WO2019016852A1 - 電極触媒の製造方法及び水素の製造方法 - Google Patents

電極触媒の製造方法及び水素の製造方法 Download PDF

Info

Publication number
WO2019016852A1
WO2019016852A1 PCT/JP2017/025903 JP2017025903W WO2019016852A1 WO 2019016852 A1 WO2019016852 A1 WO 2019016852A1 JP 2017025903 W JP2017025903 W JP 2017025903W WO 2019016852 A1 WO2019016852 A1 WO 2019016852A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
electrode
electrode catalyst
transition metal
compound containing
Prior art date
Application number
PCT/JP2017/025903
Other languages
English (en)
French (fr)
Inventor
春成 李
修敏 李
官 国清
和治 関
里提 阿布
Original Assignee
国立大学法人弘前大学
時空化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人弘前大学, 時空化学株式会社 filed Critical 国立大学法人弘前大学
Priority to PCT/JP2017/025903 priority Critical patent/WO2019016852A1/ja
Priority to JP2017568315A priority patent/JP6315532B1/ja
Publication of WO2019016852A1 publication Critical patent/WO2019016852A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a method of producing an electrode catalyst and a method of producing hydrogen.
  • Hydrogen has zero CO 2 emissions at the time of combustion and is expected as a clean energy source to replace fossil fuels.
  • the hydrogen production method by the water electrolysis method using water which uses renewable energy such as solar power, wind power, water power etc. does not emit CO 2 at all, so it is highly expected as a clean hydrogen production method. There is.
  • a technique of synthesizing CoMoS under different sulfidation temperatures after obtaining a CoMoO 4 precursor using a reflux current for example, Non-Patent Document 1
  • hydrothermal reaction A technique eg, Non-Patent Document 2
  • the like of synthesizing NiS 2 -MoS 2 at 300 ° C. after obtaining a NiMoO 4 precursor by a synthesis method is known.
  • the conventional method for producing transition metal sulfides has a problem that the synthesis procedure is complicated and requires a long time for production, the facility cost is also high, and further, the particle size of the obtained sulfide, etc. It was also difficult to control the
  • the present invention has been made in view of the above, and it is possible to manufacture an electrode provided with a transition metal-containing sulfide by a simple method, and also to easily control the size of the sulfide to be obtained. It is an object of the present invention to provide a process for producing an electrode catalyst that can be carried out and a process for producing hydrogen using the electrode catalyst obtained by the process.
  • the inventors of the present invention conducted intensive studies to achieve the above object, and as a result, oxidized compounds obtained by reacting a compound containing Mo and a compound containing a transition metal M other than Mo in the presence of an organic solvent. It has been found that the above object can be achieved by subjecting the precursor to sulfurization, and the present invention has been completed.
  • the present invention includes, for example, the inventions described in the following sections.
  • Item 1 A first step of obtaining an oxide precursor by mixing a solvent containing an organic solvent, a compound containing Mo, and a compound containing a transition metal M other than Mo; A second step of coating the precursor on an electrode substrate; A third step of subjecting the precursor coated on the electrode substrate to a sulfidation treatment to obtain an electrode catalyst having a sulfide of the precursor; Method of producing an electrode catalyst comprising: Item 2 2.
  • the transition metal M is at least one selected from the group consisting of Ni, Cu, Co, Fe, Zn, Mn, W, V, Ti and Cr.
  • Item 3 The method according to Item 1 or 2, wherein the organic solvent is at least one selected from the group consisting of an amide compound, a ketone compound, an ester compound and an alcohol compound.
  • Item 4 The method according to any one of Items 1 to 3, wherein the precursor is MMoO 4 .
  • Item 5 A method for producing hydrogen, comprising the step of electrolytically treating in an aqueous solution using the electrode catalyst obtained by the production method according to any one of Items 1 to 4.
  • an electrode provided with a transition metal-containing sulfide can be produced by a simple method, and furthermore, the size of the resulting sulfide can be easily controlled. Can.
  • the size of the formed sulfide is easy to control, and since the nano structure of the electrode catalyst is highly controlled, the obtained electrode catalyst exhibits excellent catalytic performance and high stability.
  • the method for producing an electrode catalyst of the present invention comprises the following first step, second step and third step.
  • First step a step of mixing an organic solvent-containing solvent, a compound containing Mo, and a compound containing a transition metal M other than Mo to obtain an oxide precursor.
  • Second step a step of coating the precursor on an electrode substrate.
  • Third step A step of subjecting the precursor coated on the electrode substrate to a sulfidation treatment to obtain an electrocatalyst having a sulfide of the precursor.
  • FIG. 1 is a flow chart showing an example of the method for producing an electrode catalyst according to the present invention.
  • Mo source means a compound containing Mo
  • M source means a compound containing transition metal M other than Mo
  • S source is a compound containing S (sulfur). means.
  • a precursor containing an organic solvent, a compound containing Mo, and a compound containing a transition metal M other than Mo are mixed and an oxide precursor (hereinafter simply referred to as a "precursor") Get Specifically, a precursor containing Mo is reacted with a compound containing a transition metal M other than Mo to form a precursor.
  • the type of the organic solvent is not particularly limited, and known organic solvents can be widely employed.
  • an organic solvent 1 or more types chosen from the group which consists of an amide compound, a ketone compound, an ester compound, and an alcohol compound can be mentioned, for example, In this case, a precursor can be synthesize
  • Examples of the amide compound include N, N-dimethylformamide, dimethylacetamide and the like.
  • a ketone compound acetone, methyl ethyl ketone etc. are illustrated.
  • Ethyl ester etc. are illustrated as an ester compound.
  • Examples of alcohol compounds include glycol, methanol, ethanol and isopropyl alcohol.
  • the use amount of the organic solvent increases as the polarity increases, and the use amount decreases as the polarity decreases.
  • the strongly polar organic solvent include ethanol, glycol and methanol
  • examples of the weakly polar organic solvent include acetone and methyl ethyl ketone.
  • the organic solvent may be used alone or in combination of two or more.
  • the reaction for obtaining a precursor can be performed at normal temperature (for example, 25 ° C.) and normal pressure (for example, at atmospheric pressure).
  • the solvent containing an organic solvent can further contain water.
  • the solubility of the compound containing Mo and the compound containing transition metal M is enhanced, and the reactivity is also likely to be improved.
  • the organic solvent is preferably 10% by volume or more with respect to the total volume of the organic solvent and water, It is more preferable that the content be 30% by volume or more.
  • the upper limit of the organic solvent relative to the total volume of the organic solvent and water can be 90% by volume, preferably 70% by volume, more preferably 60% by volume, and 50% by volume. Being particularly preferred.
  • the compound containing Mo is not particularly limited, and for example, known compounds can be widely used.
  • Examples of compounds containing Mo include oxides, hydroxides, chlorides, nitrates, sulfates, oxynitrates, oxychlorides, organic acids and the like of Mo.
  • the metal salt of molybdic acid can also be illustrated, For example, an alkali metal can be mentioned as this metal.
  • the compound containing the compound containing Mo may be a hydrate.
  • the compound containing Mo can be used singly or in combination of two or more.
  • sodium molybdate (Na 2 MoO 4 ), potassium molybdate (K 2 MoO 4 ), ammonia molybdate ((NH 4 ) 2 MoO 4 ) can be mentioned.
  • the compound containing Mo can be obtained, for example, by a known method, or can be obtained from commercial products.
  • transition metal M is not particularly limited.
  • Specific examples of the transition metal M include one or more selected from the group consisting of Ni, Cu, Co, Fe, Zn, Mn, W, V, Ti, and Cr.
  • the transition metal M is preferably at least one selected from the group consisting of Ni, Cu, Co, Fe, Zn and Mn from the viewpoint of reactivity in the first step, and is selected from the group consisting of Ni and Co It is particularly preferable to be one or more.
  • the compound containing transition metal M is not particularly limited, and, for example, known compounds can be widely used.
  • Examples of the compound containing transition metal M include oxides, hydroxides, chlorides, nitrates, sulfates, oxynitrates, oxychlorides, organic acids and the like of transition metals M.
  • the compound containing transition metal M may be a hydrate.
  • the compound containing transition metal M can be used individually by 1 type or 2 types or more.
  • transition metal M-containing compounds include nitrate compounds of transition metal M, for example, cobalt nitrate (Ni (NO 3 ) 2 ), nickel nitrate (Co (NO 3 ) 2 ) and copper nitrate (Cu (NO) 3 ) 2 ), as well as chlorides of transition metals M, such as, for example, nickel chloride (NiCl 2 ).
  • the compound containing transition metal M can be obtained, for example, by a known method, or can be obtained from commercial products.
  • the compound containing Mo and the compound containing transition metal M are reacted by mixing a solvent containing an organic solvent, a compound containing Mo, and a compound containing a transition metal M other than Mo The precursor is obtained.
  • the precursor obtained in the first step is, for example, MMoO 4 .
  • the procedure of mixing the solvent containing the organic solvent, the compound containing Mo, and the compound containing the transition metal M is not particularly limited.
  • the method of adding the compound containing Mo and the compound containing transition metal M to the solvent containing an organic solvent is mentioned.
  • the method of respectively preparing beforehand the solvent containing the compound containing Mo, and the solvent containing the compound containing transition metal M, and mixing them is mentioned, In this case, any one is dripped at the other. May be
  • an appropriate mixing means can be adopted.
  • the known mixers or dispersers of can be used.
  • the mixing ratio of the compound containing Mo and the compound containing transition metal M is not particularly limited as long as the target precursor can be obtained in the first step.
  • the molar ratio between the compound containing Mo and the compound containing transition metal M is preferably 1: 0.01 to 1: 100, 1: 1 to 1 in that the reaction between the two proceeds sufficiently. 50 is more preferable, and 1: 0.8 to 1:10 is more preferable.
  • the molar ratio of the compound containing Mo to the compound containing transition metal M is most preferably 1: 1.
  • the amount of the solvent used is not particularly limited as long as the target precursor can be obtained in the first step.
  • the reaction between the compound containing Mo and the compound containing transition metal M proceeds in the solvent containing the organic solvent. This reaction can proceed at normal temperature and pressure under the presence of the organic solvent as described above.
  • the temperature of the reaction can be appropriately set according to the type of raw material and organic solvent used.
  • the reaction can be carried out preferably at 20 to 80 ° C., more preferably 25 to 55 ° C., particularly preferably 30 to 40 ° C.
  • the pressure of the reaction can be appropriately set according to the type of raw material and organic solvent used.
  • the reaction is preferably carried out at atmospheric pressure.
  • the reaction may be carried out under pressure or under reduced pressure.
  • the reaction can be performed, for example, while stirring with a magnetic stirrer or the like.
  • the reaction may be performed by irradiating ultrasonic waves instead of or in combination with a magnetic stirrer.
  • the precursor can be obtained in the state of being dispersed or dissolved in an organic solvent, and it can be used as it is in the next second step. Further, the precursor obtained in the first step may be taken out as a solid content, for example, by purification or the like.
  • the precursor obtained in the first step is coated on the electrode substrate.
  • the electrode substrate examples include carbon, nickel, nickel-phosphorus alloy, nickel-tungsten alloy, stainless steel, titanium, iron, copper, conductive glass and the like.
  • the electrode substrate may contain other components as long as the effects of the present invention can be obtained.
  • the shape of the electrode substrate can be appropriately selected according to the purpose of use and the required performance.
  • the shape of the electrode substrate is, for example, a foil, a sheet, a plate, a rod, a mesh, or the like.
  • the electrode substrate include titanium foil, carbon rod, carbon fiber cloth, carbon paper, graphene sheet, glassy carbon electrode, conductive glass, glass carbon electrode and the like.
  • the method for coating the precursor on the electrode substrate is not particularly limited. For example, by transferring the precursor dispersed or dissolved in a solvent and the electrode substrate obtained in the first step to a container and bringing the both into contact, the precursor is coated on the electrode substrate it can. Alternatively, the electrode substrate may be immersed directly in the solvent-dispersed or dissolved precursor obtained in the first step.
  • the contact time of the precursor and the electrode substrate is not particularly limited, and may be, for example, 0.5 to 6 hours. Further, the temperature at which the precursor and the electrode substrate are brought into contact with each other is not particularly limited either, and can be 25 to 140 ° C.
  • the precursor (MMoO 4 ) is coated on the electrode substrate by bringing the precursor and the electrode substrate into contact in the second step.
  • the shape of the precursor coated on the electrode substrate is, for example, rod-like, needle-like, particle-like, etc.
  • the precursor is formed in the presence of a solvent containing an organic solvent. It is easy to be formed in a rod shape of size.
  • the precursor coated on the electrode substrate is, for example, a rod shape having a diameter of 20 to 600 nm, preferably 20 to 100 nm.
  • the precursor coated on the electrode substrate in the second step is subjected to a sulfurizing treatment to obtain a sulfide of the precursor.
  • a sulfurizing treatment to obtain a sulfide of the precursor.
  • the method of sulfurization treatment is not particularly limited. For example, by reacting a raw material to be a sulfur source (S source) with an electrode substrate coated with a precursor, the precursor is subjected to a sulfurization treatment, whereby the precursor is converted to a sulfide.
  • S source sulfur source
  • the raw material used as a sulfur source is not specifically limited, A well-known raw material can be used widely.
  • the raw material used as a sulfur source can mention sulfur, hydrogen sulfide, etc., for example.
  • the sulfur source can be used singly or in combination of two or more.
  • the sulfurization treatment in step 3 can be performed, for example, under an inert gas atmosphere.
  • the inert gas known gases such as nitrogen, argon and helium can be widely used.
  • the flow rate of the inert gas can be, for example, 10 to 100 cm 3 / min.
  • the sulfurization treatment can be performed, for example, by a chemical vapor reaction. That is, the sulfur source of the precursor can be advanced by vaporizing the sulfur source by heating or the like, and contacting the precursor in the gaseous state with the precursor coated on the electrode substrate.
  • the temperature of the sulfurization treatment can be, for example, 300 to 650.degree. In this case, the sulfidation treatment proceeds quickly, and the sulfidation rate tends to be high.
  • the temperature of the sulfidation treatment is preferably 400 to 550.degree. There is no particular limitation on the temperature rising rate until the temperature of the sulfidation treatment is in the desired range, and for example, it can be 2 to 10 ° C./min.
  • the time of the sulfurization treatment can be appropriately set according to the temperature and preparation amount of the sulfurization treatment, and can be, for example, 0.1 to 5 hours.
  • FIG. 2 (a) shows a schematic view of an example of an apparatus that can be used in the sulfurization treatment.
  • a tubular reaction tube installed in a tubular furnace is connected to an inert gas cylinder (here, an argon cylinder), so that the sulfurization treatment can be performed while supplying an inert gas.
  • the inert gas is continuously supplied from one end of the reaction tube and discharged from the other end.
  • FIG.2 (b) is the figure which expanded the reaction part in (a).
  • a raw material to be a sulfur source can be disposed on the upstream side in the inflow direction of the inert gas, and an electrode substrate coated with a precursor can be disposed on the downstream side.
  • the raw material and electrode base material which become a sulfur source can be installed in the reaction tube in the state accommodated in containers, such as a magnetic boat, for example. After the sulfidation treatment, the electrode substrate is taken out from the reaction tube, and the electrode catalyst can be obtained by washing as necessary.
  • the electrode catalyst obtained in the third step has a structure in which the electrode substrate is coated with a precursor sulfide.
  • the sulfide is specifically a compound represented by MMoS (M is the transition metal element).
  • the sulfide is, for example, rod-like, needle-like, particle-like or the like as the above-mentioned precursor, and in particular, in the present invention, the precursor obtained in the presence of a solvent containing an organic solvent is used An object is likely to be formed in a nano-sized rod-like shape.
  • the sulfide coated on the electrode substrate is, for example, in the form of a rod having a diameter of 20 to 600 nm, preferably 20 to 100 nm.
  • the electrode catalyst obtained by the production method of the present invention can be used, for example, as an electrode for water electrolysis.
  • the electrode catalyst can exhibit excellent hydrogen generation reaction activity by providing nanostructure-controlled MMoS.
  • the electrode catalyst obtained by the production method of the present invention is excellent in the stability of the electrode, and for example, the value of the current density tends to be constant even if time passes.
  • the electrode catalyst obtained by the production method of the present invention can be used in various applications besides electrodes for water electrolysis.
  • the method for producing hydrogen can include the step of electrolytically treating in an aqueous solution using the electrode obtained by the production method of the present invention as, for example, an anode.
  • an electrode generally used as a cathode in water electrolysis can be used.
  • an electrode made of a noble metal such as carbon, platinum or gold can be used as a cathode.
  • aqueous solution an aqueous solution containing components generally used in the electrolysis of water can be used.
  • the aqueous solution can also contain halogen such as iodine bromine, sulfate ion and the like.
  • halogen such as iodine bromine, sulfate ion and the like.
  • the electrode catalyst obtained by the production method of the present invention is an anode
  • a platinum plate is a cathode
  • an aqueous solution in which iodine powder is dissolved is an electrolyte. Apply.
  • the following reactions (1) and (2) can occur at the anode and the cathode to generate hydrogen at the cathode.
  • the rate of hydrogen generation can be increased by increasing the voltage applied to the anode.
  • iodate (IO 3 -) because it is produced, it is also useful as a manufacturing method of iodate (HIO 3).
  • the hydrogen produced by the method for producing hydrogen can be preferably used as a fuel for fuel cells, hydrogen engines and the like.
  • Step 1 a reaction solution containing a precursor (CoMoO 4 ) was obtained (Step 1).
  • reaction solution containing the precursor and the carbon rod as an electrode substrate were placed in a 40 ml autoclave.
  • the autoclave was maintained at 30 ° C., and the titanium foil was immersed in the reaction solution containing the precursor for 2 hours to coat the carbon rod with the precursor (Step 2).
  • the electrode substrate coated with the precursor was taken out and washed, and then sulfurization treatment was performed.
  • the sulfurization treatment was performed using the reactor shown in FIG. 2 described above.
  • the sulfur source used in the sulfurization treatment was 1 g of sulfur powder, and the inert gas was argon.
  • argon was previously supplied into the reaction tube continuously at a flow rate of 40 cm 3 / min for 1 hour.
  • an electrode substrate coated with a sulfur source and a precursor was placed in the reaction tube, and the reaction tube was heated at a temperature rising rate of 5 ° C./min to 400 ° C., and then sulfurization was performed for 2 hours (Step 3).
  • the sulfurization treatment was performed while supplying argon gas at a flow rate of 40 cm 3 / min.
  • the reaction tube was cooled to obtain an electrode catalyst in which the electrode substrate was coated with sulfide.
  • Step 1 a reaction liquid containing a precursor (NiMoO 4 ) was obtained (Step 1).
  • reaction solution containing the precursor and the carbon rod as an electrode substrate were placed in a 40 ml autoclave.
  • the autoclave was kept at 80 ° C., and the carbon rod was immersed in the reaction solution containing the precursor for 2 hours to coat the carbon rod with the precursor (Step 2).
  • the electrode substrate coated with the precursor was taken out and washed, and then sulfurization treatment was performed.
  • the sulfurization treatment was performed using the reactor shown in FIG. 2 described above.
  • the sulfur source used in the sulfurization treatment was 1 g of sulfur powder, and the inert gas was argon.
  • argon was previously supplied into the reaction tube continuously at a flow rate of 40 cm 3 / min for 1 hour.
  • an electrode substrate coated with a sulfur source and a precursor was placed in the reaction tube, and the reaction tube was heated at a temperature rising rate of 5 ° C./min to 500 ° C., and then sulfurization was performed for 2 hours (Step 3).
  • the sulfurization treatment was performed while supplying argon gas at a flow rate of 40 cm 3 / min.
  • the reaction tube was cooled to obtain an electrode catalyst in which the electrode substrate was coated with sulfide.
  • FIG. 3 is a SEM image of the electrode catalyst obtained in Examples 1 to 4. From FIG. 3 (a), it can be seen that in the electrode catalyst obtained in Example 1, a sulfide grown to a diameter of 50 nm is formed on the surface of the carbon rod. It can be seen from FIG. 3 (b) that in the electrode catalyst obtained in Example 2, a sulfide grown to a diameter of 100 nm is formed on the surface of the carbon rod. It can be seen from FIG. 3 (c) that in the electrode catalyst obtained in Example 3, a sulfide grown to a diameter of 250 nm is formed on the surface of the carbon rod. It can be seen from FIG. 3 (d) that in the electrode catalyst obtained in Example 4, a sulfide grown to a diameter of 300 nm is formed on the surface of the carbon rod.
  • FIG. 4 is an XRD measurement result of the electrode catalyst obtained in Example 1.
  • an XRD chart of the precursor (CoMoO 4 ) obtained in Step 1 of Example 1 and the sulfide (CoMoS) obtained in Step 3 is shown. This result indicates that the precursor has been changed to sulfide by the sulfurizing treatment, that is, CoMoO 4 is changed to CoMoS.
  • Fig.5 (a) is a graph which shows the relationship of the electric potential-electric current density of the electrode catalyst (CoMoS-1) obtained in Example 1, and the electrode catalyst (CoMoS-2) obtained in Example 2 .
  • the result of Pt electrode is also shown collectively as a comparison.
  • a graph showing the potential-current density relationship was created using a three-electrode electrochemical measurement device. The measurement was performed in a 1 M KOH solution at a sweep rate of 2 mV / s by a linear sweep voltammetry (LSV 0 to ⁇ 0.6 V vs Ag / AgCl) method in which the potential is swept in one direction.
  • FIG. 5 (b) shows the Tafel gradient of the electrode catalyst (CoMoS-1) obtained in Example 1 and the electrode catalyst (CoMoS-2) obtained in Example 2.
  • the Tafel gradient was calculated based on the result of the hydrogen generation reaction shown in FIG. 5 (a).
  • CoMoS-1 (Example 1) and CoMoS-2 (Example 2) exhibit good hydrogen generation reaction activity.
  • the catalytic activity of CoMoS-1 is a better result than CoMoS-2, and it is presumed that this difference is mainly due to the difference between the electrode base material and the sulfide nanostructure (rod diameter).
  • FIG. 6 shows the results of evaluating the stability of the electrode catalyst (CoMoS-1) obtained in Example 1 and the electrode catalyst (CoMoS-2) obtained in Example 2. Specifically, FIG. 6 shows a change in current density with time of the electrode catalyst (CoMoS-1) obtained in Example 1 and the electrode catalyst (CoMoS-2) obtained in Example 2. It can be seen that any of the electrode catalysts exhibits excellent stability.
  • Fig.7 (a) is a graph which shows the relationship of the electric potential-electric current density of the electrode catalyst (NiMoS-1) obtained in Example 3, and the electrode catalyst (NiMoS-2) obtained in Example 4. .
  • a graph showing the potential-current density relationship was obtained in the same manner as in FIG.
  • FIG. 7 (b) shows the Tafel gradient of the electrode catalyst (NiMoS-1) obtained in Example 3 and the electrode catalyst (NiMoS-2) obtained in Example 4.
  • the Tafel gradient was calculated based on the result of the hydrogen generation reaction shown in FIG. 7 (a).
  • NiMoS-1 (Example 3) and NiMoS-2 (Example 4) exhibit good hydrogen generation reaction activity.
  • the current density showed 10 mA / cm 2 at 115 mV.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

簡便な方法によって、遷移金属を含有する硫化物を備えた電極を製造することができ、さらに、得られる硫化物のサイズの制御も容易に行うことができる電極触媒を製造する方法を提供する。 本発明の電極の製造方法は、有機溶剤を含む溶媒、Moを含有する化合物、及び、Mo以外の遷移金属Mを含有する化合物を混合して酸化物前駆体を得る第1工程と、前記前駆体を電極基材に被覆させる第2工程と、前記電極基材に被覆した前記前駆体を硫化処理して該前駆体の硫化物を有する電極触媒を得る第3工程とを備える。

Description

電極触媒の製造方法及び水素の製造方法
 本発明は、電極触媒の製造方法及び水素の製造方法に関する。
 水素は燃焼時にCO排出がゼロであり、化石燃料に代わるクリーンなエネルギー源として期待されている。特に、太陽光、風力、水力等の再生可能なエネルギーを電力とする水の電気分解法による水素製造方法は一切COを排出しないことから、クリーンな水素の製造方法として大きな期待が寄せられている。
 一般に、水の電気分解用の電極としては、炭素基材上に白金粒子触媒を固定したものが用いられている。しかしながら、白金は価格が高く、資源量にも限りがあるため、白金の使用量を低減する技術や白金代替触媒及び/又は電極の開発が求められている。
 水の電気分解用の電極として、ナノサイズの微細化構造を有する遷移金属(例えば、Co、Ni、Mn等)の硫化物又は酸化物等の新規な材料が最近では注目されており、盛んにその研究が進められている(例えば、特許文献1)。これらの材料は良好な活性を示す反面、ナノ化するためのコストが高くなり、また、繰り返し使用によってナノ構造が崩壊していくことも多いため、電極の長期安定性という点に改善の余地が残されている。
 遷移金属の硫化物を合成する方法としては、例えば、還流電流を使用してCoMoO前駆体を得た後に、異なる硫化温度下においてCoMoSを合成する技術(例えば、非特許文献1)、水熱合成法によってNiMoO前駆体を得た後に、300℃でNiS-MoSを合成する技術(例えば、非特許文献2)等が知られている。
特開2000-000470号公報
Journal of Materials Chemistry A, 10.1039/C6TA10284K Journal of Materials Chemistry A, 10.1039/C6TA05022K
 しかしながら、従来の遷移金属の硫化物を製造する方法は、合成手順が複雑であって製造に長時間要するものであり、設備コストも高いという問題があり、さらに、得られる硫化物の粒子サイズ等の制御も難しいものであった。
 本発明は、上記に鑑みてなされたものであり、簡便な方法によって、遷移金属を含有する硫化物を備えた電極を製造することができ、さらに、得られる硫化物のサイズの制御も容易に行うことができる電極触媒を製造する方法及び該方法で得られた電極触媒を使用する水素の製造方法を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、有機溶剤の存在下でMoを含有する化合物、及び、Mo以外の遷移金属Mを含有する化合物を反応させて得られる酸化物前駆体を硫化処理することで、上記目的を達成できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、例えば、以下の項に記載の発明を包含する。
項1
有機溶剤を含む溶媒、Moを含有する化合物、及び、Mo以外の遷移金属Mを含有する化合物を混合して酸化物前駆体を得る第1工程と、
前記前駆体を電極基材に被覆させる第2工程と、
前記電極基材に被覆した前記前駆体を硫化処理して該前駆体の硫化物を有する電極触媒を得る第3工程と、
を備える電極触媒の製造方法。
項2
前記遷移金属Mは、Ni、Cu、Co、Fe、Zn、Mn、W、V、Ti及びCrからなる群より選ばれる1種以上である、項1に記載の製造方法。
項3
前記有機溶剤は、アミド化合物、ケトン化合物、エステル化合物及びアルコール化合物からなる群より選ばれる1種以上である、項1又は2に記載の製造方法。
項4
前記前駆体はMMoOである、項1~3のいずれか1項に記載の製造方法。
項5
項1~4のいずれか1項に記載の製造方法で得られた電極触媒を使用して、水溶液中で電解処理を行う工程を含む、水素の製造方法。
 本発明の電極触媒の製造方法によれば、簡便な方法によって、遷移金属を含有する硫化物を備えた電極を製造することができ、さらに、得られる硫化物のサイズの制御も容易に行うことができる。また、この方法では、生成する硫化物のサイズの制御も容易であり、電極触媒のナノ構造が高度に制御されているので、得られる電極触媒は優れた触媒性能を示し、安定性も高い。
本発明に係る電極触媒の製造方法のフローの説明図である。 本発明に係る製造方法において、硫化処理で使用する装置の一例を説明する模式図である。 実施例1~4で得られた電極触媒のSEM画像である。 実施例1で得られた電極触媒のXRD測定結果である。 実施例1及び2で得られた電極触媒の水素発生反応活性の測定結果を示し、(a)は電極触媒の電位-電流密度の関係を示すグラフ、(b)は電極触媒のターフェル勾配を示す。 実施例1で得られた電極触媒(CoMoS-1)、及び、実施例2で得られた電極触媒(CoMoS-2)の時間変化に伴う電流密度の変化を示すグラフである。 実施例3及び4で得られた電極触媒の水素発生反応活性の測定結果を示し、(a)は電極触媒の電位-電流密度の関係を示すグラフ、(b)は電極触媒のターフェル勾配を示す。
 以下、本発明の実施形態について詳細に説明する。なお、本明細書中において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。
 本発明の電極触媒の製造方法は、下記の第1工程、第2工程及び第3工程を備える。
第1工程:有機溶剤を含む溶媒、Moを含有する化合物、及び、Mo以外の遷移金属Mを含有する化合物を混合して酸化物前駆体を得る工程。
第2工程:前記前駆体を電極基材に被覆させる工程。
第3工程:前記電極基材に被覆した前記前駆体を硫化処理して該前駆体の硫化物を有する電極触媒を得る工程。
 図1は、本発明に係る電極触媒の製造方法の一例を示すフロー図である。なお、図1中、Mo源は、Moを含有する化合物を意味し、M源は、Mo以外の遷移金属Mを含有する化合物を意味し、S源は、S(硫黄)を含有する化合物を意味する。
 第1工程では、有機溶剤を含む溶媒と、Moを含有する化合物と、Mo以外の遷移金属Mを含有する化合物とを混合して酸化物前駆体(以下、単に「前駆体」と表記する)を得る。具体的にはMoを含有する化合物と、Mo以外の遷移金属Mを含有する化合物とが反応して、前駆体が生成する。
 有機溶剤の種類は特に限定されず、公知の有機溶剤を広く採用することができる。有機溶剤としては、例えば、アミド化合物、ケトン化合物、エステル化合物及びアルコール化合物からなる群より選ばれる1種以上を挙げることができ、この場合、前駆体をより低温で合成することができる。
 アミド化合物としては、N,N-ジメチルホルムアミド、ジメチルアセトアミド等が例示される。ケトン化合物としては、アセトン、メチルエチルケトン等が例示される。エステル化合物としては、酢酸エチル等が例示される。アルコール化合物としては、グリコール、メタノール、エタノール、イソプロピルアルコール等が例示される。
 有機溶剤は、極性が強い程使用量が多くなり、極性が弱い程使用量が少なくなる。極性が強い有機溶剤としては、エタノール、グリコール、メタノールが挙げられ、極性が弱い有機溶剤としては、アセトン、メチルエチルケトンが挙げられる。
 有機溶剤は1種のみを使用してもよいし、2種以上を混合して使用することもできる。
 溶媒が有機溶剤を含むことで、例えば、前駆体を得るための反応を常温(例えば、25℃)及び常圧(例えば、大気圧下)で行うことができる。
 有機溶剤を含む溶媒はさらに水を含むことができる。この場合、Moを含有する化合物及び遷移金属Mを含有する化合物の溶解性が高まり、また、反応性も向上しやすい。
 水の種類に制限は無く、純水、蒸留水、精製水、電解水等の各種の水を挙げることができる。
 有機溶剤を含む溶媒が水を含む場合、原料の溶解性及び反応性の観点から、有機溶剤と水の全体積に対して有機溶剤が10体積%以上であることが好ましく、20体積%以上であることがより好ましく、30体積%以上であることが特に好ましい。また、有機溶剤と水の全体積に対して有機溶剤の上限は、90体積%とすることができ、70体積%であることが好ましく、60体積%であることがさらに好ましく、50体積%であることが特に好ましい。
 Moを含有する化合物は特に限定されず、例えば、公知の化合物を広く使用することができる。Moを含有する化合物は、例えば、Moの酸化物、水酸化物、塩化物、硝酸塩、硫酸塩、オキシ硝酸塩、オキシ塩化物、有機酸等を挙げることができる。また、Moを含有する化合物としては、モリブデン酸の金属塩も例示することができ、この金属としては、例えばアルカリ金属を挙げることができる。Moを含有する化合物を含有する化合物は、水和物であってもよい。Moを含有する化合物は、1種単独又は2種以上を使用することができる。
 Moを含有する化合物の代表例としては、モリブデン酸ナトリウム(NaMoO)、モリブデン酸カリウム(KMoO)、モリブデン酸アンモニア((NHMoO)を挙げることができる。
 Moを含有する化合物は、例えば、公知の方法で製造して得ることができ、あるいは、市販品から入手することもできる。
 遷移金属Mを含有する化合物において、遷移金属Mは特に限定されない。遷移金属Mの具体例として、Ni、Cu、Co、Fe、Zn、Mn、W、V、Ti及びCrからなる群より選ばれる1種以上が挙げられる。遷移金属Mは、第1工程における反応性の観点から、Ni、Cu、Co、Fe、Zn及びMnからなる群より選ばれる1種以上であることが好ましく、Ni及びCoからなる群より選ばれる1種以上であることが特に好ましい。
 遷移金属Mを含有する化合物は特に限定されず、例えば、公知の化合物を広く使用することができる。遷移金属Mを含有する化合物は、例えば、遷移金属Mの酸化物、水酸化物、塩化物、硝酸塩、硫酸塩、オキシ硝酸塩、オキシ塩化物、有機酸等を挙げることができる。遷移金属Mを含有する化合物は、水和物であってもよい。遷移金属Mを含有する化合物は、1種単独又は2種以上を使用することができる。
 遷移金属Mを含有する化合物の代表例としては、遷移金属Mの硝酸塩化合物、例えば、硝酸コバルト(Ni(NO)、硝酸ニッケル(Co(NO)及び硝酸銅(Cu(NO)、並びに遷移金属Mの塩化物、例えば、塩化ニッケル(NiCl)を挙げることができる。
 遷移金属Mを含有する化合物は、例えば、公知の方法で製造して得ることができ、あるいは、市販品から入手することもできる。
 第1工程では、有機溶剤を含む溶媒、Moを含有する化合物、及び、Mo以外の遷移金属Mを含有する化合物を混合することで、Moを含有する化合物及び遷移金属Mを含有する化合物が反応し、前駆体が得られる。
 第1工程で得られる前駆体は、例えば、MMoOである。
 有機溶剤を含む溶媒、Moを含有する化合物、及び、遷移金属Mを含有する化合物を混合する手順は特に限定されない。例えば、有機溶剤を含む溶媒に、Moを含有する化合物及び遷移金属Mを含有する化合物を添加する方法が挙げられる。また、Moを含有する化合物を含む溶媒と、遷移金属Mを含有する化合物を含む溶媒とをそれぞれあらかじめ準備して、これらを混合する方法が挙げられ、この場合、いずれか一方を他方に滴下してもよい。
 有機溶剤を含む溶媒、Moを含有する化合物、及び、遷移金属Mを含有する化合物を混合する方法は、適宜の混合手段を採用することができ、例えば、磁気撹拌機、ボールミル、ニーダー、ディスパー等の公知の混合機又は分散機を使用することができる。
 Moを含有する化合物及び遷移金属Mを含有する化合物の混合割合は、第1工程で目的とする前駆体が得られる限りは特に限定されない。例えば、Moを含有する化合物と遷移金属Mを含有する化合物とモル比は、両者の反応が十分に進行するという点で1:0.01~1:100が好ましく、1:0.1~1:50がより好ましく、1:0.8~1:10がさらに好ましい。Moを含有する化合物と遷移金属Mを含有する化合物とモル比は、1:1であることが最も好ましい。
 また、溶媒の使用量も第1工程で目的とする前駆体が得られる限りは特に限定されない。
 上記混合後、有機溶剤を含む溶媒中でMoを含有する化合物と、遷移金属Mを含有する化合物との反応が進行する。この反応は、前述のように有機溶剤が存在することで、常温、常圧で進行し得る。
 前記反応の温度は、使用する原料及び有機溶剤の種類によって適宜設定することができる。前記反応は、好ましくは20~80℃、より好ましくは、25~55℃、特に好ましくは30~40℃で行うことができる。
 前記反応の圧力は、使用する原料及び有機溶剤の種類によって適宜設定することができる。前記反応は、大気圧下で行うことが好ましい。なお、前記反応は、加圧下又は減圧下で行ってもよい。
 前記反応は、例えば、磁気撹拌機等で撹拌しながら行うことができる。また、磁気撹拌機に代えて又はこれと組み合わせて超音波を照射して前記反応を行うこともできる。
 前駆体は、有機溶剤に分散又は溶解した状態で得ることができ、これをそのまま次の第2工程で使用することができる。また、第1工程で得られた前駆体は、例えば、精製するなどして固形分として取り出してもよい。
 第2工程では、第1工程で得た前記前駆体を電極基材に被覆させる。
 電極基材としては、炭素、ニッケル、ニッケル-リン合金、ニッケル-タングステン合金、ステンレス、チタン、鉄、銅、導電ガラス等を挙げることができる。電極基材には、本発明の効果が得られる範囲内で、他の成分が含まれていてもよい。
 電極基材の形状は、使用目的や要求される性能により適宜選択することができる。電極基材の形状は、例えば、箔状、シート状、板状、棒状、メッシュ状等である。
 電極基材の具体例としては、チタン箔、炭素棒、炭素繊維布、炭素紙、グラフェンシート、グラッシーカーボン電極、伝導性ガラス、ガラス炭素電極等である。
 前駆体を電極基材に被覆させる方法は特に限定されない。例えば、第1工程によって得られた、溶媒に分散又は溶解している前駆体、及び、電極基材を、容器に移して両者を接触させることで、前駆体を電極基材に被覆させることができる。もしくは、第1工程によって得られた、溶媒に分散又は溶解している前駆体に直接電極基材を浸漬させてもよい。
 前駆体と電極基材との接触時間は特に限定されず、例えば、0.5~6時間とすることができる。また、前駆体と電極基材とを接触させるときの温度も特に限定されず、25~140℃とすることができる。
 第2工程で前駆体と電極基材とを接触させることで、電極基材に前駆体(MMoO)が被覆される。
 電極基材に被覆される前駆体の形状は、例えば、棒状、針状、粒子状等であり、特に、本発明では、有機溶剤を含む溶媒の存在下で前駆体が生成することから、ナノサイズの棒状に形成されやすい。電極基材に被覆される前駆体は、例えば、直径が20~600nmの棒状となり、好ましくは20~100nmである。
 第3工程では、第2工程にて電極基材に被覆した前駆体を硫化処理して該前駆体の硫化物を得る。これにより、前駆体の硫化物有する電極触媒を得ることができる。
 硫化処理の方法は特に限定されない。例えば、硫黄源(S源)となる原料と、前駆体が被覆された電極基材とを反応させることで、前駆体が硫化処理され、これにより前駆体が硫化物へと変化する。
 硫黄源となる原料は特に限定されず、公知の原料を広く使用することができる。硫黄源となる原料は例えば、硫黄、硫化水素等を挙げることができる。硫黄源は、1種単独又は2種以上を使用することができる。
 工程3における硫化処理は、例えば、不活性ガス雰囲気下で行うことができる。不活性ガスとしては、窒素、アルゴン、ヘリウム等の公知のガスを広く使用できる。例えば、不活性ガスを連続的に流入しながら硫化処理を行うこともできる。不活性ガスの流速は、例えば、10~100cm/minとすることができる。
 硫化処理は、例えば、化学気相反応により行うことができる。つまり、硫黄源を加温するなどによって気化させ、気体状態で電極基材に被覆する前駆体と接触させることで、前駆体の硫化を進行させることができる。
 硫化処理の温度は、例えば、300~650℃とすることができる。この場合、硫化処理が速やかに進行し、硫化率も高くなりやすい。硫化処理の温度は、400~550℃であることが好ましい。硫化処理の温度を所望の範囲にするまでの昇温速度は特に限定されず、例えば、2~10℃/minとすることができる。
 硫化処理の時間は、硫化処理の温度及び仕込み量に応じて適宜設定することができ、例えば、0.1~5時間とすることができる。
 硫化処理で使用する反応装置は特に限定されず、公知の反応装置を広く使用することができる。
 図2(a)には、硫化処理で使用できる装置の一例の模式図を示している。この反応装置では、管状炉に設置された筒状の反応管が不活性ガスボンベ(ここではアルゴンボンベ)と連結しており、不活性ガスを供給しながら硫化処理を行うことができる。不活性ガスは、反応管の一端側から連続的に供給され、他端側から排出される。
 図2(b)は、(a)における反応部を拡大した図である。反応管中において、例えば、不活性ガスの流入方向の上流側に硫黄源となる原料を、下流側に前駆体が被覆された電極基材を配置することができる。硫黄源となる原料及び電極基材は、例えば、磁性ボート等の容器に収容した状態で、反応管内に設置できる。硫化処理の後、電極基材を反応管から取り出し、必要に応じて洗浄等を行うことで、電極触媒を得ることができる。
 第3工程で得られる電極触媒は、電極基材が前駆体の硫化物で被覆された構造を有する。硫化物は、具体的にMMoS(Mは前記遷移金属元素)で表される化合物である。
 硫化物は、前記前駆体と同じく、例えば、棒状、針状、粒子状等であり、特に、本発明では、有機溶剤を含む溶媒の存在下で得られた前駆体を使用することから、硫化物は、ナノサイズの棒状に形成されやすい。電極基材に被覆される硫化物は、例えば、直径が20~600nmの棒状となり、好ましくは20~100nmである。
 本発明の製造方法で得られる電極触媒は、例えば、水の電気分解用の電極として使用することができる。この場合、電極触媒は、ナノ構造に制御されたMMoSを備えることで、優れた水素発生反応活性を示すことができる。また、本発明の製造方法で得られる電極触媒は、電極の安定性にも優れ、例えば、時間が経過しても電流密度の値が一定となりやすい。
 本発明の製造方法で得られる電極触媒は、水の電気分解用の電極の他、各種の用途に使用することができる。
 本発明の製造方法で得られる電極触媒を使用した水素の製造方法の一例を説明する。
 水素の製造方法は、本発明の製造方法で得られる電極を例えば、アノードとして使用して、水溶液中で電解処理を行う工程を含むことができる。
 カソードとしては、一般に水の電気分解においてカソードとして用いられる電極を使用することができる。例えば、炭素、白金、金などの貴金属などを素材とする電極をカソードとして用いることができる。
 水溶液としては、一般に水の電気分解において用いられる成分を含む水溶液を使用することができる。水溶液は、ヨウ素臭素などのハロゲン、硫酸イオンなどを含むこともできる。なお、ヨウ素を含む水溶液を用いる場合、アノードにおいてヨウ素酸イオンが生成される。
 水素の製造方法の具体的な例を挙げると、本発明の製造方法で得られた電極触媒をアノード、白金板をカソードとし、ヨウ素粉末を溶解した水溶液を電解液として、アノードに1V以上の電圧を印加する。これにより、アノード及びカソードにおいて下記(1)及び(2)の反応が起こり、カソードにおいて水素を生成させることができる。また、アノードへの印加電圧を増加させることにより、水素の生成速度を上昇させることができる。さらに、アノードにおいては、ヨウ素酸イオン(IO )が生成されることから、ヨウ素酸(HIO)の製造方法としても有用である。
 (アノード反応)
6HO+I→12H+2IO +10e (1)
 (カソード反応)
2H+2e→H (2)
 上記水素の製造方法により製造された水素は、燃料電池や水素エンジンなどの燃料として好ましく使用することができる。
 以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例の態様に限定されるものではない。
 (実施例1)
 1mmolのNaMoOの二水和物と、蒸留水及びN,N-ジメチルホルムアミドの混合溶媒(v/v=2:1)15mlとを混合し、磁気攪拌機で約30分攪拌することで、第1の混合液を調製した。また、1mmolのCo(NOの六水和物と、蒸留水及びN,N-ジメチルホルムアミドの混合溶媒(v/v=2:1)15mlとを混合し、磁気攪拌機で約30分攪拌することで、第2の混合液を調製した。次いで、第2の混合液を第1の混合液に少量ずつ滴下しながら全量を添加して第1の混合液と第2の混合液の混合物を、磁気攪拌機で約20分攪拌した。これにより、前駆体(CoMoO)を含有する反応液を得た(工程1)。
 その後、前駆体を含有する反応液及び電極基材である炭素棒を、40ml容量のオートクレーブに収容した。次いで、オートクレーブを30℃に保持して、チタン箔を、前駆体を含有する反応液に2時間浸漬させ、炭素棒に前駆体を被覆させた(工程2)。その後、前駆体が被覆された電極基材を取りだして洗浄した後、硫化処理を行った。
 硫化処理は、前述の図2に示す反応装置を用いて行った。硫化処理で使用した硫黄源は硫黄粉末を1g使用し、不活性ガスはアルゴンとした。硫化処理を行う前にあらかじめアルゴンを40cm/minの流速で1時間連続的に反応管内に供給した。その後、反応管内に硫黄源及び前駆体が被覆された電極基材を収容し、反応管を5℃/minの昇温速度で加熱して400℃とした後、2時間にわたって硫化処理を行った(工程3)。硫化処理は、アルゴンガスを40cm/minの流速で供給しながら行った。硫化処理の後、反応管を冷却し、電極基材が硫化物で被覆されてなる電極触媒を得た。
 (実施例2)
 第1の混合液及び第2の混合液の調製に使用する溶媒を蒸留水及びN,N-ジメチルアセトアミドの混合溶媒(v/v=2:1)に変更し、実施例1と同様の方法で電極基材が硫化物で被覆されてなる電極触媒を得た。
 (実施例3)
 1mmolのNaMoOの二水和物と、蒸留水及びメタノールの混合溶媒(v/v=3:1)15mlとを混合し、磁気攪拌機で約30分攪拌することで、第3の混合液を調製した。また、1mmolのNi(NOの六水和物と、蒸留水及びメタノールの混合溶媒(v/v=3:1)15mlとを混合し、磁気攪拌機で約30分攪拌することで、第4の混合液を調製した。次いで、第4の混合液を第3の混合液に少量ずつ滴下しながら全量を添加して第3の混合液と第4の混合液の混合物を、磁気攪拌機で約20分攪拌した。これにより、前駆体(NiMoO)を含有する反応液を得た(工程1)。
 その後、前駆体を含有する反応液及び電極基材である炭素棒を、40ml容量のオートクレーブに収容した。次いで、オートクレーブを80℃に保持して、炭素棒を、前駆体を含有する反応液に2時間浸漬させ、炭素棒に前駆体を被覆させた(工程2)。その後、前駆体が被覆された電極基材を取りだして洗浄した後、硫化処理を行った。
 硫化処理は、前述の図2に示す反応装置を用いて行った。硫化処理で使用した硫黄源は硫黄粉末1gを使用し、不活性ガスはアルゴンとした。硫化処理を行う前にあらかじめアルゴンを40cm/minの流速で1時間連続的に反応管内に供給した。その後、反応管内に硫黄源及び前駆体が被覆された電極基材を収容し、反応管を5℃/minの昇温速度で加熱して500℃とした後、2時間にわたって硫化処理を行った(工程3)。硫化処理は、アルゴンガスを40cm/minの流速で供給しながら行った。硫化処理の後、反応管を冷却し、電極基材が硫化物で被覆されてなる電極触媒を得た。
 (実施例4)
 第3の混合液及び第4の混合液の調製に使用する溶媒を蒸留水及びアセトンの混合溶媒(v/v=3:1)に変更したこと以外は実施例3と同様の方法で電極基材が硫化物で被覆されてなる電極触媒を得た。
 図3は、実施例1~4で得られた電極触媒のSEM画像である。図3(a)から、実施例1で得られた電極触媒は、炭素棒表面に直径50nmに成長した硫化物が形成されていることがわかる。図3(b)から、実施例2で得られた電極触媒は、炭素棒表面に直径100nmに成長した硫化物が形成されていることがわかる。図3(c)から、実施例3で得られた電極触媒は、炭素棒表面に直径250nmに成長した硫化物が形成されていることがわかる。図3(d)から、実施例4で得られた電極触媒は、炭素棒表面に直径300nmに成長した硫化物が形成されていることがわかる。
 図4は、実施例1で得られた電極触媒のXRD測定結果である。この図4には、実施例1の工程1で得られた前駆体(CoMoO)と、工程3で得られた硫化物(CoMoS)のXRDチャートを示している。この結果は、前駆体が硫化処理により硫化物に変化したこと、つまり、CoMoOがCoMoSに変化していることを示している。
 図5(a)は、実施例1で得られた電極触媒(CoMoS-1)、及び、実施例2で得られた電極触媒(CoMoS-2)の電位-電流密度の関係を示すグラフである。なお、比較としてPt電極の結果も併せて示している。電位-電流密度の関係を示すグラフは、三電極電気化学測定装置を使用して作成した。測定は、電位を一方向へ掃引するリニアスイープボルタンメトリー(linear sweep voltammetry、LSV 0~-0.6V vs Ag/AgCl)法により、2mV/sの掃引速度にて1MのKOH溶液中で行った。
 図5(b)は、実施例1で得られた電極触媒(CoMoS-1)、及び、実施例2で得られた電極触媒(CoMoS-2)のターフェル勾配を示している。ターフェル勾配は、図5(a)に示す水素発生反応の結果に基づいて算出した。
 図5(a)及び(b)の結果から、CoMoS-1(実施例1)及びCoMoS-2(実施例2)は良好な水素発生反応活性を示すことがわかる。CoMoS-1の触媒活性はCoMoS-2より良い結果であり、この差は主に電極基材と硫化物のナノ構造(棒状の直径)等の違いによるものと推察される。
 図6は、実施例1で得られた電極触媒(CoMoS-1)、及び、実施例2で得られた電極触媒(CoMoS-2)の安定性を評価した結果を示す。具体的に図6は、実施例1で得られた電極触媒(CoMoS-1)、及び、実施例2で得られた電極触媒(CoMoS-2)の時間変化に伴う電流密度の変化を示す。いずれの電極触媒も優れた安定性を示すことがわかる。
 図7(a)は、実施例3で得られた電極触媒(NiMoS-1)、及び、実施例4で得られた電極触媒(NiMoS-2)の電位-電流密度の関係を示すグラフである。電位-電流密度の関係を示すグラフは、図5と同様の方法で得た。
 図7(b)は、実施例3で得られた電極触媒(NiMoS-1)、及び、実施例4で得られた電極触媒(NiMoS-2)のターフェル勾配を示している。ターフェル勾配は、図7(a)に示す水素発生反応の結果に基づいて算出した。
 図7(a)及び(b)の結果から、NiMoS-1(実施例3)及びNiMoS-2(実施例4)は良好な水素発生反応活性を示すことがわかる。NiMoS-1では,115mVにおいて電流密度が10mA/cmを示した。

Claims (5)

  1. 有機溶剤を含む溶媒、Moを含有する化合物、及び、Mo以外の遷移金属Mを含有する化合物を混合して酸化物前駆体を得る第1工程と、
    前記前駆体を電極基材に被覆させる第2工程と、
    前記電極基材に被覆した前記前駆体を硫化処理して該前駆体の硫化物を有する電極触媒を得る第3工程と、
    を備える電極触媒の製造方法。
  2. 前記遷移金属Mは、Ni、Cu、Co、Fe、Zn、Mn、W、V、Ti及びCrからなる群より選ばれる1種以上である、請求項1に記載の製造方法。
  3. 前記有機溶剤は、アミド化合物、ケトン化合物、エステル化合物及びアルコール化合物からなる群より選ばれる1種以上である、請求項1又は2に記載の製造方法。
  4. 前記前駆体はMMoOである、請求項1~3のいずれか1項に記載の製造方法。
  5. 請求項1~4のいずれか1項に記載の製造方法で得られた電極触媒を使用して、水溶液中で電解処理を行う工程を含む、水素の製造方法。
PCT/JP2017/025903 2017-07-18 2017-07-18 電極触媒の製造方法及び水素の製造方法 WO2019016852A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/025903 WO2019016852A1 (ja) 2017-07-18 2017-07-18 電極触媒の製造方法及び水素の製造方法
JP2017568315A JP6315532B1 (ja) 2017-07-18 2017-07-18 電極触媒の製造方法及び水素の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/025903 WO2019016852A1 (ja) 2017-07-18 2017-07-18 電極触媒の製造方法及び水素の製造方法

Publications (1)

Publication Number Publication Date
WO2019016852A1 true WO2019016852A1 (ja) 2019-01-24

Family

ID=62069362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025903 WO2019016852A1 (ja) 2017-07-18 2017-07-18 電極触媒の製造方法及び水素の製造方法

Country Status (2)

Country Link
JP (1) JP6315532B1 (ja)
WO (1) WO2019016852A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110327943A (zh) * 2019-07-16 2019-10-15 安徽师范大学 一种Cu-Mo-S复合材料及其制备方法和应用
CN112981431A (zh) * 2021-02-04 2021-06-18 哈尔滨工业大学 一种电解水制氢一体化阳极的制备方法和应用

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7162300B2 (ja) * 2018-10-29 2022-10-28 時空化学株式会社 電極触媒及びその製造方法
FR3089132A1 (fr) * 2018-11-30 2020-06-05 IFP Energies Nouvelles Procédé de préparation d’un matériau catalytique pour des réactions de réduction électrochimique comportant un métal du groupe VI et du groupe VIII obtenu par réduction chimique
FR3089134B1 (fr) * 2018-11-30 2020-11-13 Ifp Energies Now Procédé de préparation d’un matériau catalytique d’électrode pour des réactions de réduction électrochimique préparé par électroréduction.
FR3089133B1 (fr) * 2018-11-30 2024-04-19 Ifp Energies Now Procédé de préparation d’une couche active d’électrode pour des réactions de réduction électrochimique
FR3089135A1 (fr) * 2018-11-30 2020-06-05 IFP Energies Nouvelles Procédé de préparation d’un matériau catalytique à base de précurseur mononucléaire de type W ou Mo pour des réactions de réduction électrochimique
FR3104464B1 (fr) * 2019-12-17 2022-03-25 Ifp Energies Now Procédé de préparation par imprégnation en milieu fondu d’une couche active d’électrode pour des réactions de réduction électrochimique
US20230024514A1 (en) 2019-12-20 2023-01-26 Industry-University Cooperation Foundation Hanyang University Erica Campus Electrochemical catalyst and preparation method therefor
KR102295730B1 (ko) * 2020-03-11 2021-08-30 한양대학교 에리카산학협력단 다공성 코어-쉘 촉매 구조체 및 이의 제조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008132937A1 (ja) * 2007-04-12 2008-11-06 Toyota Jidosha Kabushiki Kaisha 燃料電池システム
JP2016050361A (ja) * 2014-08-28 2016-04-11 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド 水を酸化するためのプロセス、水を酸化するためのセル、水酸化触媒、および電気化学水酸化のための電極
JP2016165706A (ja) * 2015-03-06 2016-09-15 日清紡ホールディングス株式会社 ヘテロポリ酸系触媒及びその製造方法並びにこれを用いた電極及び電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008132937A1 (ja) * 2007-04-12 2008-11-06 Toyota Jidosha Kabushiki Kaisha 燃料電池システム
JP2016050361A (ja) * 2014-08-28 2016-04-11 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド 水を酸化するためのプロセス、水を酸化するためのセル、水酸化触媒、および電気化学水酸化のための電極
JP2016165706A (ja) * 2015-03-06 2016-09-15 日清紡ホールディングス株式会社 ヘテロポリ酸系触媒及びその製造方法並びにこれを用いた電極及び電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI SHAO ET AL.: "Low-cost and highly efficient CoMoS4/NiMoS4-based electrocatalysts for hydrogen evolution reactions over a wide pH range", ELECTROCHIMICA ACTA, vol. 213, 20 September 2016 (2016-09-20), pages 236 - 243, XP055677948 *
XIAOPING DAI ET AL.: "Co-Doped MoS2 Nanosheets with the Dominant CoMoS Phase Coated on Carbon as an Excellent Electrocatalyst for Hydrogen Evolution", ACS APPLIED MATERIALS & INTERFACES, vol. 7, no. 49, 16 December 2015 (2015-12-16), pages 27242 - 27253, XP055677951 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110327943A (zh) * 2019-07-16 2019-10-15 安徽师范大学 一种Cu-Mo-S复合材料及其制备方法和应用
CN112981431A (zh) * 2021-02-04 2021-06-18 哈尔滨工业大学 一种电解水制氢一体化阳极的制备方法和应用
CN112981431B (zh) * 2021-02-04 2022-05-06 哈尔滨工业大学 一种电解水制氢一体化阳极的制备方法和应用

Also Published As

Publication number Publication date
JP6315532B1 (ja) 2018-04-25
JPWO2019016852A1 (ja) 2019-07-18

Similar Documents

Publication Publication Date Title
JP6315532B1 (ja) 電極触媒の製造方法及び水素の製造方法
Liu et al. Recent advances in atomic‐level engineering of nanostructured catalysts for electrochemical CO2 reduction
Lv et al. Urchin-like Al-doped Co3O4 nanospheres rich in surface oxygen vacancies enable efficient ammonia electrosynthesis
Xiang et al. Ammonia synthesis from electrocatalytic N2 reduction under ambient conditions by Fe2O3 nanorods
Zhang et al. In-situ construction of 3D hetero-structured sulfur-doped nanoflower-like FeNi LDH decorated with NiCo Prussian blue analogue cubes as efficient electrocatalysts for boosting oxygen evolution reaction
Huang et al. Flexible cobalt phosphide network electrocatalyst for hydrogen evolution at all pH values
Jiang et al. Bimetallic‐based electrocatalysts for oxygen evolution reaction
Arif et al. Rational design and modulation strategies of Mo-based electrocatalysts and photo/electrocatalysts towards nitrogen reduction to ammonia (NH3)
Gu et al. Iron oxide promoted nickel/nickel oxide rough nanorods for efficient urea assisted water splitting
CN104353478B (zh) 一种碳包覆的钴钨双金属碳化物、制备方法及其应用
Jiang et al. Nickel-cobalt nitride nanoneedle supported on nickel foam as an efficient electrocatalyst for hydrogen generation from ammonia electrolysis
Huang et al. A nanostructured MoO2/MoS2/MoP heterojunction electrocatalyst for the hydrogen evolution reaction
Wang et al. Amorphous sulfur decorated gold nanowires as efficient electrocatalysts toward ambient ammonia synthesis
Feng et al. Dual-anions engineering of bimetallic oxides as highly active electrocatalyst for boosted overall water splitting
Wang et al. Tuning the electronic structure of NiSe2 nanosheets by Mn dopant for hydrogen evolution reaction
CN113957479B (zh) 金属-有机配合物修饰的过渡金属基纳米阵列电极及其制备方法与应用
Li et al. Graphene supported atomic Co/nanocrystalline Co3O4 for oxygen evolution reaction
Dai et al. Self-supported Hierarchical Fe (PO3) 2@ Cu3P nanotube arrays for efficient hydrogen evolution in alkaline media
JP2020070450A (ja) 電極触媒及びその製造方法
US20240150903A1 (en) Systems and methods for forming nitrogen-based compounds
JP7397877B2 (ja) 硫化物組成物の使用
Hanan et al. MXene based electrocatalyst: CoS2@ Ti3C2Tx composite for hydrogen evolution reaction in alkaline media
Simon et al. Fast microwave synthesis of phase-pure Ni2FeS4 thiospinel nanosheets for application in electrochemical CO2 reduction
Yun et al. Ultrasmall molybdenum-iron nitride nanoparticles confined carbon nanotubes hybrids for efficient overall water splitting
CN110681407A (zh) Fe掺杂Co1.11Te2@NCNTFs纳米复合材料及其制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017568315

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17918133

Country of ref document: EP

Kind code of ref document: A1