WO2019017539A1 - 반도체 챔버 온도 측정용 웨이퍼 레벨 패키징 방식의 수동형 표면탄성파 무선 웨이퍼 - Google Patents

반도체 챔버 온도 측정용 웨이퍼 레벨 패키징 방식의 수동형 표면탄성파 무선 웨이퍼 Download PDF

Info

Publication number
WO2019017539A1
WO2019017539A1 PCT/KR2017/014550 KR2017014550W WO2019017539A1 WO 2019017539 A1 WO2019017539 A1 WO 2019017539A1 KR 2017014550 W KR2017014550 W KR 2017014550W WO 2019017539 A1 WO2019017539 A1 WO 2019017539A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
temperature
piezoelectric
surface acoustic
acoustic wave
Prior art date
Application number
PCT/KR2017/014550
Other languages
English (en)
French (fr)
Inventor
유원식
홍제관
Original Assignee
(주)에이엠티솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에이엠티솔루션 filed Critical (주)에이엠티솔루션
Publication of WO2019017539A1 publication Critical patent/WO2019017539A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment

Definitions

  • the present invention relates to a wafer for temperature measurement packaged at a wafer level with a surface acoustic wave high temperature sensor for monitoring room temperature of a silicon wafer processed by a semiconductor micromachining process.
  • a wafer is subjected to a manufacturing process in a heated state in a micromachining process in accordance with heating conditions.
  • a temperature difference occurs between the micromachining and the wafer, thereby causing a difference between the set temperature of the micromachining and the actual wafer temperature.
  • test wafers (dummy wafers) which are provided in micromachining and are capable of measuring temperature have been developed and used.
  • the wafer thus developed and commercialized is a TC (Thermocouple wafer) wafer, and an example of the TC wafer is disclosed in Korean Patent No. 10-1746560.
  • the TC wafer according to the related art as shown in FIG. 1 is configured to measure the change in resistance value with temperature on the wafer, measure the temperature on the wafer, and transmit the measured value to the external terminal through the terminal cable.
  • the conventional TC wafer is configured to transmit the temperature value measured by the sensor on the wafer to the external terminal through the wired cable, and to monitor the temperature in the micromachining, so that the structure of the micromachining due to the connection of the cable becomes complicated There was a problem.
  • the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a temperature sensor (SAW sensor) using a surface acoustic wave on a wafer, To provide a wafer.
  • SAW sensor temperature sensor
  • a piezoelectric device comprising: a piezoelectric wafer; A temperature sensor provided on the piezoelectric wafer for generating a surface acoustic wave according to a temperature change; A cover wafer for shielding the upper surface of the temperature sensor; And a bonding portion for bonding the piezoelectric wafer and the cover wafer.
  • the temperature sensor is packaged in a wafer level package (WLP) manner between the piezoelectric wafer and the cover wafer.
  • WLP wafer level package
  • the temperature sensor includes: an elastic wave generating unit attached to the piezoelectric wafer; An insulating portion forming an upper portion of the elastic wave generating portion; And a planar antenna formed on the upper surface of the insulating part.
  • the piezoelectric wafer and the plane antenna may be connected by a metal arm.
  • planar antenna may be formed in a pattern bent in a plane.
  • the plane antenna may be subjected to gold (AU) coating.
  • AU gold
  • the elastic wave generating part may include a reflection part on an IDT (Inter Digital Transducer) metal film to generate different surface acoustic waves according to the temperature of the piezoelectric wafer.
  • IDT Inter Digital Transducer
  • the IDT metal film may be aluminum (AL) -coated.
  • the bonding portion may be a bonding portion using a gold (AU) base material.
  • a plurality of the temperature sensors may be distributed on the piezoelectric wafer.
  • the plurality of temperature sensors may be arranged on the piezoelectric wafer in a vertically and horizontally symmetrical manner.
  • the plurality of temperature sensors may be configured such that surface acoustic waves of different center frequencies are generated by having reflective portions of different patterns, respectively.
  • the piezoelectric wafer or the cover wafer may have grooves on which the temperature sensors are mounted, and the grooves may be formed by physical grinding or chemical mechanical polishing (CMP).
  • the piezoelectric wafer and the cover wafer may be bonded at room temperature according to the magnetic diffusion rate of the atoms after forming the thin metal thin film layer.
  • a temperature sensor (SAW sensor) using a surface acoustic wave is provided on a wafer, and the temperature on the wafer can be monitored wirelessly in real time.
  • a plurality of SAW sensors are dispersed on a wafer, and the uniformity of temperature can be measured for each wafer portion.
  • FIG. 1 is an exemplary view showing an example of a temperature measurement wafer according to the prior art
  • FIG. 2 is a sectional view showing a specific example of a temperature measurement wafer according to the present invention.
  • FIG 3 is an enlarged view of a temperature sensor portion of a temperature measurement wafer according to the present invention.
  • Fig. 4 is an exemplary view showing a concrete example of an elastic wave generating part constituting a temperature sensor of a temperature measuring wafer according to the present invention
  • FIG. 5 is an exemplary view showing an embodiment of a temperature sensor arrangement structure of a temperature measurement wafer according to the present invention.
  • FIG. 6 is an exemplary view showing another embodiment of a temperature sensor arrangement structure of a temperature measurement wafer according to the present invention.
  • FIG. 7 is an exemplary view showing various examples of an acoustic wave generating unit constituting temperature sensors according to the present invention.
  • a specific embodiment of the present invention includes a piezoelectric wafer constituting a piezoelectric substrate; A temperature sensor provided on the piezoelectric wafer for generating a surface acoustic wave according to a temperature change; A cover wafer for shielding the upper surface of the temperature sensor; And a bonding portion for bonding the piezoelectric wafer and the cover wafer.
  • the temperature sensor is packaged in a WLP (Wafer Level Package) system between the piezoelectric wafer and the cover wafer, An elastic wave generating unit attached to the elastic member; An insulating portion forming an upper portion of the elastic wave generating portion; And a planar antenna formed on the upper surface of the insulation part.
  • WLP Wafer Level Package
  • FIG. 2 is a cross-sectional view showing a specific embodiment of a temperature measuring wafer according to the present invention
  • FIG. 4 is an exemplary view showing a specific example of an elastic wave generating part constituting a temperature sensor of a temperature measuring wafer according to the present invention
  • FIG. 5 is an exemplary view showing an embodiment of a temperature sensor arrangement structure of a temperature measurement wafer according to the present invention
  • FIG. 6 is an exemplary view showing another embodiment of a temperature sensor arrangement structure of a temperature measurement wafer according to the present invention
  • FIG. 7 is an exemplary view showing various examples of the acoustic wave generating unit constituting the temperature sensors according to the present invention.
  • a temperature measurement wafer includes a piezoelectric wafer 100, a cover wafer 200, and a temperature sensor 300 between two wafers, and these wafers are bonded ).
  • the temperature sensor 300 includes an elastic wave generating unit 310, an insulating unit 320, and a flat antenna 330.
  • the elastic wave generating unit 310 generates a surface acoustic wave in response to a driving signal.
  • the elastic wave generating unit 310 includes an interdigital transducer (IDT) metal film 311 including a transducer, 313).
  • IDT interdigital transducer
  • the piezoelectric wafer 100 functions as a piezoelectric substrate of the temperature sensor 300, and not only the delay line expands or contracts depending on the ambient temperature, but also affects the physical properties of the piezoelectric substrate, The propagation time of the elastic wave changes or the resonance frequency changes.
  • the transducer included in the ITD metal film 311 may be an interdigital transducer as a comb electrode, and generate a surface acoustic wave by a received driving signal.
  • the reflection portion 313 functions to propagate the surface acoustic wave generated from the IDT metal film 311 through the delay line, reflect the surface acoustic wave at the end portion of the delay line, and propagate the IDT metal film 311 again .
  • the surface temperature of the temperature sensor 300 can be measured by receiving and analyzing the surface acoustic wave through a reader provided outside the micromachined chamber.
  • the IDT metal layer 311 may be coated with aluminum (AL).
  • the insulating portion 320 is formed of an insulating material so as to fix the surface acoustic wave generating portion on the piezoelectric wafer.
  • the thickness of the insulation part 320 is selected according to the performance of the antenna, and the thickness is preferably thick because it affects the radiation field of the antenna, but it is designed to have a proper thickness considering the thickness of the entire temperature measurement wafer.
  • the flat antenna 330 is formed on the insulating portion 320 in a flat plane in the form of an attachment piece.
  • the planar antenna 330 may have a lower height and a smaller volume than a whip antenna or a helical antenna.
  • the flat antenna 330 is connected to the ground wire and the feed line itself and is preferably coated with the gold (AU) so as to have the same potential in a high voltage and strong electric field environment, The resistance is strong and the reliability is high and the durability can be improved.
  • the planar antennas 330 and 330 ' may be formed in a straight shape, but it is preferable that the planar antennas 330 and 330' are formed in a curved pattern, .
  • planar antennas 330 and 330 ' may include a feed point and a ground point.
  • the temperature sensor according to the present invention may further comprise an energy storage unit.
  • the energy storage unit increases the power of the signal received from the reader and provides the signal to the elastic wave generating unit 310 to strongly amplify the intensity of the surface acoustic wave generated from the elastic wave generating unit 310.
  • the energy storage unit is configured to increase the surface acoustic wave intensity of the elastic wave generating unit 310, and may be applied when the distance between the temperature sensor 300 and the reader is relatively long.
  • the energy storage unit may include a charge pump, a booster, a capacitor, and the like.
  • the present invention basically comprises a temperature sensor between a piezoelectric wafer and a cover wafer in a WLP (wafer level package) system.
  • a WLP wafer level package
  • the bonding method of the piezoelectric wafer 100 and the cover wafer 200 is considered, The piezoelectric wafer 100 and the cover wafer 200 are bonded to each other by a bonding portion 400.
  • a gold (Au) bump method may be applied for the bonding.
  • the gold bump is excellent in physical and chemical properties, is excellent in electric and thermal conductivity, has chemical stability and is free from oxidation (acid / alkali) and oxidation at high temperature.
  • the bonding of the piezoelectric wafer 100 and the cover wafer 200 according to the present invention may be performed by a wafer direct bonding method or an atomic diffusion bonding method.
  • the wafer direct bonding method is a bonding method in which grooves are formed in the piezoelectric wafer and / or the cover wafer and a temperature sensor is seated in the grooves in order to lower the total stack height of the wafer,
  • the grooves may be formed by physical grinding or chemical mechanical polishing (CMP).
  • Atomic diffusion bonding refers to bonding the piezoelectric wafer and the cover wafer at room temperature using a high magnetic diffusion rate of atoms after forming a thin metal thin film layer.
  • the piezoelectric wafer 100 and the plane antenna 330 are connected to each other by a metal arm, thereby increasing the surface acoustic wave generating efficiency.
  • FIG. 5 is an exemplary view showing an embodiment of a temperature sensor arrangement structure of a temperature measurement wafer according to the present invention
  • FIG. 6 is an exemplary view showing another embodiment of a temperature sensor arrangement structure of a temperature measurement wafer according to the present invention
  • FIG. 7 is an exemplary view showing various examples of the acoustic wave generating unit constituting the temperature sensors according to the present invention.
  • the temperature measurement wafer according to the present invention is preferably configured so as to not only accurately measure the temperature of the wafer itself, but also to judge the temperature deviation according to the position on the wafer.
  • a plurality of temperature sensors 300 are dispersedly disposed on the temperature measurement wafer according to the present invention.
  • the temperature sensor 300 is arranged on the piezoelectric wafer 100 so as to be evenly distributed over the entire area in a vertically and horizontally symmetrical manner, so that the temperature of the entire area of the wafer can be measured evenly.
  • the receiver can analyze the surface acoustic waves output from the temperature sensors 300 to determine whether a temperature deviation outside the error range is generated on the wafer.
  • the planar antenna 330 of the temperature sensor 300 may be formed in a linear shape as shown in FIG. 5, or may be formed in a curved shape as shown in FIG. 6, May be increased.
  • the temperature sensors 300 may be disposed on different reflection parts 313A, 313B, 313C, Pattern can be formed.
  • Each of the temperature sensors 310A, 310B, 310C,... Generates surface acoustic waves having different center frequencies, so that the receiver can individually grasp the temperature of each point on the wafer.
  • the temperature measurement wafer according to the present invention is inserted into a measurement facility (micromachined chamber) to be measured. And transmits a driving signal through a reader provided outside the measured equipment while the measured equipment is operating.
  • the drive signal is input to the transducer in the IDT metal film 311 of the temperature sensor 300 and propagated along the surface of the piezoelectric wafer 100, Propagates along the delay line, and propagates to the reflector 313.
  • the propagated surface acoustic wave is reflected by the reflection part 313 and transmitted again by the plane antenna 330 via the delay line and the transducer.
  • the driving signal may be amplified by the energy storage unit and transmitted to the transducer.
  • the reader receives the signal and can analyze the frequency characteristics such as the amplitude or the frequency of the frequency to calculate the wafer temperature in the measured equipment.
  • the present invention relates to a silicon wafer having a surface acoustic wave high temperature sensor for monitoring a room temperature of a silicon wafer processed by a semiconductor micromachining process.
  • the present invention relates to a silicon wafer provided with a surface acoustic wave (SAW sensor) is installed, and the temperature on the wafer can be monitored wirelessly in real time.
  • SAW sensor surface acoustic wave

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

본 발명은 반도체 마이크로 머시닝 프로세스에 의해 가공되는 실리콘 웨이퍼의 실온을 모니터링하기 위해, 표면 탄성파 고온센서를 구비하여 웨이퍼 수준으로 패키징된 온도측정용 웨이퍼에 관한 것으로, 본 발명은 압전기판을 구성하는 압전웨이퍼와; 상기 압전웨이퍼 상에 구비되어, 온도변화에 따라 표면탄성파를 발생시키는 온도센서와; 상기 온도센서 상면을 차폐하는 커버웨이퍼; 그리고 상기 압전웨이퍼와 상기 커버웨이퍼를 결합하는 접착부를 포함하여 구성되고: 상기 온도센서는, 상기 압전웨이퍼와 커버웨이퍼 사이에 WLP(Wafer Level Package) 방식으로 패키징된다. 이와 같은 본 발명에 의하면, 본 발명은 웨이퍼 상에 표면탄성파를 이용한 온도센서(SAW 센서)를 설치하여, 실시간으로 웨이퍼 상의 온도를 무선으로 모니터링 할 수 있는 효과가 있다.

Description

반도체 챔버 온도 측정용 웨이퍼 레벨 패키징 방식의 수동형 표면탄성파 무선 웨이퍼
본 발명은 반도체 마이크로 머시닝 프로세스에 의해 가공되는 실리콘 웨이퍼의 실온을 모니터링하기 위해, 표면 탄성파 고온센서를 구비하여 웨이퍼 수준으로 패키징된 온도측정용 웨이퍼에 관한 것이다.
반도체 제조공정에서 웨이퍼는 마이크로 머시닝 내에서 가열조건에 따라 열을 전달받아 가열된 상태에서 제조 공정이 수행된다. 이때 마이크로 머시닝에서 웨이퍼로 열이 전도되는 과정에서 열 손실이 발생되므로 마이크로 머시닝과 웨이퍼 사이에 온도차이가 발생되고, 이에 따라 마이크로 머시닝의 설정온도와 실제 웨이퍼의 온도 사이에는 차이가 발생하게 된다.
따라서 웨이퍼의 실제 온도를 정확히 파악하기 위해 마이크로 머시닝의 온도가 아닌 웨이퍼 상의 온도를 측정할 필요가 있다. 또한, 한 장의 웨이퍼 내에서도 위치에 따라 온도의 변화가 다르게 나타날 수 있고, 이 경우, 웨이퍼의 부분별로 공정의 환경 조건이 달라져 신뢰도가 저하될 수 있으므로, 웨이퍼 전면적에 대한 온도 균일도를 파악할 필요성이 있다.
이와 같은 기술적 필요성에 의해, 최근에는 마이크로 머시닝 내에 구비되어 온도를 측정할 수 있도록 구성된 테스트 웨이퍼(더미 웨이퍼)가 개발되어 사용되고 있다.
이와 같이 개발되어 상용화된 웨이퍼가 TC(Thermocouple wafer) 웨이퍼이고, 상기 TC 웨이퍼의 일 예가 대한민국 등록특허 제10-1746560호에 개시되어 있다.
도 1에 도시된 바와 같은 종래기술에 의한 TC 웨이퍼는, 웨이퍼 상에 온도에 따른 저항값 변화를 측정하여, 웨이퍼 상의 온도를 측정하고, 단자 케이블을 통해 측정값을 외부 단말기에 전송하도록 구성된다.
이와 같이, 종래의 TC 웨이퍼는 웨이퍼 상의 센서에 의해 측정된 온도값을 유선 케이블을 통해 외부 단말기에 전송하여, 마이크로 머시닝 내의 온도를 모니터링하도록 구성되므로, 케이블의 연결에 따른 마이크로 머시닝의 구조가 복잡해지는 문제점이 있었다.
특히, 밀폐를 요하는 마이크로 머시닝의 경우, TC 웨이퍼 설치로 인하여, 완전한 밀폐성이 확보되지 못하는 문제점이 있었다.
또한, 일반적인 무선 통신 소자와 온도 측정 센서를 웨이퍼 상에 설치할 경우, 마이크로 머시닝 내부의 고온에 의해 소자의 파손이 발생될 뿐만아니라, 능동형 소자의 경우, 배터리의 과열로 인하여 2차 피해가 발생될 우려가 있었다.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 안출된 것으로, 본 발명은 웨이퍼 상에 표면탄성파를 이용한 온도센서(SAW 센서)를 설치하여, 실시간으로 웨이퍼 상의 온도를 무선으로 모니터링 할 수 있는 TC 웨이퍼를 제공하고자 하는 것이다.
또한, 본 발명은 웨이퍼 상에 SAW 센서를 다수 개로 분산 배치하여, 웨이퍼 부분별로 온도의 균일성 여부를 측정할 수 있는 TC 웨이퍼를 제공하고자 하는 것이다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 본 발명은 압전기판을 구성하는 압전웨이퍼와; 상기 압전웨이퍼 상에 구비되어, 온도변화에 따라 표면탄성파를 발생시키는 온도센서와; 상기 온도센서 상면을 차폐하는 커버웨이퍼; 그리고 상기 압전웨이퍼와 상기 커버웨이퍼를 결합하는 접착부를 포함하여 구성되고: 상기 온도센서는, 상기 압전웨이퍼와 커버웨이퍼 사이에 WLP(Wafer Level Package) 방식으로 패키징된다.
이때, 상기 온도센서는, 상기 압전웨이퍼에 부착되는 탄성파 생성부와; 상기 탄성파 생성부 상부를 형성하는 절연부; 그리고 상기 절연부 상면에 형성되는 평면 안테나를 포함하여 구성될 수도 있다.
그리고 상기 압전웨이퍼와 상기 평면 안테나는 금속암으로 연결될 수도 있다.
또한, 상기 평면 안테나는 평면상에서 굴곡된 패턴으로 형성될 수도 있다.
그리고 상기 평면안테나는, 금(AU) 코팅 처리될 수도 있다.
한편, 상기 탄성파 발생부는, IDT(Inter digital Transducer) 금속막 상에 반사부를 포함하여, 압전웨이퍼의 온도에 따라 서로 다른 표면탄성파를 생성할 수도 있다.
그리고 상기 IDT 금속막은, 알루미늄(AL) 코팅 처리될 수도 있다.
또한, 상기 접착부는, 금(AU) 모재를 이용한 본딩부일 수도 있다.
그리고 상기 온도센서는, 상기 압전웨이퍼 상에 다수 개가 분산 배치될 수도 있다.
또한, 상기 다수의 온도센서는, 상기 압전웨이퍼 상에 상하 및 좌우 대칭형으로 분산 배치될 수도 있다.
그리고 상기 다수의 온도센서들은, 각각 서로 다른 패턴의 반사부가 구비되어, 서로 다른 중심 주파수의 표면탄성파가 발생되도록 구성될 수도 있다.
한편, 상기 압전웨이퍼 또는 상기 커버 웨이퍼에는 상기 온도센서가 안착되는 홈이 형성되고, 상기 홈은 물리적인 그라인딩 또는 화학적인 식각(CMP, Chemical mechanical polishing)에 의해 형성될 수도 있다.
그리고 상기 압전웨이퍼와 상기 커버 웨이퍼는 얇은 금속 박막층을 형성한 후, 원자의 자기확산 속도에 따라 상온에서 본딩될 수도 있다.
위에서 살핀 바와 같은 본 발명에 의한 표면탄성파를 이용한 수동형 무선 온도 측정 웨이퍼에서는 다음과 같은 효과를 기대할 수 있다.
즉, 본 발명에서는 웨이퍼 상에 표면탄성파를 이용한 온도센서(SAW 센서)를 설치하여, 실시간으로 웨이퍼 상의 온도를 무선으로 모니터링 할 수 있는 효과가 있다.
그리고 본 발명에서는 웨이퍼 상에 SAW 센서를 다수 개로 분산 배치하여, 웨이퍼 부분별로 온도의 균일성 여부를 측정할 수 있는 효과가 있다.
도 1은 종래기술에 따른 온도측정 웨이퍼의 일 예를 도시한 예시도.
도 2는 본 발명에 의한 온도측정 웨이퍼의 구체적인 실시예를 도시한 단면도.
도 3은 본 발명에 의한 온도측정 웨이퍼의 온도센서부분을 확대하여 도시한 예시도.
도 4는 본 발명에 의한 온도측정 웨이퍼의 온도센서를 구성하는 탄성파 발생부의 구체적인 실시예를 도시한 예시도.
도 5는 본 발명에 의한 온도측정 웨이퍼의 온도센서 배치 구조의 일 실시예를 도시한 예시도.
도 6은 본 발명에 의한 온도측정 웨이퍼의 온도센서 배치 구조의 다른 실시예를 도시한 예시도.
도 7은 본 발명에 의한 온도센서들을 구성하는 탄성파 생성부의 다양한 예를 도시한 예시도.
본 발명의 구체적인 실시예는 압전기판을 구성하는 압전웨이퍼와; 상기 압전웨이퍼 상에 구비되어, 온도변화에 따라 표면탄성파를 발생시키는 온도센서와; 상기 온도센서 상면을 차폐하는 커버웨이퍼; 그리고 상기 압전웨이퍼와 상기 커버웨이퍼를 결합하는 접착부를 포함하여 구성되고: 상기 온도센서는, 상기 압전웨이퍼와 커버웨이퍼 사이에 WLP(Wafer Level Package) 방식으로 패키징되고, 상기 온도센서는, 상기 압전웨이퍼에 부착되는 탄성파 생성부와; 상기 탄성파 생성부 상부를 형성하는 절연부; 그리고 상기 절연부 상면에 형성되는 평면 안테나를 포함하여 구성될 수 있다.
이하에서는 상기한 바와 같은 본 발명에 의한 온도측정 웨이퍼를 첨부된 도면을 참고하여 상세하게 설명한다.
도 2는 본 발명에 의한 온도측정 웨이퍼의 구체적인 실시예를 도시한 단면도이고, 도 4는 본 발명에 의한 온도측정 웨이퍼의 온도센서를 구성하는 탄성파 발 생부의 구체적인 실시예를 도시한 예시도이며, 도 5는 본 발명에 의한 온도측정 웨이퍼의 온도센서 배치 구조의 일 실시예를 도시한 예시도이고, 도 6은 본 발명에 의한 온도측정 웨이퍼의 온도센서 배치 구조의 다른 실시예를 도시한 예시도이며, 도 7은 본 발명에 의한 온도센서들을 구성하는 탄성파 생성부의 다양한 예를 도시한 예시도이다.
먼저, 도 2에 도시된 바와 같이, 본 발명에 의한 온도측정 웨이퍼는 압전웨이퍼(100) 및 커버웨이퍼(200), 두 개의 웨이퍼 사이에 온도센서(300)를 구비하고, 이들 웨이퍼를 접착(본딩)하여 구성한다.
이때, 상기 온도센서(300)는 도 3에 도시된 바와 같이, 탄성파 생성부(310), 절연부(320) 및 평면 안테나(330)를 포함하여 구성된다.
상기 탄성파 생성부(310)는 구동신호에 따라 표면탄성파를 생성하는 구성으로, 도 4에 도시된 바와 같이, 트랜듀서를 포함하여 구성되는 IDT(Inter digital Transducer) 금속막(311)에 반사부(313)를 포함하여 구성된다.
이때, 상기 압전 웨이퍼(100)는 온도센서(300)의 압전기판 역할을 수행하는 것으로, 주위의 온도에 따라 지연선(delay line)이 팽창하거나 수축할 뿐만 아니라 압전기판의 물성에도 영향을 주어 표면 탄성파의 전파시간이 변하거나 공진 주파수가 변하게 된다.
그리고 상기 ITD 금속막(311)에 포함된 트랜듀서는 빗살전극으로 인터디지털 트랜듀서(Inter-digital Transducer)가 이용될 수 있고, 수신된 구동신호에 의해 표면탄성파를 발생하게 한다.
또한, 상기 반사부(313)는 상기 IDT 금속막(311)에서 생성된 표면탄성파가 지연선을 통과하여 지연선의 끝 부분에서 표면탄성파를 반사시켜 IDT 금속막(311)으로 다시 전파시키는 역할을 한다.
이에 따라, 마이크로 머시닝 챔버 외부에 구비된 리더기를 통해, 상기 표면탄성파를 수신하여 분석하면, 상기 온도센서(300)의 표면온도를 측정할 수 있다.
이때, 상기 IDT 금속막(311)은 알루미늄(AL) 코팅 처리될 수 있다.
그리고 상기 절연부(320)는 상기 표면탄성파 생성부를 압전 웨이퍼 상에 고정하는 구성으로 절연물질로 형성된다.
이때, 상기 절연부(320)의 두께는 안테나의 성능에 따라 선택되며 두께가 안테나의 복사 필드에 영향이 있기 때문에 두꺼운 것이 바람직하나, 전체 온도측정 웨이퍼의 두께를 고려하여 적정한 두께로 설계된다.
한편, 상기 평면 안테나(330)는 절연부(320) 상에 부착편 형태의 납작한 평면으로 구성된다. 상기 평면 안테나(330)는 휩 안테나 또는 나선형 안테나에 비하여 높이가 낮고 부피가 작은 소자를 구현할 수 있다. 또한, 평면 안테나(330)는 접지선과 피드선 자체가 연통되어 있고, 바람직하게는 상기 금(AU)으로 코팅 처리되어, 높은 전압과 강한 전장 환경에서 동전위를 가지도록 하여, 강성이 높고, 정전 저항 능력이 강해 신뢰도가 높고 내구성이 향상되도록 할 수 있다.
상기 평면안테나(330, 330')는 도 5에 도시된 바와 같이, 일자형으로 형성될 수도 있으나, 바람직하게는, 도 6에 도시된 바와 같이, 굴곡된 패턴으로 형성되어, 수신 감도를 높이도록 구성되어 있다.
이때, 상기 평면 안테나(330, 330')는 피드점 및 접지점을 포함하여 형성될 수 있다.
한편, 도시되지는 않았으나, 본 발명에 의한 온도센서는 에너지 축전부를 더 포함하여 구성될 수 있다.
상기 에너지 축전부는 리더기로부터 수신된 신호의 전력을 증가시켜, 상기 탄성파 생성부(310)에 제공하여, 상기 탄성파 생성부(310)로부터 생성되는 표면 탄성파의 세기를 강하게 증폭할 수 있다.
즉, 상기 에너지 축전부는 상기 탄성파 생성부(310)의 표면 탄성파 강도를 증가시키기 위한 구성으로, 상기 온도센서(300)와 리더기의 거리가 상대적으로 먼 경우에 적용될 수 있다.
이를 위해 상기 에너지 축전부는 충전 펌프, 부스터 및 캐패시터 등을 포함하여 구성할 수 있다.
한편, 본 발명은 기본적으로 압전웨이퍼와 커버웨이퍼 사이에 온도센서를 WLP(Wafer Level Package) 방식으로 구성하는 것으로, 상기 압전웨이퍼(100)와 상기 커버웨이퍼(200)의 접착방식을 살피면, 도 2에 도시된 바와 같이, 상기 압전웨이퍼(100)와 상기 커버웨이퍼(200)는 접착부(400)에 의해 본딩처리되는데, 이때, 본딩은 금(Gold, Au) Bump 방식이 적용될 수 있다.
상기 Gold Bump는 물리적, 화학적 특성이 뛰어나고, 전기 및 열 전도성 우수하며, 화학적 안정성이 확보될 뿐만 아니라, 산도(산/알칼리)에 영향을 받지 아니하고, 고온 가열에도 산화가 없는 특징을 갖는다.
한편, 본 발명에 의한 상기 압전웨이퍼(100)와 상기 커버 웨이퍼(200)의 접착은 웨이퍼 직접 체결방식(Wafer Direct Bonding) 또는 확산 체결방식(Atomic diffusion Bonding)이 적용될 수 있다.
상기 웨이퍼 직접 체결방식(Wafer Direct Bonding)은 웨이퍼의 전체 적층 높이를 낮추기 위하여, 상기 압전웨이퍼 및/또는 상기 커버 웨이퍼에 홈을 형성고, 상기 홈에 온도센서를 안착하도록 구성하는 접합방식으로, 상기 홈은 물리적인 그라인딩 또는 화학적인 식각(CMP, Chemical mechanical polishing)에 의해 형성될 수 있다.
한편, 확산 체결방식(Atomic diffusion Bonding)은 얇은 금속 박막층을 형성한 후, 원자의 높은 자기확산 속도를 이용하여 상온에서 상기 압전웨이퍼와 상기 커버 웨이퍼를 본딩하는 것을 말한다.
그리고 도시되지는 않았으나, 상기 압전웨이퍼(100)와 상기 평면 안테나(330)는 금속암으로 연결되어, 표면탄성파 발생 효율을 증가시키는 것도 가능하다.
이하에서는 상기 온도측정 웨이퍼 상의 온도센서의 다양한 배열구성을 상세히 설명하기로 한다.
도 5는 본 발명에 의한 온도측정 웨이퍼의 온도센서 배치 구조의 일 실시예를 도시한 예시도이고, 도 6은 본 발명에 의한 온도측정 웨이퍼의 온도센서 배치 구조의 다른 실시예를 도시한 예시도이며, 도 7은 본 발명에 의한 온도센서들을 구성하는 탄성파 생성부의 다양한 예를 도시한 예시도이다.
본 발명에 의한 온도측정 웨이퍼는, 웨이퍼 자체의 온도를 정확히 측정하는 것 뿐만 아니라, 웨이퍼 상의 위치별 온도의 편차를 판단할 수 있도록 구성되는 것이 바람직하다.
이를 위해 본 발명에 의한 온도측정 웨이퍼에는 도 5에 도시된 바와 같이, 다수개의 온도센서(300)들이 분산 배치된다.
이때, 상기 온도센서(300)는 상기 압전웨이퍼(100) 상에 상하 및 좌우 대칭형으로 전체 영역에 대하여 고르게 분산 배치되어, 웨이퍼 전체 영역의 온도를 고르게 측정할 수 있도록 구성되는 것이 바람직하다.
이에 따라 수신기는 상기 각 온도센서(300)들로부터 출력되는 표면탄성파를 분석하여, 오차범위를 벗어나는 온도 편차가 웨이퍼 상에 발생되는 지 여부를 판별할 수 있게 된다.
또한, 온도센서(300)의 평면안테나(330)는 도 5에 도시된 바와 같이, 선형의 형태로 형성될 수도 있고, 도 6에 도시된 바와 같이, 굴곡된 형태로 형성되어 표면탄성파의 송신효율을 증가시킬 수도 있다.
한편, 본 발명에 의한 온도측정 웨이퍼 상에 다수개의 온도센서(300)들이 분산 배치됨에 있어, 도 7에 도시된 바와 같이, 상기 온도센서들이 서로 다른 반사부(313A, 313B, 313C, …)의 패턴을 갖도록 형성될 수 있다.
이에 따라 각 온도센서들(310A, 310B, 310C, …)은 서로 다른 중심 주파수의 표면탄성파를 발생시키고, 이에 따라 수신기는 웨이퍼 상의 각 지점의 온도를 개별적으로 파악할 수 있다.
이하에서는 상기한 바와 같은 표면탄성파를 이용한 수동형 무선 온도 측정 웨이퍼의 작동 기전을 설명한다.
본 발명에 의한 온도측정 웨이퍼는 온도를 측정하고자 하는 피측정 설비(마이크로 머시닝 챔버) 내에 삽입한다. 그리고 상기 피측정 설비를 가동하면서, 상기 피측정 설비 외부에 구비된 리더기를 통해 구동신호를 송출한다.
상기 구동신호를 상기 피측정 설비 내의 온도측정 웨이퍼가 수신하면, 구동신호는 온도센서(300)의 IDT 금속막(311) 내의 트랜듀서에 입력되고 압전 웨이퍼(100)의 표면을 따라 전파하는 표면탄성파가 발생되어 지연선을 따라 전파되어, 상기 반사부(313)로 전파된다. 전파된 표면탄성파는 상기 반사부(313)에서 반사되어 지연선과 트랜듀서를 거쳐 평면 안테나(330)의 의해 다시 송신된다.
물론, 상기 온도센서(300)에 에너지 축전부가 형성된 경우, 상기 구동신호는 상기 에너지 축전부에 의해 증폭되어 상기 트랜듀서에 전달될 수 있다,
한편, 리더기는 신호를 수신하여 주파수의 진폭이나 진동수와 같은 주파수 특성을 분석함으로써 피측정 설비 내의 웨이퍼 온도를 계산할 수 있다.
본 발명의 권리는 위에서 설명된 실시예에 한정되지 않고 청구범위에 기재된 바에 의해 정의되며, 본 발명의 분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다.
본 발명은 반도체 마이크로 머시닝 프로세스에 의해 가공되는 실리콘 웨이퍼의 실온을 모니터링하기 위해, 표면 탄성파 고온센서가 구비된 실리콘 웨이퍼에 관한 것으로, 본 발명에 의하면, 본 발명은 웨이퍼 상에 표면탄성파를 이용한 온도센서(SAW 센서)를 설치하여, 실시간으로 웨이퍼 상의 온도를 무선으로 모니터링 할 수 있는 효과가 있다.

Claims (8)

  1. 압전기판을 구성하는 압전웨이퍼와;
    상기 압전웨이퍼 상에 구비되어, 온도변화에 따라 표면탄성파를 발생시키는 온도센서와;
    상기 온도센서 상면을 차폐하는 커버웨이퍼; 그리고
    상기 압전웨이퍼와 상기 커버웨이퍼를 결합하는 접착부를 포함하여 구성되고:
    상기 온도센서는,
    상기 압전웨이퍼와 커버웨이퍼 사이에 WLP(Wafer Level Package) 방식으로 패키징됨을 특징으로 하는 반도체 챔버 온도 측정용 웨이퍼 레벨 패키징 방식의 수동형 표면탄성파 무선 웨이퍼.
  2. 제1항에 있어서,
    상기 온도센서는,
    상기 압전웨이퍼에 부착되는 탄성파 생성부와;
    상기 탄성파 생성부 상부를 형성하는 절연부; 그리고
    상기 절연부 상면에 형성되는 평면 안테나를 포함하여 구성됨을 특징으로 하는 반도체 챔버 온도 측정용 웨이퍼 레벨 패키징 방식의 수동형 표면탄성파 무선 웨이퍼.
  3. 제2항에 있어서,
    상기 압전웨이퍼와 상기 평면 안테나는 금속암으로 연결됨을 특징으로 하는 반도체 챔버 온도 측정용 웨이퍼 레벨 패키징 방식의 수동형 표면탄성파 무선 웨이퍼.
  4. 제3항에 있어서,
    상기 평면 안테나는 평면상에서 굴곡된 패턴으로 형성됨을 특징으로 하는 반도체 챔버 온도 측정용 웨이퍼 레벨 패키징 방식의 수동형 표면탄성파 무선 웨이퍼.
  5. 제4항에 있어서,
    상기 평면안테나는,
    금(AU) 코팅 처리됨을 특징으로 하는 반도체 챔버 온도 측정용 웨이퍼 레벨 패키징 방식의 수동형 표면탄성파 무선 웨이퍼.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 탄성파 발생부는,
    IDT(Inter digital Transducer) 금속막 상에 반사부를 포함하여, 압전웨이퍼의 온도에 따라 서로 다른 표면탄성파를 생성함을 특징으로 하는 반도체 챔버 온도 측정용 웨이퍼 레벨 패키징 방식의 수동형 표면탄성파 무선 웨이퍼.
  7. 제6항에 있어서,
    상기 IDT 금속막은,
    알루미늄(AL) 코팅 처리됨을 특징으로 하는 반도체 챔버 온도 측정용 웨이퍼 레벨 패키징 방식의 수동형 표면탄성파 무선 웨이퍼.
  8. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 접착부는,
    금(AU) 모재를 이용한 본딩부임을 특징으로 하는 반도체 챔버 온도 측정용 웨이퍼 레벨 패키징 방식의 수동형 표면탄성파 무선 웨이퍼.
PCT/KR2017/014550 2017-07-21 2017-12-12 반도체 챔버 온도 측정용 웨이퍼 레벨 패키징 방식의 수동형 표면탄성파 무선 웨이퍼 WO2019017539A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0092630 2017-07-21
KR1020170092630A KR101972793B1 (ko) 2017-07-21 2017-07-21 반도체 챔버 온도 측정용 웨이퍼 레벨 패키징 방식의 수동형 표면탄성파 무선 웨이퍼

Publications (1)

Publication Number Publication Date
WO2019017539A1 true WO2019017539A1 (ko) 2019-01-24

Family

ID=65015779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014550 WO2019017539A1 (ko) 2017-07-21 2017-12-12 반도체 챔버 온도 측정용 웨이퍼 레벨 패키징 방식의 수동형 표면탄성파 무선 웨이퍼

Country Status (2)

Country Link
KR (1) KR101972793B1 (ko)
WO (1) WO2019017539A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113436999A (zh) * 2021-07-06 2021-09-24 电子科技大学 一种基于声表面波传感技术的晶圆温度场测量装置
US11901875B2 (en) 2020-10-12 2024-02-13 Applied Materials, Inc. Surface acoustic wave sensor assembly
US11920994B2 (en) 2020-10-12 2024-03-05 Applied Materials, Inc. Surface acoustic wave sensor assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130141498A (ko) * 2010-09-28 2013-12-26 케이엘에이-텐코 코포레이션 인-시추 측정을 위한 센서 웨이퍼 상의 식각-저항성 코팅
US20160002029A1 (en) * 2005-03-18 2016-01-07 Invensense, Inc. Method of fabrication of ai/ge bonding in a wafer packaging environment and a product produced therefrom
KR101613412B1 (ko) * 2015-04-14 2016-04-21 (주)유우일렉트로닉스 웨이퍼레벨 패키징 소자의 제조방법
WO2016106558A1 (en) * 2014-12-30 2016-07-07 3M Innovative Properties Company Surface acoustic wave (saw) based temperature sensing for electrical conductor
KR20160141365A (ko) * 2016-04-29 2016-12-08 주식회사 에이엠티솔루션 표면탄성파를 이용한 온도센서 및 온도 측정기 그리고 이를 이용한 실시간 패시브 온도측정 시스템

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101746560B1 (ko) 2017-02-24 2017-06-14 한국표준과학연구원 다층 저항-열전식 온도측정 웨이퍼 센서 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160002029A1 (en) * 2005-03-18 2016-01-07 Invensense, Inc. Method of fabrication of ai/ge bonding in a wafer packaging environment and a product produced therefrom
KR20130141498A (ko) * 2010-09-28 2013-12-26 케이엘에이-텐코 코포레이션 인-시추 측정을 위한 센서 웨이퍼 상의 식각-저항성 코팅
WO2016106558A1 (en) * 2014-12-30 2016-07-07 3M Innovative Properties Company Surface acoustic wave (saw) based temperature sensing for electrical conductor
KR101613412B1 (ko) * 2015-04-14 2016-04-21 (주)유우일렉트로닉스 웨이퍼레벨 패키징 소자의 제조방법
KR20160141365A (ko) * 2016-04-29 2016-12-08 주식회사 에이엠티솔루션 표면탄성파를 이용한 온도센서 및 온도 측정기 그리고 이를 이용한 실시간 패시브 온도측정 시스템

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11901875B2 (en) 2020-10-12 2024-02-13 Applied Materials, Inc. Surface acoustic wave sensor assembly
US11920994B2 (en) 2020-10-12 2024-03-05 Applied Materials, Inc. Surface acoustic wave sensor assembly
CN113436999A (zh) * 2021-07-06 2021-09-24 电子科技大学 一种基于声表面波传感技术的晶圆温度场测量装置

Also Published As

Publication number Publication date
KR101972793B1 (ko) 2019-04-29
KR20190010796A (ko) 2019-01-31

Similar Documents

Publication Publication Date Title
WO2019017539A1 (ko) 반도체 챔버 온도 측정용 웨이퍼 레벨 패키징 방식의 수동형 표면탄성파 무선 웨이퍼
US7716984B2 (en) Acceleration sensor device having piezo-resistors measuring acceleration
CN103022013B (zh) 带有无线saw温度传感器的功率半导体模块
CN101874203A (zh) 微细结构体检测装置以及微细结构体检测方法
JP2018502301A (ja) 電気導体のための表面弾性波(saw)に基づく温度感知
WO2012081873A2 (ko) 초고주기 피로시험장치
KR20140080750A (ko) 반도체 소자 테스트 장치
KR102064901B1 (ko) 반도체공정 조건 감지용 무선온도센서 시스템
EP1477818A1 (en) Acceleration sensor with IC chip acting as limit stop and signal processing circuitry
JP2008140833A (ja) 温度測定用基板および温度測定システム
KR101616639B1 (ko) 표면 탄성파 소자 및 그 실장 장치, 이를 이용한 측정 센서
US11460355B2 (en) Antenna device and temperature detection method
JP2017133849A (ja) ワイヤレス温度センサ
CN109752604B (zh) 一种电场传感器的封装组件、封装方法及电场传感器
KR20170133601A (ko) 무선 온도측정 시스템
JP2008139067A (ja) 温度測定用基板および温度測定システム
KR20170053162A (ko) Saw 온도센서에 의한 측정 온도 수신 시스템
WO2018199601A1 (ko) 센서 탑재 웨이퍼
CN111710776A (zh) 一种以金属薄带为基底的新型原子层热电堆热流传感器及其封装工艺
Kim et al. High withstand voltage pressure sensors based on silicon strain gauges-on-a-glass substrate
CN211317399U (zh) 一种复合传感器
EP3886156B1 (en) Power semiconductor module arrangement and method of forming such an arrangement
JP7345117B2 (ja) 温度センサ及び温度測定装置
US20240170409A1 (en) Semiconductor module, semiconductor chip, and method for manufacturing semiconductor module
CN218381338U (zh) 一种针对电缆肘型头的温度测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17918519

Country of ref document: EP

Kind code of ref document: A1