WO2019017728A1 - 발열체 및 이를 포함하는 히터유닛 - Google Patents
발열체 및 이를 포함하는 히터유닛 Download PDFInfo
- Publication number
- WO2019017728A1 WO2019017728A1 PCT/KR2018/008228 KR2018008228W WO2019017728A1 WO 2019017728 A1 WO2019017728 A1 WO 2019017728A1 KR 2018008228 W KR2018008228 W KR 2018008228W WO 2019017728 A1 WO2019017728 A1 WO 2019017728A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- heating element
- heating
- outer tube
- tube
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 166
- 239000010410 layer Substances 0.000 claims description 51
- 229910052751 metal Inorganic materials 0.000 claims description 30
- 239000002184 metal Substances 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 27
- 239000011247 coating layer Substances 0.000 claims description 17
- 239000012790 adhesive layer Substances 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 13
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 9
- 239000000853 adhesive Substances 0.000 claims description 5
- 230000001070 adhesive effect Effects 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 239000007769 metal material Substances 0.000 claims description 4
- 230000000903 blocking effect Effects 0.000 claims description 2
- 229920006015 heat resistant resin Polymers 0.000 claims description 2
- 238000003466 welding Methods 0.000 claims description 2
- 239000012530 fluid Substances 0.000 description 28
- 230000004308 accommodation Effects 0.000 description 19
- 238000009413 insulation Methods 0.000 description 11
- 230000001965 increasing effect Effects 0.000 description 10
- 239000004642 Polyimide Substances 0.000 description 8
- 229920001721 polyimide Polymers 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000010292 electrical insulation Methods 0.000 description 3
- 238000013021 overheating Methods 0.000 description 3
- 238000007743 anodising Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000012811 non-conductive material Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000008236 heating water Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/22—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/02—Details
- H05B3/06—Heater elements structurally combined with coupling elements or holders
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/02—Details
- H05B3/06—Heater elements structurally combined with coupling elements or holders
- H05B3/08—Heater elements structurally combined with coupling elements or holders having electric connections specially adapted for high temperatures
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/10—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
- H05B3/12—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/40—Heating elements having the shape of rods or tubes
- H05B3/42—Heating elements having the shape of rods or tubes non-flexible
- H05B3/44—Heating elements having the shape of rods or tubes non-flexible heating conductor arranged within rods or tubes of insulating material
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/40—Heating elements having the shape of rods or tubes
- H05B3/42—Heating elements having the shape of rods or tubes non-flexible
- H05B3/48—Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
- H05B3/50—Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material heating conductor arranged in metal tubes, the radiating surface having heat-conducting fins
Definitions
- the present invention relates to a heating element and a heater unit including the same.
- a heater using a nichrome wire may cause ignition upon overheating.
- the electric vehicle is equipped with a heater unit using a PTC element for heating.
- a heater unit using a PTC element as a heating element has a limitation in increasing the size of the PTC element, so that a large amount of heat can not be obtained.
- the heater unit using the PTC element is different in temperature distribution to each radiating fin and differs in temperature to be transmitted to the radiating fin.
- a heating element and a heater unit capable of forming a uniform temperature distribution and obtaining a large amount of heat is required.
- a heater unit which can realize a uniform temperature distribution and a large calorific value can be developed by implementing a heating element in a form that a heating source embodied in a plate shape is embedded in a casing.
- the plate-shaped heat source may be exposed to repeated thermal fatigue to lose its function as a heater unit, and there is a fear of ignition upon overheating at a certain temperature or higher. Since the shrinkage expansion rate of the exterior member surrounding the heat source and the heat source is different, the insulation of the entire heat generating element may be broken.
- Another object of the present invention is to provide a heating element capable of obtaining a uniform temperature distribution and securing a large heating value, and a heater unit including the same.
- a thermally conductive outer tube A first heat generating unit disposed inside the outer tube and generating heat when a current is applied; And a pair of terminal tubes connected to both ends of the first heat source and at least a part of which protrudes outside the outer tube.
- a frame disposed to surround the heat generating unit, wherein the heat generating unit includes: a heating element; And at least one support disposed on at least one of an upper side and a lower side of the heating element so as to support the heating element.
- the first heat source may include a plate-like conductive member and a linear conductive member having a predetermined pattern.
- the first heat source may include a plate-like conductive member and a linear conductive member having a predetermined pattern. And provides a heating element in which a mountain part and a valley part are repeatedly formed along the longitudinal direction.
- a heat source of a sheetable material such as a cantalum and a pecaloy alloy.
- the present invention can increase the heat exchange efficiency by increasing the contact area and the heating area of the heating element with the fluid by forming the flow path through the pattern in which the heating part repeatedly forms the peak part and the valley part, It is possible to prevent breakage of the insulation by minimizing the expansion ratio.
- the current applied to the heater unit is blocked through the current blocking unit, thereby preventing ignition by overheating.
- the present invention can further enhance the heat exchange efficiency by allowing the support to play a role of another heat source in addition to the role of supporting the heat generating element.
- FIG. 1 is a view illustrating a heating element according to an embodiment of the present invention
- FIGS. 2 and 3 illustrate a process of inserting both ends of the first heat source into the terminal tube shown in FIG. 1;
- FIG. 4 is a view showing a state in which an insulating layer is disposed in the terminal tube and the first heat generating source in FIG. 2;
- 5 to 6 illustrate a process of inserting an external tube in a state where an insulating layer is disposed.
- FIG. 7 is an enlarged cross-sectional view of the portion 'A' of FIG. 1, and shows various conceptual views showing a detailed layer relationship of a heating element applicable to FIG.
- FIG. 11 is a view showing an example of an insulating member
- Fig. 12 is a sectional view taken along the line B-B in Fig. 11,
- FIG. 13 is a view showing a state where the heating element shown in Fig. 1 is folded, Fig.
- FIG. 14 is a view illustrating a heater unit according to an embodiment of the present invention.
- Fig. 15 is a view showing a modified form of the support in Fig. 14,
- FIG. 16 is a view showing a heater unit employing the heating element of FIG. 13;
- FIG 17 is a view illustrating a heater unit according to another embodiment of the present invention.
- FIG. 18 is a view illustrating a heater unit according to another embodiment of the present invention.
- FIG. 19 is a view showing a heating element according to another embodiment of the present invention.
- FIG. 20 is an enlarged cross-sectional view taken along line 'C' in FIG. 19, and shows various conceptual views showing a detailed layer relationship of a heating element applicable to FIG.
- FIG. 21 is a view showing a heater unit to which a heating element of FIG. 19 is applied.
- FIG. 22 is a conceptual view showing a detailed structure of a support that can be applied to FIG. 21.
- FIG. 22 is a conceptual view showing a detailed structure of a support that can be applied to FIG. 21.
- a heating element 100 may include an outer tube 140, a first heat source 110, and a terminal tube 160.
- the outer tube 140 serves to protect the first heat generating source 110 received therein and to disperse the heat generated from the first heat generating source 110.
- the outer tube 140 may be made of a metal material, and may be formed in a hollow shape having both ends open.
- the outer tube 140 may be a hollow metal tube made of copper or aluminum having a high thermal conductivity.
- the outer tube 140 may be formed in a plate shape by being pressurized in a state where the first heat generating source 110 is inserted therein .
- the outer tube 140 is deformed into an elliptical shape by first pressing the circular outer tube 140 and the outer tube 140 is inserted into the outer tube 140 while the first heat source 110 is inserted into the outer tube 140 To form a plate-like shape.
- the method of forming the external tube 140 in a plate form is not limited thereto.
- (140) may be formed in a plate shape.
- the external tube 140 may include a first heat source 110 disposed on one surface of a plate-shaped metal sheet having a predetermined area as shown in FIGS. 8 and 9, It may be constructed in such a manner that the first heat generating source 110 is covered and then the parts in contact with each other are sealed.
- the outer tube 140 may include two metal sheets 141 and 142 having a predetermined area as shown in FIG. 10, and the two metal sheets 141 and 142 may be connected to each other It is also possible to arrange them so as to face each other and then seal the two edges which are in contact with each other.
- the rim side 170 of the metal sheets 141, 142 that are in contact with each other can be sealed through various known methods such as ultrasonic welding, adhesives, and the like.
- the first heat source 110 may be disposed inside the outer tube 140 and generate heat when a current is applied. At this time, the first heat source 110 may be in the form of a plate having a predetermined width and length.
- the first heat source 110 may be a plate-shaped metal sheet having a predetermined area, and the metal sheet may be formed of aluminum, copper, amorphous ribbon sheet, or the like.
- the first heat generating source 110 may be a plate-shaped conductive member including at least one of a cantalum and a pecaloy alloy so as to prevent crystallization due to repetitive thermal fatigue exposure.
- the first heat generating source 110 is not limited thereto, and linear conductive members may be arranged in a predetermined pattern so as to be realized in the form of a plate or a plane.
- the first heat generating unit 110 may be made of any known material that can be used as a heat source if it can be realized in the form of a plane or a plate.
- an insulating layer 120 for electrical insulation may be disposed between the inner surface of the outer tube 140 and the first heat generating source 110.
- the outer tube 140 is made of a conductive metal
- the first heat generating source 110 disposed inside the outer tube 140 may not electrically short-circuit with the outer tube 140 .
- the insulating layer 120 may have an insulating property for electrical insulation and may have heat resistance to prevent damage caused by heat generated from the first heat generating source 110.
- the insulating layer 120 may be a coating layer 121 coated with a coating solution having an insulating property and a heat resistance, and may be a film member 122 made of a resin material having insulation and heat resistance, Or the coating layer 121 and the film member 122 may be combined with each other.
- the insulating layer 120 may be formed as a coating layer 121 formed on both surfaces of the first heat generating source 110, and FIG. 7 (b)
- the film member 122 may be attached to both sides of the first heat generating source 110 via the adhesive layer 130 as shown in FIG.
- the insulating layer 120 may include a film member 122 and a first heat generating source 110 attached to one surface of the first heat generating source 110 through an adhesive layer 130, And a coating layer 121 formed on the other surface of the substrate.
- the coating liquid may be a liquid polyimide (PI) coating liquid
- the film member 122 may be a polyimide (PI) film but is not limited thereto. Any material having heat resistance and insulation properties, All materials may be used.
- the coating layer 121 may be formed to a thickness of about 3 to 5 ⁇ , and the insulating layer 120 may be formed of a film 122
- the film member 122 may have a thickness of about 100 mu m or less.
- the thickness of the coating layer 121 or the film member 122 is too thick, the efficiency may be lowered by absorbing the heat generated in the first heat generating source 110.
- the thicknesses of the coating layer 121 and the film member 122 are not limited thereto, and may be appropriately changed according to design conditions.
- the adhesive layer 130 described above may be omitted.
- the outer tube 140 when the outer tube 140 is made of aluminum, the outer tube 140 may be anodized on the inner surface facing the first heat source 110. [ Accordingly, the outer tube 140 may be insulated from the first heat source 110. [ In this case, since the external tube 140 is anodized through an anodizing process, the insulating layer 120 described above can be omitted.
- the adhesive layer interposed between the external tube 140 and the first heat generating source 110 or between the external tube 140 and the insulating layer 120 is omitted .
- the terminal tube 160 is made of a conductive material and connected to the first heat generating source 110 so that power supplied from the outside can be applied to the first heat generating source 110.
- the terminal tubes 160 may be disposed on both ends of the first heat generating source 110.
- the terminal tube 160 may be a hollow metal tube made of a metal material. At least a part of the terminal tube 160 may be protruded to the outside of the outer tube 140 while surrounding the end of the first heat source 110 Lt; / RTI >
- the heating tube 100 includes the terminal tubes 160 fastened to both ends of the first heat generating source 110, 1 heat source 110 may be disposed inside the outer tube 140 and may be realized as a plate by pressing the outer tube 140 and the terminal tube 160.
- the first heat generating source 110 and the pair of terminal tubes 160 may be electrically connected to each other through simple contact, but various methods may be applied to enhance electrical reliability.
- first heat generating source 110 and the terminal tube 160 may have a conductive adhesive interposed therebetween, or may partially crimp portions overlapping each other.
- first heating source 110 and the terminal tube 160 may be spot-welded to each other.
- the heating element 100 minimizes the shrinkage expansion rate along the longitudinal direction when the first heat generating source 110 generates heat, thereby preventing breakage of the insulation.
- the heating element 100 may be formed with a pattern 180 for contraction and relaxation along the longitudinal direction.
- the pattern 180 may have a shape in which a peak 181 and a valley 182 are repeatedly formed along the longitudinal direction of the heating element, as shown in FIG.
- the shrinkage and expansion ratios of the external tube 140, the terminal tube 160, and the first heat generating source 110 of the heating element 100 are different from each other, they can be supplemented through the pattern 180.
- the insulating layer 120 interposed between the first heat generating source 110 and the external tube 140 or between the external tube 140 and the terminal tube 160 is broken or separated from the first heat generating source 110 .
- a space through which the fluid can pass may be formed through the pattern 180 in which the crests 181 and the valleys 182 are repeatedly formed along the longitudinal direction
- a passage 183 through which the fluid passes may be formed on the upper surface and the lower surface side of the heating element 100.
- the passage 183 is formed through the pattern 180 And the fluid to be heated can pass through the passage 183.
- the fluid can be directly heated by the first heat source 110 in the process of passing through the passage 183.
- the fluid passing through the passage 183 can be heated directly by the first heat source 110, so that the temperature can be rapidly raised.
- the heating body 100 according to an embodiment of the present invention is repeatedly bent through the pattern 180, so that the contact area and the heat generating area with the fluid passing through the passage 183 can be increased. Accordingly, the heat emitting body 100 according to an embodiment of the present invention can secure a large amount of heat by widening the heat exchange area, and the fluid can directly pass through the passage 183, It is possible to replace the conventional radiating fin disposed between the heating element and the heating element.
- the pattern 180 may also serve to complement the shrinkage and expansion ratio with respect to the longitudinal direction according to the material, and to form a passage through which the fluid can pass.
- the pattern 180 may be formed in the outer tube 140 and the first heat generating source 110.
- the pattern formed in the outer tube 140 and the pattern formed in the first heat generating source 110 May be formed to coincide with each other.
- a pattern formed on the terminal tube 160 may be formed on the outer tube 140 and / or the first heat generating source 110, They may be formed to coincide with each other.
- the heating body 100 includes an insulating layer 120 interposed between the external tube 140 and the first heat source 110, the terminal tube 160, and the external tube 140, It is possible to prevent this from being broken.
- the insulation layer 120 is always kept in close contact with the external tube 140, the first heat source 110, the terminal tube 160, and the external tube 140, so that an air gap The possibility that may occur can be minimized or prevented in advance.
- the heat generated by the first heat generating source 110 can be smoothly transmitted to the external tube 140 since heat insulation due to the air gap can be prevented.
- the pattern 180 may be formed to include a region where the terminal tube 160 and the external tube 140 are overlapped with each other. Accordingly, the terminal tube 160 and the external tube 140 can be fixed to each other through the pattern 180 formed in the overlapping region, so that the terminal tube 160 and the external tube 140 can be fixed to each other Can be omitted.
- the heating element 100 includes an insulating member 140 for preventing a short circuit from occurring due to factors such as an external tube 140 and a spark when the terminal tube 160 is supplied with power from the outside, (190,190 ').
- the insulating member 190, 190 ' may be made of a nonconductive material, and any known nonconductive material such as rubber or silicone resin may be used.
- the insulation members 190 and 190 ' are formed to have a length of at least 10 to 15 mm so that the outer tube 140 and the terminal tube 160 exposed to the outside are maintained at intervals of at least 10 to 15 mm, .
- the overall length of the insulating member 190, 190 ' is not limited thereto, and may be changed to an appropriate length according to design conditions if electrical reliability can be enhanced.
- the insulating member 190 may be formed in a tube shape as shown in FIG. 1 and may be provided to surround a part of the terminal tube 160. In addition to the terminal tube 160, 140 at the same time.
- the insulating member 190 ' may be a molding body that simultaneously encloses a portion of the outer tube 140 and a portion of the terminal tube 160, as shown in FIGS. 11 and 12. Meanwhile, when the insulating member 190 'is formed as a molding body, the insulating layer 120 may be surface-treated to improve bonding strength with the insulating member 190'. For example, a known primer layer (not shown) may be formed on the insulating layer 120 at a portion contacting the insulating member 190 'through a surface treatment.
- the heating element 100 may have a laminated structure such that the middle portion of the heating element 100 is folded at least once more to contact the opposite surfaces.
- the heating element 100 may be formed by stacking a part of the entire length at least once at least once, and a passage 183 May be formed.
- the heating element 100 may be configured such that the middle portion of the heating element 100 is folded at least one time so that the opposite surfaces of the heating elements 100 are in contact with each other so that the terminal tubes 160 on both sides face the same direction.
- the valley portion 182 and the lower side crest portion 181 may be in contact with each other to form a passage 183 through which the fluid can pass.
- the number of the heating body 100 can be reduced, which simplifies the assembly process.
- the heating elements 100 are stacked in 12 layers as shown in FIG. 16, the heating elements 100 are stacked in 12 layers using the three heating elements 100 shown in FIG. . ≪ / RTI >
- the heating elements 100 described above may be embodied as heater units 200 and 300 for heating the fluid by arranging a plurality of the heating elements 100 in parallel to each other and fixing both ends to the frame 220.
- the heater units 200 and 300 may include a plurality of heat generating units 210 and a frame 220 arranged to surround the heat generating units 210.
- the heating unit 210 may include a plurality of heating elements 100 and supports 240 and 240 ', and the heating element 100 may be applied to all of the above.
- a plurality of the heating elements 100 may be arranged along the height direction of the frame 220. Supports 240 and 240 'for supporting the heating elements 100 may be disposed between the two heating elements 100 have.
- the supports 240 and 240 ' may be disposed on at least one of the upper side and the lower side of the heating element 100 so as to support the plurality of heating elements 100 arranged along the height direction of the frame 220 .
- a passage 183 through which the fluid can pass may be formed between the support 240 and 240 'and the heating element 100.
- the passage 183 may be formed by a pattern 180 formed on the heating element 100 As shown in FIG.
- the fluid is heated through heat exchange with the heating element 100 while passing through the pattern 180, thereby heating can be performed or hot water can be produced.
- the fluid heated through the heating body 100 is heated directly through the heating body 100 during the passage through the passage 183, .
- the supports 240 and 240 ' may simply support the heating element 100, but other functions may be added.
- the support 240 may be made of a material having a high thermal conductivity to rapidly disperse the heat transferred from the heating element 100, thereby enhancing heat exchange efficiency.
- the support 240 may be a plate-shaped metal sheet, and the metal sheet may be copper or aluminum.
- the supporter 240 may serve as a heat source for generating heat when a current is applied, in addition to supporting the heating element 100.
- the support 240 may include a second heat source similar to the first heat source 110 described above, and the support 240 'may have the same configuration as the heat generator 100 shown in FIGS. 7A to 7D Lt; / RTI >
- the support body 240 can heat the air passing through the heater units 200 and 300 by the second heat source of the support body 240 in addition to the heating body 100 to further enhance the heating effect,
- the heat transfer efficiency can be improved by rapidly dispersing the heat transferred from the second heat source through the casing.
- the support 240 may be simply disposed on at least one of the upper side and the lower side of the heating body 100 to support the heating body 100.
- the heating body 100 can be fixed to the support body 240 by attaching the hill portion 181 and the valley portion 182 through an adhesive.
- the support 240 ' may serve to fix a part of the heating element 100 as shown in FIG.
- the support 240 ' may be formed in the shape of a rectangle or a rectangle or a rectangle or a rectangle or a rectangle or a rectangle.
- the valleys 182 can be inserted to be located in the first accommodation space 241 or the second accommodation space 242.
- the first accommodation space 241 and the second accommodation space 242 may be formed on both sides of the support body 240.
- the first accommodation space 241 and the second accommodation space 242 may be formed on both sides of the support body 240 ' May be formed on opposite surfaces.
- the support 240 ' may include a first support 240'a disposed at an upper portion of the heating element 100 and a second support 240'b disposed at a lower portion of the heating element 100 .
- the peak 181 of the heating element 100 may be inserted into the second accommodation space 242 formed in the first support body 240'a and the valley 182 of the heating element 100 may be inserted into the second accommodation space 242, May be inserted into the first accommodation space 241 formed in the second support 240'b.
- the heating body 100 has a convex portion 181 and a valley portion 182 inserted into the first accommodation space 241 and the second accommodation space 242 so that the first support body 240'a and the second support body 240 ' 0.0 > 240'b < / RTI >
- the heating element 100 disposed between the first and second supports 240'a and 240'b can be supported through the two supports 240'a and 240'b,
- the use of an adhesive for fixing the adhesive layer 100 may be omitted.
- the first accommodation space 241 and the second accommodation space 242 formed in the support body 240 ' are formed on both sides of the support body 240' Lt; / RTI >
- the first accommodation space 241 and the second accommodation space 242 are not limited thereto, and the first accommodation space 241 and the second accommodation space 242 may be formed in the above-
- the crests and valleys may serve as the first accommodation space 241 and the second accommodation space 242 by repeatedly forming the hill portions and the valley portions along the longitudinal direction.
- the heater unit 400 may have a structure in which the supports 240 and 240 'of the above-described embodiments are omitted.
- the heater unit 400 may be formed by stacking twelve layers using three heating elements 100 shown in FIG. 13, and the three heating elements 100, May be mounted on the frame 220.
- the valley portion 182 formed on one surface of the heating element 100 and the peaks 181 formed on the other surface may contact each other to form a plurality of passages 183 through which fluid can pass.
- the heater unit 500 may be realized by winding the heating element 100 a plurality of times.
- the heater unit 500 may be formed by winding the heating element 100 a plurality of times with respect to the center point as shown in FIG.
- the heating body 100 can be wound so that the opposite surfaces thereof contact with each other, and the valley portion 182 formed on one surface of the heating body 100 and the hill portion 181 formed on the other surface are in contact with each other, A plurality of passages 183 may be formed. Through which the fluid may be heated in the process of passing through the plurality of passages 183.
- the heater unit 600 may be embodied such that the heating element 100 'is bent in a spiral shape along the longitudinal direction as shown in FIG.
- a plurality of the heating elements 100 ' may be arranged at intervals along the height direction of the frame 220.
- the heating element 100 ' may have the same structure except for the peak 181 and the valley 182 in the heating element 100 described above. That is, the overall shape of the heating element 100 'may be changed from a corrugated shape to a spiral shape.
- a passage 183 through which a fluid can pass may be formed between the heating elements 100 ', and the contact area with the fluid may be increased by forming the heating element 100' in a spiral shape .
- the heat exchange area can be widened by increasing the total heating area, and a vortex is generated in the progress of the fluid, so that the residence time of the fluid passing through the passage 183 can be increased. Therefore, the heater unit 600 according to the present embodiment can secure a large heat generation amount.
- the overall shape of the heating element 100 ' is formed in a spiral shape, the flexural rigidity can be increased. Accordingly, even if the support for supporting the heating element 100 'is omitted, the heating element 100' can be prevented from being sagged downward due to gravity.
- the heater units 200, 300, 400, and 600 may further include a current cutoff unit 230 electrically connected to the heating elements 100 and 100 '. At this time, the current interrupting part 230 may be electrically connected to the heating elements 100 and 100 'through the series element 231.
- the current interrupting part 230 may block the current applied to the heating unit 210 through the PTC element, .
- the current interruption unit 230 is illustrated as being disposed outside the frame 220, the current interruption unit 230 is not limited to the position of the current interruption unit 230, 210 and the frame 220. In addition,
- the heating element 100 and the heater units 200, 300, 400, and 600 may be applied to a vehicle air conditioner heater for heating the air sucked into the air conditioner side of the vehicle.
- the heating element 100 and the heater unit 500 described above can be applied to a heating apparatus such as a boiler that uses hot water itself or produces hot water for heating by producing hot water by heating water.
- FIGS. 19 and 20 a heating element 1000 according to another embodiment of the present invention is shown in FIGS. 19 and 20.
- FIG. 19 a heating element 1000 according to another embodiment of the present invention is shown in FIGS. 19 and 20.
- FIG. 19 a heating element 1000 according to another embodiment of the present invention is shown in FIGS. 19 and 20.
- the heating element 1000 may include a first heating source 1100 that generates heat when a current is applied.
- the first heat source 1100 may have a plate shape having a predetermined width and a length and may have a length of the first heat source 1100 so that a flow path 1830 through which a fluid such as air passes may be formed. And a corrugation structure in which the crest portion 1810 and the valley portion 1820 are repeatedly bent along the direction.
- the first heating source 1100 may be formed with a passage 1830 through which the fluid can pass through the hill 1810 and the valley 1820, And can be rapidly heated by being directly heated by the first heat source 1100 in the course of passing through the flow path 1830.
- the heating element 1000 has a large contact area and a heating area with fluid through the flow path 1830 formed repeatedly, thereby widening the heat exchange area and securing a large heating value.
- the first heat source 1100 may be a plate-shaped conductive member.
- the conductive member may be a plate-shaped metal sheet having a predetermined area, and aluminum, copper, or the like may be used as the metal sheet.
- the conductive member may be an amorphous ribbon sheet.
- the amorphous ribbon sheet may be a ribbon sheet including at least one of an amorphous alloy and a nanocrystalline alloy.
- the first heat generating unit 1100 is not limited thereto, and the linear conductive members may be arranged in a predetermined pattern so as to be realized in the form of a plate or a plane. If the heat generating source can be realized in the form of a plane or a plate It is noted that any known heat source that can be used as a heater can be applied.
- the heating element 1000 may include an insulating layer 1200 formed on at least one surface of the first heat source 1100.
- Such an insulating layer 1200 can prevent the first heat generating source 1100 from being short-circuited when brought into contact with other components.
- the insulating layer 1200 may be a coating layer 1210 coated with a coating solution having heat resistance and a film member 1220 made of a heat resistant resin material may be bonded to the first heat generating source 1100). ≪ / RTI >
- the coating liquid may be a liquid polyimide (PI) coating solution
- the film member 1220 may be a polyimide (PI) film, but not limited thereto, All known materials may be used.
- the coating layer 1210 may be formed to have a thickness of about 3 to 5 ⁇ , and the insulating layer 1200 may be formed of a film member 1220
- the film member 1220 may have a thickness of about 100 mu m or less.
- the thickness of the coating layer 1210 or the film member 1220 is too large, the efficiency may be lowered by absorbing the heat generated in the first heat generating member 1100.
- the thicknesses of the coating layer 1210 and the film member 1220 are not limited thereto, but may be appropriately changed according to design conditions.
- the insulating layer 1200 may be implemented in various ways.
- the insulating layer 1200 may be formed as a coating layer 1210 formed on both surfaces of the first heat generating source 1100 as shown in FIG. 20 (a) It may be a film member 1220 attached to both sides of the first heat source 1100 through an adhesive layer 1300 as shown in FIG.
- the insulating layer 1200 may include a first insulating layer and a second insulating layer formed on one surface and the other surface of the first heat generating source 1100, respectively, as shown in FIG. 20C.
- either one of the first insulating layer and the second insulating layer may be implemented as a coating layer 1210, and the other may be a film member 1220 attached via an adhesive layer 1300.
- the heating element 1000 may further include a plate-shaped metal sheet 1400 attached to one surface of the insulating layer 1200 through an adhesive layer 1600.
- the metal sheet 1400 is disposed on at least one surface of the first heat generating source 1100 to support the first heat generating source 1100 to maintain the shape of the first heat generating source 1100 and to generate heat from the first heat generating source 1100
- the heat can be dispersed.
- the metal sheet 1400 may be made of copper or aluminum having a high thermal conductivity. Such a metal sheet 1400 can be attached to one surface of the insulating layer 1200 via an adhesive layer 1600 as shown in FIGS. 20D to 20F.
- the metal sheet 1400 may form an exposed surface exposed to the outside of the heating element 1000.
- the heating element 1000 may include a metal sheet 1500 made of an aluminum material as shown in FIG. 20 (g), and the metal sheet 1500 may be an anodized surface have.
- the metal sheet 1500 may be directly attached to at least one surface of the first heat source 1100 through the adhesive layer 1600.
- the metal sheet 1500 has an insulating property through the anodized film formed on the surface of the heating sheet 1000 during the anodizing process, a separate insulating layer may be omitted.
- the heating element 1000 described above may be implemented as a heater unit, and the heater unit may be employed as an air conditioning heater for a vehicle.
- the heater unit 2000 may include a heat generating unit 2300 and a frame 2100 surrounding the heat generating unit 2300, as shown in FIG.
- the heat generating unit 2300 may include a plurality of heat generating bodies 1000 and a support body 2200 both ends of which are fixed to the frame 2100.
- the structure of the heat generating body 1000 may be configured as described above .
- a plurality of the heating elements 1000 may be arranged along the height direction of the frame 2100, and a support body 2200 for supporting the heating elements 1000 may be disposed between the two heating elements 1000 have.
- the support 2200 may be disposed on at least one of the upper side and the lower side of the heating element 1000 so as to support the plurality of heating elements 1000 arranged along the height direction of the frame 2100.
- a fluid such as air can pass through the heating element 1000 while being heated through heat exchange.
- the support body 2200 may serve to simply support the heating element 1000, but other functions may be added.
- the support 2200 may be made of a material having a high thermal conductivity to rapidly disperse the heat transferred from the heating element 1000, thereby enhancing heat exchange efficiency.
- the support 2200 may be a sheet metal sheet 2250 as shown in FIG. 22 (a), and the metal sheet 2250 may be copper or aluminum.
- the supporter 2200 may serve as a heat source that generates heat when a current is applied, in addition to supporting the heating element 1000.
- the support 2200 includes a second heat source 2210, an insulating layer 2210 formed on at least one surface of the second heat source 2210, 2220 < / RTI >
- the supporting body 2200 further includes a plate-shaped metal sheet 2240 attached to one surface of the insulating layer 2220 through an adhesive layer 2230 It is possible.
- the support body 2200 can heat the fluid passing through the heater unit 2210 by the second heat source 2210 of the support body 2200 together with the heating body 1000 to enhance the heat exchange effect,
- the heat transfer efficiency can be further increased by rapidly dispersing the heat transferred from the second heat source 2210 through the metal sheet 2240 when the second heat source 2210 includes the metal sheet 2240.
- the support 2200 when the support 2200 is embodied as including the second heat source 2210, the support 2200 may have a structure similar to that shown in Figs. 20 (a) to 20 (f)
- the second heating source 2210, the insulating layer 2220, the adhesive layer 2230 and the metal sheet 2250 described above can be applied to the heating element 1000 described above
- the heater unit 2000 to which the heating element 1000 is applied is not limited thereto.
- the heater unit 2000 may be implemented in the same manner as the heater units 200, 300, 400, 500, and 600 shown in FIGS.
- the heating element 1000 may replace the heating element 100 applied to FIGS. 14 to 18, and the supporting body 2200 may replace the supporting bodies 240 and 240 'applied in FIGS. 14 to 17.
Landscapes
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
발열체 및 이를 포함하는 히터유닛이 제공된다. 본 실시예에 따른 발열체는 내부가 빈 판상의 열전도성 외장튜브; 상기 외장튜브의 내부에 배치되고, 전류 인가 시 발열하는 제1발열원; 및 상기 제1발열원의 양단부에 연결되고, 적어도 일부의 길이가 상기 외장튜브의 외측으로 돌출되는 한 쌍의 단자튜브;를 포함할 수 있다. 또한, 본 실시예에 따른 히터유닛은 복수 개의 발열유닛; 및 상기 발열유닛을 둘러싸도록 배치되는 프레임;을 포함하며, 상기 발열유닛은, 발열체; 및 상기 발열체를 지지할 수 있도록 상기 발열체의 상측과 하측 중 적어도 어느 일측에 배치되는 적어도 하나의 지지체를 포함할 수 있다.
Description
본 발명은 발열체 및 이를 포함하는 히터유닛에 관한 것이다.
일반적인 니크롬선을 사용하는 히터는 과열시 발화의 우려가 있다. 이에 따라, 전기자동차는 난방을 위하여 PTC 소자를 이용한 히터유닛이 장착된다.
그러나 발열체로서 PTC소자를 이용하는 히터유닛은 PTC소자의 크기를 증대시키는데 한계가 있어 큰 발열량을 얻을 수 없다. 또한, PTC소자를 이용한 히터유닛은 전도체인 도전성 카본 혼합물이 PTC소자의 발열면 중 일부에만 결합되기 때문에 전도체 부위별로 온도분포가 불균일하며 방열핀에 전달되는 온도가 상이하다.
따라서, 균일한 온도분포를 형성하고 큰 발열량을 얻을 수 있는 발열체 및 히터유닛의 개발이 요구되고 있다. 그 일환으로, 판상의 형태로 구현된 발열원을 외장재에 내장하는 형태로 발열체를 구현함으로써 균일한 온도분포와 더불어 큰 발열량을 얻을 수 있는 히터유닛이 개발이 시도되고 있다.
그러나, 발열원을 단순히 판상으로 구현하는 경우, 판상의 발열원은 반복적인 열피로에 노출되어 히터유닛으로서의 기능을 상실할 수 있으며, 일정온도 이상으로 과열시 발화의 우려가 있다. 그리고 발열원과 발열원을 감싸는 외장부재는 수축팽창률이 상이하므로 발열체 전체의 절연이 깨질 우려가 있다.
따라서, 반복적인 열피로 노출에 견딜 수 있으며, 발화 방지 및 절연을 유지할 수 있는 발열체 및 히터유닛의 개발이 요구되고 있다.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 반복적인 열피로 노출에 견딜 수 있으며, 발화 방지 및 절연을 유지할 수 있는 발열체 및 이를 포함한 히터유닛을 제공하는데 그 목적이 있다.
또한, 본 발명은 균일한 온도분포를 얻을 수 있고 큰 발열량을 확보할 수 있는 발열체 및 이를 포함한 히터유닛을 제공하는데 다른 목적이 있다.
상기와 같은 목적을 달성하기 위하여 본 발명은, 내부가 빈 판상의 열전도성 외장튜브; 상기 외장튜브의 내부에 배치되고, 전류 인가 시 발열하는 제1발열원; 및 상기 제1발열원의 양단부에 연결되고, 적어도 일부의 길이가 상기 외장튜브의 외측으로 돌출되는 한 쌍의 단자튜브;를 포함하는 발열체를 제공한다.
한편, 본 발명은 복수 개의 발열유닛; 및 상기 발열유닛을 둘러싸도록 배치되는 프레임;을 포함하며, 상기 발열유닛은, 발열체; 및 상기 발열체를 지지할 수 있도록 상기 발열체의 상측과 하측 중 적어도 어느 일측에 배치되는 적어도 하나의 지지체를 포함하는 히터유닛을 제공한다.
또한, 본 발명은 절연층 및 상기 절연층에 적층되어 전류 인가 시 열을 발생시키는 제1발열원을 포함하며, 상기 제1발열원은 판상의 도전성 부재 및 소정의 패턴을 가지는 선형의 도전성 부재 중 어느 하나이고, 길이방향을 따라 산부와 골부가 반복 형성된 발열체를 제공한다.
본 발명에 의하면, 칸탈 및 페칼로이 합금 등 시트화 가능한 재질의 발열원을 통하여 반복적인 열피로에 견딜 수 있다.
또한, 본 발명은 발열체가 산부와 골부가 반복적으로 형성된 패턴을 통해 유로를 형성함으로써 발열체와 유체의 접촉면적 및 가열면적을 증가시켜 열교환효율을 높일 수 있으며, 패턴을 통해 발열체의 길이방향에 대한 수축팽창률을 최소화함으로써 절연이 깨지는 것을 방지할 수 있다.
또한, 본 발명은 히터유닛이 일정온도 이상일 경우, 전류차단부를 통해 히터유닛에 인가되는 전류를 차단해줌으로써 과열에 의한 발화를 방지할 수 있다.
더욱이, 본 발명은 지지체가 발열체를 지지하는 역할과 더불어 또 다른 발열원의 역할을 수행할 수 있음으로써 열교환효율을 더욱 높일 수 있다.
도 1은 본 발명의 일 실시예에 따른 발열체를 나타낸 도면,
도 2 및 도 3은 도 1에 도시된 단자튜브에 제1발열원의 양단부를 삽입하는 과정을 나타낸 도면,
도 4는 도 2에 단자튜브와 제1발열원에 절연층이 배치되는 상태를 나타낸 도면,
도 5 내지 도 6은 절연층이 배치된 상태에서 외장튜브가 삽입되는 과정을 나타낸 도면,
도 7은 도 1의 'A'부분을 확대한 단면도로서, 도 1에 적용될 수 있는 발열체의 세부적층관계를 나타낸 다양한 개념도,
도 8 및 도 9는 외장튜브의 일형태를 나타낸 도면,
도 10은 외장튜브의 다른 형태를 나타낸 도면,
도 11은 절연부재의 일례를 나타낸 도면,
도 12는 도 11의 B-B 방향 단면도,
도 13은 도 1에 도시된 발열체가 접이된 상태를 나타낸 도면,
도 14는 본 발명의 일 실시예에 따른 히터유닛을 나타낸 도면,
도 15는 도 14에서 지지체가 변형된 형태를 나타낸 도면,
도 16은 도 13의 발열체가 채용된 히터유닛을 나타낸 도면,
도 17은 본 발명의 다른 실시예에 따른 히터유닛을 나타낸 도면,
도 18은 본 발명의 또 다른 실시예에 따른 히터유닛을 나타낸 도면,
도 19는 본 발명의 다른 실시예에 따른 발열체를 나타낸 도면,
도 20은 도 19의 'C' 부분을 확대한 단면도로서, 도 19에 적용될 수 있는 발열체의 세부적층관계를 나타낸 다양한 개념도,
도 21은 도 19의 발열체가 적용된 히터유닛을 나타낸 도면, 그리고,
도 22는 도 21에 적용될 수 있는 지지체의 세부구성을 나타낸 개념도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.
도 1 내지 도 10을 참고하면, 본 발명의 일 실시예에 따른 발열체(100)는 외장튜브(140), 제1발열원(110), 단자튜브(160)를 포함할 수 있다.
상기 외장튜브(140)는 내부에 수용되는 제1발열원(110)을 보호하는 역할과 함께 제1발열원(110)에서 발생된 열을 분산시키는 역할을 수행할 수 있다.
이를 위해, 상기 외장튜브(140)는 금속재질로 이루어질 수 있으며, 양단부가 개방된 중공형으로 형성될 수 있다. 일례로, 상기 외장튜브(140)는 열전도도가 우수한 구리 또는 알루미늄 재질로 이루어진 중공형의 금속튜브일 수 있으며, 제1발열원(110)이 내부에 삽입된 상태에서 가압됨으로써 판상으로 형성될 수 있다.
여기서, 상기 외장튜브(140)는 원형의 외장튜브(140)를 1차 가압하여 타원형상으로 변경하고, 외장튜브(140)의 내부에 제1발열원(110)을 삽입한 상태에서 외장튜브(140)를 2차 가압함으로써 판상으로 형성될 수 있다.
그러나 상기 외장튜브(140)를 판상으로 형성하는 방식을 이에 한정하는 것은 아니며, 상기 제1발열원(110)이 상기 외장튜브(140)의 내부에 삽입된 상태에서 한 번의 가압공정을 통해 상기 외장튜브(140)가 판상으로 형성될 수도 있다.
다른 예로써, 상기 외장튜브(140)는 도 8 및 도 9에 도시된 바와 같이 소정의 면적을 갖는 판상의 금속시트의 일면에 제1발열원(110)을 배치한 상태에서 상기 금속시트의 일부를 접어 제1발열원(110)을 덮어준 후 서로 맞접하는 부분을 밀봉하는 방식으로 구성될 수도 있다.
또 다른 예로써, 상기 외장튜브(140)는 도 10에 도시된 바와 같이 소정의 면적을 갖는 판상으로 이루어진 두 개의 금속시트(141,142)를 포함할 수 있고, 상기 두 개의 금속시트(141,142)를 서로 마주하도록 배치한 후 맞접하는 두 개의 테두리를 밀봉하는 방식으로 구성될 수도 있다. 여기서, 서로 맞접하는 금속시트(141,142)의 테두리 측(170)은 초음파 융착이나 접착제 등과 같은 공지의 다양한 방식을 통해 밀봉될 수 있다.
상기 제1발열원(110)은 외장튜브(140)의 내부에 배치될 수 있으며, 전류 인가 시 열을 발생시킬 수 있다. 이때, 상기 제1발열원(110)은 소정의 폭과 길이를 갖는 판상의 형태일 수 있다.
일례로, 상기 제1발열원(110)은 소정의 면적을 갖는 판상의 금속시트일 수 있으며, 금속시트로는 알루미늄이나 구리, 비정질 리본시트 등이 사용될 수 있다.
바람직하게는, 상기 제1발열원(110)은 반복적인 열피로 노출에 따른 결정화를 방지할 수 있도록 칸탈 및 페칼로이 합금 중 적어도 1종 이상을 포함하는 판상의 도전성 부재일 수 있다.
그러나, 상기 제1발열원(110)을 이에 한정하는 것은 아니며, 선형의 도전성부재가 소정의 패턴으로 배열됨으로써 판상 또는 면상의 형태로 구현될 수도 있다. 더불어, 상기 제1발열원(110)은 면상 또는 판상의 형태로 구현될 수 있다면 발열원으로 사용될 수 있는 공지의 모든 재질이 적용될 수 있다.
이때, 상기 외장튜브(140)의 내면과 제1발열원(110)의 사이에는 전기적인 절연을 위한 절연층(120)이 배치될 수 있다.
이에 따라, 상기 외장튜브(140)가 도전성을 갖는 금속재질로 이루어진다 하더라도 상기 외장튜브(140)의 내부에 배치되는 제1발열원(110)은 외장튜브(140)와 전기적인 쇼트가 일어나지 않을 수 있다.
이와 같은 상기 절연층(120)은 전기적인 절연을 위하여 절연성을 가질 수 있으며, 제1발열원(110)에서 발생된 열에 의한 손상이 방지될 수 있도록 내열성을 함께 가질 수 있다.
일례로, 상기 절연층(120)은 절연성 및 내열성을 갖는 코팅액이 도포된 코팅층(121)일 수 있고, 절연성 및 내열성을 갖는 수지재질로 이루어진 필름부재(122)가 접착층(130)을 매개로 부착된 형태일 수도 있으며, 코팅층(121)과 필름부재(122)가 서로 조합된 형태일 수도 있다.
구체적인 일례로써, 상기 절연층(120)은 도 7의 (a)에 도시된 바와 같이 제1발열원(110)의 양면에 각각 형성되는 코팅층(121)으로 구현될 수 있고, 도 7의 (b)에 도시된 바와 같이 제1발열원(110)의 양면에 접착층(130)을 매개로 부착된 필름부재(122)일 수도 있다.
더불어, 상기 절연층(120)은 도 7의 (c)에 도시된 바와 같이 제1발열원(110)의 일면에 접착층(130)을 매개로 부착된 필름부재(122)와 제1발열원(110)의 타면에 형성된 코팅층(121)으로 구현될 수도 있다.
본 발명에서, 상기 코팅액은 액상의 폴리이미드(PI) 코팅액일 수 있고, 상기 필름부재(122)는 폴리이미드(PI) 필름일 수 있으나 이에 한정하는 것은 아니며, 내열성 및 절연성을 갖는 재질이라면 공지의 모든 재질이 사용될 수 있다.
또한, 상기 절연층(120)이 코팅층(121)으로 형성되는 경우 상기 코팅층(121)은 대략 3~5㎛ 두께로 형성될 수 있으며, 상기 절연층(120)이 필름부재(122)로 형성되는 경우 상기 필름부재(122)는 대략 100㎛ 이하의 두께를 가질 수 있다.
이는, 상기 코팅층(121) 또는 필름부재(122)의 두께가 너무 두꺼운 경우 상기 제1발열원(110)에서 발생하는 열을 흡수함으로써 효율이 저하될 수 있기 때문이다. 그러나 상기 코팅층(121) 및 필름부재(122)의 두께를 이에 한정하는 것은 아니며, 설계조건에 따라 적절하게 변경될 수 있다. 더불어, 상기 코팅액이 내열성 및 절연성을 비롯하여 접착성을 가지는 경우, 상술한 접착층(130)은 생략될 수 있다.
다른 예로써, 상기 외장튜브(140)가 알루미늄 재질인 경우, 상기 외장튜브(140)는 제1발열원(110)과 대향하는 내면이 아노다이징 처리될 수 있다. 이를 통해, 상기 외장튜브(140)는 제1발열원(110)과 서로 절연될 수도 있다. 이와 같은 경우, 상기 외장튜브(140)는 아노다이징 처리를 통해 절연성이 부가됨으로써 상술한 절연층(120)이 생략될 수 있다.
여기서, 상기 외장튜브(140)가 가압을 통해 판상으로 구현되는 경우 상기 외장튜브(140)와 제1발열원(110), 또는 외장튜브(140)와 절연층(120) 사이에 개재되는 접착층은 생략될 수도 있다.
상기 단자튜브(160)는 도전성재질로 이루어져 제1발열원(110)과 연결됨으로써 외부로부터 공급되는 전원을 제1발열원(110)에 인가할 수 있다. 이와 같은 단자튜브(160)는 제1발열원(110)의 양 단부측에 배치될 수 있다.
이때, 상기 단자튜브(160)는 금속재질로 이루어진 중공형의 금속튜브일 수 있으며, 제1발열원(110)의 단부 측을 일정길이 감싸면서 적어도 일부의 길이가 외장튜브(140)의 외측으로 돌출되는 형태일 수 있다.
이에 따라, 본 발명의 일 실시예에 따른 발열체(100)는 도 3 내지 도 6에 도시된 바와 같이 제1발열원(110)의 양 단부측에 단자튜브(160)가 각각 체결된 상태로 상기 제1발열원(110)이 외장튜브(140)의 내부에 배치될 수 있으며, 외장튜브(140) 및 단자튜브(160)를 가압함으로써 판상으로 구현될 수 있다.
이때, 상기 제1발열원(110)과 한 쌍의 단자튜브(160)는 단순 접촉을 통하여 서로 전기적으로 연결될 수도 있으나, 전기적인 신뢰성을 높일 수 있도록 다양한 방식이 적용될 수 있다.
일례로, 상기 제1발열원(110) 및 단자튜브(160)는 서로 중첩되는 부분에 전도성 접착제를 개재하거나, 서로 중첩되는 부분을 부분적으로 코킹할 수도 있다. 더불어, 상기 제1발열원(110) 및 단자튜브(160)는 서로 중첩되는 부분이 스팟용접될 수도 있다.
여기서, 서로 대면하는 외장튜브(140)의 내면 및 단자튜브(160) 사이에는 상술한 절연층(120)이 개재됨으로써 상기 단자튜브(160)가 상기 외장튜브(140)와 일부 중첩되게 배치되더라도 서로 전기적인 절연을 유지할 수 있다.
이때, 본 발명의 일 실시예에 따른 발열체(100)는 제1발열원(110)의 발열시 길이방향에 따른 수축 팽창률을 최소화함으로써 절연이 깨지는 것을 방지할 수 있다.
이를 위해, 상기 발열체(100)는 길이방향을 따라 수축 및 이완을 위한 패턴(180)이 형성될 수 있다.
일례로, 상기 패턴(180)은 도 1에 도시된 바와 같이 상기 발열체의 길이방향을 따라 산부(181)와 골부(182)가 반복적으로 형성되는 형태일 수 있다.
이에 따라, 상기 발열체(100)를 구성하는 외장튜브(140), 단자튜브(160) 및 제1발열원(110)의 재질에 따른 수축팽창률이 상이하더라도 상기 패턴(180)을 통해 보완될 수 있다.
이로 인해, 상기 제1발열원(110) 및 외장튜브(140) 또는 외장튜브(140) 및 단자튜브(160) 사이에 개재된 절연층(120)이 깨지거나 제1발열원(110)으로부터 분리되는 것을 방지할 수 있다.
더불어, 본 발명의 일 실시예에 따른 발열체(100)는 길이방향을 따라 산부(181)와 골부(182)가 반복적으로 형성된 패턴(180)을 통해 유체가 통과할 수 있는 공간이 형성될 수 있음으로써 발열체(100)의 상부면 및 하부면 측에 유체가 통과하는 통로(183)가 형성될 수 있다.
이에 따라, 본 발명의 일 실시예에 따른 발열체(100)가 복수 개로 구비되어 서로 직접 접촉하도록 배치되거나 플랫한 형상의 지지체 측에 접하도록 배치되더라도 상기 패턴(180)을 통해 통로(183)가 형성될 수 있으며, 가열대상체인 유체가 상기 통로(183)를 통해 통과할 수 있다. 이로 인해, 상기 유체는 통로(183)를 통과하는 과정에서 제1발열원(110)에 의해 직접 가열될 수 있다. 이를 통해, 상기 통로(183)를 통과하는 유체는 상기 제1발열원(110)에 의해 직접 가열될 수 있음으로써 빠르게 승온될 수 있다.
더불어, 본 발명의 일 실시예에 따른 발열체(100)는 상기 패턴(180)을 통해 반복적으로 절곡형성됨으로써 상기 통로(183)를 통과하는 유체와의 접촉면적 및 발열면적이 증가될 수 있다. 이를 통해, 본 발명의 일 실시예에 따른 발열체(100)는 열교환면적을 넓혀 큰 발열량을 확보할 수 있으며, 상기 통로(183)를 통해 유체가 직접 통과할 수 있으므로 유체가 통과하는 공간을 형성하기 위하여 발열체와 발열체 사이에 배치되던 종래의 방열핀을 대체할 수 있다.
다시 말하면, 상기 패턴(180)은 재질에 따른 길이방향에 대한 수축팽창률을 보완함과 더불어 유체가 통과할 수 있는 통로를 형성하는 역할을 동시에 겸할 수 있다.
이때, 상기 패턴(180)은 상기 외장튜브(140) 및 제1발열원(110)에 각각 형성될 수 있으며, 상기 외장튜브(140)에 형성되는 패턴과 상기 제1발열원(110)에 형성되는 패턴이 서로 일치하도록 형성될 수 있다.
또한, 상기 패턴(180)이 상기 단자튜브(160)에 형성되는 경우 상기 단자튜브(160)에 형성되는 패턴 역시 상기 외장튜브(140) 및/또는 상기 제1발열원(110)에 형성되는 패턴과 서로 일치하도록 형성될 수 있다.
이에 따라, 본 발명의 일 실시예에 따른 발열체(100)는 상기 외장튜브(140) 및 제1발열원(110), 단자튜브(160) 및 외장튜브(140) 사이에 개재되는 절연층(120)이 깨지는 것을 방지할 수 있다. 더불어, 상기 절연층(120)은 항상 외장튜브(140) 및 제1발열원(110) 또는 단자튜브(160) 및 외장튜브(140) 측에 각각 밀착된 상태를 유지함으로써 에어갭(air gap)이 발생할 수 있는 가능성을 최소화하거나 미연에 방지할 수 있다.
이를 통해, 에어갭에 의한 단열을 방지할 수 있으므로 상기 제1발열원(110)에서 발생된 열이 상기 외장튜브(140) 측으로 원활하게 전달될 수 있다.
한편, 상기 패턴(180)은 단자튜브(160)와 외장튜브(140)가 서로 중첩되는 영역을 포함하도록 형성될 수 있다. 이에 따라, 상기 단자튜브(160) 및 외장튜브(140)는 중첩영역에 형성되는 패턴(180)을 통해 서로 고정될 수 있음으로써 단자튜브(160)와 외장튜브(140)를 상호 고정하기 위한 별도의 접착부재가 생략될 수 있다.
한편, 본 발명의 일 실시예에 따른 발열체(100)는 외부로부터 전원이 인가되는 경우 상기 단자튜브(160)가 외장튜브(140)와 스파크와 같은 요인을 통해 쇼트가 일어나는 것을 방지하기 위한 절연부재(190,190')를 포함할 수 있다. 여기서, 상기 절연부재(190,190')는 비전도성을 갖는 재질로 이루어질 수 있으며, 고무나 실리콘 수지와 같은 공지의 비전도성 재질이 모두 적용될 수 있다.
또한, 상기 절연부재(190,190')는 적어도 10~15mm의 길이를 갖도록 형성됨으로써 상기 외장튜브(140)와 외부로 노출되는 단자튜브(160)가 적어도 10~15mm의 간격을 유지하도록 함으로써 전기적인 신뢰성을 높일 수 있다. 그러나 상기 절연부재(190,190')의 전체길이를 이에 한정하는 것은 아니며 전기적인 신뢰성을 높일 수 있다면 설계조건에 따라 적절한 길이로 가변될 수 있다.
일 예로써, 상기 절연부재(190)는 도 1에 도시된 바와 같이 튜브형태로 이루어져 상기 단자튜브(160)의 일부를 감싸도록 구비될 수 있으며, 상기 단자튜브(160)와 더불어 상기 외장튜브(140)의 일부를 동시에 감싸도록 구비될 수 있다.
다른 예로써, 상기 절연부재(190')는 도 11 및 도 12에 도시된 바와 같이 외장튜브(140)의 일부 및 단자튜브(160)의 일부를 동시에 감싸는 몰딩체일 수 있다. 한편, 상기 절연부재(190')가 몰딩체로 형성되는 경우 상기 절연층(120)은 상기 절연부재(190')와의 접합력을 향상시키기 위하여 표면처리가 수행될 수 있다. 일례로, 상기 절연층(120)은 상기 절연부재(190')와 접촉되는 부분에 표면처리를 통하여 공지의 하도(프라이머)층(미도시)이 형성될 수 있다.
한편, 본 발명의 일 실시예에 따른 발열체(100)는 길이중간이 적어도 1회 이상 접이되어 반대면이 서로 접촉되도록 적층된 형태일 수 있다.
일례로, 상기 발열체(100)는 도 13에 도시된 바와 같이 전체길이 중 일부의 길이가 적어도 1회 이상 접이되어 적층된 형태로 구성될 수 있으며, 층과 층 사이에 유체가 통과하는 통로(183)가 형성될 수 있다.
구체적으로, 상기 발열체(100)는 반대면이 서로 접촉되도록 길이중간이 적어도 1회 이상 접이되어 양측의 단자튜브(160)가 서로 동일한 방향을 향하도록 구성될 수 있으며, 발열체(100)의 상부측 골부(182)와 하부측 산부(181)가 서로 접촉되어 유체가 통과할 수 있는 통로(183)가 형성될 수 있다.
이를 통해, 도 13에 도시된 형태의 발열체(100)를 이용하여 히터유닛을 구현하는 경우 발열체(100)의 사용개수를 줄일 수 있음으로써 조립공정을 간소화시킬 수 있다.
일례로, 도 16에 도시된 바와 같이 발열체(100)가 12층으로 적층된 형태로 구성되는 경우 도 13에 도시된 3개의 발열체(100)를 사용하여 발열체(100)가 12층으로 적층된 형태로 구현될 수 있다.
한편, 상술한 발열체(100)는 복수 개가 서로 평행하게 배열되고, 양단부가 프레임(220)에 고정됨으로써 유체를 가열하기 위한 히터유닛(200,300)으로 구현될 수 있다.
구체적으로, 도 14 및 도 15에 도시된 바와 같이 상기 히터유닛(200,300)은 복수 개의 발열유닛(210) 및 발열유닛(210)을 둘러싸도록 배치되는 프레임(220)을 포함할 수 있다.
상기 발열유닛(210)은 복수 개의 발열체(100)와 지지체(240,240')를 포함할 수 있으며, 상기 발열체(100)는 전술한 내용이 모두 적용될 수 있다.
또한, 상기 발열체(100)는 복수 개가 프레임(220)의 높이방향을 따라 배열될 수 있으며, 두 개의 발열체(100) 사이에는 발열체(100)를 지지하기 위한 지지체(240,240')가 각각 배치될 수 있다.
일례로, 상기 지지체(240,240')는 프레임(220)의 높이 방향을 따라 배열되는 복수 개의 발열체(100)를 각각 지지할 수 있도록 발열체(100)의 상측과 하측 중 적어도 어느 일측에 배치될 수 있다.
여기서, 상기 지지체(240,240')와 발열체(100) 사이에는 유체가 통과할 수 있는 통로(183)가 형성될 수 있으며, 상기 통로(183)는 상기 발열체(100)에 형성되는 패턴(180)을 통해 형성된 공간일 수 있다.
이에 따라, 유체가 상기 패턴(180)을 통과하면서 상기 발열체(100)와의 열교환을 통해 승온됨으로써 난방을 수행하거나 온수를 생산할 수 있다.
또한, 본 발명의 일 실시예에 따른 히터유닛(200,300)은 상기 발열체(100)를 통해 승온되는 유체는 상기 통로(183)를 통과하는 과정에서 상기 발열체(100)를 통해 직접 가열됨으로써 빠르게 승온될 수 있다.
더불어, 상기 통로(183)가 패턴(180)을 통해 발열체의 길이방향을 따라 반복적으로 형성됨으로써 상기 통로(183)를 통과하는 유체와의 접촉면적 및 가열면적이 증가함으로써 열교환면적을 넓혀 큰 발열량을 확보할 수 있다. 이때, 상기 지지체(240,240')는 발열체(100)를 단순히 지지하는 역할을 수행할 수도 있지만, 다른 기능이 부가될 수 있다.
일례로, 상기 지지체(240)는 열전도도가 우수한 재질로 이루어져 발열체(100)에서 전달된 열을 빠르게 분산시키는 역할을 수행함으로써 열교환 효율을 높일 수 있다.
이를 위해, 상기 지지체(240)는 판상의 금속시트일 수 있으며, 상기 금속시트는 구리 또는 알루미늄일 수 있다.
다른 예로써, 상기 지지체(240)는 발열체(100)를 지지하는 역할과 더불어 전류 인가 시 열을 발생시키는 발열원의 역할을 수행할 수도 있다.
이를 위해, 상기 지지체(240)는 상술한 제1발열원(110)과 동일한 제2발열원을 포함할 수 있으며, 상기 지지체(240')는 도 7a 내지 도 7d에 도시된 발열체(100)와 동일한 구성을 가질 수 있다.
상기 지지체(240)는 발열체(100)와 더불어 지지체(240)의 제2발열원이 히터유닛(200,300)을 통과하는 공기를 직접 가열하여 난방효과를 더욱 높일 수 있으며, 지지체(240)가 제2발열원과 더불어 외장튜브와 같은 외장재를 포함하는 경우 외장재를 통해 제2발열원에서 전달된 열을 빠르게 분산시킴으로써 열교환 효율을 높일 수 있다.
한편, 상기 지지체(240)는 도 14에 도시된 바와 같이 발열체(100)의 상측과 하측 중 적어도 어느 일측에 단순히 배치되어 상기 발열체(100)를 지지할 수 있다. 이와 같은 경우, 상기 발열체(100)는 산부(181) 및 골부(182)가 접착제를 매개로 부착됨으로써 상기 지지체(240)와 고정될 수 있다.
대안으로, 상기 지지체(240')는 도 15에 도시된 바와 같이 발열체(100)의 일부를 고정하는 역할을 수행할 수 있다.
이를 위해, 상기 지지체(240')는 상부가 개방된 제1수용공간(241) 및 하부가 개방된 제2수용공간(242)이 길이방향을 따라 형성됨으로써 발열체(100)의 산부(181) 또는 골부(182)가 제1수용공간(241) 또는 제2수용공간(242) 내에 위치하도록 삽입될 수 있다.
이와 같은 경우 상기 제1수용공간(241) 및 제2수용공간(242)은 상기 지지체(240')의 양면에 형성될 수 있으며, 상기 제1수용공간(241)과 제2수용공간(242)은 서로 반대면에 형성될 수 있다.
이때, 상기 지지체(240')는 복수 개로 구비될 수 있다. 일례로, 상기 지지체(240')는 발열체(100)의 상부에 배치되는 제1지지체(240'a)와 발열체(100)의 하부에 배치되는 제2지지체(240'b)를 포함할 수 있다.
이와 같은 경우, 상기 발열체(100)의 산부(181)는 상기 제1지지체(240'a)에 형성되는 제2수용공간(242)에 삽입될 수 있고, 상기 발열체(100)의 골부(182)는 상기 제2지지체(240'b)에 형성되는 제1수용공간(241)에 삽입될 수 있다.
이에 따라, 상기 발열체(100)는 산부(181) 및 골부(182)가 상기 제1수용공간(241) 및 제2수용공간(242)에 삽입되어 제1지지체(240'a) 및 제2지지체(240'b)와 접촉된 상태를 유지할 수 있다.
이를 통해, 상기 제1지지체(240'a) 및 제2지지체(240'b) 사이에 배치된 발열체(100)는 두 개의 지지체(240'a,240'b)를 통해 지지될 수 있음으로써 발열체(100)를 고정하기 위한 접착제의 사용이 생략될 수 있다.
본 실시예에서, 상기 지지체(240')에 형성되는 제1수용공간(241) 및 제2수용공간(242)은 상기 지지체(240')의 양면에 각각 소정의 깊이로 인입형성되는 수용홈의 형태일 수 있다. 그러나 상기 제1수용공간(241) 및 제2수용공간(242)의 형성방식을 이에 한정하는 것은 아니며, 상기 제1수용공간(241) 및 제2수용공간(242)은 상술한 발열체(100)와 마찬가지로 길이방향을 따라 산부와 골부가 반복적으로 형성됨으로써 산부 또는 골부가 상기 제1수용공간(241) 및 제2수용공간(242)의 역할을 수행할 수도 있다.
한편, 본 발명의 일 실시예에 따른 히터유닛(400)은 전술한 실시예의 지지체(240,240')가 생략된 구조일 수도 있다.
일례로, 도 16에 도시된 바와 같이 히터유닛(400)은 도 13에 도시된 발열체(100) 3개를 사용하여 12층으로 적층된 형태로 구성될 수 있으며, 적층된 3개의 발열체(100)가 프레임(220)에 장착된 형태일 수 있다.
이와 같은 경우, 발열체(100)의 일면에 형성되는 골부(182)와 타면에 형성되는 산부(181)가 서로 접촉되어 유체가 통과할 수 있는 복수 개의 통로(183)가 형성될 수 있다.
다른 예로써, 본 발명의 일 실시예에 따른 히터유닛(500)은 상술한 발열체(100)가 복수 회 권선된 형태로 구현될 수도 있다. 일례로, 상기 히터유닛(500)은 도 17에 도시된 바와 같이 상술한 발열체(100)가 중심점을 기준으로 복수 회 권선된 형태일 수 있다.
이때, 상기 발열체(100)는 반대면이 서로 접촉되도록 권선될 수 있으며, 발열체(100)의 일면에 형성되는 골부(182)와 타면에 형성되는 산부(181)가 서로 접촉되어 유체가 통과할 수 있는 복수 개의 통로(183)가 형성될 수 있다. 이를 통해, 유체가 상기 복수 개의 통로(183)를 통과하는 과정에서 가열되는 형태일 수 있다.
또 다른 예로써, 본 발명의 일 실시예에 따른 히터유닛(600)은 도 17에 도시된 바와 같이 발열체(100')가 길이방향을 따라 나선형상으로 휘어진 형태로 구현될 수 있다.
이와 같은 경우, 상기 발열체(100')는 복수 개가 프레임(220)의 높이방향을 따라 간격을 두고 배열되는 형태일 수 있다.
본 실시예에서, 상기 발열체(100')는 전술한 발열체(100)에서 산부(181) 및 골부(182)를 제외한 나머지 구조가 동일하게 채용될 수 있다. 즉, 상기 발열체(100')는 전체적인 형상이 코로게이션 형상에서 나선형상으로 변경될 수 있다.
이와 같은 경우, 상기 발열체(100')의 사이에는 유체가 통과할 수 있는 통로(183)가 형성될 수 있으며, 상기 발열체(100')가 나선형으로 형성됨으로써 유체와의 접촉면적이 증가될 수 있다. 이를 통해, 전체가열면적이 증가함으로써 열교환면적이 넓어질 수 있으며, 유체가 진행하는 과정에서 와류가 발생하여 상기 통로(183)를 통과하는 유체의 체류시간을 증가시킬 수 있다. 이로 인해, 본 실시예에 따른 히터유닛(600)은 큰 발열량을 확보할 수 있다.
더불어, 상기 발열체(100')는 전체적인 형상이 나선형으로 형성됨으로써 휨강성이 증가할 수 있다. 이에 따라, 상기 발열체(100')를 지지하기 위한 지지체가 생략되더라도 상기 발열체(100')가 중력에 의해 하방으로 처지는 것이 방지될 수 있다.
한편, 상기 히터유닛(200,300,400,600)은 발열체(100,100')와 전기적으로 연결되는 전류차단부(230)를 더 포함할 수 있다. 이때, 상기 전류차단부(230)는 직렬소자(231)를 통해 발열체(100,100')에 전기적으로 연결될 수 있다.
일례로, 상기 전류차단부(230)는 PTC소자가 사용될 수 있으며 발열체(100,100')의 온도가 일정온도 이상일 경우 상기 PTC소자를 통해 발열유닛(210)에 인가되는 전류를 차단시켜줌으로써 안전성을 높일 수 있다.
도면에는 상기 전류차단부(230)가 프레임(220)의 외측에 배치된 것으로 도시하였지만 상기 전류차단부(230)의 위치를 이에 한정하는 것은 아니며, 상기 전류차단부(230)는 상기 발열유닛(210)과 상기 프레임(220)의 내부에 설치될 수도 있다.
상술한 발열체(100) 및 히터유닛(200,300,400,600)은 차량의 공조장치 측에 설치되어 상기 공조장치 측으로 흡입된 공기를 가열하기 위한 차량용 공조히터에 적용될 수도 있다. 더불어, 상술한 발열체(100) 및 히터유닛(500)은 물을 가열하여 온수를 생산함으로써 온수 자체를 이용하거나 난방용 온수를 생산하는 보일러 등과 같은 난방장치에 적용될 수도 있음을 밝혀둔다.
한편, 본 발명의 다른 실시예에 따른 발열체(1000)가 도 19 및 도 20에 도시되어 있다.
본 실시예에 따른 발열체(1000)는 전류 인가시 열을 발생시키는 제1발열원(1100)을 포함할 수 있다.
이때, 상기 제1발열원(1100)은 소정의 폭과 길이를 갖는 판상의 형태로 이루어질 수 있으며, 공기와 같은 유체가 통과하는 유로(1830)가 형성될 수 있도록 상기 제1발열원(1100)의 길이방향을 따라 산부(1810)와 골부(1820)가 반복적으로 절곡 형성되는 코로게이션(Corrugation) 구조로 이루어질 수 있다.
이와 같이, 본 실시예에 따른 발열체(1000)는 제1발열원(1100)이 산부(1810)와 골부(1820)를 통해 유체가 통과할 수 있는 유로(1830)가 형성될 수 있으며, 유체는 상기 유로(1830)를 통과하는 과정에서 제1발열원(1100)에 의해 직접 가열됨으로써 빠르게 승온될 수 있다.
또한, 본 실시예에 따른 발열체(1000)는 반복적으로 형성되는 유로(1830)를 통해 유체와의 접촉면적 및 가열면적이 넓어짐으로써 열교환면적을 넓혀 큰 발열량을 확보할 수 있다.
또한, 유체가 상기 유로(1830)를 통해 직접 통과할 수 있으므로 유체가 통과하는 공간을 형성하기 위하여 발열체와 발열체 사이에 배치되던 종래의 방열핀을 대체할 수 있다. 본 발명에서, 상기 제1발열원(1100)은 판상의 도전성부재일 수 있다.
구체적인 일례로써, 상기 도전성부재는 소정의 면적을 갖는 판상의 금속시트일 수 있으며, 상기 금속시트로는 알루미늄이나 구리 등이 사용될 수 있다. 또한, 상기 도전성부재는 비정질 리본시트가 사용될 수 있다. 여기서, 상기 비정질 리본시트는 비정질 합금 및 나노 결정립 합금 중 적어도 1종 이상을 포함하는 리본시트일 수 있다.
그러나, 상기 제1발열원(1100)을 이에 한정하는 것은 아니며, 선형의 도전성부재가 소정의 패턴으로 배열되어 판상 또는 면상의 형태로 구현될 수도 있으며, 발열원이 면상 또는 판상의 형태로 구현될 수 있다면 히터로 사용될 수 있는 공지의 발열원이 모두 적용될 수 있음을 밝혀둔다.
한편, 상기 발열체(1000)는 제1발열원(1100)의 적어도 일면에 형성되는 절연층(1200)을 포함할 수 있다.
이와 같은 절연층(1200)은 다른 부품과의 접촉시 상기 제1발열원(1100)이 쇼트 되는 것을 방지할 수 있다.
이를 위해, 상기 절연층(1200)은 내열성을 갖는 코팅액이 도포된 코팅층(1210)일 수도 있고, 내열성을 갖는 수지재질로 이루어진 필름부재(1220)가 접착층(1300)을 매개로 상기 제1발열원(1100)에 부착되는 형태일 수도 있다.
비제한적인 일례로써, 상기 코팅액은 액상의 폴리이미드(PI) 코팅액일 수 있고, 상기 필름부재(1220)는 폴리이미드(PI) 필름일 수 있으나 이에 한정하는 것은 아니며, 내열성 및 절연성을 갖는 재질이라면 공지의 모든 재질이 사용될 수 있다.
또한, 상기 절연층(1200)이 코팅층(1210)으로 형성되는 경우 상기 코팅층(1210)은 대략 3~5㎛ 두께로 형성될 수 있으며, 상기 절연층(1200)이 필름부재(1220)로 형성되는 경우 상기 필름부재(1220)은 대략 100㎛ 이하의 두께를 가질 수 있다.
이는, 상기 코팅층(1210) 또는 필름부재(1220)의 두께가 너무 두꺼운 경우 상기 제1발열원(1100)에서 발생하는 열을 흡수함으로써 효율이 저하될 수 있기 때문이다. 그러나, 상기 코팅층(1210) 및 필름부재(1220)의 두께를 이에 한정하는 것은 아니며, 설계조건에 따라 적절하게 변경될 수 있음을 밝혀둔다.
한편, 본 실시예에 따른 발열체(1000)는 상기 절연층(1200)이 다양한 방식으로 구현될 수 있다.
즉, 상기 절연층(1200)은 도 20의 (a)에 도시된 바와 같이 제1발열원(1100)의 양면에 각각 형성되는 코팅층(1210)으로 구현될 수도 있고, 도 20의 (b)에 도시된 바와 같이 제1발열원(1100)의 양면에 접착층(1300)을 매개로 부착된 필름부재(1220)일 수도 있다.
더불어, 상기 절연층(1200)은 도 20의 (c)에 도시된 바와 같이 상기 제1발열원(1100)의 일면과 타면에 각각 형성되는 제1절연층 및 제2절연층을 포함할 수 있다. 이때, 상기 제1절연층과 제2절연층 중 어느 하나는 코팅층(1210)으로 구현될 수 있고 다른 하나는 접착층(1300)을 매개로 부착된 필름부재(1220)일 수도 있다.
한편, 본 실시예에 따른 발열체(1000)는 상기 절연층(1200)의 일면에 접착층(1600)을 매개로 부착되는 판상의 금속시트(1400)를 더 포함할 수 있다.
상기 금속시트(1400)는 제1발열원(1100)의 적어도 일면에 배치되어 제1발열원(1100)을 지지함으로써 제1발열원(1100)의 형상을 유지함과 더불어, 상기 제1발열원(1100)으로부터 발생된 열을 분산시킬 수 있다.
일례로, 상기 금속시트(1400)는 열전도도가 우수한 구리 또는 알루미늄이 사용될 수 있다. 이와 같은 금속시트(1400)는 도 20의 (d) 내지 도 20의 (f)에 도시된 바와 같이 절연층(1200)의 일면에 접착층(1600)을 매개로 부착될 수 있다.
이에 따라, 상기 금속시트(1400)는 상기 발열체(1000) 중 외부로 노출되는 노출면을 형성할 수 있다.
다른 예로써, 상기 발열체(1000)는 도 20의 (g)에 도시된 바와 같이 알루미늄 재질로 이루어진 금속시트(1500)를 포함할 수 있으며, 상기 금속시트(1500)는 표면이 아노다이징 처리된 것일 수 있다. 이와 같은 금속시트(1500)는 접착층(1600)을 매개로 제1발열원(1100)의 적어도 일면에 직접 부착될 수 있다.
이와 같은 경우, 상기 발열체(1000)는 금속시트(1500)가 아노다이징 처리시 표면에 형성된 양극산화피막을 통하여 절연성을 가짐으로써 별도의 절연층이 생략될 수 있다.
한편, 상술한 발열체(1000)는 히터유닛으로 구현될 수 있으며, 상기 히터유닛은 차량용 공조히터로 채용될 수 있다.
구체적인 일례로서, 상기 히터유닛(2000)은 도 21에 도시된 바와 같이 발열유닛(2300) 및 상기 발열유닛(2300)을 둘러싸는 프레임(2100)을 포함할 수 있다.
이때, 상기 발열유닛(2300)은 양단부가 상기 프레임(2100)에 고정되는 복수 개의 발열체(1000)와 지지체(2200)를 포함할 수 있으며, 상기 발열체(1000)의 구조는 상기한 바와 같이 구성될 수 있다.
즉, 상기 발열체(1000)는 복수 개가 프레임(2100)의 높이방향을 따라 배열될 수 있으며, 두 개의 발열체(1000) 사이에는 상기 발열체(1000)를 지지하기 위한 지지체(2200)가 각각 배치될 수 있다.
이때, 상기 지지체(2200)는 상기 프레임(2100)의 높이 방향을 따라 배열되는 복수 개의 발열체(1000)를 각각 지지할 수 있도록 발열체(1000)의 상측과 하측 중 적어도 어느 일측에 배치될 수 있다.
이에 따라, 공기와 같은 유체는 상기 발열체(1000)를 통과하면서 열교환을 통해 승온된 상태로 통과될 수 있다.
한편, 상기 지지체(2200)는 발열체(1000)를 단순히 지지하는 역할을 수행할 수도 있지만, 다른 기능이 부가될 수 있다.
일례로, 상기 지지체(2200)는 열전도도가 우수한 재질로 이루어져 발열체(1000)에서 전달된 열을 빠르게 분산시키는 역할을 수행함으로써 열교환 효율을 높일 수 있다.
이를 위해, 상기 지지체(2200)는 도 22의 (a)에 도시된 바와 같이 판상의 금속시트(2250)일 수 있으며, 상기 금속시트(2250)는 구리 또는 알루미늄일 수 있다.
다른 예로써, 상기 지지체(2200)는 발열체(1000)를 지지하는 역할과 더불어 전류 인가시 열을 발생시키는 발열원으로의 역할을 수행할 수도 있다.
이를 위해, 상기 지지체(2200)는 도 22의 (b) 및 도 22의 (c)에 도시된 바와 같이 제2발열원(2210)과, 상기 제2발열원(2210)의 적어도 일면에 형성되는 절연층(2220)을 포함할 수 있다.
이와 같은 경우, 상기 지지체(2200)는 도 22의 (c)에 도시된 바와 같이 상기 절연층(2220)의 일면에 접착층(2230)을 매개로 부착되는 판상의 금속시트(2240)를 더 포함할 수도 있다.
이를 통해, 상기 지지체(2200)는 상기 발열체(1000)와 더불어 지지체(2200)의 제2발열원(2210)이 히터유닛을 통과하는 유체를 직접 가열하여 열교환 효과를 높일 수 있으며, 상기 지지체(2200)가 제2발열원(2210)과 더불어 금속시트(2240)를 포함하는 경우 금속시트(2240)를 통해 제2발열원(2210)에서 전달된 열을 빠르게 분산시킴으로써 열교환 효율을 더욱 높일 수 있다.
본 실시예에서, 상기 지지체(2200)가 제2발열원(2210)을 포함하는 형태로 구현되는 경우, 상기 지지체(2200)는 상술한 구조 이외에 도 20의 (a) 내지 도 20의 (f)에 도시된 발열체(1000)의 구조가 동일하게 채용될 수 있으며, 상술한 제2발열원(2210), 절연층(2220), 접착층(2230) 및 금속시트(2250)는 상술한 발열체(1000)에 적용되는 제1발열원(1100), 절연층(1200), 접착층(1300,1600) 및 금속시트(1400, 1500)와 동일한 형태일 수 있다.
그러나, 상기 발열체(1000)가 적용된 히터유닛(2000)을 이에 한정하는 것은 아니며, 상기 히터유닛(2000)은 도 14 내지 도 18에 도시된 히터유닛(200,300,400,500,600)과 동일한 방식으로 구현될 수 있다. 이와 같은 경우 상기 발열체(1000)는 도 14 내지 도 18에 적용된 발열체(100)를 대체할 수 있으며, 상기 지지체(2200)는 도 14 내지 도 17에 적용된 지지체(240,240')를 대체할 수 있다.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.
Claims (19)
- 내부가 빈 판상의 열전도성 외장튜브;상기 외장튜브의 내부에 배치되고, 전류 인가 시 발열하는 제1발열원; 및상기 제1발열원의 양단부에 연결되고, 적어도 일부의 길이가 상기 외장튜브의 외측으로 돌출되는 한 쌍의 단자튜브;를 포함하는 발열체.
- 제 1항에 있어서,상기 발열체는 길이방향을 따라 산부와 골부가 반복적으로 형성되는 패턴을 포함하는 발열체.
- 제 1항에 있어서,상기 외장튜브 및 제1발열원, 상기 외장튜브 및 단자튜브는 길이방향을 따라 산부와 골부가 반복적으로 형성되는 패턴을 포함하며, 각각의 상기 패턴은 서로 일치하도록 형성되는 발열체.
- 제 2항에 있어서,상기 패턴은 상기 단자튜브와 외장튜브가 중첩되는 영역을 포함하도록 형성되는 발열체.
- 제 1항에 있어서,상기 열전도성 외장튜브는 금속재질로 이루어지며 양단부가 개방되고, 상기 한 쌍의 단자튜브는 금속재질로 이루어지며 상기 제1발열원의 양단부를 일정길이 감싸면서 상기 제1발열원에 연결되는 발열체.
- 제 1항에 있어서,서로 대면하는 상기 외장튜브의 내면 및 제1발열원 사이, 상기 외장튜브의 내면 및 단자튜브 사이에는 절연층이 개재되는 발열체.
- 제6항에 있어서,상기 절연층은 내열성을 갖는 코팅층인 발열체.
- 제6항에 있어서,상기 절연층은 내열성 수지로 이루어진 필름부재이고, 상기 필름부재는 접착층을 매개로 상기 제1발열원의 양면에 부착되는 발열체.
- 제6항에 있어서,상기 절연층은 상기 제1발열원의 일면과 타면에 각각 형성되는 제1절연층 및 제2절연층을 포함하고,상기 제1절연층과 제2절연층 중 어느 하나는 내열성을 갖는 코팅층이고 다른 하나는 접착층을 매개로 부착되는 필름부재인 발열체.
- 제1항에 있어서,상기 외장튜브는 알루미늄 재질로 이루어지고, 상기 외장튜브는 상기 제1발열원과 대향하는 내면이 아노다이징 처리된 발열체.
- 제1항에 있어서,상기 제1발열원은 칸탈 및 페칼로이 합금 중 적어도 1종 이상을 포함하는 판상의 도전성 부재인 발열체.
- 제1항에 있어서,상기 제1발열원과 한 쌍의 단자튜브는 서로 중첩되는 부분에 개재되는 전도성 접착제를 통해 서로 전기적으로 연결되거나, 서로 중첩되는 부분이 코킹 또는 스팟용접을 통해 서로 전기적으로 연결되는 발열체.
- 제 1항에 있어서,상기 외장튜브의 양 단부측에는 외장튜브의 단부와 단자튜브의 일부를 동시에 감싸는 절연부재가 배치되는 발열체.
- 제 2항에 있어서,상기 발열체는 길이중간이 적어도 1회 이상 접혀 반대면이 서로 접촉되되 서로 마주하는 상기 산부 및 골부가 접촉되어 공기가 통과하는 통로가 형성되는 발열체.
- 복수 개의 발열유닛; 및상기 발열유닛을 둘러싸도록 배치되는 프레임;을 포함하며,상기 발열유닛은,청구항 제1항 내지 제14항 중 어느 한 항에 기재된 발열체; 및상기 발열체를 지지할 수 있도록 상기 발열체의 상측과 하측 중 적어도 어느 일측에 배치되는 적어도 하나의 지지체를 포함하는 히터유닛.
- 제 15항에 있어서,상기 히터유닛은 상기 발열유닛과 전기적으로 연결되는 전류차단부를 더 포함하는 히터유닛.
- 제16항에 있어서,상기 전류차단부는 PTC소자로써, 상기 발열유닛의 온도가 일정온도 이상일 경우 상기 PTC소자를 통해 상기 발열유닛에 인가되는 전류를 차단시키는 히터유닛.
- 제15항에 있어서,상기 지지체는 판상의 금속시트인 히터유닛.
- 제15항에 있어서,상기 지지체는,전류 인가 시 열을 발생시키는 제2발열원을 포함하는 판상의 발열체인 히터유닛.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170092104A KR102323142B1 (ko) | 2017-07-20 | 2017-07-20 | 발열체 및 이를 포함하는 차량공조용 히터 |
KR10-2017-0092104 | 2017-07-20 | ||
KR1020170101185A KR102274247B1 (ko) | 2017-08-09 | 2017-08-09 | 발열체 및 이를 포함하는 히터유닛 |
KR10-2017-0101185 | 2017-08-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019017728A1 true WO2019017728A1 (ko) | 2019-01-24 |
Family
ID=65016347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/008228 WO2019017728A1 (ko) | 2017-07-20 | 2018-07-20 | 발열체 및 이를 포함하는 히터유닛 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019017728A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040092111A (ko) * | 2003-04-25 | 2004-11-03 | 엘지전자 주식회사 | 방열핀이 구비된 튜브 히터 및 그의 제조방법 |
KR20060042590A (ko) * | 2004-11-10 | 2006-05-15 | 주식회사 엘티에스 | 세라믹 발열소자가 구비된 전기 히터 및 그 제조방법 |
KR100906938B1 (ko) * | 2007-12-06 | 2009-07-10 | (주)하이코 | 온풍기용 면상 발열체 |
KR20150100345A (ko) * | 2014-02-25 | 2015-09-02 | 한온시스템 주식회사 | 발열저항체를 이용한 히터 |
JP2016126899A (ja) * | 2014-12-26 | 2016-07-11 | Dowaサーモテック株式会社 | ヒーターユニット及び浸炭炉 |
-
2018
- 2018-07-20 WO PCT/KR2018/008228 patent/WO2019017728A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040092111A (ko) * | 2003-04-25 | 2004-11-03 | 엘지전자 주식회사 | 방열핀이 구비된 튜브 히터 및 그의 제조방법 |
KR20060042590A (ko) * | 2004-11-10 | 2006-05-15 | 주식회사 엘티에스 | 세라믹 발열소자가 구비된 전기 히터 및 그 제조방법 |
KR100906938B1 (ko) * | 2007-12-06 | 2009-07-10 | (주)하이코 | 온풍기용 면상 발열체 |
KR20150100345A (ko) * | 2014-02-25 | 2015-09-02 | 한온시스템 주식회사 | 발열저항체를 이용한 히터 |
JP2016126899A (ja) * | 2014-12-26 | 2016-07-11 | Dowaサーモテック株式会社 | ヒーターユニット及び浸炭炉 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017048014A1 (ko) | 카메라 모듈용 박막 히터 및 이를 갖는 카메라 모듈 | |
WO2019182216A1 (ko) | 양면냉각형 파워 모듈 및 그의 제조 방법 | |
WO2012067432A2 (ko) | 방열과 발열 기능을 가지는 전지 조립체 | |
WO2014010917A1 (ko) | 차량용 히터 | |
WO2014119902A1 (en) | Heater for motor vehicle | |
WO2013129814A1 (ko) | 차량용 히터 | |
WO2015152575A1 (ko) | 자동차용 고효율 발열시트 | |
WO2021096223A1 (ko) | 적층 버스바, 적층 버스바의 설계 방법 및 배터리 모듈 | |
WO2017094968A1 (ko) | 전기밥솥용 면상발열체의 고정구조 | |
WO2014038899A1 (en) | Heat radiation member, heat radiation circuit board, and heat emission device package | |
JP2001077385A (ja) | 薄膜太陽電池モジュール及びその製造方法 | |
WO2011062380A2 (ko) | 태양광 발전장치 | |
WO2015163526A1 (ko) | 전열 히터 장치 | |
WO2014200172A1 (ko) | 온열치료기용 발열장치 | |
WO2019017728A1 (ko) | 발열체 및 이를 포함하는 히터유닛 | |
JP2009043752A (ja) | 熱電変換モジュール | |
EP2625712A2 (en) | Radiant heat circuit board, heat generating device package having the same, and backlight unit | |
JPH1187786A (ja) | 電子冷却・加熱装置 | |
WO2019054746A1 (ko) | 발열체 및 이를 포함하는 히터유닛 | |
WO2020153684A2 (ko) | 퓨즈 기능을 갖는 발열체 및 이를 포함하는 히터유닛 | |
WO2022045467A1 (ko) | 하이브리드 필름형 히터 제조방법 및 하이브리드 필름형 히터 | |
CN217444139U (zh) | 一种防止自燃的屏蔽型橡套电缆 | |
WO2021145677A1 (ko) | 발전장치 | |
WO2020204446A1 (ko) | 열전발전모듈 | |
JP3506199B2 (ja) | 熱電変換装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18835760 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18835760 Country of ref document: EP Kind code of ref document: A1 |