WO2019017262A1 - 通信システム、端末、制御方法、及び、プログラム - Google Patents

通信システム、端末、制御方法、及び、プログラム Download PDF

Info

Publication number
WO2019017262A1
WO2019017262A1 PCT/JP2018/026258 JP2018026258W WO2019017262A1 WO 2019017262 A1 WO2019017262 A1 WO 2019017262A1 JP 2018026258 W JP2018026258 W JP 2018026258W WO 2019017262 A1 WO2019017262 A1 WO 2019017262A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
terminal
base station
symbol
signal
Prior art date
Application number
PCT/JP2018/026258
Other languages
English (en)
French (fr)
Inventor
村上 豊
伸彦 橋田
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to JP2019530992A priority Critical patent/JPWO2019017262A1/ja
Priority to CN201880047085.5A priority patent/CN110892389A/zh
Priority to EP18834335.4A priority patent/EP3657342A4/en
Publication of WO2019017262A1 publication Critical patent/WO2019017262A1/ja
Priority to US16/744,766 priority patent/US11201671B2/en
Priority to US17/523,420 priority patent/US11563489B2/en
Priority to US18/082,970 priority patent/US11888518B2/en
Priority to JP2023177850A priority patent/JP2023178375A/ja
Priority to US18/538,453 priority patent/US20240113781A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/85Protection from unauthorised access, e.g. eavesdrop protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/22Adaptations for optical transmission

Definitions

  • the present invention relates to a communication system, a terminal, a control method, and a program.
  • GPS Global Positioning System
  • Non-Patent Document 1 there is a method in which a device estimates a location using radio waves transmitted from an access point of a wireless LAN (Local Area Network). is there.
  • a wireless LAN Local Area Network
  • NTP use case document IEEE 802.11-16 / 0137 r4, March 2016. https://mentor.ieee.org/802.11/dcn/16/11-16-0137-04-00az-ngp-use-case- document.pptx H. Koga, N. Kodama, and T. Konishi, “High-speed power line communication system based on wavelet OFDM,” Proc. Of ISPLC 2003. S. Galli, H. Koga, and N. Kodama, “Advanced signal processing for PLCs: Wavelet-OFDM,” Proc. Of 2008 IEEE International Symposium on Power Line Communications and Its Applications.
  • the device since it is not easy to know the SSID (service set identifier) of the access point that can be accessed safely, when the device tries to obtain location information, it may connect to the access point of the unsecured SSID, and information leakage may occur. There are threats such as
  • a communication system includes a plurality of cameras generating image data by imaging, a server storing the image data generated by each of the plurality of cameras, and the plurality of cameras on a one-to-one basis.
  • a plurality of corresponding transmitting devices wherein each of the plurality of transmitting devices is information related to communication for accessing a storage location in the server in which the image data generated by a camera corresponding to the transmitting device is stored.
  • a plurality of transmitting devices for transmitting light including the light source as a visible light communication signal.
  • FIG. 1 is a diagram showing an example of the configuration of an apparatus and a terminal.
  • FIG. 2 is a diagram showing an example of a frame configuration transmitted by a modulated signal transmitted by the device.
  • FIG. 3 is a diagram showing an example of the configuration when there are a plurality of devices.
  • FIG. 4 is a diagram illustrating an example of the configuration of a device, a terminal, and a base station that communicates with the terminal.
  • FIG. 5 is a diagram illustrating an example of specific display of the display unit.
  • FIG. 6 is a diagram showing an example of a frame configuration of a modulated signal transmitted by the device.
  • FIG. 7 is a diagram showing an example of a frame configuration of a modulated signal transmitted by the base station.
  • FIG. 1 is a diagram showing an example of the configuration of an apparatus and a terminal.
  • FIG. 2 is a diagram showing an example of a frame configuration transmitted by a modulated signal transmitted by the device.
  • FIG. 3 is a diagram showing an example
  • FIG. 8 is a flowchart illustrating an example of processing performed by the device, the terminal, and the base station.
  • FIG. 9 is a diagram showing an example of specific display of the display unit.
  • FIG. 10 is a diagram showing an example of the configuration of the communication system.
  • FIG. 11 is a diagram showing an example of a frame configuration of a modulated signal transmitted by the device.
  • FIG. 12 is a diagram illustrating an example of a frame configuration of a modulated signal transmitted by the wireless device.
  • FIG. 13 is a flowchart illustrating an example of processing performed by the device, the terminal, and the base station.
  • FIG. 14 is a diagram illustrating an example of the configuration of a device, a terminal, and a base station that communicates with the terminal.
  • FIG. 15 is a diagram showing an example of a frame configuration of a modulated signal transmitted by the device.
  • FIG. 16 shows an example of the frame configuration of the modulated signal transmitted by the device.
  • FIG. 17 is a flowchart illustrating a first example of processing performed by a device, a terminal, and a base station.
  • FIG. 18 is a flowchart illustrating a second example of processing performed by a device, a terminal, and a base station.
  • FIG. 19 is a diagram showing an example of a space.
  • FIG. 20 is a diagram showing an example of the configuration of the communication system.
  • FIG. 21 is a flowchart illustrating an example of processing performed by a wireless device of a portion, a terminal, and a base station related to visible light and the like.
  • FIG. 22 is a diagram showing an example of the configuration of the communication system.
  • FIG. 23 is a diagram showing an example of a frame configuration of a modulated signal transmitted by the device.
  • FIG. 24 is a diagram showing an example of a frame configuration of a modulated signal transmitted by the device.
  • FIG. 25 is a diagram showing an example of a frame configuration of a modulated signal transmitted by the device.
  • FIG. 26 is a diagram illustrating an example of a transmission method when the device transmits a plurality of frames.
  • FIG. 27 shows an example of the area.
  • FIG. 28 is a flowchart illustrating an example of processing performed by a device, a terminal, and a base station.
  • FIG. 29 is a diagram showing an example of the configuration of an apparatus related to transmission of a light modulation signal.
  • FIG. 29 is a diagram showing an example of the configuration of an apparatus related to transmission of a light modulation signal.
  • FIG. 30 is a diagram showing an example of the configuration of an apparatus related to transmission of a light modulation signal.
  • FIG. 31 is a diagram illustrating an example of the configuration of the transmission device and the reception device.
  • FIG. 32 is a diagram illustrating an example of the configuration of the transmission device and the reception device.
  • FIG. 33 is a diagram showing an example of the configuration of an apparatus related to transmission of a light modulation signal.
  • FIG. 34 is a diagram showing an example of the configuration of an apparatus associated with the light modulation signal.
  • FIG. 35 is a diagram showing an example of the configuration of a transmission apparatus related to a light modulation signal.
  • FIG. 36A is a diagram showing an example of a configuration of a transmission apparatus related to a light modulation signal.
  • FIG. 36A is a diagram showing an example of a configuration of a transmission apparatus related to a light modulation signal.
  • FIG. 36B is a diagram showing an example of the configuration of a car.
  • FIG. 36C is a diagram showing an example of the configuration of a car.
  • FIG. 36D is a diagram illustrating an example of a communication method between the transmission device and the reception device.
  • FIG. 36E is a diagram illustrating an example of a visible light communication method.
  • FIG. 36F is a diagram illustrating an example of a light emission pattern of a light source and a captured image.
  • FIG. 36G is a diagram illustrating an example of a light emission pattern of a light source and a captured image.
  • FIG. 36H is a diagram illustrating an example of a modulation scheme.
  • FIG. 36I is a diagram illustrating an example of a modulation scheme.
  • FIG. 37 shows a system configured by communication devices.
  • FIG. 37 shows a system configured by communication devices.
  • FIG. 39A is a diagram illustrating a first example of a system related to a moving image providing method using a light modulation signal.
  • FIG. 39B is a flowchart showing an example of processing related to a moving image providing method using a light modulation signal.
  • FIG. 39C is a diagram illustrating a second example of a system related to a moving image providing method using a light modulation signal.
  • FIG. 40 shows an example of a stadium scene.
  • FIG. 41 is a diagram illustrating an example of an operation flow of a camera, a transmission device, and a server.
  • FIG. 42 is a diagram illustrating an example of an operation flow of the terminal, the transmission device, and the communication device.
  • FIG. 43 is a diagram illustrating an example of a frame configuration of the light modulation signal transmitted by the transmission apparatus.
  • FIG. 44 is a diagram illustrating an example of a frame configuration of the light modulation signal transmitted by the transmission apparatus.
  • FIG. 45 is a diagram illustrating an example of a frame configuration of the light modulation signal transmitted by the transmission apparatus.
  • FIG. 46 is a diagram illustrating an example of a frame configuration of the light modulation signal transmitted by the transmission apparatus.
  • FIG. 47 is a diagram illustrating an example of a frame configuration of the light modulation signal transmitted by the transmission apparatus.
  • FIG. 48 is a diagram showing an example of a frame configuration of the light modulation signal transmitted by the transmission apparatus.
  • FIG. 49 is a diagram showing an example of a frame configuration of the light modulation signal transmitted by the transmission apparatus.
  • FIG. 50 is a diagram illustrating an example of a frame configuration of the light modulation signal transmitted by the transmission apparatus.
  • a communication system includes a plurality of cameras that generate image data by imaging, a server that stores the image data generated by each of the plurality of cameras, and a plurality of cameras.
  • a plurality of transmitting devices for transmitting light including information as a visible light communication signal.
  • the communication system can more safely provide the terminal with information related to communication for accessing the storage location of the image data.
  • the terminal can obtain location information more safely.
  • the communication system transmits a (light) modulation signal including information on a location from visible light such as an LED (Light Emitting Diode) installed indoors, illumination, a light source, and light, for example.
  • the terminal (device) is, for example, an image sensor such as a complementary metal oxide semiconductor (CMOS) or an organic thin film (OPF: organic photoconductive film) CMOS (organic CMOS) or the like, and receives the (light) modulation signal.
  • CMOS complementary metal oxide semiconductor
  • OPF organic thin film
  • the information includes address information indicating the storage location where the image data is stored.
  • the communication system can acquire the location information more easily and more safely by transmitting the address information by visible light communication.
  • the information includes an encryption key used to encrypt communication for a terminal to access the storage location where the image data is stored.
  • the communication system can obtain location information more easily and more safely by transmitting the encryption key by visible light communication.
  • the information includes an identifier of a base station of wireless communication for a terminal to access the storage location where the image data is stored.
  • the communication system can acquire location information more easily and more safely by transmitting the identifier of the base station by visible light communication.
  • the information includes position information indicating a position of a place where the image data is captured.
  • the communication system can acquire location information more easily and more safely by transmitting the location information of the imaging location by visible light communication.
  • a terminal is a receiving device that receives light including information indicating a storage location of image data as a visible light communication signal, and the storage location indicated by the information received by the receiving device. And a transmitting / receiving device for receiving image data.
  • the terminal can acquire location information more safely.
  • a control method of a communication system is a control method of a communication system, wherein the communication system includes a plurality of cameras, a server, and a plurality of transmissions corresponding to the plurality of cameras in a one-to-one manner.
  • a device image data is generated by imaging with the plurality of cameras, the image data generated by each of the plurality of cameras is stored in the server, and each of the plurality of transmission devices
  • a light including, as a visible light communication signal, information relating to communication for accessing a storage location in the server in which the image data generated by a corresponding camera is stored is transmitted.
  • a control method of a terminal is a control method of a terminal, which receives light including information indicating a storage location of image data as a visible light communication signal, and the storage indicated by the received information The image data is received from the place.
  • FIG. 1 shows an example of the configuration of an apparatus 100 and a terminal 150 provided with a visible light source such as an LED (Light Emitting Diode), illumination, a light source, and light according to the present embodiment.
  • the device 100 includes visible light such as a light emitting diode (LED), a light, a light source, and a light. Note that this device is named "first device”.
  • the transmitting unit 102 receives, for example, information on a place or information 101 on a position.
  • the transmission unit 102 may receive the information 105 on time.
  • the transmitting unit 102 may receive information on a place or both information 101 on a position and information 105 on a time.
  • the transmission unit 102 receives information on a place or information on a position 101 and / or information on a time 105, generates a (light) modulation signal based on these input signals, and outputs a modulation signal 103. Do. Then, the modulation signal 103 is transmitted from, for example, the light source 104.
  • Information on location or information on location 101 may be information on latitude and / or longitude of location and position.
  • the information “45 degrees north latitude, 135 degrees east longitude” may be used as the information on the place or the information 101 on the position.
  • Information on location or information on location 101 may be information on an address.
  • the information “Tokyo and Chiyoda-ku ⁇ Town 1-1-1,” may be information on a place or information 101 on a position.
  • Information on a place or information on a position 101 may be information on a building, a facility, or the like.
  • the information “Tokyo Tower” may be information on a place or information 101 on a position.
  • the information on the place or the information on the position 101 may be information on the unique place and position of the thing installed in a building, a facility or the like.
  • the information “A-3” may be information on a place or information 101 on a position.
  • Such examples are not limited to the parking case.
  • the information on the place or the method of constructing the information 101 on the position is not limited to the above example.
  • the terminal 150 receives the modulated signal transmitted by the first device 100.
  • the light receiving unit 151 is an image sensor such as, for example, a CMOS or an organic CMOS.
  • the light receiving unit 151 receives light including the modulation signal output from the first device, and outputs a reception signal 152.
  • the receiving unit 153 receives the received signal 152, performs processing such as demodulation and error correction decoding on the modulated signal included in the received signal, and outputs received data 154.
  • the reception signal 152 output from the light receiving unit 151 may be a signal including information of an image and a moving image acquired by an image sensor, and other light-to-electrical conversion is performed (from light to electric signal It may be the output signal of the (to be converted) element.
  • the light receiving unit 151 receives light from the light including the modulation signal.
  • optical-electrical conversion converting light into an electrical signal
  • it means obtaining “signals of image and moving image” and “modulated signal for transmitting information”.
  • the method described above is an example of a method in which a device on the receiving side receives a modulated signal, and the method of receiving a modulated signal is not limited to these.
  • the data analysis unit 155 receives the received data 154, estimates the location and position of the terminal 150, for example, from the received data 154, and outputs information 156 including at least the location and position information of the terminal 150.
  • the display unit 157 receives the information 156, and displays the location and position of the terminal 150 on the display unit 157 based on the location and position information of the terminal 150 included in the information 156.
  • FIG. 2 shows an example of a frame configuration transmitted by the modulated signal transmitted by the first device 100.
  • the horizontal axis is time.
  • the first device transmits, for example, the preamble 201, and then transmits the control information symbol 202, the location information, or the symbol 203 related to position information, and the symbol 204 related to time information.
  • the preamble 201 is a symbol for the terminal 150 that receives the modulated signal transmitted by the first device 100 to perform, for example, signal detection, time synchronization, frame synchronization, and the like.
  • the control information symbol 202 is, for example, a symbol including data such as a method of forming a modulation signal, a method of an error correction coding method being used, and a method of forming a frame.
  • the location information or the symbol 203 related to the location information is a symbol including information on the location shown in FIG. 1 or information on the location.
  • the frame may include symbols other than the symbols 201, 202, and 203.
  • a symbol 204 relating to time information may be included. It is assumed that the symbol 204 related to time information includes, for example, information on time when the first device transmits a modulation signal.
  • the configuration of the frame of the modulated signal transmitted by the first device is not limited to that shown in FIG. 2, and the symbols included in the modulated signal are not limited to the configuration shown in FIG. It may contain symbols that contain information).
  • the terminal capable of receiving this modulation signal is not a place far from the place where the first device is present. Therefore, when the terminal obtains the location and position information transmitted by the first device, the terminal can easily obtain high-accuracy position information (without having to perform complicated signal processing). You can get the effect.
  • the terminal should receive the modulated signal transmitted by the first device even at places where radio waves from GPS satellites are hard to receive. Thus, it is possible to obtain the effect that high-accuracy position information can be obtained safely.
  • a 1-1 device 301-1 having the same configuration as the first device 100 in FIG. 1 transmits a modulation signal and the terminal 302 receives it.
  • the terminal 302 receives the modulated signal transmitted by the 1-1st device 301-1, and obtains, for example, information on the 1-1st place and position and information on the 1-1st time.
  • a first device 1-2 having the same configuration as the first device 100 in FIG. 1 transmits a modulation signal, and the terminal 302 receives the modulation signal.
  • the terminal 302 receives the modulated signal transmitted by the 1-2nd device 301-2 and obtains, for example, information on the 1-2th location and position and information on the 1-2nd time.
  • the terminal 302 determines the 1-1st device 301-1 and 1-2nd device 301 in FIG. You can know the distance of -2. Then, based on the information regarding the 1-1st time and the time when the terminal receives the modulated signal transmitted by the 1-1st device 301-1, for example, the terminal 302 and the 1-1 The distance of the device 301-1 can be known. Similarly, based on the information on the 1-2nd time, and the time at which the terminal 302 received the modulated signal transmitted by the 1-2nd device 301-2, for example, the terminal 302 and the first 302 -The distance of the device 301-2 of 2 can be known.
  • the terminal 302 can know the position of the 1-1st device from the information regarding the 1-1st place and position.
  • the terminal 302 can know the position of the 1-2nd device from the information regarding the 1-2th place and position.
  • the terminal 302 can set the distance between the 1-1st device 301-1 and the 1-2nd device 301-2, the distance between the 1-1st device 301-1 and the terminal, and the 1-2nd From the distance between the device 301-2 and the terminal, “a triangle formed by the first device 301-1, the first device 302-2, and the terminal 302” can be obtained.
  • the terminal 302 is a "position of the 1-1st device", "a position of the 1-2nd device", and a “terminal of the 1-1st device 301-1 and the 1-2nd device 301-2 From the triangle formed by 302, the position of the terminal 302 can be calculated and obtained with high accuracy.
  • geodetic survey method for the terminal 302 to obtain location and position information is not limited to the above description, and geodetic survey may be performed by any method.
  • geodetic survey method there are triangulation, multilateral survey, trilateration, leveling, and the like.
  • the terminal obtains the information as described above from a plurality of devices equipped with light sources that transmit location information, whereby the terminal has an effect of being able to estimate the position with high accuracy. be able to. Then, as described in the first embodiment, when a device equipped with a light source for transmitting location information is installed in a place where satellite radio waves from GPS are hard to receive, the terminal is hard to receive radio waves from GPS satellites. By the way, it is also possible to obtain an effect that high-accuracy position information can be obtained safely by receiving the modulated signal transmitted by the device.
  • the terminal is described as receiving the modulated signal transmitted by two devices, but the terminal receives a modulated signal transmitted by more than two devices. Even if it carries out similarly, it can carry out. In addition, there is an advantage that the terminal can calculate position information with high accuracy as the number of devices increases.
  • FIG. 4 shows an example of the configuration of, for example, a base station that communicates with a light source for visible light, such as an LED, a light source, a device equipped with a light, a terminal, and a terminal in the present embodiment.
  • the device 400 of FIG. 4 comprises visible light such as LEDs, illumination, light sources, lights. Note that this device is named "first device”. And in the 1st apparatus 400 of FIG. 4, about the thing which operate
  • the terminal 450 in FIG. 4 shows the configuration of the terminal, and the same reference numerals are given to those that operate in the same manner as in FIG. 1 (b).
  • the transmission unit 101 inputs information on a place, information on a position 101, information on an SSID (service set identifier) 401-1, and information on an access destination 401-2. Do.
  • the transmission unit 101 may receive the information 105 on time.
  • the transmitting unit 102 receives information on location or information 101 on location, information 401-1 on SSID, information 401-2 on access destination, and / or information 105 on time, and inputs these Based on the signal, an (optical) modulation signal is generated and the modulation signal 103 is output. Then, the modulation signal 103 is to be transmitted from, for example, the light source 104.
  • Information 401-1 related to the SSID is information of the SSID of the base station (or AP (access point)) 470 in FIG.
  • the first device 400 accesses the base station 470 which is a safe access destination with respect to the terminal 450. Can be provided. By this means, it is possible to obtain the effect that terminal 450 in FIG. 4 can obtain information safely from base station (or AP) 470.
  • the first device 400 can limit terminals accessing the base station 470 to terminals in a space where the optical signal transmitted (irradiated) by the first device 400 can be received.
  • the terminal 450 may determine that the notified SSID is the SSID of a safe base station, and is it safe? You may implement the process which discriminate
  • the terminal 450 in FIG. 4 may also be used when there is a base station (or AP) other than the base station (or AP) 470. Will access the base station (or AP) 470 to obtain information.
  • Information on access destination 401-2 is information on an access destination for the terminal 450 of FIG. 4 to access the base station (or AP) 470 and thereafter to obtain information. (A specific operation example will be described later.)
  • the terminal 450 of FIG. 4 receives the modulated signal transmitted by the first device 400.
  • the same reference numerals are given to components that operate in the same manner as the terminal 150 of FIG. 1.
  • a light receiving unit 151 such as an image sensor such as a CMOS or an organic CMOS included in the terminal 450 receives the modulation signal transmitted by the first device 400. Then, the receiving unit 153 receives the received signal 152 received by the light receiving unit 151 as an input, and outputs received data 154 that performs processing such as demodulation of a received signal and error correction decoding.
  • the data analysis unit 155 receives the received data 154, estimates the location / position of the terminal from the received data 154, and at least information 156 including location / position information of the terminal, information 451 regarding the SSID, information regarding the access destination Output 452
  • the display unit 157 receives information 156 including location / position information of the terminal, information 451 regarding the SSID, and information 452 regarding the access destination, for example, the location / position of the terminal, communication accessed by the wireless device 453 of the terminal 450 Display the other party's SSID and access destination. (This display will be called the first display.)
  • the wireless device 453 of the terminal 450 in FIG. 4 receives the information 451 on the SSID and the information 452 on the access destination. Then, based on the information 451 related to the SSID, the wireless device 453 included in the terminal 450 of FIG. 4 connects with the other end of the communication by using, for example, a radio wave. In the case of FIG. 4, the wireless device 453 of the terminal 450 of FIG. 4 is connected to the base station 470.
  • the wireless device 453 included in the terminal 450 of FIG. 4 generates a modulation signal from the data including the information on the access destination based on the information 452 on the access destination, and transmits the modulation signal to the base station 451 For example, it will be transmitted using radio waves.
  • the base station (or AP) 470 which is the communication partner of the terminal of FIG. 4B, receives the modulated signal transmitted by the wireless device 453 of the terminal 450 of FIG. Then, the base station (or AP) 470 performs processing such as demodulation of the received modulated signal, error correction decoding, and the like, and outputs received data 471 including the information of the access destination transmitted by the terminal 450 of FIG. Based on the information of the access destination, the base station (or AP) 470 accesses a desired access destination via the network, and obtains the desired information 472 from the access destination, for example.
  • base station 470 receives desired information 472 as input, generates a modulated signal from desired information 472 and transmits this modulated signal to terminal 450 in FIG. 4 using radio waves, for example. become.
  • the wireless device 453 of the terminal 450 of FIG. 4 receives the modulated signal transmitted by the base station 470, performs processing such as demodulation and error correction decoding, and obtains desired information 472.
  • the desired information 472 includes a map, a map of a building / floor guide, a map of a facility / floor guide, a map of a parking lot / floor guide, a concert facility / stadium / airplane / airport lounge / railway / station etc. ⁇ We assume that it is information of "seat, store, facility”.
  • the display unit 157 receives desired information 472, information 156 including at least location / position information of the terminal, and information 451 related to the SSID, and includes, after the first display, desired information 472 and at least location / position information of the terminal From the information 156, the display of the position of the terminal is displayed on the display of the map, the floor guide, the information of the facility, the information of the seat, and the information of the store.
  • FIG. 5 is an example of a specific display of the display unit 157. As shown in FIG. The display in FIG. 5 indicates that it is "the third floor”. And A-1, A-2, A-3, A-4, A-21, A-22, A-23 and A-24 indicate the position of the parking space of the car, respectively. And a-1 and a-2 show the position of the elevator. It is assumed that the information of this map is the desired information 453. And as shown in FIG. 5, the present position is mapped and displayed on the map. At this time, the current position is information obtained from the information 156 including at least the location / position information of the terminal.
  • FIG. 6 shows an example of a frame configuration of a modulated signal transmitted by the first device 400 of FIG.
  • the horizontal axis represents time, and symbols that transmit the same information as in FIG. 2 are assigned the same reference numerals, and descriptions thereof will be omitted.
  • the first device 400 adds a symbol 600-1 related to an SSID and a symbol 600-2 related to an access destination, in addition to a preamble 201, a control information symbol 202, a location information or a symbol 203 related to position information, and a symbol 204 related to time information. Send.
  • the symbol 600-1 for the SSID is a symbol for transmitting the information 401-1 for the SSID in FIG. 4, and the symbol 600-2 for the access destination is a symbol for transmitting the information 401-2 for the access destination in FIG. is there.
  • symbols other than the symbols described in FIG. 6 may be included.
  • the frame configuration, including the order of transmission of symbols, is not limited to the configuration of FIG.
  • FIG. 7 shows an example of a frame configuration of a modulated signal transmitted by the base station 470 of FIG. 4, and the horizontal axis is time. As shown in FIG. 7, for example, it is assumed that the base station 470 transmits a preamble 701 and then transmits a control information symbol 702 and an information symbol 703.
  • the preamble 701 is a symbol for a terminal that receives the modulated signal transmitted by the base station 470 to perform, for example, signal detection, time synchronization, frame synchronization, frequency synchronization, frequency offset estimation and the like.
  • the control information symbol 702 includes, for example, data of an error correction coding method used to generate a modulation signal, information on a modulation method, information on a frame configuration, and the like.
  • An information symbol 703 is a symbol for transmitting information.
  • the information symbol 703 is a symbol for transmitting the desired information 472 described above.
  • the base station 470 in FIG. 4 may transmit a frame including symbols other than the symbols described in FIG. 7 (for example, a frame including a pilot symbol (reference symbol) in the middle of an information symbol) .
  • the frame configuration, including the order of transmission of symbols is not limited to the configuration of FIG.
  • a plurality of symbols may exist in the frequency axis direction, that is, a symbol may exist in a plurality of frequencies (a plurality of carriers).
  • a method may be considered in which the modulation signal of the frame configuration in FIG. 6 transmitted by the first device is repeatedly transmitted at regular timing, for example.
  • the plurality of terminals can perform the operation as described above.
  • FIG. 8 is a flowchart showing an example of the process performed by the “first device 400”, the “terminal 450”, and the “base station (or AP) 470” of FIG. 4 described above.
  • the first device 400 in FIG. 4 transmits the modulation signal of the frame configuration in FIG.
  • the modulation signal transmitted by the first device 400 in FIG. 4 is received, and the terminal 450 in FIG. 4 performs location / position estimation of the terminal.
  • the modulation signal transmitted by the first device 400 in FIG. 4 is received, and the terminal 450 in FIG. 4 grasps the SSID of the base station to which the terminal accesses.
  • the terminal 450 in FIG. 4 may use a radio signal to generate a modulation signal including data including information on an access destination for obtaining information such as a map, using the radio wave, for example. Transmit to station (or AP) 470.
  • base station (or AP) 470 receives the modulated signal transmitted by terminal 450, obtains access destination information, and accesses a desired access destination via the network. Get the desired information, such as a map.
  • the base station (or AP) 470 in FIG. 4 transmits a modulated signal including desired information such as the acquired map to the terminal 450 using, for example, radio waves. .
  • the terminal 450 receives the modulated signal transmitted by the base station (or AP) 470 and obtains map (or the like) information. Then, the terminal 450 performs display as shown in FIG. 5 based on the information of the map (or the like) and the information of the location and position of the terminal which has already been obtained.
  • FIG. 9 is a map of “the third floor” as described in FIG. 5.
  • A-1, A-2, A-3, A-4, A-21, A-22, A-23, A-24 are parking spaces for cars, Oh -1, Oh-2 It shows an elevator.
  • the first device having the same configuration as that of the device 100 of FIG. 4 is installed at the position of “o” 901-1 of FIG.
  • the first device having the same configuration as that of the device 100 of FIG. 4 at the position 901-1 will be referred to as a “first one device”.
  • the first device has information on location or information on location “A-1” and transmits information on location “A-1” as information on location or information on location It will be.
  • the first device having the same configuration as the device 100 of FIG. 4 is installed at the position of “o” 901-2 of FIG.
  • the first device having the same configuration as the device 100 of FIG. 4 in the position of 901-2 is named “first two devices”.
  • the first two devices have information on location or information on location “A-2” and transmit information on location “A-2” as information on location or information on location It will be.
  • the first device having the same configuration as the device 100 of FIG. 4 is installed at the position of “o” 901-3 of FIG.
  • the first device having the same configuration as that of the device 100 of FIG. 4 at the position 901-3 is named “first three devices”.
  • the first three devices have information on location or information on location “A-3” as information on location, and transmit information “A-3” as information on location or information on location It will be.
  • the first device having the same configuration as the device 100 of FIG. 4 is installed at the position of “o” 901-4 of FIG.
  • the first device having the same configuration as the device 100 of FIG. 4 at the position 901-4 is termed the “first four devices”.
  • the first four devices have information on location or “A-4” as information on location, and transmit information “A-4” as information on location or information on location. It will be.
  • the first device having the same configuration as the device 100 of FIG. 4 is installed at the position of “o” 901-21 of FIG.
  • the first device having the same configuration as the device 100 of FIG. 4 located at the position 901-21 will be termed the “first 21 devices”.
  • the first 21 devices have information on location or information on location “A-21” as information on location, and transmit information “A-21” as information on location or information on location It will be.
  • the first device having the same configuration as the device 100 of FIG. 4 is installed at the position of “o” 901-22 of FIG.
  • the first device having the same configuration as the device 100 of FIG. 4 at position 901-22 is termed the “first 22 devices”.
  • the first 22 devices have information on location or information on location “A-22” as information on location, and transmit information “A-22” as information on location or information on location It will be.
  • the first device having the same configuration as the device 100 of FIG. 4 is installed at the position of “o” 901-23 of FIG.
  • the first device having the same configuration as the device 100 of FIG. 4 at position 901-23 is termed the “first 23 devices”.
  • the first 23 devices have information on location or information on location “A-23” as information on location and transmit information “A-23” as information on location or information on location It will be.
  • the first device having the same configuration as the first device 400 of FIG. 4 is installed at the position of “o” 901-24 of FIG.
  • the first device having the same configuration as the first device 400 of FIG. 4 at the position 901-24 is named “first 24 devices”.
  • the first 24 devices have information on location or "A-24" as information on location, and transmit information "A-24" as information on location or information on location. It will be.
  • a base station (or AP) having a configuration similar to that of the base station 470 in FIG. 4 is installed at the position of “ ⁇ ”902 in FIG.
  • the SSID of the base station (or AP) having the same configuration as that of the base station 470 of FIG. 4 at position 902 is “abcdef”.
  • terminals located around the position shown in the map of FIG. 9 are connected to a base station (or AP) having the same configuration as 470 of FIG. 4 installed at the position of 902 of FIG. It is good to access. Therefore, the “first one device” installed in the 901-1 in FIG. 9 transmits “abcdef” as information on the SSID (see 401-1 in FIG. 4).
  • the “first two devices” installed in the 901-2 in FIG. 9 transmit “abcdef” as information related to the SSID (see 400-1 in FIG. 4).
  • the “first three devices” installed in 901-3 of FIG. 9 transmit “abcdef” as information related to the SSID (see 401-1 of FIG. 4).
  • the “first four devices” installed in 901-4 in FIG. 9 transmit “abcdef” as information related to the SSID (see 401-1 in FIG. 4).
  • the “first 21 devices” installed in 901-21 of FIG. 9 transmit “abcdef” as information related to the SSID (see 401-1 in FIG. 4).
  • the “first 22 devices” installed in 901-22 in FIG. 9 transmit “abcdef” as information related to the SSID (see 401-1 in FIG. 4).
  • the “first 23 devices” installed in 901-23 in FIG. 9 transmit “abcdef” as information on the SSID (see 401-1 in FIG. 4).
  • the “first 24 devices” installed in 901-24 of FIG. 9 transmit “abcdef” as information related to the SSID (see 401-1 of FIG. 4).
  • the terminal receives the modulated signal transmitted by the “first four devices” located at 901-4 in FIG. 9, and obtains location information “A-4”. Also, the terminal obtains information on the SSID "abcdef", whereby the terminal has a base station (or AP) having the same configuration as the base station 470 of FIG. 4 located at 902 of FIG. , And the terminal obtains information such as a map from a base station (or AP) having a configuration similar to that of the base station 470 of FIG. 4 located at 902 of FIG. The terminal then displays the map information and the position information (see FIG. 5; however, FIG. 5 is merely an example of the display).
  • the terminal receives the modulated signal transmitted by the “first 22 devices” located at 901-22 in FIG. 9, and obtains position information “A-22”.
  • the terminal obtains information of the SSID “abcdef”, whereby the terminal is sent to a base station (or AP) having the same configuration as the base station 470 of FIG. 4 located at 902 of FIG.
  • a terminal to be accessed will obtain information such as a map from a base station (or AP) having the same configuration as the base station 470 of FIG. 4 located at 902 of FIG.
  • the terminal displays the map information and the position information (see FIG. 5; however, FIG. 5 is merely an example of the display).
  • the terminal stores the map (peripheral information) and the position information as shown in FIG. 5 in the storage unit of the terminal, and the stored information when the user who uses the terminal needs it.
  • the user can utilize map (peripheral information) and position information more conveniently.
  • the terminal since the first device transmits the modulation signal using visible light, a terminal capable of receiving this modulation signal can receive signal light from the position of the first device. It is limited. Therefore, when the terminal receives the location and position information transmitted by the first device, the terminal has an effect of being able to easily acquire high-accuracy position information (without having to perform complicated signal processing). be able to.
  • the terminal should receive the modulated signal transmitted by the first device even at places where radio waves from GPS satellites are hard to receive. Thus, it is possible to obtain the effect that high-accuracy position information can be obtained safely.
  • the terminal connects with the base station (or AP) and obtains the information, so that the information can be acquired safely. You can get it. Because, when information is obtained from the modulation signal of visible light, the user can easily recognize the first device that transmitted the modulation signal because it is visible light, and it is judged whether the information source is safe or not. Because it is easy.
  • the SSID when the SSID is acquired from a modulated signal of radio waves transmitted by the wireless LAN, it is difficult for the user to determine the device that transmitted the radio waves. Therefore, in terms of securing the security of information, it is more suitable to obtain the SSID by visible light communication.
  • a plurality of input signals may further exist in the wireless device 453 of the terminal 450 of FIG. 4.
  • a control signal for controlling the wireless device 453 and information to be transmitted to the base station may be present as an input signal.
  • an operation in which the wireless device 453 starts communication based on the control signal can be considered as an example.
  • the configuration of the first device is not limited to the configuration of the first device 400 of FIG. 4, and the configuration of the terminal is not limited to the configuration of the terminal 450 of FIG.
  • the connection destination and configuration of the base station 470 are not limited to those shown in FIG.
  • FIG. 4 describes the case where one base station (or AP) is arranged, there are a plurality of (safe) base stations (or APs) accessible by the terminal. It is also good.
  • the symbol relating to the SSID transmitted by the first device 400 in FIG. 4 may include information indicating the respective SSIDs of these multiple base stations (or APs).
  • the terminal 450 in FIG. 4 may select a base station (or AP) to be wirelessly connected based on the information of the SSIDs of a plurality of base stations (or a plurality of base stations (or APs) It may be connected with
  • the SSID of the base station #A is "abcdef”
  • the SSID of the base station #B is "ghijk”
  • the SSID of the base station #C is "pqrstu”.
  • the symbol 600-1 related to the SSID in the frame configuration of FIG. 6 of the modulated signal transmitted by the first device is "Abcdef for the SSID of base station #A,” “ghijk” for the SSID of base station #B. It is assumed that “the SSID of the base station #C includes information on“ pqrstu ””.
  • the terminal 450 of FIG. 4 receives the symbol 600-1 relating to the SSID, “an SSID of the base station #A is“ abcdef ”,“ an SSID of the base station #B is “ghijk”, “an base station #C
  • the base station (or AP) to which the wireless connection is to be made is selected based on the information of “pqrstu” of the SSID of.
  • each embodiment is merely an example, and for example, “modulation scheme, error correction coding scheme (error correction code to be used, code length, coding rate, etc.), control information etc.” is illustrated. Also in the case where another “modulation method, error correction coding method (error correction code to be used, code length, coding rate, etc.), control information, etc.” is applied, the same configuration can be used.
  • APSK Amplitude Phase Shift Keying
  • PAM Pulse Amplitude Modulation
  • PSK Phase Shift Keying
  • QAM Quadrature Amplitude Modulation
  • the modulation scheme having 64, 128, 256, 1024, etc. signal points is not limited to the signal constellation method of the modulation scheme shown in this specification.
  • the radio apparatus described in this specification includes, for example, a broadcasting station, a base station, an access point, a terminal, communication / broadcasting equipment such as a mobile phone, a television, a radio, a terminal, a personal computer And communication devices such as mobile phones, access points, and base stations.
  • the wireless device described in the present specification is a device having a communication function, and the device performs some interface to a device for executing an application such as a television, a radio, a personal computer, a mobile phone, etc. It is also conceivable that it is in a form that can be understood and connected.
  • the receiver described in this specification includes, for example, a broadcast station, a base station, an access point, a terminal, communication / broadcasting equipment such as a mobile phone, a television, a radio, a terminal, It is conceivable that the communication device is a personal computer, a mobile phone, an access point, a base station or the like.
  • symbols other than data symbols for example, pilot symbols (preamble, unique word, postamble, reference symbol, etc.), symbols for control information, etc. are arranged in a frame. It may be And although it is naming as a pilot symbol and a symbol for control information here, what kind of naming may be performed and the function itself becomes important.
  • the pilot symbols may for example be known symbols modulated at the transceiver using PSK modulation (or the receiver may be able to know the symbols transmitted by the transmitter by synchronizing the receiver The receiver should use this symbol to perform frequency synchronization, time synchronization, channel estimation (for each modulated signal) (estimate of CSI (Channel State Information)), signal detection, etc. Become.
  • symbols for control information are information that needs to be transmitted to a communication partner (eg, modulation scheme, error correction coding scheme used for communication, etc.) to realize communication other than data (such as application) It is a symbol for transmitting the coding rate of the error correction coding method, setting information in the upper layer, and the like.
  • the present invention is not limited to the embodiments, and can be implemented with various modifications.
  • the present invention is not limited to this, and it is also possible to perform this communication method as software.
  • a program for executing the communication method may be stored in advance in a ROM (Read Only Memory), and the program may be operated by a CPU (Central Processor Unit).
  • ROM Read Only Memory
  • CPU Central Processor Unit
  • the program for executing the communication method is stored in a computer readable storage medium, the program stored in the storage medium is recorded in a RAM (Random Access Memory) of the computer, and the computer is operated according to the program You may do so.
  • RAM Random Access Memory
  • each composition of each above-mentioned embodiment etc. may be realized as LSI (Large Scale Integration) which is an integrated circuit typically. These may be individually made into one chip, or may be made into one chip so as to include all or some of the configurations of the respective embodiments. Although an LSI is used here, it may be called an IC (Integrated Circuit), a system LSI, a super LSI, or an ultra LSI depending on the degree of integration. Further, the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible.
  • LSI Large Scale Integration
  • a field programmable gate array (FPGA) that can be programmed or a reconfigurable processor that can reconfigure connection and setting of circuit cells in the LSI may be used.
  • FPGA field programmable gate array
  • reconfigurable processor that can reconfigure connection and setting of circuit cells in the LSI may be used.
  • integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using this technology. Adaptation of biotechnology etc. may be possible.
  • FIG. 10 is a diagram showing an example of a configuration of a communication system in the present embodiment.
  • the communication system of FIG. 10 includes, for example, a visible light source such as an LED, an illumination, a light source, a device 1000 equipped with a light, a terminal 1050, and a base station 470 that communicates with the terminal 1050, for example.
  • the device 1000 of FIG. 10 includes, for example, visible light such as an LED, illumination, a light source, and light. Note that this device 1000 will be referred to as “second device” in the present embodiment. And in the 2nd apparatus 1000 of FIG. 10, about the component which operate
  • the communication between the wireless device 453 and the base station 470 in FIG. 10 uses, for example, radio waves.
  • the transmission unit 101 receives the information 1001-1 regarding the SSID, the information 1001-2 regarding the encryption key, and the data 1002, and based on these input signals, the (optical) modulation signal is input.
  • the modulation signal 103 is generated and output. Then, the modulation signal 103 is transmitted from, for example, the light source 104.
  • the information 1001-1 related to the SSID is information indicating the SSID of the base station (or AP) 470 in FIG.
  • the base station (or AP) 470 transmits a modulated signal by radio wave and receives a modulated signal of radio wave. That is, the second device 1000 can provide the terminal with access to the base station 470, which is a safe access destination. By this means, it is possible to obtain the effect that terminal 1050 in FIG. 10 can securely obtain information from base station (or AP) 470.
  • the device 1000 can limit terminals that access the base station 470 to terminals in a space where the optical signal transmitted (irradiated) by the device 1000 can be received.
  • the terminal 1050 may determine that the notified SSID is the SSID of a safe base station, and is it safe? You may perform the process which discriminate
  • the terminal of FIG. 1050 will access the base station (or AP) 470 to obtain information.
  • the information 1001-2 related to the encryption key is the information related to the encryption key required for the terminal 1050 in FIG. 10 to communicate with the base station (or AP) 470 in FIG. 10, and the terminal 1050 in FIG. By obtaining this information from the second device 1000 in FIG. 10, encrypted communication can be performed with the base station (or AP) 470.
  • the terminal 1050 in FIG. 10 receives the modulated signal transmitted by the second device 1000.
  • the same components as those of the terminal 150 of FIG. 1 and the terminal 450 of FIG. 4 are denoted by the same reference numerals.
  • a light receiving unit 151 such as an image sensor such as a CMOS or an organic CMOS included in the terminal 1050 receives the modulation signal transmitted by the second device 1000. Then, the receiving unit 153 receives the received signal 152 received by the light receiving unit 151 as input, performs processing such as demodulation of a received signal and error correction decoding, and outputs received data 154.
  • the data analysis unit 155 receives the received data 154 and communicates with, for example, the information 1051 of the SSID of the base station (470) to be connected and the base station (470) to be connected, from the received data.
  • the information 1052 of the encryption key of is output.
  • a wireless LAN Local Area Network
  • WEP Wi-Fi Protected Access
  • WPA2 Wi-Fi Protected Access 2
  • PSK Pre-Shared Key
  • EAP Extended Authentication Protocol
  • the display unit 157 receives the information 1051 of the SSID and the information 1052 of the encryption key, and displays, for example, the SSID of the communication counterpart accessed by the wireless device 453 of the terminal and the encryption key. (This display is named the first display in this embodiment.)
  • the wireless device 453 included in the terminal 1050 in FIG. 10 receives the information 1051 of the SSID and the information 1052 of the encryption key, and establishes a connection with the base station (or AP) 470.
  • the connection uses radio waves.
  • the base station (or AP) 470 when communicating with the wireless device 453 of the terminal 1050 in FIG. 10, the base station (or AP) 470 also transmits the modulation signal using, for example, a radio wave.
  • wireless device 453 included in terminal 1050 in FIG. 10 receives data 1053 and control signal 1054, modulates data 1053 according to control of control signal 154, and transmits the modulated signal as a radio wave. Do.
  • the base station (or AP) 470 sends data to the network (471) and receives data from the network (472). Thereafter, for example, base station (or AP) 470 transmits the modulated signal as a radio wave to terminal 1050 in FIG.
  • the wireless device 453 included in the terminal 1050 in FIG. 10 performs processing such as demodulation and error correction decoding on the modulated signal received as a radio wave, and acquires received data 1056.
  • the display unit 157 performs display based on the received data 1056.
  • FIG. 11 shows an example of a frame configuration of a modulated signal transmitted by the second device 1000 of FIG.
  • the horizontal axis represents time, and the same symbols as in FIG. 2 and FIG.
  • the second device transmits a preamble 201, a control information symbol 202, a symbol 600-1 related to an SSID, a symbol 1101 related to an encryption key, and a data symbol 1102.
  • the second device 1000 in FIG. 10 may transmit a frame including symbols other than the symbols described in FIG. Further, the frame configuration including the order of transmitting symbols is not limited to the configuration of FIG.
  • FIG. 12 illustrates an example of a frame configuration of a modulated signal transmitted by the wireless device 453 included in the terminal 1050 in FIG.
  • the horizontal axis is time.
  • the wireless device 453 of the terminal 1050 in FIG. 10 transmits, for example, a preamble 1201 and then transmits a control information symbol 1202 and an information symbol 1203.
  • the preamble 1201 is, for example, signal detection, time synchronization, frame synchronization, frequency synchronization, frequency offset, etc., by the base station (or AP) 470 which receives the modulated signal transmitted by the wireless device 453 of the terminal 1050 in FIG. It is a symbol used to perform estimation and the like.
  • the control information symbol 1202 includes, for example, data such as an error correction coding method used to generate a modulation signal, information on a modulation method, information on a frame configuration, and information on a transmission method.
  • the AP 470 performs demodulation of the modulated signal.
  • the information symbol 1203 is a symbol for the wireless device 453 of the terminal 1050 in FIG. 10 to transmit data.
  • the wireless device 453 of the terminal 1050 in FIG. 10 may transmit a frame including a symbol other than the symbol described in FIG. 12 (for example, a pilot symbol (reference symbol) is included in the middle of an information symbol). Frame etc).
  • the frame configuration, including the order of transmitting symbols is not limited to the configuration of FIG. Then, in FIG. 12, a plurality of symbols may exist in the frequency axis direction, that is, a symbol may exist in a plurality of frequencies (a plurality of carriers).
  • the frame configuration in FIG. 12 may be used.
  • FIG. 7 shows an example of a frame configuration of a modulated signal transmitted by the base station 470 of FIG.
  • the horizontal axis in FIG. 7 is time. As shown in FIG. 7, for example, it is assumed that the base station 470 transmits a preamble 701 and then transmits a control information symbol 702 and an information symbol 703.
  • the preamble 701 is, for example, signal detection, time synchronization, frame synchronization, frequency synchronization, frequency offset estimation, etc. by the wireless device 453 of the terminal 1050 in FIG. 10 that receives the modulated signal transmitted by the base station 470.
  • Shall be the symbol of
  • the control information symbol 702 includes, for example, data such as an error correction coding method used to generate a modulation signal, information on a modulation method, information on a frame configuration, and information on a transmission method.
  • the wireless device 453 of the ten terminals 1050 performs demodulation of the modulated signal and the like based on the information of this symbol.
  • Information symbol 703 is a symbol for the base station (or AP) 470 in FIG. 10 to transmit data.
  • the base station (or AP) 470 in FIG. 10 may transmit a frame including symbols other than the symbols described in FIG. 7 (for example, a pilot symbol (reference symbol) is included in the middle of an information symbol). Such as the included frame).
  • the frame configuration, including the order of transmitting symbols is not limited to the configuration of FIG. Then, in FIG. 7, a plurality of symbols may exist in the frequency axis direction, that is, a symbol may exist in a plurality of frequencies (a plurality of carriers).
  • a method may be considered in which the modulation signal of the frame configuration in FIG. 11 transmitted by the second device 1000 is repeatedly transmitted, for example, at regular timing.
  • the plurality of terminals can perform the operation as described above.
  • FIG. 14 is a flowchart showing an example of processing performed by the “second device 1000”, the “terminal 1050”, and the “base station (or AP) 470” of FIG. 10 described above in FIG. 13;
  • the second device 1000 in FIG. 10 transmits the modulation signal of the frame configuration in FIG.
  • the modulation signal transmitted by the second device 1000 in FIG. 10 is received, and the terminal 1050 in FIG. 10 acquires the SSID of the base station to which the terminal 1050 accesses.
  • the terminal 1050 in FIG. 10 acquires the encryption key used for communication with the base station 470 accessed by the terminal.
  • the terminal 1050 in FIG. 10 performs a radio wave connection with the base station 470 in FIG. 10 (1304).
  • the terminal 1050 in FIG. 10 completes the connection with the base station 470 in FIG.
  • the terminal 1050 in FIG. 10 transmits information on the connection destination to the base station 470 using the radio wave to the base station 470 in FIG. 10.
  • the base station 470 in FIG. 10 obtains information for transmission from the network to the terminal 1050 in FIG.
  • the base station 470 in FIG. 10 transmits the obtained information to the terminal 1050 in FIG. 10 using radio waves, and the terminal 1050 in FIG. 10 obtains information.
  • the terminal 1050 in FIG. 10 acquires necessary information from the network via the base station 470 in FIG. 10 when necessary.
  • the terminal connects with the base station (or AP) to acquire the information, thereby achieving safety.
  • the effect can be obtained that information can be obtained securely via a guaranteed base station (or AP). This is because, when information is obtained from a modulation signal of visible light, the user can easily determine whether the information source is safe because the light is visible light.
  • the SSID when the SSID is acquired from a modulated signal of radio waves transmitted by the wireless LAN, it is difficult for the user to determine the device that transmitted the radio waves. Therefore, in terms of securing the security of information, it is more suitable to obtain the SSID by visible light communication.
  • the second device transmits the information of the encryption key
  • communication in which the base station (or AP) uses the encryption key is used. If not, the second device does not transmit the information on the encryption key, but transmits only the information on the SSID, and can be similarly implemented only by deleting the configuration on the encryption key.
  • the configuration of the second device is not limited to the configuration shown in FIG. 10, and the configuration of the terminal is not limited to the configuration shown in FIG. It is not limited to FIG.
  • the symbol related to the SSID transmitted by the second device 1000 in FIG. 10 may include information on the SSID of each of these multiple base stations (or APs).
  • the symbol related to the encryption key transmitted by the second device 1000 in FIG. 10 includes information of the encryption key used to connect to each of the base stations (or APs) existing in the plurality of these. May be Then, the terminal 1050 in FIG.
  • a base station or AP
  • a base station or AP
  • it may select a base station (or AP) to be connected wirelessly (for example, by radio wave) based on the information on the SSIDs of a plurality of base stations and the information on the encryption key ( Alternatively, it may be connected to a plurality of base stations (or APs).
  • base station #A For example, suppose there are three base stations (or APs). Each is named base station #A, base station #B, and base station #C. Then, the SSID of the base station #A is "abcdef”, the SSID of the base station #B is "ghijk”, the SSID of the base station #C is "pqrstu”, and the encryption key for connecting to the base station #A is The encryption key for connecting to the base station #B is “456”, and the encryption key for connecting to the base station #C is “789”.
  • the symbol 600-1 related to the SSID in the frame configuration of FIG. 11 of the modulated signal transmitted by the second device is "Abcdef for the SSID of base station #A,” “ghijk” for the SSID of base station #B. It is assumed that “the SSID of the base station #C includes information on“ pqrstu ””. Then, the symbol 1101 relating to the encryption key in the frame configuration of FIG. 11 indicates that "the encryption key for connecting to the base station #A is" 123 ", and" the encryption key for connecting to the base station #B is "456". It is assumed that “encryption key for connecting to base station #C includes information on“ 789 ”.
  • the terminal 1050 in FIG. 10 receives the symbol 600-1 relating to the SSID, and "the SSID of the base station #A is" abcdef "," the SSID of the base station #B is "ghijk", "the base station #C
  • the information of “pqrstu” is obtained for the SSID of “1”, the symbol 1101 related to the encryption key is received, “encryption key for connecting to the base station #A is“ 123 ”, and“ encryption for connecting to the base station #B Information on the key "456" and "encryption key for connecting to the base station #C" 789 "is obtained.
  • the terminal 1050 in FIG. 10 selects and connects a base station (or AP) to be wirelessly connected (for example, by radio waves).
  • the modulation signal for the radio transmitted by the terminal can be obtained by the terminal and the base station.
  • the modulation signal for the radio transmitted by the terminal can be obtained by the terminal and the base station.
  • the encryption key may be an encryption key for the SSID of the wireless LAN, as described above, or an encryption key for limiting the connection mode, service mode, network connection range, and the like. (Ie, you may introduce an encryption key for some restrictions).
  • FIG. 14 shows an example of the configuration of, for example, a base station that communicates with a light source for visible light such as an LED or the like, an illumination, a light source, a device equipped with a light, a terminal, and a terminal in the present embodiment.
  • the communication system 14 includes, for example, a light source such as an LED, an illumination, a light source, devices 1400A and 1400B equipped with lights, a terminal 1050, and a base station 470 that communicates with the terminal 1050, for example.
  • Device 1400A in FIG. 14 is named as “third device” in the present embodiment
  • device 1400B in FIG. 14 is named as “fourth device” in this embodiment.
  • the same numbers are assigned to those operating in the same manner as in FIGS. 1 and 10, and the same operations as in FIG. 4 are also performed on the base station or AP. The same number as 4 is attached.
  • the communication between the wireless device 453 and the base station 470 in FIG. 14 uses, for example, radio waves.
  • the transmission unit 1404-1 receives the information 1401-1 and data 1402-1 related to the SSID, generates (light) modulation signal based on these input signals, and modulates the signal.
  • the signal 1405-1 is output. Then, the modulation signal 1405-1 is transmitted from the light source 1406-1.
  • the transmitting unit 1404-2 receives the information 1403-2 concerning the encryption key and the data 140 2-2 and generates an (optical) modulation signal based on these input signals, The modulation signal 1405-2 is output. Then, the modulation signal 1405-2 is transmitted from the light source 1406-2.
  • the information 1401-1 related to the SSID is information indicating the SSID of the base station (or AP) 470 in FIG. That is, the third device 1400A can provide the terminal with access to the base station 470, which is a safe access destination by radio waves. By this means, it is possible to obtain the effect that terminal 1050 in FIG. 14 can securely obtain information from base station (or AP) 470.
  • the terminal 450 may determine that the notified SSID is the SSID of a safe base station, and is it safe? You may perform the process which discriminate
  • the device 1400A may transmit a predetermined identifier included in an optical signal, and the terminal may determine based on the received identifier whether the notified SSID is the SSID of a secure base station.
  • the terminal of FIG. 1050 will access the base station (or AP) 470 to obtain information.
  • the information 1403-2 related to the encryption key is information related to the encryption key required for the terminal 1050 in FIG. 14 to communicate with the base station (or AP) 470 in FIG. By obtaining this information from the fourth device 1400 B of FIG. 14, encrypted communication can be performed with the base station (or AP) 470.
  • the terminal 1050 in FIG. 14 receives the modulated signal transmitted by the third device 1400A.
  • the light receiving unit 151 such as an image sensor such as a CMOS or an organic CMOS included in the terminal 1050 receives the modulation signal transmitted by the third device 1400A.
  • the receiving unit 153 receives the received signal 152 received by the light receiving unit 151, performs processing such as demodulation of a received signal and error correction decoding, and outputs received data 154.
  • the data analysis unit 155 receives the received data 154, and outputs, for example, information 1051 of the SSID of the base station (470) to be a connection destination from the received data.
  • the wireless device 453 of the terminal 1050 obtains the information of the SSID of the base station to which the wireless device 453 is connected by radio waves from the information 1051 of the SSID.
  • the terminal 1050 in FIG. 14 receives the modulated signal transmitted by the fourth device 1400B.
  • a light receiving unit 151 such as an image sensor such as a CMOS or an organic CMOS included in the terminal 1050 receives the modulation signal transmitted by the fourth device 1400B. Then, the receiving unit 153 receives the received signal 152 received by the light receiving unit 151 as input, performs processing such as demodulation of a received signal and error correction decoding, and outputs received data 154.
  • the data analysis unit 155 receives the received data 154, and outputs, from the received data, for example, information 1052 of an encryption key for communicating with the connection destination base station (470).
  • an encryption key for communicating with the connection destination base station (470).
  • WEP Wi-Fi Protected Access
  • WPA2 Wi-Fi Protected Access 2
  • PSK Pre-Shared Key
  • EAP Extended Authentication Protocol
  • the wireless device 453 included in the terminal 1050 is the cipher of the base station to which the wireless device 453 is connected from the information 1052 of the encryption key for communicating with the base station (470) to be connected (for example, by radio waves). You will get key information.
  • the display unit 157 receives the information 1051 of the SSID and the information 1052 of the encryption key, and displays, for example, the SSID of the communication counterpart accessed by the wireless device 453 of the terminal and the encryption key. (This display is named the first display in this embodiment.)
  • the wireless device 453 included in the terminal 1050 in FIG. 14 receives the information 1051 of the SSID and the information 1052 of the encryption key as an input, and connects with the base station (or AP) 470 by radio waves. (For example, the connection uses radio waves).
  • the base station (or AP) 470 when communicating with the wireless device 453 of the terminal 1050 in FIG. 14, the base station (or AP) 470 also transmits a modulation signal using, for example, a radio wave.
  • wireless device 453 included in terminal 1050 in FIG. 14 receives data 1053 and control signal 1054, modulates data 153 according to control of control signal 154, and transmits the modulated signal by radio wave. Do.
  • the base station (or AP) 470 sends data to the network (471) and receives data from the network (472). Thereafter, for example, base station (or AP) 470 transmits the modulated signal to terminal 1050 in FIG. 14 by radio wave.
  • the wireless device 453 included in the terminal 1050 in FIG. 14 performs processing such as demodulation and error correction decoding on the received modulated signal to obtain received data 1056.
  • the display unit 157 performs display based on the received data 1056.
  • FIG. 15 shows an example of a frame configuration of a modulated signal transmitted by the third device 1400A of FIG.
  • the horizontal axis represents time, and the same symbols as in FIG. 2, FIG. 6, and FIG.
  • the symbol 600-1 related to the SSID is a symbol for transmitting the information 1401-1 related to the SSID in FIG.
  • Data symbol 1102 is a symbol for transmitting data 1402-1.
  • the third device transmits a preamble 201, a control information symbol 202, a symbol 600-1 related to an SSID, and a data symbol 1102.
  • the third device 1400A of FIG. 14 may transmit a frame including symbols other than the symbols described in FIG. Further, the frame configuration including the order of transmitting symbols is not limited to the configuration of FIG.
  • FIG. 16 shows an example of a frame configuration of a modulated signal transmitted by the fourth device 1400B of FIG.
  • the horizontal axis represents time, and the same symbols as in FIGS. 2 and 11 denote the same symbols, and a description thereof will be omitted.
  • the symbol 1101 related to the encryption key is a symbol for transmitting the information 1403-2 related to the encryption key in FIG.
  • Data symbol 1102 is a symbol for transmitting data 1402-2.
  • the fourth device transmits a preamble 201, a control information symbol 202, a symbol 1101 related to an encryption key, and a data symbol 1102.
  • the fourth device 1400B of FIG. 14 may transmit a frame including symbols other than the symbols described in FIG. Further, the frame configuration including the order of transmitting symbols is not limited to that shown in FIG.
  • FIG. 12 shows an example of a frame configuration of a modulated signal transmitted by the wireless device 453 included in the terminal 1050 in FIG.
  • the horizontal axis is time.
  • the wireless device 453 included in the terminal 1050 in FIG. 14 transmits, for example, a preamble 1201 and then transmits a control information symbol 1202 and an information symbol 1203.
  • the preamble 1201 is, for example, signal detection, time synchronization, frame synchronization, frequency synchronization, frequency offset, etc. by the base station (or AP) 470 that receives the modulated signal transmitted by the wireless device 453 of the terminal 1050 in FIG. It is a symbol used to perform estimation and the like.
  • the control information symbol 1202 includes, for example, data such as an error correction coding method used to generate a modulation signal, information on a modulation method, information on a frame configuration, and information on a transmission method.
  • the AP 470 performs demodulation of the modulated signal.
  • the information symbol 1203 is a symbol for the wireless device 453 of the terminal 1050 in FIG. 14 to transmit data.
  • the wireless device 453 of the terminal 1050 in FIG. 14 may transmit a frame including symbols other than the symbols described in FIG. 12 (for example, pilot symbols (reference symbols) are included in the middle of information symbols). Frame etc). Also, the frame configuration, including the order of transmitting symbols, is not limited to the configuration of FIG. Then, in FIG. 12, a plurality of symbols may exist in the frequency axis direction, that is, a symbol may exist in a plurality of frequencies (a plurality of carriers).
  • FIG. 7 shows an example of a frame configuration of a modulated signal transmitted by the base station 470 of FIG.
  • the horizontal axis in FIG. 7 is time. As shown in FIG. 7, for example, it is assumed that the base station 470 transmits a preamble 701 and then transmits a control information symbol 702 and an information symbol 703.
  • the preamble 701 is, for example, signal detection, time synchronization, frame synchronization, frequency synchronization, frequency offset estimation, etc. by the wireless device 453 of the terminal 1050 in FIG. 10 that receives the modulated signal transmitted by the base station 470.
  • Shall be the symbol of
  • the control information symbol 702 includes, for example, data such as an error correction coding method used to generate a modulation signal, information on a modulation method, information on a frame configuration, and information on a transmission method.
  • the wireless device 453 of the 14 terminals 1050 performs demodulation of the modulated signal based on the information of this symbol.
  • An information symbol 703 is a symbol for the base station (or AP) 470 in FIG. 14 to transmit data.
  • the base station (or AP) 470 in FIG. 14 may transmit a frame including symbols other than the symbols described in FIG. 7 (for example, a pilot symbol (reference symbol) Such as the included frame).
  • the frame configuration, including the order of transmitting symbols is not limited to the configuration of FIG. Then, in FIG. 7, a plurality of symbols may exist in the frequency axis direction, that is, a symbol may exist in a plurality of frequencies (a plurality of carriers).
  • a method may be considered in which the modulation signal of the frame configuration in FIG. 15 transmitted by the third device 1400A is repeatedly transmitted, for example, at regular timing.
  • the plurality of terminals can perform the operation as described above.
  • the modulation signal of the frame configuration in FIG. 16 transmitted by the fourth device 1400B is transmitted at regular timing, for example, repeatedly.
  • the plurality of terminals can perform the operation as described above.
  • the third device 1400A in FIG. 14 transmits the modulation signal of the frame configuration in FIG.
  • the modulated signal transmitted by the third device 1400A in FIG. 14 is received, and the terminal 1050 in FIG. 14 acquires the SSID of the base station to which the terminal 1050 accesses.
  • the fourth device 1400B in FIG. 14 transmits the modulation signal of the frame configuration in FIG.
  • the modulation signal transmitted by the fourth device 1400 B in FIG. 14 is received, and the terminal 1050 in FIG. 14 acquires the encryption key used for communication with the base station 470 accessed by the terminal. Do.
  • the terminal 1050 in FIG. 14 performs a radio wave connection with the base station 470 in FIG. 14 (1304).
  • the terminal 1050 in FIG. 14 completes the connection with the base station 470 in FIG.
  • the terminal 1050 in FIG. 14 transmits connection destination information to the base station 470 by using radio waves to the base station 470 in FIG.
  • the base station 470 in FIG. 14 obtains information for transmission from the network to the terminal 1050 in FIG.
  • the base station 470 in FIG. 14 transmits the obtained information to the terminal 1050 in FIG. 14 using radio waves, and the terminal 1050 in FIG. 14 obtains information.
  • the terminal 1050 in FIG. 14, for example, acquires necessary information from the network via the base station 470 in FIG. 14 when necessary.
  • the fourth device 1400B in FIG. 14 transmits the modulation signal of the frame configuration in FIG.
  • the modulation signal transmitted by the fourth device 1400 B in FIG. 14 is received, and the terminal 1050 in FIG. 14 acquires the encryption key used for communication with the base station accessed by the terminal 1050. Do.
  • the third device 1400A in FIG. 14 transmits the modulation signal of the frame configuration in FIG.
  • the modulated signal transmitted by the third device 1400A in FIG. 14 is received, and the terminal 1050 in FIG. 14 acquires the SSID of the base station 470 accessed by the terminal.
  • the terminal 1050 in FIG. 14 performs a radio wave connection with the base station 470 in FIG. 14 (1304).
  • the terminal 1050 in FIG. 14 completes the connection with the base station 470 in FIG.
  • the terminal 1050 in FIG. 14 transmits connection destination information to the base station 470 by using radio waves to the base station 470 in FIG.
  • the base station 470 in FIG. 14 obtains information for transmission from the network to the terminal 1050 in FIG.
  • the base station 470 in FIG. 14 transmits the obtained information to the terminal 1050 in FIG. 14 using radio waves, and the terminal 1050 in FIG. 14 obtains information.
  • the terminal 1050 in FIG. 14, for example, acquires necessary information from the network via the base station 470 in FIG. 14 when necessary.
  • the terminal based on the information on the SSID transmitted from the third device and the fourth device, and the information on the encryption key, the terminal connects with the base station (or AP) to acquire the information.
  • the base station or AP
  • the SSID when the SSID is acquired from a modulated signal of radio waves transmitted by the wireless LAN, it is difficult for the user to determine the device that transmitted the radio waves. Therefore, in terms of securing the security of information, it is more suitable to obtain the SSID by visible light communication.
  • the fourth device transmits the information of the encryption key
  • the base station or AP performs the communication using the encryption key. If not performed, the fourth device can transmit the information of the encryption key only, transmits only the information related to the SSID, and can be similarly implemented only by deleting the configuration related to the encryption key.
  • the terminal can realize more secure communication with the base station by separating the device for transmitting the information on the SSID and the device for transmitting the information on the encryption key.
  • the base station (or AP) is installed, and the third device and the fourth device are installed.
  • the third device is installed in the area # 1 in FIG. 19, only the third device is installed.
  • radio waves transmitted by the base station can be received in any of area # 1 and area # 2.
  • a terminal present in area # 1 in which the fourth device is installed can communicate with the base station. Also, even in the case where a terminal connected to a base station in area # 1 moves to area # 2, communication with the base station is possible.
  • a terminal that can not enter area # 1 can not obtain the encryption key.
  • the terminal only knows the SSID of the base station (or AP).
  • the terminal may receive communication with the base station by a service that can be enjoyed by knowing only the SSID.
  • the encryption key may be an encryption key for the SSID of the wireless LAN, as described above, or an encryption key for limiting the connection mode, service mode, network connection range, and the like. (Ie, you may introduce an encryption key for some restrictions).
  • the configuration of the third device and the configuration of the fourth device are not limited to the configuration shown in FIG. 14, and the configuration of the terminal is not limited to the configuration shown in FIG.
  • the configuration method is not limited to that shown in FIG.
  • the symbol related to the SSID transmitted by the third device 1400A in FIG. 14 may include information on the SSID of each of these multiple base stations (or APs).
  • the symbol related to the encryption key transmitted by the fourth device 1400B of FIG. 14 includes information of the encryption key used to connect to each of the base stations (or APs) of the plurality of these existing base stations. May be Then, the terminal 1050 in FIG.
  • a base station or AP
  • a base station or AP
  • the information on the SSIDs of a plurality of base stations and the information on the encryption key or a plurality of base stations (Or you may connect with AP) For example, suppose there are three base stations (or APs). Each is named base station #A, base station #B, and base station #C.
  • the SSID of the base station #A is "abcdef”
  • the SSID of the base station #B is "ghijk”
  • the SSID of the base station #C is "pqrstu”
  • the encryption key for connecting to the base station #A is The encryption key for connecting to the base station #B is “456”
  • the encryption key for connecting to the base station #C is “789”.
  • the symbol 600-1 related to the SSID in the frame configuration of FIG. 15 of the modulated signal transmitted by the third device is "Abcdef for the SSID of base station #A,” “ghijk” for the SSID of base station #B. It is assumed that “the SSID of the base station #C includes information on“ pqrstu ””.
  • the symbol 1101 related to the encryption key in the frame configuration of FIG. 16 of the modulated signal transmitted by the fourth device is “the encryption key for connecting to the base station #A“ 123 ”” and “the connection to the base station #B It is assumed that the information on the encryption key for the operation is "456" and the information on the encryption key for connecting to the base station #C is "789".
  • the terminal 1050 in FIG. 14 receives the symbol 600-1 relating to the SSID, and “the SSID of the base station #A is“ abcdef ”,“ the SSID of the base station #B is “ghijk”, “the base station #C”.
  • the information of “pqrstu” is obtained for the SSID of “1”, the symbol 1101 related to the encryption key is received, “encryption key for connecting to the base station #A is“ 123 ”, and“ encryption for connecting to the base station #B Information on the key "456" and "encryption key for connecting to the base station #C" 789 "is obtained.
  • the terminal 1050 in FIG. 14 selects and connects a base station (or AP) to be connected wirelessly.
  • the modulation signal for the radio transmitted by the terminal can be obtained by the terminal and the base station.
  • the modulation signal for the radio transmitted by the terminal can be obtained by the terminal and the base station.
  • FIG. 20 is a diagram showing an example of a configuration of a communication system in the present embodiment.
  • the communication system of FIG. 20 includes, for example, a light source of visible light such as an LED, illumination, a light source, and a light, and further includes a base station 2000 and a terminal 1050 including a wireless device 2001.
  • a light source of visible light such as an LED, illumination, a light source, and a light
  • a base station 2000 and a terminal 1050 including a wireless device 2001 the same components as those in FIGS. 1 and 10 are denoted by the same reference numerals.
  • Communication between the wireless device 2001 and the wireless device 453 in FIG. 20 uses, for example, radio waves.
  • the base station (or AP) 2000 in FIG. 20 includes, for example, visible light such as an LED, a light, a light source, and a light.
  • visible light such as an LED
  • a light such as a light
  • a light source such as a light
  • a light such as a light
  • a light source such as a light
  • a light such as a light that is illuminated
  • a light source such as a light source
  • a light for example, a light.
  • the transmitting unit 101 receives the information 1001-1 related to the SSID, the information 1001-2 related to the encryption key, and the data 1002, generates a (light) modulation signal based on these input signals, and outputs the modulation signal 103. Then, the modulation signal 103 is transmitted from, for example, the light source 104.
  • the information 1001-1 related to the SSID is information indicating the SSID of the wireless device 2001 using, for example, a radio wave of the base station (or AP) 2000 in FIG. That is, "a part related to visible light such as an LED, a light, a light source, and a light" can provide the terminal with access to the wireless device 2001, which is a safe wireless access destination. As a result, it is possible to obtain the effect that the terminal 1050 in FIG. 20 can securely obtain information from the wireless device 2001.
  • the terminals accessing the wireless device 2001 are visible light such as LED in the base station 200, illumination, light source, light It is possible to limit the terminal in the space where the relevant part can receive (transmit) the transmitted optical signal. If the terminal 1050 receives an optical signal transmitted by a predetermined method, the terminal 1050 may determine that the notified SSID is the SSID of a safe base station, and is it safe? You may perform the process which discriminate
  • visible light such as LED in the base station 200
  • illumination, light source, and part related to the light include a predetermined identifier in the optical signal and transmit it, and the terminal transmits a base whose secure SSID notified based on the received identifier. It may be determined whether it is the station's SSID.
  • the terminal of FIG. 1050 will access the base station (or AP) 2000 to obtain information.
  • the information 1001-2 related to the encryption key is the information related to the encryption key required for the terminal 1050 in FIG. 20 to communicate with the wireless device 2001 in FIG. 20, and the terminal 1050 in FIG. By obtaining this information from portions related to the illumination, the light source, and the light, encrypted communication can be performed with the wireless device 2001.
  • the terminal 1050 in FIG. 20 receives a modulated signal transmitted by a portion related to visible light such as an LED or the like in the base station 200, illumination, a light source, and light.
  • the same elements as those of the terminal 150 of FIG. 1 and the terminal 1050 of FIG. 10 have the same reference numerals.
  • a light receiving unit 151 such as an image sensor such as a CMOS or an organic CMOS included in the terminal 1050 receives a modulation signal transmitted by a portion related to visible light such as an LED, a light source, and a light in the base station 200. . Then, the receiving unit 153 receives the received signal 152 received by the light receiving unit 151 as input, performs processing such as demodulation of a received signal and error correction decoding, and outputs received data 154.
  • a modulation signal transmitted by a portion related to visible light such as an LED, a light source, and a light in the base station 200.
  • the receiving unit 153 receives the received signal 152 received by the light receiving unit 151 as input, performs processing such as demodulation of a received signal and error correction decoding, and outputs received data 154.
  • the data analysis unit 155 receives the received data 154, and based on the received data, communicates with, for example, the information 1051 of the SSID of the wireless device 2001 of the connection destination base station and the wireless device 2001 of the connection destination base station.
  • the information 1052 of the encryption key to be executed is output.
  • a wireless LAN Local Area Network
  • WEP Wi-Fi Protected Access
  • WPA2 Wi-Fi Protected Access 2
  • PSK Pre-Shared Key
  • EAP Extended Authentication Protocol
  • the display unit 157 receives the information 1051 of the SSID and the information 1052 of the encryption key, and displays, for example, the SSID of the communication counterpart accessed by the wireless device 453 of the terminal and the encryption key. (This display is named the first display in this embodiment.)
  • the wireless device 453 included in the terminal 1050 in FIG. 20 receives the information 1051 of the SSID and the information 1052 of the encryption key as input, and the wireless device 2001 of the base station (or AP) 2000 Establish a connection (e.g., the connection uses radio waves).
  • the wireless device 2001 of the base station (or AP) 2000 also transmits a modulation signal using, for example, a radio wave, when communicating with the wireless device 453 included in the terminal 1050 in FIG.
  • wireless device 453 included in terminal 1050 in FIG. 20 receives data 1053 and control signal 1054, modulates data 1053 according to control of control signal 154, and transmits the modulated signal as a radio wave. Do. Then, for example, the wireless device 2001 of the base station (or AP) 2000 transmits data to the network (471) and receives data from the network (472). Thereafter, for example, the wireless device 2001 of the base station (or AP) 2000 transmits the modulation signal as a radio wave to the terminal 1050 in FIG.
  • the wireless device 453 included in the terminal 1050 in FIG. 20 performs processing such as demodulation and error correction decoding on the modulated signal received as a radio wave, and acquires received data 1056.
  • the display unit 157 performs display based on the received data 1056.
  • FIG. 11 shows an example of a frame configuration of a modulated signal transmitted by the wireless device 2001 of the base station (or AP) 2000 of FIG.
  • the horizontal axis represents time, and the same symbols as in FIG. 2 and FIG.
  • a symbol 600-1 related to the SSID is a symbol for transmitting the information 1001-1 related to the SSID in FIG. 20, and a symbol 1101 related to the encryption key is a symbol for transmitting the information 1001-2 related to the encryption key in FIG. is there.
  • Data symbol 1102 is a symbol for transmitting data 1002.
  • the wireless device 2001 of the base station (or AP) 2000 transmits a preamble 201, a control information symbol 202, a symbol 600-1 related to an SSID, a symbol 1101 related to an encryption key, and a data symbol 1102.
  • the wireless device 2001 of the base station (or AP) 2000 in FIG. 20 may transmit a frame including symbols other than the symbols described in FIG. Further, the frame configuration including the order of transmitting symbols is not limited to the configuration of FIG.
  • FIG. 12 illustrates an example of a frame configuration of a modulated signal transmitted by the wireless device 453 included in the terminal 1050 in FIG.
  • the horizontal axis is time.
  • the wireless device 453 of the terminal 1050 in FIG. 20 transmits, for example, a preamble 1201 and then transmits a control information symbol 1202 and an information symbol 1203.
  • the preamble 1201 corresponds to, for example, signal detection, time synchronization, frame synchronization, frequency of the base station (or AP) 2000 which receives the modulated signal transmitted by the radio unit 453 of the terminal 1050 in FIG. It is a symbol used to perform synchronization, frequency offset estimation and the like.
  • the control information symbol 1202 includes, for example, data such as an error correction coding method used to generate a modulation signal, information on a modulation method, information on a frame configuration, and information on a transmission method.
  • data such as an error correction coding method used to generate a modulation signal
  • information on a modulation method information on a frame configuration
  • information on a transmission method information on a transmission method.
  • the wireless device 2001 of the AP 2000 performs demodulation of the modulated signal.
  • the information symbol 1203 is a symbol for the wireless device 453 of the terminal 1050 in FIG. 20 to transmit data.
  • the wireless device 453 of the terminal 1050 in FIG. 20 may transmit a frame including symbols other than the symbols described in FIG. 12 (for example, pilot symbols (reference symbols) are included in the middle of information symbols). Frame etc). Also, the frame configuration, including the order of transmitting symbols, is not limited to the configuration of FIG. Then, in FIG. 12, a plurality of symbols may exist in the frequency axis direction, that is, a symbol may exist in a plurality of frequencies (a plurality of carriers).
  • FIG. 7 shows an example of a frame configuration of a modulated signal transmitted by the wireless device 2001 of FIG.
  • the horizontal axis in FIG. 7 is time. As shown in FIG. 7, for example, it is assumed that the base station 470 transmits a preamble 701 and then transmits a control information symbol 702 and an information symbol 703.
  • the preamble 701 is received by the wireless device 453 of the terminal 1050 in FIG. 2 that receives the modulated signal transmitted by the wireless device 2001 in FIG. 20, for example, signal detection, time synchronization, frame synchronization, frequency synchronization, frequency offset estimation, etc.
  • Shall be a symbol for performing
  • the control information symbol 702 includes, for example, data such as an error correction coding method used to generate a modulation signal, information on a modulation method, information on a frame configuration, and information on a transmission method.
  • the wireless device 453 of the twenty terminals 1050 performs demodulation of the modulated signal based on the information of this symbol.
  • An information symbol 703 is a symbol for the wireless device 2001 in FIG. 20 to transmit data.
  • the wireless device 2001 of the base station 2000 of FIG. 20 may transmit a frame including symbols other than the symbols described in FIG. 7 (for example, pilot symbols (reference symbols) are included in the middle of information symbols). Frames, etc.). Also, the frame configuration, including the order of transmitting symbols, is not limited to the configuration of FIG. Then, in FIG. 7, a plurality of symbols may exist in the frequency axis direction, that is, a symbol may exist in a plurality of frequencies (a plurality of carriers).
  • a portion related to visible light such as an LED or the like in the base station 200, illumination, light source, and light repeatedly at regular timing, for example.
  • the plurality of terminals can perform the operation as described above.
  • a portion related to visible light such as the LED in FIG. 20, illumination, light source, and light transmits a modulation signal of the frame configuration in FIG.
  • the modulation signal transmitted by the portion related to visible light such as the LED in FIG. 20, illumination, light source, and light is received, and the terminal 1050 in FIG. Get the station's SSID.
  • the terminal 1050 in FIG. 20 acquires the encryption key used for communication with the base station 470 accessed by the terminal.
  • the terminal 1050 in FIG. 20 performs a radio wave connection with the wireless device 2001 in the base station 2000 in FIG. 20 (1304).
  • the terminal 1050 in FIG. 20 uses radio waves for the information on the connection destination for the wireless device 2001 in the base station 2000 in FIG. 20 for the wireless device 2001 in the base station 2000 in FIG. To send.
  • the wireless device 2001 in the base station 2000 in FIG. 20 obtains information for transmission from the network to the terminal 1050 in FIG.
  • the wireless device 2001 in the base station 2000 in FIG. 20 transmits the obtained information to the terminal 1050 in FIG. 20 using radio waves, and the terminal 1050 in FIG. 20 obtains information. .
  • the terminal 1050 in FIG. 20 acquires necessary information from the network, for example, via the wireless device 2001 of the base station 2000 in FIG. 20, when necessary.
  • the terminal is the base station (or AP) based on the visible light such as the LED in the base station, the illumination, the light source, the information on the SSID transmitted from the part related to the light, and the information on the encryption key.
  • the visible light such as the LED in the base station, the illumination, the light source, the information on the SSID transmitted from the part related to the light, and the information on the encryption key.
  • the SSID when the SSID is acquired from a modulated signal of radio waves transmitted by the wireless LAN, it is difficult for the user to determine the device that transmitted the radio waves. Therefore, in terms of securing the security of information, it is more suitable to obtain the SSID by visible light communication.
  • the portion related to visible light such as LED in the base station, illumination, light source, and light transmits the information of the encryption key
  • the base station or When the wireless device of AP does not perform encrypted communication using an encryption key, portions related to visible light such as LEDs, lights, light sources, and lights in the base station do not transmit information of the encryption key.
  • the information on the SSID may be transmitted, and the same may be implemented by deleting the configuration on the encryption key.
  • the configuration may be such that the SSID of the wireless device 2001 of the base station 2000 and the encryption key can be rewritten.
  • the wireless device 2001 of the base station 2000 As input of the wireless device 2001, there are information 1001-1 related to the SSID and information 1001-2 related to the encryption key.
  • the SSID and the encryption key are rewritten by the information 1001-1 related to the input SSID and the information 1001-2 related to the encryption key. In this way, the security of the communication between the terminal and the wireless device 2001 of the base station 2000 is further ensured.
  • the wireless device 2001 of the base station 2000 has the function of rewriting the SSID and the encryption key, but may have a configuration without this function.
  • the configuration of the portion related to visible light such as LEDs in the base station, illumination, light source, and light is not limited to the configuration shown in FIG. 20, and the configuration of the terminal is limited to the configuration shown in FIG.
  • the connection destination of the wireless device of the base station and the configuration method are not limited to those shown in FIG.
  • FIG. 20 describes the case where one base station (or AP) is arranged, a (secure) base station (or AP) which can be accessed by a terminal is described.
  • a plurality of wireless devices may exist (note that wireless devices and terminals of these base stations transmit and receive modulated signals using radio waves).
  • the symbol related to the visible light such as the LED in FIG. 20, the illumination, the light source, and the SSID transmitted by the portion related to the light, information on the respective SSIDs of the wireless devices of these multiple base stations (or APs) May be included.
  • the symbols related to the visible light such as the LED shown in FIG.
  • the illumination, the light source, and the portion related to the light transmit the symbols related to the plurality of base stations (or APs) wireless devices
  • the information on the encryption key used to connect may be included.
  • the terminal 1050 in FIG. 20 is a wireless device of a base station (or AP) that performs wireless connection (for example, by radio wave) based on information of SSIDs of wireless devices of a plurality of base stations and information of encryption key. It may be selected (or connected to wireless devices of multiple base stations (or APs)).
  • wireless device #A For example, suppose there are three base stations (or APs) equipped with wireless devices. Each is named as wireless device #A, wireless device #B, and wireless device #C. Then, the SSID of the wireless device #A is "abcdef”, the SSID of the wireless device #B is "ghijk”, the SSID of the wireless device #C is "pqrstu”, and the encryption key for connecting to the wireless device #A is It is assumed that “123”, the wireless device for connecting to the wireless device #B is “456”, and the encryption key for connecting to the wireless device #C is “789”.
  • the symbol 600-1 related to the SSID in the frame configuration of FIG. 11 of the modulated signal transmitted by a unit related to visible light such as an LED or the like in the base station 200 transmits an SSID of the wireless device #A.
  • the abcdef includes information on the SSID of the wireless device #B as “ghijk” and the SSID of the wireless device #C as “pqrstu”.
  • the symbol 1101 relating to the encryption key in the frame configuration in FIG. 11 indicates that "the encryption key for connecting to the wireless device #A is" 123 ", and" the encryption key for connecting to the wireless device #B is "456".
  • “Encryption key for connecting to wireless device #C includes information on“ 789 ”.
  • the terminal 1050 in FIG. 20 receives the symbol 600-1 related to the SSID, and "the SSID of the wireless device #A is" abcdef "," the SSID of the wireless device #B is "ghijk", "the wireless device #C
  • the information of “pqrstu” is obtained for the SSID of “1”, the symbol 1101 related to the encryption key is received, “encryption key for connecting to the wireless device #A is“ 123 ”, and“ encryption for connecting to the wireless device #B Information on the key “456” and “encryption key for connecting to the wireless device #C“ 789 ”is obtained.
  • the terminal 1050 in FIG. 20 selects and connects a base station (or AP) to be wirelessly connected (for example, by radio waves).
  • the terminal and the modulated signal for the wireless transmitted by the terminal can be obtained.
  • No special setting mode is required to perform procedures for wireless communication connection of the base station, and the procedure for wireless communication connection between the terminal and the base station is performed on the modulated signal transmitted by the base station
  • a mode for special setting is not required, and an effect of improving data transmission efficiency of wireless communication can be obtained.
  • the encryption key may be an encryption key for the SSID of the wireless LAN, as described above, or an encryption key for limiting the connection mode, service mode, network connection range, and the like. (Ie, you may introduce an encryption key for some restrictions).
  • FIG. 22 is a diagram showing an example of a configuration of a communication system in the present embodiment.
  • the communication system in FIG. 22 is, for example, a 470-1 base station # 1, 470-2 that communicates with a light source such as an LED or the like, a light source, a device 1000 equipped with a light source and light, a terminal 1050 and a terminal 1050 Base station # 2, 470-3 base station # 3.
  • a light source such as an LED or the like
  • a light source such as an LED or the like
  • a light source such as an LED or the like
  • a device 1000 equipped with a light source and light a terminal 1050 and a terminal 1050
  • Base station # 2, 470-3 base station # 3 Base station # 3.
  • the same reference numerals are assigned to components operating in the same manner as in FIG. 1, FIG. 4 and FIG.
  • the device 1000 in FIG. 22 includes, for example, visible light such as an LED, illumination, a light source, and light. Note that this device 1000 will be referred to as the “fifth device” in this embodiment. Communication of base station # 1 of wireless devices 453 and 470-1 in FIG. 22, communication of base station # 2 of wireless devices 453 and 470-2, and communication of base station # of wireless devices 453 and 470-3 in FIG. For example, radio waves are used.
  • the transmission unit 101 receives the information 1001-1 related to the SSID, the information 1001-2 related to the encryption key, and the data 1002, and based on these input signals, the (optical) modulation signal is input.
  • the modulation signal 103 is generated and output. Then, the modulation signal 103 is transmitted from, for example, the light source 104.
  • the information 1001-1 related to the SSID includes, for example, information indicating the SSID of the base station (or AP) of 470-1 in FIG. 22, information indicating the SSID of the base station (or AP) of 470-2, and , 470-3 is information indicating the SSID of the base station (or AP).
  • base stations (or APs) 470-1, 470-2, and 470-3 transmit modulated signals by radio waves and receive modulated signals of radio waves. That is, the fifth device 1000 can provide the terminal with access to the base stations 470-1, 470-2, and 470-3, which are safe access destinations.
  • the terminal 1050 in FIG. 22 can securely obtain information from the base stations (or APs) 470-1, 470-2, and 470-3.
  • device 1000 may limit terminals accessing base stations 470-1, 470-2, and 470-3 to terminals in a space where it can receive an optical signal transmitted (irradiated) by device 1000. it can. If the terminal 1050 receives an optical signal transmitted by a predetermined method, the terminal 1050 may determine that the notified SSID is the SSID of a safe base station, and is it safe? You may perform the process which discriminate
  • FIG. 22 illustrates base stations (or APs) 470-1, 470-2, and 470-3, for example, base stations (or APs) 470-1, 470-2, and 470-3. Other base stations (or APs) may be present.
  • the information 1001-2 related to the encryption key is the information related to the encryption key necessary for the terminal 1050 in FIG. 22 to communicate with the base stations (or APs) 470-1, 470-2, and 470-3 in FIG.
  • the terminal 1050 in FIG. 22 can “between the terminal and the base station (or AP) 470-1”, “the terminal and the base station Encrypted communication can be performed between (or AP) 470-2 and between the terminal and the base station (or AP) 470-3.
  • the terminal 1050 in FIG. 22 receives the modulated signal transmitted by the fifth device 1000.
  • the same components as those of the terminal 150 of FIG. 1 and the terminal 450 of FIG. 4 are denoted by the same reference numerals.
  • the light receiving unit 151 such as an image sensor such as a CMOS or an organic CMOS included in the terminal 1050 receives the modulation signal transmitted by the fifth device 1000. Then, the receiving unit 153 receives the received signal 152 received by the light receiving unit 151 as input, performs processing such as demodulation of a received signal and error correction decoding, and outputs received data 154.
  • the data analysis unit 155 receives the received data 154, and from the received data, for example, information 1051 of the SSID of the base stations (470-1, 470-2, 470-3) to be connected, and the connection destination It outputs encryption key information 1052 for communicating with the base stations (470-1, 470-2, 470-3).
  • encryption key information 1052 for communicating with the base stations (470-1, 470-2, 470-3).
  • WEP Wi-Fi Protected Access
  • WPA2 Wi-Fi Protected Access 2
  • PSK Pre-Shared Key
  • EAP Extended Authentication Protocol
  • the display unit 157 receives the information 1051 of the SSID and the information 1052 of the encryption key, and displays, for example, the SSID of the communication counterpart accessed by the wireless device 453 of the terminal and the encryption key. (This display is named the first display in this embodiment.)
  • the wireless device 453 included in the terminal 1050 in FIG. 10 receives the information 1051 of the SSID and the information 1052 of the encryption key as input, and the base stations (or APs) 470-1, 470-. 2. Establish a connection with any of 470-3 (for example, the connection shall use radio waves). At this time, when communicating with the wireless device 453 of the terminal 1050 in FIG. 22, the connected base station also transmits a modulation signal using, for example, a radio wave.
  • wireless device 453 included in terminal 1050 in FIG. 22 receives data 1053 and control signal 1054, modulates data 1053 according to control of control signal 154, and transmits the modulated signal as a radio wave. Do.
  • the connected base station transmits data (one of 471-1, 471-2, 471-3) to the network and receives data from the network (472- 1, 472-2, or 472-3). Thereafter, for example, the connected base station transmits the modulation signal as a radio wave to the terminal 1050 in FIG.
  • the wireless device 453 included in the terminal 1050 in FIG. 22 performs processing such as demodulation and error correction decoding on the modulated signal received as a radio wave, and acquires received data 1056.
  • the display unit 157 performs display based on the received data 1056.
  • the terminal 1050 in FIG. 22 receives the modulated signal transmitted by the fifth device 1000.
  • the same components as those of the terminal 150 of FIG. 1 and the terminal 450 of FIG. 4 are denoted by the same reference numerals.
  • the light receiving unit 151 such as an image sensor such as a CMOS or an organic CMOS included in the terminal 1050 receives the modulation signal transmitted by the fifth device 1000. Then, the receiving unit 153 receives the received signal 152 received by the light receiving unit 151 as input, performs processing such as demodulation of a received signal and error correction decoding, and outputs received data 154.
  • the data analysis unit 155 receives the received data 154, and from the received data, for example, information 1051 of the SSID of the base stations (470-1, 470-2, 470-3) to be connected, and the connection destination It outputs encryption key information 1052 for communicating with the base stations (470-1, 470-2, 470-3).
  • encryption key information 1052 for communicating with the base stations (470-1, 470-2, 470-3).
  • WEP Wi-Fi Protected Access
  • WPA2 Wi-Fi Protected Access 2
  • PSK Pre-Shared Key
  • EAP Extended Authentication Protocol
  • the display unit 157 receives the information 1051 of the SSID and the information 1052 of the encryption key, and displays, for example, the SSID of the communication counterpart accessed by the wireless device 453 of the terminal and the encryption key. (This display is named the first display in this embodiment.)
  • the wireless device 453 included in the terminal 1050 in FIG. 10 receives the information 1051 of the SSID and the information 1052 of the encryption key as input, and the base stations (or APs) 470-1, 470-. 2. Establish a connection with any of 470-3 (for example, the connection shall use radio waves). At this time, when communicating with the wireless device 453 of the terminal 1050 in FIG. 22, the connected base station also transmits a modulation signal using, for example, a radio wave.
  • wireless device 453 included in terminal 1050 in FIG. 22 receives data 1053 and control signal 1054, modulates data 1053 according to control of control signal 154, and transmits the modulated signal as a radio wave. Do.
  • the connected base station transmits data (one of 471-1, 471-2, 471-3) to the network and receives data from the network (472- 1, 472-2, or 472-3). Thereafter, for example, the connected base station transmits the modulation signal as a radio wave to the terminal 1050 in FIG.
  • the wireless device 453 included in the terminal 1050 in FIG. 22 performs processing such as demodulation and error correction decoding on the modulated signal received as a radio wave, and acquires received data 1056.
  • the display unit 157 performs display based on the received data 1056.
  • FIG. 23 shows 2300-1 frame # 1, which is one of three types of frame configurations
  • FIG. 24 shows 2300-2 frame configuration # 2, which is one of three types of frame configurations
  • Reference numeral 25 denotes 2300-3 frame configuration # 3 which is one of three types of frame configurations.
  • FIG. 23 shows an example of the configuration of the 2300-1 frame # 1 of the modulated signal transmitted by the fifth device 1000 of FIG.
  • the horizontal axis represents time, and the same symbols as in FIG. 2 and FIG.
  • the 2300-1 frame # 1 in FIG. 23 is the information on the SSID of the base station # 1 at 470-1 in FIG. 22 and the encryption key for the base station # 1 at 470-1 in FIG. 22 (the base station # 1 at 470-1). Frame for transmitting the information of the encryption key for accessing).
  • a symbol 2301-1 relating to the SSID in FIG. 23 is a symbol for transmitting information 1001-1 relating to the SSID in FIG.
  • the symbol 2301-1 related to the SSID in FIG. 23 is a symbol for the fifth device 1000 in FIG. 22 to transmit the SSID of the base station # 1 470-1 in FIG.
  • the symbol 2302-1 relating to the encryption key in FIG. 23 is a symbol for transmitting the information 1001-2 relating to the encryption key in FIG.
  • the symbol 2302-1 relating to the encryption key in FIG. 23 is for the fifth device 1000 in FIG. 22 to access the encryption key (base station # 1 in 470-1 of base station # 1 in 470-1 in FIG. 22). (The encryption key) is transmitted.
  • the fifth device transmits a preamble 201, a control information symbol 202, a symbol 2301-1 relating to an SSID, a symbol 2302-1 relating to an encryption key, and a data symbol 1102.
  • the fifth device 1000 in FIG. 22 may transmit 2300-1 frame # 1 including symbols other than the symbols described in FIG. Further, the configuration of the 2300-1 frame # 1 is not limited to the configuration of FIG. 23 including the order of transmission of symbols.
  • FIG. 24 shows an example of the configuration of 2300-2 frame # 2 of the modulated signal transmitted by the fifth device 1000 of FIG.
  • the horizontal axis represents time, and the same symbols as in FIG. 2 and FIG.
  • the 2300-2 frame # 2 of FIG. 24 is the information of the SSID of the base station # 2 of 470-2 of FIG. 22 and the encryption key of the base station # 2 of 470-2 of FIG. 22 (the base station # 2 of 470-2). Frame for transmitting the information of the encryption key for accessing).
  • the symbol 2301-2 related to the SSID in FIG. 24 is a symbol for transmitting the information 1001-1 related to the SSID in FIG.
  • the symbol 2301-2 related to the SSID in FIG. 24 is a symbol for the fifth device 1000 in FIG. 22 to transmit the SSID of the base station # 2 in 470-2 in FIG.
  • the symbol 2302-2 related to the encryption key in FIG. 24 is a symbol for transmitting the information 1001-2 related to the encryption key in FIG.
  • the symbol 2302-2 related to the encryption key in FIG. 24 is for the fifth apparatus 1000 in FIG. 22 to access the encryption key (base station # 2 in 470-2 of base station # 2 in 470-2 in FIG. 22). (The encryption key) is transmitted.
  • the fifth device transmits a preamble 201, a control information symbol 202, a symbol 2301-2 related to an SSID, a symbol 2302-2 related to an encryption key, and a data symbol 1102.
  • the fifth device 1000 in FIG. 22 may transmit 2300-2 frame # 2 including symbols other than the symbols described in FIG.
  • the configuration of 2300-2 frame # 2, including the order of transmitting symbols, is not limited to the configuration of FIG.
  • FIG. 25 shows an example of the configuration of 2300-3 frame # 3 of the modulated signal transmitted by the fifth device 1000 of FIG.
  • the horizontal axis represents time, and the same symbols as in FIG. 2 and FIG.
  • the 2300-3 frame # 3 of FIG. 25 is the information of the SSID of the base station # 3 of 470-3 of FIG. 22 and the encryption key of the base station # 3 of 470-3 of FIG. 22 (the base station # 3 of 470-3). Frame for transmitting the information of the encryption key for accessing).
  • FIG. 25 shows an example of the configuration of 2300-3 frame # 3 of the modulated signal transmitted by the fifth device 1000 of FIG.
  • the horizontal axis represents time, and the same symbols as in FIG. 2 and FIG.
  • the 2300-3 frame # 3 of FIG. 25 is the information of the SSID of the base station # 3 of 470-3 of FIG. 22 and the encryption key of the base station # 3 of 470-3 of FIG. 22 (the base station # 3 of 470-3). Frame for transmitting the information of the encryption key for accessing).
  • the symbol 2301-3 relating to the SSID in FIG. 25 is a symbol for transmitting the information 1001-1 relating to the SSID in FIG.
  • the symbol 2301-3 related to the SSID in FIG. 25 is a symbol for the fifth device 1000 in FIG. 22 to transmit the SSID of the base station # 3 in 470-3 in FIG.
  • a symbol 2302-3 related to the encryption key in FIG. 25 is a symbol for transmitting the information 1001-2 related to the encryption key in FIG.
  • the symbol 2302-3 related to the encryption key in FIG. 25 is for the fifth device 1000 in FIG. 22 to access the encryption key (base station # 3 in 470-3 in base station # 3 in 470-3 in FIG. (The encryption key) is transmitted.
  • the fifth device transmits a preamble 201, a control information symbol 202, a symbol 2301-3 relating to an SSID, a symbol 2302-3 relating to an encryption key, and a data symbol 1102.
  • the fifth device 1000 in FIG. 22 may transmit 2300-3 frame # 3 including symbols other than the symbols described in FIG. Further, the configuration of 2300-3 frame # 3 is not limited to the configuration of FIG. 25, including the order of transmission of symbols.
  • the fifth device of FIG. 22 is “frame # 1 of 2300-1 of FIG. 23,” “frame # 2 of 2300-2 of FIG. 24,” “frame # 3 of 2300-3 of FIG.
  • the example of the transmission method at the time of transmitting "" is shown, and let a horizontal axis be time in FIG.
  • frame # 1 group transmission 2601-1 and 260 1-2 in FIG. 26, one or more of frame # 1 of 2300-1 in FIG. 23 are transmitted. Then, in the “frame # 2 group transmission” 2602-1 and 2602-2, one or more frame # 2 of 2300-2 in FIG. 24 is transmitted. In “frame # 3 group transmission” 2603-1 and 2603-2, one or more frame # 3 of 2300-3 in FIG. 25 is transmitted.
  • the received signal is processed in frame units of a moving image or a still image.
  • the moving image when “4K 30p” is described, it means that the number of pixels in one frame is 3840 ⁇ 2160 and the number of frames in one second is 30.
  • the fifth device in FIG. 22 includes “frame # 1 of 2300-1 in FIG. 23”, “frame # 2 of 2300-2 in FIG. 24”, and “frame of 2300-3 in FIG. 25” in one frame.
  • a modulated signal having a configuration such that “# 3” exists is transmitted, it becomes difficult for the terminal 1000 in FIG. 22 to select a base station to be accessed from a plurality of base stations.
  • Frame # 1 group transmission is performed in “frame # 1 group transmission” 2601-1 and 2601-2 by the existence of a plurality of frame # 1 of 2300-1 in FIG. It is assumed that the occupied time interval is longer than a frame in a moving image or a still image.
  • the terminal 1050 in FIG. 22 can use the fifth device 1000 to “frame # 1 of 2300-1 in FIG. 23” and “2300-2 in FIG.
  • the terminal 1050 in FIG. 22 accesses from a plurality of base stations because it is possible to prevent reception of a modulated signal in which there is a frame # 2 of “frame # 2 of 2300-3 in FIG. 25”. It is possible to easily select a base station.
  • Method 2-1 As a 2-1 method, it is assumed that the time interval occupied by the frame # 1 of 2300-1 in FIG. 23 is longer than the frame in a moving image or a still image. For example, the symbol 2301-1 relating to the SSID in FIG.
  • the 23 includes a plurality of “information on the SSID of the base station # 1” (“the information on the SSID of the base station # 1 is repeatedly included”), and A plurality of “information of encryption key of base station # 1 (information of encryption key for connecting to base station # 1)” is included in the symbol 2302-1 relating to the encryption key (“reference station information of the base station # 1 It is preferable that the information of the encryption key (information of the encryption key for connecting to the base station # 1) is repeatedly included.
  • the terminal 1050 in FIG. 22 can use the fifth device 1000 to “frame # 1 of 2300-1 in FIG. 23” and “2300-2 in FIG.
  • the terminal 1050 in FIG. 22 accesses from a plurality of base stations because it is possible to prevent reception of a modulated signal in which there is a frame # 2 of “frame # 2 of 2300-3 in FIG. 25”. It is possible to easily select a base station.
  • frame # 2 group transmission 2602-1 and 2602-2 may be configured as follows.
  • Method 2-2 As a 2-2 method, it is assumed that a time interval occupied by frame # 2 of 2300-2 in FIG. 24 is longer than a frame in a moving image or a still image. For example, the symbol 2301-2 relating to the SSID in FIG.
  • the configuration 24 includes a plurality of “information on the SSID of the base station # 2” (“the information on the SSID of the base station # 2 is repeatedly included”), and A plurality of “information of encryption key of base station # 2 (information of encryption key for connecting to base station # 2)” is included in the symbol 2302-2 related to the encryption key (“reference station of # 2 of the base station # 2 It is preferable that the configuration has a configuration in which “encryption key information (encryption key information for connecting to base station # 2)” is repeatedly included.
  • “Frame # 3 Group Transmission” 2603-1 and 2603-2 may have the following configuration.
  • “frame # 3 group transmission” is generated by “frame # 3 group transmission” 2603-1 and 2603-2 having a plurality of frame # 3 of 2300-3 in FIG. It is assumed that the occupied time interval is longer than a frame in a moving image or a still image.
  • Method 2-3 As a second method, it is assumed that a time interval occupied by frame # 3 of 2300-3 in FIG. 25 is longer than a frame in a moving image or a still image.
  • the configuration 25 includes a plurality of "information of the SSID of the base station # 3"("the information of the SSID of the base station # 3 is repeatedly included"), and A plurality of “information of encryption key of base station # 3 (information of encryption key for connecting to base station # 3)” is included in the symbol 2302-3 related to the encryption key (“reference station information of the base station # 3 It is preferable that the configuration has a configuration in which “encryption key information (encryption key information for connecting to base station # 3)” is repeatedly included.
  • any of 2701-1, 2701-2, 2701-3, 2701-4, 2701-5, 2701-6, 2701-7, 2701-8, 2701-8, 2701-9, 2701-10 The five devices 1000 are arranged. Then, base station # 1 of 470-1 in FIG. 22 is placed in ⁇ 2702-1, base station # 2 of 470-2 in FIG. 22 is placed in ⁇ 2702-2, and in FIG. It is assumed that base station # 3 of 470-3 is allocated.
  • the fifth devices 2701-5 and 2701-10 both transmit the information of the SSID of the base station # 3 of 470-3, and for the access of the base station # 3 of 470-3. It is assumed that the information of the encryption key is transmitted (since the nearest base station of the fifth devices 2701-5 and 2701-10 is the base station # 3 of 470-3).
  • a terminal having the configuration of 99 of FIG. 22 of 1050 is the fifth of FIG. Since the timing of accessing the device will generally be different, the terminal having the configuration of 99 in FIG. 22 of 1050 should be as equal as possible to base station # 1 (2702 of FIG. -1) to perform control to access the base station # 2 (2702-2) of 470-2 and the base station # 3 (2702-3) of 470-3 in FIG. Therefore, it is possible to obtain the effect that it is possible to reduce the presence of terminals that are difficult to access to the base station as described above.
  • the fifth device in FIG. 22 includes “frame # 1 of 2300-1 in FIG. 23,“ frame # 2 of 2300-2 in FIG. 24, ”and“ frame of 2300-3 in FIG.
  • the 5th apparatus of FIG. 22 is a flame
  • the transmission method for transmitting “2” and “frame # 3 of 2300-3 in FIG. 25” is not limited to this.
  • the fifth device in FIG. 22 includes “frame # 1 of 2300-1 in FIG. 23,“ frame # 2 of 2300-2 in FIG. 24, ”and“ frame of 2300-3 in FIG.
  • the 5th apparatus of FIG. 22 is a flame
  • the transmission method for transmitting “2” and “frame # 3 of 2300-3 in FIG. 25” is not limited to this.
  • FIG. 26 shows a configuration in which transmission is repeatedly performed in the order of “frame # 1 group transmission”, “frame # 2 group transmission”, and “frame # 3 group transmission”, but “frame # 1 group transmission” “frame # 2
  • the group transmission “frame # 3 group transmission” does not have to be transmitted in the order as shown in FIG.
  • “frame group 1 transmission”, “frame group # 2 transmission”, and “frame group # 3 transmission” may be transmitted at random in time, or “frame group 1 transmission” “frame group # 2 transmission” “frame
  • the order of transmission of “group # 3 transmission” may be transmitted in a regular order different from that in FIG. At least the fifth device in FIG. 22 needs to transmit “frame # 1 group transmission”, “frame # 2 group transmission”, and “frame # 3 group transmission”.
  • frame # 1 group transmission “frame # 2 group transmission”, and “frame # 3 group transmission” are continuously transmitted in FIG. 26, it is not always necessary to transmit continuously, for example, In FIG. 26, there may be time intervals between the frame # 1 group 2601-1 and the frame # 2 group transmission 2602-2.
  • FIG. 26 although only “frame # 1 group transmission”, “frame # 2 group transmission”, and “frame # 3 group transmission” are configured, other symbols or other frames may exist.
  • the number of base stations is not limited to this, and three base stations are provided if two or more base stations are provided. It is possible to work as well as at times. Therefore, for example, when there are N base stations (N is an integer of 2 or more), “frame #k group transmission” is present when transmission as shown in FIG. 26 is performed.
  • k is an integer of 1 or more and N or less.
  • the “frame #k group transmission” includes a symbol related to the SSID (information of the SSID of the base station #k), and a symbol related to the encryption key (the encryption key for the access of the base station #k). Information) will be included.
  • FIG. 12 illustrates an example of a frame configuration of a modulated signal transmitted by the wireless device 453 included in the terminal 1050 in FIG.
  • the horizontal axis is time.
  • the wireless device 453 included in the terminal 1050 in FIG. 22 transmits, for example, a preamble 1201 and then transmits a control information symbol 1202 and an information symbol 1203.
  • the preamble 1201 is detected, for example, by the base stations (or APs) 470-1, 470-2, and 470-3 that receive the modulated signal transmitted by the wireless device 453 of the terminal 1050 in FIG. It is a symbol used to perform synchronization, frame synchronization, frequency synchronization, frequency offset estimation and the like.
  • the control information symbol 1202 includes, for example, data such as an error correction coding method used to generate a modulation signal, information on a modulation method, information on a frame configuration, and information on a transmission method.
  • data such as an error correction coding method used to generate a modulation signal
  • information on a modulation method information on a frame configuration
  • information on a transmission method information on a transmission method.
  • APs 470-1, 470-2 and 470-3 perform demodulation of modulated signals, etc., based on the information contained in the control information symbols 1202.
  • the information symbol 1203 is a symbol for the wireless device 453 of the terminal 1050 in FIG. 22 to transmit data.
  • the wireless device 453 of the terminal 1050 in FIG. 22 may transmit a frame including symbols other than the symbols described in FIG. 12 (for example, pilot symbols (reference symbols) are included in the middle of information symbols). Frame etc). Also, the frame configuration, including the order of transmitting symbols, is not limited to the configuration of FIG. Then, in FIG. 12, a plurality of symbols may exist in the frequency axis direction, that is, a symbol may exist in a plurality of frequencies (a plurality of carriers).
  • FIG. 7 shows an example of a frame configuration of modulated signals transmitted by the base stations 470-1, 470-2, 470-3 of FIG.
  • the horizontal axis in FIG. 7 is time.
  • base stations 470-1, 470-2, 470-3 transmit, for example, a preamble 701, and then transmit control information symbol 702 and information symbol 703.
  • the preamble 701 receives the modulated signal transmitted by the base stations 470-1, 470-2, and 470-3, and the wireless device 453 of the terminal 1050 in FIG. 22 performs, for example, signal detection, time synchronization, frame synchronization, It is assumed that the symbol is for performing frequency synchronization, frequency offset estimation and the like.
  • the control information symbol 702 includes, for example, data such as an error correction coding method used to generate a modulation signal, information on a modulation method, information on a frame configuration, and information on a transmission method.
  • the wireless device 453 of the 22 terminals 1050 performs demodulation of the modulated signal based on the information of this symbol.
  • An information symbol 703 is a symbol for the base stations (or APs) 470-1, 470-2, and 470-3 in FIG. 22 to transmit data.
  • the base stations (or APs) 470-1, 470-2, and 470-3 in FIG. 22 may transmit a frame including symbols other than the symbols described in FIG. 7 (for example, information symbols). In the middle of the frame, etc.) containing pilot symbols (reference symbols). Also, the frame configuration, including the order of transmitting symbols, is not limited to the configuration of FIG. Then, in FIG. 7, a plurality of symbols may exist in the frequency axis direction, that is, a symbol may exist in a plurality of frequencies (a plurality of carriers).
  • FIG. 28 is a flowchart illustrating an example of the process performed by the “fifth device 1000”, the “terminal 1050”, and the “base station #X (or AP #X)” in FIG. 22 described above.
  • X is 1 or 2 or 3.
  • the fifth device 1000 in FIG. 22 transmits the modulation signal of the frame configuration in FIG.
  • the modulated signal transmitted by the fifth device 1000 in FIG. 22 is received, and the terminal 1050 in FIG. 22 is the base station accessed by the terminal 1050 as the base of 470-1 in FIG. Station # 1, base station # 2 of 470-2, base station # 3 of 470-3 is selected.
  • the terminal 1050 in FIG. 22 attempts to access the base station, and receives the modulated signal transmitted by the fifth device 1000 in FIG. At this time, for example, one frame “frame # 1 group transmission”, “frame # 2 group transmission”, and “frame # 3 group transmission” in FIG. Then, from the obtained base station information (for example, the SSID), the terminal 1050 in FIG. 22 is the base station accessed by the terminal 1050 as the base station # 1, 470-2 base station # 1 in 470-1 in FIG. , And the base station # 3 of 470-3.
  • the base station information for example, the SSID
  • the modulation signal transmitted by the fifth device 1000 in FIG. 22 is received, and the terminal 1050 in FIG. 22 acquires the SSID of the base station #X accessed by the terminal 1050.
  • the terminal 1050 in FIG. 22 acquires the encryption key used for communication with the base station #X accessed by the terminal.
  • the terminal 1050 in FIG. 22 performs connection with the base station #X by radio waves (2805).
  • the terminal 1050 in FIG. 22 completes the connection with the base station #X.
  • the terminal 1050 in FIG. 22 transmits connection destination information to the base station #X using radio waves.
  • the base station #X obtains information for transmission from the network to the terminal 1050 in FIG.
  • the base station #X transmits the obtained information to the terminal 1050 in FIG. 22 using radio waves, and the terminal 1050 in FIG. 22 obtains information.
  • the terminal connects to the base station (or AP) to acquire the information, thereby achieving safety.
  • the effect can be obtained that information can be obtained securely via a guaranteed base station (or AP). This is because, when information is obtained from a modulation signal of visible light, the user can easily determine whether the information source is safe because the light is visible light.
  • the SSID when the SSID is acquired from a modulated signal of radio waves transmitted by the wireless LAN, it is difficult for the user to determine the device that transmitted the radio waves. Therefore, in terms of securing the security of information, it is more suitable to obtain the SSID by visible light communication.
  • the fifth embodiment describes the case where the fifth device transmits the information of the encryption key, for example, communication in which the base station (or AP) encrypted using the encryption key is used. If not performed, the fifth device can transmit the information of the encryption key only, transmits only the information related to the SSID, and can be similarly implemented only by deleting the configuration related to the encryption key.
  • the configuration of the fifth device is not limited to the configuration shown in FIG. 22, and the configuration of the terminal is not limited to the configuration shown in FIG. 22, and base stations # 1, # 2, # 3
  • the connection destination and configuration method of are not limited to those shown in FIG.
  • the frame configuration of the modulated signal transmitted by the fifth device arranged in may all be the same as shown in FIG. 26, or the modulated signal transmitted by the fifth device may have different frame configurations. There may be a plurality of fifth devices that transmit modulated signals of the same frame configuration.
  • the transmitting apparatus equipped with the light source and illumination and transmitting the light modulation signal obtains data to be transmitted using the light modulation signal from an external apparatus such as a server, each time There may be a configuration to update transmission data. This is because it is possible to obtain an effect that the user and the device can sequentially update desired data.
  • FIG. 29 shows an example of the configuration of an apparatus related to transmission of a light modulation signal in the present embodiment.
  • a device related to the transmission of the light modulation signal includes a communication device 2900 of PLC (Power Line Communication) (power line communication) and a communication device 2950 that transmits the light modulation signal.
  • PLC Power Line Communication
  • 2950 that transmits the light modulation signal.
  • Modulator 2903 in PLC communication apparatus 2900 receives data 2901 and control signal 2902 and is included in control signal 2902. For example, an error correction coding method (error correction code, coding rate, code length (block Long) and based on the information of the modulation scheme, error correction coding, mapping based on the set modulation scheme is performed, and a modulation signal 2904 is generated and output.
  • error correction coding method error correction code, coding rate, code length (block Long) and based on the information of the modulation scheme, error correction coding, mapping based on the set modulation scheme is performed, and a modulation signal 2904 is generated and output.
  • the data 2901 includes “data transmitted by the light modulation signal transmitted by the device 2950”.
  • the transmission unit 2905 receives the modulated signal 2904, performs signal processing, generates a transmission signal 2906, and outputs the transmission signal 2906.
  • the transmission unit 2905 may perform signal processing related to orthogonal frequency division multiplexing (OFDM) to generate and output a transmission signal 2906 based on the OFDM.
  • OFDM orthogonal frequency division multiplexing
  • the transmission unit 2905 may perform signal processing related to the wavelet OFDM scheme, and generate and output a transmission signal 2906 based on the wavelet OFDM scheme.
  • the transmission signal of the multicarrier system of OFDM and wavelet OFDM has been described, the present invention is not limited to this and may be a transmission signal of a single carrier system or a spread spectrum communication system.
  • Non-patent documents 2 and 3 are available for the wavelet OFDM scheme.
  • the transmission signal is a signal having a frequency spectrum of DC (Direct Current) to N Hz”.
  • N is a real number greater than zero.
  • the transmission signal does not necessarily have a spectrum at all frequencies from DC (Direct Current, direct current) to N [Hz]. Therefore, it can be said that the transmission unit 2905 does not have a frequency conversion unit (RF (Radio Frequency) unit).
  • RF Radio Frequency
  • Transmission signal 2006 passes through the power line and is input to communication apparatus 2950 as reception signal 2908.
  • a power line including the transmission signal 2006 will provide power to the device 2950.
  • Demodulation section 2953 receives reception signal 2908 as input, performs decoding processing such as demapping and error correction decoding, and outputs reception data 2954.
  • the storage unit 2955 When the storage unit 2955 receives the reception data 2954 and determines that “the reception data 2954 is update data”, the storage unit 2955 stores the reception data 2954 or a part of the reception data 2954. Then, the transmission unit 2957 receives the stored data 2956 as an input.
  • the storage unit 2955 may make the determination that “the received data 2954 is update data” by the control signal 2990.
  • the transmission unit 2957 receives the stored data 2956, performs processing such as modulation, and generates and outputs a transmission signal 2958. At this time, frequency conversion is not performed.
  • the transmission signal 2958 is a signal having a frequency spectrum from DC to P [Hz] (P is a real number greater than 0))
  • AC-DC converter 2951 receives received signal 2980, converts received signal 2980 present on AC into a signal on DC, and outputs converted signal 2952.
  • the signal selection unit 2960 receives the transmission signal 2958, the conversion signal 2952, and the control signal 2959, selects one of the transmission signal 2958 and the conversion signal 2952 based on the control signal 2959, and outputs the selected signal as a selection signal 2961. Then, the selection signal 2961 is transmitted from the light source 2962.
  • the selection signal 2961 may include a signal other than the conversion signal 2952.
  • the transmission signal 2958 and the conversion signal 2952 By selectively switching between the transmission signal 2958 and the conversion signal 2952 and transmitting it, data desired by the user or the device can be obtained, and, for example, emergency, sudden, or necessary
  • By transmitting the above information using the converted signal 2952 it is possible to obtain an effect that the user and the device can obtain desired data more flexibly.
  • modulating the modulation signal generated for PLC by AC-DC conversion and transmitting it as a light modulation signal it is possible to relay the modulation signal for PLC with the light modulation signal with a small circuit scale (for PLC Because the modulation signal has the frequency spectrum as described above, it is possible to obtain the effect that more users can transmit desired data to the device.
  • FIG. 30 is an example of a configuration of an apparatus related to transmission of the light modulation signal in the present embodiment, which is different from FIG.
  • the same components as those in FIG. 29 are denoted by the same reference numerals and the description thereof will be omitted.
  • Transmission apparatus 3003 receives data 3001 and external data 3002 as input, performs processing such as error correction coding and modulation, and generates and outputs transmission signal 3004.
  • the external data 3002 includes, for example, instruction information for updating data stored in the storage unit 2955. That is, it is assumed that the communication device 2950 transmits, to the communication device 2900, an update request for data stored in the storage unit 2955.
  • the transmission signal 3004 passes through the propagation channel 3005 and is input to the communication device 2900 as a reception signal 3006.
  • Receiving apparatus 3007 receives received signal 3006 as input, performs processing such as demapping and error correction decoding, and outputs received data 3008.
  • the modulation unit 2903 determines whether to transmit the update data of the storage unit 2955 based on the information of “data update request of the storage unit 2955 by the communication device 2950” included in the reception data 3008.
  • AC-DC converter 2951 separates, from received signal 2980, for example, an AC power supply component having an AC power supply frequency of 50 Hz or 60 Hz and a signal component having a frequency higher than the AC power supply frequency.
  • the separation between the AC power supply component and the signal component can be performed using, for example, a frequency filter such as a high pass filter, a low pass filter, a band pass filter, or a combination thereof.
  • the AC-DC conversion unit 2951 performs AC-DC conversion on the separated AC power supply component to convert the AC power supply component into a DC power supply component to generate a DC power supply component.
  • the AC-DC conversion unit 2951 superimposes the separated signal component on the DC power supply component to generate a conversion signal 2952.
  • the process of superimposing the signal component on the DC power supply component is performed, for example, by coupling the signal component to a power line supplying the DC power supply component via a coupling transformer or the like.
  • the DC power source component on which the signal component is superimposed does not have to be obtained by converting the AC power source component into the DC power source component, and is generated by another configuration not shown included in the communication device 2950.
  • the signal component may be superimposed on the DC power supply component.
  • conversion signal 2952 may be a signal including a signal component not including a DC power supply component.
  • the AC-DC conversion unit 2951 may perform processing such as amplification using an amplifier on the separated signal component.
  • the intensity (or amplitude) of the signal component included in the light modulation signal transmitted from the light source 2962 can be controlled, which may improve the reception quality of the light modulation signal.
  • the communication device 2950 can provide the signal selection unit 2960 and the light source 2962 as the conversion signal 2952 with the DC power on which the signal component, that is, the signal of PLC is superimposed, even without the AC-DC conversion unit Therefore, the configuration of the communication device 2950 may be simplified.
  • the transmission signal of PLC has a frequency spectrum from DC (Direct Current, direct current) to N [Hz], it has been described that the spectrum may not exist in all frequencies. Below, an example of the transmission signal of above PLC is demonstrated.
  • the PLC signal may be a signal of a system that communicates using a frequency of 10 kHz to 450 kHz called slow PLC, or a communication using a frequency of 2 MHz to 30 MHz, or 2 MHz to 80 MHz called fast PLC May be a signal of a system that
  • a notch band which is a frequency band which outputs less power than other frequencies or which is not used for communication may be provided in part of the frequency band used for communication.
  • a method of providing a notch band to the transmission signal of PLC there is a method of suppressing a signal component of the notch band by using a frequency filter such as a band elimination filter, or Wavelet-OFDM multicarrier having deep filter characteristics. It is possible to use a method of generating a modulation signal that does not use subcarriers in the notch band using a scheme.
  • PLC communication using a power line as a transmission line is described as an example, but a cable other than a power line such as a coaxial cable, a twisted pair line, or a telephone line may be used as a transmission line.
  • FIG. 31 shows an example of configuration of a transmission apparatus and a reception apparatus in this embodiment.
  • the transmitter 3100 transmits a plurality of light modulation signals
  • the receiver 3150 receives a plurality of light modulation signals to obtain reception data.
  • the transmitting apparatus in FIG. 31 transmits M light modulation signals.
  • M is an integer of 2 or more.
  • Transmission section 3102 _i receives data 3101 _i and control signal 3105, and performs signal processing based on error correction coding and transmission method based on information on error correction coding method and information on transmission method included in control signal 3105. , And generates and outputs an optical modulation signal 3103 — i.
  • i is an integer of 1 or more and M or less.
  • the light modulation signal 3103 _i is transmitted from the light source 3104 _i.
  • a light receiving unit 3151 such as an image sensor receives light corresponding to the light modulation signal 3103 — i. At this time, the light receiving unit 3151 receives light corresponding to the M light modulation signals.
  • the light receiving unit 3151 outputs a light reception signal 3152 _i corresponding to the light modulation signal 3103 _i.
  • i is an integer of 1 or more and M or less.
  • Reception unit 3153 _i receives light reception signal 3152 _i corresponding to light modulation signal 3103 _i, performs processing such as demodulation and error correction decoding, and outputs reception data 3154 _i corresponding to data 3101 _i.
  • the data acquisition unit 3155 receives the data 3154_1, the data 3154_2,..., The data 3154_M, and generates and outputs the data 3156.
  • FIG. 32 shows a configuration example of a transmitting device and a receiving device in the present embodiment different from FIG.
  • the same reference numerals as in FIG. 31 denote the same components.
  • Distribution section 3202 receives information 3201 and control signal 3105, and performs error correction coding on the information based on the information on the error correction coding method included in control signal 3105, and the data after error correction coding Generate Then, distribution unit 3202 distributes data after error correction coding, and outputs data A 2001 — i after error correction coding.
  • the distribution to M pieces of error correction encoded data 3101 — i may be performed in any manner.
  • data after error correction coding may be divided into M pieces, and the divided M data sequences may be allocated to data 3101 — i after error correction coding, respectively.
  • M data sequences composed of the same data may be generated from data after error correction coding, and each data sequence may be assigned to data 3101 — i after error correction coding.
  • the method of assigning data 3101 _i after error correction coding is not limited to these, and M data sequences are generated from the data after error correction coding, and each data sequence is data after error correction coding It may be assigned to 3101_i.
  • the transmission unit 3102 _i receives the data 3101 _i and the control signal 3105, performs signal processing based on the transmission method based on the information on the transmission method included in the control signal 3105, and generates and outputs a light modulation signal 3103 _i.
  • i is an integer of 1 or more and M or less.
  • the light modulation signal 3103 _i is transmitted from the light source 3104 _i.
  • a light receiving unit 3151 such as an image sensor receives light corresponding to the light modulation signal 3103 — i. At this time, the light receiving unit 3151 receives light corresponding to the M light modulation signals.
  • the light receiving unit 3151 outputs a light reception signal 3152 _i corresponding to the light modulation signal 3103 _i.
  • i is an integer of 1 or more and M or less.
  • Reception unit 3153 _i receives light reception signal 3152 _i corresponding to light modulation signal 3103 _i, performs processing such as demodulation, and outputs reception data (log likelihood ratio) 3154 _i corresponding to data 3101 _i.
  • Error correction decoding section 3251 receives as input reception data (log likelihood ratio) 3154_1, reception data (log likelihood ratio) 3154_2,..., Reception data (log likelihood ratio) 3154_M, and performs error correction decoding. To output received data 3252.
  • FIG. 33 shows an example of the configuration of an apparatus related to transmission of an optical modulation signal different from that in FIGS. 29 and 30, and in FIG. 33, the same operations as those in FIG. I omit it.
  • a characteristic point of FIG. 33 is that the communication device 2900 transmits the light modulation signal.
  • the light source transmission unit 3301 receives the modulation signal 2904, performs signal processing for the light source, and generates and outputs a light modulation signal 3302.
  • the light modulation signal 3302 is emitted from the light source 3303 as light.
  • the receiver 3305 receives the reception signal 3304 corresponding to the light modulation signal, and performs processing such as demodulation and error correction decoding to obtain reception data.
  • the effects described in the eighth embodiment can be obtained, and more communication devices can obtain information when the communication device 2900 transmits the light modulation signal. It becomes.
  • FIG. 34 shows an example of the configuration of an apparatus related to light modulation signals different from those in FIG. 29, FIG. 30, and FIG. 33. In FIG. The explanation is omitted.
  • the transmission unit 2905 receives the modulated signal 2904 as input, generates and outputs a transmission signal 2906 for PLC and a transmission signal 3401 for optical communication (visible light communication).
  • the transmission signal 2906 for PLC and the transmission signal 3401 for optical communication are both signals from DC to N [Hz] (N is a real number larger than 0) frequency spectrum. However, the spectrum does not necessarily exist at all frequencies from DC to N [Hz].
  • a transmission signal 3401 for optical communication is emitted from the light source 3303 as light.
  • the effects described in the eighth embodiment can be obtained, and more communication devices can obtain information when the communication device 2900 transmits the light modulation signal. It becomes.
  • FIG. 35 shows an example of the configuration of a transmitting apparatus related to light modulation signals different from those in FIG. 29, FIG. 30, and FIG. 33, and in FIG. The number is attached and the explanation is omitted. Therefore, since each part of FIG. 35 has already been described, the description will be omitted.
  • the effects described in the eighth embodiment can be obtained, and more communication devices can obtain information when the communication device 2900 transmits the light modulation signal. It becomes.
  • FIG. 36A shows an example of the configuration of a transmitting apparatus related to light modulation signals different from those in FIG. 29, FIG. 30, FIG. 33 and FIG.
  • the same reference numerals are given to those that operate, and the description thereof is omitted. Therefore, since each part of FIG. 36A has already been described, the description will be omitted.
  • the effects described in the eighth embodiment can be obtained, and more communication devices can obtain information when the communication device 2900 transmits the light modulation signal. It becomes.
  • At least one of an FPGA (Field Programmable Gate Array) and a CPU (Central Processing Unit) can download all or part of software necessary to realize the communication method described in the present disclosure by wireless communication or wire communication. It may be of such a configuration. Furthermore, all or part of the software for updating may be downloaded by wireless communication or wired communication. Then, the digital signal processing described in the present disclosure may be executed by storing the downloaded software in the storage unit and operating at least one of the FPGA and the CPU based on the stored software.
  • a device including at least one of the FPGA and the CPU may be connected to the communication modem wirelessly or by wire, and the device and the communication modem may realize the communication method described in the present disclosure.
  • the communication device such as a base station, AP, or terminal described in the present specification includes at least one of an FPGA and a CPU, and external software for operating at least one of the FPGA and the CPU
  • the communication device may have an interface for obtaining from.
  • the communication apparatus includes a storage unit for storing software obtained from the outside, and operates the FPGA and the CPU based on the stored software to realize the signal processing described in the present disclosure. May be
  • the first "car or vehicle” comprises the transmitting device described herein
  • the second “car or vehicle” comprises the receiving device described herein and transmits and receives data. You may implement.
  • the “receiver” or “part of the function of the transmitter” described herein is connected to the first "car or vehicle” via an interface, and the “receiver” described herein, Alternatively, “part of the receiving device” may be connected to the second "car or vehicle” via the interface, and transmission of data by transmission and reception may be performed.
  • the transmission device described in the present specification may be included in the first "car or vehicle", and data transmission / reception may be performed by this transmission device and the reception device described in the present specification.
  • a second "car or vehicle” may be included in the receiver described herein, and data may be transmitted and received between the receiver and the transmitter described herein.
  • the transmitting device or part of the function of the transmitting device described herein is connected to the first "car or vehicle" through the interface, and this series of transmitting devices and the present specification Data may be transmitted and received with the receiver described in the document.
  • the "receiving device or part of the receiving device” described herein is connected to the second "car or vehicle” via an interface, and the transmitting device described herein and this series Data may be transmitted and received with the receiving device.
  • the car or vehicle “comprises the transmitter described herein or a portion of the transmitter” or “the” vehicle or vehicle “described herein
  • a light source included in the transmitting device described in the present specification the transmitting device or the “a part of functions of the transmitting device described in the present specification” and the case of connecting via an interface ”;
  • the light source provided in the “car or vehicle” may be used.
  • the car B100 includes light sources B101_1, B101_2, B101_3, and B101_4, and the transmitter described in the present specification for transmitting one or more of these light sources transmits a light modulation signal. It may be a light source.
  • the transmission device selects a function of “which light source is used as the light source for transmitting the light modulation signal described in the present specification” among the plurality of light sources mounted on the vehicle B100.
  • an apparatus connected to the transmitting apparatus may be provided.
  • the brightness of the light source, the irradiation angle of the light source, and the position of the light source may be set together.
  • the vehicle or vehicle “comprises the receiver described herein or a portion of the receiver” or “the vehicle or vehicle” has been described "herein As a light receiving unit included in the receiving apparatus described in the present specification, when the receiving apparatus is connected to a part of functions of the receiving apparatus described in the present specification via an interface , “Car or vehicle” may use a light receiving unit (eg, an image sensor, a photodiode, etc.).
  • a light receiving unit eg, an image sensor, a photodiode, etc.
  • the car B100 includes light receiving units B201_1, B201_2, B201_3, B201_4, B201_5, and B201_6, and one or more of these light receiving units may be light-modulated by the receiving device described in this specification. It may be a light receiving unit for receiving a signal.
  • a function of selecting “which light receiving unit is used as a light receiving unit for receiving the light modulation signal according to the present specification” among the plurality of light receiving units mounted on the vehicle B100. May be included in the receiver or a device connected to the receiver. Further, the angle of the light receiving unit and the position of the light receiving unit may be set together.
  • the fact that the receiving device described in the present specification can receive data may be displayed on the front panel mounted on the car or in the cockpit mounted on the vehicle. Also, the user may be notified that the receiving device described herein can receive data by vibrating the steering wheel itself such as a car or a vibrator provided on the steering wheel.
  • the car equipped with the receiving device described in the present embodiment may be connected to the terminal through an interface, and data obtained by the receiving device may be stored in the storage unit included in the terminal.
  • the car also has a storage unit, and the car may store the received data. Further, the received data may be stored in both the storage unit of the terminal and the storage unit of the car.
  • the server may provide an application related to processing related to the receiving device, and the terminal may realize the functions of the receiving device described herein by installing this application.
  • the application may be provided to the terminal by connecting a communication device equipped with the transmission device described in this specification with a server via a network, and the application may be a communication device having another transmission function. It may be provided to the terminal by connecting to a server via a network.
  • the server may provide an application related to processing related to the transmission apparatus, and the communication apparatus may realize the functions of the transmission apparatus described herein by installing this application.
  • the application may be provided to the communication device by connecting another communication device to the server via the network.
  • the server provides software related to the light source included in the transmission device and the light receiving unit included in the reception device, and by obtaining this software, the light source included in the transmission device transmits the light modulation signal. It is possible to cope with it and to allow the light receiving unit of the receiving apparatus to be capable of receiving the light modulation signal.
  • the transmission device in the present specification may have the function of a server, and the application included in the transmission device is provided to the communication device using any communication means, and the communication device is obtained by downloading.
  • the receiver in the present specification may be realized.
  • illumination unit and “light source” are described, a display for displaying an image, a moving image, an advertisement, etc., and a projector emit light, and the light includes a light modulation signal. May be used. That is, the "lighting unit” and the “light source” may have functions other than the function of emitting light. Also, the “illumination unit” and the “light source” may be configured by a plurality of “illumination” and the "light source”.
  • the transmission method used by the communication device that generates the light modulation signal and emits light may be a method other than the transmission method described herein.
  • the light modulation signal may include information other than those described in the present specification.
  • the illumination / light source itself such as an LED may have the function of the transmission device described herein.
  • the device for generating the transmission light modulation signal does not have a light or light source, and the device for generating the transmission light modulation signal may be connected to the light or light source via an interface.
  • the communication method of the transmission apparatus and the reception apparatus described in this embodiment may be the communication method shown in FIG. 36D. In the following, description will be made regarding FIG. 36D.
  • the symbol mapping unit inputs transmission data and outputs a symbol sequence (ci) that performs mapping based on a modulation scheme.
  • the equalization pre-processing unit receives the symbol sequence, performs equalization pre-processing on the symbol sequence to reduce equalization processing on the reception side, and outputs the symbol sequence after equalization equalization processing.
  • the Hermite symmetry processing unit receives the symbol sequence after equalization pre-processing as input, performs subcarrier allocation on the symbol sequence after equalization pre-processing, and outputs a parallel signal so that Hermite symmetry can be ensured.
  • the inverse (fast) Fourier transform unit receives parallel signals as input, performs inverse (fast) Fourier transform on the parallel signals, and outputs a signal after inverse (fast) Fourier transform.
  • the parallel-serial and cyclic prefix adders receive the signal after inverse (high-speed) Fourier transform as input, add parallel-serial transform and cyclic prefix, and output as a signal after signal processing.
  • the digital-to-analog converter receives a signal after signal processing as input, performs digital-to-analog conversion, and outputs an analog signal.
  • the analog signal is output as light from one or more LEDs, for example.
  • the equalization pre-processing unit and the Hermite symmetry processing unit may not be provided. That is, the signal processing in the equalization pre-processing unit and the Hermite symmetry processing unit may not be performed.
  • the photodiode receives light as an input, and obtains a reception signal by TIA (Transimpedance Amplifier).
  • TIA Transimpedance Amplifier
  • the analog-to-digital converter performs analog-to-digital conversion on the received signal and outputs a digital signal.
  • the cyclic prefix removal and the serial-to-parallel converter take a digital signal as input, perform cyclic prefix removal, and then perform serial-to-parallel conversion, and use a parallel signal as input.
  • the (fast) Fourier transform unit receives a parallel signal as input, performs (fast) Fourier transform, and outputs a signal after (fast) Fourier transform.
  • the detection unit receives the signal after Fourier transform as input, performs detection, and outputs a received symbol sequence.
  • the symbol demapper takes a received symbol sequence as an input, performs demapping, and obtains a received data sequence.
  • the respective embodiments may be similarly implemented. it can.
  • the communication method of the transmission device and the reception device in the present embodiment may be the communication method described below.
  • CMOS complementary metal oxide semiconductor
  • the image taken by the CMOS sensor does not necessarily reflect the scenery at exactly the same time strictly, for example, the amount of light received by the sensor for each line by the rolling shutter method in which the shutter operation is performed for each row Read out. Therefore, control of the start and end of light reception is performed with a time difference for each line, in anticipation of the time required for reading. That is, the image captured by the CMOS sensor has a form in which a large number of lines with a time lag are gradually superimposed during the exposure period.
  • This method focuses on the nature of this CMOS sensor, and realizes high-speed reception of visible light signals.
  • the exposure time slightly differs little by little for each line.
  • the brightness and color of the light source at a plurality of time points can be measured line by line, and a signal modulated at a speed higher than the frame rate can be captured.
  • line scan sampling can be realized by a rolling shutter method using a CMOS sensor, a rolling shutter method using a sensor other than a CMOS sensor, for example, a CCD (Charge-Coupled Device) sensor, an organic (CMOS) sensor, etc. In the same way, “line scan sampling” can be performed.
  • CCD Charge-Coupled Device
  • CMOS organic
  • the exposure line is designed to be parallel to the long side direction of the image sensor.
  • the frame rate is 30 fps (frames per second)
  • more than 32400 samples per second can be obtained at a resolution of 1920 ⁇ 1080
  • more than 64800 samples per second at a resolution of 3840 ⁇ 2160. Is obtained.
  • LED light emitting diode
  • LEDs are becoming popular as backlight sources for lighting or displays, and can be flashed at high speed.
  • a light source used as a transmitter for visible light communication can not be blinked freely for visible light communication. If the change in luminance due to visible light communication can be recognized by human beings, the function of the original light source such as illumination is impaired. Therefore, it is required that the transmission signal be illuminated with a desired brightness so that flicker is not perceived by human eyes.
  • 4PPM 4-Pulse Position Modulation
  • 4PPM is more suitable than the Manchester coding method as a modulation method of visible light communication.
  • the communication performance does not necessarily deteriorate. Therefore, depending on the application, there is a problem even when using a method that causes changes in luminance to be recognized by humans. There is not.
  • the transmitter (light source) generates a modulation signal using a modulation method such as, for example, ASK (Amplitude Shift Keying) method, PSK (Phase Shift Keying) method, PAM (Pulse Amplitude Modulation), and turns on the light source. , May be irradiated.
  • a modulation method such as, for example, ASK (Amplitude Shift Keying) method, PSK (Phase Shift Keying) method, PAM (Pulse Amplitude Modulation), and turns on the light source. , May be irradiated.
  • the communication method of the transmitting device and the receiving device described in this specification is not limited to the above example, and is a wireless communication method using any frequency such as light, visible light, infrared light, ultraviolet light, etc. It is possible to carry out similarly.
  • the transmitting device transmits with any symbol configuration, such as “symbol relating to location or position information”, “symbol relating to time information”, “symbol relating to SSID”, “symbol relating to access destination”, “symbol relating to encryption key”
  • symbol configuration such as “symbol relating to location or position information”, “symbol relating to time information”, “symbol relating to SSID”, “symbol relating to access destination”, “symbol relating to encryption key”
  • the “light source” and the “illumination unit” may be configured by a plurality of “light sources” and a plurality of “illumination”.
  • Embodiment A1 In this embodiment, a method of receiving an optical modulation signal and a receiving system will be described.
  • FIG. 37 shows a system configured by the communication device in the present embodiment.
  • a communication device (for example, a terminal) 3700 is a device that receives a light modulation signal.
  • the light receiving unit 3702 receives the light modulation signal 3701 and outputs a reception signal 3704.
  • the storage unit 3704 receives the received signal 3703 and stores it. Then, the storage unit 3704 outputs the stored data as storage data 3705.
  • a transmitter 3707 receives data 3706 and storage data 3705, performs processing such as error correction coding and modulation, and outputs a modulation signal 3708.
  • the receiver 3701 of the communication apparatus receives the modulated signal 3708 transmitted by the communication apparatus 3700, that is, receives the modulated signal 3708.
  • Receiving apparatus 3701 performs processing such as demodulation and error correction decoding and outputs received data 3752.
  • Received data 3752 is delivered as data 3771 to server 3772 via network 3770.
  • the server 3772 receives the data 3771 as input, performs, for example, demodulation of the light modulation signal 3701 and error correction decoding, and obtains and outputs data 3773 included in the light modulation signal 3701.
  • the data 3773 is input to the transmission device 3754 as data 3753 via the network 3770.
  • a transmission device 3754 provided in the communication device 3750 receives the data 3753, performs processing such as error correction coding and modulation, and outputs a modulation signal 3755.
  • Receiving apparatus 3720 included in communication apparatus 3700 receives modulation signal 3755 as input, performs processing such as demodulation and error correction decoding, and obtains and outputs received data 3721. At this time, the reception data 3721 is data included in the light modulation signal 3701.
  • terminal corresponds to the communication device 3700 in FIG. 37
  • base station corresponds to the communication device 3750 in FIG. 37
  • server corresponds to the server 3772 in FIG.
  • the terminal accesses the server via the base station (3801). Then, the server confirms that the terminal has accessed (3802).
  • the terminal then receives the light modulation signal.
  • the terminal then creates data on the light modulation signal for transmission to the server. However, this data is not data included in the light modulation signal.
  • the terminal transmits to the base station (3803) in order to transmit "data related to the light modulation signal" to the server.
  • the base station receives the "data on light modulation signal" transmitted by the terminal (3804). Then, the base station transmits the received data to the server.
  • the server obtains “data on light modulation signal” transmitted by the base station (3806). Then, the server performs processing such as demodulation of the light modulation signal and error correction decoding from the data on the light modulation signal to obtain data included in the light modulation signal (3807). Then, the server transmits data contained in the light modulation signal, that is, data obtained by processing such as demodulation to the base station, and the base station transmits the data to the terminal (3808).
  • the terminal obtains received data of the light modulation signal.
  • a terminal having a light receiving unit such as an image sensor and a communication function for connecting to a server can obtain received data of the light modulation signal without adding a new signal processing unit.
  • a new signal processing unit it is possible to obtain the effect of being able to obtain the received data of the light modulation signal while reducing the circuit scale and calculation scale of the terminal.
  • the present invention is not limited to these names, and it is possible to configure a system using an apparatus having a communication function. Further, the method of receiving the light modulation signal described in the present embodiment can be applied as the method of receiving the light modulation signal described in the present specification.
  • Embodiment A2 In the present embodiment, a moving image providing method using a light modulation signal will be described.
  • FIG. 39A shows a first example of a system related to a moving image providing method using a light modulation signal according to the present embodiment.
  • the system comprises a communication system 3970 and a terminal 3980.
  • the communication system 3970 includes a plurality of cameras 3971A, 3971B, ..., 3971N, a server 3972, and a plurality of transmission devices 3973A, 3973B, ..., 3973N.
  • the plurality of cameras 3971A and the like generate image data by imaging.
  • the server 3972 stores image data generated by each of the plurality of cameras 3971A and the like.
  • the plurality of transmission devices 3973A and the like are the plurality of transmission devices 3973A and the like corresponding to the plurality of cameras 3971A and the like in a one-to-one manner, and the plurality of transmission devices 3973A and the like are generated by the cameras corresponding to the transmission devices.
  • a light including, as a visible light communication signal, information relating to communication for accessing a storage location in the server in which the image data is stored is transmitted.
  • the information may include address information indicating a storage location where the image data is stored.
  • the address information is, for example, a URL.
  • the address information may be included, for example, as a “symbol including access related information” in a frame of the light modulation signal.
  • the information may include an encryption key used to encrypt communication for a terminal to access a storage location where image data is stored.
  • the encryption key may be included, for example, as a “symbol related to the encryption key” in a frame of the light modulation signal.
  • the information may include an identifier of a base station of wireless communication for the terminal to access a storage location where the image data is stored.
  • the identifier of the base station is, for example, an SSID.
  • the identifier of the base station may be included, for example, as a "symbol related to the SSID" in a frame of the light modulation signal.
  • the information may include position information indicating the position of the place where the image data was captured.
  • the position information is, for example, an identifier that can uniquely identify a seat in the stadium.
  • the position information may be included, for example, as a “symbol related to position information” in a frame of the light modulation signal.
  • the terminal 3980 includes a receiving device 3981 and a transmitting and receiving device 3982.
  • the receiver 3981 receives light including information indicating a storage location of the image data as a visible light communication signal.
  • the transmission / reception device 3982 receives image data from the storage location indicated by the information received by the reception device 3981.
  • FIG. 39B is a flowchart showing an example of processing related to a moving image providing method using a light modulation signal.
  • step S3971 image data is generated by imaging with a plurality of cameras 3971A and the like.
  • step S3972 the image data generated by each of the plurality of cameras 3971A and the like is stored in the server 3972.
  • Each of the plurality of transmitters 3973A and the like transmits light including, as a visible light communication signal, information related to communication for accessing a storage location in the server 3972 where image data generated by a camera corresponding to the transmitter is stored. Do.
  • step S 3981 light including information indicating a storage location of the image data as a visible light communication signal is received.
  • step S 3982 image data is received from the storage location indicated by the received information.
  • FIG. 39C shows a second example of a system relating to a moving image provision method using a light modulation signal in the present embodiment.
  • This system is configured of a moving image providing system 3999 and terminals 3950_1 and 3950_2.
  • the video providing system 3999 corresponds to the above communication system.
  • the first camera 3902_1 is in communication with the server 3905, and the first camera 3902_1 transmits a signal 3903_1 including the first imaging data to the server 3905, and the server 3905 includes the first data. A signal is sent to the first camera 3902_1.
  • the second camera 3902_2 is in communication with the server 3905, and the second camera 3902_2 transmits a signal 3903_2 including the second imaging data to the server 3905, and the server 3905 includes the second data.
  • the signal is transmitted to the second camera 3902_2.
  • the third camera 3902_3 is in communication with the server 3905, and the third camera 3902_3 transmits the signal 3903_3 including the third imaging data to the server 3905, and the server 3905 includes the third data. A signal is sent to the third camera 3902_3.
  • the server 3905 provides the moving image shot by the first camera 3902_1 or the still image (corresponding to the first shot data) to the accessed terminal or the like. Similarly, the server 3905 provides a moving image shot by the second camera 3902_2 or a still image (corresponding to second shooting data) to the accessed terminal or the like. Then, the server 3905 provides the moving image shot by the third camera 3902_3 or the still image (corresponding to the third shooting data) to the accessed terminal or the like.
  • the first transmission device 3901_1 includes a transmission device for transmitting (irradiating) a light modulation signal, and the light modulation signal to be transmitted may be a “moving image captured by the first camera 3902_1 or a still image
  • the information for example, a URL (uniform resource locator) or the like
  • the receiving terminal can obtain information on the access destination of the server 3905 by receiving (receiving) the light modulation signal transmitted (irradiated) by the first transmission device 3901_1. It is possible to obtain a moving image shot or a still image (corresponding to the first shooting data).
  • the second transmission device 3901_2 includes a transmission device for transmitting (irradiating) a light modulation signal, and the light modulation signal to be transmitted is “a moving image captured by the second camera 3902_2 or a still image It is assumed that the information (for example, a URL or the like) of the access destination of the server 3905 for obtaining “the second captured data” is included. Therefore, by receiving (receiving) the light modulation signal transmitted (irradiated) by the second transmission device 3901_2, the received terminal can obtain the information of the access destination of the server 3905, "the second camera 3902_2 It is possible to obtain a moving image shot or a still image (corresponding to second shooting data).
  • the third transmission device 3901_3 includes a transmission device for transmitting (irradiating) a light modulation signal, and the light modulation signal to be transmitted may be a moving image or a still image taken by the third camera 3902_3. It is assumed that the information (for example, a URL or the like) of the access destination of the server 3905 for obtaining “the third shooting data” is included. Therefore, by receiving (receiving) the light modulation signal transmitted (irradiated) by the third transmission device 3901_3, the received terminal can obtain the information of the access destination of the server 3905, “the third camera 3902_3 It is possible to obtain a moving image shot or a still image (corresponding to third shooting data).
  • the moving image may include voice and audio.
  • the first communication device 3911_1 is a device that communicates with the terminal 3950_1, the terminal 3950_2, and the like.
  • the server 3905 outputs a signal 3906_1 (3909_1) including data, and is input to the first communication device 3911_1 via the network 3908_1. Then, the first communication device 3911_1 transmits the modulation signal 3912_1 including the data.
  • the first communication device 3911_1 receives the reception signal 3913_1 from the terminal, performs signal processing such as demodulation, obtains reception data, and outputs a signal 3910_1 including this data.
  • the signal 3910_1 (3907_1) is input to the server 3905 via the network.
  • the second communication device 3911_2 is a device that communicates with the terminal 3950_1, the terminal 3950_2, or the like.
  • the server 3905 outputs a signal 3906_2 (3909_2) including data, and is input to the second communication device 3911_2 via the network 3908_2. Then, the second communication device 3911_2 transmits the modulation signal 3912_2 including this data.
  • the second communication device 3911_2 receives the reception signal 3913_2 from the terminal, performs signal processing such as demodulation, obtains reception data, and outputs a signal 3910_2 including this data.
  • the signal 3910_2 (3907_2) is input to the server 3905 via the network.
  • the terminal 3950_1 includes “a receiving device 3951_1 that receives and demodulates an optical modulation signal”, and “a transmitting and receiving device 3954_1 that communicates with the first communication device 3911_1 and the second communication device 3911_2”.
  • the reception device 3951_1 receives the light modulation signal 3952_1 (transmitted by the first transmission device 3901_1, the second transmission device 3901_2, or the third transmission device 3901_3), and demodulates the light modulation signal 3952_1. Processing such as correction decoding is performed to obtain and output received data 3953_1.
  • the transmission / reception device 3954_1 receives the data 3955_1 and the (reception) data 3953_1, performs signal processing such as error correction coding and modulation, and generates and outputs a modulation signal 3957_1.
  • the transmission / reception device 3954_1 receives as input the received signal 3958_1 of the modulated signal transmitted by the first communication device 3911_1, the second communication device 3911_2, etc., performs processing such as demodulation and error correction decoding, and receives received data 3956_1. Obtain and output.
  • the terminal 3950_2 includes “a receiving device 3951_2 that receives and demodulates an optical modulation signal”, and “a transmitting and receiving device 3954_2 that communicates with the first communication device 3911_1 and the second communication device 3911_2”.
  • the reception device 3951_2 receives the light modulation signal 3952_2 (transmitted by the first transmission device 3901_1, the second transmission device 3901_2, or the third transmission device 3901_3), and demodulates the light modulation signal 3952_2. Processing such as correction decoding is performed to obtain received data 3953_2 and output it.
  • the transmission / reception device 3954_2 receives the data 3955_2 and the (received) data 3953_2 as input, performs signal processing such as error correction coding and modulation, for example, and generates and outputs a modulated signal 3957_2.
  • the transmission / reception device 3954_2 receives as input the received signal 3958_2 of the modulated signal transmitted by the first communication device 3911_1, the second communication device 3911_2, etc., performs processing such as demodulation and error correction decoding, and receives received data 3956_2. Obtain and output.
  • FIG. 40 shows an example of a stadium scene, for example.
  • field 4001 it is assumed that a soccer game is being played.
  • area 4002 it is assumed that a scoring scene has occurred.
  • FIG. 40 the same reference numerals are given to devices corresponding to FIG. 39C.
  • the first camera 3902_1, the second camera 3902_2, the third camera 3902_3, and the fourth camera 3902_4 are provided in order to capture moving or still images of the game in the field, the situation of the audience, etc. I assume.
  • the operation related to the first camera 3902_1, the second camera 3902_2, the third camera 3902_3, and the fourth camera 3902_4 has been described using FIG. 39C, and thus the description thereof is omitted.
  • the first transmission device 3901_1, the second transmission device 3901_2, the third transmission device 3901_3, the fourth according to the first camera 3902_1, the second camera 3902_2, the third camera 3902_3, and the fourth camera 3902_4 Transmitter 3901 _ 4 is installed.
  • the operations related to the first transmission device 3901_1, the second transmission device 3901_2, the third transmission device 3901_3, and the fourth transmission device 3901_4 have been described using FIG. 39C, and thus the description thereof is omitted.
  • the first transmission device 3901_1 is installed in the vicinity of the first camera 3902_1, the second transmission device 3901_2 is installed in the vicinity of the second camera 3902_2, and the third transmission device 3901_3 is It is preferable that the fourth transmission device 3901 _ 4 be installed near the third camera 3902 _ 3 and the fourth transmission device 3901 _ 4 be installed near the fourth camera 3 902 _ 4.
  • the first transmission device 3901_1, the second transmission device 3901_2, the third transmission device 3901_3, and the fourth transmission device 3901_4 may also serve as illumination for irradiating the field of the stadium.
  • the users who use the first terminal 3950_1 and the first terminal 3950_1 are located as shown in FIG. 40, and it is highly likely that the score scene generated in the area 4002 is hard to see. Accordingly, it is assumed that the user who uses the first terminal 3950_1 has a request to view a camera close to the area 4002 where the score scene has occurred, that is, a moving image or a still image captured by the third camera 3902_3. .
  • the user performs an operation of pointing the light receiving unit of the receiving device 3951 of the first terminal 3950_1 in the direction of the third camera 3902_3. Accordingly, the first terminal 3905_1 receives the light modulation signal transmitted (irradiated) by the third transmission device 3901_3 near the third camera 3902_3.
  • the first terminal 3905_1 obtains information of a moving image or a still image captured by the third camera 3902_3. The detailed operation will be described with reference to FIGS. 41 and 42. .
  • FIG. 41 illustrates an example of an operation flow of the k-th camera 3902 _ k, the k-th transmission device 3901 _ k, and the server 3905.
  • k is 1 or 2 or 3 or 4.
  • the number of cameras and transmitters is not limited to four.
  • information for example, the URL of the access destination of the server 3905 for obtaining the “moving image shot by the k th camera 3902 _ k or the still image (corresponding to the k
  • the device that transmits the light modulation signal including the signal is described taking one case as an example, but “the moving image shot by the k th camera 3902 _ k or the still image (corresponding to the k th shooting data”.
  • the plurality of devices may be implemented similarly.
  • the k-th camera 3902 _ k captures a moving image or a still image (4101).
  • the k-th camera 3902 _ k transmits the captured data to the server 3905. Then, the k-th camera 3902 _ k transmits, to the k-th transmission device 3901 _ k, information on an access destination for browsing a moving image or a still image in the server (4102).
  • the k-th transmission device 3901 _ k obtains access destination information for browsing moving images or still images held by the server. Then, the k-th transmission device 3901 _ k transmits (irradiates) a light modulation signal including this information (4103).
  • the server 3905 stores and transmits the shooting data transmitted by the k-th camera 3902 _ k (4104).
  • the kth camera 3902_k transmits access destination information for browsing moving images or still images on the server to the kth transmission device 3901_k”, but this operation is not present.
  • the k-th transmission apparatus 3901 _ k may previously hold “the k-th camera 3902 _ k has access destination information for viewing a moving image or a still image on the server”.
  • the operation “the k-th camera 3902_k transmits the information of the access destination for browsing the moving image or the still image on the server to the k-th transmitting apparatus 3901_k” is shown in FIG.
  • the timing is not limited and may be any timing.
  • FIG. 42 shows the first terminal 3950_1 and the third transmission device when the first terminal 3950_1 is trying to obtain information on a moving image or a still image taken by the third camera 3902_3 in the state of FIG. 40.
  • 3902_3 shows an example of an operation flow of the first communication device 3911_1.
  • the third transmission device 3901_3 obtains access destination information for viewing the “moving image or still image taken by the third camera 3902_3” in the server 3905. Then, the third transmission device 3901_3 transmits (irradiates) the light modulation signal including this information (4201).
  • the first terminal 3950_1 is a light modulation signal emitted from the vicinity of the third camera 3902_3 because the user of the first terminal 3950_1 wants to view a moving image or a still image taken from the vicinity of the third camera 3902_3. That is, an attempt is made to receive (receive) the light modulation signal transmitted by the third transmission device 3901_3, and the light modulation signal is received (4202).
  • the first terminal 3950_1 receives the light modulation signal transmitted by the third transmission device 3901_3, and thus obtains the access destination information for obtaining the moving image or the still image photographed by the third camera 3902_3.
  • the first terminal 3950_1 requests the access to the server 3905 by the transmission / reception device 3954_1 via the first communication device 3911_1 (4203).
  • the first communication device 3911_1 receives the modulation signal 3957_1 transmitted by the transmission / reception device 3954_1 included in the first terminal 3950_1. Then, the first communication device 3911_1 finds out that “the first terminal 3950_1 has requested the data of the moving image or the still image photographed by the third camera 3902_3”, accesses the server 3905, and “the third Information on a moving image or still image captured by the camera 3902_3 is obtained (4204).
  • the first communication device 3911_1 transmits the modulation signal 3912_1 including the information of the “moving image or still image captured by the third camera 3902_3” (4205).
  • the first terminal 3950_1 receives the modulated signal 3912_1 transmitted by the first communication device 3911_1, and obtains information of “moving image or still image captured by the third camera 3902_3” (4206).
  • first terminal 3950_1 exists as a terminal
  • present invention is not limited to this, that is, a plurality of terminals may be, for example, the third A plurality of terminals may access information on a moving image or a still image captured by the camera 3902_3 of
  • FIG. 39C illustrates an example in which two communication devices for accessing the server 3950, the first communication device 3911_1 and the second communication device 3911_2 are present, the present invention is not limited to this. "One communication device may be present" or “two or more communication devices may be present”.
  • the user who uses the terminal can easily obtain the effect of being able to obtain desired moving image or still image data.
  • FIG. 43 shows an example of a frame configuration of an optical modulation signal transmitted by the first transmission device 3901_1, the second transmission device 3901_2, and the third transmission device 3901_3 in FIG. 39C, and the horizontal axis is time I assume.
  • the k-th transmission device 3901 _ k transmits a preamble 4301, a symbol including access related information of moving image or still image data shot by the k-th camera, and a data symbol 4303 in order.
  • the preamble 4301 is a symbol required for the receiver of the communication partner to perform synchronization such as time, a symbol for the receiver for the communication partner to perform signal detection, and a symbol for the receiver of the communication partner to demodulate each symbol.
  • Control information for example, information on a communication scheme, information on a modulation scheme, information on an error correction code
  • a symbol 4302 including access-related information of moving image or still image data captured by the k-th camera is used to notify the receiving apparatus that is the other end of communication with information regarding the access destination of moving image or still image data captured by the k-th camera.
  • Data symbol 4303 is a symbol for transmitting data to a terminal such as first terminal 3950_1, second terminal 3950_2, etc. by first transmitter 3901_1, second transmitter 3901_2, and third transmitter 3901_3. is there.
  • symbols may be present in the frequency axis direction, that is, in the carrier direction. Therefore, it may be a modulation signal of multi-carrier scheme such as OFDM (Orthogonal Frequency Division Multiplexing), and symbols other than the symbols shown in FIG. 43 may be included in the frame. Further, the order of transmitting symbols is not limited to that shown in FIG.
  • OFDM Orthogonal Frequency Division Multiplexing
  • FIG. 44 shows an example of a frame configuration different from that of FIG. 43 of the light modulation signal transmitted by the first transmission device 3901_1, the second transmission device 3901_2, and the third transmission device 3901_3 in FIG. 39C, the horizontal axis Shall be time.
  • the same components as those in FIG. 43 operate by the same reference numerals and the description thereof will be omitted.
  • the first transmission device 3901_1, the second transmission device 3901_2, and the third transmission device 3901_3 can access, for example, the SSID of a wireless LAN that can be accessed by terminals such as the first terminal 3950_1 and the second terminal 3950_2. Will be notified.
  • the terminal can easily and safely implement the connection to the wireless LAN.
  • the details of the method for accessing a wireless LAN or the like using the symbol 4401 related to the SSID have been described in the first to seventh embodiments, and thus the description thereof is omitted.
  • the terminals such as the first terminal 3950_1 and the second terminal 3950_2 are data of moving pictures or still pictures captured by the first camera 3902_1 via the access point such as a wireless LAN, and the second camera 3902_2. It is possible to access data of moving pictures or still pictures taken by the camera, and data of moving pictures or still pictures taken by the third camera 3902_3.
  • the first communication device 3911_1 and the second communication device 3911_2 in FIG. 39C are, for example, access points of a wireless LAN.
  • symbols may be present in the frequency direction, that is, in the carrier direction. Therefore, it may be a modulation signal of multi-carrier scheme such as OFDM, and symbols other than the symbols shown in FIG. 44 may be included in the frame.
  • the order of transmitting symbols is not limited to that shown in FIG.
  • FIG. 45 shows an example of a frame configuration different from FIGS. 43 and 44 of the light modulation signal transmitted by the first transmission device 3901_1, the second transmission device 3901_2, and the third transmission device 3901_3 in FIG. 39C.
  • the horizontal axis is time.
  • the same components as those in FIGS. 43 and 44 are designated by the same reference numerals and the description thereof will be omitted.
  • the first transmission device 3901_1, the second transmission device 3901_2, and the third transmission device 3901_3 are, for example, the SSIDs of wireless LANs that can be accessed by terminals such as the first terminal 3950_1 and the second terminal 3950_2, and The terminal is notified of the wireless LAN encryption key. As a result, the terminal can easily and safely implement the connection to the wireless LAN.
  • the details of the method of accessing a wireless LAN or the like using the symbol 4401 relating to the SSID and the symbol 4501 relating to the encryption key have been described in the first to seventh embodiments, and thus the description thereof is omitted.
  • the terminals such as the first terminal 3950_1 and the second terminal 3950_2 are data of moving pictures or still pictures captured by the first camera 3902_1 via the access point such as a wireless LAN, and the second camera 3902_2. It is possible to access data of moving pictures or still pictures taken by the camera, and data of moving pictures or still pictures taken by the third camera 3902_3.
  • the first communication device 3911_1 and the second communication device 3911_2 in FIG. 39C are, for example, access points of a wireless LAN.
  • symbols may be present in the frequency direction, that is, in the carrier direction. Therefore, it may be a modulation signal of multi-carrier scheme such as OFDM, and symbols other than the symbols shown in FIG. 45 may be included in the frame. Further, the order of transmitting symbols is not limited to FIG.
  • FIG. 46 shows an example of a frame configuration different from those in FIG. 43, FIG. 44, and FIG. 45 of the optical modulation signals transmitted by the first transmission device 3901_1, the second transmission device 3901_2, and the third transmission device 3901_3 in FIG. It is shown that the horizontal axis is time.
  • the same components as those in FIGS. 43 and 45 are designated by the same reference numerals and the description thereof will be omitted.
  • the characteristic point of FIG. 46 is that the symbol related to the SSID is not included, and the symbol 4501 related to the encryption key is included in the frame. At this time, any of the following two methods may be applied.
  • a transmitter transmitting a frame including a symbol 4401 related to the SSID as shown in FIG. 44” and “a transmitter transmitting a frame including a symbol 4501 related to an encryption key as shown in FIG. 46” are separately present.
  • the terminal can receive the light modulation signals of the two transmission devices and can access a communication device such as a wireless LAN.
  • the terminal receives moving image or still image data captured by the first camera 3902_1, moving image or still image data captured by the second camera 3902_2, or the third camera 3902_3 via a communication device such as a wireless LAN. It is possible to access data of moving pictures or still pictures taken by a communication device such as a wireless LAN.
  • the frame configuration of FIG. 44 or any of the frame configurations of FIG. 46 may not include the symbol 4302 including access related information of moving image or still image data captured by the k-th camera.
  • the terminals such as the first terminal 3950_1 and the second terminal 3950_2 are data of moving pictures or still pictures captured by the first camera 3902_1 via the access point such as a wireless LAN, and the second camera 3902_2. It is possible to access data of moving pictures or still pictures taken by the camera, and data of moving pictures or still pictures taken by the third camera 3902_3.
  • the first communication device 3911_1 and the second communication device 3911_2 in FIG. 39C are, for example, access points of a wireless LAN.
  • symbols may be present in the frequency direction, that is, in the carrier direction. Therefore, it may be a modulation signal of multi-carrier scheme such as OFDM, and symbols other than the symbols shown in FIG. 46 may be included in the frame. Also, the order of transmitting symbols is not limited to that shown in FIG.
  • the terminal considers a state in which information of an access point such as a wireless LAN can be obtained. In this case, it is assumed that the terminal receives the light modulation signal of the frame configuration of FIG. 46 and obtains a symbol 4501 related to the encryption key. This enables the terminal to connect to an access point such as a wireless LAN. Therefore, the terminals such as the first terminal 3950_1 and the second terminal 3950_2 are moving image or still image data captured by the first camera 3902_1 via the access point such as a wireless LAN, and the second camera 3902_2 is It is possible to access data of a captured moving image or still image, and data of a moving image or still image captured by the third camera 3902_3.
  • the first communication device 3911_1 and the second communication device 3911_2 in FIG. 39C are, for example, access points of a wireless LAN.
  • symbols may be present in the frequency direction, that is, in the carrier direction. Therefore, it may be a modulation signal of multi-carrier scheme such as OFDM, and symbols other than the symbols shown in FIG. 46 may be included in the frame.
  • the user in order to obtain a moving image or a still image shot at a position desired by the user, the user can turn the terminal toward the position desired by the user by a simple operation that the user desires It is possible to obtain an effect that a moving image or a still image taken at a position can be obtained.
  • Embodiment A3 In this embodiment, the frame configurations of light modulation signals transmitted by the first transmission device 3901_1, the second transmission device 3901_2, and the third transmission device 3901_3 in FIG. 39C described in the embodiment A2. The frame configuration different from the above will be described.
  • FIG. 47 shows an example of the frame configuration of the light modulation signal transmitted by the first transmission device 3901_1, the second transmission device 3901_2, and the third transmission device 3901_3 in FIG. 39C, and the horizontal axis is time I assume.
  • the frame configuration of FIG. 47 includes a symbol 4701 including position information in addition to the symbols constituting the frame of FIG.
  • the symbol 4701 including position information is near the position where the first transmission device 3901_1 or the first camera 3902_1 exists.
  • Shall contain the following information. For example, it may be information on stadium seats.
  • the terminal can obtain information on the position where the moving image or still image for which information is to be obtained, and whether the terminal is the desired information on moving image or still image The effect of being able to judge can be obtained.
  • the terminal obtains the effect that the user using the terminal can easily search for a seat by obtaining the symbol 4701 including the position information included in FIG. 47. You can also.
  • symbols may be present in the frequency axis direction, that is, in the carrier direction. Therefore, it may be a modulation signal of multi-carrier scheme such as OFDM, and symbols other than the symbols shown in FIG. 47 may be included in the frame. Also, the order of transmitting symbols is not limited to that shown in FIG.
  • FIG. 48 shows an example of the frame configuration of the light modulation signal transmitted by the first transmission device 3901_1, the second transmission device 3901_2, and the third transmission device 3901_3 in FIG. 39C, and the horizontal axis is time I assume.
  • the frame configuration of FIG. 48 includes a symbol 4701 including position information in addition to the symbols constituting the frame of FIG.
  • the symbol 4701 including position information is near the position where the first transmission device 3901_1 or the first camera 3902_1 is present.
  • Shall contain the following information. For example, it may be information on stadium seats.
  • the terminal can obtain information on the position where the moving image or still image for which information is to be obtained, and whether the terminal is the desired information on moving image or still image The effect of being able to judge can be obtained.
  • the terminal obtains the effect that the user using the terminal can easily search for a seat by obtaining the symbol 4701 including the position information included in FIG. 48. You can also.
  • FIG. 49 shows an example of the frame configuration of an optical modulation signal transmitted by the first transmission device 3901_1, the second transmission device 3901_2, and the third transmission device 3901_3 in FIG. 39C, and the horizontal axis is time I assume.
  • the frame configuration of FIG. 49 includes a symbol 4701 including position information in addition to the symbols constituting the frame of FIG.
  • the symbol 4701 including position information is near the position where the first transmission device 3901_1 or the first camera 3902_1 exists.
  • Shall contain the following information. For example, it may be information on stadium seats.
  • the terminal can obtain information on the position where the moving image or still image for which information is to be obtained, and whether the terminal is the desired information on moving image or still image The effect of being able to judge can be obtained.
  • the terminal obtains the effect that the user using the terminal can easily search for a seat by obtaining the symbol 4701 including the position information included in FIG. 49. You can also.
  • FIG. 50 shows an example of the frame configuration of the light modulation signal transmitted by the first transmission device 3901_1, the second transmission device 3901_2, and the third transmission device 3901_3 in FIG. 39C, and the horizontal axis is time I assume.
  • the frame configuration of FIG. 50 includes a symbol 4701 including position information in addition to the symbols constituting the frame of FIG.
  • the symbol 4701 including position information is near the position where the first transmission device 3901_1 or the first camera 3902_1 exists.
  • Shall contain the following information. For example, it may be information on stadium seats.
  • the terminal can obtain information on the position where the moving image or still image for which information is to be obtained, and whether the terminal is the desired information on moving image or still image The effect of being able to judge can be obtained.
  • the terminal obtains the effect that the user using the terminal can easily search for a seat by obtaining the symbol 4701 including the position information included in FIG. 50. You can also.
  • first terminal 3950_1 and the second terminal 3950_2 in FIG. 39C are included in the symbol 4701 including the position information transmitted by the first transmission device 3901_1, the second transmission device 3901_2, and the third transmission device 3901_3. May have a function of storing position information. Thereby, the user who holds the terminal can easily call up the position information (seat information at the stadium), and also know the access destination for obtaining the moving image or the still image together with the position information. It has the advantage of being able to
  • the first terminal 3950_1 is “moving image or image of the first camera 3902_1”, “moving image or image of the second camera 3902_2”, “third camera
  • the third transmitting device 3901_3 and the fourth transmitting device When there is a fifth transmission device 3901_5 between the 3901_4 and the first terminal 3950_1 obtains this light modulation signal, “moving image or image of the first camera 3902_1”, “moving image or image of the second camera 3902_2” , “Moving Image or Image of Third Camera 3902_3”, “Moving Image or Image of Fourth Camera 3902_4” From the number of video or image, to generate a video or image is estimated that taken from the vicinity of the fifth transmission unit 3901_5, for the first terminal 3950_1 may
  • the communication system 3970 in FIG. 39A of the embodiment A2 includes a robot, a car, a vehicle, a (movable) home appliance (home electric machine tool), a two-wheeled vehicle, a drone, an aircraft, a vehicle, an airship, a ship, etc. May be mounted on the
  • “moving image or image” of “composite or virtual viewpoint” is generated from moving images or images obtained from the plurality of cameras, and provided to the terminal May be
  • the “moving image or image” of the “composite or virtual viewpoint” is generated by the server 3972, for example.
  • the server is called, it may be a signal processing unit.
  • a server is called, the name is not limited to this, and may be a signal processing unit, a personal computer, a computer, a tablet, an arithmetic processing unit, a CPU, a GPU (Graphics Processing Unit), etc. It is also good.
  • each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded in a recording medium such as a hard disk or a semiconductor memory.
  • program execution unit such as a CPU or a processor reading and executing a software program recorded in a recording medium such as a hard disk or a semiconductor memory.
  • software for realizing the system or apparatus of each of the above-described embodiments is the following program.
  • this program is a control method of a communication system
  • the communication system includes a plurality of cameras, a server, and a plurality of transmitting devices corresponding to the plurality of cameras in a one-to-one correspondence
  • the image data is generated by imaging with a camera, and the image data generated by each of the plurality of cameras is stored in the server, and the image generated by a camera corresponding to the transmission device by each of the plurality of transmission devices
  • a control method is executed to transmit light including, as a visible light communication signal, information related to communication for accessing a storage location in the server in which data is stored.
  • the program is a control method of a terminal, which receives light including information indicating a storage location of image data as a visible light communication signal, and the image data is received from the storage location indicated by the received information. Execute the control method to receive.
  • the present invention is useful in acquiring location information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Optical Communication System (AREA)
  • Information Transfer Between Computers (AREA)

Abstract

通信システム(3970)は、撮像により画像データを生成する複数のカメラ(3971A等)と、複数のカメラ(3971A等)のそれぞれが生成した画像データが格納されるサーバ(3972)と、複数のカメラ(3971A等)と1対1に対応する複数の送信装置(3973A等)であって、複数の送信装置のそれぞれが、当該送信装置に対応するカメラが生成した画像データが格納されたサーバ内の格納場所へアクセスするための通信に関する情報を可視光通信信号として含む光を送信する複数の送信装置(3973A等)とを備える。

Description

通信システム、端末、制御方法、及び、プログラム
 本発明は、通信システム、端末、制御方法、及び、プログラムに関する。
 機器が、場所の情報を取得する方法として、GPS(Global Positioning system)を用いる方法があり、機器が、衛星から送信された変調信号を受信し、測位計算を行うことで、場所を推定する。
しかし、機器が、GPS衛星が送信した電波の受信が困難な屋内の場合、場所情を推定することが難しいという課題がある。
 この課題を解決する方法として、例えば、非特許文献1に示されているように、機器が、無線LAN(Local Area Network)のアクセスポイントから送信された電波を用いて、場所を推定する方法がある。
"NGP use case document," IEEE802.11-16/0137r4,March 2016.https://mentor.ieee.org/802.11/dcn/16/11-16-0137-04-00az-ngp-use-case-document.pptx H. Koga, N. Kodama, and T. Konishi, "High-speed power line communication system based on wavelet OFDM," Proc. of ISPLC 2003. S. Galli, H. Koga, and N. Kodama, "Advanced signal processing for PLCs: Wavelet-OFDM," Proc. of 2008 IEEE International Symposium on Power Line Communications and Its Applications.
 しかし、安全アクセスできるアクセスポイントのSSID(service set identifier)を知ることが簡単ではないため、機器が場所情報を得ようとした際、安全でないSSIDのアクセスポイントに接続する可能性があり、情報漏えいなどの脅威がある。
 このように、場所情報の取得方法に関して、さらなる改善が要望されている。
 本開示の一態様の通信システムは、撮像により画像データを生成する複数のカメラと、前記複数のカメラのそれぞれが生成した前記画像データが格納されるサーバと、前記複数のカメラと1対1に対応する複数の送信装置であって、前記複数の送信装置のそれぞれが、当該送信装置に対応するカメラが生成した前記画像データが格納された前記サーバ内の格納場所へアクセスするための通信に関する情報を可視光通信信号として含む光を送信する複数の送信装置とを備える。
 なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示によれば、場所情報の取得方法が改善できる可能性がある。
図1は、機器と端末の構成の一例を示す図である。 図2は、機器が送信する変調信号で伝送されるフレーム構成の一例を示す図である。 図3は、機器が複数台存在する場合の構成の一例を示す図である。 図4は、機器、端末、端末と通信を行う基地局の構成の一例を示す図である。 図5は、表示部の具体的な表示の例を示す図である。 図6は、機器が送信する変調信号のフレーム構成の一例を示す図である。 図7は、基地局が送信する変調信号のフレーム構成の一例を示す図である。 図8は、機器、端末、基地局が実施する処理の一例を示すフローチャートである。 図9は、表示部の具体的な表示の例を示す図である。 図10は、通信システムの構成の一例を示す図である。 図11は、機器が送信する変調信号のフレーム構成の一例を示す図である。 図12は、無線装置が送信する変調信号のフレーム構成の一例を示す図である。 図13は、機器、端末、基地局が実施する処理の一例を示すフローチャートである。 図14は、機器、端末、端末と通信を行う基地局の構成の一例を示す図である。 図15は、機器が送信する変調信号のフレーム構成の一例を示す図である。 図16は、機器が送信する変調信号のフレーム構成の一例を示している。 図17は、機器、端末、基地局が実施する処理の第1の例を示すフローチャートである。 図18は、機器、端末、基地局が実施する処理の第2の例を示すフローチャートである。 図19は、空間の一例を示す図である。 図20は、通信システムの構成の一例を示す図である。 図21は、可視光等に関連する部分、端末、基地局の無線装置が実施する処理の一例を示すフローチャートである。 図22は、通信システムの構成の一例を示す図である。 図23は、機器が送信する変調信号のフレームの構成の例を示す図である。 図24は、機器が送信する変調信号のフレームの構成の例を示す図である。 図25は、機器が送信する変調信号のフレームの構成の例を示す図である。 図26は、機器が複数のフレームを送信する際の送信方法の例を示す図である。 図27は、エリアの一例を示す図である。 図28は、機器、端末、基地局が実施する処理の一例を示すフローチャートである。 図29は、光変調信号の送信に関連する装置の構成の一例を示す図である。 図30は、光変調信号の送信に関連する装置の構成の一例を示す図である。 図31は、送信装置と受信装置の構成例を示す図である。 図32は、送信装置と受信装置の構成例を示す図である。 図33は、光変調信号の送信に関連する装置の構成の一例を示す図である。 図34は、光変調信号に関連する装置の構成の一例を示す図である。 図35は、光変調信号に関連する送信装置の構成の一例を示す図である。 図36Aは、光変調信号に関連する送信装置の構成の一例を示す図である。 図36Bは、車の構成の一例を示す図である。 図36Cは、車の構成の一例を示す図である。 図36Dは、送信装置と受信装置の通信方法の一例を示す図である。 図36Eは、可視光通信方式の一例を示す図である。 図36Fは、光源の発光パターンと撮像画像との一例を示す図である。 図36Gは、光源の発光パターンと撮像画像との一例を示す図である。 図36Hは、変調方式の一例を示す図である。 図36Iは、変調方式の一例を示す図である。 図37は、通信装置で構成したシステムを示している。 図38は、端末、基地局、サーバが実施する処理の一例を示すフローチャートである。 図39Aは、光変調信号を利用した動画提供方法に関連するシステムの第一例を示す図である。 図39Bは、光変調信号を利用した動画提供方法に関連する処理の例を示すフロー図である。 図39Cは、光変調信号を利用した動画提供方法に関連するシステムの第二例を示す図である。 図40は、スタジアムの場面の一例を示す図である。 図41は、カメラ、送信装置、サーバの動作フローの例を示す図である。 図42は、端末、送信装置、通信装置の動作フローの例を示す図である。 図43は、送信装置が送信する光変調信号のフレーム構成の一例を示す図である。 図44は、送信装置が送信する光変調信号のフレーム構成の一例を示す図である。 図45は、送信装置が送信する光変調信号のフレーム構成の一例を示す図である。 図46は、送信装置が送信する光変調信号のフレーム構成の一例を示す図である。 図47は、送信装置が送信する光変調信号のフレーム構成の一例を示す図である。 図48は、送信装置が送信する光変調信号のフレーム構成の一例を示す図である。 図49は、送信装置が送信する光変調信号のフレーム構成の一例を示す図である。 図50は、送信装置が送信する光変調信号のフレーム構成の一例を示す図である。
 本発明の一態様に係る通信システムは、撮像により画像データを生成する複数のカメラと、前記複数のカメラのそれぞれが生成した前記画像データが格納されるサーバと、前記複数のカメラと1対1に対応する複数の送信装置であって、前記複数の送信装置のそれぞれが、当該送信装置に対応するカメラが生成した前記画像データが格納された前記サーバ内の格納場所へアクセスするための通信に関する情報を可視光通信信号として含む光を送信する複数の送信装置とを備える。
 上記態様によれば、通信システムは、画像データの格納場所へアクセスするための通信に関する情報を、より安全に端末に提供できる。端末は、場所情報をより安全に取得できる。
 より具体的には、通信システムは、例えば、屋内に設置したLED(Light Emitting Diode)などの可視光、照明、光源、ライトから、場所に関する情報を含む(光)変調信号を送信する。端末(機器)は、例えば、CMOS(Complementary Metal Oxide Semiconductor)、または、有機薄膜を用いた(OPF: Organic Photoconductive Film)CMOS(有機CMOS)などのイメージセンサーなどで、(光)変調信号を受信し、復調等の処理を行い、少なくとも場所に関する情報を得ることで、端末は、安全に、場所に関する情報を入手することができるという効果を得ることができる。
 例えば、前記情報は、前記画像データが格納された前記格納場所を示すアドレス情報を含む。
 上記態様によれば、通信システムは、アドレス情報を可視光通信により送信することにより、より容易、かつ、より安全に、場所情報を取得できる。
 例えば、前記情報は、前記画像データが格納された前記格納場所に端末がアクセスするための通信の暗号化に用いられる暗号鍵を含む。
 上記態様によれば、通信システムは、暗号鍵を可視光通信により送信することにより、より容易、かつ、より安全に、場所情報を取得できる。
 例えば、前記情報は、前記画像データが格納された前記格納場所に端末がアクセスするための無線通信の基地局の識別子を含む。
 上記態様によれば、通信システムは、基地局の識別子を可視光通信により送信することにより、より容易、かつ、より安全に、場所情報を取得できる。
 例えば、前記情報は、前記画像データが撮像された場所の位置を示す位置情報を含む。
 上記態様によれば、通信システムは、撮像場所の位置情報を可視光通信により送信することにより、より容易、かつ、より安全に、場所情報を取得できる。
 本発明の一態様に係る端末は、画像データの格納場所を示す情報を可視光通信信号として含む光を受信する受信装置と、前記受信装置が受信した前記情報により示される前記格納場所から、前記画像データを受信する送受信装置とを備える。
 上記態様によれば、端末は、場所情報をより安全に取得できる。
 本発明の一態様に係る通信システムの制御方法は、通信システムの制御方法であって、前記通信システムは、複数のカメラと、サーバと、前記複数のカメラと1対1に対応する複数の送信装置とを備え、前記複数のカメラによる撮像により画像データを生成し、前記複数のカメラのそれぞれが生成した前記画像データを前記サーバに格納し、前記複数の送信装置のそれぞれによって、当該送信装置に対応するカメラが生成した前記画像データが格納された前記サーバ内の格納場所へアクセスするための通信に関する情報を可視光通信信号として含む光を送信する。
 これにより、上記通信システムと同様の効果を奏する。
 本発明の一態様に係る端末の制御方法は、端末の制御方法であって、画像データの格納場所を示す情報を可視光通信信号として含む光を受信し、受信した前記情報により示される前記格納場所から、前記画像データを受信する。
 これにより、上記端末と同様の効果を奏する。
 なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROM(Compact Disc Read only Memory)などの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムまたは記録媒体の任意な組み合わせで実現されてもよい。
 以下、実施の形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (実施の形態1)
 図1は、本実施の形態における、例えば、LED(Light Emitting Diode)などの可視光の光源、照明、光源、ライトを具備する機器100と端末150の構成の一例を示している。機器100は、LED(Light Emitting Diode)などの可視光、照明、光源、ライトを具備する。なお、この機器を「第1の機器」と名づける。
 送信部102は、例えば、場所に関する情報、または、位置に関する情報101を入力とする。また、送信部102は、時刻に関する情報105を入力としてもよい。また、送信部102は、場所に関する情報、または、位置に関する情報101と時刻に関する情報105の両方を入力としてもよい。
 送信部102は、場所に関する情報、または、位置に関する情報101、および/または、時刻に関する情報105を入力とし、これらの入力信号に基づいて、(光)変調信号を生成し、変調信号103を出力する。そして、変調信号103は、例えば、光源104から送信される。
 ここで、場所に関する情報、または、位置に関する情報101の例について説明する。
 (例1)場所に関する情報、または、位置に関する情報101は、場所・位置の緯度、および/または、経度の情報であってもよい。例えば、「北緯45度、東経135度」という情報を、場所に関する情報、または、位置に関する情報101としてもよい。
 (例2)場所に関する情報、または、位置に関する情報101は、住所の情報であってもよい。例えば、「東京と千代田区○○町1-1-1」という情報を、場所に関する情報、または、位置に関する情報101としてもよい。
 (例3)場所に関する情報、または、位置に関する情報101は、建物、施設などの情報であってもよい。例えば、「東京タワー」という情報を、場所に関する情報、または、位置に関する情報101としてもよい。
 (例4)場所に関する情報、または、位置に関する情報101は、建物、施設などに設置したものの固有の場所・位置に関する情報であってもよい。
 例えば、駐車場があったとき、自動車を停めることができるスペースが5台分あるものとする。そのとき、第1の駐車スペースをA-1、第2の駐車スペースをA-2、第3の駐車スペースをA-3、第4の駐車スペースをA-4、第5の駐車スペースをA-5と名づける。そして、例えば、「A-3」という情報を、場所に関する情報、または、位置に関する情報101としてもよい。
 このような例は、駐車場でのケースに限ったものではない。
 例えば、コンサート施設、野球・サッカー・テニスなどのスタジアム、飛行機、空港ラウンジ、鉄道、駅、などにある、「エリア・座席・店舗・施設など」に関する情報を、場所に関する情報、または、位置に関する情報101としてもよい。
 なお、場所に関する情報、または、位置に関する情報101の構成方法については、上述の例に限ったものではない。
 端末150は、第1の機器100が送信した変調信号を受信する。
 受光部151は、例えばCMOS、または、有機CMOSなどのイメージセンサーである。受光部151は、第1の機器から出力された変調信号を含む光を受光し、受信信号152を出力する。そして、受信部153は、受信信号152を入力とし、受信信号に含まれる変調信号に対して復調、誤り訂正復号などの処理を行い、受信データ154を出力する。
 なお、受光部151から出力される受信信号152は、イメージセンサーで取得された画像、動画の情報を含んだ信号であってもよいし、その他の光-電気変換を行う(光から電気信号に変換する)素子の出力信号であってもよい。以降の説明では、受光部151で行われる処理について特に説明することなく受信側の装置が変調信号を受信すると記載した場合、受信側の装置が受光部151で、変調信号を含んだ光から、光-電気変換を行う(光から電気信号に変換する)ことで、「画像・動画の信号」と「情報を伝送するための変調信号」を取得することを意味する。ただし、上述した方法は受信側の装置が変調信号の受信する方法の一例であり、変調信号の受信方法はこれらに限定されない。
 データ解析部155は、受信データ154を入力とし、受信データ154から、例えば、端末150の場所・位置を推定し、少なくとも端末150の場所・位置情報を含む情報156を出力する。
 表示部157は、情報156を入力とし、情報156に含まれる端末150の場所・位置情報から、表示部157に端末150の場所・位置に関する表示を行う。
 図2は、第1の機器100が送信する変調信号で伝送されるフレーム構成の一例を示している。図2において、横軸は時間である。第1の機器は、例えば、プリアンブル201を送信し、その後、制御情報シンボル202、場所情報、または、位置情報に関するシンボル203、時刻情報に関するシンボル204を送信するものとする。
 このとき、プリアンブル201は、第1の機器100が送信する変調信号を受信する端末150が、例えば、信号検出、時間同期、フレーム同期などを行うためのシンボルであるものとする。
 制御情報シンボル202は、例えば、変調信号の構成方法、使用している誤り訂正符号化方式の方法、フレーム構成方法などのデータを含んでいるシンボルであるものとする。
 場所情報、または、位置情報に関するシンボル203は、図1で示した場所に関する情報、または、位置に関する情報を含んだシンボルである。
 そして、フレームには、シンボル201、202、203以外のシンボルを含んでいてもよい。例えば、図2に示すように、時刻情報に関するシンボル204を含んでいてもよい。時刻情報に関するシンボル204は、例えば、第1の機器が変調信号を送信する時刻の情報が含まれているものとする。なお、第1の機器が送信する変調信号のフレームの構成は、図2に限ったものではなく、また、変調信号に含まれるシンボルは図2の構成に限ったものではない(他のデータ・情報を含むシンボルが含まれていてもよい。)。
 図1、図2で説明したように、第1の機器が変調信号を送信し、端末がその変調信号を受信した際の効果について説明する。
 第1の機器は、可視光により変調信号を送信しているため、この変調信号を受信することができる端末は、第1の機器が存在している場所から大きく離れた場所ではない。したがって、第1の機器が送信した場所・位置情報を端末が得ることで、端末は、高精度な位置情報を簡単に(複雑な信号処理をしなくてもよい)得ることが可能であるという効果を得ることができる。また、第1の機器をGPSからの衛星電波が受信しづらいところに設置すると、端末は、GPSの衛星からの電波が受信しづらいところでも、第1の機器が送信する変調信号を受信することで、高精度な位置情報を、安全に入手することができるという効果を得ることができる。
 (実施の形態2)
 本実施の形態では、実施の形態1で説明した第1の機器が複数台存在する場合の実施の形態について説明する。
 本実施の形態では、例えば図3のように、図1の第1の機器100と同様の構成を持つ第1-1の機器301-1が、変調信号を送信し、端末302が受信する。端末302は、第1-1の機器301-1が送信した変調信号を受信し、例えば、第1-1の場所・位置に関する情報、および、第1-1の時刻に関する情報を得る。
 同様に、図1の第1の機器100と同じ構成を持つ第1-2の機器301-2が、変調信号を送信し、端末302が受信する。端末302は、第1-2の機器301-2が送信した変調信号を受信し、例えば、第1-2の場所・位置に関する情報、および、第1-2の時刻に関する情報を得る。
 そして、端末302は、第1-1の場所・位置に関する情報、および第1-2の場所・位置に関する情報から、図3における第1-1の機器301-1と第1-2の機器301-2の距離を知ることができる。そして、端末302は、第1-1の時刻に関する情報と、例えば、端末が第1-1の機器301-1が送信した変調信号を受信した時刻をもとに、端末302と第1-1の機器301-1の距離を知ることができる。同様に、端末302は、第1-2の時刻に関する情報と、例えば、端末302が第1-2の機器301-2が送信した変調信号を受信した時刻をもとに、端末302と第1-2の機器301-2の距離を知ることができる。
 そして、端末302は、第1-1の場所・位置に関する情報から、第1-1の機器の位置がわかる。端末302は、第1-2の場所・位置に関する情報から、第1-2の機器の位置がわかる。端末302は、「第1-1の機器301-1と第1-2の機器301-2の距離」、「第1-1の機器301-1と端末の距離」、「第1-2の機器301-2と端末の距離」から、「第1-1の機器301-1と第1-2の機器301-2と端末302が構成する三角形」がわかる。
 したがって、端末302は、「第1-1の機器の位置」、「第1-2の機器の位置」、「第1-1の機器301-1と第1-2の機器301-2と端末302が構成する三角形」から、端末302の位置を高精度に計算し、得ることができる。
 ただし、端末302が、場所・位置情報を得るための測地測量方法は、上述の説明に限ったものではなく、どのような方法で測地測量を行ってもよい。例えば、測地測量方法の例としては、三角測量、多角測量、三辺測量、水準測量などがある。
 以上のように、端末が、場所情報を送信する光源を具備する複数の機器から、上述のような情報を得ることで、端末は、高精度に位置の推定を行うことができるという効果を得ることができる。そして、実施の形態1で説明したように、場所情報を送信する光源を具備する機器をGPSからの衛星電波が受信しづらいところに設置すると、端末は、GPSの衛星からの電波が受信しづらいところでも、機器が送信する変調信号を受信することで、高精度な位置情報を、安全に入手することができるという効果を得ることができるという効果も得ることができる。
 なお、上述の例では、端末が、2台の機器が送信した変調信号を受信する例で説明しているが、端末が、2台より多くの機器が送信した変調信号を受信する場合であっても同様に実施することができる。なお、機器の台数が多いほど、端末は高精度な位置情報を算出することができるという利点がある。
 (実施の形態3)
 図4は、本実施の形態のおける、例えば、LEDなどの可視光の光源、照明、光源、ライトを具備する機器、端末、端末と通信を行う例えば基地局の構成の一例を示している。図4の機器400はLEDなどの可視光、照明、光源、ライトを具備する。なお、この機器を「第1の機器」と名づける。そして、図4の第1の機器400において、図1の第1の機器100と同様に動作するものについては、同一の符号を付している。
 図4の端末450は、端末の構成を示しており、図1(b)と同様に動作するものについては同一の符号を付している。
 図4の第1の機器400において、送信部101は、例えば、場所に関する情報、または、位置に関する情報101、SSID(service set identifier)に関する情報401-1、アクセス先に関する情報401-2を入力とする。また、送信部101は、時刻に関する情報105を入力としてもよい。
 送信部102は、場所に関する情報、または、位置に関する情報101、および、SSIDに関する情報401-1、および、アクセス先に関する情報401-2、および/または、時刻に関する情報105を入力とし、これらの入力信号に基づいて、(光)変調信号を生成し、変調信号103を出力する。そして、変調信号103は、例えば、光源104から送信されることになる。
 なお、場所に関する情報、または、位置に関する情報101の例については、実施の形態1で説明したので、ここでは説明を省略する。
 次に、SSIDに関する情報401-1、および、アクセス先に関する情報401-2について説明を行う。
 まず、SSIDに関する情報401-1について説明を行う。
 SSIDに関する情報401-1は、図4における基地局(または、AP(access point))470のSSIDの情報である。ここで光信号により通知されるSSIDが安全な基地局のSSIDであることが判明している場合、第1の機器400は、端末450に対して安全なアクセス先である基地局470へのアクセスを提供することができる。これにより、図4の端末450が、基地局(または、AP)470より、安全に、情報を入手することができるという効果を得ることができる。一方、第1の機器400は、基地局470に対してアクセスする端末を、第1の機器400が送信(照射)した光信号を受信可能な空間にある端末に制限することができる。
 なお、端末450は、予め定められた方式で送信された光信号を受信した場合に、通知されたSSIDが安全な基地局のSSIDであると判別してもよいし、安全であるか否かを判別する処理を実施してもよい。例えば、第1の機器400が所定の識別子を光信号に含めて送信し、端末は受信した識別子に基づいて通知されたSSIDが安全な基地局のSSIDであるか否かの判断をしてもよい。また、端末450は安全な基地局であるか否かを判断する処理を行わず、可視光の特性を利用して、ユーザが安全性の高い第1の機器400を選択して、端末450で第1の機器400から光信号の受信を行い、安全性の高い基地局のSSIDを取得してもよい。
 なお、図4では、基地局(または、AP)470のみ示しているが、例えば、基地局(または、AP)470以外の基地局(または、AP)が存在する場合も、図4の端末450は、基地局(または、AP)470にアクセスし、情報を入手することになる。
 アクセス先に関する情報401-2は、図4の端末450が、基地局(または、AP)470にアクセスし、その後、情報を入手するためのアクセス先に関する情報である。(なお、具体的な動作例については、後で説明する。)
 図4の端末450は、第1の機器400が送信した変調信号を受信する。なお、図4の端末450において、図1の端末150と同様に動作するものについては、同一の符号を付している。
 端末450が具備する例えば、CMOS、または、有機CMOSなどのイメージセンサーなど受光部151は、第1の機器400が送信した変調信号を受信する。そして、受信部153は、受光部151で受信した受信信号152を入力とし、受信信号の復調・誤り訂正復号などの処理を行う、受信データ154を出力する。
 データ解析部155は、受信データ154を入力とし、受信データ154から、例えば、端末の場所・位置を推定し、少なくとも端末の場所・位置情報を含む情報156、SSIDに関する情報451、アクセス先に関する情報452を出力する。
 表示部157は、端末の場所・位置情報を含む情報156、SSIDに関する情報451、アクセス先に関する情報452を入力とし、例えば、端末の場所・位置、端末450が具備する無線装置453がアクセスする通信相手のSSID、アクセス先を表示する。(この表示を第1の表示と名づける。)
 例えば、第1の表示後、図4の端末450が具備する無線装置453は、SSIDに関する情報451、および、アクセス先に関する情報452を入力とする。そして、図4の端末450が具備する無線装置453は、SSIDに関する情報451に基づき、通信を行う相手先と、例えば、電波を利用することで、接続する。なお、図4の場合、図4の端末450が具備する無線装置453は、基地局470と接続することになる。
 そして、図4の端末450が具備する無線装置453は、アクセス先に関する情報452に基づき、アクセス先に関する情報を含んだ、データから変調信号を生成し、この変調信号を、基地局451に対し、例えば、電波を用いて、送信することになる。
 図4(b)の端末の通信相手である基地局(または、AP)470は、図4の端末450が具備する無線装置453が送信した変調信号を受信する。そして、基地局(または、AP)470は、受信した変調信号の復調、誤り訂正復号などの処理を行い、図4の端末450が送信したアクセス先の情報を含む受信データ471を出力し、このアクセス先の情報に基づいて、基地局(または、AP)470は、ネットワークを介し、所望のアクセス先にアクセスするとともに、例えば、アクセス先から所望の情報472を得る。
 そして、基地局470は、所望の情報472を入力とし、所望の情報472から変調信号を生成し、この変調信号を、図4の端末450に対して、例えば、電波を用いて、送信することになる。
 図4の端末450の無線装置453は、基地局470が送信した変調信号を受信し、復調・誤り訂正復号などの処理を行い、所望の情報472を得る。
 例えば、所望の情報472が、地図、建物の地図・フロアーガイド、施設の地図・フロアーガイド、駐車場の地図・フロアーガイド、コンサート施設・スタジアム・飛行機・空港ラウンジ・鉄道・駅などにある「エリア・座席・店舗・施設」の情報などであるとする。
 表示部157は、所望の情報472、少なくとも端末の場所・位置情報を含む情報156、SSIDに関する情報451を入力とし、第1の表示後、所望の情報472と少なくとも端末の場所・位置情報を含む情報156から、地図・フロアーガイド・施設の情報・座席の情報・店舗の情報の表示上に端末の位置をマッピングした表示を行う。
 このときの具体例を示す。図5は、表示部157の具体的な表示の例である。図5の表示は「3階のフロアー」であることを示している。そして、A-1、A-2、A-3、A-4、A-21、A-22、A-23、A-24は、車の駐車スペースの位置をそれぞれ示しているものとする。そして、あー1、あー2は、エレベーターの位置を示しているものとする。この地図の情報が、所望の情報453であるものとする。そして、図5に示すように、現在位置を、地図上にマッピングして表示している。このとき、現在位置は、少なくとも端末の場所・位置情報を含む情報156から得られる情報である。
 図6は、図4の第1の機器400が送信する変調信号のフレーム構成の一例を示している。図6において、横軸は時間であり、また、図2と同様の情報を伝送するシンボルについては、同一の符号を付しており、説明を省略する。
 第1の機器400は、プリアンブル201、制御情報シンボル202、場所情報、または、位置情報に関するシンボル203、時刻情報に関するシンボル204、に加え、SSIDに関するシンボル600-1、アクセス先に関するシンボル600-2を送信する。
 なお、SSIDに関するシンボル600-1は図4におけるSSIDに関する情報401-1を送信するためのシンボル、アクセス先に関するシンボル600-2は図4のアクセス先に関する情報401-2を送信するためのシンボルである。なお、図6のフレームにおいて、図6に記載しているシンボル以外のシンボルが含まれていてもよい。また、シンボルの送信する順番を含め、フレーム構成は、図6の構成に限ったものではない。
 図7は、図4の基地局470が送信する変調信号のフレーム構成の一例を示しており、横軸は時間とする。図7に示すように、基地局470は、例えば、プリアンブル701を送信し、その後、制御情報シンボル702、情報シンボル703を送信するものとする。
 このとき、プリアンブル701は、基地局470が送信する変調信号を受信する端末が、例えば、信号検出、時間同期、フレーム同期、周波数同期、周波数オフセット推定などを行うためのシンボルであるものとする。
 制御情報シンボル702は、例えば、変調信号を生成するのに使用した誤り訂正符号化方式の方法、変調方式に関する情報、フレーム構成に関する情報などのデータを含んでいるものとする。
 情報シンボル703は、情報を伝送するためのシンボルである。なお、本実施の形態の場合、情報シンボル703は、上述で説明した所望の情報472を伝送するためのシンボルである。
 なお、図4の基地局470は、図7に記載しているシンボル以外のシンボルを含むフレームを送信してもよい(例えば、情報シンボルの途中でパイロットシンボル(リファレンスシンボル)が含まれるフレームなど)。また、シンボルの送信する順番を含め、フレーム構成は、図7の構成に限ったものではない。そして、図7において、周波数軸方向に複数のシンボルが存在してもよい、つまり、複数の周波数(複数のキャリア)にシンボルが存在していてもよい。
 また、例えば、第1の機器が送信する図6のフレーム構成の変調信号は、規則的なタイミングで、例えば、繰り返し、送信する方法が考えられる。これにより、複数の端末が、上述で説明したような動作を実施することができることになる。
 図8は、上述した、図4の「第1の機器400」、「端末450」、「基地局(または、AP)470」が実施する処理の一例を示すフローチャートである。
 まず、図8の801のように、図4の第1の機器400は、図6のフレーム構成の変調信号を送信する。
 そして、図8の802のように、図4の第1の機器400が送信した変調信号を受信し、図4の端末450は、端末の場所・位置推定を行う。
 あわせて、図8の803のように、図4の第1の機器400が送信した変調信号を受信し、図4の端末450は、端末がアクセスする基地局のSSIDを把握する。
 そして、図8の804のように、図4の端末450は、地図などの情報を入手するためのアクセス先に関する情報を含むデータを含む変調信号を、例えば、電波を用いて、図4の基地局(または、AP)470に送信する。
 図8の805のように、基地局(または、AP)470は、端末450が送信した変調信号を受信し、アクセス先の情報を得、そして、ネットワークを介して、所望のアクセス先にアクセスし、地図などの所望の情報を得る。
 そして、図8の806のように、図4の基地局(または、AP)470は、入手した地図などの所望の情報を含む変調信号を、端末450に、例えば、電波を用いて、送信する。
 図8の807のように、端末450は、基地局(または、AP)470が送信した変調信号を受信し、地図(など)の情報を得る。そして、端末450は、地図(など)の情報とすでに得ている端末の場所・位置の情報に基づいて、図5のような表示を行う。
 次に、第1の機器400を複数、基地局(または、AP)470を図5の場所に設置した場合の動作例について説明する。
 図5と同様に、図9にある場所の地図を記載している。
 図9は、図5で説明したように、「3階のフロアー」の地図である。そして、A-1、A-2、A-3、A-4、A-21、A-22、A-23、A-24は、車の駐車スペースであり、あ-1、あ-2はエレベータを示している。
 そして、図9の「○」901-1の位置に、図4機器100と同様の構成を持つ第1の機器を設置する。901-1の位置にある図4の機器100と同様の構成を持つ第1の機器を「第1の1の機器」と名づける。第1の1の機器は、場所に関する情報、または、位置に関する情報として「A-1」という情報をもち、「A-1」という情報を、場所に関する情報、または、位置に関する情報として、送信することになる。
 図9の「○」901-2の位置に、図4の機器100と同様の構成を持つ第1の機器を設置する。901-2の位置にある図4の機器100と同様の構成を持つ第1の機器を「第1の2の機器」と名づける。第1の2の機器は、場所に関する情報、または、位置に関する情報として「A-2」という情報をもち、「A-2」という情報を、場所に関する情報、または、位置に関する情報として、送信することになる。
 図9の「○」901-3の位置に、図4の機器100と同様の構成を持つ第1の機器を設置する。901-3の位置にある図4の機器100と同様の構成を持つ第1の機器を「第1の3の機器」と名づける。第1の3の機器は、場所に関する情報、または、位置に関する情報として「A-3」という情報をもち、「A-3」という情報を、場所に関する情報、または、位置に関する情報として、送信することになる。
 図9の「○」901-4の位置に、図4の機器100と同様の構成を持つ第1の機器を設置する。901-4の位置にある図4の機器100と同様の構成を持つ第1の機器を「第1の4の機器」と名づける。第1の4の機器は、場所に関する情報、または、位置に関する情報として「A-4」という情報をもち、「A-4」という情報を、場所に関する情報、または、位置に関する情報として、送信することになる。
 図9の「○」901-21の位置に、図4の機器100と同様の構成を持つ第1の機器を設置する。901-21の位置にある図4の機器100と同様の構成を持つ第1の機器を「第1の21の機器」と名づける。第1の21の機器は、場所に関する情報、または、位置に関する情報として「A-21」という情報をもち、「A-21」という情報を、場所に関する情報、または、位置に関する情報として、送信することになる。
 図9の「○」901-22の位置に、図4の機器100と同様の構成を持つ第1の機器を設置する。901-22の位置にある図4の機器100と同様の構成を持つ第1の機器を「第1の22の機器」と名づける。第1の22の機器は、場所に関する情報、または、位置に関する情報として「A-22」という情報をもち、「A-22」という情報を、場所に関する情報、または、位置に関する情報として、送信することになる。
 図9の「○」901-23の位置に、図4の機器100と同様の構成を持つ第1の機器を設置する。901-23の位置にある図4の機器100と同様の構成を持つ第1の機器を「第1の23の機器」と名づける。第1の23の機器は、場所に関する情報、または、位置に関する情報として「A-23」という情報をもち、「A-23」という情報を、場所に関する情報、または、位置に関する情報として、送信することになる。
 図9の「○」901-24の位置に、図4の第1の機器400と同様の構成を持つ第1の機器を設置する。901-24の位置にある図4の第1の機器400と同様の構成を持つ第1の機器を「第1の24の機器」と名づける。第1の24の機器は、場所に関する情報、または、位置に関する情報として「A-24」という情報をもち、「A-24」という情報を、場所に関する情報、または、位置に関する情報として、送信することになる。
 そして、図9の「◎」902の位置に、図4の基地局470と同様の構成を持つ基地局(または、AP)を設置するものとする。このとき、902の位置にある図4の基地局470と同様の構成を持つ基地局(または、AP)のSSIDは、「abcdef」とする。
 図9の地図で示されている位置周辺に存在する端末は、無線通信を行う場合、図9の902の位置に設置した図4の470と同様の構成を持つ基地局(または、AP)にアクセスするとよい。したがって、図9の901-1に設置されている「第1の1の機器」は、SSIDに関する情報(図4の401-1参照)として「abcdef」を送信することになる。
 同様に、図9の901-2に設置されている「第1の2の機器」は、SSIDに関する情報(図4の400-1参照)として「abcdef」を送信することになる。
 図9の901-3に設置されている「第1の3の機器」は、SSIDに関する情報(図4の401-1参照)として「abcdef」を送信することになる。
 図9の901-4に設置されている「第1の4の機器」は、SSIDに関する情報(図4の401-1参照)として「abcdef」を送信することになる。
 図9の901-21に設置されている「第1の21の機器」は、SSIDに関する情報(図4の401-1参照)として「abcdef」を送信することになる。
 図9の901-22に設置されている「第1の22の機器」は、SSIDに関する情報(図4の401-1参照)として「abcdef」を送信することになる。
 図9の901-23に設置されている「第1の23の機器」は、SSIDに関する情報(図4の401-1参照)として「abcdef」を送信することになる。
 図9の901-24に設置されている「第1の24の機器」は、SSIDに関する情報(図4の401-1参照)として「abcdef」を送信することになる。
 以下で、具体的な動作例を説明する。
 図9の903-1の位置に図4の端末450と同様の構成を持つ端末があるものとする。すると、端末は、図9の901-4の位置にある「第1の4の機器」が送信した変調信号を受信し、「A-4」という位置情報を得ることになる。また、端末は、「abcdef」というSSIDの情報を得ることになり、これにより、端末は、図9の902に位置する図4の基地局470と同様の構成を持つ基地局(または、AP)にアクセスすることになり、端末は、図9の902に位置する図4の基地局470と同様の構成を持つ基地局(または、AP)から、地図などの情報を得ることになる。そして、端末は、地図情報と位置情報を表示することになる(図5参照。ただし、図5はあくまでも表示の例である。)
 図9の903-2の位置に図4の端末450と同様の構成を持つ端末があるものとする。すると。端末は、図9の901-22の位置にある「第1の22の機器」が送信した変調信号を受信し、「A-22」という位置情報を得ることになる。また、端末は「abcdef」というSSIDの情報を得ることになり、これにより、端末は、図9の902に位置する図4の基地局470と同様の構成を持つ基地局(または、AP)にアクセスすることになる、端末は、図9の902に位置する図4の基地局470と同様の構成を持つ基地局(または、AP)から、地図などの情報を得ることになる。そして、端末は、地図情報と位置情報を表示することになる(図5参照。ただし、図5はあくまでも表示の例である。)
 なお、端末は、図5のような、地図(周辺情報)と位置情報を、端末が具備する記憶部に記憶しておき、端末を使用するユーザーが必要なときに、この記憶している情報を取り出せるようにすると、ユーザーはより便利に地図(周辺情報)と位置情報を活用することができる。
 以上のように、第1の機器は、可視光により変調信号を送信しているため、この変調信号を受信することができる端末は、第1の機器の位置から信号光を受光できる範囲内に限定される。したがって、第1の機器が送信した場所・位置情報を端末が受信することで、端末は、高精度な位置情報を簡単に(複雑な信号処理をしなくてもよい)取得できるという効果を得ることができる。また、第1の機器をGPSからの衛星電波が受信しづらいところに設置すると、端末は、GPSの衛星からの電波が受信しづらいところでも、第1の機器が送信する変調信号を受信することで、高精度な位置情報を、安全に入手することができるという効果を得ることができる。
 さらに、第1の機器から送信されたSSIDの情報に基づいて、端末が、基地局(または、AP)と接続して、情報を得ることで、情報を安全に入手することができるという効果を得ることができる。なぜなら、可視光の変調信号から情報を得た場合、可視光であるが故にユーザーは変調信号を送信した第1の機器を容易に認識することができ、情報元が安全かどうかの判断を行いやすいからである。
 例えば、SSIDを無線LANが送信した電波の変調信号から取得した場合、ユーザーは電波を送信した機器の判別が難しい。このため、情報の安全性の確保という点では、可視光通信でSSIDを取得するほうが適している。
 なお、図4の端末450の無線装置453にさらに複数の入力信号が存在していてもよい。例えば、無線装置453を制御するための制御信号、基地局に送信する情報が、入力信号として存在していてもよい。このとき、制御信号に基づき、無線装置453が通信を開始するという動作が一例として考えられる。以上のように、第1の機器の構成は図4の第1の機器400の構成に限ったものではなく、また、端末の構成は、図4の端末450の構成に限ったものではなく、基地局470の接続先、構成についても図4に示したものに限定されない。
 また、図4において、基地局(または、AP)が1つ配置されている場合について記載しているが、端末がアクセス可能な(安全な)基地局(または、AP)が複数存在していてもよい。このとき、図4の第1の機器400が送信するSSIDに関するシンボルには、これらの複数存在する基地局(または、AP)のそれぞれのSSIDを示す情報が含まれていてもよい。そして、図4の端末450は、複数存在する基地局のSSIDの情報に基づいて、無線接続する基地局(または、AP)を選択してもよい(または、複数の基地局(または、AP)と接続してもよい。)
 例えば、基地局(または、AP)が3つあるとする。それぞれを、基地局#A、基地局#B、基地局#Cと名づける。そして、基地局#AのSSIDを「abcdef」とし、基地局#BのSSIDを「ghijk」とし、基地局#CのSSIDを「pqrstu」とする。すると、第1の機器が送信する変調信号の図6のフレーム構成におけるSSIDに関するシンボル600-1は、「基地局#AのSSIDを「abcdef」」、「基地局#BのSSIDを「ghijk」」、「基地局#CのSSIDを「pqrstu」」に関する情報を含んでいるものとする。そして、図4の端末450は、SSIDに関するシンボル600-1を受信し、「基地局#AのSSIDを「abcdef」」、「基地局#BのSSIDを「ghijk」」、「基地局#CのSSIDを「pqrstu」」の情報に基づいて、無線接続する基地局(または、AP)を選択する。
 (補足)
 当然であるが、本明細書において説明した実施の形態、その他の内容を複数組み合わせて、実施してもよい。
 また、各実施の形態については、あくまでも例であり、例えば、「変調方式、誤り訂正符号化方式(使用する誤り訂正符号、符号長、符号化率等)、制御情報など」を例示していても、別の「変調方式、誤り訂正符号化方式(使用する誤り訂正符号、符号長、符号化率等)、制御情報など」を適用した場合でも同様の構成で実施することが可能である。
 変調方式については、本明細書で記載している変調方式以外の変調方式を使用しても、本明細書において説明した実施の形態、その他の内容を実施することが可能である。例えば、APSK(Amplitude Phase Shift Keying)(例えば、16APSK, 64APSK, 128APSK, 256APSK, 1024APSK, 4096APSKなど)、PAM(Pulse Amplitude Modulation)(例えば、4PAM, 8PAM, 16PAM, 64PAM, 128PAM, 256PAM, 1024PAM, 4096PAMなど)、PSK(Phase Shift Keying)(例えば、BPSK, QPSK, 8PSK, 16PSK, 64PSK, 128PSK, 256PSK, 1024PSK, 4096PSKなど)、QAM(Quadrature Amplitude Modulation)(例えば、4QAM, 8QAM, 16QAM, 64QAM, 128QAM, 256QAM, 1024QAM, 4096QAMなど)などを適用してもよいし、各変調方式において、均一マッピング、非均一マッピングとしてもよい。また、I-Q平面における2個、4個、8個、16個、64個、128個、256個、1024個等の信号点の配置方法(2個、4個、8個、16個、64個、128個、256個、1024個等の信号点をもつ変調方式)は、本明細書で示した変調方式の信号点配置方法に限ったものではない。
 本明細書で説明した無線装置を具備しているのは、例えば、放送局、基地局、アクセスポイント、端末、携帯電話(mobile phone)等の通信・放送機器、テレビ、ラジオ、端末、パーソナルコンピュータ、携帯電話、アクセスポイント、基地局等の通信機器であることが考えられる。また、本明細書で説明した無線装置は、通信機能を有している機器であって、その機器が、テレビ、ラジオ、パーソナルコンピュータ、携帯電話等のアプリケーションを実行するための装置に何らかのインターフェースを解して接続できるような形態であることも考えられる。
 また、本明細書で説明した受信部を具備しているのは、例えば、放送局、基地局、アクセスポイント、端末、携帯電話(mobile phone)等の通信・放送機器、テレビ、ラジオ、端末、パーソナルコンピュータ、携帯電話、アクセスポイント、基地局等の通信機器であることが考えられる。
 本実施の形態における電波による無線通信では、データシンボル以外のシンボル、例えば、パイロットシンボル(プリアンブル、ユニークワード、ポストアンブル、リファレンスシンボル等)、制御情報用のシンボルなどが、フレームにどのように配置されていてもよい。そして、ここでは、パイロットシンボル、制御情報用のシンボルと名付けているが、どのような名付け方を行ってもよく、機能自身が重要となっている。
 パイロットシンボルは、例えば、送受信機において、PSK変調を用いて変調した既知のシンボル(または、受信機が同期をとることによって、受信機は、送信機が送信したシンボルを知ることができてもよい。)であればよく、受信機は、このシンボルを用いて、周波数同期、時間同期、(各変調信号の)チャネル推定(CSI(Channel State Information)の推定)、信号の検出等を行うことになる。
 また、制御情報用のシンボルは、(アプリケーション等の)データ以外の通信を実現するための、通信相手に伝送する必要がある情報(例えば、通信に用いている変調方式・誤り訂正符号化方式・誤り訂正符号化方式の符号化率、上位レイヤーでの設定情報等)を伝送するためのシンボルである。
 なお、本発明は各実施の形態に限定されず、種々変更して実施することが可能である。例えば、各実施の形態では、通信装置として行う場合について説明しているが、これに限られるものではなく、この通信方法をソフトウェアとして行うことも可能である。
 なお、例えば、上記通信方法を実行するプログラムを予めROM(Read Only Memory)に格納しておき、そのプログラムをCPU(Central Processor Unit)によって動作させるようにしても良い。
 また、上記通信方法を実行するプログラムをコンピュータで読み取り可能な記憶媒体に格納し、記憶媒体に格納されたプログラムをコンピュータのRAM(Random Access Memory)に記録して、コンピュータをそのプログラムにしたがって動作させるようにしても良い。
 そして、上記の各実施の形態などの各構成は、典型的には集積回路であるLSI(Large Scale Integration)として実現されてもよい。これらは、個別に1チップ化されてもよいし、各実施の形態の全ての構成または一部の構成を含むように1チップ化されてもよい。 ここでは、LSIとしたが、集積度の違いにより、IC(Integrated Circuit)、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。また、集積回路化の手法はLSIに限られるものではなく、専用回路または汎用プロセッサで実現しても良い。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用しても良い。さらに、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行っても良い。バイオ技術の適応等が可能性としてあり得る。
 (実施の形態4)
 図10は、本実施の形態における通信システムの構成の一例を示す図である。図10の通信システムは、例えば、LEDなどの可視光の光源、照明、光源、ライトを具備する機器1000、端末1050、端末1050と通信を行う例えば基地局470を含む。図10の機器1000は、例えば、LEDなどの可視光、照明、光源、ライトを具備する。なお、この機器1000を本実施の形態における「第2の機器」と名づける。そして、図10の第2の機器1000において、図1の第1の機器100と同様に動作する構成要素については、同一の番号を付している。
 図10の端末1050において、図1の端末150と同様に動作する構成要素については同一の番号を付している。
 なお、図10の無線装置453と基地局470の通信は、例えば、電波を用いるものとする。
 図10の第2の機器1000において、送信部101は、SSIDに関する情報1001-1、暗号鍵に関する情報1001-2、データ1002を入力とし、これらの入力信号に基づいて、(光)変調信号を生成し、変調信号103を出力する。そして、変調信号103は、例えば、光源104から送信される。
 次に、SSIDに関する情報1001-1、および、暗号鍵に関する情報1001-2について説明を行う。
 まず、SSIDに関する情報1001-1について説明を行う。
 SSIDに関する情報1001-1は、図10における基地局(または、AP)470のSSIDを示す情報である。なお、例として、基地局(または、AP)470は、変調信号を電波で送信し、電波の変調信号を受信するものとする。つまり、第2の機器1000は、端末に対して安全なアクセス先である基地局470へのアクセスを提供することができる。これにより、図10の端末1050が、基地局(または、AP)470から、安全に、情報を入手することができるという効果を得ることができる。一方、機器1000は、基地局470に対してアクセスする端末を、機器1000が送信(照射)した光信号を受信可能な空間にある端末に制限することができる。なお、端末1050は、予め定められた方式で送信された光信号を受信した場合に、通知されたSSIDが安全な基地局のSSIDであると判別してもよいし、安全であるか否かを判別する処理を行ってもよい。例えば、機器1000が所定の識別子を光信号に含めて送信し、端末は受信した識別子に基づいて通知されたSSIDが安全な基地局のSSIDであるか否かの判断をしてもよい。
 なお、図10では、基地局(または、AP)470のみ示しているが、例えば、基地局(または、AP)470以外の基地局(または、AP)が存在していても、図10の端末1050は、基地局(または、AP)470にアクセスし、情報を入手することになる。
 暗号鍵に関する情報1001-2は、図10の端末1050が、図10における基地局(または、AP)470と通信を行うために必要となる暗号鍵に関する情報であり、図10の端末1050は、図10の第2の機器1000から、この情報を得ることで、基地局(または、AP)470との間で、暗号化された通信を行うことが可能となる。
 図10の端末1050は、第2の機器1000が送信した変調信号を受信する。なお、図10の端末1050において、図1の端末150、図4の端末450と同様に動作する構成要素については、同一の番号を付している。
 端末1050が具備する例えば、CMOS、または、有機CMOSなどのイメージセンサーなど受光部151は、第2の機器1000が送信した変調信号を受信する。そして、受信部153は、受光部151で受信した受信信号152を入力とし、受信信号の復調・誤り訂正復号などの処理を行い、受信データ154を出力する。
 データ解析部155は、受信データ154を入力とし、受信データから、例えば、接続先となる基地局(470)のSSIDの情報1051、および、接続先となる基地局(470)と通信を行うための暗号鍵の情報1052を出力する。例えば、無線LAN(Local Area Network)では、暗号化の方式として、WEP(Wired Equivalent Privacy)、WPA(Wi-Fi Protected Access)、WPA2(Wi-Fi Protected Access 2)(PSK(Pre-Shared Key)モード、EAP(Extended Authentication Protocol)モード)がある。なお、暗号化方法はこれに限ったものではない。
 表示部157は、SSIDの情報1051、暗号鍵の情報1052を入力とし、例えば、端末が具備する無線装置453がアクセスする通信相手のSSID、および、暗号鍵を表示する。(この表示を本実施の形態における第1の表示と名づける。)
 例えば、第1の表示後、図10の端末1050が具備する無線装置453は、SSIDの情報1051、および、暗号鍵の情報1052を入力とし、基地局(または、AP)470との接続を確立する(例えば、接続は電波を利用するものとする)。このとき、基地局(または、AP)470も、図10の端末1050が具備する無線装置453と通信を行う場合、変調信号を例えば電波を用いて送信する。
 その後、図10の端末1050が具備する無線装置453は、データ1053、および、制御信号1054を入力とし、制御信号154の制御にしたがい、データ1053に対し、変調を施し、変調信号を電波として送信する。
 そして、例えば、基地局(または、AP)470は、ネットワークに対し、データの送信(471)、およびネットワークからのデータの受信(472)を行う。その後、例えば、基地局(または、AP)470は、図10の端末1050に対し、変調信号を電波として送信するものとする。
 図10の端末1050が具備する無線装置453は、電波として受信した変調信号に対し、復調、誤り訂正復号などの処理を行い、受信データ1056を取得する。表示部157は、受信データ1056に基づいて、表示を行う。
 図11は、図10の第2の機器1000が送信する変調信号のフレーム構成の一例を示している。図11において、横軸は時間であり、図2、図6と同様のシンボルについては、同一の番号を付しており、説明を省略する。
 SSIDに関するシンボル600-1は、図10のSSIDに関する情報1001-1を送信するためのシンボルであり、暗号鍵に関するシンボル1101は、図10の暗号鍵に関する情報1001-2を送信するためのシンボルである。データシンボル1102は、データ1002を送信するためのシンボルである。
 第2の機器は、プリアンブル201、制御情報シンボル202、SSIDに関するシンボル600-1、暗号鍵に関するシンボル1101、データシンボル1102を送信する。なお、図10の第2の機器1000は、図11で記載しているシンボル以外のシンボルを含むフレームを送信してもよい。また、シンボルを送信する順番を含め、フレーム構成は図11の構成に限ったものではない。
 図12は、図10の端末1050が具備する無線装置453が送信する変調信号のフレーム構成の一例を示している。図12において、横軸は時間である。図12に示すように、図10の端末1050が具備する無線装置453は、例えば、プリアンブル1201を送信し、その後、制御情報シンボル1202、情報シンボル1203を送信する。
 このとき、プリアンブル1201は、図10の端末1050の無線装置453が送信する変調信号を受信する基地局(または、AP)470が、例えば、信号検出、時間同期、フレーム同期、周波数同期、周波数オフセット推定などを行うために用いるシンボルである。
 制御情報シンボル1202は、例えば、変調信号を生成するのに使用した誤り訂正符号化方式の方法、変調方式に関する情報、フレーム構成に関する情報、送信方法に関する情報などのデータを含んでおり、基地局(または、AP)470は、この制御情報シンボル1202に含まれる情報に基づいて、変調信号の復調などを実施することになる。
 情報シンボル1203は、図10の端末1050の無線装置453がデータを伝送するためのシンボルである。
 なお、図10の端末1050の無線装置453は、図12に記載しているシンボル以外のシンボルを含むフレームを送信してもよい(例えば、情報シンボルの途中でパイロットシンボル(リファレンスシンボル)が含まれるフレームなど)。また、シンボルを送信する順番を含め、フレーム構成は、図12の構成に限ったものではない。そして、図12において、周波数軸方向に複数のシンボルが存在していてもよい、つまり、複数の周波数(複数のキャリア)にシンボルが存在していてもよい。
 なお、実施の形態3において、図4の端末1050が具備する無線装置453が変調信号を送信する際、図12のフレーム構成を用いてもよい。
 図7は、図10の基地局470が送信する変調信号のフレーム構成の一例を示している。図7において横軸は時間とする。図7に示すように、基地局470は、例えば、プリアンブル701を送信し、その後、制御情報シンボル702、情報シンボル703を送信するものとする。
 このとき、プリアンブル701は、基地局470が送信する変調信号を受信する図10の端末1050の無線装置453が、例えば、信号検出、時間同期、フレーム同期、周波数同期、周波数オフセット推定などを行うためのシンボルであるものとする。
 制御情報シンボル702は、例えば、変調信号を生成するのに使用した誤り訂正符号化方式の方法、変調方式に関する情報、フレーム構成に関する情報、送信方法に関する情報などのデータを含んでいるものとし、図10の端末1050の無線装置453は、このシンボルの情報に基づいて、変調信号の復調などを実施することになる。
 情報シンボル703は、図10の基地局(または、AP)470がデータを伝送するためのシンボルである。
 なお、図10の基地局(または、AP)470は、図7に記載しているシンボル以外のシンボルを含むフレームを送信してもよい(例えば、情報シンボルの途中でパイロットシンボル(リファレンスシンボル)が含まれるフレームなど)。また、シンボルを送信する順番を含め、フレーム構成は、図7の構成に限ったものではない。そして、図7において、周波数軸方向に複数のシンボルが存在していてもよい、つまり、複数の周波数(複数のキャリア)にシンボルが存在していてもよい。
 また、例えば、第2の機器1000が送信する図11のフレーム構成の変調信号は、規則的なタイミングで、例えば、繰り返し、送信する方法が考えられる。これにより、複数の端末が、上述で説明したような動作を実施することができることになる。
 図13に上述した、図10の「第2の機器1000」、「端末1050」、「基地局(または、AP)470」が実施する処理の一例を示すフローチャートである。
 まず、図13の1301のように、図10の第2の機器1000は、図11のフレーム構成の変調信号を送信する。
 そして、図13の1302のように、図10の第2の機器1000が送信した変調信号を受信し、図10の端末1050は、端末1050がアクセスする基地局のSSIDを取得する。
 あわせて、図13の1303のように、図10の端末1050は、端末がアクセスする基地局470との通信に用いる暗号鍵を取得する。
 そして、図10の端末1050は、図10の基地局470との電波による接続を実施する(1304)。
 図10の基地局470の応答により、図13の1305のように、図10の端末1050は、図10の基地局470との接続が完了する。
 そして、図13の1306のように、図10の端末1050は、基地局470に対し、接続先の情報を図10の基地局470に、電波を用いて送信する。
 すると、図13の1307のように、図10の基地局470は、ネットワークから、図10の端末1050に送信するための情報を入手する。
 そして、図13の1308のように、図10の基地局470は、入手した情報を図10の端末1050に、電波を用いて、送信し、図10の端末1050は情報を得る。
 図10の端末1050は、例えば、必要なとき、図10の基地局470を介して、ネットワークから必要な情報を取得する。
 以上のように、第2の機器から送信されたSSIDの情報、暗号鍵の情報をもとに、端末は、基地局(または、AP)と接続し、情報を取得することで、安全性の保証された基地局(または、AP)を介して情報を安全に入手することができるという効果を得ることができる。なぜなら、可視光の変調信号から情報を得た場合、可視光であるが故に情報元が安全かどうかの判断をユーザーが行いやすいからである。
 例えば、SSIDを無線LANが送信した電波の変調信号から取得した場合、ユーザーは電波を送信した機器の判別が難しい。このため、情報の安全性の確保という点では、可視光通信でSSIDを取得するほうが適している。
 なお、本実施の形態では、第2の機器が、暗号鍵の情報を送信する場合を説明しているが、例えば、基地局(または、AP)が暗号鍵を用いた暗号化された通信を行っていない場合、第2の機器は、暗号鍵の情報を送信せず、SSIDに関する情報のみを送信し、暗号鍵に関する構成を削除するだけで、同様に実施することができる。
 また、第2の機器の構成は図10に示す構成に限ったものではなく、また、端末の構成は、図10に示す構成に限ったものではなく、基地局の接続先、構成方法についても図10に限ったものではない。
 そして、本実施の形態では、図10において、基地局(または、AP)を1つ配置されている場合について記載しているが、端末がアクセス可能な(安全な)基地局(または、AP)が複数存在していてもよい(なお、これらの基地局と端末は、電波を用いて、変調信号の送受信を行うことになる。)。このとき、図10の第2の機器1000が送信するSSIDに関するシンボルに、これらの複数存在する基地局(または、AP)のそれぞれのSSIDの情報が含まれていてもよい。また、図10の第2の機器1000が送信する暗号鍵に関するシンボルに、これらの複数存在する基地局(または、AP)のそれぞれの基地局と接続するために用いる暗号鍵の情報が含まれていてもよい。そして、図10の端末1050は、複数存在する基地局のSSIDの情報、暗号鍵の情報に基づいて、(例えば、電波による)無線接続する基地局(または、AP)を選択してもよい(または、複数の基地局(または、AP)と接続してもよい。)
 例えば、基地局(または、AP)が3つあるとする。それぞれを、基地局#A、基地局#B、基地局#Cと名づける。そして、基地局#AのSSIDを「abcdef」とし、基地局#BのSSIDを「ghijk」とし、基地局#CのSSIDを「pqrstu」とし、基地局#Aと接続するための暗号鍵を「123」、基地局#Bと接続するための暗号鍵を「456」、基地局#Cと接続するための暗号鍵を「789」とする。
 すると、第2の機器が送信する変調信号の図11のフレーム構成におけるSSIDに関するシンボル600-1は、「基地局#AのSSIDを「abcdef」」、「基地局#BのSSIDを「ghijk」」、「基地局#CのSSIDを「pqrstu」」に関する情報を含んでいるものとする。そして、図11のフレーム構成における暗号鍵に関するシンボル1101は、「基地局#Aと接続するための暗号鍵を「123」」、「基地局#Bと接続するための暗号鍵を「456」」、「基地局#Cと接続するための暗号鍵を「789」」に関する情報を含んでいるものとする。
 そして、図10の端末1050は、SSIDに関するシンボル600-1を受信し、「基地局#AのSSIDを「abcdef」」、「基地局#BのSSIDを「ghijk」」、「基地局#CのSSIDを「pqrstu」」の情報を得、暗号鍵に関するシンボル1101を受信し、「基地局#Aと接続するための暗号鍵を「123」」、「基地局#Bと接続するための暗号鍵を「456」」、「基地局#Cと接続するための暗号鍵を「789」」に関する情報を得る。そして、これらの情報に基づいて、図10の端末1050は、(例えば、電波による)無線接続する基地局(または、AP)を選択し、接続することになる。
 また、本実施の形態のように、LEDを例とする光源を利用して、端末がアクセスする基地局を設定することで、端末が送信する無線のための変調信号に、端末と基地局の無線通信の接続のための手続きを行う特別な設定のためのモードが不要となり、また、基地局が送信する変調信号に、端末と基地局の無線通信の接続のための手続きを行う特別な設定のためのモードが不要となり、無線通信のデータ伝送効率が向上するという効果を得ることができることになる。
 そして、暗号鍵は、前にも説明したように、無線LANのSSIDのための暗号鍵であってもよいし、接続形態、サービス形態、ネットワークの接続範囲などを制限するための暗号鍵であってもよい(つまり、何らかの制限のために暗号鍵を導入すればよい。)。
 (実施の形態5)
 ここでは、SSIDとパスワード分離について説明する。
 図14は、本実施の形態における、例えば、LEDなどの可視光の光源、照明、光源、ライトを具備する機器、端末、端末と通信を行う例えば基地局の構成の一例を示しており、図14の通信システムは、例えば、LEDなどの光源、照明、光源、ライトを具備する機器1400A,1400B、端末1050、端末1050と通信を行う例えば基地局470を含む。なお、図14の機器1400Aを本実施の形態における「第3の機器」と名づけ、図14の機器1400Bを本実施の形態における「第4の機器」と名づける。なお、図14の端末1050において、図1、図10と同様に動作するものについては、同一番号を付しており、基地局またはAPについても、図4と同様に動作するものについては、図4と同一番号を付している。
 なお、図14の無線装置453と基地局470の通信は、例えば、電波を用いるものとする。
 図14の第3の機器1400Aにおいて、送信部1404-1は、SSIDに関する情報1401-1、データ1402-1を入力とし、これらの入力信号に基づいて、(光)変調信号を生成し、変調信号1405-1を出力する。そして、変調信号1405-1は、光源1406-1から送信される。
 図14の第4の機器1400Bにおいて、送信部1404-2は、暗号鍵に関する情報1403-2、データ1402-2を入力とし、これらの入力信号に基づいて、(光)変調信号を生成し、変調信号1405-2を出力する。そして、変調信号1405-2は、光源1406-2から送信される。
 次にSSIDに関する情報1401-1、および、暗号鍵に関する情報1403-2について説明を行う。
 まず、SSIDに関する情報1401-1について説明を行う。
 SSIDに関する情報1401-1は、図14における基地局(または、AP)470のSSIDを示す情報である。つまり、第3の機器1400Aは、端末に対して電波による安全なアクセス先である基地局470へのアクセスを提供することができる。これにより、図14の端末1050が、基地局(または、AP)470から、安全に、情報を入手することができるという効果を得ることができる。
 なお、端末450は、予め定められた方式で送信された光信号を受信した場合に、通知されたSSIDが安全な基地局のSSIDであると判別してもよいし、安全であるか否かを判別する処理を行ってもよい。例えば、機器1400Aが所定の識別子を光信号に含めて送信し、端末は受信した識別子に基づいて通知されたSSIDが安全な基地局のSSIDであるか否かの判断をしてもよい。
 なお、図14では、基地局(または、AP)470のみ示しているが、例えば、基地局(または、AP)470以外の基地局(または、AP)が存在していても、図14の端末1050は、基地局(または、AP)470にアクセスし、情報を入手することになる。
 暗号鍵に関する情報1403-2は、図14の端末1050が、図14における基地局(または、AP)470と電波による通信を行うために必要となる暗号鍵に関する情報であり、図14の端末1050は、図14の第4の機器1400Bから、この情報を得ることで、基地局(または、AP)470との間で、暗号化された通信を行うことが可能となる。
 まず、図14の端末1050は、第3の機器1400Aが送信した変調信号を受信する。
 端末1050が具備する例えば、CMOS、または、有機CMOSなどのイメージセンサーなど受光部151は、第3の機器1400Aが送信した変調信号を受信する。そして、 受信部153は、受光部151で受信した受信信号152を入力とし、受信信号の復調・誤り訂正復号などの処理を行い、受信データ154を出力する。
 データ解析部155は、受信データ154を入力とし、受信データから、例えば、接続先となる基地局(470)のSSIDの情報1051を出力する。
 したがって、端末1050が具備する無線装置453は、SSIDの情報1051から、無線装置453が電波により接続する基地局のSSIDの情報を得ることになる。
 次に、図14の端末1050は、第4の機器1400Bが送信した変調信号を受信する。
 端末1050が具備する例えば、CMOS、または、有機CMOSなどのイメージセンサーなど受光部151は、第4の機器1400Bが送信した変調信号を受信する。そして、受信部153は、受光部151で受信した受信信号152を入力とし、受信信号の復調・誤り訂正復号などの処理を行い、受信データ154を出力する。
 データ解析部155は、受信データ154を入力とし、受信データから、例えば、接続先となる基地局(470)と通信を行うための暗号鍵の情報1052を出力する。例えば、無線LAN(Local Area Network)では、暗号化の方式として、WEP(Wired Equivalent Privacy)、WPA(Wi-Fi Protected Access)、WPA2(Wi-Fi Protected Access 2)(PSK(Pre-Shared Key)モード、EAP(Extended Authentication Protocol)モード)がある。なお、暗号化方法はこれに限ったものではない。
 したがって、端末1050が具備する無線装置453は、(例えば、電波による)接続先となる基地局(470)と通信を行うための暗号鍵の情報1052から、無線装置453が接続する基地局の暗号鍵の情報を得ることになる。
 表示部157は、SSIDの情報1051、暗号鍵の情報1052を入力とし、例えば、端末が具備する無線装置453がアクセスする通信相手のSSID、および、暗号鍵を表示する。(この表示を本実施の形態における第1の表示と名づける。)
 例えば、第1の表示後、図14の端末1050が具備する無線装置453は、SSIDの情報1051、および、暗号鍵の情報1052を入力とし、基地局(または、AP)470との電波による接続を確立する(例えば、接続は電波を利用するものとする)。このとき、基地局(または、AP)470も、図14の端末1050が具備する無線装置453と通信を行う場合、変調信号を例えば電波を用いて送信する。
 その後、図14の端末1050が具備する無線装置453は、データ1053、および、制御信号1054を入力とし、制御信号154の制御にしたがい、データ153に対し、変調を施し、変調信号を電波により送信する。
 そして、例えば、基地局(または、AP)470は、ネットワークに対し、データの送信(471)、およびネットワークからのデータの受信(472)を行う。その後、例えば、基地局(または、AP)470は、図14の端末1050に対し、変調信号を電波により送信するものとする。
 図14の端末1050が具備する無線装置453は、受信した変調信号に対し、復調、誤り訂正復号などの処理を行い、受信データ1056を取得する。表示部157は、受信データ1056に基づいて、表示を行う。
 図15は、図14の第3の機器1400Aが送信する変調信号のフレーム構成の一例を示している。図15において、横軸は時間であり、図2、図6、図11と同様のシンボルについては、同一の符号を付しており、説明を省略する。
 SSIDに関するシンボル600-1は、図14のSSIDに関する情報1401-1を送信するためのシンボルである。データシンボル1102は、データ1402-1を送信するためのシンボルである。
 第3の機器は、プリアンブル201、制御情報シンボル202、SSIDに関するシンボル600-1、データシンボル1102を送信する。なお、図14の第3の機器1400Aは、図15で記載しているシンボル以外のシンボルを含むフレームを送信してもよい。また、シンボルを送信する順番を含め、フレーム構成は図15の構成に限ったものではない。
 図16は、図14の第4の機器1400Bが送信する変調信号のフレーム構成の一例を示している。図16において、横軸は時間であり、図2、図11と同様のシンボルについては、同一符号を付しており、説明を省略する。
 暗号鍵に関するシンボル1101は、図14の暗号鍵に関する情報1403-2を送信するためのシンボルである。データシンボル1102は、データ1402-2を送信するためのシンボルである。
 第4の機器は、プリアンブル201、制御情報シンボル202、暗号鍵に関するシンボル1101、データシンボル1102を送信する。なお、図14の第4の機器1400Bは、図16で記載しているシンボル以外のシンボルを含むフレームを送信してもよい。また、シンボルを送信する順番を含め、フレーム構成は図16に限ったものではない。
 図12は、図14の端末1050が具備する無線装置453が送信する変調信号のフレーム構成の一例を示している。図12において、横軸は時間である。図12に示すように、図14の端末1050が具備する無線装置453は、例えば、プリアンブル1201を送信し、その後、制御情報シンボル1202、情報シンボル1203を送信する。
 このとき、プリアンブル1201は、図14の端末1050の無線装置453が送信する変調信号を受信する基地局(または、AP)470が、例えば、信号検出、時間同期、フレーム同期、周波数同期、周波数オフセット推定などを行うために用いるシンボルである。
 制御情報シンボル1202は、例えば、変調信号を生成するのに使用した誤り訂正符号化方式の方法、変調方式に関する情報、フレーム構成に関する情報、送信方法に関する情報などのデータを含んでおり、基地局(または、AP)470は、この制御情報シンボル1202に含まれる情報に基づいて、変調信号の復調などを実施することになる。
 情報シンボル1203は、図14の端末1050の無線装置453がデータを伝送するためのシンボルである。
 なお、図14の端末1050の無線装置453は、図12に記載しているシンボル以外のシンボルを含むフレームを送信してもよい(例えば、情報シンボルの途中でパイロットシンボル(リファレンスシンボル)が含まれるフレームなど)。また、シンボルを送信する順番を含め、フレーム構成は、図12の構成に限ったものではない。そして、図12において、周波数軸方向に複数のシンボルが存在していてもよい、つまり、複数の周波数(複数のキャリア)にシンボルが存在していてもよい。
 図7は、図14の基地局470が送信する変調信号のフレーム構成の一例を示している。図7において横軸は時間とする。図7に示すように、基地局470は、例えば、プリアンブル701を送信し、その後、制御情報シンボル702、情報シンボル703を送信するものとする。
 このとき、プリアンブル701は、基地局470が送信する変調信号を受信する図10の端末1050の無線装置453が、例えば、信号検出、時間同期、フレーム同期、周波数同期、周波数オフセット推定などを行うためのシンボルであるものとする。
 制御情報シンボル702は、例えば、変調信号を生成するのに使用した誤り訂正符号化方式の方法、変調方式に関する情報、フレーム構成に関する情報、送信方法に関する情報などのデータを含んでいるものとし、図14の端末1050の無線装置453は、このシンボルの情報に基づいて、変調信号の復調などを実施することになる。
 情報シンボル703は、図14の基地局(または、AP)470がデータを伝送するためのシンボルである。
 なお、図14の基地局(または、AP)470は、図7に記載しているシンボル以外のシンボルを含むフレームを送信してもよい(例えば、情報シンボルの途中でパイロットシンボル(リファレンスシンボル)が含まれるフレームなど)。また、シンボルを送信する順番を含め、フレーム構成は、図7の構成に限ったものではない。そして、図7において、周波数軸方向に複数のシンボルが存在していてもよい、つまり、複数の周波数(複数のキャリア)にシンボルが存在していてもよい。
 また、例えば、第3の機器1400Aが送信する図15のフレーム構成の変調信号は、規則的なタイミングで、例えば、繰り返し、送信する方法が考えられる。これにより、複数の端末が、上述で説明したような動作を実施することができることになる。
 同様に、第4の機器1400Bが送信する図16のフレーム構成の変調信号は規則的なタイミングで、例えば、繰り返し、送信する方法が考えられる。これにより、複数の端末が、上述で説明したような動作を実施することができることになる。
 図17に上述した、図14の「第3の機器1400A」、「第4の機器1400B」、「端末1050」、「基地局(または、AP)470」が実施する処理の第1の例を示すフローチャートである。なお、図17において、図13と同様に動作するものについては、同一番号を付している。
 まず、図17の1701のように、図14の第3の機器1400Aは、図15のフレーム構成の変調信号を送信する。
 そして、図17の1702のように、図14の第3の機器1400Aが送信した変調信号を受信し、図14の端末1050は、端末1050がアクセスする基地局のSSIDを取得する。
 次に、図17の1703のように、図14の第4の機器1400Bは、図16のフレーム構成の変調信号を送信する。
 そして、図17の1704のように、図14の第4の機器1400Bが送信した変調信号を受信し、図14の端末1050は、端末がアクセスする基地局470との通信に用いる暗号鍵を取得する。
 そして、図14の端末1050は、図14の基地局470との電波による接続を実施する(1304)。
 図14の基地局470の応答により、図17の1305のように、図14の端末1050は、図14の基地局470との電波による接続が完了する。
 そして、図17の1306のように、図14の端末1050は、基地局470に対し、接続先の情報を図14の基地局470に、電波を用いて送信する。
 すると、図17の1307のように、図14の基地局470は、ネットワークから、図14の端末1050に送信するための情報を入手する。
 そして、図17の1308のように、図14の基地局470は、入手した情報を図14の端末1050に、電波を用いて、送信し、図14の端末1050は情報を得る。
 図14の端末1050は、例えば、必要なとき、図14の基地局470を介して、ネットワークから必要な情報を取得する。
 図18に上述した、図14の「第3の機器1400A」、「第4の機器1400B」、「端末1050」、「基地局(または、AP)470」が実施する処理の第2の例を示すフローチャートである。なお、図18において、図13と同様に動作するものについては、同一番号を付している。
 まず、図18の1801のように、図14の第4の機器1400Bは、図16のフレーム構成の変調信号を送信する。
 そして、図18の1802のように、図14の第4の機器1400Bが送信した変調信号を受信し、図14の端末1050は、端末1050がアクセスする基地局との通信に用いる暗号鍵を取得する。
 次に、図18の1803のように、図14の第3の機器1400Aは、図15のフレーム構成の変調信号を送信する。
 そして、図18の1804のように、図14の第3の機器1400Aが送信した変調信号を受信し、図14の端末1050は、端末がアクセスする基地局470のSSIDを取得する。
 そして、図14の端末1050は、図14の基地局470との電波による接続を実施する(1304)。
 図14の基地局470の応答により、図18の1305のように、図14の端末1050は、図14の基地局470との電波による接続が完了する。
 そして、図18の1306のように、図14の端末1050は、基地局470に対し、接続先の情報を図14の基地局470に、電波を用いて送信する。
 すると、図18の1307のように、図14の基地局470は、ネットワークから、図14の端末1050に送信するための情報を入手する。
 そして、図18の1308のように、図14の基地局470は、入手した情報を図14の端末1050に、電波を用いて、送信し、図14の端末1050は情報を得る。
 図14の端末1050は、例えば、必要なとき、図14の基地局470を介して、ネットワークから必要な情報を取得する。
 以上のように、第3の機器、第4の機器から送信されたSSIDの情報、暗号鍵の情報をもとに、端末は、基地局(または、AP)と接続し、情報を取得することで、安全性の保証された基地局(または、AP)を介して情報を安全に入手することができるという効果を得ることができる。なぜなら、可視光の変調信号から情報を得た場合、可視光であるが故に情報元が安全かどうかの判断をユーザーが行いやすいからである。
 例えば、SSIDを無線LANが送信した電波の変調信号から取得した場合、ユーザーは電波を送信した機器の判別が難しい。このため、情報の安全性の確保という点では、可視光通信でSSIDを取得するほうが適している。
 なお、本実施の形態では、第4の機器が、暗号鍵の情報を送信する場合を説明しているが、例えば、基地局(または、AP)が暗号鍵を用いた暗号化された通信を行っていない場合、第4の機器は、暗号鍵の情報を送信せず、SSIDに関する情報のみを送信し、暗号鍵に関する構成を削除するだけで、同様に実施することができる。
 また、本実施の形態のように、SSIDに関する情報を送信する機器と暗号鍵に関する情報を送信する機器を別にすることで、端末は基地局とより安全な通信を実現することができる。
 例えば、図19のような空間を考える。図19に示すように、エリア#1とエリア#2があり、エリア#1とエリア#2の間には出入口と壁があるとする。そして、エリア#1からエリア#2の移動、および、エリア#2からエリア#1の移動は、出入口からのみできるものとする。
 図19のエリア#1に、基地局(または、AP)を設置するとともに、第3の機器、および、第4の機器を設置する。一方、エリア#2には、第3の機器のみ設置するものとする。
 そして、基地局(または、AP)が送信する電波は、エリア#1、エリア#2いずれのエリアでも受信が可能であるとするものとする。このとき、第4の機器が設置されているエリア#1に存在する端末は、基地局と通信が可能となる。また、エリア#1で基地局との接続を行った端末が、エリア#2に移動した場合についても、基地局と通信が可能である。
 そして、エリア#1で基地局との接続を行った端末が、エリア#1、エリア#2以外のエリアに移動し、その後、エリア#1、エリア#2のいずれかの戻ってきた場合、基地局との通信が可能となる。
 一方で、エリア#1に入ることができない端末は、暗号鍵を入手することができない。この場合、端末は、基地局(または、AP)のSSIDのみ知っていることになる。このとき、SSIDのみ知っていることで享受することができるサービスによる基地局との通信を、端末が受けられるとしてもよい。
 したがって、エリア#1に入ることができた端末のみが、基地局と通信を行うことができるようになり、これにより、通信の安全性を確保することができる。また、エリアごとに異なるサービスを提供することができるというシステムを構築することも可能となる。
 なお、端末が基地局と通信を行うための暗号鍵を(例えば、ある時間区間ごとに)変更することで、変更前の暗号鍵では、基地局と通信が行うことができなくなり、このような運用を行うことで、より安全な通信を行うことが可能となる。
 そして、暗号鍵は、前にも説明したように、無線LANのSSIDのための暗号鍵であってもよいし、接続形態、サービス形態、ネットワークの接続範囲などを制限するための暗号鍵であってもよい(つまり、何らかの制限のために暗号鍵を導入すればよい。)。
 第3の機器の構成、第4の機器の構成は図14に示す構成に限ったものではなく、また、端末の構成は、図14に示す構成に限ったものではなく、基地局の接続先、構成方法についても図14に限ったものではない。
 そして、本実施の形態では、図14において、基地局(または、AP)を1つ配置されている場合について記載しているが、端末がアクセス可能な(安全な)基地局(または、AP)が複数存在していてもよい。このとき、図14の第3の機器1400Aが送信するSSIDに関するシンボルに、これらの複数存在する基地局(または、AP)のそれぞれのSSIDの情報が含まれていてもよい。また、図14の第4の機器1400Bが送信する暗号鍵に関するシンボルに、これらの複数存在する基地局(または、AP)のそれぞれの基地局と接続するために用いる暗号鍵の情報が含まれていてもよい。そして、図14の端末1050は、複数存在する基地局のSSIDの情報、暗号鍵の情報に基づいて、無線接続する基地局(または、AP)を選択してもよい(または、複数の基地局(または、AP)と接続してもよい。)
 例えば、基地局(または、AP)が3つあるとする。それぞれを、基地局#A、基地局#B、基地局#Cと名づける。そして、基地局#AのSSIDを「abcdef」とし、基地局#BのSSIDを「ghijk」とし、基地局#CのSSIDを「pqrstu」とし、基地局#Aと接続するための暗号鍵を「123」、基地局#Bと接続するための暗号鍵を「456」、基地局#Cと接続するための暗号鍵を「789」とする。
 すると、第3の機器が送信する変調信号の図15のフレーム構成におけるSSIDに関するシンボル600-1は、「基地局#AのSSIDを「abcdef」」、「基地局#BのSSIDを「ghijk」」、「基地局#CのSSIDを「pqrstu」」に関する情報を含んでいるものとする。そして、第4の機器が送信する変調信号の図16のフレーム構成における暗号鍵に関するシンボル1101は、「基地局#Aと接続するための暗号鍵を「123」」、「基地局#Bと接続するための暗号鍵を「456」」、「基地局#Cと接続するための暗号鍵を「789」」に関する情報を含んでいるものとする。
 そして、図14の端末1050は、SSIDに関するシンボル600-1を受信し、「基地局#AのSSIDを「abcdef」」、「基地局#BのSSIDを「ghijk」」、「基地局#CのSSIDを「pqrstu」」の情報を得、暗号鍵に関するシンボル1101を受信し、「基地局#Aと接続するための暗号鍵を「123」」、「基地局#Bと接続するための暗号鍵を「456」」、「基地局#Cと接続するための暗号鍵を「789」」に関する情報を得る。そして、これらの情報に基づいて、図14の端末1050は、無線接続する基地局(または、AP)を選択し、接続することになる。
 また、本実施の形態のように、LEDを例とする光源を利用して、端末がアクセスする基地局を設定することで、端末が送信する無線のための変調信号に、端末と基地局の無線通信の接続のための手続きを行う特別な設定のためのモードが不要となり、また、基地局が送信する変調信号に、端末と基地局の無線通信の接続のための手続きを行う特別な設定のためのモードが不要となり、無線通信のデータ伝送効率が向上するという効果を得ることができることになる。
 (実施の形態6)
 ここでは、基地局とLEDが基地局に搭載される例を説明する。
 図20は、本実施の形態における通信システムの構成の一例を示す図である。図20の通信システムは、例えば、LEDなどの可視光の光源、照明、光源、ライトを具備し、さらに、無線装置2001を具備する基地局2000と端末1050を含む。なお、図20において、図1、図10と同様に動作するものについては、同一番号を付している。
 なお、図20の無線装置2001と無線装置453の通信は、例えば、電波を用いるものとする。
 図20の基地局(または、AP)2000は、例えば、LEDなどの可視光、照明、光源、ライトを具備する。まず、LEDなどの可視光、照明、光源、ライトに関連する部分の動作について説明する。
 送信部101は、SSIDに関する情報1001-1、暗号鍵に関する情報1001-2、データ1002を入力とし、これらの入力信号に基づいて、(光)変調信号を生成し、変調信号103を出力する。そして、変調信号103は、例えば、光源104から送信される。
 次に、SSIDに関する情報1001-1、および、暗号鍵に関する情報1001-2について説明を行う。
 まず、SSIDに関する情報1001-1について説明を行う。
 SSIDに関する情報1001-1は、図20における基地局(または、AP)2000の例えば、電波を用いる無線装置2001のSSIDを示す情報である。つまり、「LEDなどの可視光、照明、光源、ライトに関連する部分」は、端末に対して安全な無線によるアクセス先である無線装置2001へのアクセスを提供することができる。これにより、図20の端末1050が、無線装置2001から、安全に、情報を入手することができるという効果を得ることができる。
 一方、基地局200におけるLEDなどの可視光、照明、光源、ライトに関連する部分は、無線装置2001に対してアクセスする端末を、基地局200におけるLEDなどの可視光、照明、光源、ライトに関連する部分が送信(照射)した光信号を受信可能な空間にある端末に制限することができる。なお、端末1050は、予め定められた方式で送信された光信号を受信した場合に、通知されたSSIDが安全な基地局のSSIDであると判別してもよいし、安全であるか否かを判別する処理を行ってもよい。例えば、基地局200におけるLEDなどの可視光、照明、光源、ライトに関連する部分が所定の識別子を光信号に含めて送信し、端末は受信した識別子に基づいて通知されたSSIDが安全な基地局のSSIDであるか否かの判断をしてもよい。
 なお、図20では、基地局(または、AP)2000のみ示しているが、例えば、基地局(または、AP)2000以外の基地局(または、AP)が存在していても、図20の端末1050は、基地局(または、AP)2000にアクセスし、情報を入手することになる。
 暗号鍵に関する情報1001-2は、図20の端末1050が、図20における無線装置2001と通信を行うために必要となる暗号鍵に関する情報であり、図20の端末1050は、LEDなどの可視光、照明、光源、ライトに関連する部分から、この情報を得ることで、無線装置2001との間で、暗号化された通信を行うことが可能となる。図20の端末1050は、基地局200におけるLEDなどの可視光、照明、光源、ライトに関連する部分が送信した変調信号を受信する。
 なお、図20の端末1050において、図1の端末150、図10の端末1050と同様に動作する構成要素については、同一の番号を付している。
 端末1050が具備する例えば、CMOS、または、有機CMOSなどのイメージセンサーなど受光部151は、基地局200におけるLEDなどの可視光、照明、光源、ライトに関連する部分が送信した変調信号を受信する。そして、受信部153は、受光部151で受信した受信信号152を入力とし、受信信号の復調・誤り訂正復号などの処理を行い、受信データ154を出力する。
 データ解析部155は、受信データ154を入力とし、受信データから、例えば、接続先となる基地局の無線装置2001のSSIDの情報1051、および、接続先となる基地局の無線装置2001と通信を行うための暗号鍵の情報1052を出力する。例えば、無線LAN(Local Area Network)では、暗号化の方式として、WEP(Wired Equivalent Privacy)、WPA(Wi-Fi Protected Access)、WPA2(Wi-Fi Protected Access 2)(PSK(Pre-Shared Key)モード、EAP(Extended Authentication Protocol)モード)がある。なお、暗号化方法はこれに限ったものではない。
 表示部157は、SSIDの情報1051、暗号鍵の情報1052を入力とし、例えば、端末が具備する無線装置453がアクセスする通信相手のSSID、および、暗号鍵を表示する。(この表示を本実施の形態における第1の表示と名づける。)
 例えば、第1の表示後、図20の端末1050が具備する無線装置453は、SSIDの情報1051、および、暗号鍵の情報1052を入力とし、基地局(または、AP)2000の無線装置2001との接続を確立する(例えば、接続は電波を利用するものとする)。このとき、基地局(または、AP)2000の無線装置2001も、図20の端末1050が具備する無線装置453と通信を行う場合、変調信号を例えば電波を用いて送信する。
 その後、図20の端末1050が具備する無線装置453は、データ1053、および、制御信号1054を入力とし、制御信号154の制御にしたがい、データ1053に対し、変調を施し、変調信号を電波として送信する。そして、例えば、基地局(または、AP)2000の無線装置2001は、ネットワークに対し、データの送信(471)、およびネットワークからのデータの受信(472)を行う。その後、例えば、基地局(または、AP)2000の無線装置2001は、図20の端末1050に対し、変調信号を電波として送信するものとする。図20の端末1050が具備する無線装置453は、電波として受信した変調信号に対し、復調、誤り訂正復号などの処理を行い、受信データ1056を取得する。表示部157は、受信データ1056に基づいて、表示を行う。
 図11は、図20の基地局(または、AP)2000の無線装置2001が送信する変調信号のフレーム構成の一例を示している。図11において、横軸は時間であり、図2、図6と同様のシンボルについては、同一の番号を付しており、説明を省略する。
 SSIDに関するシンボル600-1は、図20のSSIDに関する情報1001-1を送信するためのシンボルであり、暗号鍵に関するシンボル1101は、図20の暗号鍵に関する情報1001-2を送信するためのシンボルである。データシンボル1102は、データ1002を送信するためのシンボルである。
 基地局(または、AP)2000の無線装置2001は、プリアンブル201、制御情報シンボル202、SSIDに関するシンボル600-1、暗号鍵に関するシンボル1101、データシンボル1102を送信する。なお、図20の基地局(または、AP)2000の無線装置2001は、図11で記載しているシンボル以外のシンボルを含むフレームを送信してもよい。また、シンボルを送信する順番を含め、フレーム構成は図11の構成に限ったものではない。
 図12は、図20の端末1050が具備する無線装置453が送信する変調信号のフレーム構成の一例を示している。図12において、横軸は時間である。図12に示すように、図20の端末1050が具備する無線装置453は、例えば、プリアンブル1201を送信し、その後、制御情報シンボル1202、情報シンボル1203を送信する。
 このとき、プリアンブル1201は、図20の端末1050の無線装置453が送信する変調信号を受信する基地局(または、AP)2000の無線装置2001が、例えば、信号検出、時間同期、フレーム同期、周波数同期、周波数オフセット推定などを行うために用いるシンボルである。
 制御情報シンボル1202は、例えば、変調信号を生成するのに使用した誤り訂正符号化方式の方法、変調方式に関する情報、フレーム構成に関する情報、送信方法に関する情報などのデータを含んでおり、基地局(または、AP)2000の無線装置2001は、この制御情報シンボル1202に含まれる情報に基づいて、変調信号の復調などを実施することになる。
 情報シンボル1203は、図20の端末1050の無線装置453がデータを伝送するためのシンボルである。
 なお、図20の端末1050の無線装置453は、図12に記載しているシンボル以外のシンボルを含むフレームを送信してもよい(例えば、情報シンボルの途中でパイロットシンボル(リファレンスシンボル)が含まれるフレームなど)。また、シンボルを送信する順番を含め、フレーム構成は、図12の構成に限ったものではない。そして、図12において、周波数軸方向に複数のシンボルが存在していてもよい、つまり、複数の周波数(複数のキャリア)にシンボルが存在していてもよい。
 図7は、図20の無線装置2001が送信する変調信号のフレーム構成の一例を示している。図7において横軸は時間とする。図7に示すように、基地局470は、例えば、プリアンブル701を送信し、その後、制御情報シンボル702、情報シンボル703を送信するものとする。
 このとき、プリアンブル701は、図20の無線装置2001が送信する変調信号を受信する図2の端末1050の無線装置453が、例えば、信号検出、時間同期、フレーム同期、周波数同期、周波数オフセット推定などを行うためのシンボルであるものとする。
 制御情報シンボル702は、例えば、変調信号を生成するのに使用した誤り訂正符号化方式の方法、変調方式に関する情報、フレーム構成に関する情報、送信方法に関する情報などのデータを含んでいるものとし、図20の端末1050の無線装置453は、このシンボルの情報に基づいて、変調信号の復調などを実施することになる。
 情報シンボル703は、図20の無線装置2001がデータを伝送するためのシンボルである。
 なお、図20の基地局2000の無線装置2001は、図7に記載しているシンボル以外のシンボルを含むフレームを送信してもよい(例えば、情報シンボルの途中でパイロットシンボル(リファレンスシンボル)が含まれるフレームなど)。また、シンボルを送信する順番を含め、フレーム構成は、図7の構成に限ったものではない。そして、図7において、周波数軸方向に複数のシンボルが存在していてもよい、つまり、複数の周波数(複数のキャリア)にシンボルが存在していてもよい。
 また、例えば、基地局200におけるLEDなどの可視光、照明、光源、ライトに関連する部分が送信する図11のフレーム構成の変調信号は、規則的なタイミングで、例えば、繰り返し、送信する方法が考えられる。これにより、複数の端末が、上述で説明したような動作を実施することができることになる。
 図21に上述した、図20の「LEDなどの可視光、照明、光源、ライトに関連する部分」、「端末1050」、「基地局(または、AP)の無線装置2001」が実施する処理の一例を示すフローチャートである。
 まず、図13の1301のように、図20のLEDなどの可視光、照明、光源、ライトに関連する部分は、図11のフレーム構成の変調信号を送信する。
 そして、図13の1302のように、図20のLEDなどの可視光、照明、光源、ライトに関連する部分が送信した変調信号を受信し、図20の端末1050は、端末1050がアクセスする基地局のSSIDを取得する。
 あわせて、図13の1303のように、図20の端末1050は、端末がアクセスする基地局470との通信に用いる暗号鍵を取得する。
 そして、図20の端末1050は、図20の基地局2000の無線装置2001との電波による接続を実施する(1304)。
 図20の基地局2000の無線装置2001の応答により、図13の1305のように、図20の端末1050は、図20の基地局2000の無線装置2001との接続が完了する。
 そして、図13の1306のように、図20の端末1050は、図20の基地局2000の無線装置2001に対し、接続先の情報を図20の基地局2000の無線装置2001に、電波を用いて送信する。
 すると、図13の1307のように、図20の基地局2000の無線装置2001は、ネットワークから、図20の端末1050に送信するための情報を入手する。
 そして、図13の1308のように、図20の基地局2000の無線装置2001は、入手した情報を図20の端末1050に、電波を用いて、送信し、図20の端末1050は情報を得る。
 図20の端末1050は、例えば、必要なとき、図20の基地局2000の無線装置2001を介して、ネットワークから必要な情報を取得する。
 以上のように、基地局におけるLEDなどの可視光、照明、光源、ライトに関連する部分から送信されたSSIDの情報、暗号鍵の情報をもとに、端末は、基地局(または、AP)の無線装置と接続し、情報を取得することで、安全性の保証された基地局(または、AP)を介して情報を安全に入手することができるという効果を得ることができる。なぜなら、可視光の変調信号から情報を得た場合、可視光であるが故に情報元が安全かどうかの判断をユーザーが行いやすいからである。
 例えば、SSIDを無線LANが送信した電波の変調信号から取得した場合、ユーザーは電波を送信した機器の判別が難しい。このため、情報の安全性の確保という点では、可視光通信でSSIDを取得するほうが適している。
 なお、本実施の形態では、基地局におけるLEDなどの可視光、照明、光源、ライトに関連する部分が、暗号鍵の情報を送信する場合を説明しているが、例えば、基地局(または、AP)の無線装置が暗号鍵を用いた暗号化された通信を行っていない場合、基地局におけるLEDなどの可視光、照明、光源、ライトに関連する部分は、暗号鍵の情報を送信せず、SSIDに関する情報のみを送信し、暗号鍵に関する構成を削除するだけで、同様に実施することができる。
 そして、図20のように、基地局2000の無線装置2001のSSID、暗号鍵の書き換え可能な構成をとってもよい。例えば、図20では、無線装置2001の入力として、SSIDに関する情報1001-1、暗号鍵に関する情報1001-2がある。基地局2000の無線装置2001は、入力であるSSIDに関する情報1001-1、暗号鍵に関する情報1001-2により、SSIDと暗号鍵が書き換えられることになる。このようにすると、端末と基地局2000の無線装置2001の通信の安全性がさらに確保されることになる。(ただし、図20では、基地局2000の無線装置2001はSSIDと暗号鍵の書き換え機能を有しているが、この機能がない構成であってもよい。)
 また、基地局におけるLEDなどの可視光、照明、光源、ライトに関連する部分の構成は図20に示す構成に限ったものではなく、また、端末の構成は、図20に示す構成に限ったものではなく、基地局の無線装置の接続先、構成方法についても図20に限ったものではない。
 そして、本実施の形態では、図20において、基地局(または、AP)を1つ配置されている場合について記載しているが、端末がアクセス可能な(安全な)基地局(または、AP)の無線装置が複数存在していてもよい(なお、これらの基地局の無線装置と端末は、電波を用いて、変調信号の送受信を行うことになる。)。このとき、図20のLEDなどの可視光、照明、光源、ライトに関連する部分が送信するSSIDに関するシンボルに、これらの複数存在する基地局(または、AP)の無線装置のそれぞれのSSIDの情報が含まれていてもよい。また、図20のLEDなどの可視光、照明、光源、ライトに関連する部分が送信する暗号鍵に関するシンボルに、これらの複数存在する基地局(または、AP)の無線装置のそれぞれの基地局と接続するために用いる暗号鍵の情報が含まれていてもよい。そして、図20の端末1050は、複数存在する基地局の無線装置のSSIDの情報、暗号鍵の情報に基づいて、(例えば、電波による)無線接続する基地局(または、AP)の無線装置を選択してもよい(または、複数の基地局(または、AP)の無線装置と接続してもよい。)
 例えば、無線装置を具備する基地局(または、AP)が3つあるとする。それぞれを、無線装置#A、無線装置#B、無線装置#Cと名づける。そして、無線装置#AのSSIDを「abcdef」とし、無線装置#BのSSIDを「ghijk」とし、無線装置#CのSSIDを「pqrstu」とし、無線装置#Aと接続するための暗号鍵を「123」、無線装置#Bと接続するための無線装置を「456」、無線装置#Cと接続するための暗号鍵を「789」とする。
 すると、基地局200におけるLEDなどの可視光、照明、光源、ライトに関連する部が送信する変調信号の図11のフレーム構成におけるSSIDに関するシンボル600-1は、「無線装置#AのSSIDを「abcdef」」、「無線装置#BのSSIDを「ghijk」」、「無線装置#CのSSIDを「pqrstu」」に関する情報を含んでいるものとする。そして、図11のフレーム構成における暗号鍵に関するシンボル1101は、「無線装置#Aと接続するための暗号鍵を「123」」、「無線装置#Bと接続するための暗号鍵を「456」」、「無線装置#Cと接続するための暗号鍵を「789」」に関する情報を含んでいるものとする。
 そして、図20の端末1050は、SSIDに関するシンボル600-1を受信し、「無線装置#AのSSIDを「abcdef」」、「無線装置#BのSSIDを「ghijk」」、「無線装置#CのSSIDを「pqrstu」」の情報を得、暗号鍵に関するシンボル1101を受信し、「無線装置#Aと接続するための暗号鍵を「123」」、「無線装置#Bと接続するための暗号鍵を「456」」、「無線装置#Cと接続するための暗号鍵を「789」」に関する情報を得る。そして、これらの情報に基づいて、図20の端末1050は、(例えば、電波による)無線接続する基地局(または、AP)を選択し、接続することになる。
 また、本実施の形態のように、LEDを例とする光源を利用して、端末がアクセスする基地局の無線装置を設定することで、端末が送信する無線のための変調信号に、端末と基地局の無線通信の接続のための手続きを行う特別な設定のためのモードが不要となり、また、基地局が送信する変調信号に、端末と基地局の無線通信の接続のための手続きを行う特別な設定のためのモードが不要となり、無線通信のデータ伝送効率が向上するという効果を得ることができることになる。
 そして、暗号鍵は、前にも説明したように、無線LANのSSIDのための暗号鍵であってもよいし、接続形態、サービス形態、ネットワークの接続範囲などを制限するための暗号鍵であってもよい(つまり、何らかの制限のために暗号鍵を導入すればよい。)。
 (実施の形態7)
 ここでは、基地局が複数あり、アクセス制御を行う例について説明する。
 図22は、本実施の形態における通信システムの構成の一例を示す図である。図22の通信システムは、例えば、LEDなどの可視光の光源、照明、光源、ライトを具備する機器1000、端末1050、端末1050と通信を行う例えば470-1の基地局#1、470-2の基地局#2、470-3の基地局#3を含む。なお、図22において、図1、図4、図10と同様に動作するものについては同一番号を付している。
 図22の機器1000は、例えば、LEDなどの可視光、照明、光源、ライトを具備する。なお、この機器1000を本実施の形態における「第5の機器」と名づける。なお、図22の無線装置453と470-1の基地局#1の通信、無線装置453と470-2の基地局#2の通信、無線装置453と470-3の基地局#の通信は、例えば、電波を用いるものとする。
 図22の第5の機器1000において、送信部101は、SSIDに関する情報1001-1、暗号鍵に関する情報1001-2、データ1002を入力とし、これらの入力信号に基づいて、(光)変調信号を生成し、変調信号103を出力する。そして、変調信号103は、例えば、光源104から送信される。
 次に、SSIDに関する情報1001-1、および、暗号鍵に関する情報1001-2について説明を行う。
 まず、SSIDに関する情報1001-1について説明を行う。
 SSIDに関する情報1001-1は、例えば、図22における470-1の基地局(または、AP)のSSIDを示す情報、および、470-2の基地局(または、AP)のSSIDを示す情報、および、470-3の基地局(または、AP)のSSIDを示す情報である。なお、例として、470-1、470-2、470-3の基地局(または、AP)は、変調信号を電波で送信し、電波の変調信号を受信するものとする。つまり、第5の機器1000は、端末に対して安全なアクセス先である基地局470-1、470-2、470-3へのアクセスを提供することができる。これにより、図22の端末1050が、基地局(または、AP)470-1、470-2、470-3から、安全に、情報を入手することができるという効果を得ることができる。
 一方、機器1000は、基地局470-1、470-2、470-3に対してアクセスする端末を、機器1000が送信(照射)した光信号を受信可能な空間にある端末に制限することができる。なお、端末1050は、予め定められた方式で送信された光信号を受信した場合に、通知されたSSIDが安全な基地局のSSIDであると判別してもよいし、安全であるか否かを判別する処理を行ってもよい。例えば、機器1000が所定の識別子を光信号に含めて送信し、端末は受信した識別子に基づいて通知されたSSIDが安全な基地局のSSIDであるか否かの判断をしてもよい。
 なお、図22では、基地局(または、AP)470-1、470-2、470-3を示しているが、例えば、基地局(または、AP)470-1、470-2、470-3以外の基地局(または、AP)が存在していてもよい。
 暗号鍵に関する情報1001-2は、図22の端末1050が、図22における基地局(または、AP)470-1、470-2、470-3と通信を行うために必要となる暗号鍵に関する情報であり、図22の端末1050は、図22の第5の機器1000から、この情報を得ることで、「端末と基地局(または、AP)470-1との間」、「端末と基地局(または、AP)470-2との間」、「端末と基地局(または、AP)470-3との間」で、暗号化された通信を行うことが可能となる。
 図22の端末1050は、第5の機器1000が送信した変調信号を受信する。なお、図22の端末1050において、図1の端末150、図4の端末450と同様に動作する構成要素については、同一の番号を付している。
 端末1050が具備する例えば、CMOS、または、有機CMOSなどのイメージセンサーなど受光部151は、第5の機器1000が送信した変調信号を受信する。そして、受信部153は、受光部151で受信した受信信号152を入力とし、受信信号の復調・誤り訂正復号などの処理を行い、受信データ154を出力する。
 データ解析部155は、受信データ154を入力とし、受信データから、例えば、接続先となる基地局(470-1、470-2、470-3)のSSIDの情報1051、および、接続先となる基地局(470-1、470-2、470-3)と通信を行うための暗号鍵の情報1052を出力する。例えば、無線LAN(Local Area Network)では、暗号化の方式として、WEP(Wired Equivalent Privacy)、WPA(Wi-Fi Protected Access)、WPA2(Wi-Fi Protected Access 2)(PSK(Pre-Shared Key)モード、EAP(Extended Authentication Protocol)モード)がある。なお、暗号化方法はこれに限ったものではない。
 表示部157は、SSIDの情報1051、暗号鍵の情報1052を入力とし、例えば、端末が具備する無線装置453がアクセスする通信相手のSSID、および、暗号鍵を表示する。(この表示を本実施の形態における第1の表示と名づける。)
 例えば、第1の表示後、図10の端末1050が具備する無線装置453は、SSIDの情報1051、および、暗号鍵の情報1052を入力とし、基地局(または、AP)470-1、470-2、470-3のいずれかとの接続を確立する(例えば、接続は電波を利用するものとする)。このとき、接続された基地局も、図22の端末1050が具備する無線装置453と通信を行う場合、変調信号を例えば電波を用いて送信する。
 その後、図22の端末1050が具備する無線装置453は、データ1053、および、制御信号1054を入力とし、制御信号154の制御にしたがい、データ1053に対し、変調を施し、変調信号を電波として送信する。
 そして、例えば、接続された基地局(または、AP)は、ネットワークに対し、データの送信(471-1、471-2、471-3のいずれか)、およびネットワークからのデータの受信(472-1、472-2、472-3のいずれか)を行う。その後、例えば、接続された基地局は、図22の端末1050に対し、変調信号を電波として送信するものとする。
 図22の端末1050が具備する無線装置453は、電波として受信した変調信号に対し、復調、誤り訂正復号などの処理を行い、受信データ1056を取得する。表示部157は、受信データ1056に基づいて、表示を行う。
 図22の端末1050は、第5の機器1000が送信した変調信号を受信する。なお、図22の端末1050において、図1の端末150、図4の端末450と同様に動作する構成要素については、同一の番号を付している。
 端末1050が具備する例えば、CMOS、または、有機CMOSなどのイメージセンサーなど受光部151は、第5の機器1000が送信した変調信号を受信する。そして、受信部153は、受光部151で受信した受信信号152を入力とし、受信信号の復調・誤り訂正復号などの処理を行い、受信データ154を出力する。
 データ解析部155は、受信データ154を入力とし、受信データから、例えば、接続先となる基地局(470-1、470-2、470-3)のSSIDの情報1051、および、接続先となる基地局(470-1、470-2、470-3)と通信を行うための暗号鍵の情報1052を出力する。例えば、無線LAN(Local Area Network)では、暗号化の方式として、WEP(Wired Equivalent Privacy)、WPA(Wi-Fi Protected Access)、WPA2(Wi-Fi Protected Access 2)(PSK(Pre-Shared Key)モード、EAP(Extended Authentication Protocol)モード)がある。なお、暗号化方法はこれに限ったものではない。
 表示部157は、SSIDの情報1051、暗号鍵の情報1052を入力とし、例えば、端末が具備する無線装置453がアクセスする通信相手のSSID、および、暗号鍵を表示する。(この表示を本実施の形態における第1の表示と名づける。)
 例えば、第1の表示後、図10の端末1050が具備する無線装置453は、SSIDの情報1051、および、暗号鍵の情報1052を入力とし、基地局(または、AP)470-1、470-2、470-3のいずれかとの接続を確立する(例えば、接続は電波を利用するものとする)。このとき、接続された基地局も、図22の端末1050が具備する無線装置453と通信を行う場合、変調信号を例えば電波を用いて送信する。
 その後、図22の端末1050が具備する無線装置453は、データ1053、および、制御信号1054を入力とし、制御信号154の制御にしたがい、データ1053に対し、変調を施し、変調信号を電波として送信する。
 そして、例えば、接続された基地局(または、AP)は、ネットワークに対し、データの送信(471-1、471-2、471-3のいずれか)、およびネットワークからのデータの受信(472-1、472-2、472-3のいずれか)を行う。その後、例えば、接続された基地局は、図22の端末1050に対し、変調信号を電波として送信するものとする。
 図22の端末1050が具備する無線装置453は、電波として受信した変調信号に対し、復調、誤り訂正復号などの処理を行い、受信データ1056を取得する。表示部157は、受信データ1056に基づいて、表示を行う。
 図22の第5の機器1000が送信する変調信号として、図22の場合、3種類のフレーム構成が存在するのとする。図23は3種類のフレーム構成のうちの1つである2300-1フレーム#1であり、図24は3種類のフレーム構成のうちの1つである2300-2フレーム構成#2であり、図25は3種類のフレーム構成のうちの1つである2300-3フレーム構成#3である。
 図23は、図22の第5の機器1000が送信する変調信号の2300-1フレーム#1の構成の例を示している。図23において、横軸は時間であり、図2、図11と同様のシンボルについては、同一番号を付しており、説明を省略する。図23の2300-1フレーム#1は、図22の470-1の基地局#1のSSIDの情報と図22の470-1の基地局#1の暗号鍵(470-1の基地局#1へアクセスするための暗号鍵)の情報を送信するためのフレームである。
 図23におけるSSIDに関するシンボル2301-1は、図22におけるSSIDに関する情報1001-1を送信するためのシンボルである。そして、図23におけるSSIDに関するシンボル2301-1は、図22の第5の機器1000が図22の470-1の基地局#1のSSIDを送信するためのシンボルである。
 図23における暗号鍵に関するシンボル2302-1は、図22の暗号鍵に関する情報1001-2を送信するためのシンボルである。そして、図23における暗号鍵に関するシンボル2302-1は、図22の第5の機器1000が図22の470-1の基地局#1の暗号鍵(470-1の基地局#1へアクセスするための暗号鍵)を送信するためのシンボルである。
 第5の機器は、プリアンブル201、制御情報シンボル202、SSIDに関するシンボル2301-1、暗号鍵に関するシンボル2302-1、データシンボル1102を送信する。なお、図22の第5の機器1000は、図23で記載しているシンボル以外のシンボルを含む2300-1フレーム#1を送信してもよい。また、シンボルの送信する順番を含め、2300-1フレーム#1の構成は図23の構成に限ったものではない。
 図24は、図22の第5の機器1000が送信する変調信号の2300-2フレーム#2の構成の例を示している。図24において、横軸は時間であり、図2、図11と同様のシンボルについては、同一番号を付しており、説明は省略する。図24の2300-2フレーム#2は、図22の470-2の基地局#2のSSIDの情報と図22の470-2の基地局#2の暗号鍵(470-2の基地局#2へアクセスするための暗号鍵)の情報を送信するためのフレームである。
 図24におけるSSIDに関するシンボル2301-2は、図22におけるSSIDに関する情報1001-1を送信するためのシンボルである。そして、図24におけるSSIDに関するシンボル2301-2は、図22の第5の機器1000が図22の470-2の基地局#2のSSIDを送信するためのシンボルである。
 図24における暗号鍵に関するシンボル2302-2は、図22の暗号鍵に関する情報1001-2を送信するためのシンボルである。そして、図24における暗号鍵に関するシンボル2302-2は、図22の第5の機器1000が図22の470-2の基地局#2の暗号鍵(470-2の基地局#2へアクセスするための暗号鍵)を送信するためのシンボルである。
 第5の機器は、プリアンブル201、制御情報シンボル202、SSIDに関するシンボル2301-2、暗号鍵に関するシンボル2302-2、データシンボル1102を送信する。なお、図22の第5の機器1000は、図24で記載しているシンボル以外のシンボルを含む2300-2フレーム#2を送信してもよい。また、シンボルの送信する順番を含め、2300-2フレーム#2の構成は図24の構成に限ったものではない。
 図25は、図22の第5の機器1000が送信する変調信号の2300-3フレーム#3の構成の例を示している。図25において、横軸は時間であり、図2、図11と同様のシンボルについては、同一番号を付しており、説明は省略する。図25の2300-3フレーム#3は、図22の470-3の基地局#3のSSIDの情報と図22の470-3の基地局#3の暗号鍵(470-3の基地局#3へアクセスするための暗号鍵)の情報を送信するためのフレームである。
 図25は、図22の第5の機器1000が送信する変調信号の2300-3フレーム#3の構成の例を示している。図25において、横軸は時間であり、図2、図11と同様のシンボルについては、同一番号を付しており、説明は省略する。図25の2300-3フレーム#3は、図22の470-3の基地局#3のSSIDの情報と図22の470-3の基地局#3の暗号鍵(470-3の基地局#3へアクセスするための暗号鍵)の情報を送信するためのフレームである。
 図25におけるSSIDに関するシンボル2301-3は、図22におけるSSIDに関する情報1001-1を送信するためのシンボルである。そして、図25におけるSSIDに関するシンボル2301-3は、図22の第5の機器1000が図22の470-3の基地局#3のSSIDを送信するためのシンボルである。
 図25における暗号鍵に関するシンボル2302-3は、図22の暗号鍵に関する情報1001-2を送信するためのシンボルである。そして、図25における暗号鍵に関するシンボル2302-3は、図22の第5の機器1000が図22の470-3の基地局#3の暗号鍵(470-3の基地局#3へアクセスするための暗号鍵)を送信するためのシンボルである。
 第5の機器は、プリアンブル201、制御情報シンボル202、SSIDに関するシンボル2301-3、暗号鍵に関するシンボル2302-3、データシンボル1102を送信する。なお、図22の第5の機器1000は、図25で記載しているシンボル以外のシンボルを含む2300-3フレーム#3を送信してもよい。また、シンボルの送信する順番を含め、2300-3フレーム#3の構成は図25の構成に限ったものではない。
 図26は、図22の第5の機器が、「図23の2300-1のフレーム#1」、「図24の2300-2のフレーム#2」、「図25の2300-3のフレーム#3」を送信する際の送信方法の例を示しており、図26において、横軸は時間であるものとする。
 図26において、「フレーム#1群送信」2601-1、2601-2では、図23の2300-1のフレーム#1を1つ以上送信する。そして、「フレーム#2群送信」2602-1、2602-2では、図24の2300-2のフレーム#2を1つ以上送信する。「フレーム#3群送信」2603-1、2603-2では、図25の2300-3のフレーム#3を1つ以上送信する。
 このときの詳しい説明を以下で行う。
 「「フレーム#1群送信」2601-1、2601-2では、図23の2300-1のフレーム#1を1つ以上送信する。」と記載したが、この点について説明する。
 例えば、受光部151において、CMOS、または、有機CMOSなどのイメージセンサーを用いた場合、動画や静止画におけるフレーム単位で、受信信号を処理する可能性がある。なお、例えば、動画において、「4K 30p」と記載されていた場合、1フレームの画素数は3840×2160であり、1秒間のフレーム数は30であることを意味している。
 したがって、図22の第5の機器が、1フレーム内に「図23の2300-1のフレーム#1」、「図24の2300-2のフレーム#2」、「図25の2300-3のフレーム#3」が存在するような構成の変調信号を送信すると、図22の端末1000は、複数の基地局からアクセスする基地局の選択が難しくなる。
 そこで、図26のようなフレーム構成を提案する。
 (第1-1の方法)
 第1-1の方法として、「フレーム#1群送信」2601-1、2601-2には、図23の2300-1のフレーム#1が複数存在することで、「フレーム#1群送信」が占める時間区間が、動画や静止画におけるフレームよりも長い時間になるようにするものとする。
 このようにすることで、図22の端末1050が、第5の機器1000より、動画や静止画における1フレーム内に「図23の2300-1のフレーム#1」、「図24の2300-2のフレーム#2」、「図25の2300-3のフレーム#3」が存在するような変調信号を受信することを防ぐことができるため、図22の端末1050は、複数の基地局からアクセスする基地局の選択を容易に行うことができるようになる。
 (第2-1の方法)
 第2-1の方法として、図23の2300-1のフレーム#1が占める時間区間が、動画や静止画におけるフレームよりも長い時間になるようにするものとする。例えば、図23におけるSSIDに関するシンボル2301-1には、「基地局#1のSSIDの情報」が複数含まれており(「基地局#1のSSIDの情報」が繰り返し含まれている)、また、暗号鍵に関するシンボル2302-1には、「基地局#1の暗号鍵の情報(基地局#1と接続するための暗号鍵の情報)」が複数含まれている(「基地局#1の暗号鍵の情報(基地局#1と接続するための暗号鍵の情報)」が繰り返し含まれている)構成であるとよい。
 このようにすることで、図22の端末1050が、第5の機器1000より、動画や静止画における1フレーム内に「図23の2300-1のフレーム#1」、「図24の2300-2のフレーム#2」、「図25の2300-3のフレーム#3」が存在するような変調信号を受信することを防ぐことができるため、図22の端末1050は、複数の基地局からアクセスする基地局の選択を容易に行うことができるようになる。
 同様に考えると、「フレーム#2群送信」2602-1、2602-2は、以下のような構成であるとよい。
 (第1-2の方法)
 第1-2の方法として、「フレーム#2群送信」2602-1、2602-2には、図24の2300-2のフレーム#2が複数存在することで、「フレーム#2群送信」が占める時間区間が、動画や静止画におけるフレームよりも長い時間になるようにするものとする。
 (第2-2の方法)
 第2-2の方法として、図24の2300-2のフレーム#2が占める時間区間が、動画や静止画におけるフレームよりも長い時間になるようにするものとする。例えば、図24におけるSSIDに関するシンボル2301-2には、「基地局#2のSSIDの情報」が複数含まれており(「基地局#2のSSIDの情報」が繰り返し含まれている)、また、暗号鍵に関するシンボル2302-2には、「基地局#2の暗号鍵の情報(基地局#2と接続するための暗号鍵の情報)」が複数含まれている(「基地局#2の暗号鍵の情報(基地局#2と接続するための暗号鍵の情報)」が繰り返し含まれている)構成であるとよい。
 同様に考えると、「フレーム#3群送信」2603-1、2603-2は、以下のような構成であるとよい。
 (第1-3の方法)
 第1-3の方法として、「フレーム#3群送信」2603-1、2603-2には、図25の2300-3のフレーム#3が複数存在することで、「フレーム#3群送信」が占める時間区間が、動画や静止画におけるフレームよりも長い時間になるようにするものとする。
 (第2-3の方法)
 第2-3の方法として、図25の2300-3のフレーム#3が占める時間区間が、動画や静止画におけるフレームよりも長い時間になるようにするものとする。例えば、図25におけるSSIDに関するシンボル2301-3には、「基地局#3のSSIDの情報」が複数含まれており(「基地局#3のSSIDの情報」が繰り返し含まれている)、また、暗号鍵に関するシンボル2302-3には、「基地局#3の暗号鍵の情報(基地局#3と接続するための暗号鍵の情報)」が複数含まれている(「基地局#3の暗号鍵の情報(基地局#3と接続するための暗号鍵の情報)」が繰り返し含まれている)構成であるとよい。
 次に、図23から図26のように図22の第5の機器1000がフレームを送信した場合の効果について説明する。
 図27における2700のエリアについて考える。○2701-1、2701-2、2701-3、2701-4、2701-5、2701-6、2701-7、2701-8、2701-8、2701-9、2701-10に、図22における第5の機器1000を配置する。そして、◎2702-1に図22の470-1の基地局#1を配置し、◎2702-2に図22の470-2の基地局#2を配置し、◎2702-3に図22の470-3の基地局#3を配置するものとする。
 そして、例えば、2703の内側のエリアに図22の1050の構成を具備する端末が99台存在するものとする。
 このとき、例えば、第5の機器2701-5、2701-10がともに、470-3の基地局#3のSSIDの情報を送信し、また、470-3の基地局#3のアクセスのための暗号鍵の情報を送信するものとする(第5の機器2701-5、2701-10の最も近い基地局が470-3の基地局#3であるため)。
 すると、図22の1050の構成を具備する端末99台は、すべて図22の470-3の基地局#3にアクセスすることになり、図22の470-3の基地局#3にアクセス困難な図22の1050の構成を具備する端末が存在する可能性が高い。
 この点を考慮すると、99台の図22の1050の構成を具備する端末が、できる限り均等に、図22の470-1の基地局#1(2702-1)、図22の470-2の基地局#2(2702-2)、470-3の基地局#3(2702-3)にアクセスするような制御を行うことで、前に述べたような、基地局にアクセス困難な端末の存在を少なくすることができるという効果を得ることができる。
 本実施の形態の、図23から図26のように図22の第5の機器1000がフレームを送信した場合、99台の図22の1050の構成を具備する端末が、図22の第5の機器にアクセスするタイミングは一般的には異なることになるので、「99台の図22の1050の構成を具備する端末が、できる限り均等に、図22の470-1の基地局#1(2702-1)、図22の470-2の基地局#2(2702-2)、470-3の基地局#3(2702-3)にアクセスするような制御を行う」ことになる。したがって、前に述べたような、基地局にアクセス困難な端末の存在を少なくすることができるという効果を得ることができる。
 なお、図26に、図22の第5の機器が、「図23の2300-1のフレーム#1」、「図24の2300-2のフレーム#2」、「図25の2300-3のフレーム#3」を送信する際の送信方法の例を示しているが、図22の第5の機器が、「図23の2300-1のフレーム#1」、「図24の2300-2のフレーム#2」、「図25の2300-3のフレーム#3」を送信する際の送信方法はこれに限ったものではない。
 なお、図26に、図22の第5の機器が、「図23の2300-1のフレーム#1」、「図24の2300-2のフレーム#2」、「図25の2300-3のフレーム#3」を送信する際の送信方法の例を示しているが、図22の第5の機器が、「図23の2300-1のフレーム#1」、「図24の2300-2のフレーム#2」、「図25の2300-3のフレーム#3」を送信する際の送信方法はこれに限ったものではない。
 例えば、図26では、「フレーム#1群送信」「フレーム#2群送信」「フレーム#3群送信」の順に繰り返し送信する構成を示しているが、「フレーム#1群送信」「フレーム#2群送信」「フレーム#3群送信」は、図26のような順番で送信する必要はない。例えば、「フレーム群1送信」「フレーム群#2送信」「フレーム群#3送信」を時間的にランダムに送信してもよいし、「フレーム群1送信」「フレーム群#2送信」「フレーム群#3送信」の送信の順番を、図26とは異なる規則的な順番で送信してもよい。少なくとも、図22の第5の機器が、「フレーム#1群送信」「フレーム#2群送信」「フレーム#3群送信」を送信していればよいことになる。
 また、図26では、「フレーム#1群送信」「フレーム#2群送信」「フレーム#3群送信」を連続的に送信しているが、必ずしも連続的に送信しなくてもよく、例えば、図26において、フレーム#1群2601-1とフレーム#2群送信2602-2に時間的な間隔があってもよい。
 そして、図26では、「フレーム#1群送信」「フレーム#2群送信」「フレーム#3群送信」のみで構成しているが、他のシンボル、他のフレームが存在していてもよい。さらに、図26、および、図22において、基地局を3台としているが、基地局の数は、これに限ったものではなく、基地局を2台以上としていれば、基地局が3台のときと同様に動作することが可能である。したがって、例えば、基地局N台(Nは2以上の整数)ある場合、図26のような送信を行う場合、「フレーム#k群送信」が存在することになる。なお、kは1以上N以下の整数となる。そして、「フレーム#k群送信」には、SSIDに関するシンボル(基地局#kのSSIDの情報)が含まれており、また、暗号鍵に関するシンボル(基地局#kのアクセスのための暗号鍵の情報)が含まれていることになる。
 図12は、図22の端末1050が具備する無線装置453が送信する変調信号のフレーム構成の一例を示している。図12において、横軸は時間である。図12に示すように、図22の端末1050が具備する無線装置453は、例えば、プリアンブル1201を送信し、その後、制御情報シンボル1202、情報シンボル1203を送信する。
 このとき、プリアンブル1201は、図22の端末1050の無線装置453が送信する変調信号を受信する基地局(または、AP)470-1、470-2、470-3が、例えば、信号検出、時間同期、フレーム同期、周波数同期、周波数オフセット推定などを行うために用いるシンボルである。
 制御情報シンボル1202は、例えば、変調信号を生成するのに使用した誤り訂正符号化方式の方法、変調方式に関する情報、フレーム構成に関する情報、送信方法に関する情報などのデータを含んでおり、基地局(または、AP)470-1、470-2、470-3は、この制御情報シンボル1202に含まれる情報に基づいて、変調信号の復調などを実施することになる。
 情報シンボル1203は、図22の端末1050の無線装置453がデータを伝送するためのシンボルである。
 なお、図22の端末1050の無線装置453は、図12に記載しているシンボル以外のシンボルを含むフレームを送信してもよい(例えば、情報シンボルの途中でパイロットシンボル(リファレンスシンボル)が含まれるフレームなど)。また、シンボルを送信する順番を含め、フレーム構成は、図12の構成に限ったものではない。そして、図12において、周波数軸方向に複数のシンボルが存在していてもよい、つまり、複数の周波数(複数のキャリア)にシンボルが存在していてもよい。
 図7は、図22の基地局470-1、470-2、470-3が送信する変調信号のフレーム構成の一例を示している。図7において横軸は時間とする。図7に示すように、基地局470-1、470-2、470-3は、例えば、プリアンブル701を送信し、その後、制御情報シンボル702、情報シンボル703を送信するものとする。
 このとき、プリアンブル701は、基地局470-1、470-2、470-3が送信する変調信号を受信する図22の端末1050の無線装置453が、例えば、信号検出、時間同期、フレーム同期、周波数同期、周波数オフセット推定などを行うためのシンボルであるものとする。
 制御情報シンボル702は、例えば、変調信号を生成するのに使用した誤り訂正符号化方式の方法、変調方式に関する情報、フレーム構成に関する情報、送信方法に関する情報などのデータを含んでいるものとし、図22の端末1050の無線装置453は、このシンボルの情報に基づいて、変調信号の復調などを実施することになる。
 情報シンボル703は、図22の基地局(または、AP)470-1、470-2、470-3がデータを伝送するためのシンボルである。
 なお、図22の基地局(または、AP)470-1、470-2、470-3は、図7に記載しているシンボル以外のシンボルを含むフレームを送信してもよい(例えば、情報シンボルの途中でパイロットシンボル(リファレンスシンボル)が含まれるフレームなど)。また、シンボルを送信する順番を含め、フレーム構成は、図7の構成に限ったものではない。そして、図7において、周波数軸方向に複数のシンボルが存在していてもよい、つまり、複数の周波数(複数のキャリア)にシンボルが存在していてもよい。
 図28は、上述した、図22の「第5の機器1000」、「端末1050」、「基地局#X(または、AP#X)」が実施する処理の一例を示すフローチャートである。なお、Xは1または2または3となる。
 まず、図28の2801のように、図22の第5の機器1000は、図26のフレーム構成の変調信号を送信する。
 そして、図28の2802のように、図22の第5の機器1000が送信した変調信号を受信し、図22の端末1050は、端末1050がアクセスする基地局を図22の470-1の基地局#1、470-2の基地局#2、470-3の基地局#3から選択する。
 なお、この点について説明する。図22の端末1050は、基地局とのアクセスを行おうとし、図22の第5の機器1000が送信した変調信号を受信する。このとき、例えば、動画または静止画のある1フレームにおいて、図26における「フレーム#1群送信」「フレーム#2群送信」「フレーム#3群送信」のいずれかを得ることになる。そして、得られた基地局の情報(例えばSSID)から、図22の端末1050は、端末1050がアクセスする基地局を図22の470-1の基地局#1、470-2の基地局#2、470-3の基地局#3のいずれかに決定することになる。
 図28の2803のように、図22の第5の機器1000が送信した変調信号を受信し、図22の端末1050は、端末1050がアクセスする基地局#XのSSIDを取得する。
 あわせて、図28の2804のように、図22の端末1050は、端末がアクセスする基地局#Xとの通信に用いる暗号鍵を取得する。
 そして、図22の端末1050は、基地局#Xとの電波による接続を実施する(2805)。
 基地局#Xの応答により、図28の2806のように、図22の端末1050は、基地局#Xとの接続が完了する。
 そして、図28の1307のように、図22の端末1050は、基地局#Xに対し、接続先の情報を、電波を用いて送信する。
 すると、図28の2808のように、基地局#Xは、ネットワークから、図22の端末1050に送信するための情報を入手する。
 そして、図28の2809のように、基地局#Xは、入手した情報を図22の端末1050に、電波を用いて、送信し、図22の端末1050は情報を得る。
 図22の端末1050は、例えば、必要なとき、基地局#Xを介して、ネットワークから必要な情報を取得する。
 以上のように、第5の機器から送信されたSSIDの情報、暗号鍵の情報をもとに、端末は、基地局(または、AP)と接続し、情報を取得することで、安全性の保証された基地局(または、AP)を介して情報を安全に入手することができるという効果を得ることができる。なぜなら、可視光の変調信号から情報を得た場合、可視光であるが故に情報元が安全かどうかの判断をユーザーが行いやすいからである。
 例えば、SSIDを無線LANが送信した電波の変調信号から取得した場合、ユーザーは電波を送信した機器の判別が難しい。このため、情報の安全性の確保という点では、可視光通信でSSIDを取得するほうが適している。
 なお、本実施の形態では、第5の機器が、暗号鍵の情報を送信する場合を説明しているが、例えば、基地局(または、AP)が暗号鍵を用いた暗号化された通信を行っていない場合、第5の機器は、暗号鍵の情報を送信せず、SSIDに関する情報のみを送信し、暗号鍵に関する構成を削除するだけで、同様に実施することができる。
 また、第5の機器の構成は図22に示す構成に限ったものではなく、また、端末の構成は、図22に示す構成に限ったものではなく、基地局#1、#2、#3の接続先、構成方法についても図22に限ったものではない。
 そして、本実施の形態のように実施した場合、あるエリアに端末が複数存在していた場合、基地局にアクセス困難な端末の存在を少なくすることができるという効果を得ることができる。
 なお、図27において、○2701-1、2701-2、2701-3、2701-4、2701-5、2701-6、2701-7、2701-8、2701-8、2701-9、2701-10に配置した第5の機器が送信する変調信号のフレーム構成が、すべて図26というように同じであってもよいし、第5の機器が送信する変調信号がそれぞれ異なるフレーム構成であってもよいし、同一のフレーム構成の変調信号を送信する第5の機器が複数存在していてもよい。
 (実施の形態8)
 これまでに説明した実施の形態より、光源・照明を具備し、光変調信号を送信する送信装置は、光変調信号を用いて送信するデータをサーバのような外部の装置から入手し、都度、送信データを更新する構成があってもよいことになる。なぜなら、これにより、ユーザ、機器が所望するデータを逐次更新することができるという効果を得ることができるからである。
 以下では、上述に関する通信システムの例について説明を行う。
 図29は、本実施の形態における光変調信号の送信に関連する装置の構成の一例である。光変調信号の送信に関連する装置はPLC(Power line communication)(電力線通信)の通信装置2900と、光変調信号を送信する通信装置2950で構成される。
 PLCの通信装置2900における変調部2903は、データ2901、および、制御信号2902を入力とし、制御信号2902に含まれる、例えば、誤り訂正符号化方法(誤り訂正符号、符号化率、符号長(ブロック長)など)、変調方式の情報にもとづいて、誤り訂正符号化、設定した変調方式に基づいたマッピングを行い、変調信号2904を生成し、出力する。
 なお、データ2901は、「機器2950が送信する光変調信号により送信されるデータ」が含まれているものとする。
 送信部2905は、変調信号2904を入力とし、信号処理を施し、送信信号2906を生成し、出力する。なお、送信部2905は、OFDM(Orthogonal Frequency Division Multiplexing)方式関連の信号処理を施し、OFDM方式に基づいた送信信号2906を生成、出力してもよい。また、送信部2905は、wavelet OFDM方式関連の信号処理を施し、wavelet OFDM方式に基づいた送信信号2906を生成、出力してもよい。ただし、OFDM、wavelet OFDMのマルチキャリア方式の送信信号について説明したが、これに限ったものではなく、シングルキャリア方式、スペクトル拡散通信方式の送信信号であってもよい。なお、wavelet OFDM方式については、非特許文献2及び3がある。
 PLCの通信装置2900の特徴として、「送信信号はDC(Direct Current、直流)からN[Hz]の周波数スペクトルを持つ信号である」という点である。なお、Nは0より大きい実数である。ただし、送信信号は、DC(Direct Current、直流)からN[Hz]すべての周波数において、スペクトルが存在するとは限らない。したがって、送信部2905は、周波数変換部(RF(Radio Frequency)部)を具備していないということもできる。
 送信信号2006は、パワーラインを通過し、受信信号2908として通信装置2950に入力される。また、送信信号2006を含む電力線は、機器2950に対し、電力を提供することになる。復調部2953は、受信信号2908を入力とし、デマッピング、誤り訂正復号などの復号処理を行い、受信データ2954を出力する。
 記憶部2955は、受信データ2954を入力とし、「受信データ2954が更新データである」と判断した場合、受信データ2954、または、受信データ2954の一部を記憶する。そして、送信部2957は記憶データ2956を入力とする。
 なお、記憶部2955が、「受信データ2954が更新データである」という判断を制御信号2990によって行ってもよい。
 送信部2957は、記憶データ2956を入力とし、変調などの処理を行い、送信信号2958を生成し、出力する。このとき、周波数変換は行わないことになる。(したがって、送信信号2958は、DCからP[Hz]の周波数スペクトルを持つ信号となる。(Pは0より大きい実数))
 AC-DC変換部2951は、受信信号2980を入力とし、AC上に存在する受信信号2980をDC上の信号に変換し、変換信号2952を出力する。
 信号選択部2960は、送信信号2958、変換信号2952、制御信号2959を入力とし、制御信号2959に基づいて、送信信号2958、変換信号2952のいずれかを選択し、選択信号2961として出力する。そして、選択信号2961は、光源2962から送信される。
 なお、信号選択部2960が、選択信号2961として、変換信号2952を選択した場合、選択信号2961が、変換信号2952以外の信号を含んでいてもよい。
 以上のように、送信信号2958と変換信号2952を選択的に切り替え、送信することで、ユーザー、機器が所望とするデータを得ることができるとともに、例えば、緊急的、突発的、または、必要となる情報を、変換信号2952を用いて送信することで、より柔軟にユーザー、機器が所望とするデータを得ることができるという効果を得ることができる。また、PLC用に生成された変調信号をAC-DC変換し、光変調信号として送信することで、少ない回路規模で、PLC用の変調信号を光変調信号で中継することができ(PLC用の変調信号が以前に説明したような周波数スペクトルをもつため)、より多くのユーザー、機器に所望とするデータを伝送することができるという効果を得ることができる。
 図30は、図29とは異なる、本実施の形態における光変調信号の送信に関連する装置の構成の一例である。なお、図30において、図29と同様に動作するものについては、同一番号を付しており、説明を省略する。
 送信装置3003は、データ3001、および、外部データ3002を入力とし、誤り訂正符号化、変調などの処理を行い、送信信号3004を生成し、出力する。なお、外部データ3002は、例えば、記憶部2955に記憶するデータを更新する指示情報が含まれているものとする。つまり、通信装置2950が、記憶部2955に記憶するデータの更新要求を、通信装置2900に対し送信するものとする。
 送信信号3004は、伝搬チャネル3005を通過し、受信信号3006として、通信装置2900に入力される。
 受信装置3007は、受信信号3006を入力とし、デマッピング、誤り訂正復号などの処理を行い、受信データ3008を出力する。
 変調部2903は、受信データ3008に含まれる「通信装置2950により記憶部2955のデータ更新要求」の情報により、記憶部2955の更新データを送信するか、の判断を行うことになる。
 以上のように動作することで、図29の説明で説明した効果と同様の効果を図30の通信システムで得ることができる。
 以下では、上述したAC-DC変換部2951の動作の一例について説明する。
 AC-DC変換部2951は、受信信号2980から、例えば、50Hzまたは60Hzの交流電源周波数を有する交流電源成分と、交流電源周波数よりも高い周波数を有する信号成分とを分離する。交流電源成分と信号成分との分離は、例えば、ハイパスフィルタ、ローパスフィルタ、バンドパスフィルタなどの周波数フィルタ、またはその組み合わせを用いて行うことができる。
 AC-DC変換部2951は、分離された交流電源成分に対して、交流電源成分を直流電源成分に変換するAC-DC変換を施して、直流電源成分を生成する。AC-DC変換部2951は、分離された信号成分を、直流電源成分に重畳して変換信号2952を生成する。ここで、信号成分を直流電源成分に重畳する処理は、例えば、信号成分を、カップリングトランスなどを介して直流電源成分を供給する電力線に結合することによって行われる。
 なお、信号成分が重畳される直流電源成分は、交流電源成分を直流電源成分に変換して得られたものである必要はなく、通信装置2950が備える図示されていない別の構成によって生成された直流電源成分に対して信号成分が重畳されてもよい。また、変換信号2952は、直流電源成分を含まない信号成分を含んだ信号であってもよい。
 また、AC-DC変換部2951は、分離された信号成分に対して、アンプを用いた増幅などの処理を行ってもよい。この構成により、光源2962から送信される光変調信号に含まれる信号成分の強度(または、振幅)を制御することができるので、光変調信号の受信品質を向上させる可能性がある。
 なお、図29および図30を用いた説明では、PLCの通信装置2900が、交流電源を供給する電灯線2907に対してPLCの信号を重畳する場合を例に挙げて説明したが、通信装置2900は、直流電源を供給する電灯線2907に対してPLCの信号を重畳してもよい。この構成によると、通信装置2950は、AC-DC変換部を備えていなくても、信号成分、すなわちPLCの信号が重畳された直流電源を変換信号2952として信号選択部2960および光源2962に提供できるので、通信装置2950の構成を簡素化できる可能性がある。
 なお、上記の説明において、PLCの送信信号について、DC(Direct Current、直流)からN[Hz]の周波数スペクトルを持つが、全ての周波数においてスペクトルが存在しなくてもよいと説明した。以下では、上記のようなPLCの送信信号の一例について説明する。
 例えば、PLCの信号は、低速PLCと呼ばれる10kHzから450kHzの周波数を用いて通信を行う方式の信号であってもよいし、高速PLCと呼ばれる2MHzから30MHz、または2MHzから80MHzの周波数を用いて通信を行う方式の信号であってよい。また、通信に用いる周波数帯域の一部に、他の周波数よりも小さい電力しか出力されない、または通信に使用しない周波数帯域であるノッチ帯域が設けられていてもよい。ノッチ帯域の設けられたPLC信号を光変調信号として送信する場合、ノッチ帯域の成分が抑圧された変調信号で強度変調された光信号が送信される。なお、PLCの送信信号に対してノッチ帯域を設ける方法としては、バンドエリミネーションフィルタなどの周波数フィルタを用いてノッチ帯域の信号成分を抑制する方法や、深いフィルタ特性を有するWavelet-OFDMのマルチキャリア方式を用いてノッチ帯域のサブキャリアを使用しない変調信号を生成する方法などを用いることができる。
 なお、上記説明では、伝送路として電灯線を用いたPLC通信を例に挙げて説明したが、伝送路として同軸ケーブル、ツイストペア線、電話線などの電灯線以外のケーブルを用いてもよい。
 (実施の形態9)
 本実施の形態では、本明細書で説明した送信装置と受信装置の構成の一例について説明する。なお、本実施の形態における送信装置の特徴的な点は、複数の光変調信号を送信する点である。
 図31は、本実施の形態における送信装置と受信装置の構成例を示している。図31において、送信装置3100が複数の光変調信号を送信し、受信装置3150が複数の光変調信号を受信し、受信データを得ることになる。
 図31における送信装置は、M個の光変調信号を送信するものとする。なお、Mは2以上の整数であるものとする。
 送信部3102_iは、データ3101_i、制御信号3105を入力とし、制御信号3105に含まれる誤り訂正符号化方法に関する情報、送信方法に関する情報に基づいて、誤り訂正符号化、送信方法に基づく信号処理を施し、光変調信号3103_iを生成し、出力する。なお、iは1以上M以下の整数であるものとする。
 そして、光変調信号3103_iは、光源3104_iから送信される。
 イメージセンサーなどの受光部3151は、光変調信号3103_iに対応する光を受信する。このとき、受光部3151は、M個の光変調信号に対応する光を受信することになる。
 受光部3151は光変調信号3103_iに対応する光受信信号3152_iを出力する。なお、iは1以上M以下の整数であるものとする。
 受信部3153_iは、光変調信号3103_iに対応する光受信信号3152_iを入力とし、復調、誤り訂正復号等の処理を行い、データ3101_iに対応する受信データ3154_iを出力する。
 データ取得部3155は、データ3154_1、データ3154_2、・・・、データ3154_Mを入力とし、データ3156を生成、出力する。
 図32は、図31とは異なる本実施の形態における送信装置と受信装置の構成例を示している。なお、図32において、図31と同様に動作するものについては、同一番号を付している。
 分配部3202は、情報3201、制御信号3105を入力とし、制御信号3105に含まれる誤り訂正符号化方法に関する情報に基づいて、情報に対し、誤り訂正符号化を行い、誤り訂正符号化後のデータを生成する。そして、分配部3202誤り訂正符号化後のデータを分配し、誤り訂正符号化後のデータA2001_iを出力する。
 なお、M個の誤り訂正符号化後のデータ3101_iへの分配は、どのように行われてもよい。例えば、誤り訂正符号化後のデータをM個に分割し、分割したM個のデータ系列をそれぞれ誤り訂正符号化後のデータ3101_iに割り当ててもよい。また、誤り訂正符号化後のデータから、同一のデータで構成するM個のデータ系列を生成し、それぞれのデータ系列を誤り訂正符号化後のデータ3101_iに割り当ててもよい。誤り訂正符号化後のデータ3101_iへの割り当て方法はこれらに限ったものではなく、誤り訂正符号化後のデータからM個のデータ系列を生成し、それぞれのデータ系列を誤り訂正符号化後のデータ3101_iに割り当てればよい。
 送信部3102_iはデータ3101_i、制御信号3105を入力とし、制御信号3105に含まれる送信方法に関する情報に基づき、送信方法に基づく信号処理を施し、光変調信号3103_iを生成し、出力する。なお、iは1以上M以下の整数であるものとする。
 そして、光変調信号3103_iは、光源3104_iから送信される。
 イメージセンサーなどの受光部3151は、光変調信号3103_iに対応する光を受信する。このとき、受光部3151は、M個の光変調信号に対応する光を受信することになる。
 受光部3151は光変調信号3103_iに対応する光受信信号3152_iを出力する。なお、iは1以上M以下の整数であるものとする。
 受信部3153_iは、光変調信号3103_iに対応する光受信信号3152_iを入力とし、復調などの処理を行い、データ3101_iに対応する受信データ(の対数尤度比)3154_iを出力する。
 誤り訂正復号部3251は、受信データ(の対数尤度比)3154_1、受信データ(の対数尤度比)3154_2、・・・、受信データ(の対数尤度比)3154_Mを入力とし、誤り訂正復号を行い、受信データ3252を出力する。
 以上のような送信装置、受信装置を用いて、本明細書における各実施の形態を実施した場合についても、同様に実施することができるとともに、各実施の形態で説明した効果を同様に得ることができる。
 (実施の形態10)
 本実施の形態では、図29、図30の実施の形態8で説明した光変調信号の送信に関連する装置と異なる光変調信号の送信に関連する装置の構成について説明する。
 図33は、図29、図30と異なる光変調信号の送信に関連する装置の構成の一例であり、図33において、図29と同様に動作するものについては同一番号を付しており説明を省略する。
 図33の特徴的な点は、通信装置2900が、光変調信号を送信する点である。
 光源用送信部3301は、変調信号2904を入力とし、光源用のための信号処理を行い、光変調信号3302を生成し、出力する。そして、光変調信号3302は、光源3303から、光として照射される。
 受信装置3305は、光変調信号に相当する受信信号3304を受光し、復調、誤り訂正復号等の処理を施し、受信データを得ることになる。
 以上のようにすることで、実施の形態8で説明した効果を得ることができるとともに、通信装置2900が、光変調信号を送信することで、より多くの通信装置が、情報を得ることが可能となる。
 図34は、図29、図30、図33と異なる光変調信号に関連する装置の構成の一例であり、図34において、図29、図33と同様に動作するものについては同一番号を付しており説明を省略する。
 図34が、図33と異なる点は光変調信号3401を送信部2905が生成している点ある。したがって、送信部2905は、変調信号2904を入力とし、PLCのための送信信号2906および光通信(可視光通信)のための送信信号3401を生成し出力する。なお、PLCのための送信信号2906および光通信(可視光通信)のための送信信号3401いずれもDCからN[Hz](Nは0より大きい実数)の周波数スペクトルをもつ信号となる。ただし、DCからN[Hz]すべての周波数において、スペクトルが存在するとは限らない。そして、光通信(可視光通信)のための送信信号3401は光源3303から、光として照射される。
 以上のようにすることで、実施の形態8で説明した効果を得ることができるとともに、通信装置2900が、光変調信号を送信することで、より多くの通信装置が、情報を得ることが可能となる。
 図35は、図29、図30、図33と異なる光変調信号に関連する送信装置の構成の一例であり、図35において、図29、図30、図33と同様に動作するものについては同一番号を付しており説明を省略する。したがって、図35の各部は、すでに説明を行っているので説明を省略する。
 以上のようにすることで、実施の形態8で説明した効果を得ることができるとともに、通信装置2900が、光変調信号を送信することで、より多くの通信装置が、情報を得ることが可能となる。
 図36Aは、図29、図30、図33、図34と異なる光変調信号に関連する送信装置の構成の一例であり、図36Aにおいて、図29、図30、図33、図34と同様に動作するものについては同一番号を付しており説明を省略する。したがって、図36Aの各部は、すでに説明を行っているので説明を省略する。
 以上のようにすることで、実施の形態8で説明した効果を得ることができるとともに、通信装置2900が、光変調信号を送信することで、より多くの通信装置が、情報を得ることが可能となる。
 (補足2)
 なお、FPGA(Field Programmable Gate Array)およびCPU(Central Processing Unit)の少なくとも一方が、本開示において説明した通信方法を実現するために必要なソフトウェアの全部あるいは一部を無線通信または有線通信によりダウンロードできるような構成であってもよい。さらに、更新のためのソフトウェアの全部あるいは一部を無線通信または有線通信によりダウンロードできるような構成であってもよい。そして、ダウンロードしたソフトウェアを記憶部に格納し、格納されたソフトウェアに基づいてFPGAおよびCPU少なくとも一方を動作させることにより、本開示において説明したデジタル信号処理を実行するようにしてもよい。
 このとき、FPGAおよびCPUの少なくとも一方を具備する機器は、通信モデムと無線または有線で接続し、この機器と通信モデムにより、本開示において説明した通信方法を実現してもよい。
 例えば、本明細書で記載した基地局、AP、端末などの通信装置が、FPGA、および、CPUのうち、少なくとも一方を具備しており、FPGA及びCPUの少なくとも一方を動作させるためのソフトウェアを外部から入手するためのインターフェースを通信装置が具備していてもよい。さらに、通信装置が外部から入手したソフトウェアを格納するための記憶部を具備し、格納されたソフトウェアに基づいて、FPGA、CPUを動作させることで、本開示において説明した信号処理を実現するようにしてもよい。
 本明細書で説明した送信装置を第1の「車、または、乗り物」が具備し、本明細書で説明した受信装置を第2の「車、または、乗り物」が具備し、データの送受信を実施してもよい。
 本明細書で説明した「送信装置、または、送信装置の機能の一部」を、インターフェースを介して第1の「車、または、乗り物」に接続し、本明細書で説明した「受信装置、または、受信装置の一部」を、インターフェースを介して第2の「車、または、乗り物」に接続し、送受信によるデータの伝送を実施してもよい。
 また、本明細書で説明した送信装置を第1の「車、または、乗り物」が具備し、この送信装置と本明細書で説明した受信装置とで、データの送受信を実施してもよい。
 本明細書で説明した受信装置を第2の「車、または、乗り物」が具備し、この受信装置と本明細書で説明した送信装置とで、データの送受信を実施してもよい。
 さらに、本明細書で説明した「送信装置、または、送信装置の機能の一部」を、インターフェースを介して第1の「車、または、乗り物」に接続し、この一連の送信装置と本明細書で説明した受信装置とで、データの送受信を実施してもよい。
 本明細書で説明した「受信装置、または、受信装置の一部」を、インターフェースを介して第2の「車、または、乗り物」に接続し、本明細書で説明した送信装置とこの一連の受信装置とで、データの送受信を実施してもよい。
 「「車、または、乗り物」が本明細書で説明した送信装置、または、送信装置の一部を具備している」、または、「「車、または、乗り物」が「本明細書で説明した送信装置」、または、「本明細書で説明した送信装置の一部の機能」と、インターフェースを介して接続している場合」、本明細書で説明した送信装置が具備している光源として、「車、または、乗り物」が具備している光源を使用してもよい。
 例えば、図36Bのように車B100は、光源B101_1、B101_2、B101_3、B101_4を具備しており、これらの光源の1つ以上を本明細書で説明した送信装置が光変調信号を送信するための光源としてもよい。
 また、車B100が搭載している複数の光源のうち、「どの光源を、本明細書で説明した送信装置が光変調信号を送信するための光源として用いるか」、を選択する機能を送信装置、または、送信装置と接続した装置が具備していてもよい。また、光源の明るさ、光源の照射角度、光源の位置をあわせて設定できてもよい。
 「「車、または、乗り物」が本明細書で説明した受信装置、または、受信装置の一部を具備している」、または、「「車、または、乗り物」が「本明細書で説明した受信装置」、または、「本明細書で説明した受信装置の一部の機能」と、インターフェースを介して接続している場合」、本明細書で説明した受信装置が具備している受光部として、「車、または、乗り物」が具備している受光部(例えば、イメージセンサー、フォトダイオードなど)を使用してもよい。
 例えば、図36Cのように車B100は、受光部B201_1、B201_2、B201_3、B201_4、B201_5、B201_6を具備しており、これらの受光部の1つ以上を本明細書で説明した受信装置が光変調信号を受信するための受光部としてもよい。
 また、車B100が搭載している複数の受光部のうち、「どの受光部を、本明細書で説明した受信装置が光変調信号を受信するための受光部として用いるか」、を選択する機能を受信装置、または、受信装置と接続した装置が具備していてもよい。また、受光部の角度、受光部の位置をあわせて設定できてもよい。
 さらに、本明細書で説明した受信装置が、データを受信することができていることを、車が搭載しているフロントパネル、乗り物が搭載しているコクピットに表示してもよい。また、本明細書で説明した受信装置が、データを受信することができていることを、車などのハンドル自身、または、ハンドルが具備するバイブレータを振動させることで、ユーザに知らせてもよい。
 また、本実施の形態で説明した受信装置を具備する車と端末がインターフェースを介して接続されており、受信装置で得られたデータを端末が具備する記憶部に記憶させてもよい。また、車も記憶部を具備しており、受信データを車が記憶してもよい。また、端末が具備する記憶部と車が具備する記憶部の両者に受信データを記憶させてもよい。
 本明細書において、受信装置に関連する処理に関するアプリケーションをサーバが提供し、端末は、このアプリケーションをインストールすることで、本明細書で記載した受信装置の機能を実現してもよい。なお、アプリケーションは、本明細書に記載した送信装置を具備する通信装置がネットワークを介しサーバと接続することによって、端末に提供されてもよいし、アプリケーションは、別の送信機能を有する通信装置がネットワークを介しサーバと接続することによって、端末に提供されてもよい。
 同様に、本明細書において、送信装置に関連する処理に関するアプリケーションをサーバが提供し、通信装置は、このアプリケーションをインストールすることで、本明細書で記載した送信装置の機能を実現してもよい。なお、アプリケーションは、他の通信装置がネットワークを介しサーバと接続することによって、この通信装置に提供されるという方法が考えられる。
 また、送信装置が具備している光源、受信装置が具備している受光部に関するソフトウェアをサーバが提供し、このソフトウェアを得ることで、送信装置が具備している光源が光変調信号の送信に対応でき、受信装置が具備している受光部が光変調信号の受信に対応できるようにしてもよい。
 さらに、本明細書における送信装置が、サーバの機能を有していてもよく、送信装置が具備するアプリケーションを、何らかの通信手段を用いて、通信装置に提供し、通信装置はダウンロードすることにより得たアプリケーションにより、本明細書における受信装置を実現することができてもよい。
 なお、本明細書において、「照明部」、「光源」と記載しているが、画像、動画、広告などを表示するディスプレイ、プロジェクタが光を発しており、その光に光変調信号が含まれているというような方法であってもよい。つまり、「照明部」、「光源」が光を発する機能以外の機能を有していてもよい。また、「照明部」、「光源」が、複数の「照明」、「光源」により構成されていてもよい。
 さらに、光変調信号を生成し、光を発する通信装置が用いる送信方法は、本明細書で記載された送信方法以外の方法であってもよい。また、光変調信号は、本明細書で説明した以外の情報が含まれていてもよい。
 また、LEDなどの照明・光源自身が、本明細書で説明した送信装置の機能を有していてもよい。
 さらに、送信光変調信号を生成する装置は、照明または光源を具備しておらず、送信光変調信号を生成する装置はインターフェースを介して、照明または光源と接続されてもよい。
 本実施の形態で説明した送信装置と受信装置の通信方法は、図36Dで示す通信方法であってもよい。以下では、図36Dについての説明を行う。
 シンボルマッピング部は、送信データを入力し、変調方式に基づいたマッピングを行う、シンボル系列(ci)を出力する。
 等化前処理部は、シンボル系列を入力とし、受信側での等化処理を軽減するために、シンボル系列に対し、等化前処理を行い、等化前処理後のシンボル系列を出力する。
 エルミート対称性処理部は、等化前処理後のシンボル系列を入力とし、エルミート対称性が確保できるように、等化前処理後のシンボル系列に対しサブキャリア割り当てを行い、パラレル信号を出力する。
 逆(高速)フーリエ変換部は、パラレル信号を入力とし、パラレル信号に対し、逆(高速)フーリエ変換を施し、逆(高速)フーリエ変換後の信号を出力する。
 パラレルシリアル、および、サイクリックプレフィックス付加部は、逆(高速)フーリエ変換後の信号を入力とし、パラレルシリアル変換、および、サイクリックプレフィックスを付加し、信号処理後の信号として出力する。
 デジタルアナログ変換部は、信号処理後の信号を入力とし、デジタルアナログ変換を行い、アナログ信号を出力し、アナログ信号は、1つ以上の例えばLEDから、光として出力される。
 なお、等化前処理部、エルミート対称性処理部は、なくてもよい。つまり、等化前処理部、エルミート対称性処理部での信号処理は、行わない場合もあり得る。
 フォトダイオードは、光を入力とし、TIA(Transimpedance Amplifier)により、受信信号を得る。
 アナログデジタル変換部は、受信信号に対し、アナログデジタル変換を行い、デジタル信号を出力する。
 サイクリックプレフィックス除去、および、シリアルパラレル変換部は、デジタル信号を入力とし、サイクリックプレフィックス除去を行い、その後、シリアルパラレル変換を行い、パラレル信号を入力とする。
 (高速)フーリエ変換部は、パラレル信号を入力とし、(高速)フーリエ変換を行い、(高速)フーリエ変換後の信号を出力する。
 検波部は、フーリエ変換後の信号を入力とし、検波を行い、受信シンボル系列を出力する。
 シンボルデマッパーは、受信シンボル系列を入力とし、デマッピングを行い、受信データ系列を得る。
 以上のようにして、光変調信号を送信する送信装置、光変調信号を受信する受信装置を、本明細書における各実施の形態に適用しても、各実施の形態は同様に実施することができる。
 また、本実施の形態における送信装置と受信装置の通信方法は、以下で説明する通信方法であってもよい。
 <ラインスキャンサンプリング>
 スマートフォンまたはデジタルカメラなどには、CMOS(Complementary Metal Oxide Semiconductor)センサなどのイメージセンサーが搭載されている。CMOSセンサで撮像された画像は、全体が厳密に同じ時刻の風景を写しているわけではなく、例えば、行ごとにシャッタ動作を行うローリングシャッタ方式により、1ライン毎にセンサが受光した光の量を読み出す。そのため、読み出しに要する時間を見計らって、1ライン毎に時間差をおいて受光の開始、終了の制御が行われる。つまり、CMOSセンサで撮像された画像は、露光期間に少しずつタイムラグのある多数のラインを重ねた形になる。
 このCMOSセンサの性質に着目した方式であり、可視光信号受信の高速化を実現する。
 すなわち、可視光通信方式の第1の例では、ライン毎に露光時間が微妙に少しずつ異なることを利用することで、図36Eに示すように、1枚の画像(イメージセンサの撮像画像)から、複数の時点における光源の輝度、色をライン毎に測定することができ、フレームレートよりも高速に変調された信号を捉えることができる。
 このサンプリング手法を「ラインスキャンサンプリング」と呼び、同じタイミングで露光される1列の画素を「露光ライン」と呼ぶ。
 なお、CMOSセンサによるローリングシャッタ方式で「ラインスキャンサンプリング」を実現することができるが、CMOSセンサ以外のセンサ、例えば、CCD(Charge-Coupled Device)センサ、有機(CMOS)センサなどにより、ローリングシャッタ方式を実現しても、同様に「ラインスキャンサンプリング」を実施することができる。
 ただし、カメラ機能(動画または静止画の撮影機能)における撮像時の撮像設定では、高速で点滅する光源を撮影しても、点滅が露光ラインに沿った縞模様として現れることはない。なぜなら、この設定では、露光時間が光源の点滅周期よりも非常に十分に長いため、図36Fに示すように、光源の点滅(発光パターン)による輝度の変化が均一平均化されて露光ライン間の画素値の変化は極めて小さくなり、ほぼ一様な画像になるからである。
 これに対して、図36Gに示すように、露光時間を光源の点滅周期以下に設定することで、光源の点滅の状態(発光パターン)を露光ラインの輝度変化として観測することができる。
 例えば、露光ラインは、イメージセンサーの長辺方向に平行になるように設計される。この場合、一例として、フレームレートを30fps(frames per second)とすると、1920×1080のサイズの解像度では、毎秒32400以上のサンプルが得られ、3840×2160のサイズの解像度では、毎秒64800以上のサンプルが得られる。
 <ラインスキャンサンプリングの応用例>
 なお、上記説明では、一ライン毎に受光した光の量を示す信号を読み出すラインスキャンサンプリングについて説明したが、CMOSなどのイメージセンサーを用いた光信号のサンプリング方式はこれに限定されない。光信号の受信に用いるサンプリング方式としては、通常の動画の撮影に用いるフレームレートよりも高いサンプリングレートでサンプリングされた信号を取得できる様々な方式が適用可能である。例えば、画素ごとにシャッタ機能を持たせるグローバルシャッタ方式により、画素ごとに露光期間を制御して信号を読み出す方式や、ライン状ではない形状に配置された複数の画素のグループ単位で露光期間を制御して信号が読み出される方式を用いてもよい。また、通常の動画の撮影に用いるフレームレートにおける1フレームに相当する期間内に、同一の画素から複数回信号が読み出される方式を用いてもよい。
 <フレームによるサンプリング>
 さらに、非画素ごとにシャッタ機能を持たせるフレームレート方式により、フレームレートを高速化した方式においても光信号をサンプリングすることは可能である。
 本明細書は、例えば、説明を行った「ラインスキャンサンプリング」、「ラインスキャンサンプリングの応用例」、「フレームによるサンプリング」のいずれの方式においても実現することは可能である。
 <光源と変調方式>
 可視光通信では、例えば、LED(Light Emitting Diode)を送信機として利用することができる。LEDは、照明またはディスプレイのバックライト光源として普及しつつあり、高速に点滅させることが可能である。
 ただし、可視光通信の送信機として利用する光源は、可視光通信のために自由に点滅させられるわけではない。可視光通信による輝度の変化が人間に認識できてしまうと、照明などの本来の光源の機能を損ねてしまう。そのため、送信信号は、人間の目にちらつきが感じられないよう、かつ、所望の明るさで照らすようにすることが求められる。
 この要求に応える変調方式として、例えば、4PPM(4-Pulse Position Modulation)と呼ばれる変調方式がある。4PPMは、図36Hに示すように、光源の明暗の4回の組み合わせによって2ビットを表現する方式である。また、4PPMは、図36Hに示すように、4回のうち3回が明るい状態、1回が暗い状態となるため、信号の内容に依らず、明るさの平均(平均輝度)は3/4=75%となる。
 比較のため、同様の方式として、図36Iに示すマンチェスタ符号方式がある。マンチェスタ符号方式は、2状態で1ビットを表現する方式であり、変調効率は4PPMと同じ50%であるが、2回のうち1回が明るい状態、1回が暗い状態となるため、平均輝度は1/2=50%となる。すなわち、可視光通信の変調方式としては、4PPMの方がマンチェスタ符号方式よりも適しているといえる。ただし、可視光通信による輝度の変化が人間に認識される場合であっても通信性能が低下するわけではないため、用途によっては人間に認識される輝度の変化が生じる方式を用いても問題は無い。したがって、送信機(光源)は、例えば、ASK(Amplitude Shift Keying)方式、PSK(Phase Shift Keying)方式、PAM(Pulse Amplitude Modulation)などの変調方式を用いて、変調信号を生成し、光源を点灯、照射させてもよい。
 なお、本明細書で説明した送信装置と受信装置の通信方法は、上述の例に限ったものではなく、光・可視光・赤外線・紫外線などどのような周波数を用いた無線通信方式であっても同様に実施することは可能である。
 本明細書において、「場所、または、位置情報に関するシンボル」、「時刻情報に関するシンボル」、「SSIDに関するシンボル」、「アクセス先に関するシンボル」、「暗号鍵に関するシンボル」などを「シンボル」と名づけて説明をしている場合があるが、「シンボル」と呼ばずに「データ」または「情報」または「フィールド」または「ビット」または「領域」と呼んでも、各実施の形態を同様に実施することは可能である。また、「シンボル」、「データ」、「情報」、「フィールド」、「ビット」、「領域」以外の呼び方をしてもよい。また、「場所、または、位置情報に関するシンボル」、「時刻情報に関するシンボル」、「SSIDに関するシンボル」、「アクセス先に関するシンボル」、「暗号鍵に関するシンボル」などどのようなシンボル構成で送信装置は送信してもよく、「場所、または、位置情報に関するデータ」、「時刻情報に関するデータ」、「SSIDに関するデータ」、「アクセス先に関するデータ」、「暗号鍵に関するデータ」などを通信相手に伝送することが重要となる。
 本明細書において、「光源」、「照明部」などを具備する送信装置において、「光源」、「照明部」は複数の「光源」、複数の「照明」で構成されていてもよい。
 (実施の形態A1)
 本実施の形態では、光変調信号の受信方法、受信システムについて説明する。
 図37は、本実施の形態における通信装置で構成したシステムを示している。
 通信装置(例えば、端末など)3700は、光変調信号を受信する装置である。受光部3702は、光変調信号3701を入力とし、受信信号3704を出力する。
 記憶部3704は、受信信号3703を入力とし、記憶する。そして、記憶部3704は記憶したデータを記憶データ3705として出力する。
 送信装置3707は、データ3706、記憶データ3705を入力とし、誤り訂正符号化、変調などの処理を行い、変調信号3708を出力する。
 通信装置(例えば、基地局、AP(Access Point)など)3750の受信装置3701は、通信装置3700が送信した変調信号3708を受信する、つまり、変調信号3708を入力とする。受信装置3701は、復調、誤り訂正復号などの処理を行い、受信データ3752を出力する。
 受信データ3752は、ネットワーク3770を介し、サーバ3772に、データ3771として届けられる。
 サーバ3772は、データ3771を入力とし、光変調信号3701の例えば、復調、誤り訂正復号を行い、光変調信号3701に含まれるデータ3773を得、出力する。
 そして、データ3773は、ネットワーク3770を介し、データ3753として、送信装置3754に入力される。通信装置3750が具備する送信装置3754は、データ3753を入力とし、誤り訂正符号化、変調などの処理を行い、変調信号3755を出力する。
 通信装置3700が具備する受信装置3720は、変調信号3755を入力とし、復調、誤り訂正復号などの処理を行い、受信データ3721を得、出力する。このとき、受信データ3721は、光変調信号3701に含まれ手いるデータとなる。
 上述の図37の動作の説明について、図38を用いて説明する。
 図38において、「端末」は図37の通信装置3700に相当し、「基地局」は図37の通信装置3750に相当し、「サーバ」は図37のサーバ3772に相当する。
 まず、端末は、基地局を介してサーバにアクセスする(3801)。すると、サーバは、端末がアクセスしたことを確認する(3802)。
 そして、端末は、光変調信号を受信したものとする。すると、端末は、サーバに送信するための光変調信号に関するデータを作成する。ただし、このデータは、光変調信号に含まれているデータではない。
 そこで、端末は、「光変調信号に関するデータ」をサーバに伝送するために、基地局に対し送信する(3803)。
 基地局は、端末が送信した「光変調信号に関するデータ」を受信する(3804)。そして、基地局は、この受信データをサーバに送信する。
 すると、サーバは、基地局が送信した「光変調信号に関するデータ」を得る(3806)。そして、サーバは、光変調信号に関するデータから、光変調信号の復調、誤り訂正復号などの処理を行い、光変調信号に含まれているデータを得る(3807)。そして、サーバ、光変調信号に含まれているデータ、つまり、復調などの処理によって得たデータを基地局に送信し、基地局はこのデータを端末に送信する(3808)。
 これにより、端末は、光変調信号の受信データを得ることになる。
 以上のようにすることで、イメージセンサーなどの受光部と、サーバと接続するための通信機能を有した端末は、新たな信号処理部を追加することなく、光変調信号の受信データを得ることができる、つまり、端末の回路規模・演算規模を削減しながらも、光変調信号の受信データを得ることができるという効果を得ることができる。
 なお、本実施の形態において、端末、基地局、サーバと呼んで説明しているが、この呼び方に限ったものではなく、通信機能を有する装置により、システムを構成することが可能である。また、本実施の形態で説明した光変調信号の受信方法は、本明細書で説明した光変調信号の受信方法として、適用することが可能である。
 (実施の形態A2)
 本実施の形態では、光変調信号を利用した動画提供方法について説明する。
 図39Aは、本実施の形態における光変調信号を利用した動画提供方法に関連するシステムの第一例を示している。
 図39Aに示されるように、上記システムは、通信システム3970と端末3980とを備える。通信システム3970は、複数のカメラ3971A、3971B、・・・、3971Nと、サーバ3972と、複数の送信装置3973A、3973B、・・・、3973Nとを備える。
 複数のカメラ3971A等は、撮像により画像データを生成する。
 サーバ3972は、複数のカメラ3971A等のそれぞれが生成した画像データが格納される。
 複数の送信装置3973A等は、複数のカメラ3971A等と1対1に対応する複数の送信装置3973A等であって、複数の送信装置3973A等のそれぞれが、当該送信装置に対応するカメラが生成した画像データが格納されたサーバ内の格納場所へアクセスするための通信に関する情報を可視光通信信号として含む光を送信する。
 例えば、上記情報は、画像データが格納された格納場所を示すアドレス情報を含んでもよい。アドレス情報は、例えばURLである。アドレス情報は、例えば、光変調信号のフレームに、「アクセス関連情報を含むシンボル」として含められ得る。
 例えば、上記情報は、画像データが格納された格納場所に端末がアクセスするための通信の暗号化に用いられる暗号鍵を含んでもよい。上記暗号鍵は、例えば、光変調信号のフレームに、「暗号鍵に関するシンボル」として含められ得る。
 例えば、上記情報は、画像データが格納された格納場所に端末がアクセスするための無線通信の基地局の識別子を含んでもよい。基地局の識別子は、例えば、SSIDである。上記基地局の識別子は、例えば、光変調信号のフレームに、「SSIDに関するシンボル」として含められ得る。
 例えば、上記情報は、画像データが撮像された場所の位置を示す位置情報を含んでもよい。位置情報は、例えば、スタジアムにおける座席を一意に特定し得る識別子である。上記位置情報は、例えば、光変調信号のフレームに、「位置情報に関するシンボル」として含められ得る。
 また、端末3980は、受信装置3981と、送受信装置3982とを備える。
 受信装置3981は、画像データの格納場所を示す情報を可視光通信信号として含む光を受信する。
 送受信装置3982は、受信装置3981が受信した情報により示される格納場所から、画像データを受信する。
 次に、上記システムの処理について説明する。
 図39Bは、光変調信号を利用した動画提供方法に関連する処理の例を示すフロー図である。
 図39Bに示されるように、ステップS3971において、複数のカメラ3971A等による撮像により画像データを生成する。
 ステップS3972において、複数のカメラ3971A等のそれぞれが生成した画像データをサーバ3972に格納する。
 複数の送信装置3973A等のそれぞれによって、当該送信装置に対応するカメラが生成した画像データが格納されたサーバ3972内の格納場所へアクセスするための通信に関する情報を可視光通信信号として含む光を送信する。
 ステップS3981において、画像データの格納場所を示す情報を可視光通信信号として含む光を受信する。
 ステップS3982において、受信した情報により示される格納場所から、画像データを受信する。
 以降において、当該システムについて、より詳細に説明する。
 図39Cは、本実施の形態における光変調信号を利用した動画提供方法に関連するシステムの第二例を示している。
 このシステムは、動画提供システム3999と端末3950_1、3950_2で構成されている。動画提供システム3999が上記通信システムに相当する。
 第1のカメラ3902_1は、サーバ3905と通信を行っており、第1のカメラ3902_1は、第1の撮影データを含む信号3903_1を、サーバ3905に送信し、サーバ3905は、第1のデータを含む信号を、第1のカメラ3902_1に送信する。
 第2のカメラ3902_2は、サーバ3905と通信を行っており、第2のカメラ3902_2は、第2の撮影データを含む信号3903_2を、サーバ3905に送信し、サーバ3905は、第2のデータを含む信号を、第2のカメラ3902_2に送信する。
 第3のカメラ3902_3は、サーバ3905と通信を行っており、第3のカメラ3902_3は、第3の撮影データを含む信号3903_3を、サーバ3905に送信し、サーバ3905は、第3のデータを含む信号を、第3のカメラ3902_3に送信する。
 このとき、サーバ3905は、第1のカメラ3902_1が撮影した動画、または、静止画(第1の撮影データに相当する)を、アクセスした端末などに提供することになる。同様に、サーバ3905は、第2のカメラ3902_2が撮影した動画、または、静止画(第2の撮影データに相当する)を、アクセスした端末などに提供する。そして、サーバ3905は、第3のカメラ3902_3が撮影した動画、または、静止画(第3の撮影データに相当する)を、アクセスした端末などに提供する。
 第1の送信装置3901_1は、光変調信号を送信(照射)するための送信装置を具備しており、送信する光変調信号は、「第1のカメラ3902_1が撮影した動画、または、静止画(第1の撮影データに相当する)」を得るためのサーバ3905のアクセス先の情報(例えば、URL(uniform resource locator)など)を含んでいるものとする。よって、第1の送信装置3901_1が送信(照射)する光変調信号を受信(受光)することで、受信した端末は、サーバ3905のアクセス先の情報を得ることができ、「第1のカメラ3902_1が撮影した動画、または、静止画(第1の撮影データに相当する)」を得ることができる。
 第2の送信装置3901_2は、光変調信号を送信(照射)するための送信装置を具備しており、送信する光変調信号は、「第2のカメラ3902_2が撮影した動画、または、静止画(第2の撮影データに相当する)」を得るためのサーバ3905のアクセス先の情報(例えば、URLなど)を含んでいるものとする。よって、第2の送信装置3901_2が送信(照射)する光変調信号を受信(受光)することで、受信した端末は、サーバ3905のアクセス先の情報を得ることができ、「第2のカメラ3902_2が撮影した動画、または、静止画(第2の撮影データに相当する)」を得ることができる。
 第3の送信装置3901_3は、光変調信号を送信(照射)するための送信装置を具備しており、送信する光変調信号は、「第3のカメラ3902_3が撮影した動画、または、静止画(第3の撮影データに相当する)」を得るためのサーバ3905のアクセス先の情報(例えば、URLなど)を含んでいるものとする。よって、第3の送信装置3901_3が送信(照射)する光変調信号を受信(受光)することで、受信した端末は、サーバ3905のアクセス先の情報を得ることができ、「第3のカメラ3902_3が撮影した動画、または、静止画(第3の撮影データに相当する)」を得ることができる。
 なお、動画には、音声、オーディオが含まれていてもよい。
 第1の通信装置3911_1は、端末3950_1、または、端末3950_2などと通信を行う装置である。サーバ3905は、データを含む信号3906_1(3909_1)を出力とし、ネットワーク3908_1を介し、第1の通信装置3911_1に入力される。そして、第1の通信装置3911_1は、このデータを含む変調信号3912_1を送信することになる。
 一方で、第1の通信装置3911_1は、端末からの受信信号3913_1を受信し、復調などの信号処理を行い、受信データを得、このデータを含む信号3910_1を出力する。信号3910_1(3907_1)はネットワークを介し、サーバ3905に入力される。
 第2の通信装置3911_2は、端末3950_1、または、端末3950_2などと通信を行う装置である。サーバ3905は、データを含む信号3906_2(3909_2)を出力とし、ネットワーク3908_2を介し、第2の通信装置3911_2に入力される。そして、第2の通信装置3911_2は、このデータを含む変調信号3912_2を送信することになる。
 一方で、第2の通信装置3911_2は、端末からの受信信号3913_2を受信し、復調などの信号処理を行い、受信データを得、このデータを含む信号3910_2を出力する。信号3910_2(3907_2)はネットワークを介し、サーバ3905に入力される。
 端末3950_1は、「光変調信号を受信し、復調する受信装置3951_1」、および、「第1の通信装置3911_1、第2の通信装置3911_2と通信を行う送受信装置3954_1」を具備する。
 受信装置3951_1は、(第1の送信装置3901_1、または、第2の送信装置3901_2、または、第3の送信装置3901_3が送信した)光変調信号3952_1を受信し、光変調信号3952_1を復調、誤り訂正復号などの処理を行い、受信データ3953_1を得、出力する。
 送受信装置3954_1は、データ3955_1、および、(受信)データ3953_1を入力とし、例えば、誤り訂正符号化、変調などの信号処理を施し、変調信号3957_1を生成し、出力する。
 一方で、送受信装置3954_1は、第1の通信装置3911_1、第2の通信装置3911_2などが送信した変調信号の受信信号3958_1を入力とし、復調、誤り訂正復号などの処理を行い、受信データ3956_1を得、出力する。
 同様に、端末3950_2は、「光変調信号を受信し、復調する受信装置3951_2」、および、「第1の通信装置3911_1、第2の通信装置3911_2と通信を行う送受信装置3954_2」を具備する。
 受信装置3951_2は、(第1の送信装置3901_1、または、第2の送信装置3901_2、または、第3の送信装置3901_3が送信した)光変調信号3952_2を受信し、光変調信号3952_2を復調、誤り訂正復号などの処理を行い、受信データ3953_2を得、出力する。
 送受信装置3954_2は、データ3955_2、および、(受信)データ3953_2を入力とし、例えば、誤り訂正符号化、変調などの信号処理を施し、変調信号3957_2を生成し、出力する。
 一方で、送受信装置3954_2は、第1の通信装置3911_1、第2の通信装置3911_2などが送信した変調信号の受信信号3958_2を入力とし、復調、誤り訂正復号などの処理を行い、受信データ3956_2を得、出力する。
 次に、図40、図41、図42を用いて、図39Cの光変調信号を利用した動画提供方法、および、システムの動作について説明する。
 図40は、例えば、スタジアムの場面の一例を示している。フィールド4001では、サッカーの試合を行っているものとする。そして、エリア4002において、得点シーンが発生したものとする。なお、図40において、図39Cに相当する装置については、同一番号を付している。
 フィールドの試合の様子、観客の様子などの動画または静止画を撮影するために、第1のカメラ3902_1、第2のカメラ3902_2、第3のカメラ3902_3、第4のカメラ3902_4が設置されているものとする。なお、第1のカメラ3902_1、第2のカメラ3902_2、第3のカメラ3902_3、第4のカメラ3902_4に関連する動作については、図39Cを用いて説明したので、説明を省略する。
 第1のカメラ3902_1、第2のカメラ3902_2、第3のカメラ3902_3、第4のカメラ3902_4にあわせて、第1の送信装置3901_1、第2の送信装置3901_2、第3の送信装置3901_3、第4の送信装置3901_4を設置している。なお、第1の送信装置3901_1、第2の送信装置3901_2、第3の送信装置3901_3、第4の送信装置3901_4に関連する動作については、図39Cを用いて説明したので、説明を省略する。このとき、第1の送信装置3901_1は第1のカメラ3902_1の近辺に設置しており、第2の送信装置3901_2は第2のカメラ3902_2の近辺に設置しており、第3の送信装置3901_3は第3のカメラ3902_3の近辺に設置しており、第4の送信装置3901_4は、第4のカメラ3902_4の近辺に設置しているとよい。また、第1の送信装置3901_1、第2の送信装置3901_2、第3の送信装置3901_3、第4の送信装置3901_4は、スタジアムのフィールドに光を照射するための照明を兼ねていてもよい。
 図40において、第1の端末3950_1および、第1の端末3950_1を使用するユーザは、図40に示したような位置におり、エリア4002で発生した得点シーンが見づらかった可能性が高い。これに伴い、第1の端末3950_1を使用するユーザは、得点シーンが発生したエリア4002に近いカメラ、つまり第3のカメラ3902_3が撮影した動画または静止画を見たいという要求をもったものとする。
 そこで、ユーザは、第1の端末3950_1の受信装置3951の受光部を第3のカメラ3902_3の方向に向けるという動作を行うものとする。これにより、第1の端末3905_1は、第3のカメラ3902_3の近くにある第3の送信装置3901_3が送信(照射)した光変調信号を受信する。
 この動作を起点として、第1の端末3905_1は、第3のカメラ3902_3が撮影した動画または静止画の情報を得ることになるが、その詳細の動作について、図41、図42を用いて説明する。
 図41は、第kのカメラ3902_k、第kの送信装置3901_k、サーバ3905の動作フローの例を示している。なお、図40のようなシーンでは、kは1または2または3または4となる。ただし、カメラ、送信装置の数は、4に限ったものではない。
 また、図39C、図40では、「第kのカメラ3902_kが撮影した動画、または、静止画(第kの撮影データに相当する)」を得るためのサーバ3905のアクセス先の情報(例えば、URLなど)を含む光変調信号を送信する装置は、1つのの場合を例に説明しているが、「第kのカメラ3902_kが撮影した動画、または、静止画(第kの撮影データに相当する)」を得るためのサーバ3905のアクセス先の情報(例えば、URLなど)を含む光変調信号を送信する装置は、複数存在していてもよく、複数存在していても、同様に実施することができる。
 図41に示すように、第kのカメラ3902_kは、動画または静止画の撮影を行っているものとする(4101)。
 そして、第kのカメラ3902_kは、撮影したデータをサーバ3905に送信する。そして、第kのカメラ3902_kはサーバーにある動画または静止画を閲覧するためのアクセス先の情報を第kの送信装置3901_kに送信する(4102)。
 すると、第kの送信装置3901_kは、サーバが保有する動画または静止画を閲覧するためのアクセス先の情報を得ることになる。そして、第kの送信装置3901_kは、この情報を含んだ光変調信号を送信(照射)する(4103)。
 また、サーバ3905は、第kのカメラ3902_kが送信した撮影データを記憶するとともに、配信を行うことになる(4104)。
 なお、図41の例では、「第kのカメラ3902_kはサーバーにある動画または静止画を閲覧するためのアクセス先の情報を第kの送信装置3901_kに送信する」としているが、この動作がなく、あらかじめ、第kの送信装置3901_kが「第kのカメラ3902_kはサーバーにある動画または静止画を閲覧するためのアクセス先の情報」を保有していてもよい。また、別の方法として、「第kのカメラ3902_kはサーバーにある動画または静止画を閲覧するためのアクセス先の情報を第kの送信装置3901_kに送信する」という動作は、図41にタイミングに限ったものではなく、どのようなタイミングであってもよい。
 図42は、図40の状態において、第1の端末3950_1が、第3のカメラ3902_3で撮影した動画または静止画の情報を得ようとしている際の、第1の端末3950_1、第3の送信装置3902_3、第1の通信装置3911_1の動作フローの例を示している。
 図42に示すように、第3の送信装置3901_3は、サーバ3905にある「第3のカメラ3902_3が撮影した動画または静止画」を閲覧するためのアクセス先の情報を得る。そして、第3の送信装置3901_3は、この情報を含んだ光変調信号を送信(照射)する(4201)。
 第1の端末3950_1のユーザは、第3のカメラ3902_3の付近から撮影した動画または静止画を見たいため、第1の端末3950_1は、第3のカメラ3902_3付近から照射されている光変調信号、つまり、第3の送信装置3901_3が送信した光変調信号を受信(受光)しようと試み、光変調信号を受信する(4202)。
 すると、第1の端末3950_1は、第3の送信装置3901_3が送信した光変調信号を受信することで、第3のカメラ3902_3が撮影した動画または静止画を得るためのアクセス先の情報を得たため、第1の端末3950_1は、送受信装置3954_1により、第1の通信装置3911_1を介して、サーバ3905へのアクセスを要求する(4203)。
 第1の通信装置3911_1は、第1の端末3950_1が具備する送受信装置3954_1が送信した変調信号3957_1を受信する。そして、第1の通信装置3911_1は、「第1の端末3950_1が、第3のカメラ3902_3が撮影した動画または静止画のデータを要求したこと」を知り、サーバ3905へアクセスし、「第3のカメラ3902_3が撮影した動画または静止画」の情報を得る(4204)。
 そして、第1の通信装置3911_1は、「第3のカメラ3902_3が撮影した動画または静止画」の情報を含んだ変調信号3912_1を送信する(4205)。
 すると、第1の端末3950_1は、第1の通信装置3911_1が送信した変調信号3912_1を受信し、「第3のカメラ3902_3が撮影した動画または静止画」の情報を得る(4206)。
 図40のシーンを説明するにあたり、端末として、「第1の端末3950_1」の1台が存在する例を記載したが、これに限ったものではない、つまり、複数の端末が、例えば、第3のカメラ3902_3が撮影した動画または静止画の情報に対し、複数の端末がアクセスしてもよい。
 また、図39Cでは、サーバ3950にアクセスするための通信装置として、第1の通信装置3911_1、第2の通信装置3911_2の2台が存在する例を説明したが、これに限ったものではなく、「1台の通信装置が存在する」としてもよいし、「2台以上の通信装置が存在する」としてもよい。
 以上のようにすることで、端末をしようするユーザは、簡単に、所望の動画または静止画データを得ることができるという効果を得ることができる。
 次に、図39Cにおける各機器が送信する変調信号のフレーム構成の例を説明する。
 図43は、図39Cにおける第1の送信装置3901_1、第2の送信装置3901_2、第3の送信装置3901_3が送信する光変調信号のフレーム構成の一例を示しており、横軸は時間であるものとする。例えば、第kの送信装置3901_kは、プリアンブル4301、第kのカメラが撮影した動画または静止画データのアクセス関連情報を含むシンボル、データシンボル4303の順に送信するものとする。
 なお、プリアンブル4301は、通信相手の受信装置が時間などの同期を行うためのシンボル、通信相手の受信装置が信号検出を行うためのシンボル、通信相手の受信装置が各シンボルを復調するために必要な制御情報(例えば、通信方式の情報、変調方式の情報、誤り訂正符号に関する情報)シンボルを含むものとする。
 第kのカメラが撮影した動画または静止画データのアクセス関連情報を含むシンボル4302は、通信相手である受信装置に第kのカメラが撮影した動画または静止画データのアクセス先に関する情報を通知するためのシンボルである。
 データシンボル4303は、第1の送信装置3901_1、第2の送信装置3901_2、第3の送信装置3901_3が、第1の端末3950_1、第2の端末3950_2などの端末にデータを伝送するためのシンボルである。
 なお、図43において、周波数軸方向、つまり、キャリア方向にシンボルが存在していてもよい。したがって、OFDM(Orthogonal Frequency Division Multiplexing)などのマルチキャリア方式の変調信号であってもよく、また、図43で示したシンボル以外のシンボルがフレームに含まれていてもよい。また、シンボルの送信する順番については、図43に限ったものではない。
 図44は、図39Cにおける第1の送信装置3901_1、第2の送信装置3901_2、第3の送信装置3901_3が送信する光変調信号の、図43と異なるフレーム構成の一例を示しており、横軸は時間であるものとする。なお、図44において、図43と同様に動作するものについては同一番号を付しており説明を省略する。
 図44において、図43と異なる点は、SSIDに関するシンボル4401がフレームに含まれている点である。つまり、第1の送信装置3901_1、第2の送信装置3901_2、第3の送信装置3901_3は、第1の端末3950_1、第2の端末3950_2などの端末がアクセス可能な例えば無線LANのSSIDを、端末に通知することになる。これにより、端末は、無線LANへの接続を容易に、かつ、安全に実施することが可能となる。なお、SSIDに関するシンボル4401を用いた、無線LANなどへのアクセス方法の詳細については、実施の形態1から実施の形態7で説明したので説明を省略する。
 これにより、第1の端末3950_1、第2の端末3950_2などの端末は、無線LANなどのアクセスポイントを経由して、第1のカメラ3902_1が撮影した動画または静止画のデータ、第2のカメラ3902_2が撮影した動画または静止画のデータ、第3のカメラ3902_3が撮影した動画または静止画のデータにアクセスすることが可能となる。
 なお、このような場合、図39Cの第1の通信装置3911_1、第2の通信装置3911_2は、例えば、無線LANのアクセスポイントとなる。また、図44において、周波数方向、つまり、キャリア方向にシンボルが存在していてもよい。したがって、OFDMなどのマルチキャリア方式の変調信号であってもよく、また、図44に示したシンボル以外のシンボルがフレームに含まれていてもよい。また、シンボルの送信する順番については、図44に限ったものではない。
 図45は、図39Cにおける第1の送信装置3901_1、第2の送信装置3901_2、第3の送信装置3901_3が送信する光変調信号の、図43、図44と異なるフレーム構成の一例を示しており、横軸は時間であるものとする。なお、図45において、図43、図44と同様に動作するものについては同一番号を付しており説明を省略する。
 図45において、図43、図44と異なる点は、暗号鍵に関するシンボル4501がフレームに含まれている点である。つまり、第1の送信装置3901_1、第2の送信装置3901_2、第3の送信装置3901_3は、第1の端末3950_1、第2の端末3950_2などの端末がアクセス可能な例えば無線LANのSSID、および、その無線LANの暗号鍵を端末に通知することになる。これにより、端末は、無線LANへの接続を容易に、かつ、安全に実施することが可能となる。なお、SSIDに関するシンボル4401、暗号鍵に関するシンボル4501を用いた、無線LANなどへのアクセス方法の詳細については、実施の形態1から実施の形態7で説明したので説明を省略する。
 これにより、第1の端末3950_1、第2の端末3950_2などの端末は、無線LANなどのアクセスポイントを経由して、第1のカメラ3902_1が撮影した動画または静止画のデータ、第2のカメラ3902_2が撮影した動画または静止画のデータ、第3のカメラ3902_3が撮影した動画または静止画のデータにアクセスすることが可能となる。
 なお、このような場合、図39Cの第1の通信装置3911_1、第2の通信装置3911_2は、例えば、無線LANのアクセスポイントとなる。また、図45において、周波数方向、つまり、キャリア方向にシンボルが存在していてもよい。したがって、OFDMなどのマルチキャリア方式の変調信号であってもよく、また、図45に示したシンボル以外のシンボルがフレームに含まれていてもよい。また、シンボルの送信する順番については、図45に限ったものではない。
 図46は、図39Cにおける第1の送信装置3901_1、第2の送信装置3901_2、第3の送信装置3901_3が送信する光変調信号の、図43、図44、図45と異なるフレーム構成の一例を示しており、横軸は時間であるものとする。なお、図46において、図43、図45と同様に動作するものについては同一番号を付しており説明を省略する。
 図46の特徴的な点は、SSIDに関するシンボルが含まれておらず、暗号鍵に関するシンボル4501がフレームに含まれている点である。このとき、以下の2つの方法、いずれを適用してもよい。
 (第1の方法)
 「図44のように、SSIDに関するシンボル4401を含むフレームを送信する送信装置」と「図46のように、暗号鍵に関するシンボル4501を含むフレームを送信する送信装置」が別々に存在する。端末は、この二つの送信装置の光変調信号を受信し、無線LANなどの通信装置にアクセスすることが可能となる。
 そして、端末は、無線LANなどの通信装置を介して、第1のカメラ3902_1が撮影した動画または静止画のデータ、第2のカメラ3902_2が撮影した動画または静止画のデータ、第3のカメラ3902_3が撮影した動画または静止画のデータにアクセスすることが可能となる。
 なお、図44のフレーム構成、図46のフレーム構成のいずれかのフレームにおいて、第kのカメラが撮影した動画または静止画データのアクセス関連情報を含むシンボル4302が含まれていなくてもよい。
 これにより、第1の端末3950_1、第2の端末3950_2などの端末は、無線LANなどのアクセスポイントを経由して、第1のカメラ3902_1が撮影した動画または静止画のデータ、第2のカメラ3902_2が撮影した動画または静止画のデータ、第3のカメラ3902_3が撮影した動画または静止画のデータにアクセスすることが可能となる。
 なお、このような場合、図39Cの第1の通信装置3911_1、第2の通信装置3911_2は、例えば、無線LANのアクセスポイントとなる。また、図46において、周波数方向、つまり、キャリア方向にシンボルが存在していてもよい。したがって、OFDMなどのマルチキャリア方式の変調信号であってもよく、また、図46に示したシンボル以外のシンボルがフレームに含まれていてもよい。また、シンボルの送信する順番については、図46に限ったものではない。
 (第2の方法)
 端末は、無線LANなどのアクセスポイントの情報を入手可能な状態を考える。この場合に、端末が、図46のフレーム構成の光変調信号を受信し、暗号鍵に関するシンボル4501を得たものとする。これにより、端末は、無線LANなどのアクセスポイントに接続することが可能となる。よって、第1の端末3950_1、第2の端末3950_2などの端末は、無線LANなどのアクセスポイントを経由して、第1のカメラ3902_1が撮影した動画または静止画のデータ、第2のカメラ3902_2が撮影した動画または静止画のデータ、第3のカメラ3902_3が撮影した動画または静止画のデータにアクセスすることが可能となる。
 なお、このような場合、図39Cの第1の通信装置3911_1、第2の通信装置3911_2は、例えば、無線LANのアクセスポイントとなる。また、図46において、周波数方向、つまり、キャリア方向にシンボルが存在していてもよい。したがって、OFDMなどのマルチキャリア方式の変調信号であってもよく、また、図46に示したシンボル以外のシンボルがフレームに含まれていてもよい。
 以上のように実施することで、ユーザが望む位置で撮影した動画または静止画を得るために、ユーザは端末をユーザが望む位置の方向に向けるという、簡単な動作により、端末は、ユーザが望む位置で撮影した動画または静止画を得ることができるという効果を得ることができる。
 (実施の形態A3)
 本実施の形態では、実施の形態A2で説明した図39Cにおける第1の送信装置3901_1、第2の送信装置3901_2、第3の送信装置3901_3が送信する光変調信号のフレーム構成図43から図46と異なるフレーム構成について説明する。
 図47は、図39Cにおける第1の送信装置3901_1、第2の送信装置3901_2、第3の送信装置3901_3が送信する光変調信号のフレーム構成の一例を示しており、横軸は時間であるものとする。図47のフレーム構成は、図43のフレームを構成するシンボルに加え、位置情報を含むシンボル4701を含んでいる。例えば、図39Cにおける第1の送信装置3901_1が、図47のフレーム構成を送信する場合、位置情報を含むシンボル4701は、第1の送信装置3901_1、または、第1のカメラ3902_1が存在する位置近辺の情報を含んでいるものとする。例えば、スタジアムの座席の情報であってもよい。
 このようにすることで、端末は、情報を得ようとしている動画または静止画を撮影した位置の情報を入手することができ、端末は、それが、所望の動画または静止画の情報であるかを判断することができるという効果を得ることができる。
 さらに、スタジアムなどにおいて、端末は、図47に含まれている位置情報を含むシンボル4701を得ることで、端末を使用しているユーザは、容易に、座席を探すことができるという効果を得ることもできる。
 なお、図47において、周波数軸方向、つまり、キャリア方向にシンボルが存在していてもよい。したがって、OFDMなどのマルチキャリア方式の変調信号であってもよく、また、図47で示したシンボル以外のシンボルがフレームに含まれていてもよい。また、シンボルの送信する順番については、図47に限ったものではない。
 図48は、図39Cにおける第1の送信装置3901_1、第2の送信装置3901_2、第3の送信装置3901_3が送信する光変調信号のフレーム構成の一例を示しており、横軸は時間であるものとする。図48のフレーム構成は、図44のフレームを構成するシンボルに加え、位置情報を含むシンボル4701を含んでいる。例えば、図39Cにおける第1の送信装置3901_1が、図48のフレーム構成を送信する場合、位置情報を含むシンボル4701は、第1の送信装置3901_1、または、第1のカメラ3902_1が存在する位置近辺の情報を含んでいるものとする。例えば、スタジアムの座席の情報であってもよい。
 このようにすることで、端末は、情報を得ようとしている動画または静止画を撮影した位置の情報を入手することができ、端末は、それが、所望の動画または静止画の情報であるかを判断することができるという効果を得ることができる。
 さらに、スタジアムなどにおいて、端末は、図48に含まれている位置情報を含むシンボル4701を得ることで、端末を使用しているユーザは、容易に、座席を探すことができるという効果を得ることもできる。
 図49は、図39Cにおける第1の送信装置3901_1、第2の送信装置3901_2、第3の送信装置3901_3が送信する光変調信号のフレーム構成の一例を示しており、横軸は時間であるものとする。図49のフレーム構成は、図45のフレームを構成するシンボルに加え、位置情報を含むシンボル4701を含んでいる。例えば、図39Cにおける第1の送信装置3901_1が、図49のフレーム構成を送信する場合、位置情報を含むシンボル4701は、第1の送信装置3901_1、または、第1のカメラ3902_1が存在する位置近辺の情報を含んでいるものとする。例えば、スタジアムの座席の情報であってもよい。
 このようにすることで、端末は、情報を得ようとしている動画または静止画を撮影した位置の情報を入手することができ、端末は、それが、所望の動画または静止画の情報であるかを判断することができるという効果を得ることができる。
 さらに、スタジアムなどにおいて、端末は、図49に含まれている位置情報を含むシンボル4701を得ることで、端末を使用しているユーザは、容易に、座席を探すことができるという効果を得ることもできる。
 図50は、図39Cにおける第1の送信装置3901_1、第2の送信装置3901_2、第3の送信装置3901_3が送信する光変調信号のフレーム構成の一例を示しており、横軸は時間であるものとする。図50のフレーム構成は、図46のフレームを構成するシンボルに加え、位置情報を含むシンボル4701を含んでいる。例えば、図39Cにおける第1の送信装置3901_1が、図50のフレーム構成を送信する場合、位置情報を含むシンボル4701は、第1の送信装置3901_1、または、第1のカメラ3902_1が存在する位置近辺の情報を含んでいるものとする。例えば、スタジアムの座席の情報であってもよい。
 このようにすることで、端末は、情報を得ようとしている動画または静止画を撮影した位置の情報を入手することができ、端末は、それが、所望の動画または静止画の情報であるかを判断することができるという効果を得ることができる。
 さらに、スタジアムなどにおいて、端末は、図50に含まれている位置情報を含むシンボル4701を得ることで、端末を使用しているユーザは、容易に、座席を探すことができるという効果を得ることもできる。
 また、図39Cにおける第1の端末3950_1、第2の端末3950_2は、第1の送信装置3901_1、第2の送信装置3901_2、第3の送信装置3901_3が送信した位置情報を含むシンボル4701に含まれている位置情報を記憶する機能を有していてもよい。これにより、端末を保有しているユーザは、容易に、位置情報(スタジアムでの座席情報)を呼び出すことができ、また、位置情報とあわせて動画または静止画を得るためのアクセス先を知ることがきるという利点がある。
 (補足3)
 「本明細書において、通信装置を具備した車に関する動作」として説明を行っている実施の形態において、「通信装置を具備した車」を、「通信装置を具備したロボット」、または、「通信装置を具備した乗り物」、または、「通信装置を具備した動くことが可能な家電機器(家庭用電気機械器具)」、または、「通信装置を具備した二輪車」、「通信機器を具備したドローン」、または、「通信機器を具備した航空機」、または、「通信装置を具備したVehicle」、または、「通信装置を具備した飛行船」、または、「通信装置を具備した船」に置き換えて各実施の形態を実施しても同様に実施することが可能である。
 また、実施の形態A2において、例えば、図40において、第1の端末3950_1は、「第1のカメラ3902_1の動画または画像」、「第2のカメラ3902_2の動画または画像」、「第3のカメラ3902_3の動画または画像」、「第4のカメラ3902_4の動画または画像」のうちのいずれかの動画または画像を得るという例を説明したが、例えば、第3の送信装置3901_3と第4の送信装置3901_4の間に第5の送信装置3901_5があり、この光変調信号を第1の端末3950_1が得たとき、「第1のカメラ3902_1の動画または画像」、「第2のカメラ3902_2の動画または画像」、「第3のカメラ3902_3の動画または画像」、「第4のカメラ3902_4の動画または画像」のうちの複数の動画または画像から、第5の送信装置3901_5付近から撮影したと推定される動画または画像を生成し、第1の端末3950_1に対し、提供してもよい。なお、この動画または画像の生成は、例えば、図39Cのサーバ3905で行われ、実施の形態A2で説明した動画または画像提供方法と同様の方法で、第1の端末3950_1に対し、提供が行われることになる。
 そして、実施の形態A2の図39Aの通信システム3970は、ロボット、車、乗り物、(動くことが可能な)家電機器(家庭用電気機械器具)、二輪車、ドローン、航空機、Vehicle、飛行船、船などに搭載されてもよい。また、前述のように、複数のカメラが搭載されている場合、複数のカメラから得た動画または画像から、「合成または仮想視点」の「動画または画像」を生成し、端末に対し、提供してもよい。なお、図39Aにおいて、「合成または仮想視点」の「動画または画像」は、例えば、サーバ3972により生成されることになる。なお、サーバと呼んでいるが、信号処理部であってもよい。
 そして、本明細書において、サーバと呼んでいるが呼び名はこれに限ったものではなく、信号処理部、パーソナルコンピュータ、コンピュータ、タブレット、演算処理部、CPU、GPU(Graphics Processing Unit)などであってもよい。
 なお、上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。ここで、上記各実施の形態のシステム又は装置などを実現するソフトウェアは、次のようなプログラムである。
 すなわち、このプログラムは、通信システムの制御方法であって、前記通信システムは、複数のカメラと、サーバと、前記複数のカメラと1対1に対応する複数の送信装置とを備え、前記複数のカメラによる撮像により画像データを生成し、前記複数のカメラのそれぞれが生成した前記画像データを前記サーバに格納し、前記複数の送信装置のそれぞれによって、当該送信装置に対応するカメラが生成した前記画像データが格納された前記サーバ内の格納場所へアクセスするための通信に関する情報を可視光通信信号として含む光を送信する制御方法を実行させる。
 また、このプログラムは、端末の制御方法であって、画像データの格納場所を示す情報を可視光通信信号として含む光を受信し、受信した前記情報により示される前記格納場所から、前記画像データを受信する制御方法を実行させる。
 以上、一つまたは複数の態様に係る通信システムなどについて、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つまたは複数の態様の範囲内に含まれてもよい。
 本発明は、場所情報の取得において有用である。
 3901_1、3901_2、3901_3、3973A,3973B、3973N  送信装置
 3902_1、3902_2、3902_3、3971A、3971B、3971N  カメラ
 3903_1、3903_2、3903_3、3906_1、3906_2、3907_1、3907_2、3909_1、3909_2、3910_1、3910_2  信号
 3908_1、3908_2  ネットワーク
 3905、3972  サーバ
 3911_1、3911_2  通信装置
 3912_1、3912_2、3957_1、3957_2  変調信号
 3913_1、3913_2、3958_1、3958_2  受信信号
 3950_1、3950_2  端末
 3951_1、3951_2  受信装置
 3952_1、3952_2  光変調信号
 3953_1、3953_2、3956_1、3956_2  受信データ
 3954_1、3954_2  送受信装置
 3955_1、3955_2  データ
 3970  通信システム
 3999  動画提供システム

Claims (9)

  1.  撮像により画像データを生成する複数のカメラと、
     前記複数のカメラのそれぞれが生成した前記画像データが格納されるサーバと、
     前記複数のカメラと1対1に対応する複数の送信装置であって、前記複数の送信装置のそれぞれが、当該送信装置に対応するカメラが生成した前記画像データが格納された前記サーバ内の格納場所へアクセスするための通信に関する情報を可視光通信信号として含む光を送信する複数の送信装置とを備える
     通信システム。
  2.  前記情報は、前記画像データが格納された前記格納場所を示すアドレス情報を含む
     請求項1に記載の通信システム。
  3.  前記情報は、前記画像データが格納された前記格納場所に端末がアクセスするための通信の暗号化に用いられる暗号鍵を含む
     請求項1又は2に記載の通信システム。
  4.  前記情報は、前記画像データが格納された前記格納場所に端末がアクセスするための無線通信の基地局の識別子を含む
     請求項1~3のいずれか1項に記載の通信システム。
  5.  前記情報は、前記画像データが撮像された場所の位置を示す位置情報を含む
     請求項1~4のいずれか1項に記載の通信システム。
  6.  画像データの格納場所を示す情報を可視光通信信号として含む光を受信する受信装置と、
     前記受信装置が受信した前記情報により示される前記格納場所から、前記画像データを受信する送受信装置とを備える
     端末。
  7.  通信システムの制御方法であって、
     前記通信システムは、複数のカメラと、サーバと、前記複数のカメラと1対1に対応する複数の送信装置とを備え、
     前記複数のカメラによる撮像により画像データを生成し、
     前記複数のカメラのそれぞれが生成した前記画像データを前記サーバに格納し、
     前記複数の送信装置のそれぞれによって、当該送信装置に対応するカメラが生成した前記画像データが格納された前記サーバ内の格納場所へアクセスするための通信に関する情報を可視光通信信号として含む光を送信する
     制御方法。
  8.  端末の制御方法であって、
     画像データの格納場所を示す情報を可視光通信信号として含む光を受信し、
     受信した前記情報により示される前記格納場所から、前記画像データを受信する
     制御方法。
  9.  請求項8に記載の制御方法をコンピュータに実行させるためのプログラム。
PCT/JP2018/026258 2017-07-20 2018-07-12 通信システム、端末、制御方法、及び、プログラム WO2019017262A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2019530992A JPWO2019017262A1 (ja) 2017-07-20 2018-07-12 通信システム、端末、制御方法、及び、プログラム
CN201880047085.5A CN110892389A (zh) 2017-07-20 2018-07-12 通信系统、终端、控制方法及程序
EP18834335.4A EP3657342A4 (en) 2017-07-20 2018-07-12 COMMUNICATION SYSTEM, TERMINAL, CONTROL PROCEDURE AND PROGRAM
US16/744,766 US11201671B2 (en) 2017-07-20 2020-01-16 Communication system, terminal, control method, and recording medium
US17/523,420 US11563489B2 (en) 2017-07-20 2021-11-10 Communication system, terminal, control method, and recording medium
US18/082,970 US11888518B2 (en) 2017-07-20 2022-12-16 Communication system, terminal, control method, and recording medium
JP2023177850A JP2023178375A (ja) 2017-07-20 2023-10-13 端末、方法、及び、プログラム
US18/538,453 US20240113781A1 (en) 2017-07-20 2023-12-13 Communication system, terminal, control method, and recording medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762534880P 2017-07-20 2017-07-20
US62/534,880 2017-07-20
US201762539800P 2017-08-01 2017-08-01
US62/539,800 2017-08-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/744,766 Continuation US11201671B2 (en) 2017-07-20 2020-01-16 Communication system, terminal, control method, and recording medium

Publications (1)

Publication Number Publication Date
WO2019017262A1 true WO2019017262A1 (ja) 2019-01-24

Family

ID=65015201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026258 WO2019017262A1 (ja) 2017-07-20 2018-07-12 通信システム、端末、制御方法、及び、プログラム

Country Status (5)

Country Link
US (4) US11201671B2 (ja)
EP (1) EP3657342A4 (ja)
JP (2) JPWO2019017262A1 (ja)
CN (1) CN110892389A (ja)
WO (1) WO2019017262A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110663203B (zh) * 2017-06-01 2023-12-01 松下电器(美国)知识产权公司 接收装置以及接收方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221924A (ja) * 2003-01-15 2004-08-05 Sharp Corp 携帯端末装置及びデータ転送方式
JP2006086858A (ja) * 2004-09-16 2006-03-30 Fuji Photo Film Co Ltd 撮影装置
JP2008236159A (ja) * 2007-03-19 2008-10-02 Olympus Imaging Corp カメラおよび画像共有システム
JP2015152958A (ja) * 2014-02-10 2015-08-24 キヤノン株式会社 通信機器、その制御方法及びプログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103650383B (zh) * 2012-05-24 2017-04-12 松下电器(美国)知识产权公司 信息通信方法
SG10201609857SA (en) * 2012-12-27 2017-01-27 Panasonic Ip Corp America Information communication method
CN105723631B (zh) * 2013-11-22 2018-10-16 松下电器(美国)知识产权公司 通信方法、通信装置及记录介质
US10484828B2 (en) * 2014-03-25 2019-11-19 Osram Sylvania Inc. Techniques for indoor navigation with occupancy tracking and location tracking via light-based communication
CN105783914A (zh) * 2016-03-20 2016-07-20 文成县刀锋科技有限公司 一种基于可见光通信的室内导航系统
US10504077B1 (en) * 2016-08-24 2019-12-10 United Services Automobile Association (Usaa) Mobile cash deposit system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221924A (ja) * 2003-01-15 2004-08-05 Sharp Corp 携帯端末装置及びデータ転送方式
JP2006086858A (ja) * 2004-09-16 2006-03-30 Fuji Photo Film Co Ltd 撮影装置
JP2008236159A (ja) * 2007-03-19 2008-10-02 Olympus Imaging Corp カメラおよび画像共有システム
JP2015152958A (ja) * 2014-02-10 2015-08-24 キヤノン株式会社 通信機器、その制御方法及びプログラム

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"NGP use case document", IEEE802.11-16/0137R4, March 2016 (2016-03-01), Retrieved from the Internet <URL:httpsV/mentor.ieee.org/802.11/dcn/16/11-16-0137-04-00az-ngp-use-case-document.pptx>
H. KOGAN. KODAMAT. KONISHI: "High-speed power line communication system based on wavelet OFDM", PROC. OF ISPLC, 2003
S. GALLIH. KOGAN. KODAMA: "Advanced signal processing for PLCs: Wavelet-OFDM", PROC. OF 2008 IEEE INTERNATIONAL SYMPOSIUM ON POWER LINE COMMUNICATIONS AND ITS APPLICATIONS
See also references of EP3657342A4

Also Published As

Publication number Publication date
US11563489B2 (en) 2023-01-24
EP3657342A1 (en) 2020-05-27
US20200153507A1 (en) 2020-05-14
US20220069905A1 (en) 2022-03-03
US11201671B2 (en) 2021-12-14
US20230123213A1 (en) 2023-04-20
JPWO2019017262A1 (ja) 2020-05-28
JP2023178375A (ja) 2023-12-14
EP3657342A4 (en) 2020-07-29
CN110892389A (zh) 2020-03-17
US11888518B2 (en) 2024-01-30
US20240113781A1 (en) 2024-04-04

Similar Documents

Publication Publication Date Title
JP7222124B2 (ja) 端末及び通信方法
JP7418503B2 (ja) 受信方法および受信装置
JP7466031B2 (ja) 通信装置及び通信方法
US20240113781A1 (en) Communication system, terminal, control method, and recording medium
WO2018221472A1 (ja) 受信装置および受信方法
US20230142456A1 (en) Transmission device, reception device, communication system, transmission method, reception method, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18834335

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019530992

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018834335

Country of ref document: EP

Effective date: 20200220