WO2019017714A2 - Bcl2 유전자 및 bi-1 유전자의 발현을 동시에 억제하는 핵산 - Google Patents

Bcl2 유전자 및 bi-1 유전자의 발현을 동시에 억제하는 핵산 Download PDF

Info

Publication number
WO2019017714A2
WO2019017714A2 PCT/KR2018/008186 KR2018008186W WO2019017714A2 WO 2019017714 A2 WO2019017714 A2 WO 2019017714A2 KR 2018008186 W KR2018008186 W KR 2018008186W WO 2019017714 A2 WO2019017714 A2 WO 2019017714A2
Authority
WO
WIPO (PCT)
Prior art keywords
seq
gene
nucleic acid
acid molecule
sirna
Prior art date
Application number
PCT/KR2018/008186
Other languages
English (en)
French (fr)
Other versions
WO2019017714A3 (ko
WO2019017714A9 (ko
Inventor
최진우
유중기
Original Assignee
㈜큐리진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170091980A external-priority patent/KR101993377B1/ko
Application filed by ㈜큐리진 filed Critical ㈜큐리진
Priority claimed from KR1020180083932A external-priority patent/KR102145665B1/ko
Publication of WO2019017714A2 publication Critical patent/WO2019017714A2/ko
Publication of WO2019017714A3 publication Critical patent/WO2019017714A3/ko
Publication of WO2019017714A9 publication Critical patent/WO2019017714A9/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/28Compounds containing heavy metals
    • A61K31/282Platinum compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing

Definitions

  • the present invention relates to a nucleic acid molecule which simultaneously inhibits the expression of BCL2 gene and BI-1 gene, and a pharmaceutical composition for anticancer comprising the same.
  • Cancer is one of the most deadly diseases worldwide, and the development of innovative cancer treatments can create high added value while reducing the cost of medical care. According to statistics in 2008, the molecular therapy products that can overcome the existing anticancer drug resistance amounted to $ 17.5 billion in seven major countries (US, Japan, France, Germany, Italy, Spain and UK) It is estimated that the market size of $ 45 billion will grow by 9.5% compared to 2008.
  • the treatment of cancer is divided into surgery, radiotherapy, chemotherapy, and biological treatment. Among them, chemotherapy is a chemical substance that suppresses or kills the cancer cell proliferation.
  • RNA interference acts on sequence-specific mRNAs in a wide variety of mammalian cells since its discovery (Silence of the transcripts: RNA interference in medicine. J Mol Med (2005) 83: 764773).
  • RNAi is a small interfering RNA (hereinafter referred to as " siRNA ”) with a small interfering ribonucleic acid double-stranded structure with a size of 21-25 nucleotides that specifically binds to a mRNA transcript having a complementary sequence And the expression of a specific protein is inhibited by decomposing the transcript.
  • siRNA small interfering RNA
  • RNA double strand is processed by endonuclease Dicer and converted into siRNA of 21-23 base pairs (bp), and the siRNA is bound to RNA-induced silencing complex (RISC) (Antisense) strand recognizes and degrades the target mRNA, thereby specifically inhibiting the expression of the target gene in a sequence-specific manner (NUCLEIC-ACID THERAPEUTICS: BASIC PRINCIPLES AND RECENT APPLICATIONS, Nature Reviews Drug Discovery 2002. 1, 503 -514).
  • RISC RNA-induced silencing complex
  • siRNAs against the same target gene are superior to the antisense oligonucleotide (ASO) in inhibiting mRNA expression in vivo / in vitro (in vitro and in vivo) (Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem. Biophys. Res. Commun. 2002. 296: 1000-1004).
  • ASO antisense oligonucleotide
  • siRNA-based RNAi technology-based therapeutics has been analyzed by the global market size to be more than KRW 12 trillion by 2020, and the number of targets to which the technology can be applied has been dramatically expanded to include existing antibodies and compound-based drugs It is being evaluated as a next-generation gene therapy technology that can treat diseases that are difficult to treat.
  • siRNA since the action mechanism of siRNA is complementary to the target mRNA and regulates the expression of the target gene in a sequence-specific manner, it has been known for a long time until the existing antibody-based drug or small molecule drug is optimized for a specific protein target The development period and the development cost of the protein can be significantly extended and the development period can be shortened so that the optimized lead compound can be developed for all the protein targets including the target substance which can not be medicated (Progress Towards in Vivo Use of siRNAs. MOLECULAR THERAPY 2006 13 (4): 664-670).
  • siRNA therapeutic agents have the advantage of being able to predict side effects due to their clear targets, unlike conventional anticancer agents.
  • these target specificities are not as effective in treating tumors that are diseases caused by various gene problems, It is also a cause.
  • Bcl-2 (B-cell lymphoma 2), which is encoded by the BCL2 gene in humans, is known to be a protein that modulates apoptosis by pro-apoptotic or anti-apoptotic (" Bcl-2 is considered to be an important anti-apoptotic protein, but it has been shown to be a primary carcinoma-gene (Bcl-2)
  • Bcl-2 The damage to the Bcl-2 gene has been shown to be responsible for a variety of cancers including melanoma, breast cancer, prostate cancer, chronic lymphocytic leukemia, and lung cancer, and it has been shown that it is a cause of schizophrenia and autoimmunity, Because Bcl2 is a good target of anticancer drugs, various inhibitors have been developed for this, but it has been reported that various side effects and resistance There have been problems.
  • BI-1 BAX inhibitor 1
  • BAX inhibitor 1 BAX inhibitor 1
  • Bcl-2 is a target of the development of anticancer drugs
  • the present inventors confirmed that overexpression of BI-1 inhibits the therapeutic effect of Bcl-2 even when the function of Bcl-2 is inhibited, and siRNA .
  • the present invention relates to a nucleic acid molecule which simultaneously inhibits the expression of BCL2 gene and BI-1 gene.
  • siRNA and shRNA which simultaneously suppress the expression of cancer-related BCL2 gene and BI-1 gene were prepared, And to thereby effectively utilize cancer prevention and treatment.
  • the present invention provides a nucleic acid molecule which simultaneously inhibits the expression of BCL2 gene and BI-1 gene.
  • the present invention also provides a recombinant expression vector comprising the nucleic acid molecule.
  • the present invention provides a transformed cell into which said recombinant expression vector has been introduced.
  • the present invention provides a pharmaceutical composition for anticancer comprising the nucleic acid molecule as an active ingredient.
  • the present invention also provides a method of preventing and treating cancer, comprising administering a pharmaceutically effective amount of the nucleic acid molecule to a subject.
  • the present invention relates to nucleic acid molecules that simultaneously inhibit the expression of BCL2 gene and BI-1 gene.
  • the double-stranded siRNA and shRNA of the present invention are designed to simultaneously inhibit the expression of BCL2 gene and BI-1 gene associated with cancer.
  • the double-stranded siRNA and shRNA of the present invention promotes the killing of cancer cells and synergistically enhances cancer cell death in combination with an anticancer agent, so that various types of cancer can be effectively prevented and treated.
  • Fig. 1 is a map showing vectors for expressing shRNAs containing the double target siRNA of the present invention in a cell.
  • FIG. 2 is a graph showing the effect of suppressing the expression of the BCL2 gene (left) and the BI-1 gene (right) by the double target siRNA set 1 (si-BB1) of the present invention.
  • FIG. 3 is a graph showing the effect of inhibiting the expression of BCL2 gene and BI-1 gene by the double target siRNA set 2-6 of the present invention (NC is a control siRNA and si-BB2 to si-BB6 are siRNA sets 2 To 6).
  • FIG. 4 is a view comparing the cancer cell killing effect by the combination treatment of the dual target siRNA set 1 (si-BB1) with the anticancer agent compared with the siRNA treated with the BCL2 gene and the siRNA against the BI-1 gene.
  • FIG. 5 is a chart showing the cancer cell death by the combination treatment of an anticancer agent, Bcl2 siRNA and BI-1 siRNA.
  • Fig. 6 is a chart showing the death of cancer cells by the combination treatment of the double-target siRNA set 1 (si-BB1) of the present invention and an anticancer agent.
  • FIG. 7 is a graph showing the cancer cell killing effect of ABT-737, a Bcl2 inhibitor used as an anticancer agent, and the double target siRNA set 1 (si-BB1) of the present invention, and the synergistic effect by the combination treatment thereof.
  • the invention relates to nucleic acid molecules that simultaneously inhibit the expression of BCL2 and BI-1 genes.
  • the nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of SEQ ID NOS: 1 and 2; SEQ ID NOS: 3 and 4; SEQ ID NOS: 5 and 6; SEQ ID NOS: 7 and 8; SEQ ID NOS: 9 and 10; And a nucleic acid molecule comprising a sequence having at least 80% sequence homology with at least one base sequence selected from the group consisting of SEQ ID NOs: 11 and 12;
  • sequence identity is 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94% %, 97%, 98%, 99% or 100%.
  • the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 1, 3, 5, 7, 9 or 11 can inhibit BCL2 (B-cell lymphoma 2) gene expression by RNA interference, , 4, 6, 8, 10 or 12 can inhibit the expression of the BI-1 (BAX inhibitor 1) gene by RNA interference, and the nucleic acid molecule of the present invention can inhibit the expression of the BCL2 gene and the BI -1 gene can be inhibited at the same time.
  • the siRNA targeting BCL2 and BI-1 has a sequence complementary to a part of the BCL2 gene or BI-1 gene of human ( Homo sapiens ), and is capable of degrading mRNA of BCL2 gene or BI-1 gene, Can be suppressed.
  • inhibition of expression refers to causing expression of a target gene (to mRNA) or degradation of translation (to a protein), and preferably means that the expression of the target gene is undetectable or insignificant As shown in FIG.
  • siRNA small interfering RNA
  • siRNAi RNA interference
  • the siRNA is composed of a sense RNA strand having a sequence homologous to the mRNA of the target gene and an antisense RNA strand having a complementary sequence.
  • the sense RNA strand consists of SEQ ID NOS: 1, 3, (Antisense strand to the BCL2 gene) consisting of the nucleotide sequence of SEQ ID NO: 2, 4, 6, 8, 10 or 12 and the antisense RNA strand comprises the nucleotide sequence of SEQ ID NO: Therefore, the double-stranded siRNA can inhibit the expression of the BCL2 gene and the BI-1 gene at the same time, so that it can be provided as an efficient gene knock-down method or as a gene therapy method do.
  • the 21mer siRNA set 1 consisting of SEQ ID NOS: 1 and 2 is complementary to the 15mer.
  • the 20mer siRNA set 2 consisting of SEQ ID NOS: 3 and 4 is complementary to the 14mer.
  • the 20mer siRNA set 3 consisting of SEQ ID NOS: 5 and 6 is complementary to the 14mer.
  • the 19mer siRNA set 4 consisting of SEQ ID NOS: 7 and 8 is complementary to the 13mer.
  • the 19mer siRNA set 5 consisting of SEQ ID NOS: 9 and 10 is complementary to the 13mer.
  • the 18-mer siRNA set 6 consisting of SEQ ID NOs: 11 and 12 is complementary to the 12mer.
  • siRNA of SEQ ID NO: 1, 3, 5, 7, 9 or 11 can complementarily bind to mRNA of Bcl-2.
  • siRNA (Antisense BI-1) of SEQ ID NO: 2, 4, 6, 8, 10 or 12 complementarily binds to mRNA of BI-1 and simultaneously decreases the expression of Bcl-2 and BI-1 genes.
  • the nucleic acid molecule may be a short hairpin RNA (shRNA) comprising a nucleotide sequence of SEQ ID NO: 1 and a nucleotide sequence of SEQ ID NO: 2, wherein the shRNA comprises a nucleotide sequence of SEQ ID NO: 15 or SEQ ID NO: Or more sequence identity.
  • shRNA short hairpin RNA
  • sequence identity is 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94% %, 97%, 98%, 99% or 100%.
  • the shRNA may form a hairpin structure by partially complementary binding of the nucleotide sequence of SEQ ID NO: 1 with the nucleotide sequence of SEQ ID NO: 2, and by a loop region to form a hairpin structure.
  • TTCAAGAGAG loop shRNA SEQ ID NO: 15
  • TTGGATCCAA loop shRNA SEQ ID NO: 16
  • the siRNA targeting BCL2 and BI-1 has a sequence complementary to that of human BCL2 gene of human ( Homo sapiens ) or BI-1 gene, and is capable of degrading mRNA of BCL2 or BI-1 gene, .
  • inhibition of expression refers to causing expression of a target gene (to mRNA) or degradation of translation (to a protein), and preferably means that the expression of the target gene is undetectable or insignificant As shown in FIG.
  • siRNA small interfering RNA
  • siRNAi RNA interference
  • the siRNA is composed of a sense RNA strand having a sequence homologous to the mRNA of the target gene and an antisense RNA strand having a sequence complementary thereto.
  • the sense RNA strand is represented by SEQ ID NOS: 1, 3, (Antisense strand to the BCL2 gene) consisting of the nucleotide sequence of SEQ ID NO: 2, 4, 6, 8, 10 or 12 and the antisense RNA strand comprises the nucleotide sequence of SEQ ID NO: Therefore, the dual target siRNA sets 1-6 can inhibit the expression of the BCL2 and BI-1 genes at the same time, respectively, so that they can be effectively used as a gene knock-down method or as a gene therapy method .
  • nucleic acid molecule of the present invention may have deletion, substitution, or deletion of a partial nucleotide sequence of a nucleic acid molecule that simultaneously inhibits the expression of functional equivalents of the nucleic acid molecule constituting it, for example, the BCL2 gene and the BI-1 gene Is a concept that includes variants that have been modified by insertion but can function in a functionally similar manner to the nucleic acid molecule.
  • the gene includes a nucleotide sequence having a sequence homology of 70% or more, more preferably 80% or more, still more preferably 90% or more, and most preferably 95% or more, with the nucleotide sequence of SEQ ID NO: can do.
  • &Quot;% of sequence homology to polynucleotides is ascertained by comparing the comparison region with two optimally aligned sequences, and a portion of the polynucleotide sequence in the comparison region is the reference sequence for the optimal alignment of the two sequences (I. E., A gap) relative to the < / RTI >
  • the invention relates to a recombinant expression vector comprising a nucleic acid molecule of the invention.
  • vector refers to a plasmid vector as a means for expressing a gene of interest in a host cell; Phagemid vector; Cosmeptide vector; And viral vectors such as bacteriophage vectors, adenovirus vectors, retroviral vectors, and adeno-associated viral vectors, and are preferably, but not limited to, adenoviral vectors.
  • the vector of the present invention can typically be constructed as a vector for cloning or as a vector for expression.
  • the vector of the present invention can be constructed by using prokaryotic cells or eukaryotic cells as hosts.
  • a strong promoter capable of promoting transcription such as a tac promoter, lac promoter, lacUV5 promoter, lpp promoter, pL ⁇ promoter, pR ⁇ promoter, rac5 promoter, amp promoter, recA promoter, SP6 promoter, trp promoter, and T7 promoter
  • a strong promoter capable of promoting transcription such as a tac promoter, lac promoter, lacUV5 promoter, lpp promoter, pL ⁇ promoter, pR ⁇ promoter, rac5 promoter, amp promoter, recA promoter, SP6 promoter, trp promoter, and T7 promoter
  • a ribosome binding site for initiation of detoxification such as a tac promoter, lac promoter, lacUV5
  • E. coli tryptophan biosynthetic pathway (Yanofsky, C. (1984), J. Bacteriol., 158: 1018-8), when E. coli (e.g. HB101, BL21, 1024) and the phage leftward promoter (pL? Promoter, Herskowitz, I. and Hagen, D. (1980), Ann. Rev. Genet., 14: 399-445).
  • the vectors that can be used in the present invention include plasmids such as pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8 / 9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, , pGEX series, pET series, and pUC19), phagemid (e.g., pComb3X), phage (M13, etc.) or viruses (e.g., SV40).
  • plasmids such as pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8 / 9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, , pGEX series, pET series, and pUC19
  • phagemid e.g., pComb3X
  • the vector of the present invention is an expression vector and a eukaryotic cell is used as a host
  • a promoter derived from a genome of a mammalian cell for example, a metallothionein promoter
  • a mammalian virus Virus late promoter for example, vaccinia virus 7.5K promoter, SV40 promoter, cytomegalovirus promoter and HSV promoter
  • the vector of the present invention may be fused with other sequences as necessary in order to facilitate protein purification of the amino acid, and the fused sequence includes, for example, glutathione S-transferase (Pharmacia, USA), maltose binding protein (NEB, USA), FLAG (IBI, USA) and 6x His (hexahistidine; Quiagen, USA).
  • the expression vector of the present invention may include an antibiotic resistance gene commonly used in the art as a selection marker. Examples of the expression vector include ampicillin, gentamycin, carbenicillin, chloramphenicol, streptomycin, kanamycin, , Neomycin, and tetracycline.
  • the recombinant expression vector of the invention may comprise an siRNA comprising the nucleotide sequence of SEQ ID NOS: 1-12.
  • the recombinant vector of the present invention can be prepared by a recombinant DNA method known in the art, and in one embodiment, a pE3.1 vector was used.
  • Non-viral vectors useful for delivering siRNA for BCL2 and BI-1 in the present invention include all vectors commonly used in gene therapy, for example, various plasmids and liposomes that can be expressed in eukaryotic cells.
  • shRNAs comprising the double-stranded siRNA targeting BCL2 and BI-1 can be operably linked to the promoter so that they are appropriately transcribed in the transfected cells.
  • the promoter may be any promoter capable of functioning in eukaryotic cells, more preferably a U7 promoter. Regulatory sequences, including leader sequences, polyadenylation sequences, promoters, enhancers, upstream activation sequences, signal peptide sequences and transcription termination factors, as necessary for efficient transcription of double-stranded siRNA or shRNAs targeting BCL2 and BI-1 And may be further included.
  • Viral or viral vectors useful for delivering siRNA or shRNA for BCL2 and BI-1 in the present invention include baculoviridiae, parvoviridiae, picornoviridiae, But are not limited to, herepesviridiae, poxviridiae, adenoviridiae, and the like.
  • the present invention relates to a pharmaceutical composition for anticancer therapy comprising the nucleic acid molecule of the present invention as an active ingredient.
  • the anticancer pharmaceutical composition of the present invention may further comprise an anticancer agent, wherein the anticancer agent is selected from the group consisting of acibysein, aclarubicin, accordingazole, acornisine, adozelesin, Aminoglutethimide, amaranthin, ampicillin, androgens, anginidine, ampicillin glycinate, asalay, asparaginase, 5- But are not limited to, azacytidine, azathioprine, Bacillus calmette-guerine (BCG), baker's antipol, beta-2-dioxythioguanosine, bisanthrene HCl, bleomycin sulfate, , BWA 773U82, BW 502U83 / HCl, BW 7U85 mesylate, cerasemide, carbethimide, carboline, carmustine, chlorambucil, chloroquinoxaline-sulphonamide, chloro
  • the cancer is selected from the group consisting of: colorectal cancer, breast cancer, cervical cancer, cervical cancer, ovarian cancer, prostate cancer, brain tumor, head and neck carcinoma, melanoma, myeloma, leukemia, lymphoma, stomach cancer, pancreatic cancer, Renal cell carcinoma, kidney cell carcinoma, renal pelvic carcinoma, bone cancer, skin cancer, head cancer, endometrial carcinoma, endometrial carcinoma, vulvar carcinoma, Hodgkin's disease, bladder cancer, kidney cancer, Cancer of the central nervous system (CNS), primary CNS lymphoma, spinal cord tumor, cervical cancer, endometrial carcinoma, endometrial carcinoma, thyroid cancer, parathyroid cancer, adrenal cancer, soft tissue sarcoma, Polymorphic glioblastoma, and pituitary adenoma, and more preferably a prostate cancer or a cervical cancer.
  • CNS central nervous system
  • treatment refers to any action that improves or alters the death or cancer of a cancer cell by administering a composition comprising the nucleic acid of the present invention.
  • the pharmaceutical composition may be one or more formulations selected from the group comprising oral formulations, external preparations, suppositories, sterile injectable solutions and sprays.
  • the therapeutically effective amount of the composition of the present invention may vary depending on a variety of factors, such as the method of administration, the site of administration, the condition of the patient, and the like. Therefore, when used in the human body, the dosage should be determined in consideration of safety and efficacy. It is also possible to estimate the amount used in humans from the effective amount determined through animal experiments. Such considerations in determining the effective amount are described, for example, in Hardman and Limbird, eds., Goodman and Gilman ' s Pharmacological Basis of Therapeutics, 10th ed. (2001), Pergamon Press; And E.W. Martin ed., Remington ' s Pharmaceutical Sciences, 18th ed. (1990), Mack Publishing Co.
  • compositions of the present invention may also include carriers, diluents, excipients, or a combination of two or more thereof commonly used in biological formulations.
  • the pharmaceutically acceptable carrier is not particularly limited as long as the composition is suitable for in vivo delivery, for example, Merck Index, 13th ed., Merck & Inc.
  • a buffered saline solution, a buffer solution, a dextrose solution, a maltodextrin solution, glycerol, ethanol, and one or more of these components may be mixed and used, and if necessary, an antioxidant, a buffer, Conventional additives may be added.
  • diluents such as aqueous solutions, suspensions, emulsions, etc., pills, capsules, granules or tablets.
  • main dosage forms such as aqueous solutions, suspensions, emulsions, etc., pills, capsules, granules or tablets.
  • it can be suitably formulated according to each disease or ingredient, using the method disclosed in Remington's Pharmaceutical Science (Mack Publishing Company, Easton PA, 18th, 1990) in a suitable manner in the art.
  • composition of the present invention may further contain one or more active ingredients showing the same or similar functions.
  • the composition of the present invention contains 0.0001 to 10% by weight, preferably 0.001 to 1% by weight of the protein, based on the total weight of the composition.
  • the pharmaceutical composition of the present invention may further include a pharmaceutically acceptable additive, wherein the pharmaceutically acceptable additives include starch, gelatinized starch, microcrystalline cellulose, lactose, povidone, colloidal silicon dioxide, calcium hydrogen phosphate, Wherein the starch is selected from the group consisting of lactose, mannitol, sugar, arabic gum, pregelatinized starch, cornstarch, powdered cellulose, hydroxypropyl cellulose, opaques, sodium starch glycolate, carnauba wax, synthetic aluminum silicate, stearic acid, magnesium stearate, Calcium, white sugar, dextrose, sorbitol and talc may be used.
  • the pharmaceutically acceptable additives according to the present invention are preferably included in the composition in an amount of 0.1 to 90 parts by weight, but are not limited thereto.
  • composition of the present invention may be administered orally or non-orally (for example, intravenously, subcutaneously, intraperitoneally or topically) or orally administered in accordance with a desired method, and the dose may be appropriately determined depending on the patient's body weight, The range varies depending on diet, time of administration, method of administration, excretion rate, and severity of the disease.
  • the daily dose of the composition according to the present invention is 0.0001 to 10 mg / ml, preferably 0.0001 to 5 mg / ml, more preferably administered once to several times a day.
  • liquid preparation for oral administration of the composition of the present invention examples include suspensions, solutions, emulsions, syrups, and the like.
  • various excipients such as wetting agents, sweeteners, Etc. may be included together.
  • Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, freeze-dried preparations, suppositories, and the like.
  • the pharmaceutical composition of the present invention can be used for preventing or treating cancer and its complications, and can also be used as an anti-cancer adjuvant.
  • the present invention also provides a method of preventing and treating cancer, comprising administering a pharmaceutically effective amount of the nucleic acid molecule to a subject.
  • compositions of the present invention are administered in therapeutically effective amounts or in pharmaceutically effective amounts.
  • pharmaceutically effective amount means an amount sufficient to treat a disease at a reasonable benefit / risk ratio applicable to medical treatment and the effective dose level will depend on the species and severity, age, sex, The time of administration, the route of administration and the rate of excretion, the duration of the treatment, factors including co-administered drugs, and other factors well known in the medical arts.
  • a 21-mer double-target siRNA (double strand) capable of simultaneously inhibiting BCL2 (B-cell lymphoma 2) and BI-1 (BAX inhibitor 1) was prepared from the sequence shown in Table 1 below (Bioneer, Daejeon, Korea).
  • 21-mer siRNA set 1 consisting of SEQ ID NOS: 1 and 2
  • 15-mer are complementary to each other.
  • the 20mer siRNA set 2 consisting of SEQ ID NOS: 3 and 4 is complementary to the 14mer.
  • the 20mer siRNA set 3 consisting of SEQ ID NOS: 5 and 6 is complementary to the 14mer.
  • the 19mer siRNA set 4 consisting of SEQ ID NOS: 7 and 8 is complementary to the 13mer.
  • the 19mer siRNA set 5 consisting of SEQ ID NOS: 9 and 10 is complementary to the 13mer.
  • the 18-mer siRNA set 6 consisting of SEQ ID NOs: 11 and 12 is complementary to the 12mer.
  • SiRNA (Antisense Bcl-2) of SEQ ID NO: 1, 3, 5, 7, 9 or 11 binds complementarily to mRNA of Bcl-2.
  • siRNA (Antisense BI-1) of SEQ ID NO: 2, 4, 6, 8, 10 or 12 complementarily binds to mRNA of BI-1 and simultaneously decreases the expression of Bcl-2 and BI-1 genes.
  • shRNAs containing the DNA sequence (SEQ ID NOs: 13 and 14) of the siRNA duplex and the loop sequence (TTCAAGAGAG loop shRNA And TTGGATCCAA loop shRNA) (Table 2).
  • the constructed shRNAs were placed so as to come after the U7 promoter (SEQ ID NO: 17) at the cleavage sites of the pE3.1 vector (Fig. 1) of the restriction enzymes Pst I and Eco RV, respectively, and double-target siRNA targeting BCL2 and BI- A recombinant expression vector capable of expressing the two kinds of shRNAs contained in the cells was prepared.
  • the reaction mixture was prepared with the composition shown in Table 6 below and qPCR was performed under the conditions shown in Table 7.
  • the probes used were Bcl2 (Thermo, Hs00608023_m1), BI-1 (Thermo, Dm01835892_g1), GAPDH (Thermo, Hs02786624_g1) and QS3 equipment. All reactions were repeated three times and their mean values were taken. The results were normalized to the mRNA values of the housekeeping gene GAPDH.
  • the expression of BCL2 and BI-1 was decreased by the double target siRNA sets 1-6, and it was found that the double target siRNA of the present invention simultaneously suppressed the expression of both genes (FIGS. 2 and 3) .
  • the double-target siRNA of the present invention inhibits the expression of both genes at the same time, thereby promoting the killing of cancer cells and showing a remarkable anticancer activity.
  • it is useful as an anticancer composition or anticancer adjuvant for various carcinomas .
  • Human prostate cancer cell line PC3 cell lines were cultured in 6-well plates, and then double-target siRNA set 1 (si-BB1) of the present invention and siRNA for each of the control group BCL2 or BI-1 of Table 8 were transfected After 48 hours, cisplatin was treated with 10 ⁇ 20 uM. After 12 hours of cisplatin treatment, cells were treated with 5 mg / mL MTT (Promega, Ltd.) and incubated for 4 hours. After that, the medium was removed and 150 ⁇ l of solubilization solution and stop solution was treated and incubated at 37 ⁇ for 4 hours. The absorbance of the reaction solution was measured at 570 nm and the cell viability was calculated using the following equation.
  • the double-target siRNA set 1 of the present invention and the group treated with cisplatin significantly increased cancer cell death, (Fig. 4). As shown in Fig. 4,
  • Hela cells, a human cervical cancer cell line were transfected together with siRNA for BCL2 or BI-1, respectively, and then analyzed for the degree of cancer cell death by MTT assay after 6 hours of treatment with anticancer agents. Specifically, 200 picomoles of siRNA per well were transfected into Hela cells in a 6-well plate with 7.5 ⁇ l of lipofectamine, incubated for 48 hours, the cell line was subdivided again into a 96-well plate, and 50% (2.5 ⁇ 10 4 ), treated with Taxol 0.5 ⁇ M, cisplatin 20 ⁇ M and etoposide 10 ⁇ M, respectively, and after 6 hours, MTT analysis was performed as in Experimental Example 2 to determine the degree of cancer cell death.
  • BCL2 and BI-1 of the present invention were added to Hela cells of human cervical cancer cell line, , And the degree of death of cancer cells was confirmed by MTT analysis after treatment with anticancer drugs for 6 hours.
  • the inhibitory effect of the dual target siRNA against BCL2 and BI-1 of the present invention against cancer cells was compared with the ABT-737 drug used as a cancer cell treatment agent through inhibition of BCL2.
  • the LnCap cell line which is a prostate cancer cell
  • siRNA set 1 (si-BB1) for BCL2 and BI-1 of the present invention was transfected and treated with 3 ⁇ M of ABT-737 After incubation for 12 hours, the extent of cancer cell death was confirmed by MTT assay.
  • LnCap cell line was increased by treatment of ABT-737 or siRNA set 1 (si-BB1) for BCL2 and BI-1 of the present invention.
  • si-BB1 siRNA set 1

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 BCL2 유전자 및 BI-1 유전자의 발현을 동시에 억제하는 핵산 분자에 관한 것으로, 본원발명의 이중 가닥 siRNA 및 shRNA는 암과 관련된 BCL2 유전자 및 BI-1 유전자의 발현을 동시에 억제하도록 설계하였다. 본원발명의 이중 가닥 siRNA 및 shRNA는 암세포의 사멸을 촉진하고, 항암제와의 병용 처리에서 암세포 사멸을 시너지적으로 향상시키는 효과가 있으므로, 다양한 암종을 효과적으로 예방 및 치료할 수 있다.

Description

BCL2 유전자 및 BI-1 유전자의 발현을 동시에 억제하는 핵산
본 발명은 BCL2 유전자 및 BI-1 유전자의 발현을 동시에 억제하는 핵산 분자와, 이를 포함하는 항암용 약학적 조성물에 관한 것이다.
암은 전세계적으로 가장 많은 사망자를 내는 질병 중 하나로, 혁신적인 암 치료제의 개발은 이에 대한 치료시 발생되는 의료비를 절감할 수 있음과 동시에 고부가가치를 창출할 수 있다. 또한, 2008년의 통계에 따르면, 기존항암제 내성을 극복 할 수 있는 분자 치료제는 주요 7개국(US, Japan, France, Germany, Italy, Spain, UK)에서 $17.5 billion을 차지했고, 2018년의 경우 약 $45 billion 정도의 market size를 차지하여, 2008년 대비 9.5%의 성장률을 보일 것이라 예측되고 있다. 암의 치료는 수술, 방사선치료, 화학요법, 생물학적 치료로 구분되는데, 이 중에 화학요법은 화학물질로서 암 세포의 증식을 억제하거나 죽이는 치료법으로 항암제에 의하여 나타나는 독성은 상당부분 정상세포에서도 나타나기 때문에 일정 정도의 독성을 나타내며, 항암제가 효과를 나타내다가도 일정 기간의 사용 후에는 효과가 상실되는 내성이 발생하기 때문에 암세포에 선택적으로 작용하고 내성이 생기지 않는 항암제의 개발이 절실하다 (암 정복의 현주소 Biowave 2004. 6(19)). 최근 암에 대한 분자유전정보의 확보를 통해 암의 분자적 특성을 표적으로 한 새로운 항암제의 개발이 진행되고 있으며, 암세포만이 가지고 있는 특징적인 분자적 표적(molecular target)을 겨냥하는 항암제들은 약제 내성이 생기지 않는다는 보고도 있다.
유전자의 발현을 억제하는 기술은 질병치료를 위한 치료제 개발 및 표적 검증에서 중요한 도구이다. 간섭 RNA(RNA interference, 이하 "RNAi"라고 한다)는 그 역할이 발견된 이후로, 다양한 종류의 포유동물세포(mammalian cell)에서 서열 특이적 mRNA에 작용한다는 사실이 밝혀졌다 (Silence of the transcripts: RNA interference in medicine. J Mol Med (2005) 83: 764773). RNAi는 21-25개의 뉴클레오타이드 크기의 이중나선 구조를 가진 작은 간섭 리보핵산 짧은 간섭 RNA (small interfering RNA, 이하 "siRNA"라고 한다)이 상보적인 서열을 가지는 전사체(mRNA transcript)에 특이적으로 결합하여 해당 전사체를 분해함으로써 특정 단백질의 발현을 억제하는 현상이다. 세포 내에서는 RNA 이중가닥이 Dicer라는 엔도뉴클라아제(endonuclease)에 의해 프로세싱되어 21 내지 23개의 이중가닥(base pair,bp)의 siRNA로 변환되며, siRNA 는 RISC(RNA-induced silencing complex)에 결합하여 가이드(안티센스) 가닥이 타겟 mRNA를 인식하여 분해하는 과정을 통해 타겟 유전자의 발현을 서열 특이적으로 저해한다 (NUCLEIC-ACID THERAPEUTICS: BASIC PRINCIPLES AND RECENT APPLICATIONS. Nature Reviews Drug Discovery. 2002. 1, 503-514). 베르트랑(Bertrand) 연구진에 따르면 동일한 타겟 유전자에 대한 siRNA가 안티센스 올리고뉴클레오티드(Antisense oligonucleotide, ASO)에 비하여 생체 내/외(in vitro 및 in vivo)에서 mRNA 발현의 저해효과가 뛰어나고, 해당 효과가 오랫동안 지속되는 효과를 포함하는 것으로 밝혀졌다 (Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem. Biophys. Res.Commun. 2002. 296: 1000-1004). siRNA를 포함하는 RNAi 기술 기반 치료제 시장은 향후 세계 시장규모가 2020년경에 총 12조원 이상을 형성하는 것으로 분석되었으며, 해당 기술을 적용할 수 있는 대상이 획기적으로 확대되어 기존의 항체, 화합물 기반 의약품으로 치료하기 어려운 질병을 치료할 수 있는 차세대 유전자 치료기술로 평가되고 있다. 또한 siRNA의 작용 기작은 타겟 mRNA와 상보적으로 결합하여 서열 특이적으로 타겟 유전자의 발현을 조절하기 때문에, 기존의 항체 기반 의약품이나 화학물질(small molecule drug)이 특정한 단백질 표적에 최적화되기까지 오랜 동안의 개발 기간 및 개발 비용이 소요되는 것에 비하여, 적용할 수 있는 대상이 획기적으로 확대될 수 있고, 개발 기간이 단축되면서, 의약화가 불가능한 표적 물질을 포함한 모든 단백질 표적에 대하여 최적화된 리드 화합물을 개발할 수 있다는 장점을 가진다 (Progress Towards in Vivo Use of siRNAs. MOLECULAR THERAPY. 2006 13(4):664-670). 이에, 최근 이 리보핵산 매개 간섭현상이 기존의 화학 합성 의약 개발에서 발생되는 문제의 해결책을 제시하면서 전사체 수준에서 특정 단백질의 발현을 선택적으로 억제하여 각종 질병 치료제, 특히 종양 치료제 개발에 이용하려는 연구가 진행되고 있다. 또한, siRNA 치료제는 기존 항암제와 달리 표적이 명확하여 부작용이 예측 가능하다는 장점이 있으나, 이러한 표적 특이성은 다양한 유전자의 문제에 의해 발생하는 질병인 종양의 경우, 오히려 이러한 표적 특이성은 치료 효과가 높지 않은 원인이 되기도 한다.
인간에서 BCL2 유전자에 의해 암호화되는 Bcl-2 (B-cell lymphoma 2)는 세포 사멸을 유발 (pro-apoptotic) 또는 억제 (anti-apoptotic)함으로써 세포 사멸(apoptosis)을 조절하는 단백질로 알려져 있다 ("Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science. 226 (4678): 1097.). Bcl-2는 중요한 항-세포 사멸 단백질로 여겨지지만, 원발암-유전자로 여겨지지는 않는다. Bcl-2 유전자의 손상은 흑색종, 유방암, 전립선암, 만성 림프구성 백혈병 및 폐암를 포함하는 다양한 암의 원인으로 밝혀졌으며, 정신분열증 및 자가면역의 원인일 가능성이 밝혀졌다. 또한, 이는 암 치료에 대한 저항성을 유발하는 원인인 것으로도 알려졌다. Bcl2이 항암제의 좋은 타겟이므로, 이에 대한 다양한 억제제(inhibitor)들이 개발되고 있으나, 다양한 부작용과 내성이 발생하는 문제점이 있어왔다.
한편, BI-1(BAX inhibitor 1)은 Bax에 의한 세포사멸을 억제하고, 여러 자극에 의한 세포사멸로부터도 세포를 보호하는 것으로 알려져 있다. 또한, 동물, 식물을 비롯해서 미생물에도 유사 단백질이 존재하는 것으로 밝혀지고 있으며, 각각의 작용과 그 기작이 비슷하다고 알려져 있다.
현재, Bcl-2는 항암제 개발의 타겟이 되고 있지만, 본 발명자들은 Bcl-2 의 기능을 억제하더라도, BI-1의 과발현은 항암제의 치료효과를 저해하는 것을 확인하여, 이들을 동시에 억제하기 위한 siRNA를 구성하기에 이르렀다.
본 발명은 BCL2 유전자 및 BI-1 유전자의 발현을 동시에 억제하는 핵산 분자에 관한 것이다. 본 발명에서는 siRNA 또는 shRNA의 표적 특이성으로 인한 치료 효과가 높지 않은 단점을 극복하기 위하여, 암과 관련된 BCL2 유전자 및 BI-1 유전자의 발현을 동시에 억제하는 siRNA 및 shRNA를 제작하였으며, 이의 항암 활성 및 항암제와의 시너지적 항암 활성을 확인함으로써 이를 암 예방 및 치료 효과적으로 이용하는 것을 목적으로 한다.
상기 목적의 달성을 위해, 본 발명은 BCL2 유전자 및 BI-1 유전자의 발현을 동시에 억제하는 핵산 분자를 제공한다.
또한, 본 발명은 상기 핵산 분자를 포함하는 재조합 발현 벡터를 제공한다.
또한, 본 발명은 상기 재조합 발현 벡터가 도입된 형질전환된 세포를 제공한다.
또한, 본 발명은 상기 핵산 분자를 유효성분으로 포함하는, 항암용 약학적 조성물을 제공한다.
또한, 본 발명은 약학적으로 유효한 양의 상기 핵산분자를 개체에 투여하는 단계를 포함하는 암의 예방 및 치료방법을 제공한다.
본 발명은 BCL2 유전자 및 BI-1 유전자의 발현을 동시에 억제하는 핵산 분자에 관한 것으로, 본원발명의 이중 가닥 siRNA 및 shRNA는 암과 관련된 BCL2 유전자 및 BI-1 유전자의 발현을 동시에 억제하도록 설계하였다. 본원발명의 이중 가닥 siRNA 및 shRNA는 암세포의 사멸을 촉진하고, 항암제와의 병용 처리에서 암세포 사멸을 시너지적으로 향상시키는 효과가 있으므로, 다양한 암종을 효과적으로 예방 및 치료할 수 있다.
도 1은 본 발명의 이중 표적 siRNA를 포함하는 shRNA들을 세포 내에서 발현하기 위한 벡터의 맵을 나타낸 도이다.
도 2는 본 발명의 이중 표적 siRNA 세트 1(si-BB1)에 의한 BCL2 유전자(좌) 및 BI-1 유전자(우)의 발현 억제 효과를 확인한 도이다.
도 3은 본 발명의 이중 표적 siRNA 세트 2-6에 의한 BCL2 유전자 및 BI-1 유전자의 발현 억제 효과를 확인한 도이다(NC는 대조군 siRNA, si-BB2 내지 si-BB6은 본 발명의 siRNA 세트 2 내지 6임).
도 4는 이중 표적 siRNA 세트 1(si-BB1)과 항암제의 병용 처리에 의한 암세포 사멸 효과를 BCL2 유전자에 대한 siRNA 및 BI-1 유전자에 대한 siRNA를 함께 처리한 군과 비교한 도이다.
도 5는 항암제와 Bcl2 siRNA 및 BI-1 siRNA의 병용 처리에 의한 암세포 사멸을 확인한 도이다.
도 6은 본 발명의 이중 표적 siRNA 세트 1(si-BB1)과 항암제의 병용처리에 의한 암세포 사멸을 확인한 도이다.
도 7은 항암제로 사용되고 있는 Bcl2 억제제인 ABT-737과 본 발명의 이중 표적 siRNA 세트 1(si-BB1)의 암세포 사멸 효과와, 이들의 병용 처리에 의한 시너지 효과를 확인한 도이다.
이하, 본 발명의 구현예로 본 발명을 상세히 설명하기로 한다. 다만, 하기 구현예는 본 발명에 대한 예시로 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술하는 특허청구범위의 기재 및 그로부터 해석되는 균등 범주 내에서 다양한 변형 및 응용이 가능하다.
일 측면에서, 본 발명은 BCL2 유전자 및 BI-1 유전자의 발현을 동시에 억제하는 핵산 분자에 관한 것이다.
일 구현예에서, 상기 핵산 분자는 서열번호 1 및 2; 서열번호 3 및 4; 서열번호 5 및 6; 서열번호 7 및 8; 서열번호 9 및 10; 및 서열번호 11 및 12;으로 이루어진 군에서 선택된 1종 이상의 염기서열과 80% 이상의 서열 상동성을 갖는 서열을 포함하는 핵산 분자를 포함할 수 있다.
상기 서열 동일성은 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% 또는 100% 이다.
일 구현예에서, 서열번호 1, 3, 5, 7, 9 또는 11의 염기서열을 포함하는 핵산 분자는 RNA 간섭에 의해 BCL2(B-cell lymphoma 2) 유전자 발현을 억제할 수 있고, 서열번호 2, 4, 6, 8, 10 또는 12의 염기서열을 포함하는 핵산 분자는 RNA 간섭에 의해 BI-1(BAX inhibitor 1) 유전자의 발현을 억제할 수 있어, 본원발명의 핵산 분자는 BCL2 유전자와 BI-1 유전자의 발현을 동시에 억제할 수 있다.
본 발명에서 BCL2 및 BI-1를 표적으로 하는 siRNA는 인간(Homo sapiens)의 BCL2 유전자 또는 BI-1 유전자의 일부와 상보적인 서열을 가지고, BCL2 유전자 또는 BI-1 유전자의 mRNA를 분해하거나, 번역을 억제할 수 있다.
본 발명에서 사용되는 용어, "발현 억제"란 표적 유전자의 (mRNA로의) 발현 또는 (단백질로의) 번역 저하를 야기하는 것을 의미하며, 바람직하게는 이에 의해 표적 유전자 발현이 탐지 불가능해지거나 무의미한 수준으로 존재하게 되는 것을 의미한다.
본 발명에서 사용되는 용어, "siRNA(small interfering RNA)"란 특정 mRNA의 절단(cleavage)을 통하여 RNAi(RNA interference) 현상을 유도할 수 있는 짧은 이중사슬 RNA를 의미한다. 일반적으로 siRNA는 타겟 유전자의 mRNA와 상동인 서열을 가지는 센스 RNA 가닥과 이와 상보적인 서열을 가지는 안티센스 RNA 가닥으로 구성되나, 본 발명의 이중 가닥 siRNA는 센스 RNA 가닥이 서열번호 1, 3, 5, 7, 9 또는 11의 염기서열로 이루어진 siRNA (BCL2 유전자에 대한 안티센스 가닥)이고, 안티센스 RNA 가닥이 서열번호 2, 4, 6, 8, 10 또는 12의 염기서열로 이루어진 siRNA (BI-1 유전자에 대한 안티센스 가닥)이므로, 이중 가닥의 siRNA가 각각 동시에 BCL2 유전자 및 BI-1 유전자의 발현을 억제할 수 있기 때문에 효율적인 유전자 넉다운(knock-down) 방법으로서 또는, 유전자치료(gene therapy)의 방법으로 제공된다.
본 발명의 일실시예에서, 상기 서열번호 1 및 2로 이루어진 21mer의 siRNA 세트 1은 15mer가 서로 상보적이다. 서열번호 3 및 4로 이루어진 20mer의 siRNA 세트 2는 14mer가 서로 상보적이다. 서열번호 5 및 6으로 이루어진 20mer의 siRNA 세트 3은 14mer가 서로 상보적이다. 서열번호 7 및 8으로 이루어진 19mer의 siRNA 세트 4는 13mer가 서로 상보적이다. 서열번호 9 및 10으로 이루어진 19mer의 siRNA 세트 5는 13mer가 서로 상보적이다. 서열번호 11 및 12로 이루어진 18mer의 siRNA 세트 6은 12mer가 서로 상보적이다.
상기 서열번호 1, 3, 5, 7, 9 또는 11의 siRNA (Antisense Bcl-2)가 Bcl-2의 mRNA에 상보적으로 결합할 수 있다. 또한, 서열번호 2, 4, 6, 8, 10 또는 12의 siRNA (Antisense BI-1)가 BI-1의 mRNA에 상보적으로 결합하여 Bcl-2 및 BI-1 유전자의 발현을 동시에 감소시킨다.
일 구현예에서, 상기 핵산 분자는 서열번호 1의 염기서열 및 서열번호 2의 염기서열을 포함하는 shRNA(short hairpin RNA)일 수 있으며, 상기 shRNA는 서열번호 15 또는 서열번호 16의 염기서열과 80% 이상의 서열 상동성을 갖는 서열일 수 있다.
상기 서열 동일성은 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% 또는 100% 이다.
일 구현예에서, 상기 shRNA는 서열번호 1의 염기서열과 서열번호 2의 염기서열이 부분적으로 상보적 결합하고 루프 영역에 의해 회문적으로 연결되어 헤어핀 구조를 형성할 수 있으며, 본원발명의 일 실시예에서는 헤어핀 구조의 루프 부분 염기서열에 따라 TTCAAGAGAG loop shRNA (서열번호 15) 또는 TTGGATCCAA loop shRNA (서열번호 16)로 기재하였다.
본 발명에서 BCL2 및 BI-1를 표적으로 하는 siRNA는 인간(Homo sapiens)의 BCL2 유전자 또는 BI-1 유전자의 일부와 상보적인 서열을 가지고, BCL2 또는 BI-1 유전자의 mRNA를 분해하거나, 번역을 억제할 수 있다.
본 발명에서 사용되는 용어, "발현 억제"란 표적 유전자의 (mRNA로의) 발현 또는 (단백질로의) 번역 저하를 야기하는 것을 의미하며, 바람직하게는 이에 의해 표적 유전자 발현이 탐지 불가능해지거나 무의미한 수준으로 존재하게 되는 것을 의미한다.
본 발명에서 사용되는 용어, "siRNA(small interfering RNA)"란 특정 mRNA의 절단(cleavage)을 통하여 RNAi(RNA interference) 현상을 유도할 수 있는 짧은 이중사슬 RNA를 의미한다. 일반적으로 siRNA는 타겟 유전자의 mRNA와 상동인 서열을 가지는 센스 RNA 가닥과 이와 상보적인 서열을 가지는 안티센스 RNA 가닥으로 구성되나, 본 발명의 이중 표적 siRNA는 센스 RNA 가닥이 서열번호 1, 3, 5, 7, 9 또는 11의 염기서열로 이루어진 siRNA (BCL2 유전자에 대한 안티센스 가닥)이고, 안티센스 RNA 가닥이 서열번호 2, 4, 6, 8, 10 또는 12의 염기서열로 이루어진 siRNA (BI-1 유전자에 대한 안티센스 가닥)이므로, 이중 표적 siRNA 세트 1-6이 각각 동시에 BCL2 및 BI-1 유전자의 발현을 억제할 수 있기 때문에 효율적인 유전자 넉다운(knock-down) 방법으로서 또는, 유전자치료(gene therapy)의 방법으로 제공된다.
상기 염기 서열의 변이체가 본 발명의 범위 내에 포함된다. 본 발명의 핵산분자는 이를 구성하는 핵산 분자의 작용성 등가물, 예를 들어, BCL2 유전자 및 BI-1 유전자의 발현을 동시에 억제하는 핵산 분자의 일부 염기서열이 결실(deletion), 치환(substitution) 또는 삽입(insertion)에 의해 변형되었지만, 상기 핵산 분자와 기능적으로 동일한 작용을 할 수 있는 변이체(variants)를 포함하는 개념이다. 구체적으로, 상기 유전자는 서열번호의 염기 서열과 각각 70% 이상, 더욱 바람직하게는 80% 이상, 더 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기 서열을 포함할 수 있다. 폴리뉴클레오티드에 대한 "서열 상동성의 %"는 두 개의 최적으로 배열된 서열과 비교 영역을 비교함으로써 확인되며, 비교 영역에서의 폴리뉴클레오티드 서열의 일부는 두 서열의 최적 배열에 대한 참고 서열(추가 또는 삭제를 포함하지 않음)에 비해 추가 또는 삭제(즉, 갭)를 포함할 수 있다.
일 측면에서, 본 발명은 본원발명의 핵산 분자를 포함하는 재조합 발현 벡터에 관한 것이다.
본 명세서에서 용어 "벡터"는 숙주 세포에서 목적 유전자를 발현시키기 위한 수단으로 플라스미드 벡터; 파지미드 벡터; 코즈미드 벡터; 그리고 박테리오파아지 벡터, 아데노바이러스 벡터, 레트로바이러스 벡터 및 아데노-연관 바이러스 벡터 같은 바이러스 벡터 등을 포함되며, 바람직하게는 아데노바이러스 벡터이나, 이에 제한되지 않는다.
본 발명의 벡터는 전형적으로 클로닝을 위한 벡터 또는 발현을 위한 벡터로서 구축될 수 있다. 또한, 본 발명의 벡터는 원핵 세포 또는 진핵 세포를 숙주로 하여 구축될 수 있다. 본 발명의 벡터가 발현 벡터이고, 원핵 세포를 숙주로 하는 경우에는, 전사를 진행시킬 수 있는 강력한 프로모터(예컨대, tac 프로모터, lac 프로모터, lacUV5 프로모터, lpp 프로모터, pLλ 프로모터, pRλ 프로모터, rac5 프로모터, amp 프로모터, recA 프로모터, SP6 프로모터, trp 프로모터 및 T7 프로모터 등), 해독의 개시를 위한 라이보좀 결합 자리 및 전사/해독 종결 서열을 포함하는 것이 일반적이다. 숙주 세포로서 E. coli(예컨대, HB101, BL21, DH5α 등)가 이용되는 경우, E. coli 트립토판 생합성 경로의 프로모터 및 오퍼레이터 부위(Yanofsky, C.(1984), J. Bacteriol., 158:1018-1024) 그리고 파아지의 좌향 프로모터(pLλ 프로모터, Herskowitz, I. and Hagen, D.(1980), Ann. Rev. Genet., 14:399-445)가 조절 부위로서 이용될 수 있다.
한편, 본 발명에 이용될 수 있는 벡터는 당업계에서 종종 사용되는 플라스미드 (예: pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14, pGEX 시리즈, pET 시리즈 및 pUC19 등), 파아지미드(예: pComb3X), 파아지(M13 등) 또는 바이러스 (예: SV40 등)를 조작하여 제작될 수 있다.
한편, 본 발명의 벡터가 발현 벡터이고, 진핵 세포를 숙주로 하는 경우에는, 포유동물 세포의 유전체로부터 유래된 프로모터(예: 메탈로티오닌 프로모터) 또는 포유동물 바이러스로부터 유래된 프로모터(예: 아데노바이러스 후기 프로모터, 백시니아 바이러스 7.5K 프로모터, SV40 프로모터, 사이토메갈로바이러스 프로모터 및 HSV의 사 프로모터)가 이용될 수 있으며, 전사 종결 서열로서 폴리아데닐화 서열을 일반적으로 갖는다.
본 발명의 벡터는 아미노산의 단백질 정제를 용이하게 하기 위하여, 필요에 따라 다른 서열과 융합될 수도 있으며, 융합되는 서열은 예컨대, 글루타티온 S-트랜스퍼라제(Pharmacia, USA), 말토스 결합 단백질(NEB, USA), FLAG (IBI, USA) 및 6x His(hexahistidine; Quiagen, USA) 등이 이용될 수 있으나, 이에 제한되지는 않는다. 또한, 본 발명의 발현 벡터는 선택표지로서, 당업계에서 통상적으로 이용되는 항생제 내성 유전자를 포함할 수 있으며, 예를 들어 암피실린, 겐타마이신, 카베니실린, 클로람페니콜, 스트렙토마이신, 카나마이신, 게네티신, 네오마이신 및 테트라사이클린에 대한 내성 유전자가 있다.
일 구현예에서, 본 발명의 재조합 발현 벡터는 서열번호 1 내지 12의 염기서열을 포함하는 siRNA을 포함할 수 있다. 또한, 서열번호 15의 염기서열을 포함하는 shRNA 또는 서열번호 16의 염기서열의 염기서열을 포함하는 shRNA를 포함할 수 있다.
본 발명의 재조합벡터는 당해 분야에 공지된 재조합 DNA 방법에 의해 제조될 수 있으며, 일 실시예에서는 pE3.1 벡터를 이용하였다.
본 발명에서 BCL2 및 BI-1에 대한 siRNA를 전달하기에 유용한 비바이러스 벡터로는 통상적으로 유전자 요법에 사용되는 모든 벡터를 포함하며, 예를 들어 진핵세포에서 발현 가능한 다양한 플라스미드 및 리포좀 등이 있다.
본 발명에서 BCL2 및 BI-1를 표적으로 하는 이중 가닥 siRNA가 전달된 세포에서 적절히 전사되게 하기 위해서는 이를 포함하는 shRNA를 프로모터에 작동가능하게 연결할 수 있다. 상기 프로모터는 진핵세포에서 기능할 수 있는 프로모터라면 어떤 것이든지 무방하나, U7 프로모터가 보다 바람직하다. BCL2 및 BI-1를 표적으로 하는 이중 가닥 siRNA 또는 shRNA의 효율적인 전사를 위하여 필요에 따라 리더 서열, 폴리아데닐화 서열, 프로모터, 인핸서, 업스트림 활성화 서열, 신호펩타이드 서열 및 전사 종결인자를 비롯한 조절서열을 추가로 포함할 수도 있다.
본 발명에서 BCL2 및 BI-1에 대한 siRNA 또는 shRNA를 전달하기에 유용한 바이러스 또는 바이러스 벡터로는 바쿨로비리디애(baculoviridiae), 파르보비리디애(parvoviridiae), 피코르노비리디애(picornoviridiae), 헤레페스비리디애(herepesviridiae), 폭스비리디애(poxviridiae), 아데노비리디애(adenoviridiae) 등이 있지만, 이에 제한되는 것은 아니다.
일 측면에서, 본 발명은 본원발명의 핵산 분자를 유효성분으로 포함하는, 항암용 약학적 조성물에 대한 것이다.
일 구현예에서, 본 발명의 항암용 약학적 조성물은 항암제를 추가로 포함할 수 있으며, 상기 항암제는 아시바이신, 아클라루비신, 아코다졸, 아크로나이신, 아도젤레신, 알라노신, 알데스루킨, 알로푸리놀 소듐, 알트레타민, 아미노글루테티미드, 아모나파이드, 암플리겐, 암사크린, 안드로겐스, 안구이딘, 아피디콜린 글리시네이트, 아사레이, 아스파라기나아제, 5-아자시티딘, 아자티오프린, 바실러스 칼메테-구에린(BCG), 베이커스 안티폴, 베타-2-디옥시티오구아노신, 비스안트렌 HCl, 블레오마이신 설페이트, 불서판, 부티오닌 설폭시민, BWA 773U82, BW 502U83/HCl, BW 7U85 메실레이트, 세라세미드, 카르베티머, 카르보플라틴, 카르무스틴, 클로람부실, 클로로퀴녹살린-설포나미드, 클로로조토신, 크로모마이신 A3, 시스플라틴, 클라드리빈, 코르티코스테로이드, 코리너박테리움 파르붐, CPT-11, 크리스나톨, 사이클로사이티딘, 사이클로포스파미드, 사이타라빈, 사이템베나, 다비스 말리에이트, 데카르바진, 닥티노마이신, 다우노루바이신 HCl, 디아자유리딘, 덱스라족산, 디언하이드로 갈락티톨, 디아지쿠온, 디브로모둘시톨, 디데민 B, 디에틸디티오카르바메이트, 디클라이코알데하이드, 다이하이드로-5-아자사이틴, 독소루비신, 에치노마이신, 데다트렉세이트, 에델포신, 에플롤니틴, 엘리옷스 용액, 엘사미트루신, 에피루비신, 에소루비신, 에스트라머스틴 포스페이트, 에스트로겐, 에타니다졸, 에티오포스, 에토포사이드, 파드라졸, 파자라빈, 펜레티나이드, 필그라스팀, 피나스테라이드, 플라본 아세트산, 플록스유리딘, 플루다라빈 포스페이트, 5'-플루오로우라실, Fluosol, 플루타미드, 갈륨 나이트레이트, 겜사이타빈, 고세레린 아세테이트, 헤프설팜, 헥사메틸렌 비스아세트아미드, 호모하링토닌, 하이드라진 설페이트, 4-하이드록시안드로스테네디온, 하이드로지우레아, 이다루비신 HCl, 이포스파미드, 4-이포메아놀, 이프로플라틴, 이소트레티노인, 류코보린 칼슘, 류프로라이드 아세테이트, 레바미솔, 리포좀 다우노루비신, 리포좀 포집 독소루비신, 로머스틴, 로니다민, 마이탄신, 메클로레타민 하이드로클로라이드, 멜팔란, 메노가릴, 메르바론, 6-머캅토푸린, 메스나, 바실러스 칼레테-구에린의 메탄올 추출물, 메토트렉세이트, N-메틸포름아미드, 미페프리스톤, 미토구아존, 마이토마이신-C, 미토탄, 미톡산트론 하이드로클로라이드, 모노사이트/마크로파아지 콜로니-자극 인자, 나빌론, 나폭시딘, 네오카르지노스타틴, 옥트레오타이드 아세테이트, 오르마플라틴, 옥살리플라틴, 파크리탁셀, 팔라, 펜토스타틴, 피페라진디온, 피포브로만, 피라루비신, 피리트렉심, 피록산트론 하이드로클로라이드, PIXY-321, 플리카마이신, 포르피머 소듐, 프레드니무스틴, 프로카르바진, 프로게스틴스, 파이라조푸린, 라족산, 사르그라모스팀, 세무스틴, 스피로게르마늄, 스피로무스틴, 스트렙토나이그린, 스트렙토조신, 술로페너르, 수라민 소듐, 타목시펜, 탁소레레, 테가푸르, 테니포사이드, 테레프탈아미딘, 테록시론, 티오구아닌, 티오테파, 티미딘 인젝션, 티아조푸린, 토포테칸, 토레미펜, 트레티노인, 트리플루오페라진 하이드로클로라이드, 트리플루리딘, 트리메트렉세이트, TNF(tumor necrosis factor), 우라실 머스타드, 빈블라스틴 설페이트, 빈크리스틴 설페이트, 빈데신, 비노렐빈, 빈졸리딘, Yoshi 864, 조루비신, 사이토신아라비노시드, 에토포시드, 멜파란 및 탁솔로 이루어진 군에서 선택된 1종 이상이고, 바람직하게는 BT-737, 택솔(Taxol), 시스플라틴(Cisplatin) 또는 에토포사이드(Etoposide)이나, 본 발명의 이중 표적 siRNA 세트 1-6와 병용하여 효과적으로 시너지 효과가 나타날 수 있는 목적을 달성하기 위해서라면, 이에 제한되지 않는다.
일 구현예에서, 상기 암은 대장암, 유방암, 자궁암, 자궁경부암, 난소암, 전립선암, 뇌종양, 두경부암종, 흑색종, 골수종, 백혈병, 림프종, 위암, 폐암, 췌장암, 비소세포성폐암, 간암, 식도암, 소장암, 항문부근암, 나팔관암종, 자궁내막암종, 질암종, 음문암종, 호지킨병, 방광암, 신장암, 수뇨관암, 신장세포암종, 신장골반암종, 골암, 피부암, 두부암, 경부암, 피부흑색종, 안구내흑색종, 내분비선암, 갑상선암, 부갑상선암, 부신암, 연조직육종, 요도암, 음경암, 중추신경계(central nervous system; CNS) 종양, 1차 CNS 림프종, 척수종양, 다형성교모세포종 및 뇌하수체선종으로 구성된 군으로부터 선택되는 어느 하나일 수 있으며, 전립선암 또는 자궁경부암인 것이 더욱 바람직하다.
본 발명에서 사용된 용어 "치료"란 본원발명의 핵산을 포함하는 조성물의 투여로 암세포의 사멸 또는 암의 증세를 호전시키거나 이롭게 변경하는 모든 행위를 의미한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면, 대한의학협회 등에서 제시된 자료를 참조하여 본원의 조성물이 효과가 있는 질환의 정확한 기준을 알고, 개선, 향상 및 치료된 정도를 판단할 수 있을 것이다.
일 구현예에서, 상기 약학적 조성물은 경구형 제형, 외용제, 좌제, 멸균 주사용액 및 분무제를 포함하는 군으로부터 선택되는 하나 이상의 제형일 수 있다.
본 발명의 조성물의 치료적으로 유효한 양은 여러 요소, 예를 들면 투여방법, 목적부위, 환자의 상태 등에 따라 달라질 수 있다. 따라서, 인체에 사용 시 투여량은 안전성 및 효율성을 함께 고려하여 적정량으로 결정되어야 한다. 동물실험을 통해 결정한 유효량으로부터 인간에 사용되는 양을 추정하는 것도 가능하다. 유효한 양의 결정시 고려할 이러한 사항은, 예를 들면 Hardman and Limbird, eds., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 10th ed.(2001), Pergamon Press; 및 E.W. Martin ed., Remington's Pharmaceutical Sciences, 18th ed.(1990), Mack Publishing Co.에 기술되어있다.
본 발명의 조성물은 또한 생물학적 제제에 통상적으로 사용되는 담체, 희석제, 부형제 또는 둘 이상의 이들의 조합을 포함할 수 있다. 약제학적으로 허용 가능한 담체는 조성물을 생체 내 전달에 적합한 것이면 특별히 제한되지 않으며, 예를 들면, Merck Index, 13th ed., Merck & Co. Inc. 에 기재된 화합물, 식염수, 멸균수, 링거액, 완충 식염수, 덱스트로스 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 이용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한, 희석제, 분산제, 계면활성제, 결합제 및 윤활제를 부가적으로 첨가하여 수용액, 현탁액, 유탁액 등과 같은 주이용 제형, 환약, 캡슐, 과립 또는 정제로 제제화할 수 있다. 더 나아가 당 분야의 적정한 방법으로 또는 Remington's Pharmaceutical Science(Mack Publishing Company, Easton PA, 18th, 1990)에 개시되어 있는 방법을 이용하여 각 질환에 따라 또는 성분에 따라 바람직하게 제제화할 수 있다.
본 발명의 조성물에 추가로 동일 또는 유사한 기능을 나타내는 유효성분을 1종 이상 함유할 수 있다. 본 발명의 조성물은, 조성물 총 중량에 대하여 상기 단백질을 0.0001 내지 10 중량 %로, 바람직하게는 0.001 내지 1 중량 %를 포함한다.
본 발명의 약학 조성물은 약제학적으로 허용 가능한 첨가제를 더 포함할 수 있으며, 이때 약제학적으로 허용 가능한 첨가제로는 전분, 젤라틴화 전분, 미결정셀룰로오스, 유당, 포비돈, 콜로이달실리콘디옥사이드, 인산수소칼슘, 락토스, 만니톨, 엿, 아라비아고무, 전호화전분, 옥수수전분, 분말셀룰로오스, 히드록시프로필셀룰로오스, 오파드라이, 전분글리콜산나트륨, 카르나우바 납, 합성규산알루미늄, 스테아린산, 스테아린산마그네슘, 스테아린산알루미늄, 스테아린산칼슘, 백당, 덱스트로스, 소르비톨 및 탈크 등이 사용될 수 있다. 본 발명에 따른 약제학적으로 허용 가능한 첨가제는 상기 조성물에 대해 0.1 중량부 내지 90 중량부 포함되는 것이 바람직하나, 이에 한정되는 것은 아니다.
본 발명의 조성물은 목적하는 방법에 따라 비 경구 투여(예를 들어 정맥 내, 피하, 복강 내 또는 국소에 적용)하거나 경구 투여할 수 있으며, 투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설률 및 질환의 중증도 등에 따라 그 범위가 다양하다. 본 발명에 따른 조성물의 일일 투여량은 0.0001 ~ 10 ㎎/㎖이며, 바람직하게는 0.0001 ~ 5 ㎎/㎖이며, 하루 일 회 내지 수회에 나누어 투여하는 것이 더욱 바람직하다.
본 발명의 조성물의 경구 투여를 위한 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데, 통상적으로 사용되는 단순 희석제인 물, 액체 파라핀 이외에 다양한 부형제, 예컨대 습윤제, 감미제, 방향제, 보존제 등이 함께 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성 용제, 현탁제, 유제, 동결건조 제제, 좌제 등이 포함된다.
본 발명의 약학 조성물은 암 및 이의 합병증의 예방 또는 치료에 이용될 수 있으며, 항암보조제로도 사용될 수 있다.
또한 본 발명은 약학적으로 유효한 양의 상기 핵산분자를 개체에 투여하는 단계를 포함하는 암의 예방 및 치료방법을 제공한다.
본 발명의 약학 조성물은 치료적 유효량 또는 약학으로 유효한 양으로 투여한다. 용어 "약학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효 용량 수준은 개체 종류 및 중증도, 연령, 성별, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다.
하기의 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나 하기 실시예는 본 발명의 내용을 구체화하기 위한 것일 뿐 이에 의해 본 발명이 한정되는 것은 아니다.
실시예 1. 이중 표적 siRNA 제작
BCL2(B-cell lymphoma 2) 및 BI-1(BAX inhibitor 1)을 동시에 억제할 수 있는 21mer 의 이중 표적 siRNA (double strand)를 하기 표 1의 서열로 제작하였다 (Bioneer, Daejeon, Korea).
Figure PCTKR2018008186-appb-T000001
상기 서열번호 1 및 2로 이루어진 21mer의 siRNA 세트 1은 15mer가 서로 상보적이다. 서열번호 3 및 4로 이루어진 20mer의 siRNA 세트 2는 14mer가 서로 상보적이다. 서열번호 5 및 6으로 이루어진 20mer의 siRNA 세트 3은 14mer가 서로 상보적이다. 서열번호 7 및 8으로 이루어진 19mer의 siRNA 세트 4는 13mer가 서로 상보적이다. 서열번호 9 및 10으로 이루어진 19mer의 siRNA 세트 5는 13mer가 서로 상보적이다. 서열번호 11 및 12로 이루어진 18mer의 siRNA 세트 6은 12mer가 서로 상보적이다.
상기 서열번호 1, 3, 5, 7, 9 또는 11의 siRNA (Antisense Bcl-2)가 Bcl-2의 mRNA에 상보적으로 결합한다. 또한, 서열번호 2, 4, 6, 8, 10 또는 12의 siRNA (Antisense BI-1)가 BI-1의 mRNA에 상보적으로 결합하여 Bcl-2 및 BI-1 유전자의 발현을 동시에 감소시킨다.
실시예 2. 이중 표적 shRNA 제작
상기 실시예 1에서 제작한 이중 표적 siRNA 세트 1을 세포 내에서 발현할 수 있게 하기 위하여, 상기 siRNA 이중 가닥의 DNA 변환 서열 (서열번호 13 및 14)과 루프 서열을 포함하는 shRNA들 (TTCAAGAGAG 루프 shRNA 및 TTGGATCCAA 루프 shRNA)을 제작하였다 (표 2). 제작한 shRNA들을 각각 pE3.1 벡터 (도 1)의 제한효소 PstⅠ 및 EcoRⅤ 절단 위치에 U7 프로모터 (서열번호 17) 이후에 오도록 배치하여, BCL2 및 BI-1를 표적으로 하는 이중 표적 siRNA를 포함하는 두 종의 shRNA를 세포 내에서 발현할 수 있는 재조합 발현 벡터를 제작하였다.
Figure PCTKR2018008186-appb-T000002
실험예 1. 이중 표적 siRNA의 Bcl-2 및 BI-1 유전자 발현 억제 효과 확인
12웰 플레이트에 Hela, Hek293 또는 A549세포를 각각 분주한 뒤, 세포 confluent가 50%가 될 때까지 10% FBS (Hyclone 사)가 첨가된 RPMI 배지 (Hyclone 사)에서 37℃, 5% CO2 조건으로 배양하였다. 그 후, 상기 Hela, Hek293 또는 A549세포가 배양된 웰에 상기 실시예 1에서 제작한 이중 표적 siRNA 세트 1을, A549 세포에는 본 발명의 이중 표적 siRNA 세트 2-6을 웰당 80 pmole씩 3㎕의 리포펙타민(lipofectamine)3000 (Invitrogen, Carlsbad, CA, USA)으로 트랜스펙션하여 BCL2 및 BI-1를 동시에 낙다운하였다. 트랜스펙션 48시간 후, 세포를 파쇄하여 GeneJET RNA Purification Kit (Invitrogen)로 총 RNA를 추출하였다. 추출한 총 RNA를 주형으로 사용하여 RT-PCR 반응을 통해 cDNA로 역전사 한 뒤, q-PCR 반응을 통해 이중 표적 siRNA에 의한 BCL2 및 BI-1의 mRNA 발현량을 확인하였다. 구체적으로, 하기 표 3의 프라이머 세트와 표 4의 반응 혼합물을 이용하여 표 5의 PCR 조건으로 낙다운한 세포 파쇄물에서의 BCL2 및 BI-1의 mRNA를 cDNA로 변환하였다.
Figure PCTKR2018008186-appb-T000003
Figure PCTKR2018008186-appb-T000004
Figure PCTKR2018008186-appb-T000005
역전사된 cDNA를 주형으로 이용하여, 하기 표 6의 조성으로 반응 혼합물을 준비하고 표 7의 조건으로 qPCR 을 수행하였다. 참고로, 사용한 프로브는 Bcl2(Thermo, Hs00608023_m1), BI-1(Thermo, Dm01835892_g1), GAPDH(Thermo, Hs02786624_g1)이며, QS3 장비를 이용하여 수행하였다. 모든 반응은 3회씩 반복수행되고 이들의 평균값이 취해졌다. 이렇게 얻은 결과들은 하우스키핑 유전자인 GAPDH의 mRNA 값에 대해 정규화하였다.
Figure PCTKR2018008186-appb-T000006
Figure PCTKR2018008186-appb-T000007
그 결과, 이중 표적 siRNA 세트 1-6에 의해 BCL2 및 BI-1의 발현이 모두 감소하여, 본 발명의 이중 표적 siRNA가 두 유전자의 발현을 동시에 억제하는 것을 알 수 있었다 (도 2 및 도 3).
따라서, 본 발명의 이중 표적 siRNA는 두 유전자의 발현을 동시에 억제하는 것으로, 이를 통해 암세포의 사멸을 촉진하여 현저한 항암 활성이 나타남을 확인한 바, 다양한 암종에 항암용 조성물 또는 항암보조제로서 유용하게 이용될 수 있음을 시사한다.
실험예 2. 이중 표적 siRNA과 항암제의 병용 처리에 의한 암세포 사멸 효과 확인
인간 전립선 암세포주인 PC3 세포주를 6웰 플레이트에 각각 배양한 뒤, 본 발명의 이중 표적 siRNA 세트 1 (si-BB1)와, 하기 표 8의 대조군 BCL2 또는 BI-1 각각에 대한 siRNA를 각각 트랜스펙션한 뒤 48시간 뒤에 시스플라틴을 10 ~ 20 uM로 처리하였다. 시스플라틴 처리 12시간 뒤에 5mg/mL MTT (Promega, Ltd.)를 세포에 처리하고 4시간 동안 인큐베이션하였다. 그 후, 배지를 제거하고 가용화 용액(solubilization solution) 및 정지 용액(stop solution) 150㎕을 처리하고 37℃에서 4시간 동안 인큐베이션 하였다. 반응 용액의 흡광도를 570nm에서 측정하고 하기 수학식을 이용하여 세포 생존율을 계산하였다.
Figure PCTKR2018008186-appb-M000001
Figure PCTKR2018008186-appb-T000008
그 결과, 시스플라틴을 처리하지 않고, 대조군 siRNA를 처리한 대조군에 비해 본 발명의 이중 표적 siRNA 세트 1을 시스플라틴과 병용 처리한 군이 암세포 사멸이 현저히 증가하였으며, 그 정도가 BCL2 및 BI-1 각각에 대한 siRNA를 처리한 군들에 비해 현저히 증가한 것을 알 수 있었다 (도 4).
실험예 3. 항암제와 이중 표적 siRNA의 병용 처리에 의한 시너지 효과 확인
3-1. BCL2 siRNA 및 BI-1 siRNA 혼합 처리
인간 자궁경부암 세포주인 Hela 세포에 BCL2 또는 BI-1 각각에 대한 siRNA를 함께 트랜스펙션한 뒤, 항암제를 종류별로 6시간 동안 처리한 뒤 암세포주의 사멸 정도를 MTT 분석을 통해 확인하였다. 구체적으로, 6웰 플레이트에 분주한 Hela 세포에 웰당 200 pmole의 siRNA를 리포펙타민 7.5㎕로 트랜스펙션한 뒤 48시간 동안 인큐베이션하고, 세포주를 다시 96웰-플레이트에 재분주하고 50% 컨플루언시 (2.5×104)가 되도록 배양한 뒤 택솔 0.5μM, 시스플라틴 20μM 및 에토포사이드 10μM를 각각 처리하고 6시간 뒤에 실험예 2에서와 같이 MTT 분석을 수행하여 암세포의 사멸 정도를 확인하였다.
그 결과, BCL2 또는 BI-1 각각에 대한 siRNA를 함께 트랜스펙션한 경우, siRNA들만을 처리한 대조군의 경우 암세포의 사멸이 거의 일어나지 않았으나, 항암제와 병용 처리시 암세포 사멸 효과가 어느 정도 발생하였다 (도 5).
3-2. BCL2 및 BI-1에 대한 이중 표적 siRNA 세트 1 처리
본 발명의 이중 표적 siRNA 세트 1(si-BB1)와 항암제와의 시너지 효과를 확인하기 위하여, 상기 실험예 3-1에서와 같이, 인간 자궁경부암 세포주인 Hela 세포에 본 발명의 BCL2 및 BI-1에 대한 이중 표적 siRNA를 트랜스펙션한 뒤, 항암제를 종류별로 6시간 동안 처리한 뒤 암세포주의 사멸 정도를 MTT 분석을 통해 확인하였다. 구체적으로, 6웰 플레이트에 분주한 Hela 세포에 웰당 200 pmole의 siRNA를 리포펙타민 7.5㎕로 트랜스펙션한 뒤 48시간 동안 인큐베이션하고, 세포주를 다시 96웰-플레이트에 재분주하고 50% 컨플루언시 (2.5×104)가 되도록 배양한 뒤 상기 실험예 3-1에서 사용한 항암제 농도의 절반인 택솔 0.25μM, 시스플라틴 10μM 및 에토포사이드 5μM로 각각 처리하고 6시간 뒤에 실험예 2에서와 같이 MTT 분석을 수행하여 암세포의 사멸 정도를 확인하였다.
그 결과, 본 발명의 BCL2 및 BI-1에 대한 이중 표적 siRNA만을 처리한 대조군의 경우 암세포의 사멸이 현저히 발생하였으며, BCL2 siRNA 및 BI-1 siRNA를 함께 처리한 실험에 3-1보다 현저히 적은 농도의 항암제와의 병용 처리에도 암세포 사멸 효과가 시너지적으로 증가하는 것을 알 수 있었다 (도 6). 이를 통해, 본 발명의 이중 표적 siRNA 자체가 항암 활성을 나타내고, 항암제와의 병용 처리에 의한 시너지 효과도 이중 표적 siRNA에 특이적임을 유추할 수 있었다.
실험예 4. 이중 표적 siRNA의 Bcl2 억제제와의 효과 비교
본 발명의 BCL2 및 BI-1에 대한 이중 표적 siRNA의 암세포 사멸 억제 효과를 BCL2의 억제를 통한 암세포 치료제로 이용되고 있는 ABT-737 약물과 비교하였다. 구체적으로, 상기 실험예들에서와 같이 전립선 암 세포인 LnCap 세포주를 분주한 뒤, 본 발명의 BCL2 및 BI-1에 대한 siRNA 세트 1(si-BB1)를 트랜스펙션하고 ABT-737 3μM을 처리한 뒤 12시간 동안 인큐베이션한 후, MTT 분석으로 암세포주의 사멸 정도를 확인하였다.
그 결과, ABT-737 또는 본 발명의 BCL2 및 BI-1에 대한 siRNA 세트 1(si-BB1) 처리에 의해 LnCap 세포주의 사멸이 증가하였으며, 특히, ABT-737와 본 발명의 이중 표적 siRNA를 병용 처리한 경우 시너지적으로 암세포의 사멸이 현저하게 증가한 것을 알 수 있었다 (도 7).

Claims (13)

  1. BCL2(B-cell lymphoma 2) 유전자 및 BI-1(BAX inhibitor 1) 유전자의 발현을 동시에 억제하는 핵산 분자.
  2. 제1항에 있어서, 서열번호 1 및 2; 서열번호 3 및 4; 서열번호 5 및 6; 서열번호 7 및 8; 서열번호 9 및 10; 및 서열번호 11 및 12;으로 이루어진 군에서 선택된 1종 이상의 염기서열과 80% 이상의 서열 상동성을 갖는 서열을 포함하는 핵산 분자.
  3. 제2항에 있어서, 서열번호 1, 3, 5, 7, 9 또는 11의 염기서열을 포함하는 핵산 분자는 RNA 간섭에 의해 BCL2 유전자 발현을 억제하는 것을 특징으로 하는, 핵산 분자.
  4. 제2항에 있어서, 서열번호 2, 4, 6, 8, 10 또는 12의 염기서열을 포함하는 핵산 분자는 RNA 간섭에 의해 BI-1 유전자의 발현을 억제하는 것을 특징으로 하는, 핵산 분자.
  5. 제2항에 있어서, 상기 서열번호 1은 서열번호 2와, 서열번호 3은 서열번호 4와, 서열번호 5는 서열번호 6과, 서열번호 7은 서열번호 8과, 서열번호 9는 서열번호 10과, 서열번호 11은 서열번호 12와 부분적으로 상보적 결합을 이루고 있는 이중 가닥(double strand) siRNA인 것을 특징으로 하는, 핵산 분자.
  6. 제2항에 있어서, 서열번호 1의 염기서열과 서열번호 2의 염기서열이 부분적으로 상보적 결합하여 헤어핀 구조를 이루는 것을 특징으로 하는, 핵산 분자.
  7. 제2항에 있어서, 서열번호 1의 염기서열 및 서열번호 2의 염기서열을 포함하는 shRNA(short hairpin RNA)인 것을 특징으로 하는, 핵산 분자.
  8. 제7항에 있어서, shRNA는 서열번호 15 또는 서열번호 16의 염기서열과 80% 이상의 서열 상동성을 갖는 서열인 것을 특징으로 하는, 핵산 분자.
  9. 제 1항의 핵산 분자를 포함하는 재조합 발현 벡터.
  10. 제9항의 재조합 발현 벡터가 도입된 형질전환된 세포.
  11. 제1항의 핵산 분자를 유효성분으로 포함하는, 항암용 약학적 조성물.
  12. 제11항에 있어서, 항암제를 추가로 포함하는 것을 특징으로 하는, 항암용 약학적 조성물.
  13. 약학적으로 유효한 양의 제1항의 핵산분자를 개체에 투여하는 단계를 포함하는 암의 예방 및 치료방법.
PCT/KR2018/008186 2017-07-20 2018-07-19 Bcl2 유전자 및 bi-1 유전자의 발현을 동시에 억제하는 핵산 WO2019017714A2 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0091980 2017-07-20
KR1020170091980A KR101993377B1 (ko) 2017-07-20 2017-07-20 Bcl2 유전자 및 bi-1 유전자의 발현을 동시에 억제하는 핵산
KR10-2018-0083932 2018-07-19
KR1020180083932A KR102145665B1 (ko) 2018-07-19 2018-07-19 Bcl2 유전자 및 bi-1 유전자의 발현을 동시에 억제하는 핵산

Publications (3)

Publication Number Publication Date
WO2019017714A2 true WO2019017714A2 (ko) 2019-01-24
WO2019017714A3 WO2019017714A3 (ko) 2019-03-07
WO2019017714A9 WO2019017714A9 (ko) 2019-03-28

Family

ID=65016327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008186 WO2019017714A2 (ko) 2017-07-20 2018-07-19 Bcl2 유전자 및 bi-1 유전자의 발현을 동시에 억제하는 핵산

Country Status (1)

Country Link
WO (1) WO2019017714A2 (ko)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100929699B1 (ko) * 2007-08-06 2009-12-03 이동기 다수 표적 유전자들을 제어하는 간섭 유도 rna들 및그들의 제조방법

Also Published As

Publication number Publication date
WO2019017714A3 (ko) 2019-03-07
WO2019017714A9 (ko) 2019-03-28

Similar Documents

Publication Publication Date Title
WO2018143626A1 (ko) Mtor 유전자 및 stat3 유전자의 발현을 동시에 억제하는 핵산
US9752152B2 (en) Organic compositions to treat beta-ENaC-related diseases
KR101993377B1 (ko) Bcl2 유전자 및 bi-1 유전자의 발현을 동시에 억제하는 핵산
WO2019017713A9 (ko) AR 유전자 및 mTOR 유전자의 발현을 동시에 억제하는 핵산
KR102145664B1 (ko) AR 유전자 및 mTOR 유전자의 발현을 동시에 억제하는 핵산
KR101999515B1 (ko) AR 유전자 및 mTOR 유전자의 발현을 동시에 억제하는 핵산
KR102034764B1 (ko) mTOR 유전자 및 STAT3 유전자의 발현을 동시에 억제하는 핵산
WO2019017714A9 (ko) Bcl2 유전자 및 bi-1 유전자의 발현을 동시에 억제하는 핵산
KR102145665B1 (ko) Bcl2 유전자 및 bi-1 유전자의 발현을 동시에 억제하는 핵산
WO2021194179A1 (ko) Stat3 및 mtor를 이중 특이적으로 표적하는 핵산서열을 포함한 항암 바이러스
KR101865025B1 (ko) mTOR 유전자 및 STAT3 유전자의 발현을 동시에 억제하는 핵산
WO2023121178A1 (ko) Mtor 유전자 및 stat3 유전자의 발현을 동시에 억제하는 핵산
WO2022191661A1 (ko) C-met 유전자 및 pd-l1 유전자의 발현을 동시에 억제하는 핵산
WO2021194181A1 (ko) Ar 및 mtor를 이중 특이적으로 표적하는 핵산분자를 포함하는 항암바이러스
KR20220164732A (ko) 변형된 단간섭 rna 조성물 및 암 치료에 있어서의 이의 용도
KR20150086442A (ko) ANT2 siRNA를 함유하는 HER2 표적 항암제에 대한 내성 극복을 위한 조성물
AU2021240326A1 (en) Organic compositions to treat Beta-ENac-related diseases
KR20180085978A (ko) Ask1에 특이적으로 결합하는 rna 앱타머

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18834708

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18834708

Country of ref document: EP

Kind code of ref document: A2