WO2019019327A1 - 无人机的视觉系统及无人机 - Google Patents

无人机的视觉系统及无人机 Download PDF

Info

Publication number
WO2019019327A1
WO2019019327A1 PCT/CN2017/102807 CN2017102807W WO2019019327A1 WO 2019019327 A1 WO2019019327 A1 WO 2019019327A1 CN 2017102807 W CN2017102807 W CN 2017102807W WO 2019019327 A1 WO2019019327 A1 WO 2019019327A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
fixing
vision
visual
hole
Prior art date
Application number
PCT/CN2017/102807
Other languages
English (en)
French (fr)
Inventor
王伟
冯建刚
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201780085274.7A priority Critical patent/CN110234572B/zh
Publication of WO2019019327A1 publication Critical patent/WO2019019327A1/zh
Priority to US16/715,673 priority patent/US20200141771A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/83Electronic components structurally integrated with aircraft elements, e.g. circuit boards carrying loads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/30Supports specially adapted for an instrument; Supports specially adapted for a set of instruments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/24Housings ; Casings for instruments
    • G01D11/245Housings for sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Definitions

  • the invention relates to the field of flight technology, and in particular to a vision system and a drone of a drone.
  • the vision system of the drone is fixed on the body through the visual bracket.
  • the assembly and positioning accuracy of the current vision system is not ideal, resulting in unsatisfactory visual effects.
  • the present invention aims to at least solve one of the technical problems existing in the related art. To this end, the present invention needs to provide a vision system for a drone and a drone.
  • a vision system of a drone includes a mounting base, a vision bracket, two vision sensors, and a resilient washer, the mounting base including a first positioning fixing structure, the vision bracket being fixed to the mounting base Seat, the two vision sensors are mounted on the visual support, the mounting base is provided with two windows, and the visual support is used for fixing the two visual sensors, the two visual sensors respectively The two windows are exposed, and the visual bracket includes a second positioning and fixing structure that cooperates with the first positioning and fixing structure, and an annular gap is formed between the first positioning and fixing structure and the second positioning and fixing structure.
  • the elastic gasket is disposed between the annular slits.
  • the elastic washer is compressed between the annular slits, so that the mounting precision between the first positioning fixing structure and the second positioning fixing structure can be improved, thereby allowing the first positioning fixing structure and the first positioning fixing structure
  • the two positioning fixing structures have large assembly tolerances, thereby allowing the machining accuracy of the two positioning and fixing structures to be reduced, and the first positioning fixing structure and the second positioning fixing structure can be effectively ensured under the condition of reducing the machining precision.
  • the precision of the assembly can improve the yield and cost of the vision system of the drone.
  • the vision system includes a fastener that passes through the second positioning fixation structure and is secured in the first positioning fixation structure such that the visual stent is secured to the On the mounting base.
  • the first positioning fixing structure comprises a fixing post
  • the fixing post is provided with a fixing hole
  • the second positioning fixing structure comprises a positioning cap sleeved on the fixing post, the positioning The cap is provided with a through hole communicating with the fixing hole, the fixing hole is coaxial with the through hole, the fastener penetrates the through hole and is fixed in the fixing hole, and the elastic gasket receives Within the positioning cap.
  • a gap is left between the fastener and the inner wall of the via.
  • the fastener is a bolt and the fixing hole is a screw hole.
  • the number of the fixing columns is two, and the two fixing columns are spaced and arranged in parallel, and the number of the positioning caps is the same as the number of the fixing columns.
  • the vision support is formed with a rib structure that connects the second positioning and fixing structure, and the rib structure includes a plurality of ribs that are spaced apart.
  • the mounting base includes a plurality of side plates and a bottom plate respectively connected end to end, and a receiving groove for receiving and mounting the visual bracket is formed between the plurality of side plates and the bottom plate.
  • One of the plurality of side panels is formed with the two windows spaced apart, the fixing post extending upward from the bottom panel and located between the two windows.
  • the vision support includes a bracket body and two suspension arms connected to two sides of the bracket body, and the bracket body is provided with the second positioning and fixing structure, each of the The suspension arms extend outwardly and downwardly from the end sides of the bracket body, and the two vision sensors are respectively fixed to the free ends of the two suspension arms.
  • the UAV of the embodiment of the present invention includes an upper casing and a vision system according to any of the above embodiments, wherein the upper casing and the mounting base form a fuselage of the drone, and the visual system is fixed Installed in the fuselage.
  • the elastic washer is compressed between the annular slits, so that the mounting precision between the first positioning fixing structure and the second positioning fixing structure can be improved, thereby allowing the first positioning fixing structure and the second positioning fixing.
  • the structure has large assembly tolerances, which can further reduce the machining accuracy of the two positioning and fixing structures, and can effectively ensure the assembly between the first positioning fixing structure and the second positioning fixing structure under the condition of reducing the machining precision. Accuracy, which improves the yield and cost of the drone's vision system.
  • FIG. 1 is a schematic perspective view of a vision system of a drone according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a vision system of a drone according to an embodiment of the present invention.
  • FIG 3 is an exploded perspective view of a vision system of a drone according to an embodiment of the present invention.
  • FIG. 4 is another exploded perspective view of a vision system of a drone according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing the first positioning and fixing structure and the second positioning and fixing structure of the vision system of the unmanned aerial vehicle according to the embodiment of the present invention.
  • Fig. 6 is a schematic perspective view of a drone according to an embodiment of the present invention.
  • Fig. 7 is an exploded perspective view of the drone according to the embodiment of the present invention.
  • Vision system 10 fastener 101, first positioning and fixing structure 11, fixing column 111, fixing hole 112, reinforcing plate 113, mounting base 12, window 121, side plate 122, bottom plate 123, receiving groove 124, receiving cavity 125 , the visual support 14, the bracket body 141, the suspension arm 142, the second positioning and fixing structure 15, the positioning cap 151, the through hole 152, the through groove 153, the visual sensor 16, the rib structure 17, the reinforcing rib 171, the elastic washer 18;
  • the upper casing 20 and the body 30 are provided.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include one or more of the described features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; may be mechanically connected, may be electrically connected or may communicate with each other; may be directly connected, or may be indirectly connected through an intermediate medium, may be internal communication of two elements or interaction of two elements relationship.
  • Connected, or integrally connected may be mechanically connected, may be electrically connected or may communicate with each other; may be directly connected, or may be indirectly connected through an intermediate medium, may be internal communication of two elements or interaction of two elements relationship.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may include direct contact of the first and second features, and may also include first and The two features are not in direct contact but are contacted by additional features between them.
  • the first feature "above”, “above” and “above” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature includes the first feature directly below and below the second feature, or merely the first feature level being less than the second feature.
  • the vision system 10 of the drone of the embodiment of the present invention includes a mounting base 12, a visual support 14, two visual sensors 16, and a resilient washer 18.
  • the mounting base 12 includes a first positioning fixing structure 11.
  • the vision bracket 14 is fixed to the mounting base 12.
  • Two vision sensors 16 are mounted on the visual stand 14.
  • the mounting base 12 is provided with two windows 121.
  • the visual mount 14 is used to secure two vision sensors 16. Two vision sensors 16 are exposed from the two windows 121, respectively.
  • the visual mount 14 includes a second positioning fixation structure 15 that mates with the first positioning fixation structure 11.
  • An annular gap is formed between the first positioning fixing structure 11 and the second positioning fixing structure 15.
  • a resilient washer 18 is disposed between the annular slots.
  • the elastic washer 18 is compressed between the annular slits, so that the mounting precision between the first positioning fixing structure 11 and the second positioning fixing structure 15 can be improved, thereby allowing the first positioning.
  • the assembly structure 11 and the second positioning and fixing structure 15 have large assembly tolerances, thereby allowing the machining accuracy of the two positioning and fixing structures to be reduced, and the first positioning and fixing structure 11 can be effectively ensured under the condition of reducing the machining accuracy.
  • the assembly accuracy with the second positioning fixing structure 15 can improve the yield and cost of the visual system 10 of the drone.
  • two vision sensors 16 are used for visual positioning. For example, when an obstacle is found in the flight direction of the drone 100, the user may be alerted, including a distance reminder.
  • the two vision sensors 16 can be electrically connected to the body 30 of the drone 100 through a flexible circuit board.
  • the two vision sensors 16 can be fixed to the visual support 14 by glue.
  • the performance of the above glue can be considered from the aspects of hardness, viscosity, shrinkage and linear shrinkage, and it is necessary to ensure the fixation accuracy of the two vision sensors 16.
  • the two vision sensors 16 can also be fixed to the visual support 14 by other fixing means, for example. It can be fixed by screws, welding, structural limit, etc.
  • the mounting base 12 is a plastic or magnesium alloy die cast. As such, the mounting base 12 is lighter in weight.
  • the material used for mounting the susceptor 12 can be set according to specific conditions, and is not limited to the materials listed above.
  • the visual support 14 is constructed of a metallic material and the visual support 14 is formed by die casting.
  • the visual support 14 has better dimensional accuracy and the manufacturing process is relatively simple.
  • the first positioning fixed structure 11 is formed by a numerically controlled machine tool (CNC)
  • the second positioning fixed structure 15 is formed by a numerically controlled machine tool (CNC).
  • the two positioning and fixing structures have better dimensional accuracy.
  • vision system 10 includes a fastener 101.
  • the fastener 101 is passed through the second positioning fixing structure 15 and fixed in the first positioning fixing structure 11 to fix the visual bracket 14 to the mounting base 12.
  • the two positioning and fixing structures achieve a simple positioning and a better stability.
  • the elastic washer 18 also has a shock absorbing function.
  • the vibration of the body 30 of the drone 100 can be applied to the fastener through the mounting base 12.
  • the vibration of the fastener 101 can be converted into an elastic deformation of the elastic washer 18, thereby effectively damping the vibration of the body 30 of the drone 100, thereby ensuring the detection accuracy of the two vision sensors 16.
  • the elastomeric gasket 18 can be a silicone pad.
  • the resilient washer 18 may also utilize other resilient materials, such as a rubber material.
  • the first positioning fixture 11 includes a stationary post 111.
  • the fixing post 111 is provided with a fixing hole 112.
  • the second positioning fixing structure 15 includes a positioning cap 151 sleeved on the fixing post 111.
  • the positioning cap 151 is provided with a through hole 152 that communicates with the fixing hole 112.
  • the fixing hole 112 is coaxial with the through hole 152.
  • the fastener 101 is threaded through the through hole 152 and fixed in the fixing hole 112.
  • the elastic washer 18 is housed in the positioning cap 151.
  • the elastic washer 18 can be sufficiently filled between the fixing post 111 and the positioning cap 151, thereby achieving soft contact between the fixing post 111 and the positioning cap 151, thereby ensuring better matching precision between the fixing post 111 and the positioning cap 151.
  • the upper end of the second positioning fixing structure 15 is formed with a through groove 153.
  • the through groove 153 is connected through the hole 152.
  • the fasteners 101 are sequentially inserted through the through grooves 153 and the through holes 152 and fixed in the fixing holes 112.
  • the upper end of the fastener 101 is housed in the through groove 153.
  • the provision of the channel 153 improves the stability of the fastener 101 installation.
  • a gap is left between the fastener 101 and the inner wall of the via 152.
  • the fastener 101 has a flexible movement space in both the x-direction and the y-direction (as shown in FIG. 5), thereby cushioning the force and further improving the damping effect of the vision system 10.
  • the aperture a1 of the via 152 is larger than the aperture a2 of the fixing hole 112.
  • a gap is left between the fastener 101 and the inner wall of the via 152. This allows the lower portion of the fastener 101 to be stably fixed in the fixing hole 112, and a sufficient margin is left between the upper portion of the fastener 101 and the inner wall of the through hole 152.
  • the vision system 10 can also include a resilient ring member (not shown) disposed between the fastener 101 and the positioning cap 151.
  • the fastener 101 is threaded through a ring.
  • the ring member is located within the via 152.
  • the ring member 102 separates the fastener 101 from the inner wall of the via 152.
  • the ring member also enables the fastener 101 to have a flexible motion space in both the x-direction and the y-direction (as shown in Figure 5), thereby cushioning the force.
  • the ring member can also be composed of a silicone material, and the ring member is compressed and disposed between the fastener 101 and the positioning cap 151.
  • the fastener 101 is a bolt and the fixing hole 112 is a screw hole. As such, the fastener 101 has better stability when it is fixed in the fixing hole 112, and the fastener 101 has a wide source and a low manufacturing cost.
  • the number of the fixed columns 111 is two, and the two fixed columns 111 are spaced apart and disposed in parallel.
  • the number of the positioning caps 151 is the same as the number of the fixing posts 111.
  • this improves the parallelism and stability of the visual mount 14 to the mounting base 12, thereby providing better positional and parallelism between the two vision sensors 16.
  • the number of the fixing columns 111 is not limited to the above two, and the number of the fixing columns 111 may also be three, four or five, etc., and the number of the fixing columns 111 may be set according to specific conditions. No longer list them one by one.
  • the visual mount 14 is formed with a stiffener structure 17 that joins the second positioning fixture 15.
  • the rib structure 17 includes a plurality of ribs 171 that are spaced apart.
  • the arrangement of the plurality of reinforcing ribs 171 can improve the structural strength of the visual support 14, and can also ensure the second structural fixing structure 15 has better structural stability.
  • the second positioning and fixing structure 15 includes two positioning caps 151 .
  • the two positioning caps 151 are spaced apart and arranged in parallel.
  • a plurality of reinforcing ribs 171 connect the two positioning caps 151.
  • the mounting base 12 includes a plurality of side panels 122 and a bottom panel 123 that are connected end to end.
  • a receiving groove 124 for accommodating and mounting the visual holder 14 is formed between the plurality of side plates 122 and the bottom plate 123.
  • One of the plurality of side plates 122 is formed with two windows 121 spaced apart.
  • the fixing post 111 extends upward from the bottom plate 123 and is located between the two windows 121.
  • the visual support 14 is housed in the receiving groove 124, so that the mounting base 12 serves to protect the two visual sensors 16.
  • the fixed post 111 is located between the two windows 121, the fixed post 111 is fixed After the position cap 151, the fastener 101 and the elastic washer 18 are closely fitted, the two vision sensors 16 have a better parallelism.
  • a gap may be left between the two vision sensors 16 and the inner wall of the receiving groove 124.
  • the fuselage 30 of the drone 100 vibrates during the flight of the drone 100, the shake of the mounting base 12 is not directly transmitted to the two visual sensors 16 via the inner wall of the receiving groove 124, thereby preventing the mounting base.
  • the seat 12 affects the detection accuracy of the two vision sensors 16.
  • two vision sensors 16 are mounted on the side plates 122 used as the front plates.
  • the side plate 122 is provided with two windows 121 and a receiving cavity 125 which are spaced apart.
  • Each receiving cavity 125 is connected to a corresponding window 121.
  • Each of the visual sensors 16 is received in a corresponding receiving cavity 125, and a gap is left between each of the visual sensors 16 and the inner wall of the receiving cavity 125. As such, the receiving cavity 125 can also protect the visual sensor 16.
  • the vision support 14 includes a bracket body 141 and two suspension arms 142 coupled to both sides of the bracket body 141.
  • a second positioning fixing structure 15 is disposed on the bracket body 141.
  • Each of the suspension arms 142 extends outward and downward from the end side of the bracket body 141.
  • Two vision sensors 16 are secured to the free ends of the two suspension arms 142, respectively. As such, the positional and parallelism of the two vision sensors 16 is preferably better.
  • the first positioning fixing structure 11 includes a plurality of reinforcing plates 113 extending outward from the outer end surface of the bottom of the fixing post 111, and the plurality of reinforcing plates 113 are spaced apart. Each reinforcing plate 113 is connected to the bottom plate 123.
  • the arrangement of the plurality of reinforcing plates 113 can increase the structural strength of the bottom of the fixing post 111, so that the structural stability of the visual bracket 14 fixed to the mounting base 12 can be further improved.
  • the drone 100 of the embodiment of the present invention includes an upper casing 20 and a vision system 10 according to any of the above embodiments.
  • the upper casing 20 and the mounting base 12 form the fuselage 30 of the drone 100.
  • the vision system 10 is fixedly mounted within the body 30.
  • the elastic washer 18 is compressed between the annular slits, so that the mounting precision between the first positioning fixing structure 11 and the second positioning fixing structure 15 can be improved, thereby allowing the first
  • a large assembly tolerance between the positioning fixing structure 11 and the second positioning fixing structure 15 can further reduce the machining precision of the two positioning fixing structures, and can effectively ensure the first positioning under the condition of reducing the machining precision.
  • the assembly accuracy between the fixed structure 11 and the second positioning fixed structure 15 can improve the yield and cost of the vision system 10 of the drone.

Abstract

一种无人机的视觉系统(10)和无人机(100),无人机(100)的视觉系统(10)包括安装基座(12)、视觉支架(14)、两个视觉传感器(16)及弹性垫圈(18),所述安装基座(12)包括有第一定位固定结构(11),所述视觉支架(14)固定于所述安装基座(12)上,所述两个视觉传感器(16)安装在所述视觉支架(14)上,所述安装基座(12)设置有两个窗口(121),所述视觉支架(14)用于固定所述两个视觉传感器(16),所述两个视觉传感器(16)分别自所述两个窗口(121)露出,所述视觉支架(14)包括与所述第一定位固定结构(11)配合的第二定位固定结构(15),所述第一定位固定结构(11)和所述第二定位固定结构(15)之间形成有环形缝隙,弹性垫圈(18)设置在所述环形缝隙之间,从而可提高无人机(100)的视觉系统(10)的良品率和降低成本。

Description

无人机的视觉系统及无人机 技术领域
本发明涉及飞行技术领域,尤其涉及一种无人机的视觉系统及无人机。
背景技术
在相关技术中,无人机的视觉系统通过视觉支架固定在机身上,然而,目前视觉系统的装配和定位精准度不理想,导致视觉效果不理想。
发明内容
本发明旨在至少解决相关技术中存在的技术问题之一。为此,本发明需要提供一种无人机的视觉系统及无人机。
本发明实施方式的无人机的视觉系统包括安装基座、视觉支架、两个视觉传感器及弹性垫圈,所述安装基座包括有第一定位固定结构,所述视觉支架固定于所述安装基座上,所述两个视觉传感器安装在所述视觉支架上,所述安装基座设置有两个窗口,所述视觉支架用于固定所述两个视觉传感器,所述两个视觉传感器分别自所述两个窗口露出,所述视觉支架包括与所述第一定位固定结构配合的第二定位固定结构,所述第一定位固定结构和所述第二定位固定结构之间形成有环形缝隙,所述弹性垫圈设置在所述环形缝隙之间。
上述无人机的视觉系统中,弹性垫圈为压缩设置在环形缝隙之间,这样可提高第一定位固定结构与第二定位固定结构之间的安装精度,从而可允许第一定位固定结构与第二定位固定结构之间具有较大的装配公差,进而可允许降低两个定位固定结构的加工精度,并且在降低加工精度的条件下也能够有效保证第一定位固定结构与第二定位固定结构之间的装配精度,从而可提高无人机的视觉系统的良品率和降低成本。
在某些实施方式中,所述视觉系统包括紧固件,所述紧固件穿设所述第二定位固定结构并固定在所述第一定位固定结构中以使得所述视觉支架固定于所述安装基座上。
在某些实施方式中,所述第一定位固定结构包括固定柱,所述固定柱设置有固定孔,所述第二定位固定结构包括套设在所述固定柱上的定位帽,所述定位帽设置有与所述固定孔连通的过孔,所述固定孔与所述过孔同轴,所述紧固件穿设所述过孔并固定在所述固定孔中,所述弹性垫圈收容在所述定位帽内。
在某些实施方式中,所述紧固件与所述过孔的内壁之间留有间隙。
在某些实施方式中,所述紧固件为螺栓,所述固定孔为螺孔。
在某些实施方式中,所述固定柱的数目为两个,两个所述固定柱间隔且平行设置,所述定位帽的数目与所述固定柱的数目相同。
在某些实施方式中,所述视觉支架形成有连接所述第二定位固定结构的加强筋结构,所述加强筋结构包括间隔设置的多个加强筋。
在某些实施方式中,所述安装基座包括首尾分别相连的多个侧板及底板,所述多个侧板和所述底板之间形成有用于收容、安装所述视觉支架的收容槽,所述多个侧板中的一个侧板形成有间隔设置的所述两个窗口,所述固定柱自所述底板向上延伸且位于所述两个窗口之间。
在某些实施方式中,所述视觉支架包括支架本体及连接在所述支架本体的两侧的两个悬接臂,所述支架本体上设置有所述第二定位固定结构,每个所述悬接臂自所述支架本体的端侧向外且向下延伸,所述两个视觉传感器分别固定在所述两个悬接臂的自由端部。
本发明实施方式的无人机包括上机壳和上述任一实施方式所述的视觉系统,所述上机壳和所述安装基座形成所述无人机的机身,所述视觉系统固定安装在所述机身内。
上述无人机中,弹性垫圈为压缩设置在环形缝隙之间,这样可提高第一定位固定结构与第二定位固定结构之间的安装精度,从而可允许第一定位固定结构与第二定位固定结构之间具有较大的装配公差,进而可允许降低两个定位固定结构的加工精度,并且在降低加工精度的条件下也能够有效保证第一定位固定结构与第二定位固定结构之间的装配精度,从而可提高无人机的视觉系统的良品率和降低成本。
本发明实施例的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明实施方式的无人机的视觉系统的立体示意图。
图2是本发明实施方式的无人机的视觉系统的剖面示意图。
图3是本发明实施方式的无人机的视觉系统的分解示意图。
图4是本发明实施方式的无人机的视觉系统的另一分解示意图。
图5是本发明实施方式的无人机的视觉系统的第一定位固定结构与第二定位固定结构配合的剖面示意图。
图6是本发明实施方式的无人机的立体示意图。
图7是本发明实施方式的无人机的分解示意图。
主要元件符号说明:
无人机100;
视觉系统10,紧固件101、第一定位固定结构11、固定柱111、固定孔112、加强板113、安装基座12、窗口121、侧板122、底板123、收容槽124、收容腔125、视觉支架14、支架本体141、悬接臂142、第二定位固定结构15、定位帽151、过孔152、通槽153、视觉传感器16、加强筋结构17、加强筋171、弹性垫圈18;
上机壳20、机身30。
具体实施例
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明的描述中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请一并参阅图1-图5,本发明实施方式的无人机的视觉系统10包括安装基座12、视觉支架14、两个视觉传感器16和弹性垫圈18。
安装基座12包括有第一定位固定结构11。视觉支架14固定于安装基座12上。两个视觉传感器16安装在视觉支架14上。安装基座12设置有两个窗口121。视觉支架14用于固定两个视觉传感器16。两个视觉传感器16分别自两个窗口121露出。视觉支架14包括与第一定位固定结构11配合的第二定位固定结构15。第一定位固定结构11和第二定位固定结构15之间形成有环形缝隙。弹性垫圈18设置在环形缝隙之间。
上述无人机的视觉系统10中,弹性垫圈18为压缩设置在环形缝隙之间,这样可提高第一定位固定结构11与第二定位固定结构15之间的安装精度,从而可允许第一定位固定结构11与第二定位固定结构15之间具有较大的装配公差,进而可允许降低两个定位固定结构的加工精度,并且在降低加工精度的条件下也能够有效保证第一定位固定结构11与第二定位固定结构15之间的装配精度,从而可提高无人机的视觉系统10的良品率和降低成本。
需要说明的是,两个视觉传感器16用于视觉定位。例如,在发现无人机100飞行方向上有障碍物时,可对用户进行提醒,包括距离提醒。
另外,两个视觉传感器16可通过柔性电路板与无人机100的机身30实现电性连接。两个视觉传感器16可通过胶水固定在视觉支架14上,上述胶水的性能可从硬度、粘度、收缩率和线性收缩率等方面考虑,需要保证两个视觉传感器16固定精度的保持性。当然,可以理解,两个视觉传感器16也可通过其他固定方式固定在视觉支架14上,例如 可通过螺钉固定、焊接、结构限位等固定方式。
在某些实施方式中,安装基座12采用塑胶件或镁合金压铸件。如此,安装基座12的质量较轻。
当然,可以理解,安装基座12所采用的材料可根据具体情况进行设置,并不限于上述所列举的材料。
在某些实施方式中,视觉支架14由金属材料构成,视觉支架14采用压铸成型。如此,视觉支架14具有较好的尺寸精度,并且制造工艺较为简单。
在某些实施方式中,第一定位固定结构11采用数控机床(CNC)加工形成,第二定位固定结构15采用数控机床(CNC)加工形成。
如此,两个定位固定结构具有较佳的尺寸精度。
在某些实施方式中,视觉系统10包括紧固件101。紧固件101穿设第二定位固定结构15并固定在第一定位固定结构11中以使得视觉支架14固定于安装基座12上。
如此,两个定位固定结构实现定位配合的方式较简单,并且具有较好的稳定性。
需要说明的是,弹性垫圈18还具有减震的作用,在具有视觉系统10的无人机100工作时,无人机100的机身30出现的震动能够通过安装基座12作用在紧固件101上,然后紧固件101的震动可转化为弹性垫圈18的弹性形变,进而可有效缓冲无人机100的机身30的震动,从而可保证两个视觉传感器16的检测精度。
可以理解,若在环形缝隙之间设置的弹性垫圈18的数目为多个,则还可进一步提高减震的作用。
在某些实施方式中,弹性垫圈18可采用硅胶垫。当然,可以理解,在其他实施方式中,弹性垫圈18还可采用其他具有弹性的材料,例如橡胶材料。
在某些实施方式中,第一定位固定结构11包括固定柱111。固定柱111设置有固定孔112。第二定位固定结构15包括套设在固定柱111上的定位帽151。定位帽151设置有与固定孔112连通的过孔152。固定孔112与过孔152同轴。紧固件101穿设过孔152并固定在固定孔112中。弹性垫圈18收容在定位帽151内。
如此,弹性垫圈18可充分填充于固定柱111与定位帽151之间,从而实现固定柱111与定位帽151的软接触,从而可保证固定柱111与定位帽151具有较佳的配合精度。
在某些实施方式中,第二定位固定结构15的上端形成有通槽153。通槽153连通过孔152。紧固件101依次穿设通槽153及过孔152并固定在固定孔112中。紧固件101的上端收容在通槽153内。
如此,通槽153的设置可提高紧固件101安装的稳定性。
在某些实施方式中,紧固件101与过孔152的内壁之间留有间隙。
如此,这样使得紧固件101在x方向和y方向(如图5所示)均有柔性运动空间,从而可缓冲受力,进一步提高视觉系统10的减震效果。
请结合图5,在本实施方式中,过孔152的孔径a1大于固定孔112的孔径a2。紧固件101与过孔152的内壁之间留有间隙。这样使得紧固件101的下部能够稳定地固定在固定孔112内,而紧固件101的上部与过孔152的内壁之间留有充足的间隙余量。
当然,可以理解,在其他实施方式中,视觉系统10还可包括设置在紧固件101与定位帽151之间的弹性的环形件(图未示出)。紧固件101穿设环形件。环形件位于过孔152内。环形件102隔开紧固件101与过孔152的内壁。如此,环形件也能够使得紧固件101在x方向和y方向(如图5所示)均有柔性运动空间,从而缓冲受力。其中,环形件还可由硅胶材料构成,环形件压缩设置在紧固件101与定位帽151之间。
在某些实施方式中,紧固件101为螺栓,固定孔112为螺孔。如此,紧固件101固定在固定孔112内时具有较佳的稳定性,并且紧固件101的来源广泛,制造成本较低。
在某些实施方式中,固定柱111的数目为两个,两个固定柱111间隔且平行设置。定位帽151的数目与固定柱111的数目相同。
如此,这样可提高视觉支架14固定于安装基座12上的平行度及稳定性,从而使得两个视觉传感器16之间具有较佳的位置度和平行度。
需要说明的是,固定柱111的数目并不限于上述的两个,固定柱111的数目还可为3个、4个或5个等,固定柱111的数目可根据具体情况进行设置,在此不再一一列举。
在某些实施方式中,视觉支架14形成有连接第二定位固定结构15的加强筋结构17。加强筋结构17包括间隔设置的多个加强筋171。
如此,多个加强筋171的设置可提高视觉支架14的结构强度,并且还能够保证第二定位固定结构15具有较佳的结构稳定性。
请结合图1及图2,在本实施方式中,第二定位固定结构15包括两个定位帽151。两个定位帽151间隔且平行设置。多个加强筋171连接两个定位帽151。
在某些实施方式中,安装基座12包括首尾分别相连的多个侧板122及底板123。多个侧板122和底板123之间形成有用于收容、安装视觉支架14的收容槽124。多个侧板122中的一个侧板122形成有间隔设置的两个窗口121。固定柱111自底板123向上延伸且位于两个窗口121之间。
如此,视觉支架14为收容在收容槽124内,这样安装基座12对两个视觉传感器16起到了保护的作用。另外,由于固定柱111位于两个窗口121之间,在固定柱111与定 位帽151、紧固件101及弹性垫圈18紧密配合后,两个视觉传感器16之间具有较佳的平行度。
可以理解,为了防止安装基座12对两个视觉传感器16的检测精度带来影响,可使得两个视觉传感器16与收容槽124的内壁之间留有间隙。这样在无人机100飞行过程中,无人机100的机身30出现震动时,安装基座12的抖动不会经由收容槽124的内壁直接传递至两个视觉传感器16,从而可防止安装基座12对两个视觉传感器16的检测精度带来影响。
请结合图3及图4,在本实施方式中,两个视觉传感器16安装在作为前板使用的侧板122上。该侧板122开设有间隔设置的两个窗口121和收容腔125。每个收容腔125连通对应的窗口121。每个视觉传感器16收容于对应的收容腔125内,每个视觉传感器16与收容腔125的内壁之间留有间隙。如此,收容腔125也可对视觉传感器16起到保护的作用。
在某些实施方式中,视觉支架14包括支架本体141及连接在支架本体141的两侧的两个悬接臂142。支架本体141上设置有第二定位固定结构15。每个悬接臂142自支架本体141的端侧向外且向下延伸。两个视觉传感器16分别固定在两个悬接臂142的自由端部。如此,这样使得两个视觉传感器16设置的位置度及平行度较佳。
可以理解,为了进一步提高减震效果,可使得每个悬接臂142与底板123之间留有间隙,并使得每个悬接臂142与侧板122之间留有间隙。这样视觉支架14为悬置在收容槽124内,这样可进一步降低安装基座12出现的震动传递至两个视觉传感器16的概率。
在图4所示的例子中,第一定位固定结构11包括自固定柱111的底部的外端面向外延伸的多个加强板113,多个加强板113间隔设置。每个加强板113连接底板123。这样多个加强板113的设置可提高固定柱111的底部的结构强度,从而可进一步提高视觉支架14固定于安装基座12上的结构稳定性。
请参阅图6及图7,本发明实施方式的无人机100包括上机壳20和上述任一实施方式所述的视觉系统10。上机壳20和安装基座12形成无人机100的机身30。视觉系统10固定安装在机身30内。
在本发明实施方式的无人机100中,弹性垫圈18为压缩设置在环形缝隙之间,这样可提高第一定位固定结构11与第二定位固定结构15之间的安装精度,从而可允许第一定位固定结构11与第二定位固定结构15之间具有较大的装配公差,进而可允许降低两个定位固定结构的加工精度,并且在降低加工精度的条件下也能够有效保证第一定位 固定结构11与第二定位固定结构15之间的装配精度,从而可提高无人机的视觉系统10的良品率和降低成本。
在本说明书的描述中,参考术语“一个实施例”、“某些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (18)

  1. 一种无人机的视觉系统,其特征在于,所述视觉系统包括:
    安装基座,所述安装基座包括有第一定位固定结构;
    固定于所述安装基座上的视觉支架;
    以及安装在所述视觉支架上的两个视觉传感器;
    所述安装基座设置有两个窗口,所述视觉支架用于固定所述两个视觉传感器,所述两个视觉传感器分别自所述两个窗口露出,所述视觉支架包括与所述第一定位固定结构配合的第二定位固定结构,所述第一定位固定结构和所述第二定位固定结构之间形成有环形缝隙;和
    设置在所述环形缝隙之间的弹性垫圈。
  2. 如权利要求1所述的无人机的视觉系统,其特征在于,所述视觉系统包括紧固件,所述紧固件穿设所述第二定位固定结构并固定在所述第一定位固定结构中以使得所述视觉支架固定于所述安装基座上。
  3. 如权利要求2所述的无人机的视觉系统,其特征在于,所述第一定位固定结构包括固定柱,所述固定柱设置有固定孔,所述第二定位固定结构包括套设在所述固定柱上的定位帽,所述定位帽设置有与所述固定孔连通的过孔,所述固定孔与所述过孔同轴,所述紧固件穿设所述过孔并固定在所述固定孔中;
    所述弹性垫圈收容在所述定位帽内。
  4. 如权利要求3所述的无人机的视觉系统,其特征在于,所述紧固件与所述过孔的内壁之间留有间隙。
  5. 如权利要求3所述的无人机的视觉系统,其特征在于,所述紧固件为螺栓,所述固定孔为螺孔。
  6. 如权利要求3所述的无人机的视觉系统,其特征在于,所述固定柱的数目为两个,两个所述固定柱间隔且平行设置,所述定位帽的数目与所述固定柱的数目相同。
  7. 如权利要求1所述的无人机的视觉系统,其特征在于,所述视觉支架形成有连接所述第二定位固定结构的加强筋结构,所述加强筋结构包括间隔设置的多个加强筋。
  8. 如权利要求3所述的无人机的视觉系统,其特征在于,所述安装基座包括首尾分别相连的多个侧板及底板,所述多个侧板和所述底板之间形成有用于收容、安装所述视觉支架的收容槽;
    所述多个侧板中的一个侧板形成有间隔设置的所述两个窗口;
    所述固定柱自所述底板向上延伸且位于所述两个窗口之间。
  9. 如权利要求8所述的无人机的视觉系统,其特征在于,所述视觉支架包括支架本体及连接在所述支架本体的两侧的两个悬接臂,所述支架本体上设置有所述第二定位固定结构,每个所述悬接臂自所述支架本体的端侧向外且向下延伸,所述两个视觉传感器分别固定在所述两个悬接臂的自由端部。
  10. 一种无人机,包括上机壳和视觉系统,其特征在于,
    所述视觉系统包括:
    安装基座,所述安装基座包括有第一定位固定结构;
    固定于所述安装基座上的视觉支架;
    以及安装在所述视觉支架上的两个视觉传感器;
    所述安装基座设置有两个窗口,所述视觉支架用于固定所述两个视觉传感器,所述两个视觉传感器分别自所述两个窗口露出,所述视觉支架包括与所述第一定位固定结构配合的第二定位固定结构,所述第一定位固定结构和所述第二定位固定结构之间形成有环形缝隙;
    设置在所述环形缝隙之间的弹性垫圈;以及
    所述上机壳和所述安装基座形成所述无人机的机身,所述视觉系统固定安装在所述机身内。
  11. 如权利要求10所述的无人机,其特征在于,所述视觉系统包括紧固件,所述紧固件穿设所述第二定位固定结构并固定在所述第一定位固定结构中以使得所述视觉支架固定于所述安装基座上。
  12. 如权利要求11所述的无人机,其特征在于,所述第一定位固定结构包括固定柱,所述固定柱设置有固定孔,所述第二定位固定结构包括套设在所述固定柱上的定位帽,所述定位帽设置有与所述固定孔连通的过孔,所述固定孔与所述过孔同轴,所述紧固件穿设所述过孔并固定在所述固定孔中;
    所述弹性垫圈收容在所述定位帽内。
  13. 如权利要求12所述的无人机,其特征在于,所述紧固件与所述过孔的内壁之间留有间隙。
  14. 如权利要求12所述的无人机,其特征在于,所述紧固件为螺栓,所述固定孔为螺孔。
  15. 如权利要求12所述的无人机,其特征在于,所述固定柱的数目为两个,两个所述固定柱间隔且平行设置,所述定位帽的数目与所述固定柱的数目相同。
  16. 如权利要求10所述的无人机,其特征在于,所述视觉支架形成有连接所述第二定位固定结构的加强筋结构,所述加强筋结构包括间隔设置的多个加强筋。
  17. 如权利要求12所述的无人机,其特征在于,所述安装基座包括首尾分别相连的多个侧板及底板,所述多个侧板和所述底板之间形成有用于收容、安装所述视觉支架的收容槽;
    所述多个侧板中的一个侧板形成有间隔设置的所述两个窗口;
    所述固定柱自所述底板向上延伸且位于所述两个窗口之间。
  18. 如权利要求17所述的无人机,其特征在于,所述视觉支架包括支架本体及连接在所述支架本体的两侧的两个悬接臂,所述支架本体上设置有所述第二定位固定结构,每个所述悬接臂自所述支架本体的端侧向外且向下延伸,所述两个视觉传感器分别固定在所述两个悬接臂的自由端部。
PCT/CN2017/102807 2017-07-28 2017-09-21 无人机的视觉系统及无人机 WO2019019327A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780085274.7A CN110234572B (zh) 2017-07-28 2017-09-21 无人机的视觉系统及无人机
US16/715,673 US20200141771A1 (en) 2017-07-28 2019-12-16 Vision system for unmanned aerial vehicle, and unmanned aerial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201720937290.1 2017-07-28
CN201720937290.1U CN207072441U (zh) 2017-07-28 2017-07-28 无人机的视觉系统及无人机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/715,673 Continuation US20200141771A1 (en) 2017-07-28 2019-12-16 Vision system for unmanned aerial vehicle, and unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2019019327A1 true WO2019019327A1 (zh) 2019-01-31

Family

ID=61522807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102807 WO2019019327A1 (zh) 2017-07-28 2017-09-21 无人机的视觉系统及无人机

Country Status (3)

Country Link
US (1) US20200141771A1 (zh)
CN (2) CN207072441U (zh)
WO (1) WO2019019327A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11141279B2 (en) 2017-05-22 2021-10-12 Hip Innovation Technology, LLC Reconfigurable hip prosthesis, method of use and kit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10906640B2 (en) * 2016-12-27 2021-02-02 Haoxiang Electric Energy (Kunshan) Co., Ltd. Multi-rotor unmanned aerial vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2911283Y (zh) * 2006-05-17 2007-06-13 山东丰汇设备技术有限公司 带锁紧的锥度销
US20080172959A1 (en) * 2006-12-15 2008-07-24 Airbus Deutschland Gmbh Bonded aluminum window frame on fibre metal laminate fuselage skin
CN201792874U (zh) * 2010-07-29 2011-04-13 天津铁路信号工厂 转辙机用弹性轴套
CN102230563A (zh) * 2011-04-08 2011-11-02 北京航空航天大学 一种轻量型三轴惯性稳定平台方位支承结构
CN202879564U (zh) * 2012-08-27 2013-04-17 昆山威凯儿童用品有限公司 婴儿推车的车轮快拆机构
CN205047783U (zh) * 2015-09-09 2016-02-24 日本电产凯宇汽车电器(江苏)有限公司 一种踏板电机的输出轴和齿轮总成
CN205806245U (zh) * 2016-05-31 2016-12-14 重庆鼎祥钢结构工程有限公司 一种电机的输出轴总成
CN206087347U (zh) * 2016-09-23 2017-04-12 深圳市大疆创新科技有限公司 减震板及具有该减震板的无人飞行器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1014963B (zh) * 1989-05-13 1991-12-04 周智权 超高精度定位器
CN2515493Y (zh) * 2001-12-11 2002-10-09 王磊 阀杆“倒y形”密封圈
US7962265B2 (en) * 2007-11-28 2011-06-14 Honeywell International Inc. Vehicular linear sensor system
CN101367191B (zh) * 2008-10-13 2010-06-02 江苏星河集团有限公司 在旧机床上抛光环形不锈钢精密零件的方法
JP2010254117A (ja) * 2009-04-24 2010-11-11 Yamaha Motor Co Ltd 鞍乗型車両
CN202118251U (zh) * 2011-06-09 2012-01-18 成都博瀚工矿设备配套有限公司 密封垫圈
CN202479625U (zh) * 2011-11-25 2012-10-10 台州清华机电制造有限公司 无间隙磨齿心轴
DE102012021571A1 (de) * 2012-11-02 2014-05-08 Daimler Ag Halterung zum Befestigen eines Bauteils an einer Glasscheibe

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2911283Y (zh) * 2006-05-17 2007-06-13 山东丰汇设备技术有限公司 带锁紧的锥度销
US20080172959A1 (en) * 2006-12-15 2008-07-24 Airbus Deutschland Gmbh Bonded aluminum window frame on fibre metal laminate fuselage skin
CN201792874U (zh) * 2010-07-29 2011-04-13 天津铁路信号工厂 转辙机用弹性轴套
CN102230563A (zh) * 2011-04-08 2011-11-02 北京航空航天大学 一种轻量型三轴惯性稳定平台方位支承结构
CN202879564U (zh) * 2012-08-27 2013-04-17 昆山威凯儿童用品有限公司 婴儿推车的车轮快拆机构
CN205047783U (zh) * 2015-09-09 2016-02-24 日本电产凯宇汽车电器(江苏)有限公司 一种踏板电机的输出轴和齿轮总成
CN205806245U (zh) * 2016-05-31 2016-12-14 重庆鼎祥钢结构工程有限公司 一种电机的输出轴总成
CN206087347U (zh) * 2016-09-23 2017-04-12 深圳市大疆创新科技有限公司 减震板及具有该减震板的无人飞行器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11141279B2 (en) 2017-05-22 2021-10-12 Hip Innovation Technology, LLC Reconfigurable hip prosthesis, method of use and kit

Also Published As

Publication number Publication date
CN207072441U (zh) 2018-03-06
CN110234572B (zh) 2021-08-13
CN110234572A (zh) 2019-09-13
US20200141771A1 (en) 2020-05-07

Similar Documents

Publication Publication Date Title
US10931932B2 (en) Supporting housing for stereo camera and circuit board
WO2021203991A1 (zh) 一种惯性测量模块、减震系统以及无人机
WO2019019327A1 (zh) 无人机的视觉系统及无人机
CN110822261B (zh) 一种减震支架和电子设备
CN110896631A (zh) 云台减震结构、云台系统及无人飞行器
CN110957448B (zh) 一种新能源电池的减震防撞稳定保护结构
CN210235337U (zh) 一种无人机导航仪的减振结构
US20180128344A1 (en) Liquid-sealed vibration-damping device
CN215912380U (zh) 一种单灯控制器
CN210026999U (zh) 一种悬置装置和悬置总成及设置该悬置总成的车辆
CN212392966U (zh) 一种喇叭减震结构及智能交互设备
CN210126489U (zh) 无人驾驶汽车相机模组减震结构及汽车
JP2006097741A (ja) エンジンマウント
CN210488423U (zh) 一种机箱侧壁减震装置
CN111376691A (zh) 一种悬置装置
JP6407847B2 (ja) 車両用取付部品
JP2019116210A (ja) 駆動装置の取付構造
CN218468159U (zh) 一种复合减震装置
CN109236943B (zh) 一种减振连接结构及具有其的飞机
CN209833501U (zh) 汽车后视镜镜片电动驱动器组件及后视镜
CN216467610U (zh) 一种车载悬浮式中控显示屏安装固定结构
CN217216805U (zh) 喇叭固定结构、显示设备的喇叭固定结构及显示设备
CN104787298B (zh) 飞行器
CN116520986A (zh) 悬浮结构及屏幕系统
CN214451527U (zh) 电动车及电池盒安装结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17918971

Country of ref document: EP

Kind code of ref document: A1