WO2019019355A1 - 一种船舶空调系统及其控制方法 - Google Patents

一种船舶空调系统及其控制方法 Download PDF

Info

Publication number
WO2019019355A1
WO2019019355A1 PCT/CN2017/104151 CN2017104151W WO2019019355A1 WO 2019019355 A1 WO2019019355 A1 WO 2019019355A1 CN 2017104151 W CN2017104151 W CN 2017104151W WO 2019019355 A1 WO2019019355 A1 WO 2019019355A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioning
refrigerant
heat medium
water
switching valve
Prior art date
Application number
PCT/CN2017/104151
Other languages
English (en)
French (fr)
Inventor
汪建华
Original Assignee
广船国际有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广船国际有限公司 filed Critical 广船国际有限公司
Publication of WO2019019355A1 publication Critical patent/WO2019019355A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/12Heating; Cooling

Definitions

  • the invention relates to the technical field of marine air conditioning, in particular to a marine air conditioning system and a control method thereof.
  • the solution in the prior art is to provide a refrigerant water pump to transport the refrigerant water to the air conditioning heat exchange unit through the refrigeration pipeline system.
  • the heat exchanged with the air to be cooled to achieve the purpose of cooling, and the heat medium water pump is arranged to transport the heat medium water to the air conditioning heat exchange unit through the heating pipe system, and exchange heat with the air to be heated to achieve the purpose of heating.
  • the prior art has the following problems:
  • the object of the present invention is to provide a marine air conditioning system, which solves the problems of the refrigerant pipeline and the heat medium pipeline of the marine air conditioning system in the prior art, which occupies a large amount of space inside the vessel and has a large cost.
  • Another object of the present invention is to provide a control method for a ship air conditioning system to solve the prior art.
  • a marine air conditioning system includes a connected variable flow water pump and an air conditioning heat exchange unit, wherein an output end of the air conditioning heat exchange unit is connected to an input end of the variable flow water pump through a refrigerant pipeline and a heat medium pipeline, respectively a first refrigerant water switching valve, a refrigerant water cooler and a second refrigerant water switching valve are sequentially disposed in the refrigerant pipe along a flow direction of the refrigerant water, and the first one is sequentially disposed along the flow direction of the heat medium water on the heat medium pipe
  • the heat medium water switching valve, the heat medium water heater and the second heat medium water switching valve, the variable flow water pump is connected with the controller, the controller is connected with the temperature sensor, and the temperature sensor is used for detecting the temperature of the air outlet of the air conditioning heat exchange unit,
  • the temperature signal is transmitted to the controller, and the controller is configured to control the flow change of the variable flow pump according to the temperature signal.
  • the variable flow pump is used to power the refrigerant pipeline and
  • a chiller and a refrigerant pipe connected to the chiller are disposed, and the refrigerant pipe is disposed in the refrigerant water cooler.
  • the chiller is the original structure on the ship.
  • the refrigerant pipe connected through the chiller directly cools the refrigerant water cooler to avoid energy waste.
  • a steam line is also provided, the steam line being disposed in the heat medium water heater.
  • the steam line is the original structure on the ship, and the heat is supplied to the heat medium water heater through the steam line, saving energy.
  • a one-way valve is provided on the refrigerant line and/or the heat medium line.
  • a method for controlling a ship air conditioning system comprising the step S10: when the ship air conditioning system is in a heating mode
  • the first refrigerant water switching valve and the second refrigerant water switching valve are closed, the first heat medium water switching valve and the second heat medium water switching valve are opened, and the controller controls the variable flow water pump to adjust the flow rate
  • the variable flow water pump drives the heat medium water to sequentially flow through the air conditioning heat exchange unit, the first heat medium water switching valve, the heat medium water heater and the second heat medium water switching valve from the variable flow water pump, and flows back to the variable flow water pump.
  • the refrigerant pipeline and the heat medium pipeline are completely isolated to ensure that the vessel air conditioning system is not affected by the refrigerant water in the refrigerant pipeline when heating.
  • the method further includes the step S20: when the marine air conditioning system is in the cooling mode, the first refrigerant water switching valve and the second refrigerant water switching valve are opened, and the first heat medium water switching valve is opened. And the second heat medium water switching valve is closed, the controller controls the variable flow water pump to adjust the flow rate, and the variable flow water pump drives the refrigerant water to sequentially flow from the variable flow water pump to the air conditioning heat exchange unit and the first refrigerant water switch The valve, the refrigerant water heater, and the second refrigerant water switching valve are returned to the variable flow water pump.
  • the refrigerant pipeline is completely isolated from the heat medium pipeline, thereby ensuring that the vessel air conditioning system is not subjected to the heat medium water in the heat medium pipeline when it is cooled. Impact.
  • the method further includes:
  • Step S30 preset target temperature value T m ;
  • Step S40 the temperature sensor detects the temperature at the air outlet of the air conditioning heat exchange unit, and obtains the detected temperature value T f at the air outlet of the air conditioning heat exchange unit;
  • Step S50 The controller compares the target temperature and the detected temperature value T m T f magnitude, and adjusting the frequency variable flow pump motor speed based on the comparison. Adjusting the speed of the variable frequency motor under different temperature differences can reduce energy consumption and save energy.
  • step S50 when cooling and T f >T m , or when heating and T f ⁇ T m , the controller issues a control command to increase the frequency conversion motor Speed.
  • the controller issues a control command to increase the frequency conversion motor Speed.
  • step S50 when cooling and T f ⁇ T m , or when heating and T f >T m , the controller issues a control command to reduce the frequency conversion.
  • the speed of the motor By reducing the speed of the variable frequency motor, the flow rate of the refrigerant water or the heat medium water is increased under cooling or heating conditions, so that the ambient temperature quickly reaches the target temperature.
  • the refrigerant pipeline or the heat medium pipeline of the ship air conditioner has many pipelines, occupying a large internal space of the ship, inconvenient installation and later maintenance, and requiring two pumps, and the cost is large.
  • the refrigerant water or the heat medium water can be adjusted according to the actual situation, and the problem that the flow rate of the refrigerant water pump or the heat medium water pump cannot be adjusted in the prior art is solved.
  • FIG. 1 is a schematic structural view of a marine air conditioning system provided by the present invention
  • FIG. 2 is a schematic structural diagram of flow regulation of a variable flow water pump provided by the present invention.
  • the embodiment provides a marine air conditioning system.
  • the marine air conditioning system includes: a refrigerant pipeline, a heat medium pipeline, and a common pipeline connected to the refrigerant pipeline and the heat medium pipeline, and the public pipeline.
  • the variable flow water pump 2 and the air conditioning heat exchange unit 3 are sequentially arranged along the flow direction of the refrigerant water or the heat medium water, and the first refrigerant water switching valve 6 and the refrigerant water cooler 9 are sequentially arranged along the flow direction of the refrigerant water in the refrigerant pipeline.
  • the variable flow water pump 2 is connected to the controller 11, and the controller 11 is connected to the temperature sensor 1, and the temperature sensor 1 is for detecting the temperature of the air outlet 4 of the air conditioning heat exchange unit 3, and transmits the temperature signal to the controller 11.
  • the controller 11 is configured to control the flow rate change of the variable flow water pump 2 according to the temperature signal.
  • the same variable flow water pump 2 provides power for the refrigerant pipeline and the heat medium pipeline under different working conditions of the marine air conditioning system, thereby saving one water pump and saving the pipeline of the refrigerant pipeline or the heat medium pipeline, thereby reducing the cost.
  • the marine air conditioning system further comprises a chiller and a refrigerant pipeline connected to the chiller, and a refrigerant pipeline is disposed in the refrigerant water cooler 9.
  • the chiller is part of the original structure of the ship
  • the low-temperature refrigerant flows in the refrigerant pipe
  • the refrigerant water cooler 9 is cooled through the refrigerant pipe, so that it is not necessary to separately provide the cooling device for the cooling water cooler.
  • Refrigeration effectively utilizes existing energy sources on board ships.
  • the marine air conditioning system further includes a steam line, and the steam water heater 7 is provided with a steam line.
  • the heat medium water heater 7 is heated by the original steam line on the ship, so that it is not necessary to separately provide the heat medium water heater 7 for heating, thereby effectively utilizing the existing energy source on the ship.
  • the embodiment further provides a control method for a ship air conditioning system, the method comprising:
  • Step S10 When the ship air conditioning system is in the heating mode, the first refrigerant water switching valve 6 and the second refrigerant water switching valve 10 are closed, and the first heat medium water switching valve 5 and the second heat medium water switching valve 8 are opened, and the controller 11 simultaneously controlling the variable flow water pump 2 to adjust the flow rate, and the variable flow water pump 2 drives the heat medium water to sequentially flow from the variable flow water pump 2 to the air conditioning heat exchange unit 3, the first heat medium water switching valve 5, and the heat medium water heater. 7 and the second heat medium water switching valve 8 and flowing back to the variable flow water pump 2, completely closing the refrigerant line and the heat medium line by closing the first refrigerant water switching valve 6 and the second refrigerant water switching valve 10. To ensure that the ship's air conditioning system is not affected by the refrigerant water in the refrigerant circuit when it is heated.
  • Step S20 When the ship air conditioning system is in the cooling mode, the first refrigerant water switching valve 6 and the second refrigerant water switching valve 10 are opened, and the first heat medium water switching valve 5 and the second heat medium water switching valve 8 are closed, and the controller 11 controlling the variable flow water pump 2 to adjust the flow rate, the variable flow water pump 2 driving the refrigerant water from the variable flow water pump 2 through the air conditioning heat exchange unit 3, the first refrigerant water switching valve 6, the refrigerant water heater 9 and the second refrigerant water The valve 10 is switched and flows back to the variable flow water pump 2.
  • the refrigerant pipeline is completely isolated from the heat medium pipeline to ensure that the vessel air conditioning system is not subjected to heat in the heat medium pipeline when it is cooled. The influence of the media.
  • Step S30 the preset target temperature T m within the memory controller 11, wherein the target temperature value T m refers to the need for heating or cooling temperature to be achieved by the air conditioner.
  • Step S40 The temperature sensor 1 detects the temperature at the air outlet 4 of the air conditioning heat exchange unit 3, and transmits the temperature signal to the controller 11, and obtains the detected temperature value Tf at the air outlet 4 of the air conditioning heat exchange unit 3, and detects the temperature value.
  • T f refers to the real-time temperature of the outside world.
  • Step S50 11 compares the target temperature and the detected temperature value T m T f of the size of the controller, and adjusting the frequency variable flow pump 2 motor (not shown in the drawings) in accordance with the rotational speed of the comparison result, and adjusted according to a comparison result The rotational speed of the variable frequency motor in the variable flow water pump 2.
  • the method for determining the target temperature value T m and the detected temperature value T f is as follows:
  • the controller 11 When cooling and T f >T m , or when heating and T f ⁇ T m , the controller 11 issues a control command to increase the rotational speed of the variable frequency motor;
  • the controller 11 When cooling and T f ⁇ T m , or when heating and T f >T m , the controller 11 issues a control command to reduce the rotational speed of the variable frequency motor.
  • the invention provides power for the refrigerant pipeline or the heat medium pipeline through the same variable flow water pump 2, saves a water pump, and saves part of the refrigerant pipeline or the heat medium pipeline, and solves the refrigerant of the marine air conditioning system in the prior art.
  • There are many pipelines in the pipeline or the heat medium pipeline occupying a large space inside the ship, inconvenient installation and post-maintenance, and the need to equip two pumps, which has a large cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种船舶空调系统及其控制方法。该船舶空调系统包括相连接的变流量水泵(2)和空调换热单元(3),空调换热单元(3)的输出端分别通过冷媒管路和热媒管路与变流量水泵(2)的输入端连接,在冷媒管路上沿冷媒水的流动方向依次设置第一冷媒水切换阀(6)、冷媒水冷却器(9)和第二冷媒水切换阀(10),在热媒管路上沿热媒水的流动方向依次设置第一热媒水切换阀(5)、热媒水加热器(7)和第二热媒水切换阀(8),变流量水泵(2)与控制器(11)连接,控制器(11)与温度传感器(1)连接。该船舶空调系统解决了现有技术中船舶空调的管道多,占用了船舶内部的大量空间,并且成本投入大的问题。

Description

一种船舶空调系统及其控制方法 技术领域
本发明涉及船舶空调技术领域,尤其涉及一种船舶空调系统及其控制方法。
背景技术
现有船舶空调分为制冷和制热两种工况。
在船舶空调制冷和制热的实际过程中,由于在空调换热单元用于冷却和加热空气的分别为两种不同的介质,即冷媒水和热媒水,并且空气需要冷却或加热的温差也并不同,从而需要根据实际情况将冷媒水及热媒水分别设置为相应的流量,现有技术中所给出是解决方法是,设置冷媒水泵通过制冷管道系统输送冷媒水到空调换热单元,与需要冷却的空气进行交换热量,达到制冷的目的,设置热媒水泵通过制热管道系统输送热媒水到空调换热单元,与需要加热的空气进行交换热量,达到制热的目的。现有技术存在以下问题:
1)管道多,需要分别配备冷媒管路和热媒管路,占用了船舶内部的大量空间,并且安装及后期维护不方便。
2)需要配备两台水泵,成本投入大。
3)传统冷媒水泵及热媒水泵流量无法调节。
发明内容
本发明的目的在于提供一种船舶空调系统,以解决现有技术中船舶空调系统的冷媒管路及热媒管路的管路多,占用了船舶内部的大量空间,并且成本投入大的问题。
本发明的另一目的在于提供一种船舶空调系统的控制方法,以解决现有技 术中船舶空调系统的冷媒管路及热媒管路的管路多,需要配备两台水泵的问题。
为达此目的,本发明采用以下技术方案:
一种船舶空调系统,包括相连接的变流量水泵和空调换热单元,所述空调换热单元的输出端分别通过冷媒管路和热媒管路与所述变流量水泵的输入端连接,在所述冷媒管路上沿冷媒水的流动方向依次设置第一冷媒水切换阀、冷媒水冷却器和第二冷媒水切换阀,在所述热媒管路上沿热媒水的流动方向依次设置第一热媒水切换阀、热媒水加热器和第二热媒水切换阀,变流量水泵与控制器连接,控制器与温度传感器连接,温度传感器用于检测空调换热单元的出风口的温度,并将温度信号传送给控制器,控制器用于根据温度信号控制变流量水泵的流量变化。通过变流量水泵为船舶空调系统不同工况下的冷媒管路及热媒管路提供动力,节省了一个水泵,并且节省了冷媒管路或热媒管路的管道,降低了成本。
作为上述船舶空调系统的一种优选方案,还包括冷水机组以及与冷水机组连接的制冷剂管路,所述制冷剂管路设置在冷媒水冷却器内。冷水机组是船舶上原有结构,通过冷水机组连接的制冷剂管路直接为冷媒水冷却器降温,避免了能源浪费。
作为上述船舶空调系统的一种优选方案,还包括蒸汽管路,所述蒸汽管路设置在热媒水加热器内。蒸汽管路为船舶上原有结构,通过蒸汽管路为热媒水加热器提供热量,节省了能源。
作为上述船舶空调系统的一种优选方案,在所述冷媒管路和/或所述热媒管路上设置单向阀。
一种船舶空调系统的控制方法,包括步骤S10:当船舶空调系统处于加热模 式时,第一冷媒水切换阀和第二冷媒水切换阀关闭,第一热媒水切换阀和第二热媒水切换阀开启,所述控制器控制所述变流量水泵调整流量,所述变流量水泵驱动热媒水从变流量水泵依次流经所述空调换热单元、第一热媒水切换阀、热媒水加热器以及第二热媒水切换阀,并流回变流量水泵。通过关闭第一冷媒水切换阀和第二冷媒水切换阀,从而将冷媒管路和热媒管路完全隔离开,保证船舶空调系统制热时,不会受到冷媒管路中冷媒水的影响。
作为上述船舶空调系统的控制方法的一种优选方案,还包括步骤S20:当船舶空调系统处于制冷模式时,第一冷媒水切换阀和第二冷媒水切换阀开启,第一热媒水切换阀和第二热媒水切换阀关闭,所述控制器控制所述变流量水泵调整流量,所述变流量水泵驱动冷媒水从变流量水泵依次流经所述空调换热单元、第一冷媒水切换阀、冷媒水加热器以及第二冷媒水切换阀,并流回变流量水泵。通过关闭第一热媒水切换阀和第二热媒水切换阀,从而将冷媒管路与热媒管路完全隔离开,保证船舶空调系统制冷时,不会受到热媒管路中热媒水的影响。
作为上述船舶空调系统的控制方法的一种优选方案,还包括:
步骤S30:预设目标温度值Tm
步骤S40:温度传感器检测空调换热单元的出风口处温度,得到空调换热单元的出风口处的检测温度值Tf
步骤S50:控制器比较目标温度值Tm以及检测温度值Tf的大小,且根据比较结果调节变流量水泵中的变频电机的转速。在不同的温度差下,调整变频电机转速,能够减少能耗,节约能源。
作为上述船舶空调系统的控制方法的一种优选方案,在步骤S50中,当制冷且Tf>Tm时,或当制热且Tf<Tm时,控制器发出控制指令,增加变频电机的转 速。通过增加变频电机转速使得在制冷或制热条件下,冷媒水或热媒水的流量增加,使得周围温度快速达到目标温度。
作为上述船舶空调系统的控制方法的一种优选方案,在步骤S50中,制热或制冷时,当Tf=Tm时,控制器不发出控制指令,变频电机的转速不变。
作为上述船舶空调系统的控制方法的一种优选方案,在步骤S50中,当制冷且Tf<Tm时,或当制热且Tf>Tm时,控制器发出控制指令,减小变频电机的转速。通过减小变频电机转速使得在制冷或制热条件下,冷媒水或热媒水的流量增加,使得周围温度快速达到目标温度。
本发明的有益效果:
1)通过同一个变流量水泵为船舶空调系统的不同工况下的冷媒管路或热媒管路提供动力,节省了一个水泵,并且节省了部分冷媒管路或热媒管路,解决了现有技术中船舶空调的冷媒管路或热媒管路的管路多,占用船舶内部空间大,安装及后期维护不方便,以及需要配备两台水泵,成本投入大的问题。
2)通过使用变流量水泵,使冷媒水或热媒水能够根据实际情况调整流量,解决了现有技术中冷媒水泵或者热媒水泵流量无法调节的问题。
附图说明
图1是本发明提供的一种船舶空调系统的结构示意图;
图2是本发明提供的变流量水泵流量调节的原理结构图。
图中:
1、温度传感器;2、变流量水泵;3、空调换热单元;4、出风口;5、第一热媒水切换阀;6、第一冷媒水切换阀;7、热媒水加热器;8、第二热媒水切换 阀;9、冷媒水冷却器;10、第二冷媒水切换阀;11、控制器。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
本实施例提供一种船舶空调系统,如图1所示,该船舶空调系统包括:包括冷媒管路、热媒管路以及与冷媒管路、热媒管路同时连接的公共管路,公共管路上沿冷媒水或热媒水的流动方向依次设置有变流量水泵2和空调换热单元3,冷媒管路上沿冷媒水的流动方向依次设置有第一冷媒水切换阀6、冷媒水冷却器9和第二冷媒水切换阀10,热媒管路上沿热媒水的流动方向依次设置有第一热媒水切换阀5、热媒水加热器7和第二热媒水切换阀8,如图2所示,变流量水泵2与控制器11连接,控制器11与温度传感器1连接,温度传感器1用于检测空调换热单元3的出风口4的温度,并将温度信号传送给控制器11,控制器11用于根据温度信号控制变流量水泵2的流量变化。通过同一个变流量水泵2为船舶空调系统不同工况下的冷媒管路及热媒管路提供动力,节省了一个水泵,并且节省了冷媒管路或热媒管路的管道,降低了成本。
优选的,船舶空调系统中还包括冷水机组以及与冷水机组连接的制冷剂管路,冷媒水冷却器9内设置制冷剂管路。其中,冷水机组为船舶原有结构的一部分,制冷剂管路中流动有低温的制冷剂,通过制冷剂管路对冷媒水冷却器9进行冷却,从而不必为冷却水冷却器单独提供制冷设备进行制冷,有效利用了船舶上的现有能源。
优选的,船舶空调系统还包括蒸汽管路,热媒水加热器7内设置蒸汽管路。通过船舶上原有的蒸汽管路对热媒水加热器7进行加热,从而不必为热媒水加热器7单独提供制热设备进行制热,有效利用了船舶上的现有能源。
本实施例还提供一种船舶空调系统的控制方法,该方法包括:
步骤S10:当船舶空调系统处于加热模式时,第一冷媒水切换阀6和第二冷媒水切换阀10关闭,第一热媒水切换阀5和第二热媒水切换阀8开启,控制器11同时控制所述变流量水泵2调整流量,变流量水泵2驱动热媒水从变流量水泵2依次流经所述空调换热单元3、第一热媒水切换阀5、热媒水加热器7以及第二热媒水切换阀8,并流回变流量水泵2,通过关闭第一冷媒水切换阀6和第二冷媒水切换阀10,从而将冷媒管路和热媒管路完全隔离开,保证船舶空调系统制热时,不会受到冷媒管路中冷媒水的影响。
步骤S20:当船舶空调系统处于制冷模式时,第一冷媒水切换阀6和第二冷媒水切换阀10开启,第一热媒水切换阀5和第二热媒水切换阀8关闭,控制器11控制所述变流量水泵2调整流量,变流量水泵2驱动冷媒水从变流量水泵2依次流经空调换热单元3、第一冷媒水切换阀6、冷媒水加热器9以及第二冷媒水切换阀10,并流回变流量水泵2。通过关闭第一热媒水切换阀5和第二热媒水切换阀8,从而将冷媒管路与热媒管路完全隔离开,保证船舶空调系统制冷时,不会受到热媒管路中热媒水的影响。
步骤S30:在控制器11内部的存储器中预设目标温度值Tm,其中,目标温度值Tm是指需要通过空调进行制冷或制热所要达到的温度。
步骤S40:温度传感器1检测空调换热单元3的出风口4处温度,且将温度信号传送给控制器11,得到空调换热单元3的出风口4处的检测温度值Tf,检测温度值Tf是指外界的实时温度。
步骤S50:控制器11比较目标温度值Tm以及检测温度值Tf的大小,且根据比较结果调节变流量水泵2中的变频电机(附图中未示出)的转速,且根据比 较结果调节变流量水泵2中的变频电机的转速。
目标温度值Tm以及检测温度值Tf大小的判断方法如下:
当制冷且Tf>Tm时,或当制热且Tf<Tm时,控制器11发出控制指令,增加变频电机的转速;
制热或制冷时,当Tf=Tm时,控制器11不发出控制指令,变频电机的转速不变;
当制冷且Tf<Tm时,或当制热且Tf>Tm时,控制器11发出控制指令,减小变频电机的转速。
通过上述温度控制方法实现对船舶空调系统制冷工况及制热工况下的恒温控制,并且减少了船舶空调系统的不必要的能量损耗。
本发明通过同一个变流量水泵2为冷媒管路或热媒管路提供动力,节省了一个水泵,并且节省了部分冷媒管路或热媒管路,解决了现有技术中船舶空调系统的冷媒管路或热媒管路的管道多,占用船舶内部空间大,安装及后期维护不方便,以及需要配备两台水泵,成本投入大的问题。
显然,本发明的上述实施例仅仅是为了清楚说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种船舶空调系统,其特征在于,包括相连接的变流量水泵(2)和空调换热单元(3),所述空调换热单元(3)的输出端分别通过冷媒管路和热媒管路与所述变流量水泵(2)的输入端连接,在所述冷媒管路上沿冷媒水的流动方向依次设置第一冷媒水切换阀(6)、冷媒水冷却器(9)和第二冷媒水切换阀(10),在所述热媒管路上沿热媒水的流动方向依次设置第一热媒水切换阀(5)、热媒水加热器(7)和第二热媒水切换阀(8),所述变流量水泵(2)与控制器(11)连接,所述控制器(11)与温度传感器(1)连接,所述温度传感器(1)用于检测空调换热单元(3)的出风口(4)的温度,并将温度信号传送给所述控制器(11),所述控制器(11)用于根据温度信号控制所述变流量水泵(2)的流量变化。
  2. 根据权利要求1的一种船舶空调系统,其特征在于,还包括冷水机组以及与所述冷水机组连接的制冷剂管路,所述制冷剂管路设置在所述冷媒水冷却器(9)内。
  3. 根据权利要求1的一种船舶空调系统,其特征在于,还包括蒸汽管路,所述蒸汽管路设置在所述热媒水加热器(7)内。
  4. 根据权利要求1至3任一项的一种船舶空调系统,其特征在于,在所述冷媒管路和/或所述热媒管路上设置单向阀。
  5. 一种船舶空调系统的控制方法,其特征在于,包括步骤S10:当船舶空调系统处于加热模式时,所述第一冷媒水切换阀(6)和所述第二冷媒水切换阀(10)关闭,所述第一热媒水切换阀(5)和所述第二热媒水切换阀(8)开启,所述控制器(11)控制所述变流量水泵(2)调整流量,所述变流量水泵(2)驱动热媒水从所述变流量水泵(2)依次流经所述空调换热单元(3)、所述第一 热媒水切换阀(5)、所述热媒水加热器(7)以及所述第二热媒水切换阀(8),并流回所述变流量水泵(2)。
  6. 根据权利要求5的船舶空调系统的控制方法,其特征在于,还包括步骤S20:当船舶空调系统处于制冷模式时,所述第一冷媒水切换阀(6)和所述第二冷媒水切换阀(10)开启,所述第一热媒水切换阀(5)和所述第二热媒水切换阀(8)关闭,所述控制器(11)控制所述变流量水泵(2)调整流量,所述变流量水泵(2)驱动冷媒水从所述变流量水泵(2)依次流经所述空调换热单元(3)、所述第一冷媒水切换阀(6)、所述冷媒水加热器(9)以及所述第二冷媒水切换阀(10),并流回所述变流量水泵(2);
    所述步骤S10与所述步骤S20并无先后顺序。
  7. 根据权利要求6的船舶空调系统的控制方法,其特征在于,还包括:
    步骤S30:预设目标温度值Tm
    步骤S40:所述温度传感器(1)检测所述空调换热单元(3)的所述出风口(4)处温度,得到所述空调换热单元(3)的所述出风口(4)处的检测温度值Tf
    步骤S50:所述控制器(11)比较目标温度值Tm以及检测温度值Tf的大小,且根据比较结果调节所述变流量水泵(2)中的变频电机的转速。
  8. 根据权利要求7的船舶空调系统的控制方法,其特征在于,在步骤S50中,当制冷且Tf>Tm时,或当制热且Tf<Tm时,所述控制器(11)发出控制指令,增加变频电机的转速。
  9. 根据权利要求7的船舶空调系统的控制方法,其特征在于,在步骤S50中,制热或制冷时,当Tf=Tm时,所述控制器(11)不发出控制指令,变频电 机的转速不变。
  10. 根据权利要求7的船舶空调系统的控制方法,其特征在于,在步骤S50中,当制冷且Tf<Tm时,或当制热且Tf>Tm时,所述控制器(11)发出控制指令,减小变频电机的转速。
PCT/CN2017/104151 2017-07-28 2017-09-29 一种船舶空调系统及其控制方法 WO2019019355A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710631603.5 2017-07-28
CN201710631603.5A CN107228464A (zh) 2017-07-28 2017-07-28 一种船舶空调系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2019019355A1 true WO2019019355A1 (zh) 2019-01-31

Family

ID=59957241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104151 WO2019019355A1 (zh) 2017-07-28 2017-09-29 一种船舶空调系统及其控制方法

Country Status (2)

Country Link
CN (1) CN107228464A (zh)
WO (1) WO2019019355A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109501999B (zh) * 2018-11-30 2021-07-20 益阳中海船舶有限责任公司 海巡船用的空调系统
CN114291246B (zh) * 2021-12-20 2023-09-05 中船邮轮科技发展有限公司 一种船用恒温系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798735A (en) * 1980-12-12 1982-06-19 Hitachi Zosen Corp Air conditioner in vessel
JPH08164895A (ja) * 1994-12-02 1996-06-25 Showa Kaiun Kk 輸送船
JPH11348891A (ja) * 1998-06-05 1999-12-21 Sumitomo Heavy Ind Ltd 舶用通風温度調整装置
CN201530471U (zh) * 2009-09-25 2010-07-21 天津港轮驳有限公司 船舶外挂冷却器装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293346C (zh) * 2003-12-19 2007-01-03 珠海福士得冷气工程有限公司 节能型中央空调系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798735A (en) * 1980-12-12 1982-06-19 Hitachi Zosen Corp Air conditioner in vessel
JPH08164895A (ja) * 1994-12-02 1996-06-25 Showa Kaiun Kk 輸送船
JPH11348891A (ja) * 1998-06-05 1999-12-21 Sumitomo Heavy Ind Ltd 舶用通風温度調整装置
CN201530471U (zh) * 2009-09-25 2010-07-21 天津港轮驳有限公司 船舶外挂冷却器装置

Also Published As

Publication number Publication date
CN107228464A (zh) 2017-10-03

Similar Documents

Publication Publication Date Title
CN109582057A (zh) 一种环境风洞温度控制系统
WO2015139663A1 (zh) 电动车的温控系统
CN105222241A (zh) 双冷源四管制空调系统
CN109830785A (zh) 一种新能源汽车电池冷却系统控制装置
CN110939995A (zh) 空调系统
CN104296480B (zh) 一种空调和冰箱一体机
WO2019019355A1 (zh) 一种船舶空调系统及其控制方法
CN106989545A (zh) 冷媒冷却装置及空调器
CN106051960A (zh) 中央空调制冷与板换免费制冷时冷却塔群冷热水混用系统及其使用方法
CN100439847C (zh) 一种板式换热器防冻装置及其控制方法
CN103168205A (zh) 空调机
CN204115119U (zh) 空调和冷藏箱一体机
CN101290148A (zh) 一种用于变风量空调的水节能系统
JP2004101129A (ja) 冷凍機制御方法および冷凍装置
CN204404677U (zh) 一种空调和冰箱一体机
CN217685313U (zh) 一种空调驱动装置的冷却系统
JPH06249471A (ja) 冷水製造システム
TW202004096A (zh) 應用溫度感應流量控制閥完成冰水回路的節能系統
CN206300384U (zh) 一种换热器装置
CN109458311A (zh) 一种水冷系统及其水温控制方法、三通阀及其控制方法
CN108006861A (zh) 空调水系统及空调水系统控制方法
JP2003207190A (ja) 空調システム
CN203719240U (zh) 一种可连续制备热水的模块式风冷热泵冷热水机组
CN106705495A (zh) 一种换热器装置及其控制方法
CN208393035U (zh) 一种用于汽车热泵空调的冷凝器装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17919550

Country of ref document: EP

Kind code of ref document: A1