WO2019019586A1 - 机器人末端执行器 - Google Patents

机器人末端执行器 Download PDF

Info

Publication number
WO2019019586A1
WO2019019586A1 PCT/CN2018/074444 CN2018074444W WO2019019586A1 WO 2019019586 A1 WO2019019586 A1 WO 2019019586A1 CN 2018074444 W CN2018074444 W CN 2018074444W WO 2019019586 A1 WO2019019586 A1 WO 2019019586A1
Authority
WO
WIPO (PCT)
Prior art keywords
end effector
robot end
mounting member
lead screw
slider
Prior art date
Application number
PCT/CN2018/074444
Other languages
English (en)
French (fr)
Inventor
聂炎
李军旗
刘庆
赖勇斐
Original Assignee
深圳市圆梦精密技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市圆梦精密技术研究院 filed Critical 深圳市圆梦精密技术研究院
Publication of WO2019019586A1 publication Critical patent/WO2019019586A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0009Constructional details, e.g. manipulator supports, bases

Definitions

  • This application belongs to the field of processing equipment, and more particularly to a robot end effector.
  • industrial robots can replace large machines to drill large parts.
  • the industrial robot changes the direction of movement of the robot arm through the mechanical transmission chain.
  • the mechanical arm will cause the motor to move away when the direction of motion changes.
  • the arm does not move with the rotation of the motor.
  • the mechanical drive chain creates a backlash, which results in the drilled hole not being a complete circle, which reduces the precision of the robot drilling process.
  • the purpose of the present application is to provide a robot end effector, which solves the problem that the mechanical transmission chain of the industrial robot in the prior art has a backlash caused by the mechanical movement of the mechanical movement of the industrial robot, which causes the motor to vacate and generate a back gap.
  • Technical problems with reduced accuracy are to provide a robot end effector, which solves the problem that the mechanical transmission chain of the industrial robot in the prior art has a backlash caused by the mechanical movement of the mechanical movement of the industrial robot, which causes the motor to vacate and generate a back gap.
  • the present application provides a robot end effector, comprising a spindle module, a feed module and a connection assembly, the spindle module comprising a spindle and a spindle housing wrapped around an outer circumference of the spindle, the feed module comprising a lead screw and a driving mechanism a feed motor that rotates the lead screw and a slider fixed to the lead screw, the outer side of the lead screw is provided with a casing, and the connecting assembly includes a mounting member fixed to the main shaft casing, the mounting member It is fixedly connected to the slider.
  • the connecting component further includes a sliding plate fixedly connected to the mounting member and the slider, and the sliding plate is slidably disposed on the casing.
  • the sliding plate comprises a front plate and a rear plate fixedly connected to each other, the front plate and the mounting member are fixedly connected, and the rear plate and the sliding block are fixedly connected.
  • the opposite sides of the rear plate respectively protrude with a boss parallel to the feeding direction of the spindle, the front plate cover is disposed on the boss, the front plate and the rear plate A cavity is formed between the casing for passage therethrough.
  • the feed module further includes a slide rail slidably coupled to the slider, and the slide rail is fixed to the cabinet.
  • the slider has a groove adapted to the sliding rail, and the sliding rail is locked in the groove.
  • the feeding module includes at least two sliding rails, and the two sliding rails are respectively disposed on opposite sides of the lead screw.
  • the slider includes a fixing plate and a transmission portion disposed on a side of the fixing plate facing the screw, and the screw rod is disposed in the transmission portion.
  • the fixing plate and the transmission portion are integrally formed.
  • one end of the output shaft of the feed motor is connected with a first pulley
  • one end of the lead screw is connected with a second pulley
  • the first pulley and the second pulley are connected by a belt drive.
  • a through hole is defined in the mounting member, and the spindle housing is disposed in the through hole.
  • the mounting member is provided with a slit extending in an axial direction of the main shaft, the slit and the through hole communicate with each other, and the mounting member has a fastener connection and is located in the slit The mounting holes on opposite sides of the mounting member clamp the spindle housing by the fastener.
  • the feed module of the robot end effector of the present application comprises a lead screw and a slider fixed on the lead screw, the slider and the fixed shell of the spindle, compared with the prior art.
  • the upper mounting member is fixedly connected, and the rotation of the feeding motor is converted into a linear motion by the screw rod, thereby realizing the feeding movement of the tool in the spindle module, and avoiding the backlash caused by the existence of the backlash in the mechanical transmission chain.
  • FIG. 1 is a structural diagram of a robot end effector according to an embodiment of the present application.
  • FIG. 2 is a side view of a robot end effector according to an embodiment of the present application.
  • FIG. 3 is a structural view of a sliding plate used in an embodiment of the present application.
  • FIG. 4 is an exploded view of a sliding plate used in an embodiment of the present application.
  • Figure 5 is a structural view of a mounting member used in an embodiment of the present application.
  • FIG. 6 is a structural diagram of a slider used in an embodiment of the present application.
  • first, second, and the like are used for the purpose of description only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality" is two or more unless specifically and specifically defined otherwise.
  • the robot end effector is a device used by the robot to perform various machining operations. It is usually installed at the front end of the robot wrist.
  • the end of the robot end actuator is equipped with a machining tool such as a drill bit and a welding torch for drilling, welding, etc. operating.
  • the robot end effector includes a spindle module 1, a feed module 2, and a connection assembly 3.
  • the spindle module 1 includes a spindle 11 and a spindle housing 13 .
  • the machining tool 12 is mounted on the end of the spindle 11 and rotates with the rotation of the spindle 11 .
  • the machining tool 12 can be a drill bit, a welding torch, etc., and the spindle housing 13 is wrapped around the outer circumference of the spindle 11 .
  • the outer casing 13 serves to protect the main shaft 11, and when the main shaft 11 rotates, the main shaft outer casing 13 remains stationary.
  • the feed module 2 is used for controlling the movement of the spindle module 1.
  • the feed module 2 includes a lead screw 22, a feed motor 21, a slider 23, and the feed motor 21 is a stepping motor, a servo motor, etc., and the output of the feed motor 21
  • the shaft and the lead screw 22 are connected, the rotation of the output shaft of the feed motor 21 drives the rotation of the lead screw 22, the screw 22 converts its rotation into a linear motion, and the slider 23 is fixed to the lead screw 22, so the feed motor 21
  • the rotation of the output shaft is converted by the lead screw 22 into a linear motion of the slider 23.
  • a housing 4 is provided on the outer side of the lead screw 22 for protecting the lead screw 22.
  • the connecting assembly 3 includes a mounting member 32 fixed to the spindle housing 13, the mounting member 32 and the slider 23 are fixedly coupled, and the slider 23, the mounting member 32, the spindle housing 13 and the spindle 11 move in synchronism, and the linear motion of the slider 23 is the spindle. 11 feed movement.
  • the machining tool 12 is a drill or a cutter.
  • the movement trajectory of the robot is determined by using the programming software, and the machining tool 12 is moved above the hole to be machined, and then the spindle 11 is rotated at a predetermined rotation speed.
  • the feed motor 21 is rotated, the feed motor 21 drives the screw 22 to rotate, the screw 22 converts the rotary motion into a linear motion of the slider 23, the slider 23 drives the spindle 11 to move in a linear direction, and the machining tool 12 rotates. At the same time, it moves in the direction of the hole to be processed to complete the drilling process.
  • the above steps can be repeated to complete the porous machining.
  • the feed motion and the retracting motion of the machining tool 12 are always linear motions, overcoming the backlash in the transmission chain of the robot itself. Impact.
  • the feed module 2 of the robot end effector of the present application comprises a lead screw 22 and a slider 23 fixed on the lead screw 22, the slider 23 and the fixed spindle
  • the mounting member 32 on the outer casing 13 is fixedly connected, and the rotation of the feeding motor 21 is converted into a linear motion by the screw 22, thereby realizing the feeding movement of the processing tool 12 in the spindle module 1, thereby avoiding the backlash in the mechanical transmission chain.
  • the presence of a backlash increases the accuracy of the robot's drilling process.
  • the connecting component 3 further includes a sliding plate 31 fixedly coupled to the mounting member 32 and the slider 23, respectively.
  • the sliding plate 31 is slidably disposed on the casing 4.
  • the connecting component 3 is used for connecting the spindle module 1 and the feeding module 2, and the mounting member 32 of the connecting component 3 is fixedly connected with the spindle housing 13, and the sliding plate 31 and the slider 23 in the connecting component 3 are fixedly connected, wherein the mounting member 32 and The slide plate 31 is also a fixed connection, so the slider 23, the slide plate 31 and the mounting member 32 move in synchronism.
  • the casing 4 is disposed on the outer side of the lead screw 22, and the sliding connection between the sliding plate 31 and the casing 4 not only protects the lead screw 22, but also supports the spindle module 1 through the sliding plate 31, thereby reducing the gap between the slider 23 and the lead screw 22.
  • the shearing force acts indirectly to protect the lead screw 22.
  • the sliding plate 31 includes a front plate 311 and a rear plate 312 fixedly connected to each other, the front plate 311 and the mounting member 32 .
  • the connection is fixed, and the rear plate 312 and the slider 23 are fixedly connected.
  • the rear plate 312 and the slider 23 may be integrally formed or may be separately formed.
  • the front plate 311 is provided with a first connecting hole 3110
  • the mounting member 32 is correspondingly provided with a second connecting hole 3120
  • each of the second connecting holes 3120 has a first sinking groove (not shown).
  • a fastener sequentially connects the mounting member 32 and the front plate 311 through the first connecting hole 3110 and the second connecting hole 3120, and the first sinking groove is used for receiving the end of the fastener.
  • the first connecting hole 3110 and the second connecting hole 3120 are all four, and the four second connecting holes 3120 are respectively disposed at four corners of the mounting member 32.
  • the front plate 311 is adjacent to the side of the spindle module 1
  • the rear plate 312 is adjacent to the side of the lead screw 22, and the outer casing is sandwiched between the front plate 311 and the rear plate 312.
  • the opposite sides of the rear plate 312 are respectively convexly provided with a boss 3121 , a boss 3121 and a spindle 11 .
  • the feeding direction is parallel, and the front plate 311 is covered on the boss 3121.
  • the opposite sides of the front plate 311 are convexly provided with elongated bosses 3121.
  • the directions of the opposite sides and the feeding direction of the main shaft 11 are parallel to each other, and both sides of the front plate 311 abut against the top ends of the bosses 3121.
  • a plurality of third connecting holes 3111 are defined on the two sides of the front plate 311, and a plurality of fourth connecting holes 3120, a third connecting hole 3111 and a fourth connecting hole 3120 are arranged on the boss 3121 of the rear plate 312.
  • the third connecting hole 3111 has a second sinking groove 3112.
  • the fastener sequentially connects the front plate 311 and the rear plate 312 through the third connecting hole 3111 and the fourth connecting hole 3120.
  • the second sinking groove 3112 Used to receive the ends of the fasteners.
  • the front plate 311 is a flat plate member, and the front plate 311 and the rear plate 312 are formed by the protrusions 3121 to form a cavity 310 through which the outer casing can pass.
  • the front plate 311 and the rear plate 312 fixedly connected to each other are slidably disposed on the outer casing, and the slider The sliding on the lead screw 22 drives the sliding between the slide plate 31 and the casing 4.
  • the feeding module 2 further includes a slide rail 24 slidably coupled to the slider 23 , and the slide rail 24 is fixed to the machine.
  • the casing 4 includes a front casing 41 and a rear casing 42 which are disposed opposite to each other, and the front casing 41 is slidably coupled to the sliding plate 31, and the sliding rail 24 is fixed to the inner wall of the rear casing 42, the screw 22 and the slider 23. It is disposed between the front case 41 and the rear case 42.
  • the casing 4 further includes an upper casing 44 and a lower casing 43 which are both vertically connected to the front casing 41 and the rear casing 42, and both ends of the screw 22 are respectively disposed through the upper casing 44 and the lower casing 43, and the length direction of the screw 22 is
  • the axial directions of the main shafts 11 are parallel to each other.
  • the slider 23 slides on the slide rail 24, so that the linear motion of the slider 23 is more stable, so that the linear feed motion of the spindle 11 is also more stable.
  • the slider has a groove 2330 adapted to the slide rail 24 , and the groove 2330 can be an elongated strip, the slide rail 24 is disposed in the recess 2330, and the longitudinal direction of the slide rail 24 and the longitudinal direction of the lead screw 22 are parallel to each other.
  • the cross-section of the slide rail 24 may be a rectangular, triangular or dovetail shape.
  • the cross-sectional shape of the groove 2330 on the slider 23 may also be a rectangular, triangular or dovetail shape, which is selected according to the actual production situation. Slide rail 24 and slider 23.
  • the feed module 2 includes at least two slide rails 24, and two slide rails 24 are respectively disposed on opposite sides of the lead screw 22.
  • the slide rails 24 are preferably two, respectively disposed on opposite sides of the lead screw 22 and fixed to the rear case 42. Accordingly, the slider 23 is also provided with two recesses 2330.
  • the slider 23 includes a fixing plate 231, and the fixing plate 231 is provided with a transmission portion 232 adjacent to the screw 22, and the fixing plate 231 and the rear plate 312 are integrally formed or fixedly connected to each other, and the transmission portion 232 is provided with a screw 22 Through the screw hole 2320, the lead screw 22 and the transmission portion 232 are fixedly connected, and the lead screw 22 drives the spindle module 1 to move through the transmission portion 232.
  • a sliding portion 233 is disposed on each side of the transmission portion 232.
  • the sliding portion 233 defines a groove 2330.
  • the sliding rail 24 is slidably disposed in the recess 2330. The more the number of the slide rails 24, the smoother the sliding of the slider 23, so that the feeding motion of the processing tool 12 is smoother and the machining accuracy is higher.
  • the output shaft of the feed motor 21 is connected to the first pulley 51 at one end thereof, and the output shaft of the feed motor 21 is fixed.
  • a second pulley 52 is connected to one end of the screw shaft 22.
  • One end of the screw 22 passes through the lower casing 43 and is fixed in the wheel core of the second pulley 52, and the lower casing 43 screws the screw. 22 and the second pulley 52 are spaced apart from each other, and the lower casing 43 protects the lead screw 22.
  • the first pulley 51 and the second pulley 52 are drivingly connected by a belt 53.
  • the rotational motion of the output shaft of the feed motor 21 drives the second pulley 52 to rotate by the first pulley 51 and the belt 53, and the second pulley 52 and the lead screw 22 are fixed to each other, so that the screw 22 follows the second pulley 52 to rotate with each other.
  • the feed motor 21 is provided on one side of the lead screw 22, the axial direction of the feed motor 21 is the same as the longitudinal direction of the lead screw 22, and the upper case 44 and the lower case 43 and the length direction of the lead screw are perpendicular to each other.
  • the casing 44 extends in the direction of the feed motor 21 to form an extension (not shown), and one side of the feed motor 21 is fixed to the extension, so that the output shaft of the feed motor 21 and the length of the lead screw 22 are parallel to each other.
  • the first pulley 51 and the second pulley 52 are used to transmit the rotational motion of the feed motor 21 to the lead screw 22, which in turn converts the rotational motion into a linear motion.
  • the first pulley 51, the second pulley 52 and the belt 53 together constitute a belt assembly 5, and the feed motor 21 drives the screw 22 to rotate by the belt assembly 5.
  • the belt drive consisting of the first pulley 51, the second pulley 52 and the belt 53 can be a friction belt drive or an engagement belt drive.
  • the meshing belt is driven, and the first pulley 51 and the second pulley 52 are not slid with the belt 53, the transmission is relatively accurate, the feeding speed of the processing tool 12 is stable, and the machining accuracy is higher.
  • the mounting member 32 defines a through hole 3220 through which the spindle housing 13 is disposed.
  • the mounting member 32 includes a mounting plate 321 , and the mounting plate 321 and the front plate 311 are fixed to each other.
  • the mounting plate 321 is provided with a clamping portion 322 .
  • the clamping portion 322 defines a through hole 3220 along the axial direction of the main shaft 11 .
  • the tight portion 322 is used to clamp the spindle housing 13.
  • the second connecting holes 3120 are disposed at two sides of the mounting plate 321, and the mounting plate 321 and the front plate 311 are fixedly connected to each other.
  • the mounting member 32 is provided with a slit 3221 extending in the axial direction of the main shaft 11 , and the slot 3221 and the through hole 3220 are connected to each other.
  • the mounting member 32 has a connecting hole 3223 for connecting the fasteners.
  • the connecting hole 3223 is located at opposite sides of the slot 3221.
  • the mounting member 32 is fastened to the spindle housing 13 by a fastener.
  • the slot 3221 is disposed on the clamping portion 322, and the slot 3221 separates the clamping portion 322 into two clamping blocks 3222 having the same structure.
  • the two clamping blocks 3222 are respectively provided with connecting holes 3223, and the fasteners.
  • the width of the slot 3221 can be reduced, and the aperture of the through hole 3220 can be reduced, thereby clamping the spindle housing 13 to fix the mounting member 32 and the spindle housing 13. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种机器人末端执行器,包括主轴模块(1)、进给模块(2)和连接组件(3),主轴模块(1)包括主轴(11)以及包裹于主轴(11)外周的主轴外壳(13),进给模块(2)包括丝杠(22)、带动丝杠(22)转动的进给电机(21)以及固定于丝杠(22)上的滑块(23),丝杠(22)的外侧设有机壳(4),连接组件(3)包括固定于主轴外壳(13)的安装件(32),安装件(32)和滑块(23)固定连接。该机器人末端执行器,通过丝杠(22)将进给电机(21)的旋转运动转化为主轴(11)的直线运动,克服了机器人传动链中反向间隙带来的影响,提高了加工精度。

Description

机器人末端执行器 技术领域
本申请属于加工设备领域,更具体地说,是涉及一种机器人末端执行器。
背景技术
在大型零件的加工中,工业机器人可代替大型机床对大型零件进行钻孔加工。工业机器人通过机械传动链改变自身机械臂的运动方向,在机器人的多次钻孔加工的过程中,由于机械传动链中存在齿隙,所以机械臂转变运动方向时会引起电机的空走,机械臂不随电机转动而移动,该机械传动链产生反向间隙,导致钻出的孔不是完整的圆,降低了机器人钻孔加工的精度。
技术问题
本申请的目的在于提供一种机器人末端执行器,以解决现有技术中工业机器人的机械传动链存在齿隙导致其机械臂转变运动方向时会引起电机空走产生反向间隙而造成钻孔加工精度降低的技术问题。
技术解决方案
本申请提供了一种机器人末端执行器,包括主轴模块、进给模块和连接组件,所述主轴模块包括主轴以及包裹于所述主轴外周的主轴外壳,所述进给模块包括丝杠、带动所述丝杠转动的进给电机以及固定于所述丝杠上的滑块,所述丝杠的外侧设有机壳,所述连接组件包括固定于所述主轴外壳的安装件,所述安装件和所述滑块固定连接。
进一步地,所述连接组件还包括分别与所述安装件和所述滑块固定连接的滑动板,所述滑动板滑设于所述机壳上。
进一步地,所述滑动板包括相互固定连接的前板和后板,所述前板和所述安装件固定连接,所述后板和所述滑块固定连接。
进一步地,所述后板上的相对两侧分别凸设有与所述主轴进给方向平行的凸台,所述前板盖设于所述凸台上,所述前板和所述后板之间形成有供所述机壳穿过的空腔。
进一步地,所述进给模块还包括与所述滑块滑动连接的滑轨,所述滑轨固定于所述机壳上。
进一步地,所述滑块上具有适配于所述滑轨的凹槽,所述滑轨卡设于所述凹槽中。
进一步地,所述进给模块包括至少二所述滑轨,二所述滑轨分别设于所述丝杠的相对两侧。
进一步地,所述滑块包括固定板、以及设于固定板朝向所述丝杠一侧的传动部,所述丝杠穿设于所述传动部中。
进一步地,所述固定板和所述传动部一体成型。
进一步地,所述进给电机的输出轴一端连接有第一皮带轮,所述丝杠的一端连接有第二皮带轮,所述第一皮带轮和所述第二皮带轮通过皮带传动连接。
进一步地,所述安装件上开设有通孔,所述主轴外壳穿设于所述通孔中。
进一步地,所述安装件上开设有沿所述主轴的轴向方向延伸的缝隙,所述缝隙和所述通孔相互连通,所述安装件上具有供紧固件连接的并位于所述缝隙的相对两侧的连接孔,所述安装件通过所述紧固件将所述主轴外壳夹紧。
有益效果
本申请提供的机器人末端执行器的有益效果在于:与现有技术相比,本申请机器人末端执行器的进给模块包括丝杠以及固定在丝杠上的滑块,滑块和固定于主轴外壳上的安装件固定连接,通过丝杠将进给电机的转动转换为直线运动,从而实现主轴模块中工具的进给运动,避免了机械传动链中由于齿隙的存在而产生的反向间隙,提高了机器人钻孔加工的精度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例提供的机器人末端执行器的结构图;
图2为本申请实施例提供的机器人末端执行器的侧视图;
图3为本申请实施例所采用的滑动板的结构图;
图4为本申请实施例所采用的滑动板的爆炸图;
图5为本申请实施例所采用的安装件的结构图;
图6为本申请实施例所采用的滑块的结构图。
其中,图中各附图标记:
1-主轴模块;11-主轴;12-加工工具;13-主轴外壳;2-进给模块;21-进给电机;22-丝杠;23-滑块;231-固定板;232-传动部;2320-丝杠孔;233-滑动部;2330-凹槽;24-滑轨;3-连接组件;31-滑动板;310-空腔;311-前板;3110-第一连接孔;3111-第三连接孔;3112-第二沉槽;312-后板;3121-凸台;3120-第四连接孔;32-安装件;321-安装板;3210-第二连接孔;322-夹紧部;3220-通孔;3221-缝隙;3222-夹紧块;3223-连接孔;4-机壳;41-前壳;42-后壳;43-下壳;44-上壳;5-皮带组件;51-第一皮带轮;52-第二皮带轮;53-皮带。
本发明的实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
请一并参阅图1及图2,现对本申请提供的机器人末端执行器进行说明。机器人末端执行器是机器人用来执行各种加工操作的器件,一般装设在机器人手腕的前端,机器人末端执行器的端部装设有钻头、焊枪等加工工具用来完成钻孔、焊接等加工操作。该机器人末端执行器包括主轴模块1、进给模块2和连接组件3。主轴模块1包括主轴11和主轴外壳13,加工工具12安装于主轴11的末端,随主轴11的转动而转动,加工工具12可为钻头、焊枪等,主轴外壳13包裹于主轴11的外周,主轴外壳13用于保护主轴11,且主轴11转动时,主轴外壳13保持不动。进给模块2用于控制主轴模块1的运动,进给模块2包括丝杠22、进给电机21、滑块23,进给电机21为步进电机、伺服电机等,进给电机21的输出轴和丝杠22相连接,进给电机21的输出轴的转动带动丝杠22的转动,丝杠22将其转动转换为直线运动,滑块23固定于丝杠22上,所以进给电机21的输出轴的转动通过丝杠22转换为滑块23的直线运动。丝杠22的外侧设有机壳4,用于保护丝杠22。连接组件3包括固定于主轴外壳13的安装件32,安装件32和滑块23固定连接,滑块23、安装件32、主轴外壳13和主轴11同步运动,滑块23的直线运动即为主轴11的进给运动。在使用该机器人末端执行器进行钻孔时,加工工具12为钻头或者刀具,首先利用编程软件确定机器人的运动轨迹,使加工工具12运动到待加工孔的上方,再使主轴11按预定转速旋转,同时使进给电机21转动,进给电机21带动丝杠22旋转,丝杠22将旋转运动转化为滑块23的直线运动,滑块23带动主轴11沿直线方向移动,加工工具12在旋转的同时向待加工孔的方向移动,完成钻孔加工。要加工多个孔时,重复上述步骤即可完成多孔加工,在多孔加工的过程中,加工工具12的进给运动和退刀运动始终是直线运动,克服了机器人本身传动链中的反向间隙的影响。
本申请提供的机器人末端执行器,与现有技术相比,本申请机器人末端执行器的进给模块2包括丝杠22以及固定在丝杠22上的滑块23,滑块23和固定于主轴外壳13上的安装件32固定连接,通过丝杠22将进给电机21的转动转换为直线运动,从而实现主轴模块1中加工工具12的进给运动,避免了机械传动链中由于齿隙的存在而产生的反向间隙,提高了机器人钻孔加工的精度。
进一步地,请一并参阅图1及图2,作为本申请提供的机器人末端执行器的一种具体实施方式,连接组件3还包括分别与安装件32和滑块23固定连接的滑动板31,滑动板31滑设于机壳4上。连接组件3用于连接主轴模块1和进给模块2,连接组件3中的安装件32与主轴外壳13固定连接,连接组件3中的滑动板31和滑块23固定连接,其中安装件32和滑动板31也为固定连接,所以滑块23、滑动板31和安装件32同步运动。机壳4设于丝杠22的外侧,滑动板31和机壳4滑动连接不仅可以保护丝杠22,还可以通过滑动板31支撑主轴模块1,减小了滑块23和丝杠22之间的剪切力,间接地起到了保护丝杠22的作用。
进一步地,请参阅图3及图4,作为本申请提供的机器人末端执行器的一种具体实施方式,滑动板31包括相互固定连接的前板311和后板312,前板311和安装件32固定连接,后板312和滑块23固定连接。后板312和滑块23可一体成型,也可分体成型。具体地,前板311上设有第一连接孔3110,安装件32上相应地设有第二连接孔3120,每个第二连接孔3120上均具有第一沉槽(图中未示出),紧固件(图中未示出)依次穿过第一连接孔3110和第二连接孔3120将安装件32和前板311固定连接,第一沉槽用于容置紧固件的端部,优选第一连接孔3110和第二连接孔3120均为四个,四个第二连接孔3120分别设于安装件32的四角处。前板311靠近于主轴模块1一侧,后板312靠近于丝杠22一侧,外壳夹设于前板311和后板312之间。
进一步地,请继续参阅图3及图4,作为本申请提供的机器人末端执行器的一种具体实施方式,后板312上的相对两侧分别凸设有凸台3121,凸台3121和主轴11的进给方向平行,前板311盖设于凸台3121上。前板311的相对两侧凸设有长条形凸台3121,该相对两侧的方向和主轴11的进给方向相互平行,前板311的两侧与凸台3121的顶端相抵接。前板311的该两侧上分别设有若干个第三连接孔3111,后板312的凸台3121上设有若干个第四连接孔3120,第三连接孔3111和第四连接孔3120一一对应,同时第三连接孔3111上均具有第二沉槽3112,紧固件依次穿过第三连接孔3111和第四连接孔3120将前板311和后板312固定连接,第二沉槽3112用于容置紧固件的端部。前板311为平板件,前板311和后板312通过凸台3121的设置形成可供外壳穿过的空腔310,相互固定连接的前板311和后板312滑动设于外壳上,滑块23在丝杠22上的滑动带动滑动板31与机壳4之间的滑动。
进一步地,请参阅图1及图2,作为本申请提供的机器人末端执行器的一种具体实施方式,进给模块2还包括与滑块23滑动连接的滑轨24,滑轨24固定于机壳4上。具体地,机壳4包括相对且相互平行设置的前壳41和后壳42,前壳41与滑动板31滑动连接,滑轨24固定于后壳42的内壁上,丝杠22和滑块23设于前壳41和后壳42之间。机壳4还包括均与前壳41和后壳42垂直连接的上壳44和下壳43,丝杠22的两端分别穿设于上壳44和下壳43,丝杠22的长度方向和主轴11的轴向方向相互平行。滑块23在滑轨24上滑动,使得滑块23的直线运动更加平稳,从而主轴11的直线进给运动也更加平稳。
进一步地,请参阅图6,作为本申请提供的机器人末端执行器的一种具体实施方式,滑块上具有适配于滑轨24的凹槽2330,凹槽2330可为长条形,滑轨24卡设于凹槽2330中,滑轨24的长度方向和丝杠22的长度方向相互平行。具体地,滑轨24的横截面可为矩形、三角形或燕尾槽形,相应地,滑块23上凹槽2330的横截面形状也可为矩形、三角形或燕尾槽形,根据生产实际情况选用对应的滑轨24和滑块23。
优选地,作为本申请提供的机器人末端执行器的一种具体实施方式,进给模块2包括至少两个滑轨24,两个滑轨24分别设于丝杠22的相对两侧。滑轨24优选为两个,分别设于丝杠22的相对两侧且固定于后壳42上,相应地,滑块23上也开设有两个凹槽2330。具体地,滑块23包括固定板231、固定板231靠近丝杠22一侧设有传动部232,固定板231和后板312一体成型或者相互固定连接,传动部232上开设有供丝杠22穿过的丝杠孔2320,丝杠22和传动部232固定连接,丝杠22通过传动部232带动主轴模块1运动。传动部232的两侧分别设有滑动部233,滑动部233上开设有凹槽2330,滑轨24滑设于凹槽2330中。滑轨24的个数越多,滑块23的滑动越平稳,从而加工工具12的进给运动更平稳,加工精度也越高。
进一步地,请参阅图1及图2,作为本申请提供的机器人末端执行器的一种具体实施方式,进给电机21的输出轴一端连接有第一皮带轮51,进给电机21的输出轴固定于第一皮带轮51的轮芯中,丝杠22的一端连接有第二皮带轮52,丝杠22的一端穿过下壳43并固定于第二皮带轮52的轮芯中,下壳43将丝杠22和第二皮带轮52相互隔开,下壳43对丝杠22起保护作用。第一皮带轮51和第二皮带轮52通过皮带53传动连接。进给电机21的输出轴的旋转运动通过第一皮带轮51和皮带53带动第二皮带轮52转动,第二皮带轮52和丝杠22相互固定,所以丝杠22跟随第二皮带轮52相互转动。具体地,进给电机21设于丝杠22的一侧,进给电机21的轴向方向和丝杠22的长度方向相同,上壳44和下壳43与丝杠的长度方向相互垂直,上壳44朝向进给电机21的方向延伸形成延伸部(图中未标记),进给电机21的一侧固定于延伸部上,所以进给电机21的输出轴和丝杠22的长度方向相互平行,但不在一条直线上,使用第一皮带轮51和第二皮带轮52将进给电机21的旋转运动传递给丝杠22,丝杠22再将旋转运动转换为直线运动。第一皮带轮51、第二皮带轮52和皮带53共同组成皮带组件5,进给电机21通过皮带组件5带动丝杠22旋转。根据进给电机21和丝杠22的相对位置,可选用不同的传动方式将进给电机21的旋转运动和丝杠22的旋转运动同步,如齿轮传动、链传动等传动方式,还可采用锥齿轮改变旋转轴的方向。第一皮带轮51、第二皮带轮52和皮带53组成的带传动可为摩擦型带传动或者啮合型带传动。优选为啮合型带传动,第一皮带轮51和第二皮带轮52均与皮带53之间没有滑动,传动比较为精确,加工工具12的进给速度稳定,加工精度更高。
进一步地,请参阅图5,作为本申请提供的机器人末端执行器的一种具体实施方式,安装件32上开设有通孔3220,主轴外壳13穿设于通孔3220中。具体地,安装件32包括安装板321,安装板321和前板311相互固定,安装板321上设有夹紧部322,夹紧部322沿主轴11的轴向方向开设有通孔3220,夹紧部322用于夹紧主轴外壳13。第二连接孔3120设于安装板321的两侧,安装板321和前板311相互固定连接。
进一步地,请参阅图5,作为本申请提供的机器人末端执行器的一种具体实施方式,安装件32上开设有沿主轴11的轴向方向延伸的缝隙3221,缝隙3221和通孔3220相互连通,安装件32上具有供紧固件连接的连接孔3223,连接孔3223位于缝隙3221的相对两侧,安装件32通过紧固件与主轴外壳13紧固连接。具体地,缝隙3221设于夹紧部322上,且缝隙3221将夹紧部322分离成两个结构相同的夹紧块3222,两个夹紧块3222上均设有连接孔3223,紧固件穿设于两个夹紧块3222上的连接孔3223中,可使缝隙3221的宽度减小,通孔3220的孔径减小,从而夹紧主轴外壳13,实现安装件32和主轴外壳13的固定。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 机器人末端执行器,包括主轴模块、进给模块和连接组件,其特征在于:所述主轴模块包括主轴以及包裹于所述主轴外周的主轴外壳,所述进给模块包括丝杠、带动所述丝杠转动的进给电机以及固定于所述丝杠上的滑块,所述丝杠的外侧设有机壳,所述连接组件包括固定于所述主轴外壳的安装件,所述安装件和所述滑块固定连接。
  2. 如权利要求1所述的机器人末端执行器,其特征在于:所述连接组件还包括分别与所述安装件和所述滑块固定连接的滑动板,所述滑动板滑设于所述机壳上。
  3. 如权利要求2所述的机器人末端执行器,其特征在于:所述滑动板包括相互固定连接的前板和后板,所述前板和所述安装件固定连接,所述后板和所述滑块固定连接。
  4. 如权利要求3所述的机器人末端执行器,其特征在于:所述后板上的相对两侧分别凸设有与所述主轴进给方向平行的凸台,所述前板盖设于所述凸台上,所述前板和所述后板之间形成有供所述机壳穿过的空腔。
  5. 如权利要求1所述的机器人末端执行器,其特征在于:所述进给模块还包括与所述滑块滑动连接的滑轨,所述滑轨固定于所述机壳上。
  6. 如权利要求5所述的机器人末端执行器,其特征在于:所述滑块上具有适配于所述滑轨的凹槽,所述滑轨卡设于所述凹槽中。
  7. 如权利要求5所述的机器人末端执行器,其特征在于:所述进给模块包括至少二所述滑轨,二所述滑轨分别设于所述丝杠的相对两侧。
  8. 如权利要求5所述的机器人末端执行器,其特征在于:所述滑块包括固定板、以及设于固定板朝向所述丝杠一侧的传动部,所述丝杠穿设于所述传动部中。
  9. 如权利要求8所述的机器人末端执行器,其特征在于:所述固定板和所述传动部一体成型。
  10. 如权利要求1所述的机器人末端执行器,其特征在于:所述进给电机的输出轴一端连接有第一皮带轮,所述丝杠的一端连接有第二皮带轮,所述第一皮带轮和所述第二皮带轮通过皮带传动连接。
  11. 如权利要求1所述的机器人末端执行器,其特征在于:所述安装件上开设有通孔,所述主轴外壳穿设于所述通孔中。
  12. 如权利要求11所述的机器人末端执行器,其特征在于:所述安装件上开设有沿所述主轴的轴向方向延伸的缝隙,所述缝隙和所述通孔相互连通,所述安装件上具有供紧固件连接的并位于所述缝隙的相对两侧的连接孔,所述安装件通过所述紧固件与所述主轴外壳紧固连接。
PCT/CN2018/074444 2017-07-28 2018-01-29 机器人末端执行器 WO2019019586A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710633383.X 2017-07-28
CN201710633383.XA CN107336220A (zh) 2017-07-28 2017-07-28 机器人末端执行器

Publications (1)

Publication Number Publication Date
WO2019019586A1 true WO2019019586A1 (zh) 2019-01-31

Family

ID=60216613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074444 WO2019019586A1 (zh) 2017-07-28 2018-01-29 机器人末端执行器

Country Status (2)

Country Link
CN (1) CN107336220A (zh)
WO (1) WO2019019586A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107336220A (zh) * 2017-07-28 2017-11-10 深圳市圆梦精密技术研究院 机器人末端执行器
CN110509067B (zh) * 2019-07-31 2021-06-29 清华大学 一种大型复杂构件原位加工多机器人系统装备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10180680A (ja) * 1996-12-19 1998-07-07 Nishi Nippon Electric Wire & Cable Co Ltd マニピュレ−タ用操作工具駆動部の構造
JP2011156613A (ja) * 2010-01-29 2011-08-18 B L Auto Tec Kk アーム駆動機構、及びこれを備えたマニピュレータ
KR20140016788A (ko) * 2012-07-30 2014-02-10 대우조선해양 주식회사 파이프 용접용 매니퓰레이터 및 이를 이용한 용접 방법
CN105014270A (zh) * 2015-08-10 2015-11-04 徐金鹏 一种自动焊接机器人
CN206185880U (zh) * 2016-09-23 2017-05-24 南昌航空大学 一种新型机器人制孔末端执行器
CN107336220A (zh) * 2017-07-28 2017-11-10 深圳市圆梦精密技术研究院 机器人末端执行器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09254060A (ja) * 1996-03-15 1997-09-30 Denso Corp 産業用ロボット
CN101417348B (zh) * 2008-11-24 2010-06-23 北京航空航天大学 钻孔末端执行器
CN102717135B (zh) * 2012-06-14 2014-10-22 南京信息职业技术学院 自动螺旋铣孔装置及方法
CN203679343U (zh) * 2013-12-11 2014-07-02 成都飞机工业(集团)有限责任公司 机器人末端制孔执行器
CN105105849B (zh) * 2015-07-22 2017-05-10 北京航空航天大学 一种前交叉韧带重建术中的机器人末端执行器
CN105773632B (zh) * 2016-03-17 2017-10-31 浙江大学 一种自动钻铆机的多功能末端执行器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10180680A (ja) * 1996-12-19 1998-07-07 Nishi Nippon Electric Wire & Cable Co Ltd マニピュレ−タ用操作工具駆動部の構造
JP2011156613A (ja) * 2010-01-29 2011-08-18 B L Auto Tec Kk アーム駆動機構、及びこれを備えたマニピュレータ
KR20140016788A (ko) * 2012-07-30 2014-02-10 대우조선해양 주식회사 파이프 용접용 매니퓰레이터 및 이를 이용한 용접 방법
CN105014270A (zh) * 2015-08-10 2015-11-04 徐金鹏 一种自动焊接机器人
CN206185880U (zh) * 2016-09-23 2017-05-24 南昌航空大学 一种新型机器人制孔末端执行器
CN107336220A (zh) * 2017-07-28 2017-11-10 深圳市圆梦精密技术研究院 机器人末端执行器

Also Published As

Publication number Publication date
CN107336220A (zh) 2017-11-10

Similar Documents

Publication Publication Date Title
US4995277A (en) Two dimensional drive system
US7293340B1 (en) Direct drive spindle, machining center and methods of fabricating the same
US20100206599A1 (en) Machine-tool spindle head
KR102214851B1 (ko) 펀칭 장치
US11850746B2 (en) Planar articulated robot and inner rotor joint device
JP2023509411A (ja) ベルト伝動式アングルアタッチメントヘッド
WO2019019586A1 (zh) 机器人末端执行器
US9623530B2 (en) Precision CNC facing lathe
KR100794453B1 (ko) 동일 축상에 서로 다른 회전을 가지는 이중 스핀들 구조
CN102581678B (zh) 一种数控平旋盘
CN112605419A (zh) 一种高精度双向钻孔设备的组装方法
CN210548143U (zh) 一种摆动式主轴箱机构及其数控加工设备
CN105397840A (zh) 单轴关节型机械臂
EP2684641A1 (en) Machine tool
CN207629637U (zh) 一种用于数控铣床的加工夹具
JP4916925B2 (ja) 交差型ロボットおよび単軸ロボット
CN205085715U (zh) 一种双坐标进给动力箱
CN213259980U (zh) 一种带排钻拉米诺加工中心的机头总成
CN220825484U (zh) 一种刀具
US20240075632A1 (en) Assembly, apparatus and method for machining mechanical part
JP6130511B2 (ja) 工作機械及びその加工方法
CN216705614U (zh) 一种谐振杆加工用冲床
JP2006055934A (ja) 工作機械
CN105108206A (zh) 一种单坐标小行程进给动力箱
US20240066714A1 (en) Assembly and apparatus for machining mechanical part

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18837163

Country of ref document: EP

Kind code of ref document: A1