WO2019017167A1 - エジェクタ式冷凍サイクル - Google Patents

エジェクタ式冷凍サイクル Download PDF

Info

Publication number
WO2019017167A1
WO2019017167A1 PCT/JP2018/024259 JP2018024259W WO2019017167A1 WO 2019017167 A1 WO2019017167 A1 WO 2019017167A1 JP 2018024259 W JP2018024259 W JP 2018024259W WO 2019017167 A1 WO2019017167 A1 WO 2019017167A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
ejector
air
refrigeration cycle
evaporator
Prior art date
Application number
PCT/JP2018/024259
Other languages
English (en)
French (fr)
Inventor
伊藤 正博
押谷 洋
陽一郎 河本
大介 櫻井
紘志 前田
航 袁
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2019017167A1 publication Critical patent/WO2019017167A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series

Definitions

  • the present disclosure relates to an ejector-type refrigeration cycle including an ejector.
  • the ejector-type refrigerating cycle which is a vapor compression type refrigerating cycle apparatus provided with an ejector as a refrigerant
  • coolant pressure-reduction apparatus is known.
  • the pressure-increasing action of the ejector can increase the pressure of the refrigerant sucked into the compressor to be higher than the refrigerant evaporation pressure in the evaporator.
  • power consumption of the compressor can be reduced to improve the coefficient of performance (COP) of the cycle.
  • COP coefficient of performance
  • Patent Document 1 discloses an evaporator unit used when configuring an ejector-type refrigeration cycle.
  • the branch unit, the ejector, the suction side depressurizing unit, the suction side evaporator, the outflow side evaporator and the like among the constituent devices of the ejector type refrigeration cycle are integrated (in other words, unitized) It is In patent document 1, it is trying to improve the productivity of an ejector type freezing cycle by unification of such cycle composition equipment.
  • Patent Document 2 discloses a vehicle air conditioner that performs dehumidifying and heating of a vehicle interior that is a space to be air conditioned.
  • the refrigeration cycle apparatus applied to the vehicle air conditioner of Patent Document 2 includes an indoor condenser, an outdoor heat exchanger, an indoor evaporator, and the like.
  • the indoor condenser, the outdoor heat exchanger, and the indoor evaporator are switched to a refrigerant circuit serially connected in this order with respect to the refrigerant flow.
  • the indoor condenser when dehumidifying and heating the vehicle interior, functions as a radiator and the outdoor heat exchanger and the indoor evaporator function as an evaporator. Then, the air blown into the vehicle compartment is cooled and dehumidified by the indoor evaporator, and the heat absorbed from the outside air by the outdoor heat exchanger and the heat absorbed from the blown air by the indoor evaporator are used as heat sources, The dehumidified blast air is reheated by the indoor condenser.
  • the evaporator unit of Patent Document 1 includes an ejector and a suction side pressure reducing unit.
  • the refrigerant evaporation temperature in the outdoor heat exchanger is determined by the pressure loss when the refrigerant flowing out from the outdoor heat exchanger flows through the ejector and the suction side pressure reduction section, the suction side evaporator and the outflow side evaporator of the evaporator unit In some cases, the temperature may rise above the refrigerant evaporation temperature.
  • the refrigerant evaporation temperature in the indoor evaporator is a temperature that can suppress the formation of frost on the indoor evaporator (specifically, It may have to be set to a temperature higher than 0.degree. Therefore, the temperature difference between the refrigerant that exchanges heat in the outdoor heat exchanger and the outside air may be reduced, and the heat absorption of the refrigerant in the outdoor heat exchanger may be reduced.
  • this indication aims at controlling a fall of air-conditioning capability which arises by pressure loss of an ejector or suction side decompression part in an ejector type refrigeration cycle applied to an air-conditioner.
  • An ejector-type refrigeration cycle is applied to an air conditioner, and includes a compressor, an indoor radiator, a heating pressure reducing unit, an outdoor heat exchanger, a cooling pressure reducing unit, a branch unit, and an ejector. , An outlet-side evaporator, a suction-side depressurizing unit, a suction-side evaporator, a bypass passage, and an opening / closing mechanism.
  • the compressor compresses and discharges the refrigerant.
  • the indoor radiator exchanges heat between the refrigerant discharged from the compressor and the blown air blown into the space to be air conditioned.
  • the heating decompression unit decompresses the refrigerant flowing out of the indoor radiator.
  • the outdoor heat exchanger exchanges heat between the refrigerant flowing out of the heating pressure reducing unit and the outside air.
  • the cooling decompression unit decompresses the refrigerant flowing out of the outdoor heat exchanger.
  • the branch portion branches the flow of the refrigerant flowing out of the cooling pressure reducing portion.
  • the ejector sucks the refrigerant from the refrigerant suction port by the suction action of the jet refrigerant which is jetted from the nozzle portion for decompressing one of the refrigerant branched at the branch portion, and the jet refrigerant and the suction refrigerant sucked from the refrigerant suction port And a pressure-boosting unit for boosting the pressure of the mixed refrigerant.
  • the outflow side evaporator exchanges heat between the refrigerant flowing out of the ejector and the blown air before passing through the indoor radiator.
  • the suction side pressure reducing section reduces the pressure of the other refrigerant branched at the branching section.
  • the suction-side evaporator exchanges heat between the refrigerant flowing out of the suction-side depressurizing section and the air before passing through the indoor radiator.
  • the bypass passage diverts the refrigerant on the downstream side of the outdoor heat exchanger to at least one of the outlet side evaporator and the suction side evaporator by bypassing at least one of the nozzle portion and the suction side pressure reduction portion.
  • the opening and closing mechanism opens and closes the bypass passage.
  • the opening / closing mechanism opening the bypass passage, the refrigerant on the downstream side of the outdoor heat exchanger bypasses at least one of the nozzle portion of the ejector and the suction side pressure reduction portion, and the outflow side evaporator and the suction side It can flow into one of the evaporators.
  • the opening and closing mechanism opens the bypass passage, it is possible to suppress the occurrence of pressure loss that occurs when the refrigerant flows through the nozzle portion and the suction side pressure reducing portion. Therefore, it can suppress that air conditioning capacity falls by these pressure losses.
  • the switching mechanism control unit is further provided with an opening / closing mechanism control unit for controlling the operation of the opening / closing mechanism, and the opening / closing mechanism control unit is in a throttling state in which the heating pressure reducing portion exerts a refrigerant pressure reducing action.
  • the operation of the opening and closing mechanism may be controlled so as to open the bypass passage when the operation conditions for evaporating the refrigerant in the unit are reached.
  • the refrigerant evaporation temperature in the outdoor heat exchanger can be lowered to be similar to the refrigerant evaporation temperature in any one of the outflow side evaporator and the suction side evaporator. Therefore, it is possible to suppress the decrease in the heating capacity of the blowing air in the indoor radiator under the operating condition in which the heat absorbed by the outdoor heat exchanger is released to the blowing air by the indoor radiator.
  • FIG. 1 is a schematic view of an ejector-type refrigeration cycle according to at least one embodiment of the present disclosure.
  • FIG. 2 is a schematic view of an indoor air conditioning unit of at least one embodiment of the present disclosure. It is a block diagram showing the electric control part of the air-conditioner for vehicles of at least one embodiment of this indication.
  • FIG. 1 is a schematic view of an ejector-type refrigeration cycle according to at least one embodiment of the present disclosure.
  • FIG. 1 is a schematic view of an ejector-type refrigeration cycle according to at least one embodiment of the present disclosure.
  • FIG. 1 is a schematic view of an ejector-type refrigeration cycle according to at least one embodiment of the present disclosure.
  • FIG. 1 is a schematic view of an ejector-type refrigeration cycle according to at least one embodiment of the present disclosure.
  • FIG. 1 is a schematic view of an ejector-type refrigeration cycle according to at least one embodiment of the present disclosure.
  • FIG. 1 is a schematic view of an ejector-type refrigeration cycle according to at least one embodiment of the present disclosure.
  • FIG. 1 is a schematic view of an ejector-type refrigeration cycle according to at least one embodiment of the present disclosure. It is a flowchart which shows a part of control flow of the ejector-type refrigerating cycle of at least one embodiment of this indication.
  • the ejector-type refrigeration cycle 10 of the present embodiment is applied to a vehicle air conditioner mounted on an electric vehicle that obtains a driving force for vehicle travel from an electric motor.
  • the ejector-type refrigeration cycle 10 has a function of adjusting the temperature of the blowing air blown into the vehicle compartment, which is a space to be air conditioned, in the vehicle air conditioner. Therefore, the temperature control target fluid of the ejector-type refrigeration cycle 10 is blown air.
  • the cooling mode is an operation mode for cooling the air to cool the passenger compartment.
  • the dehumidifying and heating mode is an operation mode in which dehumidifying and heating the passenger compartment is performed by reheating the cooled and dehumidified air.
  • the ejector-type refrigeration cycle 10 can switch between the refrigerant circuit in the cooling mode and the refrigerant circuit in the dehumidifying and heating mode according to the operation mode of the vehicle air conditioner.
  • an HFC refrigerant (specifically, R134a) is adopted as the refrigerant, and a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant is configured.
  • refrigerator oil for lubricating the compressor 11 is mixed, and a part of the refrigerator oil circulates in the cycle together with the refrigerant.
  • each component which comprises the ejector-type refrigerating cycle 10 is demonstrated using the whole block diagram of FIG.
  • the compressor 11 sucks, compresses and discharges the refrigerant in the ejector-type refrigeration cycle 10.
  • the compressor 11 is disposed in a vehicle bonnet.
  • an electric compressor is used as the compressor 11 in which a fixed displacement type compression mechanism having a fixed discharge capacity is rotationally driven by an electric motor.
  • the rotation speed (i.e., the refrigerant discharge capacity) of the compressor 11 is controlled by a control signal output from an air conditioning controller 40 described later.
  • the refrigerant inlet side of the indoor condenser 12 is connected to the discharge port of the compressor 11.
  • the indoor condenser 12 is an indoor radiator that heats the blown air using the high-pressure refrigerant as a heat source by heat exchange between the high-pressure refrigerant discharged from the compressor 11 and the blown air after passing through the evaporator unit 20 described later.
  • the indoor condenser 12 is disposed in a casing 31 of an indoor air conditioning unit 30 described later.
  • the inlet side of the heating expansion valve 13 a is connected to the refrigerant outlet of the indoor condenser 12.
  • the heating expansion valve 13a is a heating decompression portion that decompresses the refrigerant flowing out of the indoor condenser 12 when dehumidifying and heating the passenger compartment.
  • the heating expansion valve 13a is disposed in the vehicle bonnet together with the compressor 11 and the like.
  • the heating expansion valve 13a is an electric variable throttle mechanism including a valve body configured to be capable of changing the throttle opening degree, and an electric actuator that changes the opening degree of the valve body.
  • the operation of the heating expansion valve 13a is controlled by a control signal (control pulse) output from the air conditioning control device 40.
  • the heating expansion valve 13a has a fully open function which functions as a mere refrigerant passage without exerting the refrigerant pressure reducing function by fully opening the valve opening degree.
  • the refrigerant inlet side of the outdoor heat exchanger 14 is connected to the outlet of the heating expansion valve 13a.
  • the outdoor heat exchanger 14 is a heat exchanger that exchanges heat between the refrigerant flowing out of the heating expansion valve 13a and the outside air blown from the outside air fan 14a.
  • the outdoor heat exchanger 14 is disposed on the front side in the vehicle bonnet.
  • the outdoor heat exchanger 14 functions as a radiator that dissipates the refrigerant flowing out of the heating expansion valve 13a in the cooling mode, and a radiator or evaporation that dissipates the refrigerant flowing out of the heating expansion valve 13a in the dehumidifying heating mode.
  • Heat exchanger that functions as an evaporator.
  • the outside air fan 14 a is an electric blower whose number of rotations (that is, the blowing capacity) is controlled by a control voltage output from the air conditioning control device 40.
  • the inlet side of the cooling expansion valve 13 b is connected to the refrigerant outlet of the outdoor heat exchanger 14.
  • the cooling expansion valve 13 b is a cooling decompression portion that decompresses the refrigerant flowing out of the outdoor heat exchanger 14 when cooling the vehicle interior.
  • the basic configuration of the cooling expansion valve 13b is the same as that of the heating expansion valve 13a.
  • the inlet of the branch portion 15 is connected to the outlet of the cooling expansion valve 13b.
  • the branch part 15 branches the flow of the refrigerant
  • the branch portion 15 is of a three-way joint structure having three inlets and outlets, one of the three inlets is a refrigerant inlet, and the remaining two are a refrigerant outlet.
  • the inlet side of the nozzle portion 16 a of the ejector 16 is connected to one outlet of the branch portion 15. Further, the inlet side of the fixed throttle 17 is connected to the other outlet of the branch portion 15.
  • the ejector 16 has a nozzle portion 16 a that decompresses and injects one of the refrigerants branched by the branch portion 15, and functions as a refrigerant pressure reducing device. Furthermore, the ejector 16 functions as a refrigerant circulating device that sucks and circulates the refrigerant by the suction action of the injected refrigerant injected from the nozzle portion 16a. In addition to this, the ejector 16 functions as an energy conversion device that converts kinetic energy of the mixed refrigerant of the injection refrigerant and the suction refrigerant into pressure energy and boosts the mixed refrigerant.
  • the ejector 16 has a nozzle portion 16a and a body portion 16b.
  • the nozzle portion 16 a is formed of a substantially cylindrical metal (stainless alloy in the present embodiment) which gradually tapers in the flow direction of the refrigerant.
  • the nozzle portion 16 a is configured to decompress and expand the refrigerant isentropically in the refrigerant passage formed inside.
  • the nozzle part 16a of this embodiment is comprised as a Laval nozzle.
  • the nozzle portion 16a one in which the flow velocity of the injected refrigerant injected from the refrigerant injection port during the normal operation of the cycle is set to be equal to or higher than the speed of sound is employed.
  • the nozzle portion 16a may be configured by a tapered nozzle.
  • the body portion 16 b is formed of a substantially cylindrical metal (in the present embodiment, aluminum).
  • the body portion 16 b functions as a fixing member for supporting and fixing the nozzle portion 16 a inside, and forms an outer shell of the ejector 16. More specifically, the nozzle portion 16a is fixed by press-fitting so as to be accommodated inside one end side in the longitudinal direction of the body portion 16b.
  • the body portion 16b may be made of resin.
  • a refrigerant suction port 16c which penetrates the inside and outside to communicate with the refrigerant injection port of the nozzle portion 16a.
  • the refrigerant suction port 16 c is a through hole for suctioning the refrigerant flowing out of the suction side evaporator 17 described later into the inside of the ejector 16 by the suction action of the injected refrigerant jetted from the nozzle portion 16 a.
  • a suction passage 16e for guiding the suctioned refrigerant sucked from the refrigerant suction port 16c to the refrigerant injection port side of the nozzle portion 16a, and a pressure rising portion for mixing the suctioned refrigerant and the injected refrigerant and boosting the pressure.
  • a diffuser portion 16d is formed inside the body portion 16b.
  • the suction passage 16e is formed in the space between the outer peripheral side around the tapered tip of the nozzle portion 16a and the inner peripheral side of the body portion 16b, and the refrigerant passage area of the suction passage 16e is in the refrigerant flow direction It is gradually shrinking toward the end. As a result, the flow velocity of the suctioned refrigerant flowing through the suction passage 16e is gradually increased, and the energy loss (that is, the mixing loss) when the suctioned refrigerant and the injected refrigerant are mixed in the diffuser portion 16d is reduced.
  • the diffuser portion 16 d is a substantially frusto-conical refrigerant passage disposed to be continuous with the outlet of the suction passage 16 e.
  • the passage cross-sectional area gradually expands toward the refrigerant flow downstream side.
  • the diffuser portion 16 d converts kinetic energy of the mixed refrigerant into pressure energy by such a passage shape.
  • the refrigerant inlet side of the outflow side evaporator 18 which comprises the evaporator unit 20 mentioned later is connected to the exit of the diffuser part 16d.
  • the outflow side evaporator 18 performs heat exchange between the air blown from the fan 20a to the vehicle compartment and the refrigerant flowing out from the diffuser 16d, and evaporates the refrigerant to exhibit a heat absorbing function, thereby causing the air to be blown. It is a heat exchanger for cooling.
  • the blower 20a is an electric blower whose number of rotations (that is, blowing capacity) is controlled by a control voltage output from the air conditioning control device 40.
  • the blower 20 a is disposed in the casing 31 of the indoor air conditioning unit 30.
  • the inlet side of the compressor 11 is connected to the refrigerant outlet side of the outflow side evaporator 18.
  • the fixed throttle 17 is a suction side depressurizing unit that depressurizes the other refrigerant branched by the branching unit 15.
  • a nozzle, an orifice, a capillary tube or the like to which the throttle opening degree is fixed can be adopted.
  • the outlet side of the fixed throttle 17 is connected to the refrigerant inlet side of the suction side evaporator 19 that constitutes the evaporator unit 20.
  • the suction side evaporator 19 performs heat exchange between the blown air that has passed through the outflow side evaporator 18 and the refrigerant that has flowed out of the fixed throttle 17 and evaporates the refrigerant to exhibit an endothermic effect, thereby cooling the cooled air. Heat exchanger.
  • each of the outlet-side evaporator 18 and the suction side evaporator 19 includes a plurality of tubes for circulating the refrigerant, and a collection or distribution of refrigerants disposed at both ends of the plurality of tubes and flowing through the tubes. And a so-called tank-and-tube type heat exchanger.
  • the collecting and distributing tank of the outflow side evaporator 18 and the suction side evaporator 19 is formed by the same member, so that the outflow side evaporator 18 and the suction side evaporator 19 are integrated.
  • the outflow side evaporator 18 is integrated so as to be disposed on the upstream side of the air flow from the suction side evaporator 19.
  • the evaporator unit 20 is disposed in the casing 31 of the indoor air conditioning unit 30.
  • the refrigerant on the downstream side of the outdoor heat exchanger 14 bypasses at least one of the nozzle portion 16a of the ejector 16 and the fixed throttle 17 in the ejector-type refrigeration cycle 10, and the outflow side evaporator 18 and the suction side evaporator A bypass passage 21 leading to one of the refrigerant inlets 19 is provided.
  • bypass passage 21 is disposed downstream of the cooling expansion valve 13 b and on the upstream side of the branch portion 15, bypassing the fixed throttle 17 so that the refrigerant of the suction side evaporator 19 is It is connected to lead to the entrance side.
  • An open / close valve 22 is disposed in the bypass passage 21.
  • the opening and closing valve 22 is an opening and closing mechanism that opens and closes the bypass passage 21.
  • the on-off valve 22 is a solenoid valve whose operation is controlled by a control voltage output from the air conditioning controller 40.
  • the pressure loss generated when the refrigerant flows through the bypass passage 21 is extremely smaller than the pressure loss generated when the refrigerant flows through the nozzle portion 16 a of the ejector 16 and the fixed throttle 17 via the branch portion 15. Therefore, when the on-off valve 22 opens the bypass passage 21, most of the flow rate of the refrigerant flowing out of the cooling expansion valve 13b flows into the bypass passage 21 side.
  • the flow rate flowing into the bypass passage 21 is determined by the passage resistance on the bypass passage 21 side and the passage resistance on the nozzle portion 16 a of the ejector 16 and the fixed throttle 17 side. It is determined. Therefore, even when the on-off valve 22 opens the bypass passage 21, the refrigerant having a small flow rate flows into the branch portion 15.
  • the indoor air conditioning unit 30 is disposed inside the instrument panel (i.e., the instrument panel) at the front of the vehicle interior.
  • the indoor air conditioning unit 30 forms an air passage for blowing out the blowing air whose temperature has been adjusted by the ejector-type refrigeration cycle 10 to an appropriate place in the vehicle compartment.
  • the indoor air conditioning unit 30 accommodates the blower 20a, the evaporator unit 20, the indoor condenser 12, etc. in an air passage formed inside a casing 31 forming the outer shell thereof. .
  • the casing 31 forms an air passage for blowing air blown into the vehicle compartment, and is formed of a resin (specifically, polypropylene) which has a certain degree of elasticity and is excellent in strength.
  • An internal / external air switching device 33 is disposed on the most upstream side of the flow of the blown air of the casing 31 to switch and introduce the inside air (air in the vehicle compartment) and the outside air (air outside the vehicle) into the casing 31.
  • the inside / outside air switching device 33 continuously adjusts the opening area of the inside air introduction port for introducing inside air into the casing 31 and the outside air introduction port for introducing outside air by means of the inside / outside air switching door.
  • the introduction rate with the introduction air volume can be changed.
  • the inside and outside air switching door is driven by an electric actuator for the inside and outside air switching door, and the operation of the electric actuator is controlled by a control signal output from the air conditioning control device.
  • a blower 20 a is disposed downstream of the inside / outside air switching device 33 in the flow of the blowing air.
  • An evaporator unit 20 and an indoor condenser 12 are disposed in this order with respect to the flow of the air, on the downstream side of the air flow of the fan 20a. That is, the evaporator unit 20 is disposed on the upstream side of the indoor air flow with respect to the indoor condenser 12.
  • a cold air bypass passage 35 is formed in the casing 31 to flow the blown air having passed through the evaporator unit 20 to the downstream side by bypassing the indoor condenser 12.
  • An air mix door 34 is arranged to adjust the air volume ratio with the air volume passing the cold air bypass passage 35.
  • a space 36 is provided. Further, at the most downstream portion of the air flow of the casing 31, there are disposed opening holes 37a to 37c for blowing out the air (air-conditioned air) mixed in the mixing space 36 into the vehicle interior.
  • a face opening hole 37a As the opening holes, a face opening hole 37a, a foot opening hole 37b, and a defroster opening hole 37c are provided.
  • the face opening hole 37a is an opening hole for blowing the conditioned air toward the upper body of the occupant in the vehicle compartment.
  • the foot opening hole 37b is an opening hole for blowing the conditioned air toward the feet of the occupant.
  • the defroster opening hole 37c is an opening hole for blowing the conditioned air toward the inner side surface of the vehicle front windshield.
  • face opening hole 37a, foot opening hole 37b, and defroster opening hole 37c are each provided with a face outlet, foot outlet and defroster outlet provided in the vehicle compartment via a duct forming an air passage. Not shown).
  • the temperature of the conditioned air mixed in the mixing space 36 is adjusted by adjusting the air volume ratio between the air volume passing the indoor condenser 12 and the air volume passing the cold air bypass passage 35 by the air mix door 34. Ru. As a result, the temperature of the air (air-conditioned air) blown out from the outlets into the vehicle compartment is also adjusted.
  • the air mix door 34 is driven by an electric actuator for driving the air mix door, and the operation of the electric actuator is controlled by a control signal output from the air conditioning controller.
  • the opening area of the face opening hole 37a is adjusted, and the opening areas of the face door and foot opening hole 37b are adjusted.
  • the foot door and the defroster door (all not shown) which adjust the opening area of the defroster opening hole 37c are arrange
  • These face door, foot door, and defroster door constitute an air outlet mode switching device that switches the air outlet from which the conditioned air is blown out.
  • the face door, the foot door, and the defroster door are connected to an electric actuator for driving the air outlet mode door via a link mechanism and the like, and are operated to rotate in conjunction with each other.
  • the operation of the electric actuator is controlled by a control signal output from the air conditioning controller 40.
  • the air conditioning control device 40 is configured of a known microcomputer including a CPU, a ROM, a RAM, and the like and peripheral circuits thereof. Then, various operations and processes are performed based on the air conditioning control program stored in the ROM, and the operation of the various control target devices 11, 13a, 13b, 14a, 20a, 22 etc. connected to the output side is controlled. .
  • the inside air temperature sensor 41, the outside air temperature sensor 42, the solar radiation sensor 43, the high pressure sensor 44, the evaporator temperature sensor 45, and the superheat degree sensor 46 is connected.
  • a sensor group for air conditioning control such as the air conditioning air temperature sensor 47 is connected.
  • the air conditioning control device 40 receives detection signals of these air conditioning control sensors.
  • the inside air temperature sensor 41 is an inside air temperature detection unit that detects a vehicle room temperature (inside air temperature) Tr.
  • the outside air temperature sensor 42 is an outside air temperature detection unit that detects the temperature outside the vehicle (outside air temperature) Tam.
  • the solar radiation sensor 43 is a solar radiation amount detection unit that detects the solar radiation amount As emitted to the vehicle interior.
  • the high pressure sensor 44 is a refrigerant pressure detection unit that detects the high pressure refrigerant pressure Pd of the refrigerant flow path extending from the discharge port side of the compressor 11 to the inlet side of the heating expansion valve 13a.
  • the evaporator temperature sensor 45 is an evaporator temperature detection unit that detects a refrigerant evaporation temperature (evaporator temperature) Tefin in the suction side evaporator 19.
  • the superheat degree sensor 46 is a superheat degree detection unit that detects the superheat degree SH of the refrigerant on the outlet side of the evaporator unit 20 (specifically, the outlet side of the outlet side evaporator 18).
  • the air conditioning air temperature sensor 47 is an air conditioning air temperature detection unit that detects an air temperature TAV blown from the mixing space 36 into the vehicle compartment.
  • an operation panel 50 disposed near the instrument panel at the front of the vehicle compartment is connected to the input side of the air conditioning control device 40, and various operation switches provided on the operation panel 50 The operation signal of is input.
  • the various operation switches provided on the operation panel 50 include an auto switch for setting or canceling the automatic control operation of the air conditioning system for a vehicle, a cooling switch for requesting cooling of the vehicle interior, and an air volume of the blower 18a.
  • the air-conditioning control apparatus 40 of this embodiment controls the operation
  • movement of each control object apparatus constitute a control unit that controls the operation of each control target device.
  • the configuration that controls the operation of the compressor 11 is the discharge capacity control unit 40a.
  • the configuration for controlling the operation of the on-off valve 22 is an on-off mechanism control unit 40 b.
  • cooling and dehumidifying heating of the vehicle interior can be performed.
  • the operation in the cooling mode and the operation in the dehumidifying and heating mode can be switched.
  • the switching of each operation mode is performed by executing the air conditioning control program.
  • the air conditioning control program is executed when the auto switch of the operation panel 50 is turned on.
  • the cooling switch is turned on (ON) while the auto switch is turned on (ON)
  • the cooling mode is executed, and when the cooling switch is released (OFF), the dehumidifying heating mode is executed. .
  • Each operation mode will be described below.
  • (A) Cooling Mode In the cooling mode, the air conditioning controller 40 fully opens the heating expansion valve 13a, sets the cooling expansion valve 13b in the throttling state to exert the refrigerant pressure reducing action, and closes the on-off valve 22.
  • the refrigerant is discharged from the discharge port of the compressor 11 ( ⁇ indoor condenser 12 ⁇ expansion valve 13a for heating) ⁇ outdoor heat exchanger 14 ⁇ expansion valve 13b for cooling ⁇ branch 15 ⁇ ejector 16 ⁇ outflow
  • An ejector-type refrigeration cycle is configured that circulates in the order of the side evaporator 18 ⁇ the suction port of the compressor 11 and circulates in the order of the branch portion 15 ⁇ the fixed throttle 17 ⁇ the suction side evaporator 19 ⁇ the refrigerant suction port of the ejector 16.
  • the air conditioning control device 40 refers to a control map stored in advance in the air conditioning control device 40 based on the target blowout temperature TAO, and a target evaporator for the blown air blown out from the evaporator unit 20. Determine the temperature TEO. Then, the control signal output to the electric motor of the compressor 11 is determined such that the evaporator temperature Tefin detected by the evaporator temperature sensor 45 approaches the target evaporator temperature TEO.
  • the target blowing temperature TAO is a target temperature of the blowing air (air-conditioned air) blown out into the vehicle compartment.
  • the target blowout temperature TAO is determined by the inside air temperature Tr detected by the inside air temperature sensor 41, the outside air temperature Tam detected by the outside air temperature sensor 42, the solar radiation amount As detected by the sun radiation sensor 43, and the temperature setting switch of the operation panel 50. It is calculated using the set temperature Tset.
  • the target evaporator temperature TEO is to be lowered with the decrease of the target blowout temperature TAO. Furthermore, the target evaporator temperature TEO is determined to a value within a range (specifically, 1 ° C. or more) in which frost formation on the outflow side evaporator 18 and the suction side evaporator 19 can be suppressed.
  • the air conditioning control device 40 causes the degree of superheat SH of the refrigerant on the outlet side of the evaporator unit 20 detected by the degree of superheat sensor 46 to approach a predetermined reference degree of heating KSH (3 ° C. in this embodiment)
  • the control pulse to be output to the cooling expansion valve 13b is determined.
  • the air conditioning controller 40 is an electric actuator for driving the air mix door so that the air mix door 34 fully closes the air flow path on the indoor condenser 12 side and fully opens the air flow path on the cold air bypass passage 35 side. Determine the control signal to be output.
  • control signal or the like determined as described above is output to various control target devices. Thereafter, reading of detection signals and operation signals at predetermined control cycles ⁇ determination of operation states of various control target devices ⁇ control voltage and control signal outputs until the operation stop of the vehicle air conditioner is requested Is repeated. The repetition of such a control routine is similarly performed in other operation modes.
  • the high pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12.
  • the air mixing door 34 completely closes the air passage on the indoor condenser 12 side, the high pressure refrigerant flowing into the indoor condenser 12 flows out from the indoor condenser 12 without radiating heat to the blowing air. .
  • the high pressure refrigerant flowing out of the indoor condenser 12 flows into the heating expansion valve 13a.
  • the heating expansion valve 13a since the heating expansion valve 13a is fully opened, the high pressure refrigerant flowing into the heating expansion valve 13a flows out from the heating expansion valve 13a without being decompressed.
  • the high pressure refrigerant flowing out of the heating expansion valve 13 a flows into the outdoor heat exchanger 14.
  • the high pressure refrigerant flowing into the outdoor heat exchanger 14 exchanges heat with the outside air blown by the outside air fan 14a, radiates heat and condenses.
  • the refrigerant condensed by the outdoor heat exchanger 14 flows into the cooling expansion valve 13 b and is decompressed.
  • the throttle opening degree of the cooling expansion valve 13b is adjusted so that the degree of superheat SH of the refrigerant on the outlet side of the outflow side evaporator 18 approaches the reference degree of superheat KSH.
  • the low pressure refrigerant reduced in pressure by the cooling expansion valve 13 b flows into the branch portion 15 without flowing into the bypass passage 21 because the on-off valve 22 is closed.
  • One refrigerant branched by the branch part 15 flows into the nozzle part 16a of the ejector 16, isoentropically depressurized and jetted. Then, the refrigerant flowing out of the suction side evaporator 19 is drawn from the refrigerant suction port 16 c of the ejector 16 by the suction action of the injected refrigerant.
  • the injection refrigerant injected from the nozzle portion 16 a and the suction refrigerant drawn from the refrigerant suction port 16 c flow into the diffuser portion 16 d of the ejector 16.
  • the velocity energy of the refrigerant is converted into pressure energy by the expansion of the refrigerant passage area. Thereby, the pressure of the mixed refrigerant of the injection refrigerant and the suction refrigerant is increased.
  • the refrigerant pressurized by the diffuser portion 16 d flows into the outflow side evaporator 18 of the evaporator unit 20.
  • the refrigerant that has flowed into the outflow side evaporator 18 absorbs heat from the blown air blown by the blower 20 a and evaporates. Thereby, the blowing air ventilated by the air blower 20a is cooled. The refrigerant flowing out of the outflow side evaporator 18 is sucked into the compressor 11 and compressed again.
  • the other refrigerant branched at the branch portion 15 is isenthalpically depressurized at the fixed throttle 17.
  • the refrigerant depressurized by the fixed throttle 17 flows into the suction side evaporator 19 of the evaporator unit 20.
  • the refrigerant that has flowed into the suction side evaporator 19 absorbs heat from the blown air that has passed through the outflow side evaporator 18 and evaporates. As a result, the blown air after passing through the outlet side evaporator 18 is further cooled.
  • the refrigerant flowing out of the suction side evaporator 19 is drawn from the refrigerant suction port 16c.
  • the air in the cooling mode, can be cooled by the evaporator unit 20 (specifically, the outflow side evaporator 18 and the suction side evaporator 19). And, by blowing the cooled air into the vehicle compartment, cooling of the vehicle interior can be realized.
  • the evaporator unit 20 specifically, the outflow side evaporator 18 and the suction side evaporator 19.
  • the refrigerant on the downstream side of the outflow side evaporator 18, that is, the refrigerant pressurized by the diffuser portion 16d of the ejector 16 can be sucked into the compressor 11. Therefore, in the ejector-type refrigeration cycle 10, the power consumption of the compressor 11 is reduced as compared with a normal refrigeration cycle apparatus in which the refrigerant evaporation pressure in the evaporator and the pressure of the compressor suction refrigerant are equal to each other. COP) can be improved.
  • the refrigerant evaporation pressure in the outflow side evaporator 18 is the refrigerant pressure boosted by the diffuser portion 16d, and the refrigerant evaporation pressure in the suction side evaporator 19 is depressurized by the nozzle portion 16a.
  • the pressure of the refrigerant can be low. Therefore, the temperature difference between the refrigerant evaporation temperature in each evaporator and the blowing air can be secured to efficiently cool the blowing air.
  • (B) Dehumidifying / heating mode In the dehumidifying / heating mode, the air conditioning control device 40 throttling the heating expansion valve 13a, throttling the cooling expansion valve 13b, and opening the on-off valve 22.
  • a vapor compression type refrigeration cycle is configured, which circulates in the following order: 19 ⁇ ejector 16 ⁇ outflow side evaporator 18 ⁇ suction port of the compressor 11.
  • the indoor condenser 12, the outdoor heat exchanger 14, and the evaporator unit 20 are serially connected in this order with respect to the refrigerant flow.
  • the evaporator unit 20 that is, the suction side evaporator 19 and the outflow side evaporator 18
  • the air conditioning control device 40 determines the control signal to be output to the electric motor of the compressor 11 as in the cooling mode.
  • the air conditioning control device 40 outputs the heating expansion valve 13a and the cooling expansion valve 13b with reference to the control map stored in advance in the air conditioning control device based on the target blowout temperature TAO and the outside air temperature Tam. Determine control pulse.
  • the heating expansion valve 13a is moved with the rise of the target blowout temperature TAO and the fall of the outside air temperature Tam.
  • the control pulse is determined so as to reduce the throttle opening degree and to increase the throttle opening degree of the cooling expansion valve 13b.
  • the air conditioning control device 40 is an electric actuator for driving the air mix door so that the air mix door 34 fully opens the air flow path on the indoor condenser 12 side and fully closes the air flow path on the cold air bypass passage 35 side. Determine the control signal to be output.
  • the high-pressure refrigerant discharged from the compressor 11 flows into the indoor condenser 12.
  • the air mixing door 34 fully opens the air passage on the indoor condenser 12 side
  • the high pressure refrigerant flowing into the indoor condenser 12 exchanges heat with the air after passing through the evaporator unit 20 to dissipate heat. Do.
  • the air after passing through the evaporator unit 20 is heated so as to approach the target blowing temperature TAO.
  • the high-pressure refrigerant that has flowed out of the indoor condenser 12 flows into the heating expansion valve 13a and is decompressed in an isenthalpic manner.
  • the refrigerant decompressed by the heating expansion valve 13 a flows into the outdoor heat exchanger 14.
  • the outdoor heat exchanger 14 functions as a radiator that radiates the heat of the refrigerant to the outside air.
  • the outdoor heat exchanger 14 functions as an evaporator which absorbs the heat of the outside air to evaporate the refrigerant.
  • the air conditioning control device 40 controls the outdoor heat exchanger 14 according to the increase of the target blowing temperature TAO and the decrease of the outside air temperature Tam.
  • the saturation temperature of the refrigerant By reducing the saturation temperature of the refrigerant, the amount of heat released from the refrigerant in the outdoor heat exchanger 14 can be reduced. As a result, the amount of heat released from the refrigerant in the indoor condenser 12 can be increased to improve the heating capacity of the blowing air.
  • the air conditioning control device 40 causes the outdoor heat exchanger 14 to be By reducing the saturation temperature of the refrigerant, it is possible to increase the amount of heat absorption of the refrigerant in the outdoor heat exchanger 14. As a result, the amount of heat released from the refrigerant in the indoor condenser 12 can be increased to improve the heating capacity of the blowing air.
  • the refrigerant which has flowed out of the outdoor heat exchanger 14 flows into the cooling expansion valve 13 b and is decompressed in an isenthalpic manner.
  • the low pressure refrigerant decompressed by the cooling expansion valve 13b flows into the suction side evaporator 19 of the evaporator unit 20 through the bypass passage 21 because the on-off valve 22 is open.
  • the refrigerant flowing into the suction side evaporator 19 flows in the following order: suction side evaporator 19 ⁇ refrigerant suction port 21 b of ejector 16 ⁇ suction passage 16 e ⁇ diffuser portion 16 d ⁇ outflow side evaporator 18.
  • the refrigerant absorbs heat from the blown air in the suction side evaporator 19 and the outflow side evaporator 18 and evaporates. Thereby, the blowing air before passing through the indoor condenser 12 is cooled and dehumidified.
  • the refrigerant flowing out of the outflow side evaporator 18 of the evaporator unit 20 is sucked into the compressor 11 and compressed again.
  • the air is cooled and dehumidified by the evaporator unit 20 (specifically, the outflow side evaporator 18 and the suction side evaporator 19), and the dehumidified air is condensed in the room It is possible to reheat in the vessel 12. Then, dehumidifying and heating the passenger compartment can be realized by blowing the reheated air into the passenger compartment.
  • the evaporator unit 20 specifically, the outflow side evaporator 18 and the suction side evaporator 19
  • the opening degree of the heating expansion valve 13a is reduced as the target blowout temperature TAO rises and the outside air temperature Tam decreases, and the cooling expansion valve 13b opens.
  • the degree is increasing. That is, in the ejector-type refrigeration cycle 10 in the dehumidifying and heating mode, the saturation temperature of the refrigerant in the outdoor heat exchanger 14 is lowered along with the increase in the required heating capacity (that is, the heating capacity) of the blowing air.
  • the outdoor heat exchanger 14 the suction side evaporator 19, and the outflow side evaporator 18 are switched to the refrigerant circuit connected in series in this order with respect to the refrigerant flow.
  • the refrigerant evaporation temperature in the outdoor heat exchanger 14 can not be made lower than the refrigerant evaporation temperature in the suction side evaporator 19 or the outflow side evaporator 18.
  • the cooling expansion valve 13b is fully opened, and the refrigerant evaporation temperature in the outdoor heat exchanger 14 is It is effective to approach the refrigerant evaporation temperature of the vessel 19 and the outlet side evaporator 18.
  • the on-off valve 22 opens the bypass passage 21 in the dehumidifying and heating mode. According to this, the refrigerant flowing out of the cooling expansion valve 13 b can be made to flow into the suction side evaporator 19 and the outflow side evaporator 18 by bypassing the nozzle portion 16 a and the fixed throttle 17 of the ejector 16.
  • the refrigerant evaporation temperature in the outdoor heat exchanger 14 becomes the suction side evaporator 19 and the outflow side by the pressure loss when the refrigerant flowing out from the outdoor heat exchanger 14 flows through the nozzle portion 16a of the ejector 16 and the fixed throttle 17. It is possible to suppress the temperature rising above the refrigerant evaporation temperature of the evaporator 18. That is, the refrigerant evaporation temperature in the outdoor heat exchanger 14 can be effectively brought close to the refrigerant evaporation temperature at the refrigerant evaporation temperatures of the suction side evaporator 19 and the outflow side evaporator 18.
  • the heat absorption of the refrigerant in the outdoor heat exchanger 14 is reduced by the pressure loss that occurs when the refrigerant flows through the nozzle portion 16a of the ejector 16 and the fixed throttle 17. It can suppress that an air conditioning capability (specifically, the heating capability of blowing air) falls, suppressing.
  • bypass passage 21 of the present embodiment is connected so as to allow the refrigerant on the downstream side of the cooling expansion valve 13b to flow. Therefore, the branch part 15, the ejector 16, the fixed throttle 17, the bypass passage 21, and the on-off valve 22 can be disposed close to each other and easily integrated (modularized).
  • bypass passage 21 of the present embodiment is connected so as to lead the refrigerant on the downstream side of the outdoor heat exchanger 14 that has flowed in to the refrigerant inlet side of the suction side evaporator 19. Therefore, the refrigerant can flow through both the suction side evaporator 19 and the outflow side evaporator 18, and the refrigerant can be sufficiently evaporated in both the evaporators 18 and 19. Thereby, the decrease in heat absorption can be further suppressed.
  • the open / close valve 22 is opened in the dehumidifying and heating mode.
  • an operating condition with a small heating capacity of the required air The open / close valve 22 may be closed under operating conditions in which the saturation temperature of the refrigerant at 14 is higher than the outside air temperature Tam.
  • the heating expansion valve 13a is in the throttling state, and the open / close valve 22 is opened when the outdoor heat exchanger 14 is in the operating condition for evaporating the refrigerant. You may do so. According to this, in the dehumidifying and heating mode, under the operating condition where the required heating capacity of the blowing air is small, it is possible to obtain the COP improvement effect by the pressure increasing action of the ejector 16.
  • connection mode of the bypass passage 21 is changed with respect to the first embodiment.
  • the bypass passage 21 of the present embodiment is the downstream side of the outdoor heat exchanger 14 and the upstream side of the cooling expansion valve 13 b.
  • the fixed throttle 17 is diverted so as to be led to the refrigerant inlet side of the suction side evaporator 19.
  • cooling expansion valve 13b of this embodiment has a fully closing function of closing the refrigerant passage by fully closing the valve opening degree.
  • the configuration of the other ejector-type refrigeration cycle 10 is the same as that of the first embodiment.
  • FIG. 3 the same or equivalent parts as in the first embodiment are denoted by the same reference numerals. The same applies to the following drawings.
  • the air conditioning control device 40 sets the heating expansion valve 13a in the squeezed state, sets the cooling expansion valve 13b in the fully closed state, and opens the on-off valve 22.
  • the refrigerant is the discharge port of the compressor 11 ⁇ the indoor condenser 12 ⁇ the heating expansion valve 13 a ⁇ the outdoor heat exchanger 14 ⁇ the bypass passage 21 ⁇ the suction side evaporator 19 ⁇ the ejector 16
  • a vapor compression refrigeration cycle is configured, which circulates in the order of the outflow side evaporator 18 ⁇ the suction port of the compressor 11.
  • the outdoor heat exchanger 14 functions as an evaporator.
  • the air conditioning control device 40 refers to the control map stored in advance in the air conditioning control device based on the target blowout temperature TAO and the outside air temperature Tam, and thereby expands the heating expansion valve 13a. Determine the control pulse to be output to In this control map, the opening degree of the heating expansion valve 13a is reduced as the blown air temperature TAV approaches the target blowing temperature TAO, along with the rise of the target blowing temperature TAO and the decrease of the outside air temperature Tam.
  • the configuration and operation of the other ejector-type refrigeration cycle 10 are similar to those of the first embodiment. Therefore, according to the ejector-type refrigeration cycle 10 of the present embodiment, cooling and dehumidifying heating of the vehicle interior can be realized as in the first embodiment.
  • the cooling expansion valve 13b is fully closed. Therefore, when the on-off valve 22 opens the bypass passage 21, a small flow rate of refrigerant does not flow into the nozzle portion 16 a of the ejector 16 or the fixed throttle 17, and the refrigerant flows out of the outdoor heat exchanger 14. Can flow into the bypass passage 21.
  • the ejector-type refrigeration cycle 10 of the present embodiment it is possible to more effectively suppress the decrease in the air conditioning capacity at the time of the dehumidifying and heating mode.
  • connection mode of the bypass passage 21 is changed with respect to the first embodiment.
  • the bypass passage 21 of the present embodiment is the downstream side of the branch portion 15 and the upstream side of the fixed throttle 17 as the fixed throttle 17. To be diverted to lead to the refrigerant inlet side of the suction side evaporator 19.
  • a cycle similar to that of the first embodiment is configured.
  • most of the refrigerant is discharged from the compressor 11 ⁇ the indoor condenser 12 ⁇ the heating expansion valve 13a ⁇ the outdoor heat exchanger 14 ⁇ the cooling expansion valve 13b ⁇ the branch portion 15 ⁇ bypass
  • a vapor compression type refrigeration cycle is configured, which circulates in the following order: passage 21 ⁇ suction side evaporator 19 ⁇ ejector 16 ⁇ outflow side evaporator 18 ⁇ suction port of the compressor 11.
  • the configuration and operation of the other ejector-type refrigeration cycle 10 are similar to those of the first embodiment. Therefore, according to the ejector-type refrigeration cycle 10 of the present embodiment, cooling and dehumidifying heating of the vehicle interior can be realized as in the first embodiment.
  • bypass passage 21 of the present embodiment it is possible to connect the inlet portion and the outlet portion of the fixed throttle 17 with a refrigerant pipe or the like. Therefore, the branch part 15, the ejector 16, the fixed throttle 17, the bypass passage 21, and the on-off valve 22 can be disposed close to each other and easily integrated (modularized).
  • the connection mode of the bypass passage 21 is changed with respect to the first embodiment.
  • the bypass passage 21 of the present embodiment is a downstream side of the cooling expansion valve 13 b and an upstream side of the branch portion 15 as an ejector. It is connected so as to divert 16 and lead to the refrigerant inlet side of the outflow side evaporator 18.
  • most of the refrigerant is the discharge port of the compressor 11 ⁇ the indoor condenser 12 ⁇ the heating expansion valve 13a ⁇ the outdoor heat exchanger 14 ⁇ the cooling expansion valve 13b ⁇ bypass passage 21 ⁇ the outflow side evaporation
  • a vapor compression type refrigeration cycle is configured, which circulates in the order of the vessel 18 ⁇ the suction port of the compressor 11.
  • the configuration and operation of the other ejector-type refrigeration cycle 10 are similar to those of the first embodiment. Therefore, according to the ejector-type refrigeration cycle 10 of the present embodiment, cooling and dehumidifying and heating of the passenger compartment can be realized as in the first embodiment, and the same effects as those of the first embodiment can be obtained.
  • bypass passage 21 of the present embodiment is connected so as to lead the refrigerant on the downstream side of the outdoor heat exchanger 14 that has flowed in to the refrigerant inlet side of the outflow side evaporator 18. According to this, it is possible to suppress a decrease in air conditioning capacity due to a pressure loss generated when the refrigerant flowing out from the suction side evaporator 19 flows through the refrigerant suction port 16c and the suction passage 16e of the ejector 16 .
  • the connection mode of the bypass passage 21 is changed with respect to the fourth embodiment.
  • the bypass passage 21 of the present embodiment is the downstream side of the outdoor heat exchanger 14 and the upstream side of the cooling expansion valve 13 b.
  • the ejector 16 is diverted so as to be led to the refrigerant inlet side of the outflow side evaporator 18.
  • the cooling expansion valve 13b of this embodiment has a fully closed function as in the second embodiment.
  • the air conditioning control device 40 brings the heating expansion valve 13a into the throttling state, brings the cooling expansion valve 13b into the fully closed state, and opens the on-off valve 22.
  • the refrigerant is the discharge port of the compressor 11 ⁇ the indoor condenser 12 ⁇ the heating expansion valve 13 a ⁇ the outdoor heat exchanger 14 ⁇ the bypass passage 21 ⁇ the outflow side evaporator 18 ⁇ the compressor
  • a vapor compression refrigeration cycle is configured to circulate in the order of the 11 inlets.
  • the outdoor heat exchanger 14 functions as an evaporator.
  • the configuration and operation of the other ejector-type refrigeration cycle 10 are similar to those of the fourth embodiment. Therefore, according to the ejector-type refrigeration cycle 10 of the present embodiment, cooling and dehumidifying heating of the vehicle interior can be realized as in the fourth embodiment.
  • the cooling expansion valve 13b is fully closed. Therefore, when the on-off valve 22 opens the bypass passage 21 as in the second embodiment, the entire flow rate of the refrigerant flowing out of the outdoor heat exchanger 14 can flow into the bypass passage.
  • connection mode of the bypass passage 21 is changed with respect to the fourth embodiment.
  • the bypass passage 21 of the present embodiment is the downstream side of the branch portion 15 and the upstream side of the fixed throttle 17 as the ejector 16. It is connected to be diverted and led to the refrigerant inlet side of the outflow side evaporator 18.
  • a cycle similar to that of the fourth embodiment is configured.
  • most of the refrigerant is discharged from the compressor 11 ⁇ the indoor condenser 12 ⁇ the heating expansion valve 13a ⁇ the outdoor heat exchanger 14 ⁇ the cooling expansion valve 13b ⁇ the branch portion 15 ⁇ bypass
  • a vapor compression refrigeration cycle is configured, which circulates in the following order: passage 21 ⁇ outflow side evaporator 18 ⁇ intake port of compressor 11.
  • the configuration and operation of the other ejector-type refrigeration cycle 10 are similar to those of the fourth embodiment. Therefore, according to the ejector-type refrigeration cycle 10 of the present embodiment, cooling and dehumidifying heating of the vehicle interior can be realized as in the fourth embodiment.
  • the bypass passage 21 of the present embodiment it is possible to connect the inlet of the fixed throttle 17 and the outlet of the diffuser 16 d of the ejector 16 with a refrigerant pipe or the like. Therefore, as in the third embodiment, when integrating the branch portion 15, the ejector 16, the fixed throttle 17, the bypass passage 21, the on-off valve 22 and the like (modularization), the module can be miniaturized.
  • the on-off valve 22 is eliminated and an electric three-way valve 23 is disposed at the inlet of the bypass passage 21 as an open / close mechanism. An example will be described.
  • the three-way valve 23 switches between a refrigerant circuit that causes the refrigerant flowing out of the cooling expansion valve 13 b to flow into the branch unit 15 and a refrigerant circuit that flows the refrigerant flowing out of the cooling expansion valve 13 b into the bypass passage 21.
  • the operation of the three-way valve 23 is controlled by the control voltage output from the air conditioning controller 40.
  • the air conditioning control device 40 controls the operation of the three-way valve 23 so that the refrigerant flowing out of the cooling expansion valve 13 b flows into the branch portion 15 in the cooling mode. Thereby, the bypass passage 21 is closed.
  • the operation of the three-way valve 23 is controlled so that the refrigerant flowing out of the cooling expansion valve 13 b flows into the bypass passage 21. Thereby, the bypass passage 21 is opened.
  • the configuration and operation of the other ejector-type refrigeration cycle 10 are similar to those of the first embodiment. Therefore, according to the ejector-type refrigeration cycle 10 of the present embodiment, cooling and dehumidifying heating of the vehicle interior can be realized as in the first embodiment.
  • the refrigerant circuit can be switched so that the entire flow rate of the refrigerant flowing out of the cooling expansion valve 13b flows into the bypass passage 21 in the dehumidifying and heating mode. Therefore, similarly to the second and fifth embodiments, it is possible to more effectively suppress the decrease in the air conditioning capacity at the time of the dehumidifying and heating mode.
  • FIG. 10 is a flowchart showing a control flow that is executed as a subroutine of the air conditioning control program that the air conditioning control device 40 executes.
  • step S1 of FIG. 10 when the elapsed time from the time the auto switch of the operation panel 50 is turned on (ON), ie, the elapsed time Tm from the start of activation of the compressor 11, is less than a predetermined reference time KTm
  • step S3 the on-off valve 22 is opened.
  • step S2 when the rotation speed Nc of the compressor 11 is equal to or less than a predetermined reference rotation speed Nc, the process proceeds to step S3 and the on-off valve 22 is opened.
  • the on-off valve 22 is opened until the reference time KTm elapses from the start of startup of the compressor 11, so that it flows into the nozzle portion 16a of the ejector 16 immediately after startup of the compressor 11.
  • the refrigerant flow rate can be reduced. Therefore, noise and vibration caused by a large amount of refrigerant flowing into the nozzle portion 16a can be reduced.
  • the refrigerant suction capacity of the ejector 16 also decreases during the low load operation.
  • the flow rate of the refrigerant flowing into the tank 19 may be insufficient.
  • the refrigerant discharge capacity of the compressor can be defined by the integrated value of the flow rate Q of the refrigerant discharged from the compressor and the pressure increase amount ⁇ P of the compressor.
  • the on-off valve 22 when the rotation speed Nc of the compressor 11 is equal to or less than the reference rotation speed KNc, the on-off valve 22 is opened.
  • the on-off valve 22 can be opened when it is less than the defined reference capacity.
  • the refrigerant can be made to flow into the suction side evaporator 19 regardless of the refrigerant suction capability of the ejector 16. Therefore, the temperature distribution of the blowing air in the suction side evaporator 19 can be suppressed. Furthermore, retention of refrigeration oil in the suction side evaporator 19 can be suppressed. As a result, it is possible to suppress the decrease in air conditioning capacity.
  • control flow described in the present embodiment is applied not only to the ejector-type refrigeration cycle 10 in the second, third, and seventh embodiments, but also to the ejector-type refrigeration cycle 10 described in the fourth to sixth embodiments. It is valid.
  • the refrigerant does not flow to the suction side evaporator 19 by opening the on-off valve 22, so the temperature of the blown air in the suction side evaporator 19
  • the effect of suppressing the distribution and the effect of suppressing the retention of refrigeration oil can be obtained.
  • each embodiment demonstrated the example which applied the ejector-type refrigerating cycle 10 which concerns on this indication to a vehicle air conditioner
  • the application of the ejector-type refrigerating cycle 10 is not limited to this.
  • the present invention may be applied to a stationary air conditioner.
  • each embodiment demonstrated the ejector-type refrigerating cycle comprised so that switching of the refrigerant circuit of air conditioning mode and the refrigerant circuit of dehumidification heating mode was possible
  • the structure of an ejector-type refrigerating cycle is not limited to this. Furthermore, switching to the heating mode may be possible.
  • a heating bypass passage and a heating on-off valve may be added.
  • the heating bypass passage is a refrigerant passage that is on the refrigerant flow downstream side of the outdoor heat exchanger 14 and guides the refrigerant to the suction side of the compressor 11 from the portion on the refrigerant flow upstream side of the cooling expansion valve 13b.
  • the heating on-off valve is an electromagnetic valve that opens and closes the heating bypass passage in accordance with the control voltage output from the air conditioning control device 40.
  • the air conditioning control device 40 opens the heating bypass passage, and brings the heating expansion valve 13a into the throttled state.
  • a vapor compression type refrigeration cycle in which the medium circulates in the order of the discharge port of the compressor 11 ⁇ the indoor condenser 12 ⁇ the heating expansion valve 13 a ⁇ the outdoor heat exchanger 14 ⁇ the suction port of the compressor 11 is configured.
  • the air conditioning control device 40 is an electric actuator for driving the air mix door so that the air mix door 34 fully opens the air flow path on the indoor condenser 12 side and fully closes the air flow path on the cold air bypass passage 35 side. Determine the control signal to be output.
  • the indoor condenser 12 is made to function as a radiator, and the outdoor heat exchanger 14 is made to function as an evaporator so that the blowing air heated by the indoor condenser 12 is blown out into the vehicle compartment.
  • the outdoor heat exchanger 14 is made to function as an evaporator so that the blowing air heated by the indoor condenser 12 is blown out into the vehicle compartment.
  • Each constituent device which constitutes ejector type freezing cycle 10 is not limited to what was indicated by the above-mentioned embodiment.
  • compressor 11 drives by the rotational driving force transmitted from the engine for vehicle travel via a pulley, a belt, etc. as compressor 11.
  • Engine driven compressors may be employed.
  • an engine-driven compressor it is possible to adjust the refrigerant discharge capacity by changing the operation rate of the compressor by changing the discharge capacity of the variable displacement compressor capable of adjusting the refrigerant discharge capacity by changing the discharge capacity or the electromagnetic clutch.
  • Fixed displacement compressor can be adopted.
  • variable nozzle part comprised so that a refrigerant channel cross-sectional area can be changed as a nozzle part is demonstrated. It may be adopted.
  • a needle valve disposed inside the nozzle portion to adjust the refrigerant passage area of the nozzle portion, and an electric drive portion for displacing the needle valve in the axial direction of the nozzle portion It should be adopted.
  • variable nozzle portion it is desirable to adopt one having a fully closed function of closing the refrigerant passage. Then, when the on-off valve 22 opens the bypass passage 21, the variable nozzle portion is fully closed so that the total flow rate of the refrigerant flowing out of the outdoor heat exchanger 14 can easily flow into the bypass passage.
  • the fixed throttle 17 is adopted as the suction side depressurizing unit, but a variable throttle mechanism configured to be able to change the cross sectional area of the throttle passage may be adopted as the suction side depressurizing unit.
  • a variable throttle mechanism one having a configuration similar to that of the heating expansion valve 13a and the cooling expansion valve 13b may be employed.
  • variable stop mechanism having a fully closed function. Then, when the on-off valve 22 opens the bypass passage 21, the variable throttling mechanism is fully closed so that the total flow rate of the refrigerant flowing out of the outdoor heat exchanger 14 can easily flow into the bypass passage.
  • a low pressure refrigerant temperature detection unit that detects the low pressure refrigerant temperature Ts flowing out of the outflow side evaporator 18 instead of the superheat degree sensor 46
  • a low pressure refrigerant pressure amount detection unit for detecting the low pressure refrigerant pressure Ps flowing out of the outflow side evaporator 18 is adopted, and the degree of superheat of the outlet side refrigerant of the evaporator unit 20 is calculated from the low pressure refrigerant temperature Ts and the low pressure refrigerant pressure Ps It is also good.
  • coolant is not limited to this.
  • R1234yf, R600a, R410A, R404A, R32, R407C, etc. may be adopted.
  • carbon dioxide may be employed as the refrigerant to constitute a supercritical refrigeration cycle in which the high pressure side refrigerant pressure is equal to or higher than the critical pressure of the refrigerant.

Abstract

エジェクタ式冷凍サイクルは、空調装置に適用され、圧縮機(11)と、室内放熱器(12)と、暖房用減圧部(13a)と、室外熱交換器(14)と、冷房用減圧部(13b)と、分岐部(15)と、エジェクタ(16)と、流出側蒸発器(18)と、吸引側減圧部(17)と、吸引側蒸発器(19)と、バイパス通路(21)と、開閉機構(22、23)と、を備える。分岐部は、冷房用減圧部から流出した冷媒の流れを分岐する。エジェクタは、分岐部にて分岐された一方の冷媒を減圧させるノズル部(16a)を有する。吸引側減圧部は、分岐部にて分岐された他方の冷媒を減圧させる。バイパス通路は、室外熱交換器の下流側の冷媒を、ノズル部および吸引側減圧部の少なくとも一方を迂回させて、流出側蒸発器および吸引側蒸発器のいずれか一方の冷媒入口側へ導く。開閉機構は、バイパス通路を開閉する。

Description

エジェクタ式冷凍サイクル 関連出願の相互参照
 本出願は、2017年7月19日に出願された日本特許出願番号2017-139746号に基づくもので、ここにその記載内容を援用する。
 本開示は、エジェクタを備えるエジェクタ式冷凍サイクルに関する。
 従来、冷媒減圧装置としてエジェクタを備える蒸気圧縮式の冷凍サイクル装置であるエジェクタ式冷凍サイクルが知られている。エジェクタ式冷凍サイクルでは、エジェクタの昇圧作用によって、圧縮機へ吸入される冷媒の圧力を、蒸発器における冷媒蒸発圧力よりも上昇させることができる。これにより、エジェクタ式冷凍サイクルでは、圧縮機の消費動力を低減させてサイクルの成績係数(COP)を向上させることができる。
 さらに、特許文献1には、エジェクタ式冷凍サイクルを構成する際に用いられる蒸発器ユニットが開示されている。特許文献1の蒸発器ユニットは、エジェクタ式冷凍サイクルの構成機器のうち、分岐部、エジェクタ、吸引側減圧部、吸引側蒸発器、流出側蒸発器等を一体化(換言すると、ユニット化)させたものである。特許文献1では、このようなサイクル構成機器の一体化によって、エジェクタ式冷凍サイクルの生産性を向上させようとしている。
 また、特許文献2には、空調対象空間である車室内の除湿暖房を行う車両用空調装置が開示されている。特許文献2の車両用空調装置に適用された冷凍サイクル装置は、室内凝縮器、室外熱交換器、室内蒸発器等を備えている。そして、車室内の除湿暖房を行う際には、室内凝縮器、室外熱交換器、室内蒸発器が、冷媒流れに対して、この順に直列的に接続された冷媒回路に切り替えられる。
 さらに、特許文献2の冷凍サイクル装置では、車室内の除湿暖房を行う際に、室内凝縮器を放熱器として機能させるとともに、室外熱交換器および室内蒸発器を蒸発器として機能させる。そして、室内蒸発器にて車室内へ送風される送風空気を冷却して除湿し、室外熱交換器にて外気から吸熱した熱と室内蒸発器にて送風空気から吸熱した熱とを熱源として、除湿された送風空気を室内凝縮器にて再加熱している。
特許第4259531号公報 特許第3331765号公報
 ここで、特許文献2の冷凍サイクル装置のCOP、および生産性を向上させる手段として、特許文献2の冷凍サイクル装置の室内蒸発器に代えて、特許文献1の蒸発器ユニットを採用してエジェクタ式冷凍サイクルを構成する手段が考えられる。
 しかし、特許文献1の蒸発器ユニットを特許文献2の冷凍サイクル装置に適用してエジェクタ式冷凍サイクルを構成すると、車室内の除湿暖房を行う際に、送風空気の加熱能力が不充分になってしまうことがあった。そこで、本発明者らがその原因について調査したところ、車室内の除湿暖房を行う際に、室外熱交換器における冷媒の吸熱量が減少して、送風空気を再加熱するための熱が不足してしまう場合があることが原因であると判った。
 このことをより詳細に説明すると、まず、特許文献2の冷凍サイクル装置では、車室内の除湿暖房を行う際に、室外熱交換器および室内蒸発器が、冷媒流れに対して、この順に直列的に接続される。このため、室外熱交換器における冷媒蒸発温度を、室内蒸発器における冷媒蒸発温度よりも低下させることはできないおそれがある。
 さらに、特許文献1の蒸発器ユニットは、エジェクタおよび吸引側減圧部を備えている。このため、室外熱交換器における冷媒蒸発温度は、室外熱交換器から流出した冷媒がエジェクタや吸引側減圧部を流通する際の圧力損失によって、蒸発器ユニットの吸引側蒸発器および流出側蒸発器における冷媒蒸発温度よりも上昇してしまう場合がある。
 これに加えて、特許文献2の冷凍サイクル装置では、車室内の除湿暖房を行う際に、室内蒸発器における冷媒蒸発温度を、室内蒸発器の着霜を抑制可能な温度(具体的には、0℃より高い温度)に設定しなければならない場合がある。このため、室外熱交換器にて熱交換する冷媒と外気との温度差が縮小して、室外熱交換器における冷媒の吸熱量が減少してしまうおそれがある。
 その結果、特許文献1の蒸発器ユニットを特許文献2の冷凍サイクル装置に適用すると、車室内の除湿暖房を行う際に、送風空気を再加熱するための熱が不足して、送風空気の加熱能力が不充分になってしまう場合がある。
 本開示は、上記点に鑑み、空調装置に適用されるエジェクタ式冷凍サイクルにおいて、エジェクタあるいは吸引側減圧部の圧力損失によって生じる空調能力の低下を抑制することを目的とする。
 本開示の一態様によるエジェクタ式冷凍サイクルは、空調装置に適用され、圧縮機と、室内放熱器と、暖房用減圧部と、室外熱交換器と、冷房用減圧部と、分岐部と、エジェクタと、流出側蒸発器と、吸引側減圧部と、吸引側蒸発器と、バイパス通路と、開閉機構と、を備える。圧縮機は、冷媒を圧縮して吐出する。室内放熱器は、圧縮機から吐出された冷媒と空調対象空間へ送風される送風空気とを熱交換させる。暖房用減圧部は、室内放熱器から流出した冷媒を減圧させる。室外熱交換器は、暖房用減圧部から流出した冷媒と外気とを熱交換させる。冷房用減圧部は、室外熱交換器から流出した冷媒を減圧させる。分岐部は、冷房用減圧部から流出した冷媒の流れを分岐する。エジェクタは、分岐部にて分岐された一方の冷媒を減圧させるノズル部から噴射される噴射冷媒の吸引作用によって冷媒吸引口から冷媒を吸引し、噴射冷媒と冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させる昇圧部を有する。流出側蒸発器は、エジェクタから流出した冷媒と室内放熱器を通過前の送風空気とを熱交換させる。吸引側減圧部は、分岐部にて分岐された他方の冷媒を減圧させる。吸引側蒸発器は、吸引側減圧部から流出した冷媒と室内放熱器を通過前の送風空気とを熱交換させる。バイパス通路は、室外熱交換器の下流側の冷媒を、ノズル部および吸引側減圧部の少なくとも一方を迂回させて、流出側蒸発器および吸引側蒸発器のいずれか一方の冷媒入口側へ導く。開閉機構は、バイパス通路を開閉する。
 これによれば、開閉機構がバイパス通路を開くことによって、室外熱交換器の下流側の冷媒を、エジェクタのノズル部および吸引側減圧部の少なくとも一方を迂回させて、流出側蒸発器および吸引側蒸発器の一方へ流入させることができる。
 つまり、開閉機構がバイパス通路を開くことで、冷媒がノズル部および吸引側減圧部を流通する際に生じる圧力損失の発生を抑制することができる。従って、これらの圧力損失によって空調能力が低下してしまうことを抑制することができる。
 具体的には、さらに、開閉機構の作動を制御する開閉機構制御部を備え、開閉機構制御部は、暖房用減圧部が冷媒減圧作用を発揮する絞り状態となっており、かつ、室外熱交換器にて冷媒を蒸発させる運転条件となっている際に、バイパス通路を開くように開閉機構の作動を制御するものであってもよい。
 これによれば、室外熱交換器における冷媒蒸発温度を、流出側蒸発器および吸引側蒸発器のいずれか一方における冷媒蒸発温度と同様となるまで低下させることができる。従って、室外熱交換器にて吸熱した熱を、室内放熱器にて送風空気に放熱させる運転条件時に、室内放熱器における送風空気の加熱能力の低下を抑制することができる。
本開示の少なくともひとつの実施形態のエジェクタ式冷凍サイクルの模式的な図である。 本開示の少なくともひとつの実施形態の室内空調ユニットの模式的な図である。 本開示の少なくともひとつの実施形態の車両用空調装置の電気制御部を示すブロック図である。 本開示の少なくともひとつの実施形態のエジェクタ式冷凍サイクルの模式的な図である。 本開示の少なくともひとつの実施形態のエジェクタ式冷凍サイクルの模式的な図である。 本開示の少なくともひとつの実施形態のエジェクタ式冷凍サイクルの模式的な図である。 本開示の少なくともひとつの実施形態のエジェクタ式冷凍サイクルの模式的な図である。 本開示の少なくともひとつの実施形態のエジェクタ式冷凍サイクルの模式的な図である。 本開示の少なくともひとつの実施形態のエジェクタ式冷凍サイクルの模式的な図である。 本開示の少なくともひとつの実施形態のエジェクタ式冷凍サイクルの制御フローの一部を示すフローチャートである。
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
 (第1実施形態)
 図1~図3を用いて、本開示の第1実施形態を説明する。本実施形態のエジェクタ式冷凍サイクル10は、車両走行用の駆動力を電動モータから得る電気自動車に搭載される車両用空調装置に適用されている。エジェクタ式冷凍サイクル10は、車両用空調装置において、空調対象空間である車室内に送風される送風空気の温度を調整する機能を果たす。従って、エジェクタ式冷凍サイクル10の温度調整対象流体は、送風空気である。
 本実施形態の車両用空調装置では、冷房モードの運転と除湿暖房モードの運転とを切り替えることができる。冷房モードは、送風空気を冷却して車室内を冷房する運転モードである。除湿暖房モードは、冷却して除湿された送風空気を再加熱して車室内の除湿暖房を行う運転モードである。
 さらに、エジェクタ式冷凍サイクル10は、車両用空調装置の運転モードに応じて、冷房モードの冷媒回路と除湿暖房モードの冷媒回路とを切り替えることができる。
 また、エジェクタ式冷凍サイクル10では、冷媒として、HFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。この冷媒には、圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
 まず、図1の全体構成図を用いて、エジェクタ式冷凍サイクル10を構成する各構成機器について説明する。
 圧縮機11は、エジェクタ式冷凍サイクル10において、冷媒を吸入し、圧縮して吐出するものである。圧縮機11は、車両ボンネット内に配置されている。本実施形態では、圧縮機11として、吐出容量が固定された固定容量型の圧縮機構を電動モータにて回転駆動する電動圧縮機を採用している。圧縮機11は、後述する空調制御装置40から出力される制御信号によって、回転数(すなわち、冷媒吐出能力)が制御される。
 圧縮機11の吐出口には、室内凝縮器12の冷媒入口側が接続されている。室内凝縮器12は、圧縮機11から吐出された高圧冷媒と後述する蒸発器ユニット20を通過後の送風空気とを熱交換させて、高圧冷媒を熱源として送風空気を加熱する室内放熱器である。室内凝縮器12は、後述する室内空調ユニット30のケーシング31内に配置されている。
 室内凝縮器12の冷媒出口には、暖房用膨張弁13aの入口側が接続されている。暖房用膨張弁13aは、車室内の除湿暖房を行う際に、室内凝縮器12から流出した冷媒を減圧させる暖房用減圧部である。暖房用膨張弁13aは、圧縮機11等とともに車両ボンネット内に配置されている。
 暖房用膨張弁13aは、絞り開度を変更可能に構成された弁体と、この弁体の開度を変化させる電動アクチュエータとを有して構成される電気式の可変絞り機構である。暖房用膨張弁13aは、空調制御装置40から出力される制御信号(制御パルス)によって、その作動が制御される。暖房用膨張弁13aは、弁開度を全開にすることによって冷媒減圧作用を殆ど発揮することなく単なる冷媒通路として機能する全開機能を有している。
 暖房用膨張弁13aの出口には、室外熱交換器14の冷媒入口側が接続されている。室外熱交換器14は、暖房用膨張弁13aから流出した冷媒と外気ファン14aから送風された外気とを熱交換させる熱交換器である。室外熱交換器14は、車両ボンネット内の前方側に配置されている。
 室外熱交換器14は、冷房モード時には、暖房用膨張弁13aから流出した冷媒を放熱させる放熱器として機能し、除湿暖房モード時には、暖房用膨張弁13aから流出した冷媒を放熱させる放熱器あるいは蒸発させる蒸発器として機能する熱交換器である。外気ファン14aは、空調制御装置40から出力される制御電圧によって回転数(すなわち、送風能力)が制御される電動送風機である。
 室外熱交換器14の冷媒出口には、冷房用膨張弁13bの入口側が接続されている。冷房用膨張弁13bは、車室内の冷房を行う際に、室外熱交換器14から流出した冷媒を減圧させる冷房用減圧部である。冷房用膨張弁13bの基本的構成は、暖房用膨張弁13aと同様である。
 冷房用膨張弁13bの出口には、分岐部15の流入口が接続されている。分岐部15は、冷房用膨張弁13bから流出した冷媒の流れを分岐するものである。分岐部15は、3つの流入出口を有する三方継手構造のもので、3つの流入出口のうち1つを冷媒流入口とし、残りの2つを冷媒流出口としたものである。
 分岐部15の一方の流出口には、エジェクタ16のノズル部16aの入口側が接続されている。また、分岐部15の他方の流出口には、固定絞り17の入口側が接続されている。
 エジェクタ16は、分岐部15にて分岐された一方の冷媒を減圧させて噴射するノズル部16aを有し、冷媒減圧装置としての機能を果たす。さらに、エジェクタ16は、ノズル部16aから噴射された噴射冷媒の吸引作用によって、冷媒を吸引して循環させる冷媒循環装置としての機能を果たす。これに加えて、エジェクタ16は、噴射冷媒と吸引冷媒との混合冷媒の運動エネルギを圧力エネルギに変換し、混合冷媒を昇圧させるエネルギ変換装置としての機能を果たす。
 より具体的には、エジェクタ16は、ノズル部16aおよびボデー部16bを有している。ノズル部16aは、冷媒の流れ方向に向かって徐々に先細る略円筒状の金属(本実施形態では、ステンレス合金)で形成されている。ノズル部16aは、内部に形成された冷媒通路にて冷媒を等エントロピ的に減圧膨張させるものである。
 ノズル部16aの内部に形成された冷媒通路には、通路断面積を最も縮小させる喉部、および喉部から冷媒を噴射する冷媒噴射口へ向かうに伴って通路断面積が徐々に拡大する末広部が形成されている。つまり、本実施形態のノズル部16aは、ラバールノズルとして構成されている。
 さらに、本実施形態では、ノズル部16aとして、サイクルの通常運転時に冷媒噴射口から噴射される噴射冷媒の流速が音速以上となるように設定されたものが採用されている。もちろん、ノズル部16aを先細ノズルで構成してもよい。
 ボデー部16bは、略円筒状の金属(本実施形態では、アルミニウム)で形成されている。ボデー部16bは、内部にノズル部16aを支持固定する固定部材として機能するとともに、エジェクタ16の外殻を形成するものである。より具体的には、ノズル部16aは、ボデー部16bの長手方向一端側の内部に収容されるように圧入にて固定されている。ボデー部16bは、樹脂にて形成されていてもよい。
 ボデー部16bの外周面のうち、ノズル部16aの外周側に対応する部位には、その内外を貫通してノズル部16aの冷媒噴射口と連通するように設けられた冷媒吸引口16cが形成されている。冷媒吸引口16cは、ノズル部16aから噴射される噴射冷媒の吸引作用によって、後述する吸引側蒸発器17から流出した冷媒をエジェクタ16の内部へ吸引するための貫通穴である。
 ボデー部16bの内部には、冷媒吸引口16cから吸引された吸引冷媒をノズル部16aの冷媒噴射口側へ導く吸引通路16e、および吸引冷媒と噴射冷媒とを混合させて昇圧させる昇圧部であるディフューザ部16dが形成されている。
 吸引通路16eは、ノズル部16aの先細り形状の先端部周辺の外周側とボデー部16bの内周側との間の空間に形成されており、吸引通路16eの冷媒通路面積は、冷媒流れ方向に向かって徐々に縮小している。これにより、吸引通路16eを流通する吸引冷媒の流速を徐々に増加させて、ディフューザ部16dにて吸引冷媒と噴射冷媒が混合する際のエネルギ損失(すなわち、混合損失)を減少させている。
 ディフューザ部16dは、吸引通路16eの出口に連続するように配置された略円錐台状の冷媒通路である。ディフューザ部16dでは、通路断面積が冷媒流れ下流側に向かって徐々に拡大する。ディフューザ部16dは、このような通路形状によって、混合冷媒の運動エネルギを圧力エネルギに変換する。
 ディフューザ部16dの出口には、後述する蒸発器ユニット20を構成する流出側蒸発器18の冷媒入口側が接続されている。流出側蒸発器18は、送風機20aから車室内へ向けて送風された送風空気とディフューザ部16dから流出した冷媒とを熱交換させ、この冷媒を蒸発させて吸熱作用を発揮させることによって送風空気を冷却する冷却用熱交換器である。
 送風機20aは、空調制御装置40から出力される制御電圧によって回転数(すなわち、送風能力)が制御される電動送風機である。送風機20aは、室内空調ユニット30のケーシング31内に配置されている。流出側蒸発器18の冷媒出口側には、圧縮機11の吸入口側が接続されている。
 次に、固定絞り17は、分岐部15にて分岐された他方の冷媒を減圧させる吸引側減圧部である。固定絞り17としては、絞り開度が固定されたノズル、オリフィス、キャピラリチューブ等を採用することができる。
 固定絞り17の出口側には、蒸発器ユニット20を構成する吸引側蒸発器19の冷媒入口側が接続されている。吸引側蒸発器19は、流出側蒸発器18を通過した送風空気と固定絞り17から流出した冷媒とを熱交換させ、この冷媒を蒸発させて吸熱作用を発揮させることによって送風空気を冷却する冷却用熱交換器である。
 流出側蒸発器18および吸引側蒸発器19は、蒸発器ユニット20として、一体的に構成されている。具体的には、流出側蒸発器18および吸引側蒸発器19は、いずれも冷媒を流通させる複数本のチューブと、この複数のチューブの両端側に配置されてチューブを流通する冷媒の集合あるいは分配を行う一対の集合分配用タンクとを有する、いわゆるタンクアンドチューブ型の熱交換器で構成されている。
 そして、流出側蒸発器18および吸引側蒸発器19の集合分配用タンクが同一部材にて形成されていることによって、流出側蒸発器18および吸引側蒸発器19が一体化されている。この際、流出側蒸発器18が吸引側蒸発器19よりも送風空気流れ上流側に配置されるように一体化されている。蒸発器ユニット20は、室内空調ユニット30のケーシング31内に配置されている。
 さらに、エジェクタ式冷凍サイクル10には、室外熱交換器14の下流側の冷媒を、エジェクタ16のノズル部16aおよび固定絞り17の少なくとも一方を迂回させて、流出側蒸発器18および吸引側蒸発器19のいずれか一方の冷媒入口側へ導くバイパス通路21が設けられている。
 より具体的には、バイパス通路21は、冷房用膨張弁13bの下流側であって、かつ、分岐部15の上流側の冷媒を、固定絞り17を迂回させて、吸引側蒸発器19の冷媒入口側へ導くように接続されている。
 バイパス通路21には、開閉弁22が配置されている。開閉弁22は、バイパス通路21を開閉する開閉機構である。開閉弁22は、空調制御装置40から出力される制御電圧によって、その作動が制御される電磁弁である。
 ここで、冷媒がバイパス通路21を流通する際に生じる圧力損失は、冷媒が分岐部15を介してエジェクタ16のノズル部16aおよび固定絞り17を流通する際に生じる圧力損失に比べて極めて小さい。それゆえ、開閉弁22がバイパス通路21を開いた際には、冷房用膨張弁13bから流出した冷媒の殆どの流量がバイパス通路21側へ流入する。
 もちろん、開閉弁22がバイパス通路21を開いた際であっても、バイパス通路21側の通路抵抗およびエジェクタ16のノズル部16aおよび固定絞り17側の通路抵抗によって、バイパス通路21へ流入する流量が決定される。このため、開閉弁22がバイパス通路21を開いた際にも、僅かな流量の冷媒は、分岐部15へ流入することになる。
 次に、図2を用いて、室内空調ユニット30について説明する。室内空調ユニット30は、車室内最前部の計器盤(すなわち、インストルメントパネル)の内側に配置されている。室内空調ユニット30は、エジェクタ式冷凍サイクル10によって温度調整された送風空気を車室内の適切な箇所へ吹き出すための空気通路を形成するものである。
 室内空調ユニット30は、図2に示すように、その外殻を形成するケーシング31の内部に形成される空気通路に、送風機20a、蒸発器ユニット20、室内凝縮器12等を収容したものである。
 ケーシング31は、車室内に送風される送風空気の空気通路を形成するもので、ある程度の弾性を有し、強度的にも優れた樹脂(具体的には、ポリプロピレン)にて形成されている。ケーシング31の送風空気流れ最上流側には、ケーシング31内へ内気(車室内空気)と外気(車室外空気)とを切替導入する内外気切替装置33が配置されている。
 内外気切替装置33は、ケーシング31内へ内気を導入させる内気導入口および外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の導入風量と外気の導入風量との導入割合を変化させることができる。内外気切替ドアは、内外気切替ドア用の電動アクチュエータによって駆動され、この電動アクチュエータは、空調制御装置から出力される制御信号によって、その作動が制御される。
 内外気切替装置33の送風空気流れ下流側には、送風機20aが配置されている。送風機20aの送風空気流れ下流側には、蒸発器ユニット20および室内凝縮器12が、送風空気の流れに対して、この順に配置されている。つまり、蒸発器ユニット20は、室内凝縮器12に対して、送風空気流れ上流側に配置されている。
 また、ケーシング31内には、蒸発器ユニット20を通過した送風空気を、室内凝縮器12を迂回させて下流側へ流す冷風バイパス通路35が形成されている。
 蒸発器ユニット20の送風空気流れ下流側であって、かつ、室内凝縮器12の送風空気流れ上流側には、蒸発器ユニット20通過後の送風空気のうち、室内凝縮器12を通過させる風量と冷風バイパス通路35を通過させる風量との風量割合を調整するエアミックスドア34が配置されている。
 室内凝縮器12の送風空気流れ下流側には、室内凝縮器12にて加熱された送風空気と冷風バイパス通路35を通過して室内凝縮器12にて加熱されていない送風空気とを混合させる混合空間36が設けられている。さらに、ケーシング31の送風空気流れ最下流部には、混合空間36にて混合された送風空気(空調風)を、車室内へ吹き出す開口穴37a~37cが配置されている。
 この開口穴としては、フェイス開口穴37a、フット開口穴37b、およびデフロスタ開口穴37cが設けられている。フェイス開口穴37aは、車室内の乗員の上半身に向けて空調風を吹き出すための開口穴である。フット開口穴37bは、乗員の足元に向けて空調風を吹き出すための開口穴である。デフロスタ開口穴37cは、車両前面窓ガラス内側面に向けて空調風を吹き出すための開口穴である。
 これらのフェイス開口穴37a、フット開口穴37b、およびデフロスタ開口穴37cは、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口(いずれも図示せず)に接続されている。
 従って、エアミックスドア34が、室内凝縮器12を通過させる風量と冷風バイパス通路35を通過させる風量との風量割合を調整することによって、混合空間36にて混合される空調風の温度が調整される。これにより、各吹出口から車室内へ吹き出される送風空気(空調風)の温度も調整される。
 エアミックスドア34は、エアミックスドア駆動用の電動アクチュエータによって駆動され、この電動アクチュエータは、空調制御装置から出力される制御信号によって、その作動が制御される。
 また、フェイス開口穴37a、フット開口穴37b、およびデフロスタ開口穴37cの送風空気流れ上流側には、それぞれ、フェイス開口穴37aの開口面積を調整するフェイスドア、フット開口穴37bの開口面積を調整するフットドア、デフロスタ開口穴37cの開口面積を調整するデフロスタドア(いずれも図示せず)が配置されている。
 これらのフェイスドア、フットドア、デフロスタドアは、空調風が吹き出される吹出口を切り替える吹出モード切替装置を構成するものである。フェイスドア、フットドア、デフロスタドアは、リンク機構等を介して、吹出口モードドア駆動用の電動アクチュエータに連結されて連動して回転操作される。この電動アクチュエータは、空調制御装置40から出力される制御信号によって、その作動が制御される。
 次に、本実施形態の電気制御部の概要について説明する。空調制御装置40は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。そして、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、その出力側に接続された各種制御対象機器11、13a、13b、14a、20a、22等の作動を制御する。
 また、空調制御装置40の入力側には、図3のブロック図に示すように、内気温センサ41、外気温センサ42、日射センサ43、高圧センサ44、蒸発器温度センサ45、過熱度センサ46、空調風温度センサ47等の空調制御用のセンサ群が接続されている。空調制御装置40には、これらの空調制御用のセンサ群の検出信号が入力される。
 内気温センサ41は、車室内温度(内気温)Trを検出する内気温検出部である。外気温センサ42は、車室外温度(外気温)Tamを検出する外気温検出部である。日射センサ43は、車室内へ照射される日射量Asを検出する日射量検出部である。高圧センサ44は、圧縮機11の吐出口側から暖房用膨張弁13aの入口側へ至る冷媒流路の高圧冷媒圧力Pdを検出する冷媒圧力検出部である。
 蒸発器温度センサ45は、吸引側蒸発器19における冷媒蒸発温度(蒸発器温度)Tefinを検出する蒸発器温度検出部である。過熱度センサ46は、蒸発器ユニット20の出口側(具体的には、流出側蒸発器18の出口側)の冷媒の過熱度SHを検出する過熱度検出部である。空調風温度センサ47は、混合空間36から車室内へ送風される送風空気温度TAVを検出する空調風温度検出部である。
 さらに、空調制御装置40の入力側には、図3に示すように、車室内前部の計器盤付近に配置された操作パネル50が接続され、この操作パネル50に設けられた各種操作スイッチからの操作信号が入力される。
 操作パネル50に設けられた各種操作スイッチとしては、具体的に、車両用空調装置の自動制御運転を設定あるいは解除するオートスイッチ、車室内の冷房を行うことを要求する冷房スイッチ、送風機18aの風量をマニュアル設定する風量設定スイッチ、車室内の目標温度Tsetを設定する温度設定スイッチ等がある。
 なお、本実施形態の空調制御装置40は、その出力側に接続された各種制御対象機器を制御する制御部が一体に構成されたものであるが、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御部を構成している。例えば、空調制御装置40のうち、圧縮機11の作動を制御する構成は、吐出能力制御部40aである。開閉弁22の作動を制御する構成は、開閉機構制御部40bである。
 次に、上記構成における本実施形態の作動について説明する。本実施形態の車両用空調装置1では、車室内の冷房、および除湿暖房を行うことができる。これに応じて、エジェクタ式冷凍サイクル10では、冷房モードの運転、および除湿暖房モードの運転を切り替えることができる。各運転モードの切り替えは、空調制御プログラムが実行されることによって行われる。
 この空調制御プログラムは、操作パネル50のオートスイッチが投入(ON)された際に実行される。そして、オートスイッチが投入(ON)された状態で、冷房スイッチが投入(ON)されると冷房モードが実行され、冷房スイッチが解除(OFF)されている際には除湿暖房モードが実行される。以下に各運転モードについて説明する。
 (a)冷房モード
 冷房モードでは、空調制御装置40が、暖房用膨張弁13aを全開状態とし、冷房用膨張弁13bを冷媒減圧作用を発揮する絞り状態とし、開閉弁22を閉じる。
 これにより、冷房モードでは、冷媒が、圧縮機11の吐出口(→室内凝縮器12→暖房用膨張弁13a)→室外熱交換器14→冷房用膨張弁13b→分岐部15→エジェクタ16→流出側蒸発器18→圧縮機11の吸入口の順に循環するとともに、分岐部15→固定絞り17→吸引側蒸発器19→エジェクタ16の冷媒吸引口の順に循環するエジェクタ式冷凍サイクルが構成される。
 このサイクル構成で、空調制御装置40は、目標吹出温度TAOに基づいて、予め空調制御装置40に記憶されている制御マップを参照して、蒸発器ユニット20から吹き出される送風空気の目標蒸発器温度TEOを決定する。そして、蒸発器温度センサ45によって検出された蒸発器温度Tefinが目標蒸発器温度TEOに近づくように圧縮機11の電動モータへ出力される制御信号を決定する。
 ここで、目標吹出温度TAOは、車室内に吹き出される送風空気(空調風)の目標温度である。目標吹出温度TAOは、内気温センサ41によって検出された内気温Tr、外気温センサ42によって検出された外気温Tam、日射センサ43によって検出された日射量As、および操作パネル50の温度設定スイッチによって設定された設定温度Tsetを用いて算定される。
 この制御マップでは、目標吹出温度TAOの低下に伴って、目標蒸発器温度TEOを低下させるように決定する。さらに、目標蒸発器温度TEOは、流出側蒸発器18および吸引側蒸発器19の着霜を抑制可能な範囲(具体的には、1℃以上)の値に決定される。
 また、空調制御装置40は、過熱度センサ46によって検出された蒸発器ユニット20の出口側の冷媒の過熱度SHが、予め定めた基準加熱度KSH(本実施形態では、3℃)に近づくように、冷房用膨張弁13bへ出力する制御パルスを決定する。
 また、空調制御装置40は、エアミックスドア34が室内凝縮器12側の通風路を全閉とし、冷風バイパス通路35側の通風路を全開とするように、エアミックスドア駆動用の電動アクチュエータに出力する制御信号を決定する。
 そして、上記の如く決定された制御信号等を各種制御対象機器へ出力する。その後、車両用空調装置の作動停止が要求されるまで、所定の制御周期毎に、検出信号および操作信号の読み込み→各種制御対象機器の作動状態の決定→制御電圧および制御信号の出力といった制御ルーチンが繰り返される。なお、このような制御ルーチンの繰り返しは、他の運転モード時にも同様に行われる。
 従って、冷房モードでは、圧縮機11から吐出された高圧冷媒が、室内凝縮器12へ流入する。冷房モードでは、エアミックスドア34が室内凝縮器12側の通風路を全閉としているので、室内凝縮器12へ流入した高圧冷媒は、送風空気に放熱することなく、室内凝縮器12から流出する。
 室内凝縮器12から流出した高圧冷媒は、暖房用膨張弁13aへ流入する。冷房モードでは、暖房用膨張弁13aが全開となっているので、暖房用膨張弁13aへ流入した高圧冷媒は、減圧されることなく暖房用膨張弁13aから流出する。
 暖房用膨張弁13aから流出した高圧冷媒は、室外熱交換器14へ流入する。室外熱交換器14へ流入した高圧冷媒は、外気ファン14aによって送風された外気と熱交換し、放熱して凝縮する。室外熱交換器14にて凝縮した冷媒は、冷房用膨張弁13bへ流入して減圧される。この際、冷房用膨張弁13bの絞り開度は、流出側蒸発器18の出口側の冷媒の過熱度SHが基準過熱度KSHに近づくように調整される。
 冷房用膨張弁13bにて減圧された低圧冷媒は、開閉弁22が閉じているので、バイパス通路21側へ流入することなく、分岐部15へ流入する。分岐部15にて分岐された一方の冷媒は、エジェクタ16のノズル部16aへ流入して等エントロピ的に減圧されて噴射される。そして、この噴射冷媒の吸引作用によって、吸引側蒸発器19から流出した冷媒が、エジェクタ16の冷媒吸引口16cから吸引される。
 ノズル部16aから噴射された噴射冷媒、および冷媒吸引口16cから吸引された吸引冷媒は、エジェクタ16のディフューザ部16dへ流入する。ディフューザ部16dでは、冷媒通路面積の拡大により、冷媒の速度エネルギが圧力エネルギに変換される。これにより、噴射冷媒と吸引冷媒との混合冷媒の圧力が上昇する。ディフューザ部16dにて昇圧された冷媒は、蒸発器ユニット20の流出側蒸発器18へ流入する。
 流出側蒸発器18へ流入した冷媒は、送風機20aによって送風された送風空気から吸熱して蒸発する。これにより、送風機20aによって送風された送風空気が冷却される。流出側蒸発器18から流出した冷媒は、圧縮機11に吸入されて再び圧縮される。
 一方、分岐部15にて分岐された他方の冷媒は、固定絞り17にて等エンタルピ的に減圧される。固定絞り17にて減圧された冷媒は、蒸発器ユニット20の吸引側蒸発器19へ流入する。吸引側蒸発器19へ流入した冷媒は、流出側蒸発器18を通過した送風空気から吸熱して蒸発する。これにより、流出側蒸発器18通過後の送風空気が、さらに冷却される。吸引側蒸発器19から流出した冷媒は、冷媒吸引口16cから吸引される。
 以上の如く、冷房モードでは、蒸発器ユニット20(具体的には、流出側蒸発器18および吸引側蒸発器19)にて送風空気を冷却することができる。そして、冷却された送風空気を車室内へ吹き出すことによって、車室内の冷房を実現することができる。
 この際、エジェクタ式冷凍サイクル10では、流出側蒸発器18下流側の冷媒、すなわちエジェクタ16のディフューザ部16dにて昇圧された冷媒を圧縮機11へ吸入させることができる。従って、エジェクタ式冷凍サイクル10では、蒸発器における冷媒蒸発圧力と圧縮機吸入冷媒の圧力が同等となる通常の冷凍サイクル装置よりも、圧縮機11の消費動力を低減させて、サイクルの成績係数(COP)を向上させることができる。
 また、エジェクタ式冷凍サイクル10では、流出側蒸発器18における冷媒蒸発圧力をディフューザ部16dにて昇圧された冷媒圧力とし、吸引側蒸発器19における冷媒蒸発圧力をノズル部16aにて減圧された直後の低い冷媒圧力とすることができる。従って、各蒸発器における冷媒蒸発温度と送風空気との温度差を確保して、送風空気を効率的に冷却することができる。
 (b)除湿暖房モード
 除湿暖房モードでは、空調制御装置40が、暖房用膨張弁13aを絞り状態とし、冷房用膨張弁13bを絞り状態とし、開閉弁22を開く。
 これにより、除湿暖房モードでは、殆どの冷媒が圧縮機11の吐出口→室内凝縮器12→暖房用膨張弁13a→室外熱交換器14→冷房用膨張弁13b→バイパス通路21→吸引側蒸発器19→エジェクタ16→流出側蒸発器18→圧縮機11の吸入口の順に循環する蒸気圧縮式の冷凍サイクルが構成される。
 つまり、除湿暖房モードでは、室内凝縮器12、室外熱交換器14、蒸発器ユニット20(すなわち、吸引側蒸発器19、および流出側蒸発器18)が、冷媒流れに対して、この順に直列的に接続された冷媒回路に切り替えられる。
 このサイクル構成で、空調制御装置40は、冷房モードと同様に、圧縮機11の電動モータへ出力される制御信号を決定する。
 また、空調制御装置40は、目標吹出温度TAOおよび外気温Tamに基づいて、予め空調制御装置に記憶されている制御マップを参照して、暖房用膨張弁13aおよび冷房用膨張弁13bへ出力する制御パルスを決定する。
 この制御マップでは、空調風温度センサ47によって検出された送風空気温度TAVが目標吹出温度TAOに近づくように、目標吹出温度TAOの上昇および外気温Tamの低下に伴って、暖房用膨張弁13aの絞り開度を縮小させ、冷房用膨張弁13bの絞り開度を増加させるように制御パルスを決定する。
 また、空調制御装置40は、エアミックスドア34が室内凝縮器12側の通風路を全開とし、冷風バイパス通路35側の通風路を全閉とするように、エアミックスドア駆動用の電動アクチュエータに出力する制御信号を決定する。
 従って、除湿暖房モードでは、圧縮機11から吐出された高圧冷媒が、室内凝縮器12へ流入する。除湿暖房モードでは、エアミックスドア34が室内凝縮器12側の通風路を全開としているので、室内凝縮器12へ流入した高圧冷媒は、蒸発器ユニット20通過後の送風空気と熱交換して放熱する。これにより、蒸発器ユニット20通過後の送風空気が目標吹出温度TAOに近づくように加熱される。
 室内凝縮器12から流出した高圧冷媒は、暖房用膨張弁13aへ流入して等エンタルピ的に減圧される。暖房用膨張弁13aにて減圧された冷媒は、室外熱交換器14へ流入する。
 この際、室外熱交換器14における冷媒の飽和温度が外気温Tamよりも高い場合には、室外熱交換器14は、冷媒の有する熱を外気に放熱させる放熱器として機能する。一方、室外熱交換器14における冷媒の飽和温度が外気温Tamよりも低い場合には、室外熱交換器14は、外気の有する熱を吸熱させて冷媒を蒸発させる蒸発器として機能する。
 さらに、室外熱交換器14における冷媒の飽和温度が外気温Tamよりも高い場合には、空調制御装置40が目標吹出温度TAOの上昇および外気温Tamの低下に伴って、室外熱交換器14の冷媒の飽和温度を低下させることによって、室外熱交換器14における冷媒の放熱量を減少させることができる。これにより、室内凝縮器12における冷媒の放熱量を増加させて送風空気の加熱能力を向上させることができる。
 一方、室外熱交換器14における冷媒の飽和温度が外気温Tamよりも低い場合には、空調制御装置40が目標吹出温度TAOの上昇および外気温Tamの低下に伴って、室外熱交換器14の冷媒の飽和温度を低下させることによって、室外熱交換器14における冷媒の吸熱量を増加させることができる。これにより、室内凝縮器12における冷媒の放熱量を増加させて送風空気の加熱能力を向上させることができる。
 室外熱交換器14から流出した冷媒は、冷房用膨張弁13bへ流入して等エンタルピ的に減圧される。冷房用膨張弁13bにて減圧された低圧冷媒は、開閉弁22が開いているので、殆ど全ての流量がバイパス通路21を介して、蒸発器ユニット20の吸引側蒸発器19へ流入する。
 吸引側蒸発器19へ流入した冷媒は、吸引側蒸発器19→エジェクタ16の冷媒吸引口21b→吸引通路16e→ディフューザ部16d→流出側蒸発器18の順に流れる。この際、冷媒は吸引側蒸発器19および流出側蒸発器18にて送風空気から吸熱して蒸発する。これにより、室内凝縮器12通過前の送風空気が冷却されて除湿される。
 蒸発器ユニット20の流出側蒸発器18から流出した冷媒は、圧縮機11へ吸入されて再び圧縮される。
 以上の如く、除湿暖房モードでは、蒸発器ユニット20(具体的には、流出側蒸発器18および吸引側蒸発器19)にて送風空気を冷却して除湿し、除湿された送風空気を室内凝縮器12にて再加熱することができる。そして、再加熱された送風空気を車室内へ吹き出すことによって、車室内の除湿暖房を実現することができる。
 ところで、除湿暖房モードのエジェクタ式冷凍サイクル10では、目標吹出温度TAOの上昇および外気温Tamの低下に伴って、暖房用膨張弁13aの絞り開度を縮小させ、冷房用膨張弁13bの絞り開度を増加させている。つまり、除湿暖房モードのエジェクタ式冷凍サイクル10では、要求される送風空気の加熱能力(すなわち、暖房能力)の増加に伴って、室外熱交換器14における冷媒の飽和温度を低下させている。
 さらに、除湿暖房モードのエジェクタ式冷凍サイクル10では、室外熱交換器14、吸引側蒸発器19、流出側蒸発器18が、冷媒流れに対して、この順に直列的に接続される冷媒回路に切り替えられる。このため、除湿暖房モード時に、室外熱交換器14における冷媒蒸発温度を、吸引側蒸発器19あるいは流出側蒸発器18における冷媒蒸発温度よりも低下させることができない。
 従って、エジェクタ式冷凍サイクル10において、除湿暖房モード時の送風空気の加熱能力を最大とするためには、冷房用膨張弁13bを全開として、室外熱交換器14における冷媒蒸発温度を、吸引側蒸発器19および流出側蒸発器18の冷媒蒸発温度に近づけることが有効である。
これに対して、本実施形態のエジェクタ式冷凍サイクル10では、除湿暖房モード時に、開閉弁22がバイパス通路21を開く。これによれば、冷房用膨張弁13bから流出した冷媒を、エジェクタ16のノズル部16aおよび固定絞り17を迂回させて、吸引側蒸発器19および流出側蒸発器18へ流入させることができる。
 従って、室外熱交換器14から流出した冷媒が、エジェクタ16のノズル部16aおよび固定絞り17を流通する際の圧力損失によって、室外熱交換器14における冷媒蒸発温度が吸引側蒸発器19および流出側蒸発器18の冷媒蒸発温度よりも上昇してしまうことを抑制することができる。つまり、室外熱交換器14における冷媒蒸発温度を、吸引側蒸発器19および流出側蒸発器18の冷媒蒸発温度における冷媒蒸発温度に効果的に近づけることができる。
 その結果、除湿暖房モードのエジェクタ式冷凍サイクル10では、冷媒がエジェクタ16のノズル部16aおよび固定絞り17を流通する際に生じる圧力損失によって、室外熱交換器14における冷媒の吸熱量が減少してしまうことを抑制して、空調能力(具体的には、送風空気の加熱能力)が低下してしまうことを抑制することができる。
 すなわち、エジェクタ式冷凍サイクル10によれば、除湿暖房モード時に、冷媒がエジェクタ16のノズル部16aおよび固定絞り17を流通する際に生じる圧力損失によって、空調能力が低下してしまうことを抑制することができる。
 また、本実施形態のバイパス通路21は、冷房用膨張弁13bの下流側の冷媒を流入させるように接続されている。従って、分岐部15、エジェクタ16、固定絞り17、バイパス通路21、および開閉弁22を近接配置して容易に一体化(モジュール化)させることができる。
 また、本実施形態のバイパス通路21は、流入させた室外熱交換器14の下流側の冷媒を、吸引側蒸発器19の冷媒入口側へ導くように接続されている。従って、吸引側蒸発器19および流出側蒸発器18の双方に冷媒を流通させることができ、双方の蒸発器18、19にて、冷媒を充分に蒸発させることができる。これにより、より一層、吸熱量の低下を抑制することができる。
 また、本実施形態では、除湿暖房モード時に、開閉弁22を開く例を説明したが、除湿暖房モード時あっても、要求される送風空気の加熱能力が少ない運転条件、すなわち、室外熱交換器14における冷媒の飽和温度が外気温Tamよりも高くなっている運転条件時には、開閉弁22を閉じてもよい。
 換言すると、除湿暖房モード時のうち、暖房用膨張弁13aが絞り状態となっており、かつ、室外熱交換器14にて冷媒を蒸発させる運転条件となっている際に、開閉弁22を開くようにしてもよい。これによれば、除湿暖房モード時のうち、要求される送風空気の加熱能力が少ない運転条件では、エジェクタ16の昇圧作用によるCOP向上効果を得ることができる。
 (第2実施形態)
 本実施形態では、第1実施形態に対して、バイパス通路21の接続態様を変更している。具体的には、本実施形態のバイパス通路21は、図4の全体構成図に示すように、室外熱交換器14の下流側であって、かつ、冷房用膨張弁13bの上流側の冷媒を、固定絞り17を迂回させて、吸引側蒸発器19の冷媒入口側へ導くように接続されている。
 また、本実施形態の冷房用膨張弁13bは、弁開度を全閉にすることで冷媒通路を閉塞する全閉機能を有している。その他のエジェクタ式冷凍サイクル10の構成は、第1実施形態と同様である。なお、図3では、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面でも同様である。
 さらに、本実施形態の除湿暖房モードでは、空調制御装置40が、暖房用膨張弁13aを絞り状態とし、冷房用膨張弁13bを全閉状態とし、開閉弁22を開く。
 これにより、本実施形態の除湿暖房モードでは、冷媒が圧縮機11の吐出口→室内凝縮器12→暖房用膨張弁13a→室外熱交換器14→バイパス通路21→吸引側蒸発器19→エジェクタ16→流出側蒸発器18→圧縮機11の吸入口の順に循環する蒸気圧縮式の冷凍サイクルが構成される。このため、本実施形態の除湿暖房モードでは、室外熱交換器14は蒸発器として機能する。
 さらに、本実施形態の除湿暖房モードでは、空調制御装置40が、目標吹出温度TAOおよび外気温Tamに基づいて、予め空調制御装置に記憶されている制御マップを参照して、暖房用膨張弁13aへ出力する制御パルスを決定する。この制御マップでは、送風空気温度TAVが目標吹出温度TAOに近づくように、目標吹出温度TAOの上昇および外気温Tamの低下に伴って、暖房用膨張弁13aの絞り開度を縮小させる。
 その他のエジェクタ式冷凍サイクル10の構成および作動は、第1実施形態と同様である。従って、本実施形態のエジェクタ式冷凍サイクル10によれば、第1実施形態と同様に車室内の冷房および除湿暖房を実現することができる。
 さらに、除湿暖房モード時に、冷房用膨張弁13bが全閉となる。従って、開閉弁22がバイパス通路21を開いた際には、僅かな流量の冷媒がエジェクタ16のノズル部16aあるいは固定絞り17へ流入してしまうことがなく、室外熱交換器14から流出した冷媒の全流量をバイパス通路21へ流入させることができる。
 その結果、本実施形態のエジェクタ式冷凍サイクル10によれば、除湿暖房モード時に、空調能力が低下してしまうことをより一層効果的に抑制することができる。
 (第3実施形態)
 本実施形態では、第1実施形態に対して、バイパス通路21の接続態様を変更している。具体的には、本実施形態のバイパス通路21は、図5の全体構成図に示すように、分岐部15の下流側であって、かつ、固定絞り17の上流側の冷媒を、固定絞り17を迂回させて、吸引側蒸発器19の冷媒入口側へ導くように接続されている。
 これにより、本実施形態の冷房モードでは、第1実施形態と同様のサイクルが構成される。また、本実施形態の除湿暖房モードでは、殆どの冷媒が圧縮機11の吐出口→室内凝縮器12→暖房用膨張弁13a→室外熱交換器14→冷房用膨張弁13b→分岐部15→バイパス通路21→吸引側蒸発器19→エジェクタ16→流出側蒸発器18→圧縮機11の吸入口の順に循環する蒸気圧縮式の冷凍サイクルが構成される。
 その他のエジェクタ式冷凍サイクル10の構成および作動は、第1実施形態と同様である。従って、本実施形態のエジェクタ式冷凍サイクル10によれば、第1実施形態と同様に車室内の冷房および除湿暖房を実現することができる。
 さらに、本実施形態のバイパス通路21は、固定絞り17の入口部と出口部とを冷媒配管等で接続することが実現できる。従って、分岐部15、エジェクタ16、固定絞り17、バイパス通路21、および開閉弁22を近接配置して、容易に一体化(モジュール化)させることができる。
 (第4実施形態)
 本実施形態では、第1実施形態に対して、バイパス通路21の接続態様を変更している。具体的には、本実施形態のバイパス通路21は、図6の全体構成図に示すように、冷房用膨張弁13bの下流側であって、かつ、分岐部15の上流側の冷媒を、エジェクタ16を迂回させて、流出側蒸発器18の冷媒入口側へ導くように接続されている。
 本実施形態の除湿暖房モードでは、殆どの冷媒が圧縮機11の吐出口→室内凝縮器12→暖房用膨張弁13a→室外熱交換器14→冷房用膨張弁13b→バイパス通路21→流出側蒸発器18→圧縮機11の吸入口の順に循環する蒸気圧縮式の冷凍サイクルが構成される。
 その他のエジェクタ式冷凍サイクル10の構成および作動は、第1実施形態と同様である。従って、本実施形態のエジェクタ式冷凍サイクル10によれば、第1実施形態と同様に車室内の冷房および除湿暖房を実現することができ、第1実施形態と同様の効果を得ることができる。
 また、本実施形態のバイパス通路21は、流入させた室外熱交換器14の下流側の冷媒を、流出側蒸発器18の冷媒入口側へ導くように接続されている。これによれば、吸引側蒸発器19から流出した冷媒がエジェクタ16の冷媒吸引口16cおよび吸引通路16eを流通する際に生じる圧力損失によって、空調能力が低下してしまうことを抑制することができる。
 (第5実施形態)
 本実施形態では、第4実施形態に対して、バイパス通路21の接続態様を変更している。具体的には、本実施形態のバイパス通路21は、図7の全体構成図に示すように、室外熱交換器14の下流側であって、かつ、冷房用膨張弁13bの上流側の冷媒を、エジェクタ16を迂回させて、流出側蒸発器18の冷媒入口側へ導くように接続されている。また、本実施形態の冷房用膨張弁13bは、第2実施形態と同様に全閉機能を有している。
 本実施形態の除湿暖房モードでは、空調制御装置40が、暖房用膨張弁13aを絞り状態とし、冷房用膨張弁13bを全閉状態とし、開閉弁22を開く。
 これにより、本実施形態の除湿暖房モードでは、冷媒が圧縮機11の吐出口→室内凝縮器12→暖房用膨張弁13a→室外熱交換器14→バイパス通路21→流出側蒸発器18→圧縮機11の吸入口の順に循環する蒸気圧縮式の冷凍サイクルが構成される。このため、本実施形態の除湿暖房モードでは、室外熱交換器14は蒸発器として機能する。
 その他のエジェクタ式冷凍サイクル10の構成および作動は、第4実施形態と同様である。従って、本実施形態のエジェクタ式冷凍サイクル10によれば、第4実施形態と同様に車室内の冷房および除湿暖房を実現することができる。
 さらに、除湿暖房モード時に、冷房用膨張弁13bが全閉となる。従って、第2実施形態と同様に、開閉弁22がバイパス通路21を開いた際には、室外熱交換器14から流出した冷媒の全流量をバイパス通路へ流入させることができる。
 (第6実施形態)
 本実施形態では、第4実施形態に対して、バイパス通路21の接続態様を変更している。具体的には、本実施形態のバイパス通路21は、図8の全体構成図に示すように、分岐部15の下流側であって、かつ、固定絞り17の上流側の冷媒を、エジェクタ16を迂回させて、流出側蒸発器18の冷媒入口側へ導くように接続されている。
 これにより、本実施形態の冷房モードでは、第4実施形態と同様のサイクルが構成される。また、本実施形態の除湿暖房モードでは、殆どの冷媒が圧縮機11の吐出口→室内凝縮器12→暖房用膨張弁13a→室外熱交換器14→冷房用膨張弁13b→分岐部15→バイパス通路21→流出側蒸発器18→圧縮機11の吸入口の順に循環する蒸気圧縮式の冷凍サイクルが構成される。
 その他のエジェクタ式冷凍サイクル10の構成および作動は、第4実施形態と同様である。従って、本実施形態のエジェクタ式冷凍サイクル10によれば、第4実施形態と同様に車室内の冷房および除湿暖房を実現することができる。
 さらに、本実施形態のバイパス通路21は、固定絞り17の入口部とエジェクタ16のディフューザ部16dの出口部とを冷媒配管等で接続することが実現できる。従って、第3実施形態と同様に、分岐部15、エジェクタ16、固定絞り17、バイパス通路21、開閉弁22等を一体化(モジュール化)させる際に、モジュールの小型化を狙うこともできる。
 (第7実施形態)
 本実施形態では、第1実施形態に対して、図9の全体構成図に示すように、開閉弁22を廃止して、開閉機構としてバイパス通路21の入口部に電気式の三方弁23を配置した例を説明する。
 三方弁23は、冷房用膨張弁13bから流出した冷媒を分岐部15へ流入させる冷媒回路と、冷房用膨張弁13bから流出した冷媒をバイパス通路21へ流入させる冷媒回路とを切り替えるものである。三方弁23は、空調制御装置40から出力される制御電圧によって、その作動が制御される。
 空調制御装置40は、冷房モード時に、冷房用膨張弁13bから流出した冷媒を分岐部15へ流入させるように三方弁23の作動を制御する。これにより、バイパス通路21を閉じる。一方、除湿暖房モード時には、冷房用膨張弁13bから流出した冷媒をバイパス通路21へ流入させるように三方弁23の作動を制御する。これにより、バイパス通路21を開く。
 その他のエジェクタ式冷凍サイクル10の構成および作動は、第1実施形態と同様である。従って、本実施形態のエジェクタ式冷凍サイクル10によれば、第1実施形態と同様に車室内の冷房および除湿暖房を実現することができる。
 さらに、本実施形態のエジェクタ式冷凍サイクル10では、除湿暖房モード時に、冷房用膨張弁13bから流出した冷媒の全流量をバイパス通路21へ流入させるように冷媒回路が切り替えることができる。従って、第2、第5実施形態と同様に、除湿暖房モード時に、空調能力が低下してしまうことをより一層効果的に抑制することができる。
 (第8実施形態)
 第1実施形態では、除湿暖房モード時に、開閉弁22を開く例を説明したが、本実施形態では、さらに、第1実施形態で説明したエジェクタ式冷凍サイクル10において、図10の制御フローを実行することによって、除湿暖房モード時に以外にも開閉弁22を開くようにした例を説明する。図10は、空調制御装置40が実行する空調制御プログラムのサブルーチンとして実行される制御フローを示したフローチャートである。
 図10のステップS1では、操作パネル50のオートスイッチが投入(ON)されてからの経過時間、すなわち圧縮機11の起動開始からの経過時間Tmが、予め定めた基準時間KTm以下である場合は、ステップS3へ進み、開閉弁22を開く。ステップS2では、圧縮機11の回転数Ncが、予め定めた基準回転数Nc以下である場合は、ステップS3へ進み、開閉弁22を開く。
 本実施形態のエジェクタ式冷凍サイクル10によれば、圧縮機11の起動開始から基準時間KTmを経過するまで開閉弁22を開くので、圧縮機11の起動直後にエジェクタ16のノズル部16aへ流入する冷媒流量を低下させることができる。従って、ノズル部16aへ多量の冷媒が流れ込むことによって生じる騒音や振動を低減することができる。
 また、圧縮機11が低回転となる運転条件、すなわち圧縮機11の冷媒吐出能力が低くなる運転条件では、このため、低負荷運転時には、エジェクタ16の冷媒吸引能力も低下して、吸引側蒸発器19へ流入する冷媒流量が不足してしまうこともある。ここで、圧縮機の冷媒吐出能力とは、圧縮機から吐出される冷媒流量Qと圧縮機の昇圧量ΔPとの積算値によって定義することができる。
 これに対して、エジェクタ式冷凍サイクル10によれば、圧縮機11の回転数Ncが基準回転数KNc以下となっている際に、開閉弁22を開くので、圧縮機11の冷媒吐出能力が予め定めた基準能力以下となっている際に、開閉弁22を開くことができる。
 従って、エジェクタ16の冷媒吸引能力によらず、吸引側蒸発器19へ冷媒を流入させることができる。従って、吸引側蒸発器19における送風空気の温度分布を抑制することができる。さらに、吸引側蒸発器19における冷凍機油の滞留を抑制することができる。その結果、空調能力が低下してしまうことを抑制することができる。
 本実施形態で説明した制御フローは、第2、第3、第7実施形態でエジェクタ式冷凍サイクル10のみならず、第4~第6実施形態で説明したエジェクタ式冷凍サイクル10に適用しても有効である。
 つまり、第4~第6実施形態で説明したエジェクタ式冷凍サイクル10では、開閉弁22を開くことで、吸引側蒸発器19に冷媒が流通しなくなるので、吸引側蒸発器19における送風空気の温度分布を抑制する効果、および冷凍機油の滞留を抑制する効果を得ることができる。
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
 上述の各実施形態では、本開示に係るエジェクタ式冷凍サイクル10を車両用空調装置に適用した例を説明したが、エジェクタ式冷凍サイクル10の適用はこれに限定されない。例えば、定置型の空調装置に適用してもよい。
 上述の各実施形態では、冷房モードの冷媒回路と除湿暖房モードの冷媒回路とを切替可能に構成されたエジェクタ式冷凍サイクルについて説明したが、エジェクタ式冷凍サイクルの構成はこれに限定されない。さらに、暖房モードに切替可能になっていてもよい。
 例えば、第1実施形態で説明したエジェクタ式冷凍サイクル10において、暖房用バイパス通路、および暖房用開閉弁を追加してもよい。暖房用バイパス通路は、室外熱交換器14の冷媒流れ下流側であって、かつ、冷房用膨張弁13bの冷媒流れ上流側の部位から圧縮機11の吸入側へ冷媒を導く冷媒通路である。暖房用開閉弁は、空調制御装置40から出力される制御電圧に応じて、暖房用バイパス通路を開閉する電磁弁である。
 そして、暖房モード時に、空調制御装置40が、暖房用バイパス通路を開き、暖房用膨張弁13aを絞り状態とする。これにより、媒が圧縮機11の吐出口→室内凝縮器12→暖房用膨張弁13a→室外熱交換器14→圧縮機11の吸入口の順に循環する蒸気圧縮式の冷凍サイクルを構成する。
 さらに、空調制御装置40は、エアミックスドア34が室内凝縮器12側の通風路を全開とし、冷風バイパス通路35側の通風路を全閉とするように、エアミックスドア駆動用の電動アクチュエータに出力する制御信号を決定する。
 これによれば、暖房モード時に、室内凝縮器12を放熱器として機能させ、室外熱交換器14を蒸発器として機能させて、室内凝縮器12にて加熱された送風空気を車室内へ吹き出すことによって、車室内の暖房を実現することができる。
 エジェクタ式冷凍サイクル10を構成する各構成機器は、上述の実施形態に開示されたものに限定されない。
 例えば、上述の実施形態では、圧縮機11として、電動圧縮機を採用した例を説明したが、圧縮機11として、プーリ、ベルト等を介して車両走行用エンジンから伝達される回転駆動力によって駆動されるエンジン駆動式の圧縮機を採用してもよい。さらに、エンジン駆動式の圧縮機としては、吐出容量の変化により冷媒吐出能力を調整可能な可変容量型圧縮機、あるいは電磁クラッチの断続により圧縮機の稼働率を変化させて冷媒吐出能力を調整可能な固定容量型圧縮機を採用することができる。
 また、上述の実施形態では、エジェクタのノズル部として冷媒通路断面積が一定の固定ノズル部を採用した例を説明したが、ノズル部として冷媒通路断面積を変更可能に構成された可変ノズル部を採用してもよい。このような可変ノズル部としては、ノズル部の内部に配置されてノズル部の冷媒通路面積を調整するニードル弁、このニードル弁をノズル部の軸方向に変位させる電動式の駆動部を有するものを採用すればよい。
 さらに、可変ノズル部として、冷媒通路を閉塞する全閉機能を有するものを採用することが望ましい。そして、開閉弁22がバイパス通路21を開いた際に、可変ノズル部を全閉状態とすることで、室外熱交換器14から流出した冷媒の全流量をバイパス通路へ流入させやすい。
 また、上述の実施形態では、吸引側減圧部として固定絞り17を採用したが、吸引側減圧部として絞り通路の断面積を変更可能に構成された可変絞り機構を採用してもよい。このような可変絞り機構としては、暖房用膨張弁13a、冷房用膨張弁13bと同様の構成のものを採用すればよい。
 さらに、全閉機能を有する可変絞り機構を採用することが望ましい。そして、開閉弁22がバイパス通路21を開いた際に、可変絞り機構を全閉状態とすることで、室外熱交換器14から流出した冷媒の全流量をバイパス通路へ流入させやすい。
 また、上述の実施形態では、過熱度センサ46を採用した例を説明したが、過熱度センサ46に代えて、流出側蒸発器18から流出した低圧冷媒温度Tsを検出する低圧冷媒温度検出部、流出側蒸発器18から流出した低圧冷媒圧力Psを検出する低圧冷媒圧量検出部を採用し、低圧冷媒温度Tsおよび低圧冷媒圧力Psから蒸発器ユニット20の出口側冷媒の過熱度を算定してもよい。
 また、上述の実施形態では、冷媒としてR134aを採用した例を説明したが、冷媒はこれに限定されない。例えば、R1234yf、R600a、R410A、R404A、R32、R407C、等を採用してもよい。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。さらに、冷媒として二酸化炭素を採用して、高圧側冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成してもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態が本開示に示されているが、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (9)

  1.  空調装置に適用されるエジェクタ式冷凍サイクルであって、
     冷媒を圧縮して吐出する圧縮機(11)と、
     前記圧縮機から吐出された冷媒と空調対象空間へ送風される送風空気とを熱交換させる室内放熱器(12)と、
     前記室内放熱器から流出した冷媒を減圧させる暖房用減圧部(13a)と、
     前記暖房用減圧部から流出した冷媒と外気とを熱交換させる室外熱交換器(14)と、
     前記室外熱交換器から流出した冷媒を減圧させる冷房用減圧部(13b)と、
     前記冷房用減圧部から流出した冷媒の流れを分岐する分岐部(15)と、
     前記分岐部にて分岐された一方の冷媒を減圧させるノズル部(16a)から噴射される噴射冷媒の吸引作用によって冷媒吸引口(16c)から冷媒を吸引し、前記噴射冷媒と前記冷媒吸引口から吸引された吸引冷媒との混合冷媒を昇圧させる昇圧部(16d)を有するエジェクタ(16)と、
     前記エジェクタ(16)から流出した冷媒と前記室内放熱器を通過前の前記送風空気とを熱交換させる流出側蒸発器(18)と、
     前記分岐部にて分岐された他方の冷媒を減圧させる吸引側減圧部(17)と、
     前記吸引側減圧部から流出した冷媒と前記室内放熱器を通過前の前記送風空気とを熱交換させる吸引側蒸発器(19)と、
     前記室外熱交換器の下流側の冷媒を、前記ノズル部および前記吸引側減圧部の少なくとも一方を迂回させて、前記流出側蒸発器および前記吸引側蒸発器のいずれか一方の冷媒入口側へ導くバイパス通路(21)と、
     前記バイパス通路を開閉する開閉機構(22、23)と、を備えるエジェクタ式冷凍サイクル。
  2.  さらに、前記開閉機構の作動を制御する開閉機構制御部(40b)を備え、
     前記開閉機構制御部は、前記暖房用減圧部が冷媒減圧作用を発揮する絞り状態となっており、かつ、前記室外熱交換器にて冷媒を蒸発させる運転条件となっている際に、前記バイパス通路を開くように前記開閉機構の作動を制御するものである請求項1に記載のエジェクタ式冷凍サイクル。
  3.  さらに、前記開閉機構の作動を制御する開閉機構制御部(40b)を備え、
     前記開閉機構制御部は、前記圧縮機の冷媒吐出能力が予め定めた基準能力以下となっている際に、前記バイパス通路を開くように前記開閉機構の作動を制御するものである請求項1または2に記載のエジェクタ式冷凍サイクル。
  4.  さらに、前記開閉機構の作動を制御する開閉機構制御部(40b)を備え、
     前記開閉機構制御部は、前記圧縮機の起動開始からの経過時間(Tm)が予め定めた基準時間(KTm)以下である際に、前記バイパス通路を開くように前記開閉機構の作動を制御するものである請求項1ないし3のいずれか1つに記載のエジェクタ式冷凍サイクル。
  5.  前記バイパス通路は、前記冷房用減圧部の下流側であって、かつ、前記分岐部の上流側の冷媒を、前記流出側蒸発器および前記吸引側蒸発器のいずれか一方の冷媒入口側へ導くように接続されている請求項1ないし4のいずれか1つに記載のエジェクタ式冷凍サイクル。
  6.  前記バイパス通路は、前記室外熱交換器の下流側であって、かつ、前記冷房用減圧部の上流側の冷媒を、前記流出側蒸発器および前記吸引側蒸発器のいずれか一方の冷媒入口側へ導くように接続されている請求項1ないし4のいずれか1つに記載のエジェクタ式冷凍サイクル。
  7.  前記バイパス通路は、前記分岐部の下流側であって、かつ、前記吸引側減圧部の上流側の冷媒を、前記流出側蒸発器および前記吸引側蒸発器のいずれか一方の冷媒入口側へ導くように接続されている請求項1ないし4のいずれか1つに記載のエジェクタ式冷凍サイクル。
  8.  前記バイパス通路は、前記室外熱交換器の下流側の冷媒を、前記吸引側蒸発器の冷媒入口側へ導くように接続されている請求項1ないし7のいずれか1つに記載のエジェクタ式冷凍サイクル。
  9.  前記開閉機構は、前記バイパス通路を開いた際に、前記室外熱交換器から流出した冷媒の全流量を前記バイパス通路へ流入させるものである請求項1ないし8に記載のエジェクタ式冷凍サイクル。
PCT/JP2018/024259 2017-07-19 2018-06-27 エジェクタ式冷凍サイクル WO2019017167A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-139746 2017-07-19
JP2017139746A JP6720932B2 (ja) 2017-07-19 2017-07-19 エジェクタ式冷凍サイクル

Publications (1)

Publication Number Publication Date
WO2019017167A1 true WO2019017167A1 (ja) 2019-01-24

Family

ID=65015580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024259 WO2019017167A1 (ja) 2017-07-19 2018-06-27 エジェクタ式冷凍サイクル

Country Status (2)

Country Link
JP (1) JP6720932B2 (ja)
WO (1) WO2019017167A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11530854B2 (en) 2017-07-19 2022-12-20 Denso Corporation Ejector refrigeration cycle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313050A (ja) * 2005-05-09 2006-11-16 Denso Corp 超臨界冷凍サイクルおよび車両用空調装置
JP2009162444A (ja) * 2008-01-08 2009-07-23 Denso Corp 蒸気圧縮式サイクル
JP2011208841A (ja) * 2010-03-29 2011-10-20 Nippon Soken Inc ヒートポンプサイクル

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313050A (ja) * 2005-05-09 2006-11-16 Denso Corp 超臨界冷凍サイクルおよび車両用空調装置
JP2009162444A (ja) * 2008-01-08 2009-07-23 Denso Corp 蒸気圧縮式サイクル
JP2011208841A (ja) * 2010-03-29 2011-10-20 Nippon Soken Inc ヒートポンプサイクル

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11530854B2 (en) 2017-07-19 2022-12-20 Denso Corporation Ejector refrigeration cycle

Also Published As

Publication number Publication date
JP6720932B2 (ja) 2020-07-08
JP2019020062A (ja) 2019-02-07

Similar Documents

Publication Publication Date Title
JP6011507B2 (ja) 冷凍サイクル装置
JP5967022B2 (ja) 冷凍サイクル装置
JP6547781B2 (ja) 冷凍サイクル装置
JP6528733B2 (ja) エジェクタ式冷凍サイクル
JP6102552B2 (ja) 冷凍サイクル装置
US11480197B2 (en) Ejector module
WO2018198609A1 (ja) エジェクタ式冷凍サイクル
JP2018118540A (ja) 冷凍サイクル装置
WO2017212820A1 (ja) エジェクタ式冷凍サイクル装置
WO2019017169A1 (ja) エジェクタモジュール
WO2019017167A1 (ja) エジェクタ式冷凍サイクル
JP6561922B2 (ja) 統合弁
WO2017217142A1 (ja) 冷凍サイクル装置
JP6642297B2 (ja) エジェクタ式冷凍サイクル
JP4835296B2 (ja) エジェクタ式冷凍サイクル
WO2018159321A1 (ja) エジェクタモジュール
JP6582843B2 (ja) 冷凍サイクル装置
JP6319043B2 (ja) エジェクタ式冷凍サイクル
JP7135583B2 (ja) 冷凍サイクル装置
JP2018063070A (ja) エジェクタ式冷凍サイクル
JP2016050761A (ja) エジェクタ式冷凍サイクル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18835613

Country of ref document: EP

Kind code of ref document: A1