WO2019019210A1 - 轮滑装置、轮滑系统及转向控制方法 - Google Patents

轮滑装置、轮滑系统及转向控制方法 Download PDF

Info

Publication number
WO2019019210A1
WO2019019210A1 PCT/CN2017/095725 CN2017095725W WO2019019210A1 WO 2019019210 A1 WO2019019210 A1 WO 2019019210A1 CN 2017095725 W CN2017095725 W CN 2017095725W WO 2019019210 A1 WO2019019210 A1 WO 2019019210A1
Authority
WO
WIPO (PCT)
Prior art keywords
pedal
steering
driver
roller
sensor
Prior art date
Application number
PCT/CN2017/095725
Other languages
English (en)
French (fr)
Inventor
陈中元
伊布拉欣
Original Assignee
纳恩博(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纳恩博(北京)科技有限公司 filed Critical 纳恩博(北京)科技有限公司
Publication of WO2019019210A1 publication Critical patent/WO2019019210A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C17/00Roller skates; Skate-boards
    • A63C17/12Roller skates; Skate-boards with driving mechanisms
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C17/00Roller skates; Skate-boards
    • A63C17/0093Mechanisms transforming leaning into steering through an inclined geometrical axis, e.g. truck
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C17/00Roller skates; Skate-boards
    • A63C17/04Roller skates; Skate-boards with wheels arranged otherwise than in two pairs
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C17/00Roller skates; Skate-boards
    • A63C17/26Roller skates; Skate-boards with special auxiliary arrangements, e.g. illuminating, marking, or push-off devices
    • A63C17/262Roller skates; Skate-boards with special auxiliary arrangements, e.g. illuminating, marking, or push-off devices with foot bindings or supports therefor

Definitions

  • the embodiments of the present application relate to the technical field of roller skating or traveling tools, and in particular, to a roller skating device, a roller skating system, and a steering control method.
  • roller skates can be mainly divided into speed type and control type.
  • the structure of these two types of roller shoes is basically the same, including the shoe body and the wheel frame mounted on the sole and several rollers.
  • the difference is that the number, size and arrangement of the rollers may vary depending on the purpose of use. In the process of use, it is driven by the operator's manpower, such as pedaling, so that there is a certain limitation. It is easy to cause fatigue when used for a long time.
  • in the process of sliding it is necessary to control standing on the roller skates. Steering, the operator's requirements are higher, which ultimately leads to poor user experience of the roller skates.
  • one of the technical problems solved by the embodiments of the present application is to provide a roller skating device, a roller skating system, and a steering control method for overcoming the above-mentioned deficiencies in the prior art.
  • An embodiment of the present application provides a roller skating device including: a pedal, a steering sensor coupled to the pedal, a driving component, at least two grounding components, and a first controller, wherein the pedal is adapted to a single point on the driver Standing, the steering sensor is configured to sense a driver's foot posture on the pedal; the first controller is configured to control an output signal of the driving component according to a foot posture such that the two grounding elements The speed difference formed to control the steering is formed.
  • Embodiments of the present application also provide a roller skating system including two roller skating devices, each of which includes a pedal, a steering sensor coupled to the pedal, a driving component, at least two grounding components, and a first controller,
  • the pedal is adapted for the driver to stand on a single point thereon, the steering pass a sensor for sensing a driver's foot posture on the pedal: each of the first controllers is configured to control an output signal of a corresponding driving component according to a driver's foot posture on the corresponding pedal
  • a speed difference for the steering of a single of the roller units is formed between the two corresponding grounding elements, and a speed difference between the two roller shoes for the overall steering of the two roller bearings is formed.
  • the embodiment of the present application further provides a steering control method, which is applied to a skating device, the skating device includes a pedal, a steering sensor coupled to the pedal, a driving component, at least two grounding components, and a first controller.
  • the pedal is adapted for the driver to stand at a single point thereon, the method comprising:
  • Controlling the two grounding elements according to the output signal causes a speed difference between the two grounding elements to control steering.
  • the embodiment of the present application further provides a steering control method applied to at least two roller skating devices, each of which is configured to be suitable for a driver to stand on a single point thereon, each of the skating devices including a pedal, and The pedal-coupled steering sensor, the drive element, the at least two grounding elements, and the first controller, the pedal being adapted for the driver to stand on a single point thereon, the method comprising:
  • the skating device when applied to a skating device, the skating device includes a pedal, a steering sensor coupled to the pedal, a driving component, at least two grounding components, and a first controller.
  • the pedal is adapted for the driver to stand on a single point thereon, the steering sensor for sensing the driver's foot posture on the pedal; the first controller for outputting the driving element according to the foot posture
  • the signal is controlled such that a speed difference for controlling the steering is formed between the two grounding elements, thereby ensuring that even if the standing on the roller skate that can be used as the roller skating device, the steering control can be finally realized according to the user's foot posture. , reducing the skill requirements of the driver and improving the user experience.
  • FIG. 1 is a schematic structural view showing the structure of a roller skating device according to Embodiment 1 of the present application;
  • FIG. 2 is a schematic structural view showing the structure of a roller skating device according to Embodiment 2 of the present application;
  • 3a and 3b are schematic diagrams showing a schematic structure of a structure of a roller skating device according to a third embodiment of the present application. And two;
  • 3c is a schematic view of a fixed base in the third embodiment of the present application.
  • FIG. 4 is a schematic structural view of a roller skating device in Embodiment 4 of the present application.
  • FIG. 5 is a schematic structural diagram of a specific implementation of a roller skating device according to Embodiment 5 of the present application.
  • FIG. 6 is a schematic structural diagram of a specific implementation of a roller skating device according to Embodiment 6 of the present application.
  • 7a and 7b are schematic structural diagrams and 2 of the structure of the roller skating device in the seventh embodiment of the present application.
  • Embodiment 8 is a partial schematic view of a roller skating device according to Embodiment 8 of the present application.
  • Embodiment 9 is a schematic diagram of a control principle of a roller skating device in Embodiment 9 of the present application.
  • FIG. 10 is a schematic flowchart of a steering control method in Embodiment 10 of the present application.
  • FIG. 11 is a schematic flowchart of a steering control method according to Embodiment 11 of the present application.
  • FIG. 12 is a schematic flowchart of a steering control method according to Embodiment 12 of the present application.
  • FIG. 13 is a schematic flowchart of a steering control method according to Embodiment 13 of the present application.
  • the pedal is coupled to the first sensor and the grounding component, the grounding component is coupled to the driving component, and the first controller is coupled to the first sensor and The driving element; wherein: the pedal is adapted to be used for single point standing, and is for tilting forward or backward when standing at a single point; the grounding element is for operating under the driving of the driving element;
  • the first sensor is configured to sense a posture of a driver on the pedal; the driving element is configured to generate an output signal that controls the action of the grounding element and maintains the overall condition of the roller bearing device in an equilibrium state; the first control The device is configured to control the generation of the output signal according to the posture, thereby avoiding the human body to achieve physical fatigue caused by the sliding.
  • the operator's operation skill is required. Low, thereby improving the user experience, in other words, providing a better skating device with a better user experience.
  • the first sensor is specifically configured to sense a posture of a driver on the pedal and generate pitch sensing data
  • the first controller is specifically configured to determine, according to the pitch sensing data, The current pitch angle of the pedal.
  • the first controller when controlling an output signal of the drive element, specifically controls an output signal of the drive element by a desired pitch angle of the pedal and the current pitch angle, such as by a desired pitch angle of the pedal And the current pitch angle The difference between the angles.
  • the skating device when applied to a skating device, since the skating device includes a pedal, a steering sensor coupled to the pedal, a driving component, at least two grounding components, and a first controller, the pedal is suitable for driving Standing on a single point thereon, the steering sensor is for sensing a driver's foot posture on the pedal; the first controller is for controlling an output signal of the driving element according to a foot posture so that A speed difference for controlling the steering is formed between the two grounding elements, thereby ensuring that even if the standing skate can be used as a roller skating device, the steering control can be finally realized according to the user's foot posture, and the driving is reduced.
  • the skill requirements of the user improve the user experience.
  • the steering control method may be specifically: generating steering sensing data according to a driver's foot posture on the pedal sensed by the steering sensor; The sensing data generates a steering control command; and the two grounding elements are controlled according to the steering control command such that a speed difference for controlling steering is formed between the two grounding elements, as described in the related embodiments.
  • each of the skating devices comprising a pedal, a steering sensor coupled to the pedal, a drive element, at least each of the skating devices configured to be suitable for the driver to stand on a single point thereon
  • Two grounding elements and a first controller adapted for the driver to stand on a single point thereon the method comprising: sensing, according to each of the steering sensors, a driver's foot on the corresponding pedal The attitude controls an output signal of the corresponding driving component; and performs motion control on the corresponding two grounding components according to the output signal, so that a corresponding one of the two grounding components is formed for controlling a single of the skating a speed difference between the steering of the device (such as a first speed difference and a second speed difference described later), and a speed difference between the two roller bearings for controlling the overall steering of the two roller bearings (such as a third speed to be described later) difference).
  • the steering control method may be specifically: the driver's foot posture corresponding to the pedal is respectively determined according to each of the steering sensors. Generating first steering sensing data, second steering sensing data; generating a first steering control command according to the first steering sensing data, and generating a second steering control command according to the second steering sensing data; according to the first steering control command,
  • the second steering control command controls the two grounding elements corresponding to each of the two steering control commands to respectively form a first speed difference, a second speed difference, and two for controlling steering between each of the two grounding elements.
  • a third speed difference for controlling the steering is formed between the entire roller skating devices, as described in the related embodiments.
  • roller skating device is exemplified in the following in the form of a specific roller shoe.
  • the roller skating shoe is not the only implementation form of the roller skating device, and the above-mentioned roller skating device can also be made suitable for roller skating on the hand.
  • the grounding element is illustratively a wheel that is rolled under the drive of the drive element.
  • the rotational speed of the wheels is controlled to generate a rotational speed difference for controlling the steering.
  • the grounding element can also be a flat-like structural member that slides under the drive of the drive element.
  • the first sensor may specifically be a gyroscope, but is not limited to a gyroscope as long as the driver's attitude on the pedal can be sensed.
  • the driving component is specifically a motor, but is not limited to a motor. As long as the grounding component can be driven to perform a specific application scenario.
  • the drive element is a motor
  • the output signal of the drive element is the output torque of the motor.
  • Embodiment 1 (a single grounding element):
  • FIG. 1 is a schematic structural diagram of a structure of a roller skating device according to Embodiment 1 of the present application; as shown in FIG. 1 , when the roller skating device is implemented in the specific product form of the roller skate, the roller skating shoe specifically includes the pedal 101, the grounding component 102, and the motor. (not shown in FIG. 1), a first controller (not shown in FIG. 1), the pedal 101 is configured to be suitable for standing on one foot, and the number of the grounding elements 102 is specifically one, that is, the driver passes through The skates have only one point of contact with the ground. Correspondingly, the number of the motors is one.
  • the motor can be directly embedded in the hub of the grounding member 102, so that the overall structure of the roller skate is relatively compact.
  • the motor may also be disposed in the hub of the grounding member 102 without being embedded, such as by a fixing seat or the like.
  • the structure is directly disposed at a position below the pedal 101.
  • Embodiment 2 (two grounding elements 102a and 102b disposed at close distances)
  • FIG. 2 is a schematic structural diagram of a structure of a roller skating device according to Embodiment 2 of the present application; as shown in FIG. 2, in this embodiment, different from the first embodiment, the number of the grounding components is two, respectively grounded.
  • the lateral spacing between the elements 102a, 102b, the ground elements 102a, 102b is small, thereby achieving a position to be placed near the center of the pedal 101 such that the driver forms two points of contact with the ground through the roller skates, Thereby reducing the difficulty of using the roller skates.
  • the transmission shaft of the motor is disposed laterally, that is, perpendicular to the direction in which the roller shoes travel, and the grounding members 102a and 102b are respectively disposed at two ends of the transmission shaft, and the motor is embedded in the grounding member 102.
  • the hub is directly coupled to the grounding member 102a via a drive shaft and coupled to the grounding member 102b to which the motor is not embedded.
  • the grounding element 102a in which the motor is embedded acts as a driving wheel during the traveling of the roller skate, and the grounding element 102b of the motor is not embedded as a driven wheel, and the driven wheel is driven by the driving wheel. Rotate down.
  • a motor may be separately disposed on the grounding elements 102a, 102b, so that the rotational speed of each grounding element can be separately controlled.
  • grounding elements 102a, 102b are illustrated for the sake of view, and other components are not illustrated.
  • Embodiment 3 (two grounding elements 102a and 102b disposed at a long distance)
  • FIG. 3a and 3b are schematic diagrams showing a schematic structure of a structure of a roller skating device according to a third embodiment of the present application.
  • the grounding elements 102a, 102b are respectively disposed at positions close to the left and right edges of the pedal 101, that is, The two contact points formed on the ground have a large lateral distance, which further reduces the difficulty of using the skates.
  • the grounding elements 102a, 102b share a motor, and the driving shaft of the motor is disposed laterally, that is, perpendicular to the direction in which the roller shoes travel, and the grounding members 102a, 102b are respectively disposed at two ends of the driving shaft.
  • the motor is embedded in a hub of one of the grounding members 102a and is directly coupled to the grounding member 102a via a drive shaft while being coupled to a grounding member 102b to which the motor is not embedded.
  • the grounding element 102a in which the motor is embedded acts as a driving wheel during the traveling of the roller skate, and the grounding element 102b of the motor is not embedded as a driven wheel, and the driven wheel is driven by the driving wheel. Rotate down.
  • the number of the motors is two, and the grounding elements 102a, 102b are respectively configured with one of the motors, thereby achieving separate control of the rotational speeds of the grounding elements 102a, 102b, during normal travel,
  • the grounding elements 102a, 102b have the same rotational speed.
  • the axis of the grounding element is located below the pedal 101, and the grounding element as a whole is also located below the pedal 101.
  • FIG. 3b further comprising: a fixed base 100a, the grounding elements 102a, 102b are coupled to the fixed base 100a, and the fixed base 100a is fixed to a lower surface of the pedal 101.
  • the grounding member 102a, 102b may be integrated with the fixed base 100a, and the fixed base 100a may be fixed to the lower surface of the pedal 101.
  • FIG. 3c is a schematic view of an alternative base in the third embodiment of the present application; as shown in Figure 3c, the ground points 102a, 102b are coupled to the lower surface of the pedal by a quick release structure 100b.
  • Embodiment 4 (two grounding elements 102a and 102b disposed at a long distance)
  • the axial center of the grounding elements 102a, 102b is located below the pedal 101. But partially protrudes upward from the pedal 101.
  • the pedal 101 in the above-described third embodiment is entirely moved downward, and a schematic structural view of the roller skating device in the fourth embodiment shown in FIG. 4 is obtained.
  • the number of the motors is two, and the grounding elements 102a, 102b are respectively configured with one of the motors, thereby achieving separate control of the rotational speeds of the grounding elements 102a, 102b, during normal travel,
  • the grounding elements 102a, 102b have the same rotational speed.
  • a roller skate as a roller skating device includes a grounding member 102, and the grounding member 102 is located at a center of the pedal 101, and A motor is disposed in the hub of the grounding element 102.
  • the drive shaft of the motor is threaded into the hub, and the drive shaft 103 is disposed at the intermediate portion with a first bearing structure 104 that is coupled to the ground element 102 to drive the ground element 102 to rotate.
  • a second bearing structure 105 may be respectively disposed at both ends of the transmission shaft, The bearing structure at each end of the drive shaft is coupled to the pedal 101, so that the motor and the drive shaft are integrally disposed at a position below the pedal 101.
  • FIG. 6 is a schematic structural diagram of a specific implementation of a roller skating device according to Embodiment 6 of the present application; as shown in FIG. 6, the roller skate as a roller skating device includes two grounding members, namely, grounding members 102a and 102b, and the grounding members 102a and 102b are respectively disposed close to each other. The position of the left and right side edges of the pedal 101.
  • the grounding elements 102a, 102b are each provided with a motor.
  • the arrangement of the motor and the drive shaft can be referred to the embodiment shown in FIG.
  • the pedal 101 is not rectangular but has arcs at both ends.
  • FIG. 7a and 7b are schematic diagrams and 2 of the structure of the roller skating device in the seventh embodiment of the present application; referring to FIG. 7a and FIG. 7b, on the basis of the above embodiment of FIG. 1, a binding unit 108 is added, and the binding unit is added. 108 is provided on the pedal 101 for fixing a foot position or a foot up position of an individual using the roller skating device.
  • the binding unit is a structure having a fastening button or a locking buckle, and the driver's foot position or the foot rest is fixed by the buckle or the locking buckle. Position to prevent the driver from falling off the roller skates.
  • the position of the foot is, for example, the position of the foot, and the position of the foot is, for example, an ankle or a calf.
  • the skating device further includes: a protective cover 109 for contacting the heel of the one foot standing on the pedal 101 to stabilize the one foot on the pedal during the skating process 101.
  • the specific shape of the protective cover may be curved to closely fit the heel of the foot to provide a stable support.
  • the restraint unit and the protective cover provide a firming action for the driver's foot in the rear position and the front position, thereby effectively preventing the driver from falling from the roller skate during the skating process.
  • a battery compartment 106 is further disposed, and the battery compartment 106 is provided with a battery pack 107, and the battery pack 107 is used for Powered by motors and other structures or circuits that require electricity.
  • the pedal 101 has a hollow inner cavity in which the battery compartment 106 is disposed.
  • a battery pack 107 is disposed at a rear portion of a skating device as a roller skate, and specifically, for example, a battery compartment is disposed in a hollow of the protective cover 109. In the cavity, a battery pack 107 is disposed in the battery compartment.
  • the driver sets the battery pack 107 on the body, and then passes the external power cord and the electric circuit or component in the roller skate.
  • the motor is connected.
  • FIG. 9 is a schematic diagram of a control principle of a roller skating device according to Embodiment 9 of the present application; as shown in FIG. 9, when the pedal is tilted forward or backward, the first controller is configured according to a desired pitch angle of the pedal.
  • the angular difference between ⁇ * and the current pitch angle ⁇ generates a drive electrical signal to control the magnitude of the output torque of the drive element.
  • a drive electric signal is generated to control the magnitude of the output torque of the drive element based on the current pitch angular velocity ⁇ of the pedal and the angular difference ⁇ error between the desired pitch angle ⁇ * and the current pitch angle ⁇ .
  • the driving electrical signal is, for example, a driving voltage.
  • the first controller (also referred to as a balance controller) is, for example, a PID controller.
  • the skating device may further include a second controller (also referred to as a speed controller) configured to determine the current speed V of the driving component and the set maximum rotational speed V * The desired pitch angle ⁇ * is described.
  • the second controller is also a PID controller, for example.
  • the traveling speed of the skating device is not limited to exceed the upper limit of the traveling speed.
  • the pitch angle ⁇ * is expected to be 0, and according to the angle difference ⁇ error , the first controller generates a driving electric signal according to the angle difference ⁇ error to control the output torque of the driving element and finally causes the The pedal is dynamically level.
  • the roller slide device may further comprise a second sensor for sensing the current rotational speed of the drive element.
  • the current pitch angular velocity may also be disregarded when generating the driving electrical signal.
  • the second controller may not be configured when determining the desired pitch angle, but the first controller is multiplexed.
  • a first controller may be configured according to the present rotation speed V of the driven element and the maximum speed V * set by determining the desired pitch angle ⁇ *, it may also be configured according to the desired pitch angle ⁇ * and the pedal
  • the angular difference between the current pitch angles ⁇ generates a drive electrical signal to control the magnitude of the output torque of the drive element.
  • the second controller may also be multiplexed into the first controller.
  • the second controller may be configured according to the present rotation speed V of the driven element and the maximum speed V * set by determining the desired pitch angle ⁇ *, it may also be configured according to the desired pitch angle ⁇ * and the pedal
  • the angular difference between the current pitch angles ⁇ generates a drive electrical signal to control the magnitude of the output torque of the drive element.
  • the output signal of the driving element may also be in other forms, and the output torque is merely illustrated in this embodiment.
  • steering sense data is generated according to a foot posture of the driver on the pedal sensed by the steering sensor;
  • a steering control command is generated according to the steering sensing data;
  • two grounding component rotational speeds are controlled according to the steering control command such that a speed difference for controlling steering is formed between the two grounding components.
  • the rotational speed of the wheel is controlled when the grounding element is controlled, and further, the speed difference is a difference in the rotational speed of the wheel at a specific position.
  • FIG. 10 is a schematic flow chart of a steering control method according to Embodiment 10 of the present application; as shown in FIG. 10, in any of the foregoing embodiments including two grounding components, the roller bearing device is provided with a pressure sensor, The pressure sensor is configured to sense a foot posture of the driver on the skating device to generate pressure sensing data.
  • the method includes the following steps:
  • the skating device is configured with at least two pressure sensors, and correspondingly, generating a steering control command according to the pressure sensing data includes: generating a steering control according to a difference between the pressure sensing data generated by the at least two pressure sensors instruction.
  • the pressure sensor can be directly disposed on the upper surface of the pedal, and the contact with the foot is more direct, thereby improving the accuracy of the steering control.
  • two pressure sensors may be disposed on the left and right halves of the pedal. In the process of turning, if turning to the left, the driver's body is tilted to the left, relative to the right pressure sensor, the left side The value of the pressure sensing data output by the pressure sensor is large, and a leftward steering control command is generated.
  • the steering control command may be generated by the positive and negative of the pressure sensing data difference outputted by the left and right pressure sensors, for example, if the value of the pressure sensing data outputted by the left pressure sensor is subtracted from the pressure sensing data output by the right pressure sensor.
  • the value of the value, if turned to the left, the pressure sensing data difference is positive, otherwise it is negative.
  • a certain difference threshold may be set, and the absolute value of the pressure sensing data difference is obtained, and if the absolute value is greater than the set difference threshold, a steering control command is generated.
  • horizontal swaying on the pedal may be performed, so that two pressure sensors on the left and right sides of the pedal generate pressure sensing data with different values, for example, if turning to the left, The foot is tilted to the left so that the pressure sensing data generated by the left pressure sensor is numerically greater than the pressure sensing data generated by the right pressure sensor, thereby generating a steering control command.
  • the grounding element on the left side rotates at a lower speed than the grounding element on the right side, so that a difference in rotational speed is formed between the ground elements on the right side; if it is turned to the right, the speed of the ground element on the left side is greater than the right side.
  • the grounding element rotates so that a difference in rotational speed is formed between the ground elements on the right side. If each wheel is equipped with a motor, when turning to the left, the motor coupled to the ground element on the left produces a smaller output torque, while the motor coupled to the ground element on the right produces a larger output torque. Therefore, a difference in rotational speed is formed between the ground elements on the left and right sides.
  • the motor is directly coupled to the grounding element on the right side and indirectly coupled to the grounding element on the left side, if turned to the left, the output torque generated by the motor directly acts on the grounding element on the right side, the output The torque is applied to the grounding element on the left side after being decelerated by the speed regulating mechanism, so that the rotation speed of the left and right grounding elements is turned to the left.
  • the output torque generated by the motor directly acts on the grounding element on the right side, and the output torque passes through the speed governing mechanism. After the acceleration process, it acts on the grounding element on the left side, so that the rotation speed of the left and right grounding elements is turned to the right.
  • FIG. 11 is a schematic flow chart of a steering control method according to Embodiment 11 of the present application; as shown in FIG. 11, in any of the above embodiments including two grounding elements, the roller bearing device is provided with a steering shaft, and the steering shaft
  • a method for sensing a foot posture of the driver on the pedal to generate a steering induction torque, and the steering control method includes:
  • a driver sensed by the steering shaft generates a steering induction torque on a foot posture of the roller skating device
  • the steering shaft is configured to be perpendicular to the traveling direction of the roller bearing device.
  • the steering shaft may be disposed on the surface of the pedal such that the pedal can be tilted left and right, thereby converting the left and right tilt of the pedal into a steering induction torque through the steering shaft.
  • the steering control command may be generated by the positive and negative of the steering induction torque. If the steering induction torque is positive, the steering control command for turning to the left is generated, and otherwise the steering control command for steering to the right is generated.
  • step S1003 The principle of forming the rotational speed difference in step S1003 in this embodiment is similar to the above description with reference to FIG.
  • FIG. 12 is a schematic flow chart of a steering control method according to Embodiment 12 of the present application; as shown in FIG. 12, in any of the above embodiments including two grounding elements, the skating device is configured with a gyroscope, and the gyro is used for Inducing a driver's foot posture on the skating device to generate angular motion data, and correspondingly, the steering control method includes:
  • S1201 Generate angular motion data according to a foot posture of the driver sensed by the gyroscope on the roller skating device;
  • the left and right tilting foot postures of the driver are sensed by the gyroscope, and corresponding angular motion data is generated.
  • the gyroscope is also required when controlling the balance state, two gyroscopes can be configured for the roller skating device, one gyroscope is configured to be sensitive to the front and rear tilt of the pedal, and the other is configured to tilt the pedal to the left and right. sensitive.
  • only one gyroscope may be used, which may be configured to be sensitive to the front and rear tilt of the pedal, and may be configured to be sensitive to the left and right tilt of the pedal.
  • S1202 Generate a steering control command according to the angular motion data.
  • the steering control command is generated based on the angular motion data similar to the steering shaft described above.
  • the left and right sides of the pedal are disposed with a spring such that the pedal can be tilted left and right, the steering sensor is a photoelectric sensor, and the photoelectric sensor is used to sense a driver's foot on the pedal The attitude makes the photoelectric sensing data generated when the pedal is tilted left and right;
  • generating a steering control command according to the steering sensing data includes: according to the photoelectric sensing The data generates steering control commands.
  • the steering method includes: first, the driver's foot posture corresponding to the pedal is respectively determined according to each of the steering sensors Generating first steering sensing data, second steering sensing data; secondly, generating a first steering control command according to the first steering sensing data, and generating a second steering control command according to the second steering sensing data; and finally, according to the first steering
  • the control command and the second steering control command perform motion control on the two grounding elements corresponding thereto, so that a first speed difference and a second speed difference for controlling the steering are formed between each of the two grounding elements.
  • a third speed difference for controlling the steering is formed between the two of the skating devices as a whole.
  • the steering sensor of the same type is configured as an example.
  • the steering sensors configured by the two roller skating devices may be of different types, and the detailed description of the drawings is omitted.
  • FIG. 13 is a schematic flowchart of a steering control method according to Embodiment 13 of the present application; as shown in FIG. 13 , the present invention includes: in this embodiment, two pressure sensors are disposed on each of the roller skating devices as an example, specifically, Steering control methods include:
  • the first pressure sensing data and the second pressure sensing data are respectively generated by the driver in the foot posture corresponding to the pedal according to each of the two pressure sensors.
  • Generating a second steering control command according to the second steering sensing data includes: generating a second steering control command according to the second pressure sensing data.
  • each of the roller skating devices is provided with two pressure sensors, one pressure sensor generates one sensing data, and generates a first steering control command according to the first steering sensing data, according to the two first steering sensing data.
  • the difference generates a first steering control command, and similarly, generates a second steering control command based on the difference between the two second steering sensing data.
  • each of the roller skating devices since each of the roller skating devices includes at least two wheels, each of the roller skating devices needs to rotate when steered, and in addition, relative rotation between the two rotator devices is required. Therefore, in order to realize the respective rotation of the two roller skating devices, there is a difference in rotational speed between the two wheels of each skating device, that is, a first rotational speed difference and a second rotational speed difference; when two roller skating devices need to perform relative rotation, then two skating There is a third difference in rotational speed between the devices as a whole.
  • the rotational speed of the wheel is increased from left to right. If turning to the right, from left to right, the rotational speed of the wheel is decreased, thereby forming the first rotational speed difference and the second rotational speed difference.
  • the third speed difference if turning to the left, the rotational speed of the wheel is increased from left to right. If turning to the right, from left to right, the rotational speed of the wheel is decreased, thereby forming the first rotational speed difference and the second rotational speed difference. The third speed difference.
  • the first rotation speed difference and the second rotation speed difference are formed in a similar manner to the single skating device to make the rotation speed difference.
  • the steering sensor is a steering shaft, the steering shaft A foot posture for sensing a driver on the pedal to generate a first steering induction torque and/or a second steering induction torque; correspondingly, generating a first steering control command according to the first steering induction data: according to the Generating a first steering control command by a steering induction torque; and/or generating a second steering control command according to the second steering sensing data includes: generating a second steering control command according to the second steering induction torque.
  • the steering shaft is configured to be perpendicular to a direction in which the roller skate travels.
  • the steering sensor is a gyroscope for sensing a driver's foot posture on the pedal to generate first angular motion sensing data and/or second Correspondingly, generating a first steering control command according to the first steering sensing data: generating a first steering control command according to the first angular motion sensing data; and/or generating a second according to the second steering sensing data
  • the steering control command includes: generating a second steering control command based on the second angular motion sensing data.
  • a first steering control command and/or a second steering control command are generated based on a foot posture sensed by the steering sensor that the driver is horizontally swaying on the pedal.
  • a spring is disposed on the left and right sides of the pedal of the roller skating device such that the pedal can be tilted left and right
  • the steering sensor is a photoelectric sensor
  • the photoelectric sensor is used to sense the driver a foot posture on the pedal such that the pedal can be tilted left and right to generate first photoelectric sensing data and/or second photoelectric sensing data; correspondingly, generating a first steering control command according to the first steering sensing data:
  • the first photoelectric sensing data generates a first steering control command; and/or, generating the second steering control command according to the second steering sensing data includes: generating a second steering control command according to the second photoelectric sensing data.
  • the method further includes: at least one manned sensor disposed on the skating device senses whether the driver is standing at a single point on the skating device; if yes, the steering sensor senses that the driver is in the corresponding The foot gesture on the pedal to generate first steering sense data and/or second steering sense data.
  • the roller skating device may further comprise a steering sensor and a third controller for sensing a driver's footstep gesture on the pedal to generate a steering Inductive data, the third controller is configured to generate a steering control command based on the steering sensing data to control an action of the two grounding elements to generate a speed difference for controlling steering.
  • the third controller may multiplex the first controller, or may also be the second controller, or if the third controller is separately added, the third The controller can be multiplexed into the first controller or the second controller described above.
  • the motor is specifically a hub motor, but in other embodiments, the motor may also be a high speed motor.
  • each of the roller skating devices includes one wheel
  • the roller skating device is provided with a steering sensor
  • the speed can be rotated by the speed difference with reference to the above steering method, or the steering sensor can be operated without penalty, depending on the speed of the human driving. Poor to achieve steering.
  • the expression “include” or “may include” refers to the existence of the corresponding function, operation or element, and does not limit one or more additional functions, operations or elements.
  • terms such as “include” and / or “have” are understood to mean certain features, numbers, steps, operations, components, elements or combinations thereof, and are not to be construed as being excluded. The existence or additional possibility of one or more other characteristics, numbers, steps, operations, constituent elements, elements or combinations thereof.
  • the expression “A or B”, “at least one of A or / and B” or “one or more of A or / and B” may include all possible combinations of the listed items.
  • the expression “A or B”, “at least one of A and B” or “at least one of A or B” may include: (1) at least one A, (2) at least one B, or (3) at least One A and at least one B.
  • first, second, the first or “the second” as used in the various embodiments of the present disclosure may modify various components regardless of order and/or importance. , but these statements do not limit the corresponding components. The above statements are only used for the purpose of distinguishing components from other components.
  • the first user device and the second user device represent different user devices, although both are user devices.
  • a first element could be termed a second element, and a second element could be termed a first element, without departing from the scope of the disclosure.
  • an element eg., a first element
  • another element e.g., a second element
  • An element e.g., a second element or “connected to” another element (e.g., a second element) is understood to mean that the one element is directly connected to the other element or the one element is via the other element (e.g., The third component is indirectly connected to the other component. Rather, it will be understood that when an element (e.g., a first element) is referred to as “directly connected” or “directly connected” to another element (the second element), then no element (e.g., the third element) is inserted in either Between the people.
  • a processor adapted to (or configured to) perform A, B, and C may mean a dedicated processor (eg, an embedded processor) for performing only the corresponding operations or may be stored in the storage device by execution
  • a general purpose processor eg, a central processing unit (CPU) or an application processor (AP) in which one or more software programs perform corresponding operations.
  • the device embodiments described above are merely illustrative, wherein the modules described as separate components may or may not be physically separate, and the components displayed as modules may or may not be physical modules, ie may be located A place, or it can be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without deliberate labor.

Landscapes

  • Motorcycle And Bicycle Frame (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

一种轮滑装置,包括:踏板(101)、与踏板(101)耦合的转向传感器、驱动元件、至少两个接地元件(102)、以及第一控制器,其中踏板(101)适用于驾驶者在其上单点站立,转向传感器用于感应驾驶者在踏板(101)上的脚部姿态,第一控制器用于根据脚部姿态对驱动元件的输出信号进行控制,以使两个接地元件(102)之间形成用于控制转向的速度差,从而根据驾驶者的脚部姿态实现转向控制,由此降低了对驾驶者的技巧要求,提高了用户体验。还提供了一种包括上述轮滑装置的轮滑系统及该轮滑系统的转向控制方法。

Description

轮滑装置、轮滑系统及转向控制方法
本申请要求在2017年7月27日提交中国专利局、申请号为201710625771.3、发明名称为“轮滑装置、轮滑系统及转向控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及轮滑或者代步工具技术领域,尤其涉及一种轮滑装置、轮滑系统及转向控制方法。
背景技术
轮滑鞋作为一种娱乐工具或者代步工具,主要可分为速度型、操控型,但是,这两类轮滑鞋的结构形式基本一致,包括鞋体和安装在鞋底的轮架以及若干个滚轮,所不同的是根据使用目的的不同,滚轮的数量、大小和排布会有一定的差异。使用过程中,均是靠操作者的人力驱动比如通过蹬踏动作实现滑行,从而存在一定的局限性长时间使用还是容易造成身体疲劳,另外,在滑行的过程中,站在轮滑鞋上要控制转向,对操作者的要求较高,从而最终导致轮滑鞋的用户体验较差。
发明内容
有鉴于此,本申请实施例所解决的技术问题之一在于提供一种轮滑装置、轮滑系统及转向控制方法,用以克服现有技术中的上述缺陷。
本申请实施例提供一种轮滑装置,其包括:踏板、与所述踏板耦合的转向传感器、驱动元件、至少两个接地元件、第一控制器,所述踏板适用于驾驶者在其上单点站立,所述转向传感器用于感应驾驶者在所述踏板上的脚部姿态;所述第一控制器用于根据脚部姿态对所述驱动元件的输出信号进行控制使得所述两个接地元件之间形成用于控制转向的速度差。
本申请实施例还提供一种轮滑系统,其包括两个轮滑装置,每个所述轮滑装置包括踏板、与所述踏板耦合的转向传感器、驱动元件、至少两个接地元件以及第一控制器,所述踏板适用于驾驶者在其上单点站立,所述转向传 感器用于感应驾驶者在所述踏板上的脚部姿态:每个所述第一控制器用于根据驾驶者在其对应的所述踏板上的脚步姿态对对应的驱动元件的输出信号进行控制,使得其对应的两个所述接地元件之间形成用于单个所述轮滑装置转向的速度差,以及使得两个轮滑装置之间形成用于两个轮滑装置整体转向的速度差。
本申请实施例还提供一种转向控制方法,其应用于一个轮滑装置,所述轮滑装置包括踏板、与所述踏板耦合的转向传感器、驱动元件、至少两个接地元件、第一控制器,所述踏板适用于驾驶者在其上单点站立,所述方法包括:
根据所述转向传感器感应到的驾驶者在所述踏板上的脚部姿态对所述驱动元件的输出信号进行控制;
根据所述输出信号对两个所述接地元件进行控制使得所述两个接地元件之间形成用于控制转向的速度差。
本申请实施例还提供一种转向控制方法,其应用于至少两个轮滑装置,每个所述轮滑装置配置为适用于驾驶者在其上单点站立,每个所述轮滑装置包括踏板、与所述踏板耦合的转向传感器、驱动元件、至少两个接地元件以及第一控制器,所述踏板适用于驾驶者在其上单点站立,所述方法包括:
根据每个所述转向传感器感应到的驾驶者在对应所述踏板上的脚部姿态对对应的驱动元件的输出信号进行控制;
根据所述输出信号对其对应的两个接地元件进行动作控制,以使得其对应的两个所述接地元件之间形成用于控制单个所述轮滑装置转向的速度差,以及使得两个轮滑装置之间形成用于控制两个轮滑装置整体转向的速度差。
由以上技术方案可见,本申请实施例中,当应用于一个轮滑装置时,该轮滑装置包括踏板、与所述踏板耦合的转向传感器、驱动元件、至少两个接地元件、第一控制器,所述踏板适用于驾驶者在其上单点站立,所述转向传感器用于感应驾驶者在所述踏板上的脚部姿态;所述第一控制器用于根据脚部姿态对所述驱动元件的输出信号进行控制使得所述两个接地元件之间形成用于控制转向的速度差,从而保证了即使站在可作为轮滑装置的轮滑鞋上,只要根据用户的脚部姿态最终即可实现转向的控制,降低了对驾驶者的技巧要求,提高了用户的体验。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请实施例中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为本申请实施例一中轮滑装置的结构简要结构示意图;
图2为本申请实施例二中轮滑装置的结构简要结构示意图;
图3a、图3b为本申请实施例三中轮滑装置的结构简要结构示意图之一 和之二;
图3c为可替代本申请实施例三中固定基座的示意图;
图4为本申请实施例四中的轮滑装置简要结构示意图;
图5为本申请实施例五中轮滑装置的具体实现结构示意图;
图6为本申请实施例六中轮滑装置的具体实现结构示意图;
图7a、图7b为本申请实施例七中轮滑装置的结构示意图之一和之二;
图8为本申请实施例八中轮滑装置的局部示意图;
图9为本申请实施例九中轮滑装置的控制原理示意图;
图10为本申请实施例十中转向控制方法流程示意图;
图11为本申请实施例十一中转向控制方法流程示意图;
图12为本申请实施例十二中转向控制方法流程示意图;
图13为本申请实施例十三中转向控制方法流程示意图。
具体实施方式
当然,实施本申请实施例的任一技术方案必不一定需要同时达到以上的所有优点。
为了使本领域的人员更好地理解本申请实施例中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请实施例一部分实施例,而不是全部的实施例。基于本申请实施例中的实施例,本领域普通技术人员所获得的所有其他实施例,都应当属于本申请实施例保护的范围。
下面结合本申请实施例附图进一步说明本申请实施例具体实现。
本申请实施例中,由于所述踏板耦合于所述第一传感器和所述接地元件,所述接地元件耦接于所述驱动元件,所述第一控制器耦接于所述第一传感器和所述驱动元件;其中:所述踏板用于适用于单点站立,且用于在单点站立时可向前或者向后倾斜;所述接地元件用于在所述驱动元件的驱动下动作;所述第一传感器用于感应驾驶者在所述踏板上的姿态;所述驱动元件用于生成控制所述接地元件动作以及维持所述轮滑装置整体处于平衡状态的输出信号;所述第一控制器用于根据所述姿态控制所述输出信号的生成,从而避免了人力驱动实现滑行导致的身体疲劳,另外,在滑行的过程中,由于装置本身可以维持平衡状态,对操作者的操作技巧要求较低,从而提高了用户体验,换言之,整体上提供了一种用户体验更好的轮滑装置。
本申请下述实施例中,所述第一传感器具体用于感应驾驶者在所述踏板上的姿态并生成俯仰感应数据,所述第一控制器具体用于根据所述俯仰感应数据确定所述踏板的当前俯仰角。所述第一控制器在控制所述驱动元件的输出信号时,具体通过所述踏板的期望俯仰角以及所述当前俯仰角控制所述驱动元件的输出信号,比如通过所述踏板的期望俯仰角以及所述当前俯仰角之 间的角度差。
本申请实施例中,当应用于一个轮滑装置时,由于该轮滑装置包括踏板、与所述踏板耦合的转向传感器、驱动元件、至少两个接地元件、第一控制器,所述踏板适用于驾驶者在其上单点站立,所述转向传感器用于感应驾驶者在所述踏板上的脚部姿态;所述第一控制器用于根据脚部姿态对所述驱动元件的输出信号进行控制使得所述两个接地元件之间形成用于控制转向的速度差,从而保证了即使站在可作为轮滑装置的轮滑鞋上,只要根据用户的脚部姿态最终即可实现转向的控制,降低了对驾驶者的技巧要求,提高了用户的体验。
在一应用于一个轮滑装置的转向时,示例性地,转向控制方法具体可以为:根据所述转向传感器感应到的驾驶者在所述踏板上的脚部姿态生成转向感应数据;根据所述转向感应数据生成转向控制指令;根据所述转向控制指令对两个所述接地元件进行控制使得所述两个接地元件之间形成用于控制转向的速度差,详见后述相关实施例记载。
应用于至少两个轮滑装置,由于每个所述轮滑装置配置为适用于驾驶者在其上单点站立,每个所述轮滑装置包括踏板、与所述踏板耦合的转向传感器、驱动元件、至少两个接地元件以及第一控制器,所述踏板适用于驾驶者在其上单点站立,所述方法包括:根据每个所述转向传感器感应到的驾驶者在对应所述踏板上的脚部姿态对对应的驱动元件的输出信号进行控制;根据所述输出信号对其对应的两个接地元件进行动作控制,以使得其对应的两个所述接地元件之间形成用于控制单个所述轮滑装置转向的速度差(如后述的第一速度差、第二速度差),以及使得两个轮滑装置之间形成用于控制两个轮滑装置整体转向的速度差(如后述的第三速度差)。
在一应用于包括至少两个轮滑装置的轮滑系统转向时,示例性地,转向控制方法具体可以为:根据每个所述转向传感器感应到的驾驶者在对应所述踏板上的脚部姿态分别生成第一转向感应数据、第二转向感应数据;根据第一转向感应数据生成第一转向控制指令,以及根据第二转向感应数据生成第二转向控制指令;根据所述第一转向控制指令、所述第二转向控制指令对其各自所对应的两个接地元件进行动作控制,以分别使得每两个所述接地元件之间形成用于控制转向的第一速度差、第二速度差以及两个所述轮滑装置整体之间形成用于控制转向的第三速度差,详见后述相关实施例记载。
下述以具体的轮滑鞋形态实现上述轮滑装置进行示例性说明,但是,需要说明的是,轮滑鞋并不是轮滑装置的唯一实现形式,也可以将上述轮滑装置制成适用于在手上进行轮滑的产品形态,或者,适用于残疾人进行轮滑的任意产品形态。
进一步地,下述实施例中,所述接地元件示例性地为轮子,所述接地元件在所述驱动元件的驱动下进行滚动。在后续控制转向时,控制轮子的转速以生成用于控制转向的转速差。
但是,在其他实施例中,并不局限为轮子,也可以是其他任意可与地面形成实际物理接触的结构形式。比如如果应用于滑冰或者滑雪等场景,所述 接地元件还可以为类似平板状的结构件,所述接地元件在所述驱动元件的驱动下进行滑动。
进一步地,下述实施例中,所述第一传感器具体可以为陀螺仪,但是,并不局限为陀螺仪,只要可以感应驾驶者在所述踏板上的姿态即可。
进一步地,下述实施例中,所述驱动元件具体为电机,但是,并不部局限为电机,只要可以驱动所述接地元件进行动作,可以实现具体的应用场景即可。当所述驱动元件为电机时,所述驱动元件的输出信号为所述电机的输出扭矩。
实施例一(一个单独接地元件):
图1为本申请实施例一中轮滑装置的结构简要结构示意图;如图1所示,在以轮滑鞋这一具体产品形态实现轮滑装置时,轮滑鞋具体包括上述踏板101、接地元件102、电机(图1中未示出)、第一控制器(图1中未示出),所述踏板101配置为适用于单脚站立,所述接地元件102的数量具体为一个,即驾驶者通过所述轮滑鞋与地面仅有一个接触点。对应地,所述电机的数量为一个。
具体地,所述电机可以直接内嵌在所述接地元件102的轮毂内,从而使得轮滑鞋整体结构上较为紧凑。
但是,需要说明的是,若不考虑或者不重点考虑轮滑鞋整体结构的紧凑性,所述电机也可以不用内嵌的方式设置在所述接地元件102的轮毂内,比如通过固定座或者其他类似结构直接设置在踏板101的下方位置即可。
实施例二(近距离设置的两个接地元件102a和102b)
图2为本申请实施例二中轮滑装置的结构简要结构示意图;如图2所示,本实施例中,与上述实施例一不同的是,所述接地元件的数量为两个,分别为接地元件102a、102b,接地元件102a、102b之间的横向间距较小,从而实现将设置在靠近所述踏板101中心的位置处,从而使得驾驶者通过所述轮滑鞋与地面形成两个接触点,从而降低轮滑鞋使用的难度。
本实施例中,所述电机的传动轴横向设置即与轮滑鞋行进的方向垂直,所述传动轴的两端分别设置所述接地元件102a和102b,所述电机内嵌在所述接地元件102的轮毂内,并通过传动轴与所述接地元件102a直接连接,同时与未内嵌有所述电机的接地元件102b耦接。换言之,内嵌有所述电机的接地元件102a在轮滑鞋行进的过程中作为主动轮,而未内嵌有所述电机的接地元件102b作为从动轮,所述从动轮在所述主动轮的带动下旋转。
需要说明的是,在其他实施例中,也可以给所述接地元件102a、102b分别配置一个电机,从而使得每个接地元件的转速可以单独进行控制。
需要说明的是,图2实施例中,由于视图原因,只示意所述接地元件102a、102b,未示意出其他部件。
实施例三(远距离设置的两个接地元件102a和102b)
图3a、图3b为本申请实施例三中轮滑装置的结构简要结构示意图之一 和之二;如图3a、图3b所示,本实施例中,与上述实施例而不同的是,接地元件102a、102b分别设置在靠近所述踏板101左右两侧边缘的位置处,即与地面形成的两个接触点横向距离较大,从而进一步降低轮滑鞋使用的难度。
类似上述实施例二,接地元件102a、102b共用一个电机,具体将所述电机的传动轴横向设置即与轮滑鞋行进的方向垂直,所述传动轴的两端分别设置所述接地元件102a、102b,所述电机内嵌在其中一所述接地元件102a的轮毂内,并通过传动轴与所述接地元件102a直接连接,同时与未内嵌有所述电机的接地元件102b耦接。换言之,内嵌有所述电机的接地元件102a在轮滑鞋行进的过程中作为主动轮,而未内嵌有所述电机的接地元件102b作为从动轮,所述从动轮在所述主动轮的带动下旋转。
可替代地,在另外一实施例中,所述电机的数量为两个,接地元件102a、102b分别配置一个所述电机,从而实现接地元件102a、102b转速的单独控制,在正常行进过程中,接地元件102a、102b的转速相同。
上述实施例一至三中,所述接地元件的轴心位于所述踏板101下方位置,且所述接地元件整体也位于所述踏板101下方位置。
如图3b所示,还包括:固定基座100a,所述接地元件102a、102b耦合在所述固定基座100a上,所述固定基座100a固定在所述踏板101的下表面。在一具体应用场景中,可以将接地元件将102a、102b与固定基座100a集成为一体,再将固定基座100a固定在踏板101的下表面。
需要说明的是,在他实施例中,也可以用其他任意结构将所述接地元件102a、102b最终耦合到所述踏板101上。图3c为可替代本申请实施例三中固定基座的示意图;如图3c所示,通过快拆结构100b将所述接地点102a、102b耦合到踏板的下表面。
实施例四(远距离设置的两个接地元件102a和102b)
与上述实施例三不同的是,下述图4实施例中,当包括接地元件102a、102b时且相互之间的横向距离较大,接地元件102a、102b的轴心位于所述踏板101下方位置,但部分向上突出于所述踏板101。
将上述实施例三中的踏板101整体下移,得到如图4所示的实施例四中的轮滑装置简要结构示意图。
可替代地,在另外一实施例中,所述电机的数量为两个,接地元件102a、102b分别配置一个所述电机,从而实现接地元件102a、102b转速的单独控制,在正常行进过程中,接地元件102a、102b的转速相同。
图5为本申请实施例五中轮滑装置的具体实现结构示意图;如图5所示,作为轮滑装置的轮滑鞋包括一个接地元件102,该接地元件102位于所述踏板101中心的位置处,且该接地元件102的轮毂内设置有电机。电机的传动轴穿设在轮毂内,同时传动轴103靠中间部位配置有第一轴承结构104,该轴承结构与接地元件102耦接,从而驱动接地元件102旋转。
另外,在图5中,可以在传动轴的两端分别设置一个第二轴承结构105, 传动轴每一端的轴承结构与踏板101耦接,从而实现将电机、传动轴整体设置在踏板101的下方位置。
图6为本申请实施例六中轮滑装置的具体实现结构示意图;如图6所示,作为轮滑装置的轮滑鞋包括两个接地元件即接地元件102a、102b,接地元件102a、102b分别设置在靠近所述踏板101左右两侧边缘的位置处。接地元件102a、102b均配置一个电机,电机以及传动轴的设置方式可以参照上述图5所示实施例。
与上述图1-图4实施例不同的是,图5、图6实施例中,踏板101并非为长方形,而是其两端具有圆弧。
图7a、图7b为本申请实施例七中轮滑装置的结构示意图之一和之二;参见图7a、图7b,在上述图1实施例的基础上,增加了束缚单元108,所述束缚单元108设置在所述踏板101上,用于固定使用所述轮滑装置的个体的脚部位置或者脚部靠上位置。可选地,所述束缚单元为具有粘扣或者锁紧卡扣的结构,通过所述粘扣或者所述锁紧卡扣固定使用所述轮滑装置的驾驶者的脚部位置或者脚部靠上位置,防止驾驶者从轮滑鞋上跌落。脚部位置比如为脚面位置,脚部靠上位置比如为脚踝或者小腿。
进一步地,本实施例中,轮滑装置还包括:保护罩109,所述保护罩用于与站立在所述踏板101上的单脚的脚后跟接触以在轮滑过程中使单脚稳固在所述踏板101上。保护罩的具体形状可以为弧形,从而与脚后跟紧密贴合,提供稳定的支撑作用。
本实施例中,通过束缚单元和保护罩给驾驶者的脚在后方位置以及前方位置提供稳固作用,从而有效防止了驾驶者在轮滑的过程中从轮滑鞋上跌落导致的摔伤危险。
进一步地,本实施例中,可选地,在本申请的任一实施例中,还包括:电池仓106,所述电池仓106内设置有电池组107,所述电池组107用于向所述电机以及其他需要用电的结构或电路供电。具体地,所述踏板101具有中空内腔,所述中空内腔中设置所述电池仓106。
图8为本申请实施例八中轮滑装置的局部示意图;本实施例中,在作为轮滑鞋的轮滑装置的后方部位设置有电池组107,具体地,比如电池仓设置在保护罩109的中空内腔中,电池组107设置在该电池仓中。
需要说明的是,在另外一实施例中,与上述图8不同的是,而是通过驾驶者将电池组107背在身上,再通过外置的电源线与轮滑鞋中的用电电路或者元件如第一控制器、电机连接。
图9为本申请实施例九中轮滑装置的控制原理示意图;如图9所示,当所述踏板向前或者向后倾斜时,所述第一控制器配置为根据所述踏板的期望俯仰角θ*与当前俯仰角θ之间的角度差生成驱动电信号以控制所述驱动元件的输出扭矩大小。具体地,根据所述踏板的当前俯仰角速度ω以及期望俯仰 角θ*与当前俯仰角θ之间的角度差θerror生成驱动电信号以控制所述驱动元件的输出扭矩大小。本实施例中,驱动电信号比如为驱动电压。第一控制器(又称之为平衡控制器)比如为PID控制器。
具体地,轮滑装置还可以包括第二控制器(又称之为速度控制器),所述第二控制器配置为:根据所述驱动元件的当前转速V以及设定的最大转速V*确定所述期望俯仰角θ*。本实施例中,第二控制器比如也为PID控制器。
进一步地,判断所述驱动元件的当前转速V是否超过设定的最大转速V*,如果超过,表明轮滑装置即将进入超速状态,为此输出一个设定非零大小的期望俯仰角θ*,与当前俯仰角θ计算得到上述角度差θerror,第一控制器根据该角度差θerror生成驱动电信号以控制所述驱动元件的输出扭矩并最终使得所述踏板朝着相反于行进方向的方向倾斜,从而限制所述轮滑装置的行驶速度不会超过行驶速度的上限。如果未超过,则期望俯仰角θ*为0,再根据所述角度差θerror,第一控制器根据该角度差θerror生成驱动电信号以控制所述驱动元件的输出扭矩并最终使得所述踏板动态处于水平状态。
具体地,轮滑装置还可以包括第二传感器,所述第二传感器用于感应所述驱动元件的当前转速。
另外,需要说明的是,在一些具体应用场景中,在生成驱动电信号时也可以不考虑当前俯仰角速度。
另外,需要说明的是,在一些具体应用场景中,在确定所述期望俯仰角时也可以不配置第二控制器,而是复用第一控制器。即第一控制器可以配置为根据所述驱动元件的当前转速V以及设定的最大转速V*确定所述期望俯仰角θ*,还可以配置为根据所述踏板的期望俯仰角θ*与所述当前俯仰角θ之间的角度差生成驱动电信号以控制所述驱动元件的输出扭矩大小。
在另外一具体应用场景中,若配置了第二控制器,所述第二控制器也可以复用为第一控制器。即第二控制器可以配置为根据所述驱动元件的当前转速V以及设定的最大转速V*确定所述期望俯仰角θ*,还可以配置为根据所述踏板的期望俯仰角θ*与所述当前俯仰角θ之间的角度差生成驱动电信号以控制所述驱动元件的输出扭矩大小。
另外,需要说明的是,驱动元件的输出信号也可以其他形式,输出扭矩在本实施例中只是示意。
本申请下述实施例中的转向控制方法中,对于使用一个轮滑装置的应用场景来说,首先,根据所述转向传感器感应到的驾驶者在所述踏板上的脚部姿态生成转向感应数据;之后,根据所述转向感应数据生成转向控制指令;最后根据所述转向控制指令对两个所述接地元件转速进行控制使得所述两个接地元件之间形成用于控制转向的速度差。
如前所述,如接地元件为轮子,则对接地元件进行控制时对轮子的转速进行控制,进一步地,所述速度差具体位置轮子的转速差。
图10为本申请实施例十中转向控制方法流程示意图;如图10所示,在上述包括两个接地元件的任一实施例中,所述轮滑装置上配置有压力传感器, 所述压力传感器用于感应驾驶者在所述轮滑装置上的脚部姿态以生成压力感应数据,对应地,本实施例中,方法包括如下步骤:
S1001、根据压力传感器感应到的驾驶者在所述踏板上的脚部姿态生成压力感应数据;
S1002、根据所述压力感应数据生成转向控制指令;
本实施例中,所述轮滑装置配置有至少两个压力传感器,对应地,根据所述压力感应数据生成转向控制指令包括:根据所述至少两个压力传感器生成的压力感应数据之差生成转向控制指令。具体地,压力传感器可以直接配置在踏板的上表面,与脚接触更为直接,从而提高转向控制的准确性。
具体地,两个压力传感器可以设置在踏板的左右两半部分,在转向的过程,如果往左转,则驾驶者的身体做出向左倾斜的姿态,相对于右边的压力传感器来说,左边的压力传感器输出的压力感应数据的值较大,则生成向左转向控制指令。
或者,也可以通过左右两个压力传感器输出的压力感应数据差值的正负来生成转向控制指令,比如如果定义为左边压力传感器输出的压力感应数据的值减去右边压力传感器输出的压力感应数据的值,向左转向的话,压力感应数据差值为正值,否则为负值。进一步地,为了保证控制的准确性,还可以设定一定差值阈值,得到压力感应数据差值后取绝对值,如果绝对值大于设定的差值阈值,则生成转向控制指令。
本实施例中,可替代地,再比如可以通过在所述踏板上进行水平搓动,以使得踏板左右两侧的两个压力传感器产生值大小不同的压力感应数据,比如如果向左转,则脚部向左搓动使得靠左的压力传感器产生的压力感应数据在数值上大于靠右的压力传感器所产生的压力感应数据,从而生成转向控制指令。
S1003、根据所述转向控制指令对两个所述接地元件进行控制,使得所述两个接地元件之间形成用于控制转向的速度差。
比如,如果向左转向,则左侧的接地元件转速小于右侧的接地元件转速,从而内右侧的接地元件之间形成转速差;如果向右转向,则左侧的接地元件转速大于右侧的接地元件转速,从而内右侧的接地元件之间形成转速差。如果每个轮子都配置有一个电机,当向左转向时,则使得与左侧的接地元件耦合的电机产生较小的输出扭矩,而与右侧的接地元件耦合的电机产生较大的输出扭矩,从而使得左侧、右侧的接地元件之间形成转速差。当向右转向时,则使得与左侧的接地元件耦合的电机产生较大的输出扭矩,而与右侧的接地元件耦合的电机产生较小的输出扭矩,从而使得左侧、右侧的接地元件之间形成转速差。
如果只有一个轮子配置有电机,如果电机与右侧的接地元件直接耦合,而与左侧的接地元件间接耦合,若向左转向,电机产生的输出扭矩直接作用于右侧的接地元件,该输出扭矩通过调速机构减速处理后作用于左侧的接地元件,从而使得左侧、右侧的接地元件之间向左转向的转速差。若向右转向,电机产生的输出扭矩直接作用于右侧的接地元件,该输出扭矩通过调速机构 加速处理后作用于左侧的接地元件,从而使得左侧、右侧的接地元件之间向右转向的转速差。
图11为本申请实施例十一中转向控制方法流程示意图;如图11所示,在上述包括两个接地元件的任一实施例中,所述轮滑装置上配置有转向轴,所述转向轴用于感应驾驶者在所述踏板上的脚部姿态以生成转向感应力矩,转向控制方法包括:
S1101、根据转向轴感应到的驾驶者在所述轮滑装置上的脚部姿态生成转向感应力矩;
本实施例中,所述转向轴配置为与所述轮滑装置行进方向垂直。
具体地,转向轴可以配置在踏板的表面,使得踏板可左右倾斜,从而通过转向轴将踏板的左右倾斜转换成转向感应力矩。
S1102、根据所述转向感应力矩生成转向控制指令;
具体可以通过转向感应力矩的正负生成转向控制指令,如果转向感应力矩为正值,则生成向左转向的转向控制指令,否则生成向右转向的转向控制指令。
S1103、根据所述转向控制指令对两个所述接地元件进行控制使得所述两个接地元件之间形成用于控制转向的转速差。
本实施例中步骤S1003形成转速差的原理类似上述可参考上述图11的相关说明。
图12为本申请实施例十二中转向控制方法流程示意图;如图12所示,在上述包括两个接地元件的任一实施例中,所述轮滑装置配置陀螺仪,所述陀螺仪用于感应驾驶者在所述轮滑装置上的脚部姿态以生成角运动数据,对应地,转向控制方法包括:
S1201、根据陀螺仪感应到的驾驶者在所述轮滑装置上的脚部姿态生成角运动数据;
与上述实施例不同是,本实施例中是通过陀螺仪来感应驾驶者的左右倾斜脚部姿态,并生成对应的角运动数据。本实施例中,由于在控制平衡状态时,还需要陀螺仪,因此,可以为轮滑装置配置两个陀螺仪,一个陀螺仪配置为对踏板的前后倾斜敏感,另外一个配置为对踏板的左右倾斜敏感。
当然,在其他实施例中,也可以只使用一个陀螺仪,既可以配置为对踏板的前后倾斜敏感,又可以配置为对踏板的左右倾斜敏感。
S1202、根据所述角运动数据生成转向控制指令。
根据角运动数据生成转向控制指令类似上述转向轴。
S1203、根据所述转向控制指令对两个所述接地元件进行控制使得所述两个接地元件之间形成用于控制转向的转速差。
在另外一实施例中,所述踏板左右两侧配置有弹簧以使得所述踏板可左右倾斜,所述转向传感器为光电传感器,所述光电传感器用于感应驾驶者在所述踏板上的脚部姿态使得所述踏板可左右倾斜时生成的光电感应数据;
对应地,根据转向感应数据生成转向控制指令包括:根据所述光电感应 数据生成转向控制指令。
本申请下述实施例中,对于使用两个所述轮滑装置的应用场景中,转向方法包括:首先,根据每个所述转向传感器感应到的驾驶者在对应所述踏板上的脚部姿态分别生成第一转向感应数据、第二转向感应数据;其次,根据第一转向感应数据生成第一转向控制指令,以及根据第二转向感应数据生成第二转向控制指令;最后,根据所述第一转向控制指令、所述第二转向控制指令对其各自所对应的两个接地元件进行动作控制,以使得每两个所述接地元件之间形成用于控制转向的第一速度差、第二速度差以及两个所述轮滑装置整体之间形成用于控制转向的第三速度差。
下面以两个轮滑装置中配置相同类型的转向传感器为例进行说明,但是,在其他应用场景中,两个轮滑装置配置的转向传感器也可以为不同类型,详细不再附图说明。
图13为本申请实施例十三中转向控制方法流程示意图;如图13所示,其包括:本实施例中,以在每个轮滑装置上配置两个压力传感器为例进行说明,具体地,转向控制方法包括:
S1301、根据每两个压力传感器感应到驾驶者在对应所述踏板上的脚部姿态分别生成第一压力感应数据、第二压力感应数据;
S1302、根据第一转向感应数据生成第一转向控制指令:根据所述第一压力感应数据生成第一转向控制指令;
S1303、根据第二转向感应数据生成第二转向控制指令包括:根据所述第二压力感应数据生成第二转向控制指令。
如前所述,由于每个轮滑装置配置有两个压力传感器,则一个压力传感器生成一个感应数据,则在根据第一转向感应数据生成第一转向控制指令,根据两个第一转向感应数据之差生成第一转向控制指令,类似地,根据两个第二转向感应数据之差生成第二转向控制指令。
S1304、根据所述第一转向控制指令、所述第二转向控制指令对其各自所对应的两个接地元件进行动作控制,以分别使得每两个所述接地元件之间形成用于控制转向的第一速度差、第二速度差以及两个所述轮滑装置整体之间形成用于控制转向的第三速度差。
本实施例中,由于每个轮滑装置包括至少两个轮子,在转向时,每个轮滑装置自身需要转动,另外,两个轮转装置之间要进行相对转动。因此,为了实现两个轮滑装置各自转动,每个轮滑装置的两个轮子之间存在转速差即第一转速差、第二转速差;两个轮滑装置之间需要进行相对转动,则两个轮滑装置整体之间存在第三转速差。
比如在一具体实现时,如果向左转,则从左到右,轮子的转速递增,如果向右转,从左到右,轮子的转速递减,从而形成上述第一转速差、第二转速差、第三转速差。
本实施例中所述第一转速差、第二转速差的形成原理类似上述单个轮滑装置使得转速差。
可替代地,在另外一实施例中,所述转向传感器为转向轴,所述转向轴 用于感应驾驶者在所述踏板上的脚部姿态以生成第一转向感应力矩和/或第二转向感应力矩;对应地,根据第一转向感应数据生成第一转向控制指令:根据所述第一转向感应力矩生成第一转向控制指令;和/或,根据第二转向感应数据生成第二转向控制指令包括:根据所述第二转向感应力矩生成第二转向控制指令。所述转向轴配置为与所述轮滑装置行进方向垂直。
可替代地,在再一实施例中,所述转向传感器为陀螺仪,所述陀螺仪用于感应驾驶者在所述踏板上的脚部姿态以生成第一角运动感应数据和/或第二角运动感应数据;对应地,根据第一转向感应数据生成第一转向控制指令:根据所述第一角运动感应数据生成第一转向控制指令;和/或,根据第二转向感应数据生成第二转向控制指令包括:根据所述第二角运动感应数据生成第二转向控制指令。
根据所述转向传感器感应到的驾驶者在所述踏板上进行水平搓动的脚部姿态生成第一转向控制指令和/或第二转向控制指令。
可替代地,在还一实施例中,所述轮滑装置的踏板左右两侧配置有弹簧以使得所述踏板可左右倾斜,所述转向传感器为光电传感器,所述光电传感器用于感应驾驶者在所述踏板上的脚部姿态使得所述踏板可左右倾斜以生成第一光电感应数据和/或第二光电感应数据;对应地,根据第一转向感应数据生成第一转向控制指令:根据所述第一光电感应数据生成第一转向控制指令;和/或,根据第二转向感应数据生成第二转向控制指令包括:根据所述第二光电感应数据生成第二转向控制指令。
在上述实施例基础上,还包括:至少一个所述轮滑装置上配置的载人传感器感应所述轮滑装置上是否单点站立有驾驶者;若有,所述转向传感器感应驾驶者在对应所述踏板上的脚部姿态以生成第一转向感应数据和/或第二转向感应数据。
在上述包括两个接地元件的轮滑装置实施例中,为了实现转向,轮滑装置还可以包括转向传感器以及第三控制器,所述转向传感器用于感应驾驶者在所述踏板上的脚步姿态生成转向感应数据,所述第三控制器配置为:根据所述转向感应数据生成转向控制指令以对两个所述接地元件的动作进行控制以生成用于控制转向的速度差。
需要说明的是,若不单独增加第三控制器,则第三控制器除了可以复用上述第一控制器,或者,还可以第二控制器,或者,若单独增加第三控制器,第三控制器可以复用为上述第一控制器、或者第二控制器。
在上述实施例中,电机具体为轮毂电机,但是,在其他实施例中,电机也可以为高速电机。
需要说明的是,如果每个轮滑装置包括一个轮子,如果该轮滑装置配置有转向传感器,则可以参照上述转向方法通过速度差进行转速,也可以不处罚转向传感器进行工作,依赖于人力驱动形成速度差从而实现转向。
另外,需要说明的是,上述应用两个转向控制方法中,也可以只给其中一个轮滑装置配置转向传感器,再参考上述形成速度差的实施例实现转向控制。这些扩展实施例对于本领域普通技术人员来说,在上述详细记载实施例 的启发下即可实现。
在本公开中,表述“包括(include)”或“可包括(may include)”指代相应功能、操作或元件的存在,而不限制一个或多个附加功能、操作或元件。在本公开中,诸如“包括(include)”和/或“具有(have)”的用语可理解为表示某些特性、数字、步骤、操作、组成元件、元件或其组合,而不可理解为排除一个或多个其它特性、数字、步骤、操作、组成元件、元件或其组合的存在或附加的可能性。
在本公开中,表述“A或B”、“A或/和B中的至少一个”或者“A或/和B的一个或多个”可包括所列项目所有可能的组合。例如,表述“A或B”、“A和B中的至少一个”或者“A或B中的至少一个”可包括:(1)至少一个A,(2)至少一个B,或者(3)至少一个A和至少一个B。
在本公开的各种实施方式中所使用的表述“第一”、“第二”、“所述第一”或“所述第二”可修饰各种部件而与顺序和/或重要性无关,但是这些表述不限制相应部件。以上表述仅用于将元件与其它元件区分开的目的。例如,第一用户设备和第二用户设备表示不同的用户设备,虽然两者均是用户设备。例如,在不背离本公开的范围的前提下,第一元件可称作第二元件,类似地,第二元件可称作第一元件。
当一个元件(例如,第一元件)称为与另一元件(例如,第二元件)“(可操作地或可通信地)联接”或“(可操作地或可通信地)联接至”另一元件(例如,第二元件)或“连接至”另一元件(例如,第二元件)时,应理解为该一个元件直接连接至该另一元件或者该一个元件经由又一个元件(例如,第三元件)间接连接至该另一个元件。相反,可理解,当元件(例如,第一元件)称为“直接连接”或“直接联接”至另一元件(第二元件)时,则没有元件(例如,第三元件)插入在这两者之间。
如本文中使用的表述“配置为”可与以下表述可替换地使用:“适合于”、“具有...的能力”、“设计为”、“适于”、“制造为”或“能够”。用语“配置为”可不必意为在硬件上“专门设计为”。可替代地,在一些情况下,表述“配置为…的设备”可意为该设备与其它设备或部件一起“能够…”。例如,短语“适于(或配置为)执行A、B和C的处理器”可意为仅用于执行相应操作的专用处理器(例如,嵌入式处理器)或可通过执行存储在存储设备中的一个或多个软件程序执行相应操作的通用处理器(例如,中央处理器(CPU)或应用处理器(AP))。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。

Claims (36)

  1. 一种轮滑装置,其特征在于,包括:踏板、与所述踏板耦合的转向传感器、驱动元件、至少两个接地元件、第一控制器,所述踏板适用于驾驶者在其上单点站立,所述转向传感器用于感应驾驶者在所述踏板上的脚部姿态;所述第一控制器用于根据脚部姿态对所述驱动元件的输出信号进行控制使得所述两个接地元件之间形成用于控制转向的速度差。
  2. 根据权利要求1所述的轮滑装置,其特征在于,所述转向传感器为压力传感器,所述压力传感器用于感应驾驶者在所述轮滑装置的脚部姿态。
  3. 根据权利要求2所述的轮滑装置,其特征在于,所述轮滑装置配置有至少两个压力传感器。
  4. 根据权利要求1所述的轮滑装置,其特征在于,所述转向传感器为转向轴,所述转向轴用于感应驾驶者在所述踏板上的脚部姿态。
  5. 根据权利要求4所述的轮滑装置,其特征在于,所述转向轴配置为与所述轮滑装置行进方向垂直。
  6. 根据权利要求1所述的轮滑装置,其特征在于,所述转向传感器为陀螺仪,所述陀螺仪用于感应驾驶者在所述踏板上的脚部姿态。
  7. 根据权利要求1所述的轮滑装置,其特征在于,所述踏板左右两侧配置有弹簧以使得所述踏板可左右倾斜,所述转向传感器为光电传感器,所述光电传感器用于感应驾驶者在所述踏板上的脚部姿态。
  8. 根据权利要求1所述的轮滑装置,其特征在于,还包括:载人传感器,所述载人传感器用于感应所述踏板上是否单点站立有驾驶者。
  9. 根据权利要求1-8任一项所述的轮滑装置,其特征在于,所述脚步姿态包括驾驶者在所述踏板上进行水平搓动。
  10. 一种轮滑系统,其特征在于,包括至少两个轮滑装置,每个所述轮滑装置包括踏板、与所述踏板耦合的转向传感器、驱动元件、至少两个接地元件以及第一控制器,所述踏板适用于驾驶者在其上单点站立,所述转向传感器用于感应驾驶者在所述踏板上的脚部姿态;每个所述第一控制器用于根据驾驶者在其对应的所述踏板上的脚步姿态对对应的驱动元件的输出信号进行控制,使得其对应的两个所述接地元件之间形成用于单个所述轮滑装置转向的速度差,以及使得两个轮滑装置之间形成用于两个轮滑装置整体转向的速度差。
  11. 根据权利要求10所述的轮滑系统,其特征在于,所述转向传感器为压力传感器,所述压力传感器用于感应驾驶者在对应所述踏板上的脚部姿态。
  12. 根据权利要求11所述的轮滑系统,其特征在于,所述轮滑装置配置有至少两个压力传感器。
  13. 根据权利要求10所述的轮滑系统,其特征在于,所述转向传感器 为转向轴,所述转向轴用于感应驾驶者在所述踏板上的脚部姿态。
  14. 根据权利要求13所述的轮滑系统,其特征在于,所述转向轴配置为与所述轮滑装置行进方向垂直。
  15. 根据权利要求10所述的轮滑系统,其特征在于,所述转向传感器为陀螺仪,所述陀螺仪用于感应驾驶者在所述踏板上的脚部姿态。
  16. 根据权利要求10-15任一项所述的轮滑系统,其特征在于,所述转向传感器用于感应驾驶者在所述踏板上进行水平搓动的脚部姿态。
  17. 根据权利要求10所述的轮滑系统,其特征在于,所述轮滑装置的踏板左右两侧配置有弹簧以使得所述踏板可左右倾斜,所述转向传感器为光电传感器,所述光电传感器用于感应驾驶者在所述踏板上的脚部姿态。
  18. 根据权利要求10所述的轮滑系统,其特征在于,还包括:载人传感器,所述载人传感器用于感应所述轮滑装置上是否单点站立有驾驶者。
  19. 一种转向控制方法,其特征在于,应用于一个轮滑装置,所述轮滑装置包括踏板、与所述踏板耦合的转向传感器、驱动元件、至少两个接地元件、第一控制器,所述踏板适用于驾驶者在其上单点站立,所述方法包括:
    根据所述转向传感器感应到的驾驶者在所述踏板上的脚部姿态对所述驱动元件的输出信号进行控制;
    根据所述输出信号对两个所述接地元件进行控制使得所述两个接地元件之间形成用于控制转向的速度差。
  20. 根据权利要求19所述的转向控制方法,其特征在于,所述转向传感器为压力传感器,所述压力传感器用于感应驾驶者在所述轮滑装置的脚部姿态。
  21. 根据权利要求20所述的转向控制方法,其特征在于,所述轮滑装置配置有至少两个压力传感器;
    对应地,根据所述转向传感器感应到的驾驶者在所述踏板上的脚部姿态对所述驱动元件的输出信号进行控制包括:根据所述至少两个压力传感器感应到的驾驶者在所述踏板上的脚部姿态对所述驱动元件的输出信号进行控制。
  22. 根据权利要求19所述的转向控制方法,其特征在于,所述转向传感器为转向轴,所述转向轴用于感应驾驶者在所述踏板上的脚部姿态。
  23. 根据权利要求22所述的转向控制方法,其特征在于,所述转向轴配置为与所述轮滑装置行进方向垂直。
  24. 根据权利要求19所述的转向控制方法,其特征在于,所述转向传感器为陀螺仪,所述陀螺仪用于感应驾驶者在所述踏板上的脚部姿态。
  25. 根据权利要求19所述的转向控制方法,其特征在于,所述踏板左右两侧配置有弹簧以使得所述踏板可左右倾斜,所述转向传感器为光电传感器,所述光电传感器用于感应驾驶者在所述踏板上的脚部姿态。
  26. 根据权利要求19所述转向控制方法,其特征在于,还包括:所述轮滑装置上配置的载人传感器感应所述踏板上是否单点站立有驾驶者;若有,所述转向传感器感应驾驶者在对应所述踏板上的脚部姿态。
  27. 根据权利要求19-26任一项所述的转向控制方法,其特征在于,所述脚步姿态包括驾驶者在所述踏板上进行水平搓动。
  28. 一种转向控制方法,其特征在于,应用于至少两个轮滑装置,每个所述轮滑装置包括踏板、与所述踏板耦合的转向传感器、驱动元件、至少两个接地元件以及第一控制器,所述踏板适用于驾驶者在其上单点站立,所述方法包括:
    根据每个所述转向传感器感应到的驾驶者在对应所述踏板上的脚部姿态对对应的驱动元件的输出信号进行控制;
    根据所述输出信号对对应的两个接地元件进行动作控制,以使得其对应的两个所述接地元件之间形成用于控制单个所述轮滑装置转向的速度差,以及使得两个轮滑装置之间形成用于控制两个轮滑装置整体转向的速度差。
  29. 根据权利要求28所述的转向控制方法,其特征在于,所述转向传感器为压力传感器,所述压力传感器用于感应驾驶者在对应所述踏板上的脚部姿态。
  30. 根据权利要求29所述的转向控制方法,其特征在于,所述轮滑装置配置有至少两个压力传感器;
    对应地,根据每个所述转向传感器感应到的驾驶者在对应所述踏板上的脚部姿态对对应的驱动元件的输出信号进行控制:根据每两个所述压力传感器感应到的驾驶者在对应所述踏板上的脚部姿态对对应的驱动元件的输出信号进行控制。
  31. 根据权利要求28所述的转向控制方法,其特征在于,所述转向传感器为转向轴,所述转向轴用于感应驾驶者在所述踏板上的脚部姿态。
  32. 根据权利要求31所述的转向控制方法,其特征在于,所述转向轴配置为与所述轮滑装置行进方向垂直。
  33. 根据权利要求28所述的转向控制方法,其特征在于,所述转向传感器为陀螺仪,所述陀螺仪用于感应驾驶者在所述踏板上的脚部姿态。
  34. 根据权利要求28-33任一项所述的转向控制方法,其特征在于,所述转向传感器用于感应驾驶者在所述踏板上进行水平搓动的脚部姿态。
  35. 根据权利要求28所述的转向控制方法,其特征在于,所述轮滑装置的踏板左右两侧配置有弹簧以使得所述踏板可左右倾斜,所述转向传感器为光电传感器,所述光电传感器用于感应驾驶者在所述踏板上的脚部姿态。
  36. 根据权利要求28所述的转向控制方法,其特征在于,还包括:至少一个所述轮滑装置上配置的载人传感器感应所述轮滑装置上是否单点站立有驾驶者;若有,所述转向传感器感应驾驶者在对应所述踏板上的脚部姿态。
PCT/CN2017/095725 2017-07-27 2017-08-02 轮滑装置、轮滑系统及转向控制方法 WO2019019210A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710625771.3 2017-07-27
CN201710625771.3A CN107261473B (zh) 2017-07-27 2017-07-27 轮滑装置、轮滑系统及转向控制方法

Publications (1)

Publication Number Publication Date
WO2019019210A1 true WO2019019210A1 (zh) 2019-01-31

Family

ID=60074601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095725 WO2019019210A1 (zh) 2017-07-27 2017-08-02 轮滑装置、轮滑系统及转向控制方法

Country Status (2)

Country Link
CN (1) CN107261473B (zh)
WO (1) WO2019019210A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207875876U (zh) * 2018-02-08 2018-09-18 蔡优飞 分体式电动扭扭车
CN108371801B (zh) * 2018-03-04 2021-08-17 郑旭纯 滑行状态和滑行方向检测装置及其控制方法
CN108657343A (zh) * 2018-06-08 2018-10-16 深圳市壹然进出口贸易有限公司 自平衡电动漂移鞋

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104689559A (zh) * 2015-03-04 2015-06-10 王炳基 电动鞋、电动鞋组件及其控制方法
US20160059108A1 (en) * 2014-08-29 2016-03-03 Carl Francis Demolder Universal Electric Skateboard Unit
CN105641910A (zh) * 2016-04-13 2016-06-08 永康市军创工贸有限公司 可穿戴电动平衡鞋
CN105920830A (zh) * 2016-05-12 2016-09-07 金华杰夫体育用品有限公司 一种基于重量传感的电动滑板安全防护方法
CN106621296A (zh) * 2016-12-21 2017-05-10 胡军 可穿戴电动平衡鞋
CN107281738A (zh) * 2017-07-27 2017-10-24 纳恩博(北京)科技有限公司 轮滑装置
CN107281739A (zh) * 2017-07-27 2017-10-24 纳恩博(北京)科技有限公司 轮滑装置
CN107281740A (zh) * 2017-07-27 2017-10-24 纳恩博(北京)科技有限公司 轮滑装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1265855C (zh) * 2003-05-12 2006-07-26 宋健民 滑行鞋
KR101311226B1 (ko) * 2011-12-16 2013-09-24 국방과학연구소 독립휠 제어형 다축 조향장치
CN102847296A (zh) * 2012-10-06 2013-01-02 马青川 基于背包电源的旱冰鞋式电动代步工具
CN203244742U (zh) * 2013-04-11 2013-10-23 何志波 电动自平衡双轮滑板车
CN105523115A (zh) * 2016-01-07 2016-04-27 孙旭亚 电动平衡扭扭车
CN205417931U (zh) * 2016-01-27 2016-08-03 陈云飞 两用两轮电动平衡车
CN205837053U (zh) * 2016-06-06 2016-12-28 蒋孝富 双轮差速转向滑板车
CN205924930U (zh) * 2016-06-24 2017-02-08 深圳飞亮智能科技有限公司 一种电动两轮滑板车
CN207445544U (zh) * 2017-07-27 2018-06-05 纳恩博(北京)科技有限公司 轮滑装置、轮滑系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160059108A1 (en) * 2014-08-29 2016-03-03 Carl Francis Demolder Universal Electric Skateboard Unit
CN104689559A (zh) * 2015-03-04 2015-06-10 王炳基 电动鞋、电动鞋组件及其控制方法
CN105641910A (zh) * 2016-04-13 2016-06-08 永康市军创工贸有限公司 可穿戴电动平衡鞋
CN105920830A (zh) * 2016-05-12 2016-09-07 金华杰夫体育用品有限公司 一种基于重量传感的电动滑板安全防护方法
CN106621296A (zh) * 2016-12-21 2017-05-10 胡军 可穿戴电动平衡鞋
CN107281738A (zh) * 2017-07-27 2017-10-24 纳恩博(北京)科技有限公司 轮滑装置
CN107281739A (zh) * 2017-07-27 2017-10-24 纳恩博(北京)科技有限公司 轮滑装置
CN107281740A (zh) * 2017-07-27 2017-10-24 纳恩博(北京)科技有限公司 轮滑装置

Also Published As

Publication number Publication date
CN107261473B (zh) 2023-10-27
CN107261473A (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
RU2722466C1 (ru) Сборное устройство для катания на роликах и электрическое балансирное средство передвижения
WO2019019211A1 (zh) 轮滑装置
KR101800679B1 (ko) 족동형 트위스트 조향식 핸즈프리 밸런싱 스쿠터
US9919762B2 (en) Backpack type self balancing scooter having foot-driven steering apparatus mounted thereon
US7017686B2 (en) Hybrid human/electric powered vehicle
US10232871B2 (en) Pushcart
WO2019019210A1 (zh) 轮滑装置、轮滑系统及转向控制方法
JP2004510637A (ja) 個人用輸送車の制御
WO2019019208A1 (zh) 电动平衡车
JP2003502002A (ja) 個人用移動車両及び方法
WO2019019207A1 (zh) 轮滑装置
CN105501357A (zh) 自平衡电动滑板车
EP2783958A1 (en) Inverted pendulum type vehicle
US11198052B2 (en) Cross skate system and method of operation thereof
JP2004024614A (ja) 電動式移動体および電動式移動体の制御方法
WO2019019209A1 (zh) 轮滑装置
CN108657343A (zh) 自平衡电动漂移鞋
CN208525784U (zh) 电动轮滑鞋及电动轮滑设备
CN207445544U (zh) 轮滑装置、轮滑系统
CN207445545U (zh) 轮滑装置
CN107804388B (zh) 运输系统
CN117794624A (zh) 轮滑装置的电动辅助件
JP5203368B2 (ja) 電動車両の速度制限
JP5203368B6 (ja) 電動車両の速度制限

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17918952

Country of ref document: EP

Kind code of ref document: A1