light exit surface 1 b
  • the The light source 2 is disposed on a side of the light incident surface 1a of the light guide plate 1 , wherein the light emitted by the light source 2 enters the light guide plate 1 through the light incident surface 1 a; a collimating member 3 disposed on at least one of the light emitting surface 1b of the light guiding plate 1 and the bottom surface 1c opposite to the light emitting surface 1b, wherein a part of the light entering the light guiding plate 1 passes through the plurality of collimating members 3 Straight rearward is emitted from the light exit surface 1b of the light guide plate.
  • the plurality of collimating components 3 are uniformly disposed on the light emitting surface of the light guide plate 1 or the bottom surface opposite to the light emitting surface.
  • the plurality of collimating members 3 on the 1c are disposed on the light-emitting surface of the light guide plate 1 or the bottom surface 1c opposite to the light-emitting surface in the same layer, which simplifies the fabrication of the collimating member 3.
  • a plurality of collimating members 3 are disposed on the light-emitting surface 1b of the light guide plate 1, or a plurality of collimating members 3 are disposed on the bottom surface 1c of the light guide plate 1, or on the top surface 1b of the light guide plate 1.
  • a plurality of collimating members 3 are disposed on the bottom surface 1c.
  • a plurality of collimating members 3 are disposed on the outer surface of the light guide plate 1.
  • the light incident surface 1 a of the light guide plate 1 is provided with a light source 2
  • the light exit surface 1 b of the light guide plate 1 is provided with a plurality of collimating members 3 , for example, the specific structure of the collimating member 3 can be
  • the light is emitted from the light guide plate 1 and is incident on the light guide plate 1 .
  • the angle ⁇ between the light emitted from the collimating member 3 and the normal of the light guide plate is less than or equal to 0.15 degrees, the light is considered as collimated light. .
  • a plurality of collimating members 3 may be disposed on the bottom surface 1c of the light guide plate 1, and similarly, the specific structure of the collimating member 3 It can also be designed according to the incident angle of the incident light emitted by the light source 2, and after the light emitted from the light source 2 enters the light guide plate 1, the light is collimated and emitted from the light guide plate 1 through the diffraction or reflection of the collimating member 3.
  • the backlight module provided by the embodiment of the present disclosure, since a plurality of collimating members 3 are disposed on the light emitting surface 1b and/or the bottom surface 1c of the light guiding plate 1, when the light from the light source enters the light guiding plate 1, the light is passed through The straight member 3 is collimated from the light guide plate 1 to be collimated. Since the collimating member has the characteristic of directing the light to collimate, the light emitted from the light guide plate 1 is collimated light, and the light emitted from the light guide plate has better uniformity.
  • the backlight module provided by the embodiment of the present disclosure, it is not necessary to provide a film layer such as a prism film, a scattering film, and a reflection sheet for improving the light uniformity of the light guide plate on the light guide plate 1 , thereby reducing light loss, thereby reducing light loss.
  • the overall light transmittance of the liquid crystal display device is improved, and the display effect of the liquid crystal display device is improved, and in particular, the transparent display effect of the transparent liquid crystal display device can be improved.
  • the above-mentioned collimating member 3 may be a hole-shaped grating or a multi-step grating, so that light rays incident into the light guiding plate 1 can be obtained from the aperture grating after being diffracted or reflected by the aperture grating or the multi-step grating. Or collimated in a multi-step grating.
  • the plurality of collimating members 3 comprise a plurality of apertured gratings or a plurality of multi-stepped gratings, each of which is evenly arranged in a periodic manner.
  • a plurality of collimating members are arranged at equal intervals in the row direction and the column direction on the light-emitting surface 1b and/or the bottom surface 1c of the light guide plate.
  • the following embodiments of the present disclosure take the collimating member 3 disposed on the light-emitting surface 1b of the light guide plate 1 as an example, and specifically describe the specific structure of the above-mentioned hole-shaped grating or multi-step grating.
  • the height h i of each step in the multi-step grating with respect to the light-emitting surface 1b or the bottom surface 1c of the light guide plate 1 is greater than zero and less than or equal to 10 ⁇ m.
  • the grating period P of the multi-step grating is 0.5 ⁇ m to 5 ⁇ m
  • the grating width of the multi-step grating is 0.5 ⁇ m to 5 ⁇ m
  • the grating width of the multi-step grating is the sum of the widths of the steps in the multi-step grating
  • the multi-step grating The ratio of the grating width to the grating period of the multi-step grating is greater than 0.5
  • the direction of the grating width of the multi-step grating is perpendicular to the height direction of the multi-step grating. In this way, the diffracted or reflected light passing through the multi-step grating can be collimated light.
  • the incident angle ⁇ 0 of the incident light is 85 degrees
  • the refractive index of the substrate SUB is 1.5
  • the refractive index of the air ie, the incident medium
  • the number of steps can be designed to be 8
  • the step grating, the grating period P and the grating width of the 8-step grating are both set to 1.8 ⁇ m
  • the height of the i-th grating step is h i
  • the specific values of the height of each grating step are as shown in Table 1.
  • the transmittance of the multi-step grating can reach 58%, the reflectivity is 42%, and the light exit angle ⁇ is 0.14 degrees. It can be seen that the exit angle ⁇ is less than 0.15 degrees, which meets the requirements of collimated light.
  • the light-emitting ratio of the grating can reach 90%, so that the liquid crystal display device using the backlight module and the backlight module provided with the film layer on the existing light guide plate are used in the case where the other structures of the liquid crystal display device are unchanged. Compared with the group structure, the overall light transmittance of the liquid crystal display device using the backlight module is greatly improved.
  • a plurality of grating apertures are formed in one grating period P of the aperture grating, and the plurality of grating apertures are not equally spaced.
  • the spacing of each of the two grating apertures in the plurality of grating apertures is different from the spacing of any two adjacent grating apertures.
  • a plurality of grating steps are further disposed in one grating period of the aperture grating, and each adjacent two grating apertures are separated by grating steps, and the heights of the grating steps are the same. And the height of the grating step is greater than zero and less than or equal to 10 ⁇ m.
  • the apertured grating is capable of collimating or reflecting light passing through the aperture grating as collimated light. It should be noted that the cross-section of the grating aperture in the aperture-shaped grating may be a rectangular or circular shape, which is not limited in the embodiment of the present disclosure.
  • the hole shape can be designed.
  • the number of grating apertures of the grating is 5, the grating period P is 0.95 ⁇ m, and the height of each grating step is H (H can be set in a range greater than zero and less than or equal to 10 ⁇ m), assuming that the starting point of the grating period P is a graph Point A shown in Figure 5, the specific structure of each grating aperture can be determined by the width of the grating step, and the distance between each grating step and point A, exemplarily, can be passed through each grating step in Figure 5.
  • the distance X j between the node j and the point A is determined, and the specific values of the distance between the node j and the point A are as shown in Table 2.
  • the transmittance of the above-mentioned aperture grating can reach 37%, the reflectivity is 63%, and the light exit angle ⁇ is 0.15 degrees, which just reaches the degree of the exit angle required by the collimated light (0.15 degrees), and
  • the light-emitting ratio of the grating can also reach 73%, so that the liquid crystal display device using the backlight module and the backlight provided with the film layer on the existing light guide plate are used in the case where the other structures of the liquid crystal display device are unchanged.
  • the overall light transmittance of the liquid crystal display device using the backlight module is greatly improved.
  • the collimating member 3 is provided with a transparent flat layer 4 for flattening the plane in which the collimating member is located, thereby making the entire backlight module relatively flat.
  • the thickness of the flat layer 4 is greater than or equal to 1 ⁇ m, so that the refractive index of the flat layer 4 can be made sufficiently large, and due to the critical angle ⁇ 0 of total reflection of the light in the light guide plate 1,
  • n 1 is the refractive index of the flat layer 4
  • n 2 is the refractive index of the light guide plate 1.
  • the thickness of the flat layer 4 is greater than the height of all the collimating members 3.
  • the exit angle of the outgoing light of the light source 2 is greater than the critical angle ⁇ 0 of the total reflection of the light in the light guide plate 1,
  • n 1 is the refractive index of the flat layer 4
  • n 2 is the refractive index of the light guide plate 1.
  • the light source 2 may include a light bar 21 and a coupling grating 22 disposed between the light incident surface 1a of the light guide plate 1 and the light bar 21.
  • the coupling grating 22 is used to gather the large-angle light emitted by the light bar 21 into a light having a smaller divergence angle than the critical angle ⁇ 0 of the total reflection of the light in the light guide plate 1, so that the coupled light is incident on the light guide plate. In 1, the total reflection propagation in the light guide plate 1 can be achieved.
  • the structure of the coupling grating 22 is designed for the incident angle of the light emitted by the light bar 21.
  • the coupling grating is designed, that is, an area requiring 12 different grating parameters to achieve the effect of emitting incident light of different angles emitted by the light bar 21 to the light guide plate 1 at the same angle.
  • the upper or lower portion of the light bar 21 may further be provided with a reflection sheet 23, so that light leaking from the upper or lower portion of the light bar 21 can be reflected back to the light bar 21, It is injected into the light guide plate 1 to improve the utilization of light.
  • the refractive index of the outer cover of the light bar 21 is smaller than the refractive index of the light guide plate 1 , so that the light emitted by the light source in the light bar 21 is refracted by the outer casing of the light bar 21, and the exit angle of the outgoing light becomes large, thereby It is possible to further ensure that the exit angle of the outgoing light is larger than the critical angle ⁇ 0 of the total reflection of the light in the light guide plate 1, so that total reflection propagation in the light guide plate 1 can be achieved.
  • the light source 2 may also include a parabolic mirror 24 disposed on the light incident surface 1a of the light guide plate 1, and an illuminator 25 disposed at a focus position of the parabolic mirror 24,
  • the body 25 is disposed at the focus position of the parabolic mirror 24, and the light beams of the same brightness emitted from the illuminator 25 become parallel rays after being reflected by the parabolic mirror 24, thereby being incident on the light guide plate 1.
  • the light rays are all parallel rays, thereby improving the uniformity of light incident into the light guide plate 1.
  • the embodiment of the invention further provides a liquid crystal display device. As shown in FIGS. 7 to 9, the liquid crystal display device includes the backlight module.
  • the beneficial effects of the liquid crystal display device provided by the embodiment of the present invention are the same as those of the backlight module described above, and thus are not described herein again.
  • the light that is incident on the liquid crystal display panel from the backlight module is collimated light, and therefore, different voltages are applied to the liquid crystal layer in the liquid crystal display device to deflect the liquid crystal layer.
  • the collimated light rays incident on the liquid crystal display panel can be emitted from the sub-pixels of the liquid crystal display device by diffraction or refraction of the liquid crystal grating to realize gray scale display of the liquid crystal display device. Therefore, the liquid crystal display device can display the screen without providing two polarizers, further improving the light transmittance of the liquid crystal display device, and further facilitating transparent display of the liquid crystal display device.
  • the liquid crystal display device includes a plurality of pixel units, each of the pixel units includes a plurality of sub-pixels Q, each of the sub-pixels Q includes a light shielding portion 5, and two sides of the light shielding portion.
  • the color film optionally, the color film on both sides of the same light shielding portion 5 has the same color, for example, the color resist layer of the same color or the same kind of light emitting material, and the light emitting material may be an organic electroluminescent material or a quantum dot. Luminescent material.
  • Each of the collimating members 3 of the backlight module is in one-to-one correspondence with the light shielding portions 5 corresponding to the respective sub-pixels Q, so that when the liquid crystal is not applied with a voltage, the light shielding portion 5 corresponding to each sub-pixel Q can block the corresponding light shielding portion 5
  • the light emitted from the collimating member 3 is displayed in a dark state of the liquid crystal display device.
  • the orthographic projection of the collimating component 3 on the light guide plate of the backlight module is located in the orthographic projection of the light shielding portion 5 corresponding to the collimating component 3 on the light guide plate of the backlight module, for example,
  • the area of the orthographic projection of the straight member 3 on the light guide plate of the backlight module may be smaller than or equal to the area of the orthographic projection of the corresponding light shielding portion 5 of the collimating member 3 on the light guide plate of the backlight module.
  • the liquid crystal display device further includes a liquid crystal display panel.
  • the specific structure of the liquid crystal display panel is various, and can be set by a person skilled in the art according to actual needs. To facilitate understanding and implementation by those skilled in the art, the present invention The embodiment gives examples of the following three liquid crystal display panels:
  • the liquid crystal display panel includes an AOC (Array on Color-filter) substrate 6 and a liquid crystal layer 7 between the AOC substrate 6 and the backlight module, and the AOC substrate.
  • An electrode layer 8 is disposed between the color film layer of the film layer 6 and the liquid crystal layer 7, and a first alignment layer 9 is disposed between the electrode layer 8 and the liquid crystal layer 7.
  • the liquid crystal layer 7 is disposed between the liquid crystal layer 7 and the flat layer 4 of the backlight module.
  • Two orientation layers 10 10.
  • the AOC substrate 6 in the liquid crystal display panel that is, the electrode layer 8 and the TFT array are all formed on the color film substrate, it is not necessary to provide the array substrate in the liquid crystal display panel, and only need to be disposed between the AOC substrate 6 and the backlight module.
  • the liquid crystal layer 7, and then the AOC substrate 6 and the backlight module are paired to form a liquid crystal display device, thereby simplifying the internal structure of the liquid crystal display device, reducing the number of layers of light emitted by the backlight module, and thereby reducing The loss of light is reduced, and the light transmittance of the liquid crystal display device is further improved.
  • the distance between the collimating member 3 and the color filter layer in the backlight module is reduced as compared with the conventional liquid crystal display device.
  • the light is refracted, and thus the light is diffused and propagated inside the liquid crystal display device.
  • the distance between the collimating member 3 and the color film layer in the backlight module is reduced, and on the other hand, the light propagating to the color film layer is made. It is more concentrated, thereby improving the light utilization efficiency of the liquid crystal display device.
  • the liquid crystal display panel includes a color film layer 11, an electrode layer 8, a TFT array layer (not shown), and a liquid crystal layer 7 between the electrode layer 8 and the color film layer 11.
  • the electrode layer 8 and the TFT array layer are sequentially stacked on one side of the light guide plate 1 facing the color film layer 11, and the first alignment layer 9 is disposed between the color film layer 11 and the liquid crystal layer 7; the electrode layer 8 and the liquid crystal layer 7 A second alignment layer 10 is disposed therebetween.
  • the electrode layer 8 and the TFT array layer in the liquid crystal display panel By forming the electrode layer 8 and the TFT array layer in the liquid crystal display panel on one side of the light guide plate 1 facing the color film layer 11, it is not necessary to provide the array substrate in the liquid crystal display panel, and only the color film layer 11 and the formation are formed.
  • a liquid crystal layer 7 is disposed between the electrode layer 8 and the backlight module of the TFT array layer, and then the color film substrate provided with the color film layer 11 and the backlight module are paired to form a liquid crystal display device, thereby simplifying the liquid crystal display device
  • the internal structure reduces the number of layers of light emitted by the backlight module, thereby reducing the loss of light, and further improving the light transmittance of the liquid crystal display device.
  • the distance between the collimating member 3 and the color filter layer in the backlight module is reduced as compared with the conventional liquid crystal display device.
  • the light is refracted, and thus the light is diffused and propagated inside the liquid crystal display device.
  • the distance between the collimating member 3 and the color film layer in the backlight module is reduced, and on the other hand, the light propagating to the color film layer is made. It is more concentrated, thereby improving the light utilization efficiency of the liquid crystal display device.
  • the liquid crystal display panel includes a color filter substrate 12, an array substrate 13, and a liquid crystal layer 7 between the color filter substrate 12 and the array substrate 13; wherein, the color filter substrate 12 and the liquid crystal layer 7 A first alignment layer 9 is disposed therebetween; an electrode layer 8 is disposed on one surface of the array substrate 13 facing the liquid crystal layer 7, and a second alignment layer 10 is disposed between the electrode layer 8 and the liquid crystal layer 7.
  • the color film layer may be a quantum dot color film layer.
  • the quantum dots when the light emitted by the backlight module is a monochromatic short-wavelength light, the quantum dots can be excited to realize the color display of the liquid crystal display device; on the other hand, the quantum dots have good scattering characteristics, and therefore, the quantum dot color film is selected.
  • the layer can scatter the emitted light to increase the viewing angle of the liquid crystal display device.
  • the quantum dot color film layer is an RGB quantum dot color film layer.
  • the electrode layer 8 of the embodiment of the present invention may include a pixel electrode 81 and a common electrode 82, and the pixel electrode 81 and the common electrode 82 are separated by an insulating layer 83.
  • the liquid crystal grating 14 can be formed by a plurality of electrodes, which is not limited in the embodiment of the invention.
  • the pixel electrode 81 and the common electrode 82 may each be a flat electrode or a strip electrode, and the pixel electrode 81 and the common electrode 82 may be respectively disposed on the upper and lower sides of the liquid crystal layer 7, The embodiment of the invention does not limit this.
  • a is the width of the collimating member 3 corresponding to the light shielding portion 5
  • h is the distance between the surface of the light guide plate where the collimating member 3 is located and the lower surface of the light shielding portion 5
  • is from the collimating member 3.
  • the angle of the light emitted in the middle, d is the process deviation of the light-shielding portion 5.
  • the width direction of the collimating member 3 is the same as the width direction of the light shielding portion 5, the width direction of the collimating member 3 and the surface of the light guide plate 1 where the collimating member 3 is located and the shading The direction of the distance between the lower surfaces of the portions 5 is perpendicular.
  • the light shielding portion 5 can completely block the light incident on the liquid crystal display panel taken out by the corresponding collimating member 3, thereby avoiding light leakage.
  • the liquid crystal display device is a transparent liquid crystal display device.
  • the pixel unit includes a display area I and a transmissive area II for increasing light transmission through the pixel unit, and a plurality of sub-pixels are located in the display area.
  • the transmittance of the background light can be effectively increased, and the transparency of the liquid crystal display device can be improved.
  • the liquid crystal display device includes data lines and gate lines which are horizontally and vertically staggered in the display area of the pixel unit, and a plurality of sub-pixels in the pixel unit are arranged in the display area I along the extending direction of the data line, and each sub-pixel Each of them is connected to a corresponding gate line, and the plurality of sub-pixels are connected to the same data line.
  • the extending direction of the data line is perpendicular to the direction of the width of the display area I of the pixel unit. Therefore, the width of the display area I of the pixel unit is constant.
  • the plurality of sub-pixels in the pixel unit are arranged in the display area I along the extending direction of the data line, compared with the arrangement of the plurality of sub-pixels in the pixel unit along the direction of the width of the display area 1.
  • the pixel density of the display area I of the pixel unit is increased by n times, and n is the number of sub-pixels in each pixel unit.
  • an embodiment of the present invention further provides a display method.
  • the display method is applied to the above liquid crystal display device.
  • the display mode of the liquid crystal display device includes a dark state display and a gray scale display
  • the display method includes:
  • the light emitted by the light source 2 of the backlight module enters the light guide plate 1 of the backlight module, and is collimated and emitted through the collimating components 3 of the backlight module;
  • the light shielding portion 5 corresponding to each sub-pixel in the liquid crystal display device blocks the light emitted from the collimating member 3 corresponding to the light shielding portion, thereby realizing a dark state display of the liquid crystal display device;
  • the gray scale display of the liquid crystal display device is realized by emitting from the filter layer of each sub-pixel.
  • the light that is incident on the liquid crystal display panel from the backlight module is collimated light, and therefore, different voltages are applied to the liquid crystal layer in the liquid crystal display device to make the liquid crystal
  • the collimated light rays incident on the liquid crystal display panel can be diffracted or refracted by the liquid crystal grating, and are emitted from the respective sub-pixels of the liquid crystal display device to realize the liquid crystal display device.
  • the gray scale display enables the liquid crystal display device to display a screen without providing two polarizers, further improving the light transmittance of the liquid crystal display device, and is more advantageous for realizing transparent display of the liquid crystal display device.

Abstract

一种背光模组及液晶显示装置。该背光模组包括:导光板(1),包括入光面(1a)、出光面(1b)和与出光面(1b)相对的底面(1c);光源(2),设置在导光板(1)的入光面(1a)的一侧,其中光源(2)发出的光经入光面(1a)进入导光板(1);多个准直部件(3),设置在导光板(1)的出光面(1b)和与出光面(1b)相对的底面(1c)中的至少一个上,其中进入导光板(1)的一部分光经多个准直部件(3)准直后从导光板(1)的出光面(1b)射出。该背光模组和液晶显示装置提高了液晶显示装置的透过率。

Description

背光模组及液晶显示装置
相关申请的交叉引用
本申请基于并且要求于2017年7月24日递交的中国专利申请第201710608440.9号的优先权,在此全文引用上述中国专利申请公开的内容。
技术领域
本公开实施例涉及一种背光模组及液晶显示装置。
背景技术
透明显示装置是指可形成透明显示状态以使观看者可看到其后方景象的显示装置,较常见地,可以用在百货陈列窗、冰箱门透视、汽车前风挡玻璃、自动售货机等各个领域,具有展示、互动、广告等效果,并且,透明显示装置由于其独特的使用场景和可实现智能化的场景切换,使得其在特种显示领域的应用也越来越受到关注。
目前常见的一种透明显示装置为透明液晶显示装置,该透明液晶显示装置包括依次层叠设置的导光板、下偏光片、透明液晶显示面板和上偏光片。为了增加出光的均匀性,现有的透明液晶显示模组液晶显示装置中的导光板上还设置有膜层(例如,棱镜膜,散射膜,反射片等),如此会进一步降低该透明液晶显示装置的透过率,导致该透明液晶显示模组液晶显示装置的透明显示效果较差。
发明内容
本公开的至少一个目的在于提供一种背光模组及液晶显示装置,用于提高液晶显示装置的透过率。
本公开的第一方面提供一种背光模组,包括:导光板,包括入光面、出光面和与所述出光面相对的底面;光源,设置在所述导光板的入光面的一侧,其中所述光源发出的光经所述入光面进入所述导光板;多个准直部件,设置在所述导光板的出光面和与出光面相对的底面中的至少一个上,其中进入导 光板的一部分光经所述多个准直部件准直后从所述导光板的出光面射出。
本公开的第二方面提供一种液晶显示装置,包括上述的背光模组。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开实施例提供的背光模组的结构示意图;
图2为本公开实施例提供的另一背光模组的结构示意图;
图3为本公开实施例提供的光线从背光模组的准直部件中准直射出的结构示意图;
图4为本公开实施例提供的多台阶光栅的结构示意图;
图5为本公开实施例提供的孔状光栅的结构示意图;
图6为本公开实施例提供的再一背光模组的结构示意图;
图7为本公开实施例提供的液晶显示装置的结构示意图;
图8为本公开实施例提供的另一液晶显示装置的结构示意图;
图9为本公开实施例提供的再一液晶显示装置的结构示意图;
图10为本公开实施例提供的液晶显示装置中电极层的结构示意图;
图11为本公开实施例提供的液晶显示装置中液晶光栅的结构示意图;
图12为本公开实施例提供的液晶显示装置中遮光部与准直部件的位置关系示意图;
图13为本公开实施例提供的液晶显示装置的分辨率设置示意图;
图14为本公开实施例提供的液晶显示装置实现暗态显示的结构示意图;
图15为本公开实施例提供的液晶显示装置实现灰阶显示的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开实施例提供一种背光模组,如图1、图2和图6所示,该背光模组包括:导光板1,所述导光板1包括入光面1a、出光面1b和所述出光面1b相对的底面1c;光源2,设置在所述导光板1的入光面1a的一侧,其中所述光源2发出的光经所述入光面1a进入所述导光板1;多个准直部件3,设置在所述导光板1的出光面1b和与出光面1b相对的底面1c中的至少一个上,其中进入导光板1的一部分光经所述多个准直部件3准直后从所述导光板的出光面1b射出。
示例性地,如图1、图2和图6所示,本公开实施例提供的背光模组中,多个准直部件3是均匀设置在导光板1的出光面或与出光面相对的底面1c上的,且多个准直部件3是同层设置在导光板1的出光面或与出光面相对的底面1c上的,这样可以简化准直部件3的制作。
示例性地,多个准直部件3设置在导光板1的出光面1b上,或者,多个准直部件3设置在与导光板1的底面1c上,或者,在导光板1的顶面1b和底面1c上都设置多个准直部件3。多个准直部件3设置在导光板1的外表面上。
示例性地,如图1所示,导光板1的入光面1a设置有光源2,导光板1的出光面1b设置有多个准直部件3,例如,该准直部件3的具体结构可根据光源2发出的入射光的入射角度进行设计,在光源2发出的光线射入导光板1内后,经由准直部件3的衍射或反射,使得光线从导光板1中准直射出。 需要说明的是,如图3所示,当从准直部件3中出射的光线与导光板的法线之间的夹角θ均小于或等于0.15度时,则可认为该光线为准直光线。
示例性地,如图2所示,在本公开实施例提供的背光模组中,也可在导光板1的底面1c设置多个准直部件3,类似地,该准直部件3的具体结构也可根据光源2发出的入射光的入射角度进行设计,在光源2发出的光线射入导光板1内后,经由准直部件3的衍射或反射,使得光线从导光板1中准直射出。
在本公开实施例提供的背光模组中,由于在导光板1的出光面1b和/或底面1c设置有多个准直部件3,因此当光源发出光进入导光板1中后,会经由准直部件3从导光板1中准直射出。由于准直部件具有将光线准直射出的特性,使得从导光板1射出的光线均为准直光线,且从导光板射出的光线具有较佳的均匀性。因此,在本公开实施例提供的背光模组中,无需在导光板1上设置用于提高导光板的出光均匀性的棱镜膜、散射膜和反射片等膜层,因此减少了光线损失,从而提高了该液晶显示装置的整体透光率,进而提高了液晶显示装置的显示效果,尤其是透明液晶显示装置的透明显示效果也能得到提高。
示例性地,上述准直部件3可为孔状光栅或多台阶光栅,从而使得射入导光板1中的光线,经过孔状光栅或多台阶光栅的衍射或反射之后,能够从该孔状光栅或多台阶光栅中准直射出。
示例性地,多个准直部件3包括多个孔状光栅或多个多台阶光栅,每个准直部件以周期性方式均匀排列。例如,多个准直部件沿行方向和列方向等间距地排列在导光板的出光面1b和/或底面1c上。
下面本公开实施例以准直部件3设置在导光板1的出光面1b为例,详细介绍上述孔状光栅或多台阶光栅的具体结构。
示例性地,如图4所示,多台阶光栅中的每个台阶相对于导光板1的出光面1b或底面1c的高度h i为大于零且小于或等于10μm。例如,多台阶光栅的光栅周期P为0.5μm~5μm,多台阶光栅的光栅宽度为0.5μm~5μm,多台阶光栅的光栅宽度是该多台阶光栅中各台阶的宽度之和,多台阶光栅的光栅宽度与多台阶光栅的光栅周期的比大于0.5,多台阶光栅的光栅宽度的方向与多台阶光栅的高度方向垂直。这样,能够使经过该多台阶光栅的衍射或反 射的光线为准直光线。
示例性地,如图4所示,假设入射光的入射角θ 0为85度,基板SUB的折射率为1.5,空气(即入射介质)的折射率为1,可设计台阶数为8的多台阶光栅,该8台阶光栅的光栅周期P和光栅宽度均设定为1.8μm,第i个光栅台阶的高度为h i,每个光栅台阶的高度的具体值如表1所示。
表1各光栅台阶的高度值
i h i(μm) i h i(μm)
1 1.21 5 1.18
2 1.94 6 0.19
3 1.71 7 0.32
4 1.45 8 0.99
经过实验表明,上述多台阶光栅的透射率可达到58%,反射率为42%,光的出射角θ为0.14度,可见该出射角θ小于0.15度,达到了准直光线的要求,且该光栅的出光比率可达到90%,从而使得在液晶显示装置的其他结构不变的情况下,使用了该背光模组的液晶显示装置与使用了现有的导光板上设置有膜层的背光模组结构相比,使用了该背光模组的液晶显示装置的整体透光率有了大大的提高。
示例性地,如图5所示,孔状光栅的一个光栅周期P内开设有多个光栅孔,所述多个光栅孔非等间距地排列。例如,多个光栅孔中每相邻两个光栅孔的间距与余下任一相邻两个光栅孔的间距不同。
示例性地,如图5所示,所述孔状光栅的一个光栅周期内还设有多个光栅台阶,每相邻两个光栅孔是通过光栅台阶隔开的,各光栅台阶的高度相同,且光栅台阶的高度大于零且小于或等于10μm。
上述孔状光栅能够使经过该孔状光栅衍射或反射出的光线为准直光线。需要说明的是,上述孔状光栅中的光栅孔的横截面可以为矩形或圆形等图形,本公开实施例对此不进行限定。
示例性地,如图5所示,假设入射光的入射角θ 0为70度至90度,基板SUB的折射率为1.5,空气(即入射介质)的折射率为1,可设计该孔状光栅的光栅孔的个数为5、光栅周期P为0.95μm,各光栅台阶的高度均为H(H可在大于零且小于或等于10μm的范围内设置),假设光栅周期P的起点为图5中所示A点,每个光栅孔的具体结构可通光栅台阶的宽度,以及每个光栅台阶与A点之间的距离确定,示例性地,可通过图5中每个光栅台阶上的节 点j与A点之间的距离X j来确定,节点j与A点之间的距离的具体值如表2所示。
表2各节点与A点之间的距离
j X j(μm) j X j(μm)
1 0.21 5 0.68
2 0.25 6 0.7
3 0.27 7 0.77
4 0.39 8 0.9
经过实验表明,上述孔状光栅的透射率可达到37%,反射率为63%,光的出射角θ为0.15度,刚好达到了准直光线要求的出射角的度数(0.15度),且该光栅的出光比率也可达到73%,从而使得在液晶显示装置的其他结构不变的情况下,使用了该背光模组的液晶显示装置与使用了现有的导光板上设置有膜层的背光模组结构相比,使用了该背光模组的液晶显示装置的整体透光率有了大大的提高。
示例性地,如图1和图2所示,准直部件3上设置有透明的平坦层4,该平坦层4用于平坦化准直部件所在的平面,进而使得整个背光模组较为平坦。例如,平坦层4的厚度大于或等于1μm,从而能够使得平坦层4的折射率足够大,而由于光线在导光板1中全反射的临界角θ 0
Figure PCTCN2018077079-appb-000001
其中,n 1为平坦层4的折射率,n 2为导光板1的折射率,则平坦层4的折射率越大,背光模组中导光板1的全反射角就越大,进而可以避免射入导光板1的光线泄露。例如,为了使平坦层4覆盖所有准直部件3,平坦层4的厚度大于所有准直部件3的高度。
示例性地,光源2的出射光的出射角大于光线在导光板1中全反射的临界角θ 0
Figure PCTCN2018077079-appb-000002
其中,n 1为平坦层4的折射率,n 2为导光板1的折射率。当光源2的出射光的出射角大于光线在导光板1中全反射的临界角时,出射光线则能在导光板1中全反射传播,从而使得入射到导光板1中的光线在没有设置准直部件3的区域能够全反射传播,当入射到导光板1中的光线入射到设置有准直部件3的区域时,光线经由准直部件3的衍射或反射,能够从准直部件3中准直射出。
示例性地,如图1和图2所示,光源2可包括灯条21和设置在导光板1 的入光面1a和所述灯条21之间的耦合光栅22。耦合光栅22用于将灯条21发出的大角度光线收拢成大于光线在导光板1的中的全反射的临界角θ 0的较小发散角的光线,这样,经耦合的光线入射到导光板1中,能够实现在导光板1中的全反射传播。例如,耦合光栅22的结构是针对灯条21发出的光线的入射角度设计的,例如,若灯条21发出的光线的入射角为-60°~60°,可选择10°为一个步长来设计耦合光栅,即需要12个不同光栅参数的区域,以达到将灯条21发出的不同角度的入射光以相同角度出射到导光板1的效果。
需要说明的是,如图1和图2所示,灯条21的上部或下部还可设置有反射片23,从而可以将从灯条21的上部或下部漏出的光,反射回灯条21,射入导光板1内,从而提高光的利用率。
示例性地,灯条21外壳的折射率小于导光板1的折射率,从而使得灯条21中的光源发出的光线,经该灯条21的外壳折射之后,出射光的出射角变大,从而能够进一步保证该出射光的出射角大于光线在导光板1中全反射的临界角θ 0,从而能够实现在导光板1中的全反射传播。
示例性地,如图6所示,上述光源2也可包括设置在导光板1的入光面1a的抛物面反射镜24,以及设在抛物面反射镜24的焦点位置的发光体25,而由于发光体25是设置在抛物面反射镜24的焦点位置的,则从该发光体25发出的亮度相同的光线,在经抛物面反射镜24反射之后,均成为平行的光线,从而使得入射到导光板1中的光线均为平行的光线,进而提高了入射到导光板1中的光的均匀性。
本发明实施例还提供一种液晶显示装置,如图7至图9所示,该液晶显示装置包括上述背光模组。
与现有技术相比,本发明实施例提供的液晶显示装置的有益效果与上述背光模组的有益效果相同,故此处不再进行赘述。另外,在本发明实施例提供的液晶显示装置中,从背光模组射入液晶显示面板的光线为准直光线,因此,在向液晶显示装置中的液晶层施加不同的电压,使液晶层偏转,形成不同的液晶光栅之后,射入液晶显示面板的准直光线,即可经过液晶光栅的衍射或折射,从该液晶显示装置的各子像素中射出,以实现液晶显示装置的灰阶显示,从而无需设置两层偏光片即可使液晶显示装置显示画面,进一步提高了液晶显示装置的透光率,更有利于实现液晶显示装置的透明显示。
示例性的,如图7至图9所示,上述液晶显示装置包括多个像素单元,每个像素单元包括多个子像素Q,每个子像素Q均包括一个遮光部5,以及遮光部两侧的彩膜,可选地,位于同一遮光部5两侧的彩膜的颜色相同,比如可以是同种颜色的色阻层或者同种发光材料,上述发光材料可以是有机电致发光材料或者量子点发光材料。背光模组的各准直部件3与各子像素Q对应的遮光部5一一对应,从而使得当液晶不被施加电压时,各子像素Q对应的遮光部5能够遮挡从该遮光部5对应的准直部件3中射出的光线,以实现液晶显示装置的暗态显示。
示例性地,上述准直部件3在背光模组的导光板上的正投影,均位于与该准直部件3对应的遮光部5在背光模组的导光板上的正投影内,例如,准直部件3在背光模组的导光板上的正投影的面积,可小于或者等于准直部件3对应的遮光部5在背光模组的导光板上的正投影的面积。
需要说明的是,上述液晶显示装置中还包括液晶显示面板,液晶显示面板的具体结构多种多样,本领域技术人员可根据实际需求进行设置,为了便于本领域技术人员的理解与实施,本发明实施例给出以下三种液晶显示面板的示例:
第一种:如图7所示,液晶显示面板包括AOC(Array on Color-filter,阵列集成在彩膜基板)基板6,以及位于AOC基板6与背光模组之间的液晶层7,AOC基板6的彩膜层与液晶层7之间设置有电极层8,电极层8与液晶层7之间设置有第一取向层9,液晶层7与背光模组的平坦层4之间设置有第二取向层10。
通过在液晶显示面板中选用AOC基板6,即将电极层8和TFT阵列均制作在彩膜基板上,则无需在液晶显示面板中设置阵列基板,只需在AOC基板6与背光模组之间设置液晶层7,然后将AOC基板6与背光模组对盒,即可形成液晶显示装置,从而简化了液晶显示装置的内部结构,减少了背光模组发出的光经过的膜层的数量,进而减小了光的损耗,进一步提高了液晶显示装置的透光率。并且,由于该液晶显示装置中并未设置有阵列基板,因此,与现有的液晶显示装置相比,减小了背光模组中的准直部件3与彩膜层之间的距离。通常,光在液晶显示装置的内部传播过程中,由于液晶显示装置内部有多个膜层,会对光有折射的作用,因此光在液晶显示装置内部是发 散传播的。本实施例中,由于减少了光经过的膜层的数量,一方面减小了背光模组中的准直部件3与彩膜层之间的距离,另一方面使传播至彩膜层的光便更为集中,进而提高了液晶显示装置的光利用率。
第二种:如图8所示,液晶显示面板包括彩膜层11、电极层8、TFT阵列层(图中未示出),以及位于电极层8与彩膜层11之间的液晶层7;其中,电极层8和TFT阵列层依次层叠设置在导光板1朝向彩膜层11的一面,彩膜层11与液晶层7之间设置有第一取向层9;电极层8与液晶层7之间设置有第二取向层10。
通过将液晶显示面板中的电极层8和TFT阵列层均制作在导光板1朝向彩膜层11的一面上,则无需在液晶显示面板中设置阵列基板,只需在彩膜层11与形成有电极层8和TFT阵列层的背光模组之间设置液晶层7,然后将设置有彩膜层11的彩膜基板与背光模组对盒,即可形成液晶显示装置,从而简化了液晶显示装置的内部结构,减少了背光模组发出的光经过的膜层的数量,进而减小了光的损耗,进一步提高了液晶显示装置的透光率。并且,由于该液晶显示装置中并未设置有阵列基板,因此,与现有的液晶显示装置相比,减小了背光模组中的准直部件3与彩膜层之间的距离。通常,光在液晶显示装置的内部传播过程中,由于液晶显示装置内部有多个膜层,会对光有折射的作用,因此光在液晶显示装置内部是发散传播的。本实施例中,由于减少了光经过的膜层的数量,一方面减小了背光模组中的准直部件3与彩膜层之间的距离,另一方面使传播至彩膜层的光便更为集中,进而提高了液晶显示装置的光利用率。
第三种:如图9所示,液晶显示面板包括彩膜基板12、阵列基板13,以及位于彩膜基板12与阵列基板13之间的液晶层7;其中,彩膜基板12与液晶层7之间设置有第一取向层9;阵列基板13朝向液晶层7的一面设置有电极层8,电极层8与液晶层7之间设置有第二取向层10。
示例性地,上述彩膜层可以为量子点彩膜层。一方面,当背光模组发出的光是单色短波长光线时,可激发量子点实现液晶显示装置的彩色显示;另一方面,量子点具有很好的散射特性,因此,选用量子点彩膜层可对出射光线进行散射处理,从而可以增大液晶显示装置的可视角度。可选地,上述量子点彩膜层为RGB量子点彩膜层。
示例性地,如图10所示,本发明实施例的电极层8可包括像素电极81和公共电极82,像素电极81与公共电极82通过绝缘层83隔开。
示例性地,如图11所示,在向本发明实施例提供的液晶显示装置中的液晶层施加电压之后,在一个电极周期T内可形成至少两个液晶光栅14,这样液晶光栅14的最高点较小,液晶光栅14的衍射效率明显,当然也可以多个电极形成一个液晶光栅14,本发明实施例对此不进行限定。此外,电极层8中,像素电极81和公共电极82还可以均为平板状电极或条状电极等,另外,像素电极81和公共电极82也可以分别设置在液晶层7的上下两侧,本发明实施例对此不进行限定。
示例性地,如图12所示,液晶显示装置中的子像素对应的遮光部5与彩膜层同层设置,遮光部5的宽度为b,b=a+(h×tanθ+d)×2,其中,a为与该遮光部5对应的准直部件3的宽度,h为准直部件3所在的导光板的表面与遮光部5的下表面之间的距离,θ为从准直部件3中射出的光线的角度,d为制作遮光部5的工艺偏差。所述准直部件3的宽度方向和所述遮光部5的宽度方向的相同,所述准直部件3的宽度方向与所述准直部件3所在的所述导光板1的表面与所述遮光部5的下表面之间的距离的方向垂直。
当遮光部的宽度b满足:b=a+(h×tanθ+d)×2时,可使遮光部5完全遮挡经对应的准直部件3取出的射入液晶显示面板的光线,避免出现漏光的现象的同时,使液晶显示装置的显示区的开口率最大。例如,如图12所示,当子像素宽度e一定时,在确定了遮光部的宽度b的大小之后,即可获得透过区的宽度c,c=e-b,进而可得到显示区的开口率r,
Figure PCTCN2018077079-appb-000003
示例性地,上述液晶显示装置为透明液晶显示装置,如图13所示,像素单元包括显示区I和用于增加光线透过所述像素单元的透过区II,多个子像素均位于显示区I内,从而能够有效增加背景光线的透过率,提高液晶显示装置的透明度。另外,该液晶显示装置包括在像素单元的显示区中横纵交错的数据线和栅极线,像素单元中的多个子像素沿数据线的延伸方向排布在显示区I内,且每个子像素均与一个对应的栅极线相连,多个子像素与同一个数据线相连,其中,数据线的延伸方向与像素单元的显示区I宽度的方向垂直,因此,在像素单元的显示区I宽度一定的前提下,与将像素单元中的 多个子像素沿显示区I的宽度的方向排布相比,将像素单元中的多个子像素是沿数据线的延伸方向排布在显示区I内,可使得像素单元的显示区I的像素密度增加n倍,n为每个像素单元中子像素的个数。
示例性地,为了便于本领域技术人员理解与实施,本发明实施例中给出一种透明液晶显示装置的示例:
如图13所示,该液晶显示装置的分辨率为n*k,设一个像素单元中,显示区I占比为x,透过区II的占比为1-x,该像素单元的液晶光效为A,该像素单元中的整个膜层的透过率为B,显示区I的开口率为r,则可获得该液晶显示装置的透过率R,R=B×x×A×r+B×(1-x)×100%,而若该液晶显示装置的像素单元中,不设置透过区II,则该液晶显示装置的透过率为R 1,R 1=B×A×r,则与设置有透过区II的液晶显示装置的透过率R相比,透过率的差值为ΔR=B×[(x-1)×(A×r-1)],由于x小于1,且A×r也小于1,因此,在液晶显示装置的像素单元中设置透过区II可有效提高液晶显示装置的透过率。
此外,本发明实施例还提供一种显示方法。该显示方法应用于上述液晶显示装置,示例性地,如图14和图15所示,该液晶显示装置的显示模式包括暗态显示和灰阶显示,该显示方法包括:
背光模组的光源2发出的光进入背光模组的导光板1中,并经背光模组的各准直部件3中准直射出;
液晶显示装置中各子像素对应的遮光部5遮挡从该遮光部对应的准直部件3中射出的光线,实现液晶显示装置的暗态显示;
向液晶显示装置中的液晶层7施加不同的电压,使液晶层7中的液晶分子偏转,形成不同的液晶光栅,经准直部件3中准直射出的光线,经过液晶光栅的衍射或折射,从各子像素的滤光层中射出,实现液晶显示装置的灰阶显示。
在本公开实施例提供的液晶显示装置及其显示方法中,从背光模组射入液晶显示面板的光线为准直光线,因此,在向液晶显示装置中的液晶层施加不同的电压,使液晶层中液晶分子发生偏转,形成不同的液晶光栅之后,射入液晶显示面板的准直光线,即可经过液晶光栅的衍射或折射,从液晶显示装置的各子像素射出,以实现液晶显示装置的灰阶显示,从而无需设置两层 偏光片即可使液晶显示装置显示画面,进一步提高了液晶显示装置的透光率,更有利于实现液晶显示装置的透明显示。
本文中,有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (18)

  1. 一种背光模组,包括:
    导光板,包括入光面、出光面和与所述出光面相对的底面;
    光源,设置在所述导光板的入光面的一侧,其中所述光源发出的光经所述入光面进入所述导光板;
    多个准直部件,设置在所述导光板的出光面和与出光面相对的底面中的至少一个上,其中进入导光板的一部分光经所述多个准直部件准直后从所述导光板的出光面射出。
  2. 根据权利要求1所述的背光模组,其中所述准直部件为孔状光栅或台阶光栅。
  3. 根据权利要求2所述的背光模组,其中所述多台阶光栅中的每个台阶相对于所述导光板的出光面或底面的高度为大于零且小于或等于10μm。
  4. 根据权利要求2或3所述的背光模组,其中所述多台阶光栅的光栅周期为0.5μm~5μm,所述多台阶光栅的光栅宽度是该多台阶光栅中所有台阶的宽度之和,所述光栅宽度与所述光栅周期的比大于0.5,所述光栅宽度为0.5μm~5μm。
  5. 根据权利要求2所述的背光模组,其中所述孔状光栅的一个光栅周期内设有多个光栅孔,所述多个光栅孔非等间距地排列。
  6. 根据权利要求5所述的背光模组,其中多个光栅孔中每相邻两个光栅孔的间距与余下任意相邻两个光栅孔的间距不同。
  7. 根据权利要求4所述的背光模组,其中所述孔状光栅的一个光栅周期内还设有多个光栅台阶,每相邻两个所述光栅孔通过一个光栅台阶隔开,各所述光栅台阶的高度相同,且所述光栅台阶的高度大于零且小于或等于10μm。
  8. 根据权利要求1至7中任一项所述的背光模组,其中所述多个准直部件上设置有透明的平坦层;所述平坦层的厚度大于或等于1μm。
  9. 根据权利要求8所述的背光模组,其中所述光源发出的光的出射角大于光线在导光板中全反射的临界角θ 0
    Figure PCTCN2018077079-appb-100001
    其中,n 1为所述平 坦层的折射率,n 2为所述导光板的折射率。
  10. 根据权利要求1所述的背光模组,其中所述光源包括灯条,以及设置在所述导光板的入光面与所述灯条之间的耦合光栅。
  11. 根据权利要求1所述的背光模组,其中所述光源包括抛物面反射镜,以及设在所述抛物面反射镜的焦点位置的发光体。
  12. 一种液晶显示装置,包括如权利要求1~11任一项所述的背光模组。
  13. 根据权利要求12所述的液晶显示装置,其中所述液晶显示装置包括多个像素单元,每个所述像素单元包括多个子像素,所述背光模组的各准直部件与各所述子像素对应的遮光部一一对应。
  14. 根据权利要求13所述的液晶显示装置,其中所述遮光部的宽度为b,b=a+(h×tanθ+d)×2,其中,a为对应所述遮光部的所述准直部件的宽度,h为所述准直部件所在的所述导光板的表面与所述遮光部的下表面之间的距离,θ为从所述准直部件中射出的光线的角度,d为制作所述遮光部的工艺偏差。
  15. 根据权利要求13所述的液晶显示装置,其中所述液晶显示装置为透明液晶显示装置,每个所述像素单元包括显示区和用于增加光线透过所述像素单元的透过区,每个所述像素单元的多个子像素均位于该像素单元的显示区内。
  16. 根据权利要求15所述的液晶显示装置,其中每个所述像素单元包括设置在所述显示区中的数据线和栅极线,所述像素单元的多个子像素沿所述数据线的延伸方向依次排列,并均与同一条所述数据线相连;所述像素单元的每个子像素分别与一条栅极线相连。
  17. 根据权利要求12所述的液晶显示装置,其中所述液晶显示装置还包括液晶显示面板,所述液晶显示面板包括AOC基板,以及位于所述AOC基板与所述背光模组之间的液晶层,所述AOC基板的彩膜层与所述液晶层之间设置有电极层,所述电极层与所述液晶层之间设置有第一取向层,所述液晶层与所述背光模组的平坦层之间设置有第二取向层。
  18. 根据权利要求17所述的液晶显示装置,其中所述彩膜层为量子点彩膜层。
PCT/CN2018/077079 2017-07-24 2018-02-24 背光模组及液晶显示装置 WO2019019623A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/315,369 US11221516B2 (en) 2017-07-24 2018-02-24 Backlight module and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710608440.9 2017-07-24
CN201710608440.9A CN107238974B (zh) 2017-07-24 2017-07-24 一种背光源及液晶显示模组

Publications (1)

Publication Number Publication Date
WO2019019623A1 true WO2019019623A1 (zh) 2019-01-31

Family

ID=59988135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077079 WO2019019623A1 (zh) 2017-07-24 2018-02-24 背光模组及液晶显示装置

Country Status (3)

Country Link
US (1) US11221516B2 (zh)
CN (1) CN107238974B (zh)
WO (1) WO2019019623A1 (zh)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107238974B (zh) * 2017-07-24 2021-03-02 京东方科技集团股份有限公司 一种背光源及液晶显示模组
CN108089253B (zh) * 2017-12-15 2019-06-25 京东方科技集团股份有限公司 光线准直装置、背光模组及显示装置
CN108153054A (zh) * 2018-01-03 2018-06-12 京东方科技集团股份有限公司 背光模组及显示装置
CN108227068A (zh) * 2018-01-05 2018-06-29 京东方科技集团股份有限公司 侧入式背光模组和显示装置
CN107942431A (zh) * 2018-01-05 2018-04-20 京东方科技集团股份有限公司 准直背光源、显示装置及其光致聚合物层制备方法
CN108415191A (zh) 2018-03-15 2018-08-17 京东方科技集团股份有限公司 显示装置、电子设备和显示方法
CN110389469B (zh) * 2018-04-20 2021-03-30 京东方科技集团股份有限公司 显示装置及其显示方法
CN108572482B (zh) * 2018-04-20 2021-12-21 京东方科技集团股份有限公司 一种背光模组、显示装置及其驱动方法
CN108594517B (zh) * 2018-05-04 2021-04-06 京东方科技集团股份有限公司 一种液晶显示装置及其控制方法
CN108761946B (zh) * 2018-05-15 2021-01-12 京东方科技集团股份有限公司 一种透明显示面板和透明显示装置
CN108710226B (zh) * 2018-05-24 2021-04-23 京东方科技集团股份有限公司 一种透明显示装置及显示方法
CN108717243B (zh) * 2018-05-29 2022-09-27 京东方科技集团股份有限公司 显示装置
WO2019237306A1 (en) * 2018-06-14 2019-12-19 Boe Technology Group Co., Ltd. Display apparatus and driving method thereof
CN108646338B (zh) * 2018-07-02 2019-12-31 京东方科技集团股份有限公司 一种背光模组及显示装置
CN109031757A (zh) * 2018-08-08 2018-12-18 京东方科技集团股份有限公司 显示装置及电子设备
CN108845460B (zh) * 2018-08-15 2021-01-29 京东方科技集团股份有限公司 一种背光模组及显示装置
CN109061932B (zh) * 2018-08-30 2021-11-02 京东方科技集团股份有限公司 一种透明显示面板和透明显示装置
CN109799655B (zh) * 2018-09-14 2020-12-25 京东方科技集团股份有限公司 显示基板、显示面板及显示装置
CN109799656B (zh) * 2018-09-14 2021-03-12 京东方科技集团股份有限公司 一种显示基板、显示面板及显示装置
CN109031770A (zh) * 2018-09-26 2018-12-18 京东方科技集团股份有限公司 液晶显示面板、显示装置及其工作方法
CN110955078B (zh) * 2018-09-27 2024-04-09 京东方科技集团股份有限公司 显示面板及其驱动方法、显示装置
CN110967860B (zh) * 2018-09-28 2021-12-03 京东方科技集团股份有限公司 显示面板和显示装置
CN109061948B (zh) 2018-10-30 2021-02-12 京东方科技集团股份有限公司 光学基板和显示装置
CN109212834B (zh) * 2018-11-08 2021-01-22 京东方科技集团股份有限公司 一种显示面板、显示装置及驱动方法
CN109683230B (zh) * 2019-02-18 2020-06-26 京东方科技集团股份有限公司 导光结构、透明显示装置、导光结构的制造方法
CN109696721B (zh) 2019-02-26 2020-12-18 京东方科技集团股份有限公司 背光模组及显示装置
CN112074780B (zh) * 2019-03-21 2023-01-10 京东方科技集团股份有限公司 显示面板
CN112313569A (zh) * 2019-03-29 2021-02-02 京东方科技集团股份有限公司 准直背光模组,其制备方法及显示装置
CN110412801A (zh) * 2019-07-31 2019-11-05 京东方科技集团股份有限公司 显示面板和显示装置
US11650449B2 (en) * 2019-09-03 2023-05-16 Boe Technology Group Co., Ltd. Display panel and display apparatus
CN110579900A (zh) * 2019-09-18 2019-12-17 京东方科技集团股份有限公司 一种基板及其制备方法、以及显示面板和显示装置
WO2021056323A1 (zh) * 2019-09-26 2021-04-01 京东方科技集团股份有限公司 显示面板、其驱动方法及显示装置
CN113272709B (zh) 2019-11-29 2023-12-01 京东方科技集团股份有限公司 光开关及其控制方法、显示装置
CN113759597A (zh) * 2020-06-05 2021-12-07 京东方科技集团股份有限公司 一种透明显示装置、显示方法和制作方法
CN114415418A (zh) * 2021-12-30 2022-04-29 厦门天马微电子有限公司 背光模组及显示装置
CN114442347B (zh) * 2022-01-27 2023-04-28 绵阳惠科光电科技有限公司 显示模组

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050254258A1 (en) * 2004-05-07 2005-11-17 Samsung Electronics Co., Ltd. Light emitting diode module and a flat panel display provided with the same
CN1900784A (zh) * 2005-07-20 2007-01-24 清华大学 导光板与背光模组
CN105074322A (zh) * 2013-03-13 2015-11-18 惠普发展公司,有限责任合伙企业 具有准直反射器的背光源
WO2016171705A1 (en) * 2015-04-23 2016-10-27 Leia Inc. Dual light guide grating-based backlight and electronic display using same
CN106200107A (zh) * 2016-09-30 2016-12-07 京东方科技集团股份有限公司 一种显示基板、显示面板及显示装置
CN106662700A (zh) * 2014-07-30 2017-05-10 镭亚股份有限公司 基于多束衍射光栅的彩色背光照明
CN107238974A (zh) * 2017-07-24 2017-10-10 京东方科技集团股份有限公司 一种背光源及液晶显示模组
CN107621729A (zh) * 2017-09-27 2018-01-23 京东方科技集团股份有限公司 背光模组及使用其的液晶显示器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100395633C (zh) * 2003-10-16 2008-06-18 鸿富锦精密工业(深圳)有限公司 背光模组
KR100781383B1 (ko) * 2006-09-14 2007-11-30 비전하이테크 주식회사 색재현성이 향상된 도광판, 이를 이용한 조명장치 및표시장치
KR101006959B1 (ko) * 2008-04-03 2011-01-12 인하대학교 산학협력단 비균일 듀티율을 갖는 광 도파로 격자 결합기
KR20090105665A (ko) 2008-04-03 2009-10-07 (주)바이오텔 무소음 산소 발생 제어 시스템 및 그 방법
TWI390249B (zh) * 2008-06-02 2013-03-21 Young Lighting Technology Inc 光學膜與使用其之背光模組
US9958601B2 (en) * 2013-09-19 2018-05-01 University Of Utah Research Foundation Display backlight
CN103901563B (zh) * 2014-03-31 2016-07-13 北京工业大学 一种折射率可调的光栅耦合器及其制作方法
US9557466B2 (en) 2014-07-30 2017-01-31 Leia, Inc Multibeam diffraction grating-based color backlighting
WO2016182549A1 (en) * 2015-05-09 2016-11-17 Leia Inc. Color-scanning grating-based backlight and electronic display using same
CN105044975A (zh) * 2015-08-31 2015-11-11 京东方科技集团股份有限公司 一种液晶显示装置
JP6597197B2 (ja) * 2015-11-05 2019-10-30 セイコーエプソン株式会社 光束径拡大素子および表示装置
CN106125316B (zh) * 2016-06-24 2018-09-11 西安电子科技大学 基于光栅波导的节能无跳转图像集成成像显示装置
CN206193278U (zh) * 2016-10-19 2017-05-24 广州毅昌科技股份有限公司 一种多级光栅量子点导光板
CN108333835B (zh) * 2017-09-29 2021-11-12 京东方科技集团股份有限公司 侧入式背光模组、显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050254258A1 (en) * 2004-05-07 2005-11-17 Samsung Electronics Co., Ltd. Light emitting diode module and a flat panel display provided with the same
CN1900784A (zh) * 2005-07-20 2007-01-24 清华大学 导光板与背光模组
CN105074322A (zh) * 2013-03-13 2015-11-18 惠普发展公司,有限责任合伙企业 具有准直反射器的背光源
CN106662700A (zh) * 2014-07-30 2017-05-10 镭亚股份有限公司 基于多束衍射光栅的彩色背光照明
WO2016171705A1 (en) * 2015-04-23 2016-10-27 Leia Inc. Dual light guide grating-based backlight and electronic display using same
CN106200107A (zh) * 2016-09-30 2016-12-07 京东方科技集团股份有限公司 一种显示基板、显示面板及显示装置
CN107238974A (zh) * 2017-07-24 2017-10-10 京东方科技集团股份有限公司 一种背光源及液晶显示模组
CN107621729A (zh) * 2017-09-27 2018-01-23 京东方科技集团股份有限公司 背光模组及使用其的液晶显示器

Also Published As

Publication number Publication date
US11221516B2 (en) 2022-01-11
CN107238974A (zh) 2017-10-10
CN107238974B (zh) 2021-03-02
US20210325729A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
WO2019019623A1 (zh) 背光模组及液晶显示装置
US11143811B2 (en) Multiview backlighting employing fluorescent multibeam elements
US11126054B2 (en) Display panel and display device
US10627664B2 (en) Display panel, display device and display method
US7522233B2 (en) Display device
CN103676311B (zh) 背光单元和使用背光单元的液晶显示设备
CN108919546B (zh) 一种显示面板及其控制方法、显示装置
WO2019218984A1 (zh) 透明显示面板和透明显示装置
US20220100038A1 (en) Transparent display substrate and transparent display device
US9081225B2 (en) Liquid crystal display device
CN112558337B (zh) 视角可切换的液晶显示装置及其驱动方法
US9897843B2 (en) Optical film for enlarging viewing angle and TFT-LCD device including the same
TWI646511B (zh) 拼接顯示裝置
WO2020062458A1 (zh) 偏光结构及显示装置
JP2010122590A (ja) 液晶表示装置、導光板及び導光方法
US10156753B2 (en) Backlight module and display device
WO2020062603A1 (zh) 偏光结构及显示装置
US20160124270A1 (en) Illumination device, display device, and tv receiver
CN108051962B (zh) 显示面板和显示装置
TW201629551A (zh) 具有方向性控制輸出之顯示裝置,及該顯示裝置的背光
US10809571B2 (en) Lighting device and display device
US20200409172A1 (en) Horizontal parallax multiview display and method having slanted multibeam columns
WO2020062594A1 (zh) 偏光板及显示装置
WO2023151087A1 (zh) 背光组件及显示装置
WO2022222083A1 (zh) 背光模组及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29.05.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18838804

Country of ref document: EP

Kind code of ref document: A1