WO2019017891A1 - Capteur de débitmètre à trajet d'écoulement interchangeable et procédé correspondant - Google Patents

Capteur de débitmètre à trajet d'écoulement interchangeable et procédé correspondant Download PDF

Info

Publication number
WO2019017891A1
WO2019017891A1 PCT/US2017/042523 US2017042523W WO2019017891A1 WO 2019017891 A1 WO2019017891 A1 WO 2019017891A1 US 2017042523 W US2017042523 W US 2017042523W WO 2019017891 A1 WO2019017891 A1 WO 2019017891A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembly
driver
magnet
wetted
conduits
Prior art date
Application number
PCT/US2017/042523
Other languages
English (en)
Inventor
David Skinkle
Original Assignee
Micro Motion, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micro Motion, Inc. filed Critical Micro Motion, Inc.
Priority to CN201780093297.2A priority Critical patent/CN110892235B/zh
Priority to US16/628,814 priority patent/US10794744B2/en
Priority to JP2020502315A priority patent/JP6844063B2/ja
Priority to PCT/US2017/042523 priority patent/WO2019017891A1/fr
Priority to EP17745598.7A priority patent/EP3655731B1/fr
Publication of WO2019017891A1 publication Critical patent/WO2019017891A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8413Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8427Coriolis or gyroscopic mass flowmeters constructional details detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits

Definitions

  • the present invention relates to flowmeters, and more particularly, to a flowmeter having an interchangeable wetted component group.
  • Vibrating sensors such as for example, vibrating densitometers and Coriolis flowmeters are generally known, and are used to measure mass flow and other information related to materials flowing through a conduit in the flowmeter.
  • Exemplary flowmeters are disclosed in U.S. Patent 4,109,524, U.S. Patent 4,491,025, and Re. 31,450, all to J.E. Smith et al. These flowmeters have one or more conduits of a straight or curved configuration.
  • Each conduit configuration in a Coriolis mass flowmeter for example, has a set of natural vibration modes, which may be of simple bending, torsional, or coupled type.
  • Each conduit can be driven to oscillate at a preferred mode.
  • Some types of mass flowmeters are capable of being operated in a manner that performs a direct measurement of density to provide volumetric information through the quotient of mass over density. See, e.g., U.S. Pat. No. 4,872,351 to Ruesch for a net oil computer that uses a Coriolis flowmeter to measure the density of an unknown multiphase fluid.
  • U.S. Pat. No. 5,687,100 to Buttler et al. teaches a Coriolis effect densitometer that corrects the density readings for mass flow rate effects in a mass flowmeter operating as a vibrating tube densitometer.
  • the natural vibration modes of the vibrating system are defined in part by the combined mass of the conduits and the material flowing within the conduits.
  • a driving force applied to the conduit(s) causes all points along the conduit(s) to oscillate with identical phase or with a small "zero offset", which is a time delay measured at zero flow.
  • Coriolis forces cause each point along the conduit(s) to have a different phase.
  • the phase at the inlet end of the flowmeter lags the phase at the centralized driver position, while the phase at the outlet leads the phase at the centralized driver position.
  • Pickoffs on the conduit(s) produce sinusoidal signals representative of the motion of the conduit(s). Signals output from the pickoffs are processed to determine the time delay between the pickoffs. The time delay between the two or more pickoffs is proportional to the mass flow rate of material flowing through the conduit(s).
  • Meter electronics connected to the driver generate a drive signal to operate the driver and also to determine a mass flow rate and/or other properties of a process material from signals received from the pickoffs.
  • the driver may comprise one of many well-known arrangements; however, a magnet and an opposing drive coil have received great success in the flowmeter industry.
  • An alternating current is passed to the drive coil for vibrating the conduit(s) at a desired conduit amplitude and frequency.
  • the pickoffs can use the motion provided by the driver to induce a voltage.
  • the magnitude of the time delay measured by the pickoffs is very small; often measured in nanoseconds. Therefore, it is necessary to have the transducer output be very accurate.
  • a flowmeter can be initially calibrated and a flow calibration factor along with a zero offset can be generated.
  • the flow calibration factor can be multiplied by the time delay measured by the pickoffs minus the zero offset to generate a mass flow rate.
  • the flowmeter is initially calibrated, typically by the manufacturer, and assumed to provide accurate measurements without subsequent calibrations required.
  • Vibrating sensors including Coriolis flowmeters, are often employed in applications that subject the wetted components, such as conduits, for example, to process materials that are hazardous, toxic, or difficult to remove completely. This renders the wetted components non-reusable for other applications.
  • the cost for a complete meter is too high, and therefore the use of such a meter may not be practical.
  • the present invention overcomes these and other problems and an advance in the art is achieved.
  • a sensor is provided that is made up of two separate primary assemblies.
  • the wetted assembly contains flow path components, and the dry assembly contains the electronics and related electrical hardware. Once the wetted assembly has been exposed to a destructive process material, the wetted assembly may be replaced with a new wetted assembly, while still utilizing the original dry assembly.
  • a flowmeter comprises a wetted assembly that comprises one or more conduits and at least one driver magnet attached to the one or more conduits.
  • a dry assembly houses a driver coil, and meter electronics are in electrical communication with the driver coil.
  • a case at least partially covers the wetted assembly and the dry assembly.
  • the dry assembly is removably attachable to the wetted assembly, and the driver coil is in magnetic communication with the at least one driver magnet when the dry assembly is attached to the wetted assembly.
  • the driver coil is configured to provide a vibratory signal to the at least one driver magnet when the dry assembly is attached to the wetted assembly.
  • a method of configuring a flowmeter comprises the steps of providing a dry assembly that houses a driver coil and providing a wetted assembly configured to receive a process material, wherein the wetted assembly comprises one or more conduits. At least one driver magnet is attached to the one or more conduits. Meter electronics is connected to the driver coil. A case at least partially covers the wetted assembly and the dry assembly. The wetted assembly is removably attached to the dry assembly, wherein the driver coil is in magnetic communication with the at least one driver magnet when the dry assembly is attached to the wetted assembly, and wherein the driver coil is configured to provide a vibratory signal to the at least one driver magnet when the dry assembly is attached to the wetted assembly.
  • a flowmeter comprises: a wetted assembly comprising: one or more conduits, and at least one driver magnet attached to the one or more conduits.
  • a dry assembly that houses a driver coil.
  • Meter electronics is in electrical communication with the driver coil.
  • the dry assembly is removably attachable to the wetted assembly, and wherein the driver coil is in magnetic communication with the at least one driver magnet when the dry assembly is attached to the wetted assembly, and wherein the driver coil is configured to provide a vibratory signal to the at least one driver magnet when the dry assembly is attached to the wetted assembly.
  • the wetted assembly further comprises at least one pickoff magnet coupled to a conduit of the one or more conduits.
  • the dry assembly houses a pickoff coil configured to receive a vibratory signal from the at least one pickoff magnet when the dry assembly is attached to the wetted assembly.
  • the dry assembly houses a temperature sensor.
  • the at least one driver magnet comprises: a first driver magnet coupled to a first conduit of the one or more conduits, and a second driver magnet coupled to a second conduit of the one or more conduits.
  • the at least one pickoff magnet comprises: a first pickoff magnet coupled to the first conduit of the one or more conduits, and a second pickoff magnet coupled to the second conduit of the one or more conduits, and wherein the first driver magnet and first pickoff magnet are oriented in magnetic opposition to the second driver magnet and second pickoff magnet,
  • the wetted assembly comprises an identifier and the dry assembly comprises a sensor configured to detect the identifier.
  • the identifier is a visible identifier
  • the sensor is an optical sensor
  • the identifier is an emitter, and the sensor is a receiver.
  • the identifier comprises identifying information related to the wetted assembly.
  • the dry assembly comprises at least one relief having a size and dimension to at least partially envelope at least one of the driver magnets and pickoff magnets.
  • a method of configuring a flowmeter comprising the steps of: providing a dry assembly that houses a driver coil, and providing a wetted assembly configured to receive a process material, wherein the wetted assembly comprises one or more conduits. At least one driver magnet is attached to the one or more conduits. Meter electronics is connected to the driver coil. The wetted assembly and the dry assembly are at least partially covered with a case. The wetted assembly is removably attached to the dry assembly, wherein the driver coil is in magnetic communication with the at least one driver magnet when the dry assembly is attached to the wetted assembly, and wherein the driver coil is configured to provide a vibratory signal to the at least one driver magnet when the dry assembly is attached to the wetted assembly.
  • the method comprises attaching at least one pickoff magnet to a conduit of the at least one conduit.
  • the dry assembly houses a pickoff coil configured to receive a vibratory signal from the at least one pickoff magnet when the dry assembly is attached to the wetted assembly.
  • the dry assembly comprises a temperature sensor.
  • the step of attaching at least one driver magnet to the one or more conduits comprises: attaching a first driver magnet to a first conduit of the one or more conduits, and attaching a second driver magnet to a second conduit of the one or more conduits.
  • the step of attaching at least one pickoff magnet to a conduit of the at least one conduit comprises: attaching a first pickoff magnet to the first conduit of the one or more conduits, and attaching a second pickoff magnet to the second conduit of the one or more conduits.
  • the first driver and first pickoff magnets are oriented in magnetic opposition to the second driver and second pickoff magnets, respectively.
  • the method comprises transmitting identifying information from the wetted assembly to meter electronics.
  • FIG. 1 illustrates a prior art sensor assembly
  • FIG. 2 illustrates a prior art sensor assembly having a case
  • FIG. 3 illustrates a sensor assembly on a mounting portion according to an embodiment
  • FIG. 4 illustrates a sensor assembly according to an embodiment
  • FIG. 5 illustrates a cross sectional view of a sensor assembly according to an embodiment
  • FIG. 6 illustrates a sensor assembly and a case according to an embodiment.
  • FIGS. 1-6 and the following description depict specific examples to teach those skilled in the art how to make and use the best mode of the invention. For the purpose of teaching inventive principles, some conventional aspects have been simplified or omitted. Those skilled in the art will appreciate variations from these examples that fall within the scope of the invention. Those skilled in the art will appreciate that the features described below can be combined in various ways to form multiple variations of the invention. As a result, the invention is not limited to the specific examples described below, but only by the claims and their equivalents.
  • FIG. 1 illustrates a prior art flowmeter 5, which can be any vibrating meter, such as a Coriolis flowmeter or densitometer, for example without limitation.
  • the flowmeter 5 comprises a sensor assembly 10 and meter electronics 20.
  • the sensor assembly 10 responds to mass flow rate and density of a process material.
  • Meter electronics 20 are connected to the sensor assembly 10 via leads 100 to provide density, mass flow rate, and temperature information over path 26, as well as other information.
  • the sensor assembly 10 includes flanges 101 and 10 ⁇ , a pair of manifolds 102 and 102', a pair of parallel conduits 103 (first conduit) and 103' (second conduit), a driver 104, a temperature sensor 106 such as a resistive temperature detector (RTD), and a pair of pickoffs 105 and 105', such as magnet/coil pickoffs, strain gages, optical sensors, or any other pickoff known in the art.
  • the conduits 103 and 103' have inlet legs 107 and 107' and outlet legs 108 and 108', respectively.
  • Conduits 103 and 103' bend in at least one symmetrical location along their length and are essentially parallel throughout their length. Each conduit 103, 103', oscillates about axes W and W, respectively.
  • conduits 103,103' are fixedly attached to conduit mounting blocks 109 and 109' and these blocks, in turn, are fixedly attached to manifolds 102 and 102'.
  • This provides a continuous closed material path through the sensor assembly 10.
  • material enters a first end 110 of the flowmeter 5 through a first orifice (not visible in the view of FIG. 1) in flange 101, and is conducted through the manifold 102 to conduit mounting block 109.
  • the material is divided and routed through conduits 103 and 103'.
  • the process material is recombined in a single stream within manifold 102' and is thereafter routed to exit a second end 112 connected by flange 10 ⁇ to the process line (not shown).
  • Conduits 103 and 103' are selected and appropriately mounted to the conduit mounting blocks 109 and 109' so as to have substantially the same mass distribution, moments of inertia, and Young's modulus about bending axes W— W and W— W, respectively.
  • a temperature sensor 106 is mounted to at least one conduit 103, 103' to continuously measure the temperature of the conduit. The temperature of the conduit, and hence the voltage appearing across the temperature sensor 106 for a given current passing therethrough, is governed primarily by the temperature of the material passing through the conduit.
  • the temperature-dependent voltage appearing across the temperature sensor 106 is used in a well-known method by meter electronics 20 to compensate for the change in elastic modulus of conduits 103, 103' due to any changes in conduit 103, 103' temperature.
  • the temperature sensor is connected to meter electronics 20.
  • Both conduits 103,103' are driven by driver 104 in opposite directions about their respective bending axes W and W at what is termed the first out-of-phase bending mode of the flowmeter.
  • This driver 104 may comprise any one of many well-known arrangements, such as a magnet mounted to conduit 103' and an opposing coil mounted to conduit 103, through which an alternating current is passed for vibrating both conduits.
  • a suitable drive signal is applied by meter electronics 20, via lead 113, to the driver 104. It should be appreciated that while the discussion is directed towards two conduits 103, 103', in other embodiments, only a single conduit may be provided or more than two conduits may be provided. It is also within the scope of the present invention to produce multiple drive signals for multiple drivers.
  • Meter electronics 20 receive the temperature signal on lead 114, and the left and right velocity signals appearing on leads 115 and 115', respectively.
  • Meter electronics 20 produce the drive signal appearing on lead 113 to driver 104 and vibrate conduits 103, 103'.
  • Meter electronics 20 process the left and right velocity signals and the temperature signal to compute the mass flow rate and the density of the material passing through the sensor assembly 10. This information, along with other information, is applied by meter electronics 20 over path 26 to utilization means.
  • An explanation of the circuitry of the meter electronics 20 is not needed to understand the present invention and is omitted for brevity of this description. It should be appreciated that the description of FIG. 1 is provided merely as an example of the operation of one possible vibrating meter and is not intended to limit the teaching of the present invention.
  • a Coriolis flowmeter structure is described although it will be apparent to those skilled in the art that the present invention could be practiced on a vibrating tube densitometer without the additional measurement capability provided by a Coriolis mass flowmeter.
  • FIG. 2 illustrates an embodiment of a prior art sensor assembly 10 that is encased by a case 120. Much of the sensor assembly 10 is hidden from view by the case 120, but the manifolds 102, 102', and flanges 101, 10 ⁇ are visible. In this embodiment, adapters 203, 203' are welded to connect the flanges 101, 101 ' to their respective manifolds 102, 102'. A process line (not shown) would be connected to the flanges 101, 10 for typical use.
  • FIG. 3 illustrates a sensor assembly 10 according to an embodiment. Elements of the sensor assembly 10 may not be illustrated for clarity. Additional covers or casings are absent for clarity.
  • the sensor assembly 10 comprises a wetted assembly 200— see also FIG. 4— and a dry assembly 202.
  • the wetted assembly 200 comprises the flow path and, for example, manifolds 204, 204', flanges 206, 206' or other process connections, and conduits 208, 208'.
  • the wetted assembly 200 is the portion of the sensor assembly 10 that is directly exposed to process materials, such as manifolds 204, 204', flanges 206, 206', and conduits 208, 208', for example.
  • brace bars 210, 210' and a base plate 212 may or may not have direct exposure to process materials. It should be noted that the description and figures illustrate a dual conduit system, but this is not limiting, as flowmeters with a single conduit or a number of conduits greater than two are also contemplated.
  • the driver magnets 218, 218' and pickoff magnets 220, 220' are coupled to the conduits 208, 208' . It should be noted that the first driver magnet 218 and first pickoff magnet 220 are oriented in magnetic opposition to the second driver magnet 218' and second pickoff magnet 220'. Not all magnets are visible in FIG. 3.
  • the dry assembly 202 is removably attachable to the wetted assembly 200.
  • a process material would enter the wetted assembly 200 through an inlet 214 of flange 206, pass through a manifold 204, into the conduits 208, 208', and exit through the outlet 216 of flange 206' via another manifold 204'.
  • the dry assembly 202 is never in contact with process material.
  • the dry assembly 202 comprises the electrical components of the sensor assembly 10. These components may be sensitive to moisture or other caustic characteristics of the process material, so it is advantageous that the dry assembly 202 not receive any contact with the process material.
  • a feedthrough allows leads 100 to establish communication between meter electronics 20 and electronic elements housed in the dry assembly, such as coils 222, 224 and temperature sensors 228.
  • meter electronics 20 are housed within the dry assembly 202, and the leads 100 shown in FIG. 3 would instead be a communications path 26.
  • a pickoff coil 222 resides in the dry assembly 202, which is partitioned from the wetted assembly 200.
  • the dry assembly 202 may also house a driver coil 224, a temperature sensor 228, and any other wires and associated electronics.
  • a relief 230 may be defined by the partition that allows the magnets 218, 218', 220, 220' to protrude therein. This allows the magnets 218, 218', 220, 220' to be in closer proximity to their respective coil 222, 224 to maximize magnetic engagement between each magnet/coil set.
  • An alternating current is passed through the driver coil 224, which creates a magnetic field that interacts with the driver magnets 218, 218', which in turn vibrates both conduits 208, 208'.
  • a suitable drive signal is applied by meter electronics 20 as described above.
  • the vibratory motion of the pickoff magnets 220, 220' induces a current in each pickoff coil 222.
  • the magnetic poles are oriented so the force caused by the driver coil 224 is opposing on the conduits 208, 208'. Specifically, one conduit 208 will have all magnetic south poles oriented towards the coils, while the other conduit 208' will have all north poles oriented towards the coils.
  • the first conduit 208 will deflect towards the dry assembly 202, while the second conduit 208' will deflect away from the dry assembly 202 or vice versa.
  • the coils 222, 224 may be oriented to the outside of the magnets. This would be implemented in a similar way to that illustrated herein, but with projections that emanate from the dry assembly 202 that provide clearance for the conduits.
  • dual coils may be provided for both the driver and pickoffs, which would necessitate a larger dry assembly 202 to provide clearance for the dual coils at each position.
  • combinations of a single coil at the drive and dual coil at pick-offs are also contemplated.
  • the dry assembly 202 may comprise a mounting portion 232.
  • the mounting portion 232 may support at least one of the flanges 206, 206', the manifolds 204, 204', the flow tubes 208, 208', the brace bars 210, 210', and the base plate 212.
  • the size and dimension of the mounting portion 232 may therefore differ from embodiment to embodiment of flowmeter based upon flowmeter size, conduit orientation, and general flowmeter specifications.
  • the base plate rests upon the mounting portion 232. It will be clear that the wetted assembly 200 is easily added or removed from the dry assembly 202.
  • wetted assembly 200 may be removed from the dry assembly 202 and replaced by a different wetted assembly 200.
  • replacing the entire meter is necessary when conduits are damaged, and the present embodiments provide a far less costly solution to replace conduits without the need for replacing expensive electronic components.
  • deflecting ramps 234 may be provided that may displace the magnets slightly outward to facilitate installation and to ensure that conduits 208, 208' are deformed within predetermined tolerance limits.
  • An ejection mechanism may also be provided that would slightly displace the tubes to allow conduit set 208, 208' removal.
  • FIG. 6 illustrates a case 236 that may be provided to protect portions of the wetted and dry assemblies 200, 202.
  • a mounting rail 238 engages a retaining member 242 on the case 236.
  • the retaining member 242 may comprise clips, detents, pins, springs, tabs, threaded hardware, non-threaded hardware, combinations thereof, and/or any other mechanical fastening means known in the art.
  • spring members may also preload the case 236 to prevent undesirable vibrations.
  • fastening members may also attach the case 236 to a plurality of points on the sensor assembly and/or mounting portion 232 to prevent undesirable vibrations.
  • the materials for the wetted and dry assemblies 200, 202 may comprise metals, plastics, printed materials, composites, ceramics, and combinations thereof. Clips, detents, pins, springs, tabs 244 (illustrated), threaded hardware, non-threaded hardware, combinations thereof, and/or any other mechanical fastening means known in the art may also be utilized in attaching the dry assembly 202, including the mounting portion 232, to the case 236 and/or the wetted assembly 200, including the base plate 212. Bonding agents, adhesives, welding, and/or brazing may be employed in construction.
  • the wetted assembly 200 comprises an identifier.
  • the identifier 250 may be a visual indicator that identifies at least one of the model number, other identifying information, specifications, and/or calibration information.
  • the dry assembly 202 comprises a sensor 252 configured to receive information from the identifier 250.
  • the identifier 250 may be an electronic identifier, active emitter, passive emitter, and the sensor 252 may receive a signal or otherwise read the identifier 250 such that identifying information such as at least one of the model number, other identifying information, specifications, and/or calibration information is received by the sensor 252. This information may be communicated to meter electronics 20. Meter electronics may store this information. Meter electronics may utilize calibration information to more accurately calculate flowmeter-related values. Meter electronics may provide a warning if the wetted assembly 200 is not compatible with the dry assembly 202.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

L'invention concerne un débitmètre (5). Le débitmètre (5) comprend un ensemble humide (200) comprenant un ou plusieurs conduits (208, 208'), et au moins un aimant d'excitation (218, 218') fixé auxdits conduits (208, 208'). Un ensemble sec (202) loge une bobine d'excitation (224), et une électronique de compteur (20) est en communication électrique avec la bobine d'excitation (224). Un boîtier (236) recouvre au moins partiellement l'ensemble humide (200) et l'ensemble sec (202). L'ensemble sec (202) peut être fixé de façon amovible à l'ensemble humide (200). La bobine d'excitation (224) est en communication magnétique avec ledit aimant d'excitation (218, 218') lorsque l'ensemble sec (202) est fixé à l'ensemble humide (200), et la bobine d'excitation (224) est conçue pour fournir un signal vibratoire audit aimant d'excitation (218, 218') lorsque l'ensemble sec (202) est fixé à l'ensemble humide (200).
PCT/US2017/042523 2017-07-18 2017-07-18 Capteur de débitmètre à trajet d'écoulement interchangeable et procédé correspondant WO2019017891A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780093297.2A CN110892235B (zh) 2017-07-18 2017-07-18 具有可互换流动路径的流量计传感器和相关方法
US16/628,814 US10794744B2 (en) 2017-07-18 2017-07-18 Flowmeter sensor with interchangeable flow path and related method
JP2020502315A JP6844063B2 (ja) 2017-07-18 2017-07-18 交換可能な流路を備えた流量計センサ及び関連する方法
PCT/US2017/042523 WO2019017891A1 (fr) 2017-07-18 2017-07-18 Capteur de débitmètre à trajet d'écoulement interchangeable et procédé correspondant
EP17745598.7A EP3655731B1 (fr) 2017-07-18 2017-07-18 Capteur de débitmètre à trajet d'écoulement interchangeable et procédé correspondant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2017/042523 WO2019017891A1 (fr) 2017-07-18 2017-07-18 Capteur de débitmètre à trajet d'écoulement interchangeable et procédé correspondant

Publications (1)

Publication Number Publication Date
WO2019017891A1 true WO2019017891A1 (fr) 2019-01-24

Family

ID=59416833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/042523 WO2019017891A1 (fr) 2017-07-18 2017-07-18 Capteur de débitmètre à trajet d'écoulement interchangeable et procédé correspondant

Country Status (5)

Country Link
US (1) US10794744B2 (fr)
EP (1) EP3655731B1 (fr)
JP (1) JP6844063B2 (fr)
CN (1) CN110892235B (fr)
WO (1) WO2019017891A1 (fr)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017891A1 (fr) 2017-07-18 2019-01-24 Micro Motion, Inc. Capteur de débitmètre à trajet d'écoulement interchangeable et procédé correspondant
DE102019134606A1 (de) * 2019-12-16 2021-06-17 Endress + Hauser Flowtec Ag Messrohranordnung eines Messgerätes zum Erfassen eines Massedurchflusses, einer Viskosität, einer Dichte und/oder einer davon abgeleiteten Größe eines fließfähigen Mediums
DE102019134604A1 (de) * 2019-12-16 2021-06-17 Endress+Hauser Flowtec Ag Messrohranordnung und Trägereinheit eines Messgerätes zum Erfassen eines Massedurchflusses, einer Viskosität, einer Dichte und/oder einer davon abgeleiteten Größe eines fließfähigen Mediums
DE102019134806A1 (de) * 2019-12-17 2021-06-17 Endress+Hauser Flowtec Ag Messrohranordnung, Messrohrsystem und Trägereinheit eines Messgerätes zum Erfassen eines Massedurchflusses, einer Viskosität, einer Dichte und/oder einer davon abgeleiteten Größe eines fließfähigen Mediums
WO2021136626A1 (fr) 2019-12-30 2021-07-08 Endress+Hauser Flowtec Ag Système de mesure vibronique
WO2021180623A1 (fr) 2020-03-10 2021-09-16 Endress+Hauser Flowtec Ag Procédé de détermination d'un facteur d'étalonnage pour un tube de mesure, paire de tubes de mesure et dispositif de mesure de coriolis comportant une paire de tubes de mesure
DE102020112154A1 (de) 2020-05-05 2021-11-11 Endress+Hauser Flowtec Ag Verfahren zur Inbetriebnahme eines Coriolis-Durchflussmessgerätes
DE102020114518A1 (de) 2020-05-29 2021-12-02 Endress+Hauser Flowtec Ag Messaufnehmer eines Coriolis-Durchflussmessgerätes und Coriolis-Durchflussmessgerät
DE102020114519A1 (de) 2020-05-29 2021-12-02 Endress+Hauser Flowtec Ag Messgerät
WO2021255034A1 (fr) 2020-06-18 2021-12-23 Endress+Hauser Flowtec Ag Système de mesure vibronique
DE102020131649A1 (de) 2020-09-03 2022-03-03 Endress + Hauser Flowtec Ag Vibronisches Meßsystem
WO2022078687A1 (fr) 2020-10-16 2022-04-21 Endress+Hauser Flowtec Ag Procédé de vérification de système de mesure vibronique
DE102020131563A1 (de) 2020-11-27 2022-06-02 Endress+Hauser Flowtec Ag Messaufnehmer eines Messgerätes und Messgerät
DE102020132686A1 (de) 2020-12-08 2022-06-09 Endress+Hauser Flowtec Ag Messrohrmodul zum Einsatz in einem Coriolis-Durchflussmessgerät und Coriolis-Durchflussmessgerät
WO2022117456A1 (fr) 2020-12-03 2022-06-09 Endress+Hauser Flowtec Ag Capteur de mesure du type à vibration et système de mesure vibronique formé avec celui-ci
DE102021113360A1 (de) 2021-05-21 2022-11-24 Endress + Hauser Flowtec Ag Vibronisches Meßsystem
DE102022100234A1 (de) 2021-10-13 2023-04-13 Endress+Hauser Flowtec Ag Prüf-Modul, Prüf-System bzw. Prüfanordnung für ein Basis-Modul und/oder eine Meßsystem-Elektronik eines (modularen) vibronischen Meßsystems
WO2023061718A1 (fr) 2021-10-13 2023-04-20 Endress+Hauser Flowtec Ag Module de test, système de test et dispositif de test pour un module de base et/ou une unité électronique de système de mesure d'un système de mesure vibratoire modulaire
DE102022100227A1 (de) 2022-01-05 2023-07-06 Endress+Hauser Flowtec Ag Fluidleitungssystem
WO2024115121A1 (fr) 2022-12-02 2024-06-06 Endress+Hauser Flowtec Ag Procédé de vérification et/ou de mise en service d'un système de mesure modulaire
DE102023101930A1 (de) 2022-12-02 2024-06-13 Endress+Hauser Flowtec Ag Verfahren zum Überprüfen und/oder (Wieder-)Inbetriebnehmen eines modularen Meßsystems
DE102022134037A1 (de) 2022-12-20 2024-06-20 Endress+Hauser Flowtec Ag Modulares Coriolis-Durchflussmessgerät und Verfahren zum Inbetriebnehmen und/oder (Über )Prüfen eines modularen Coriolis-Massestrom-Messgeräts
DE102022134029A1 (de) 2022-12-20 2024-06-20 Endress+Hauser Flowtec Ag Test-Modul für Single-Use-CDM (Disposable)
WO2024132777A1 (fr) 2022-12-20 2024-06-27 Endress+Hauser Flowtec Ag Système de mesure modulaire pour mesurer une grandeur de mesure d'une substance fluide à mesurer et procédé de mise en service et/ou de vérification (contrôle) d'un système de mesure modulaire
DE102023108372A1 (de) 2023-03-31 2024-10-02 Endress + Hauser Flowtec Ag Coriolis-Durchflussmessgerät und Verfahren zum Kalibrieren und/oder Betreiben eines Coriolis-Durchflussmessgerätes
DE102023108373A1 (de) 2023-03-31 2024-10-02 Endress + Hauser Flowtec Ag Modulares Messsystem zum Messen einer Messgröße eines fluiden Messstoffes und Verfahren zum Inbetriebnehmen und/oder (Über-)Prüfen eines modularen Messsystems

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019122210B3 (de) * 2019-08-19 2021-01-28 Endress+Hauser Flowtec Ag Messrohr eines Coriolis-Messaufnehmers mit einer LTCC-Keramik, Coriolis-Messaufnehmer mit einem solchen Messrohr und Coriolis-Messgerät mit einem solchen Coriolis-Messaufnehmer.
DE102020131452A1 (de) * 2020-11-27 2022-06-02 Endress+Hauser Flowtec Ag Coriolis-Durchflussmessgerät
DE102020132986A1 (de) * 2020-12-10 2022-06-15 Endress+Hauser Flowtec Ag Modulares Coriolis-Durchflussmessgerät
DE102020133566A1 (de) 2020-12-15 2022-06-15 Endress+Hauser Flowtec Ag Modulares Coriolis-Durchflussmessgerät
DE102020133850A1 (de) * 2020-12-16 2022-06-23 Endress+Hauser Flowtec Ag Verfahren zum Betreiben eines Durchfluss-Messgeräts und Messsystem
DE102021123918A1 (de) 2021-09-15 2023-03-16 Endress+Hauser Flowtec Ag Coriolis-Messanordnung mit einem Coriolis-Messgerät
DE102022114149A1 (de) 2022-06-03 2023-12-14 Endress+Hauser Flowtec Ag Modulares coriolis-durchflussmessgerät
DE102022133717A1 (de) 2022-12-16 2024-06-27 Endress+Hauser Flowtec Ag Modulares Coriolis-Durchflussmessgerät und Verfahren zur Herstellung einer Spulenvorrichtung

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109524A (en) 1975-06-30 1978-08-29 S & F Associates Method and apparatus for mass flow rate measurement
USRE31450E (en) 1977-07-25 1983-11-29 Micro Motion, Inc. Method and structure for flow measurement
US4491025A (en) 1982-11-03 1985-01-01 Micro Motion, Inc. Parallel path Coriolis mass flow rate meter
US4756198A (en) * 1986-01-24 1988-07-12 Exac Corporation Sensor apparatus for mass flow rate measurement system
DE8814606U1 (de) 1987-11-25 1989-08-17 Flowtec AG, Reinach, Basel Massendurchflußmesser
US4872351A (en) 1988-08-23 1989-10-10 Micro Motion Incorporated Net oil computer
WO1989011635A1 (fr) 1988-05-24 1989-11-30 Micro Motion, Inc. Debitmetre massique de coriolis a structure de conduits non metalliques de l'ecoulement
DE4026724A1 (de) * 1990-08-24 1992-03-12 Heinrichs Messgeraete Josef Masse-durchflussmesser mit auswechselbarem schwingrohr
US5687100A (en) 1996-07-16 1997-11-11 Micro Motion, Inc. Vibrating tube densimeter
JPH1194621A (ja) 1997-09-24 1999-04-09 Tokico Ltd 振動式測定装置
US20010035055A1 (en) 2000-05-04 2001-11-01 Wolfgang Drahm Mass flow rate/density sensor with a single curved measuring tube
US20020020227A1 (en) * 2000-04-12 2002-02-21 Yousif Hussain Mass flow meter
JP2003121234A (ja) 2001-10-15 2003-04-23 Oval Corp コリオリメータ
WO2003046488A1 (fr) 2001-11-26 2003-06-05 Emerson Electric Co. Fabrication d'un debitmetre coriolis principalement constitue de perfluoralcoxy
EP0874975B1 (fr) * 1996-01-17 2007-03-07 Siemens Flow Instruments A/S Debitmetre massique
JP2008209223A (ja) 2007-02-26 2008-09-11 Tokiko Techno Kk コリオリ式質量流量計
US20110000316A1 (en) 2009-07-06 2011-01-06 Keyence Corporation Coriolis Mass Flow Meter
US20110041623A1 (en) * 2008-05-09 2011-02-24 Micro Motion, Inc. Dual tube coriolis flow meter with a central stationary plate serving as support for driver and pick-off components
US20110079091A1 (en) * 2008-06-04 2011-04-07 Endress + Hauser Flowtec Ag Apparatus for determining and/or monitoring a flow parameter
DE102010031433A1 (de) 2010-07-16 2012-01-19 Endress + Hauser Flowtec Ag Einsatz für ein magnetisch-induktives Durchflussmessgerät
US20130125612A1 (en) * 2010-08-27 2013-05-23 Paul J Hays Sensor assembly validation
US20160245714A1 (en) * 2013-10-30 2016-08-25 Alphinity, Llc Fluid monitoring device with disposable inner liner with sensor integration
WO2019017891A1 (fr) 2017-07-18 2019-01-24 Micro Motion, Inc. Capteur de débitmètre à trajet d'écoulement interchangeable et procédé correspondant

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59004621D1 (de) 1990-03-30 1994-03-24 Flowtec Ag Nach dem Coriolisprinzip arbeitendes Massendurchfluss-Messgerät.
DE4027936A1 (de) 1990-09-04 1992-03-05 Rota Yokogawa Gmbh & Co Kg Massedosierautomat
EP1253409A1 (fr) 2001-04-26 2002-10-30 Endress + Hauser Flowtec AG Circuit magnétique pour un capteur de mesure
US7051598B2 (en) * 2003-03-21 2006-05-30 Endress + Hauser Flowtec Ag Magnetic circuit arrangement for a sensor
US7178407B2 (en) * 2003-12-11 2007-02-20 Endress + Hauser Flowtec Ag Magnetic-inductive flow sensor and method for its manufacture
DE102008007742A1 (de) * 2007-04-25 2008-11-06 Krohne Ag Coriolis-Massendurchflußmeßgerät
CN105371908B (zh) * 2008-05-09 2019-12-10 微动公司 流量计
WO2010014729A2 (fr) * 2008-07-29 2010-02-04 Rosemount Inc. Débitmètre magnétique haute pression avec ensemble électrode résistant aux contraintes
EP2406591A1 (fr) * 2009-03-11 2012-01-18 Endress+Hauser Flowtec AG Capteur de mesure à vibration et instrument de mesure en ligne muni d'un tel capteur de mesure
CA2764031C (fr) * 2009-06-10 2016-04-26 Micro Motion, Inc. Procede et appareil de couplage d'un boitier a un debitmetre vibrant
EP2449348B1 (fr) * 2009-06-30 2020-07-29 Micro Motion, Inc. Capteurs de mesure de débit d'écoulement du type vibrant et procédés de fabrication de capteurs de mesure de débit
DE102010018223A1 (de) * 2010-04-23 2011-10-27 Krohne Messtechnik Gmbh Coriolis-Massedurchflussmessgerät
RU2557409C2 (ru) * 2010-09-16 2015-07-20 Эндресс+Хаузер Флоутек Аг Измерительная система для измерения плотности или весовой пропускной способности протекающей в трубопроводе среды
JP2015105929A (ja) * 2013-12-02 2015-06-08 株式会社東芝 電磁流量計
DE102014105569B3 (de) * 2014-04-17 2015-08-20 Endress + Hauser Flowtec Ag Gehäuse für magnetisch induktives Durchflussmessgerät
US9410830B2 (en) * 2014-06-30 2016-08-09 Micro Motion, Inc. Magnetic flowmeter flowtube assembly with interchangeable liner/electrode module
US10077996B2 (en) 2014-09-25 2018-09-18 Micro Motion, Inc. Flowmeter housing and related methods

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109524A (en) 1975-06-30 1978-08-29 S & F Associates Method and apparatus for mass flow rate measurement
USRE31450E (en) 1977-07-25 1983-11-29 Micro Motion, Inc. Method and structure for flow measurement
US4491025A (en) 1982-11-03 1985-01-01 Micro Motion, Inc. Parallel path Coriolis mass flow rate meter
US4491025B1 (fr) 1982-11-03 1988-01-05
US4756198A (en) * 1986-01-24 1988-07-12 Exac Corporation Sensor apparatus for mass flow rate measurement system
DE8814606U1 (de) 1987-11-25 1989-08-17 Flowtec AG, Reinach, Basel Massendurchflußmesser
WO1989011635A1 (fr) 1988-05-24 1989-11-30 Micro Motion, Inc. Debitmetre massique de coriolis a structure de conduits non metalliques de l'ecoulement
US4872351A (en) 1988-08-23 1989-10-10 Micro Motion Incorporated Net oil computer
DE4026724A1 (de) * 1990-08-24 1992-03-12 Heinrichs Messgeraete Josef Masse-durchflussmesser mit auswechselbarem schwingrohr
EP0874975B1 (fr) * 1996-01-17 2007-03-07 Siemens Flow Instruments A/S Debitmetre massique
US5687100A (en) 1996-07-16 1997-11-11 Micro Motion, Inc. Vibrating tube densimeter
JPH1194621A (ja) 1997-09-24 1999-04-09 Tokico Ltd 振動式測定装置
US20020020227A1 (en) * 2000-04-12 2002-02-21 Yousif Hussain Mass flow meter
US20010035055A1 (en) 2000-05-04 2001-11-01 Wolfgang Drahm Mass flow rate/density sensor with a single curved measuring tube
JP2003121234A (ja) 2001-10-15 2003-04-23 Oval Corp コリオリメータ
WO2003046488A1 (fr) 2001-11-26 2003-06-05 Emerson Electric Co. Fabrication d'un debitmetre coriolis principalement constitue de perfluoralcoxy
JP2008209223A (ja) 2007-02-26 2008-09-11 Tokiko Techno Kk コリオリ式質量流量計
US20110041623A1 (en) * 2008-05-09 2011-02-24 Micro Motion, Inc. Dual tube coriolis flow meter with a central stationary plate serving as support for driver and pick-off components
US20110079091A1 (en) * 2008-06-04 2011-04-07 Endress + Hauser Flowtec Ag Apparatus for determining and/or monitoring a flow parameter
US20110000316A1 (en) 2009-07-06 2011-01-06 Keyence Corporation Coriolis Mass Flow Meter
DE102010031433A1 (de) 2010-07-16 2012-01-19 Endress + Hauser Flowtec Ag Einsatz für ein magnetisch-induktives Durchflussmessgerät
US20130125612A1 (en) * 2010-08-27 2013-05-23 Paul J Hays Sensor assembly validation
US20160245714A1 (en) * 2013-10-30 2016-08-25 Alphinity, Llc Fluid monitoring device with disposable inner liner with sensor integration
WO2019017891A1 (fr) 2017-07-18 2019-01-24 Micro Motion, Inc. Capteur de débitmètre à trajet d'écoulement interchangeable et procédé correspondant

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017891A1 (fr) 2017-07-18 2019-01-24 Micro Motion, Inc. Capteur de débitmètre à trajet d'écoulement interchangeable et procédé correspondant
US12098939B2 (en) 2019-12-16 2024-09-24 Endress+Hauser Flowtec Ag Measuring tube arrangement and carrier unit of a measuring device for detecting a parameter of a flowable medium
DE102019134606A1 (de) * 2019-12-16 2021-06-17 Endress + Hauser Flowtec Ag Messrohranordnung eines Messgerätes zum Erfassen eines Massedurchflusses, einer Viskosität, einer Dichte und/oder einer davon abgeleiteten Größe eines fließfähigen Mediums
DE102019134604A1 (de) * 2019-12-16 2021-06-17 Endress+Hauser Flowtec Ag Messrohranordnung und Trägereinheit eines Messgerätes zum Erfassen eines Massedurchflusses, einer Viskosität, einer Dichte und/oder einer davon abgeleiteten Größe eines fließfähigen Mediums
WO2021121867A1 (fr) 2019-12-16 2021-06-24 Endress+Hauser Flowtec Ag Ensemble tube de mesure et unité de support d'un dispositif de mesure pour détecter un débit massique, une viscosité, une densité et/ou une variable dérivée de ceux-ci d'un milieu fluide
DE102019134806A1 (de) * 2019-12-17 2021-06-17 Endress+Hauser Flowtec Ag Messrohranordnung, Messrohrsystem und Trägereinheit eines Messgerätes zum Erfassen eines Massedurchflusses, einer Viskosität, einer Dichte und/oder einer davon abgeleiteten Größe eines fließfähigen Mediums
WO2021136626A1 (fr) 2019-12-30 2021-07-08 Endress+Hauser Flowtec Ag Système de mesure vibronique
WO2021180623A1 (fr) 2020-03-10 2021-09-16 Endress+Hauser Flowtec Ag Procédé de détermination d'un facteur d'étalonnage pour un tube de mesure, paire de tubes de mesure et dispositif de mesure de coriolis comportant une paire de tubes de mesure
DE102020112154A1 (de) 2020-05-05 2021-11-11 Endress+Hauser Flowtec Ag Verfahren zur Inbetriebnahme eines Coriolis-Durchflussmessgerätes
WO2021223989A1 (fr) * 2020-05-05 2021-11-11 Endress+Hauser Flowtec Ag Procédé de mise en fonctionnement de débitmètre de coriolis
DE102020114519A1 (de) 2020-05-29 2021-12-02 Endress+Hauser Flowtec Ag Messgerät
DE102020114518A1 (de) 2020-05-29 2021-12-02 Endress+Hauser Flowtec Ag Messaufnehmer eines Coriolis-Durchflussmessgerätes und Coriolis-Durchflussmessgerät
WO2021255034A1 (fr) 2020-06-18 2021-12-23 Endress+Hauser Flowtec Ag Système de mesure vibronique
WO2021255119A1 (fr) 2020-06-18 2021-12-23 Endress+Hauser Flowtec Ag Système de mesure vibronique
DE102020131649A1 (de) 2020-09-03 2022-03-03 Endress + Hauser Flowtec Ag Vibronisches Meßsystem
WO2022048888A1 (fr) 2020-09-03 2022-03-10 Endress+Hauser Flowtec Ag Système de mesure vibronique
WO2022078687A1 (fr) 2020-10-16 2022-04-21 Endress+Hauser Flowtec Ag Procédé de vérification de système de mesure vibronique
DE102020127382A1 (de) 2020-10-16 2022-04-21 Endress+Hauser Flowtec Ag Verfahren zum Überprüfen eines vibronischen Meßsystems
DE102020131563A1 (de) 2020-11-27 2022-06-02 Endress+Hauser Flowtec Ag Messaufnehmer eines Messgerätes und Messgerät
WO2022117456A1 (fr) 2020-12-03 2022-06-09 Endress+Hauser Flowtec Ag Capteur de mesure du type à vibration et système de mesure vibronique formé avec celui-ci
DE102020132223A1 (de) 2020-12-03 2022-06-09 Endress+Hauser Flowtec Ag Meßaufnehmer vom Vibrationstyp sowie damit gebildetes vibronisches Meßsystem
DE102020132686A1 (de) 2020-12-08 2022-06-09 Endress+Hauser Flowtec Ag Messrohrmodul zum Einsatz in einem Coriolis-Durchflussmessgerät und Coriolis-Durchflussmessgerät
WO2022242975A1 (fr) 2021-05-21 2022-11-24 Endress+Hauser Flowtec Ag Système de mesure vibronique
DE102021113360A1 (de) 2021-05-21 2022-11-24 Endress + Hauser Flowtec Ag Vibronisches Meßsystem
DE102022100234A1 (de) 2021-10-13 2023-04-13 Endress+Hauser Flowtec Ag Prüf-Modul, Prüf-System bzw. Prüfanordnung für ein Basis-Modul und/oder eine Meßsystem-Elektronik eines (modularen) vibronischen Meßsystems
WO2023061718A1 (fr) 2021-10-13 2023-04-20 Endress+Hauser Flowtec Ag Module de test, système de test et dispositif de test pour un module de base et/ou une unité électronique de système de mesure d'un système de mesure vibratoire modulaire
DE102022100227A1 (de) 2022-01-05 2023-07-06 Endress+Hauser Flowtec Ag Fluidleitungssystem
WO2023131475A1 (fr) 2022-01-05 2023-07-13 Endress+Hauser Flowtec Ag Système de conduite de fluide
DE102023101930A1 (de) 2022-12-02 2024-06-13 Endress+Hauser Flowtec Ag Verfahren zum Überprüfen und/oder (Wieder-)Inbetriebnehmen eines modularen Meßsystems
WO2024115121A1 (fr) 2022-12-02 2024-06-06 Endress+Hauser Flowtec Ag Procédé de vérification et/ou de mise en service d'un système de mesure modulaire
DE102022134037A1 (de) 2022-12-20 2024-06-20 Endress+Hauser Flowtec Ag Modulares Coriolis-Durchflussmessgerät und Verfahren zum Inbetriebnehmen und/oder (Über )Prüfen eines modularen Coriolis-Massestrom-Messgeräts
DE102022134029A1 (de) 2022-12-20 2024-06-20 Endress+Hauser Flowtec Ag Test-Modul für Single-Use-CDM (Disposable)
WO2024132777A1 (fr) 2022-12-20 2024-06-27 Endress+Hauser Flowtec Ag Système de mesure modulaire pour mesurer une grandeur de mesure d'une substance fluide à mesurer et procédé de mise en service et/ou de vérification (contrôle) d'un système de mesure modulaire
WO2024132776A1 (fr) 2022-12-20 2024-06-27 Endress+Hauser Flowtec Ag Module de test pour densimètre compact à usage unique (jetable)
DE102023108372A1 (de) 2023-03-31 2024-10-02 Endress + Hauser Flowtec Ag Coriolis-Durchflussmessgerät und Verfahren zum Kalibrieren und/oder Betreiben eines Coriolis-Durchflussmessgerätes
DE102023108373A1 (de) 2023-03-31 2024-10-02 Endress + Hauser Flowtec Ag Modulares Messsystem zum Messen einer Messgröße eines fluiden Messstoffes und Verfahren zum Inbetriebnehmen und/oder (Über-)Prüfen eines modularen Messsystems
WO2024200208A1 (fr) 2023-03-31 2024-10-03 Endress+Hauser Flowtec Ag Débitmètre coriolis et procédé d'étalonnage et/ou de fonctionnement d'un débitmètre coriolis

Also Published As

Publication number Publication date
EP3655731A1 (fr) 2020-05-27
CN110892235A (zh) 2020-03-17
JP2020527717A (ja) 2020-09-10
US10794744B2 (en) 2020-10-06
JP6844063B2 (ja) 2021-03-17
CN110892235B (zh) 2022-04-15
EP3655731B1 (fr) 2023-08-30
US20200200582A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
US10794744B2 (en) Flowmeter sensor with interchangeable flow path and related method
AU2007362570B2 (en) A vibrating flow device and method for fabricating a vibrating flow device
EP1613929B1 (fr) Procede et appareil d'equilibrage de force d'un debitmetre de coriolis
KR20110005311A (ko) 드라이버 및 픽오프 구성요소들에 대해 지지체로 작용하는 중심의 고정 플레이트를 갖는 이중관 코리올리 유량계
EP1735599B1 (fr) Procede et dispositif pour l'equilibrage de force
KR20010030791A (ko) 코리올리 플로우미터용 픽오프 및 오실레이터리 드라이버결합체 및 작동방법
CA2895647C (fr) Methode et appareil de separation d'un pilote et d'un detecteur d'ecart dans un dispositif de detection de vibration
CN105371908B (zh) 流量计
US8667852B2 (en) Flow meter including a balanced reference member
AU2013200990B2 (en) A flow meter including a balanced reference member
AU2013203999B2 (en) A method and apparatus for separating a driver and a pick-off of a vibrating sensor assembly
RU2316734C2 (ru) Способ и устройство для силового уравновешивания расходомера кориолиса
RU2351901C2 (ru) Способ и средство для балансировки

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17745598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020502315

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017745598

Country of ref document: EP

Effective date: 20200218