WO2019013074A1 - 被覆電線、端子付き電線、及び撚線 - Google Patents

被覆電線、端子付き電線、及び撚線 Download PDF

Info

Publication number
WO2019013074A1
WO2019013074A1 PCT/JP2018/025420 JP2018025420W WO2019013074A1 WO 2019013074 A1 WO2019013074 A1 WO 2019013074A1 JP 2018025420 W JP2018025420 W JP 2018025420W WO 2019013074 A1 WO2019013074 A1 WO 2019013074A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
conductor
strands
terminal
metal
Prior art date
Application number
PCT/JP2018/025420
Other languages
English (en)
French (fr)
Inventor
啓之 小林
坂本 慧
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Priority to CN201880046232.7A priority Critical patent/CN110914923B/zh
Priority to DE112018003604.9T priority patent/DE112018003604B4/de
Priority to US16/628,538 priority patent/US10957463B2/en
Priority to JP2019529086A priority patent/JP6845999B2/ja
Publication of WO2019013074A1 publication Critical patent/WO2019013074A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/08Several wires or the like stranded in the form of a rope
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0045Cable-harnesses
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the present disclosure relates to a covered wire, a wire with a terminal, and a stranded wire.
  • This application claims the priority of Japanese Patent Application No. 2017-138646 filed on Jul. 14, 2017, and uses the entire contents described in the Japanese Application.
  • Patent documents 1 and 2 disclose a wire harness used for a car.
  • the wire harness is typically a bundle of a plurality of terminal-equipped electric wires provided with a covered electric wire having an insulating covering layer on the outer periphery of a conductor and a terminal portion attached to the end of the covered electric wire.
  • Patent documents 1 and 2 disclose a copper alloy stranded wire as the above-mentioned conductor.
  • the coated wire of the present disclosure is A coated wire comprising a conductor and an insulating covering layer covering an outer periphery of the conductor,
  • the conductor is a stranded wire formed by twisting a plurality of strands of copper or copper alloy, Adjacent ones of the strands of wire are provided with metal-bonded parts.
  • the terminal-equipped wire of the present disclosure is The coated wire of the present disclosure as described above; And a terminal portion attached to an end of the coated wire.
  • the stranded wire of the present disclosure is A stranded wire used for the conductor of a wire, A plurality of strands of copper or copper alloy are twisted together, Adjacent ones of the strands of wire are provided with metal-bonded parts.
  • the contact resistance with the terminal portion be low even if the degree of compression of the terminal portion in the conductor is small.
  • the contact resistance is small when the terminal portion is crimped and fixed to a stranded wire conductor having a cross-sectional area of 0.22 mm 2 or 0.13 mm 2 , and the crimp height is 0.76.
  • the degree of compression is increased, it is easy to break the twisted state of the stranded wire and secure a large contact area between each strand and the terminal portion, and it is easy to lower the contact resistance. Conceivable.
  • the larger the degree of compression the smaller the remaining area ratio (described in detail later) of the compressed portion of the terminal portion in the conductor. Therefore, for example, in the compressed portion of the terminal portion of the conductor and in the vicinity thereof, the force (N) which can withstand without impact when impacted is small compared to the non-compressed portion where the terminal portion in the conductor is not attached , Vulnerable to impact resistance. If the degree of compression is reduced, the remaining area ratio of the compressed portion of the terminal portion in the conductor and its vicinity can be largely secured, and excellent characteristics of the non-compressed portion, for example, impact resistance can be maintained, and the terminal is excellent in impact resistance. It can be a wire.
  • the contact resistance is low when the cross-sectional area of the conductor as described above is small, and also when the degree of compression is smaller, particularly when the ratio of the remaining area of the compressed portion of the terminal portion in the conductor is more than 0.76.
  • the stranded wire which can construct a covered electric wire and a covered electric wire with low contact resistance is desired.
  • a coated wire according to an aspect of the present disclosure is: A coated wire comprising a conductor and an insulating covering layer covering an outer periphery of the conductor,
  • the conductor is a stranded wire formed by twisting a plurality of strands of copper or copper alloy, Adjacent ones of the strands of wire are provided with metal-bonded parts.
  • the above-mentioned stranded wire is formed by compression molding after twisting in addition to non-compressed stranded wire which is a plurality of strands (here, copper wires or copper alloy wires) as it is twisted and is not compression molded. Including lines.
  • the above-mentioned coated electric wire uses a conductor as a stranded wire, since the above-mentioned metal joint part is provided, strands do not slip easily, and a plurality of strands move together as one. From this point of view, the rigidity of the conductor is enhanced, and the above-mentioned coated electric wire is less likely to buckle.
  • the cross-sectional area of the conductor is small, for example, 0.22 mm 2 or less, and even 0.2 mm 2 or less, 0.15 mm 2 or less, as described above, the strands easily move together and the rigidity is excellent. Hard to buckle.
  • the above-mentioned coated electric wire is used for an electric wire with a terminal, when the terminal portion is inserted into the terminal storage portion of the housing or the like, the vicinity of the terminal portion is unlikely to be buckled, and the insertion workability is excellent.
  • the terminal part is attached to the edge part, and even if the degree of compression of the terminal part in a conductor is small, contact resistance with a terminal part is low. This is because the contact resistance between the strands of wire can be reduced by the metal bonding portion, so that it is considered that the contact resistance can be easily lowered even if the degree of compression is reduced. In addition, if the degree of compression is small, the ratio of the remaining area of the compression portion of the terminal portion in the conductor can be increased, and excellent characteristics of the non-compression portion in the conductor can be maintained.
  • the terminal is excellent in impact resistance even when the cross-sectional area is small, particularly 0.22 mm 2 or less, further 0.2 mm 2 or less, and 0.15 mm 2 or less.
  • Such a coated electric wire has low contact resistance and impact resistance even when the cross section of the conductor is small as described above, and further when the degree of compression is smaller, when it is used for a terminal-attached electric wire. It is also excellent in
  • the above-mentioned coated wire is excellent in welding strength when a branch wire or the like is welded to a conductor.
  • a branch wire or the like is not directly welded in the vicinity of a portion where a branch wire or the like is directly welded, it may include a portion where the strands are strongly joined by a metal bonding portion. is there.
  • the stranded wire is formed by concentric twisting of the plurality of strands, and includes at least one central strand and a plurality of outer circumferential strands covering an outer periphery of the central strand.
  • the metal bonding portion may include a plurality of portions in which the central strand and the outer peripheral strand adjacent to the central strand are metal-bonded to each other.
  • the central strand and the outer circumferential strand are strongly joined by the metal joint portion, buckling is difficult.
  • the said form can reduce the contact resistance between a center strand and an outer periphery strand by a metal joint part, when the compression degree of the terminal part in a conductor is made small as mentioned above, it is mainly with an outer periphery strand and Even if the terminal portion is in direct contact and the central strand is not in direct contact with the terminal portion, the contact resistance with the terminal portion can be easily lowered.
  • the central strand and the outer circumferential strand are strongly joined by the metal bonding portion, mainly the outer circumferential strand and the branch are directly welded when the branch is welded, Even if the central strand is not welded directly to the branch line etc., the welding strength is excellent.
  • the wire is made of the copper alloy.
  • the copper alloy contains 0.01% by mass or more in total of one or more elements selected from Fe, Ti, Mg, Sn, Ag, Ni, In, Zn, Cr, Al, and P; The form which contains 5 mass% or less, and remainder becomes from Cu and an unavoidable impurity is mentioned.
  • the copper alloy of the above specific composition is superior in strength to pure copper.
  • the above-mentioned copper alloy is also excellent in impact resistance when the elongation is typically increased by heat treatment.
  • precipitation type alloys are likely to be improved in strength and conductivity by heat treatment such as aging, and in addition, toughness such as elongation is also likely to be improved.
  • the above embodiment in which the conductor is provided with a stranded wire in which strands made of such a copper alloy are twisted together is suitable for wiring such as a wire harness which requires high strength, high toughness, high impact resistance, high conductivity and the like. Available.
  • the terminal-equipped wire according to an aspect of the present disclosure is: The coated electric wire according to any one of the above (1) to (3), And a terminal portion attached to an end of the coated wire.
  • the above-mentioned terminal-equipped electric wire is provided with the above-mentioned coated electric wire which uses the stranded wire including the above-mentioned metal connection portion as a conductor, it is difficult to buckle as described above.
  • the contact resistance with the terminal portion is low, and the welding strength is excellent.
  • the stranded wire according to one aspect of the present disclosure is A stranded wire used for the conductor of a wire, A plurality of strands of copper or copper alloy are twisted together, Adjacent ones of the strands of wire are provided with metal-bonded parts.
  • the coated electric wire provided with this stranded wire in the conductor is not likely to be buckled as described above, and contact with the terminal portion even if the degree of compression of the mounting portion of the terminal portion is small. The effects of low resistance and excellent welding strength are exhibited.
  • FIG. 1 is a cross-sectional view of the coated wire 1 of the embodiment cut in a plane orthogonal to the axial direction.
  • the metal bonding portion 24 is shown with cross hatching, and the hatching of the wire 20 is omitted.
  • FIG. 2 is a cross-sectional view of the conductor 2 provided in the coated electric wire 1 of the embodiment cut in a plane orthogonal to the axial direction.
  • the metal bonding portion 24 and the vicinity thereof are shown surrounded by an alternate long and short dash line circle, and hatching of the wire 20 is omitted.
  • the covered electric wire 1 of embodiment is provided with the conductor 2 and the insulation coating layer 3 which covers the outer periphery of the conductor 2 as shown in FIG.
  • the conductor 2 is a stranded wire 2S formed by twisting together a plurality of strands 20 composed of copper or copper alloy.
  • the stranded wire 2S of the embodiment is used for the conductor 2 of the electric wire such as the coated electric wire 1, and a plurality of strands 20 made of copper or copper alloy are twisted together.
  • a concentric stranded wire in which a plurality of strands 20 are concentrically twisted as shown in FIG. 1 can be mentioned.
  • the concentric stranded wire includes at least one central strand 21 and a plurality of outer circumferential strands 22 covering the outer circumference of the central strand 21, and the outer circumferential strands 22 are concentrically formed around the central strand 21.
  • FIG. 1 is a seven-strand concentric stranded wire in which six outer peripheral strands 22 are twisted around the outer periphery of one central strand 21 and illustrates a compression stranded wire formed by compression.
  • a collective stranded wire (not shown) formed by collectively twisting a plurality of strands 20 may be mentioned.
  • the stranded wire 2S forming the conductor 2 provided in the coated electric wire 1 of the embodiment and the stranded wire 2S of the embodiment include the metal bonding portion 24 to which the adjacent strands 20 and 20 are metal-bonded (also the photomicrograph of FIG. reference).
  • the twisted wire 2S which makes the conductor 2, and the insulation coating layer 3 are demonstrated in order.
  • Each strand 20 forming the stranded wire 2S is a wire made of copper (so-called pure copper) or a wire made of a copper alloy containing an additive element and the balance being Cu and an unavoidable impurity.
  • Pure copper includes one having a Cu content of 99.95% or more.
  • the copper alloy includes, for example, 0.01% or more in total of one or more elements selected from Fe, Ti, Mg, Sn, Ag, Ni, In, Zn, Cr, Al, and P. What contains 5% or less, and remainder consists of Cu and an unavoidable impurity is mentioned.
  • This copper alloy is superior in strength to pure copper, is also excellent in impact resistance by enhancing elongation by heat treatment, and in the case of a precipitation type alloy, it is easy to increase strength and conductivity by aging treatment, and toughness is also improved. Easy to do.
  • the tensile strength tends to be high as the total content of the additive element is high, the strength and the rigidity are excellent, and the conductivity tends to be high as the content is small.
  • the following may be mentioned as specific compositions (the balance is Cu and unavoidable impurities).
  • Composition (3 solid solution type alloy) Sn is contained at 0.15% or more and 0.7% or less.
  • Composition (4 solid solution type alloy) Mg is contained at 0.01% or more and 1.0% or less.
  • the content of Fe is 0.4% or more and 2.0% or less, and further 0.5% or more and 1.5% or less
  • the content of Ti is 0.1% to 0.7%, further 0.1% to 0.5%
  • the content of Mg is 0.01% or more and 0.5% or less, and further 0.01% or more and 0.2% or less
  • the content of Sn is 0.01% or more and 0.7% or less, and further 0.01% or more and 0.3% or less
  • the content of Ag is 0.01% or more and 1.0% or less, and further 0.01% or more and 0.2% or less
  • the total content of Ni, In, Zn, Cr, Al and P can be 0.01% or more and 0.3% or less, and further 0.01% or more and 0.2% or less.
  • the content of Fe is 0.2% or more and 1.5% or less, and further 0.3% or more and 1.2% or less
  • the content of P is 0.1% or more and 0.6% or less, and further 0.11% or more and 0.5% or less
  • the content of Mg is 0.01% or more and 0.5% or less, and further 0.02% or more and 0.4% or less
  • the content of Sn can be 0.05% or more and 0.6% or less, and further 0.1% or more and 0.5% or less.
  • the content of Sn can be 0.15% or more and 0.5% or less, and further 0.15% or more and 0.4% or less.
  • the content of Mg can be 0.02% or more and 0.5% or less, and further 0.03% or more and 0.4% or less.
  • one or more elements selected from C, Si, and Mn can be contained in total of 10 ppm or more and 500 ppm or less. These elements can function as antioxidants for the above-described elements such as Fe and Sn.
  • the copper alloy constituting each wire 20 is a precipitation type copper alloy (for example, the above-mentioned compositions (1), (2), etc.) that forms precipitates when subjected to an aging treatment, the aging treatment is applied.
  • the aging treatment is applied.
  • it typically has a texture containing precipitates.
  • the precipitates have a uniformly dispersed structure, it is possible to expect high strength by precipitation strengthening, high conductivity by reduction of the amount of solid solution of additive elements, and the like.
  • the conductor cross-sectional area that is, the total cross-sectional area of the strands 20 constituting the stranded wire 2S can be appropriately selected according to the application of the coated wire 1.
  • a lightweight coated electric wire 1 can be obtained.
  • Such a covered electric wire 1 can be suitably used for applications where weight reduction is desired, for example, a wire harness for automobiles.
  • the cross-sectional area can be 0.2 mm 2 or less, and further 0.15 mm 2 or less, 0.13 mm 2 or less.
  • the cross-sectional area, shape, etc. of each strand 20 before twisting may be selected so that the cross-sectional area of the conductor becomes a predetermined size.
  • the strands 20 before twisting may include strands 20 having different cross-sectional areas and shapes, but if the cross-sections and shapes of the strands 20 are the same, it is easy to adjust the twisting conditions.
  • the number of strands of the stranded wire 2S can be selected as appropriate.
  • the number of strands of concentric stranded wire may be 7, 19, or 37.
  • one outer circumferential layer composed of six outer circumferential strands 22 is provided on the outer circumference of one central strand 21.
  • the 19-twist has two outer layers, and the 37-twist has three outer layers.
  • the central strand 21 can be made of two or more wires.
  • the outer shape of the stranded wire 2S (conductor 2) has a shape according to the twisted state.
  • the compression stranded wire typically has a cross-sectional shape or an end shape close to a circle (see FIG. 1).
  • the cross-sectional shape can also be made into a polygonal shape such as an elliptical shape or a hexagonal shape.
  • the compressed stranded wire tends to have a point where adjacent strands 20, 20 are in surface contact with each other. Therefore, it is expected that, if the twisted wire 2S is a compressed twisted wire, it is easy to have more metal bonding portions 24 or to have a metal bonding portion 24 having a longer bonding length L (FIG. 2).
  • the stranded wire 2S forming the conductor 2 provided in the coated electric wire 1 of the embodiment and the stranded wire S of the embodiment have a cross section in which at least one metal bonding portion 24 exists.
  • FIG. 2 schematically shows an example of a cross section in which the metal bonding portion 24 exists in the stranded wire 2S.
  • the metal bonding portion 24 is formed by metal bonding of Cu, which is a main component of the adjacent strands 20 and 20 among the plurality of strands 20 forming the stranded wire 2S.
  • the strands 20, 20 adjacent to each other are firmly joined by the metal bonding portion 24, and the twisted wire 2S is not easily separated.
  • the twisted wire 2S including the metal bonding portion 24 has high rigidity and is not easily buckled, and is easily bent and the like.
  • the stranded wire 2S having the metal bonding portion 24 can reduce the contact resistance between the strands of wire 20. Furthermore, when a branch wire or the like is welded to a part of the stranded wire 2S, metal bonding of one not directly welded to the branch wire or the like in the vicinity of a portion directly welded to the branch wire or the like in the stranded wire 2S When the portion 24 is provided, the welding strength can be enhanced.
  • the conductor 2 with the stranded wire 2S having the metal bonding portion 24, it is difficult to be buckled and bending is easily performed, and further the contact resistance between the strands 20 is low, and the coated electric wire 1 excellent in welding strength is obtained. It can be built.
  • the metal bonding portion 24 can be briefly confirmed by taking a cross section of the coated electric wire 1 or the stranded wire 2S and observing the cross section with a microscope such as an optical microscope or a metallographic microscope. In the observation image by the above-mentioned microscope or the processing image to which the image processing was appropriately performed, it is a contact point of the adjacent strands 20 and 20 and a region where the boundary between the adjacent strands 20 and 20 can not be visually distinguished It can be regarded as the coupling portion 24 (see also FIG. 4). More strictly, the cross-section is polished with a cross section polisher (CP), and extraction with metal bonding is performed by observation with a scanning electron microscope (SEM) or the like.
  • CP cross section polisher
  • SEM scanning electron microscope
  • this junction can be regarded as the metal joint 24. It is expected that the metal bonding portion 24 can be extracted efficiently by taking a cross section taken at this junction and its vicinity.
  • the contact resistance between the strands 20 can be reduced by increasing the rigidity of the stranded wire 2S as the cross section where the above-mentioned metal bonding portion 24 exists is increased. , It is easy to obtain the effect that the welding strength can be enhanced.
  • the coated wire 1 or the like is a coil member wound on a reel
  • the coated wire 1 or the stranded wire 2S may have one or more cross sections in which the metal bonding portion 24 exists for every 3 m of the length. It can be mentioned.
  • the metal bonding portion 24 exists at an interval of 2% or more and 20% or less with respect to the length of the coated wire 1 or the stranded wire 2S.
  • the coated electric wire 1 or the stranded wire 2S when viewed in the axial direction, it has metal bonding portions 24 at a plurality of different places.
  • the covered wire 1 is provided in a wire harness or the like and the length is relatively short, for example, the length is about 0.5 m or more and 5 m or less, one cross section in which the metal connection portion 24 exists is one The above can be mentioned. It is preferable that the vicinity of the terminal portion of the coated electric wire 1 does not easily buckle during the insertion work into the terminal storage portion of the housing if the metal coupling portion 24 is particularly included in the vicinity of the mounting portion of the terminal portion.
  • a plurality of metal bonding portions 24 do not have to exist in one cross section, and when the coated electric wire 1 or the twisted wire 2S is viewed in the axial direction, it is a set of the adjacent strands 20 and 20 described above. Preferably, a metal bond 24 is provided. Even if the number of metal bonding portions 24 in one cross section is large, bending or the like is easily performed if a plurality of metal bonding portions 24 are separated from each other when the coated electric wire 1 is viewed in the axial direction.
  • the pair of adjacent strands 20 and 20 is, for example, a central strand if the strand 2S is a concentric stranded wire including one central strand 21 and one outer circumferential layer shown in FIGS.
  • the group of 21 and the outer periphery strand 22 and the group of adjacent outer periphery strands 22 and 22 comrades are mentioned.
  • a total of six pairs of adjacent strands 20, 20 have metal bonding portions 24.
  • a concentric stranded wire provided with a plurality of central strands 21 as another pair of adjacent strands 20 and 20, a pair of adjacent central strands 21 and 21 may further be mentioned.
  • a set of outer wires 22 adjacent to each other in each outer layer, and a set of outer wires 22 adjacent to each other inside and outside may also be mentioned.
  • the metal bonding portion 24 is a wire 20 disposed inside and a wire 20 disposed outside of the wires 20 forming the twisted wire 2S.
  • a form including one or more sites where and are metal-bonded is preferable, and it is more preferable to include a plurality.
  • the strands 20 are firmly joined together and hardly buckled, and for example, when the terminal portion is attached to the stranded wire 2S with a relatively small degree of compression, the strands inside the central strand 21 etc. Even if 20 does not directly contact the terminal portion and substantially only the outer strand 20 such as the outer peripheral strand 22 contacts the terminal portion, the contact resistance with the terminal portion can be easily lowered.
  • the inner strand 20 such as the central strand 21 and the branch line are not directly welded, and the outer strand 22 or the like is substantially broken. Even if only the outer strand 20 is welded to a branch line or the like, it is easy to increase the welding strength. Therefore, by providing the stranded wire 2S of this form, it is possible to construct the coated electric wire 1 which is difficult to be buckled, has low contact resistance with the terminal portion even if the degree of compression is small, and is excellent in welding strength.
  • two or more metal connection parts 24 between the central strand 21 and the outer circumference strands 22 and two or more metal connection parts 24 between the outer circumference strands 22 and 22 adjacent to each other provide more seating. It is difficult to bend, and even if the degree of compression is small, the contact resistance with the terminal portion is lower, and the welding strength tends to be higher, which is preferable.
  • FIGS. 1-10 In FIGS.
  • the metal bonding portion 24 includes a plurality of (here, three) locations where the central wire 21 and the outer peripheral wire 22 adjacent to the central wire 21 are metal-bonded, and The case where the outer peripheral wires 22 and 22 which are matched are metal-joined and a plurality of (here three) joining points are included is illustrated. Furthermore, it is preferable that all the strands 20 which make the twisted line
  • Each metal bonding portion 24 present in one cross section taken from the coated electric wire 1 or the twisted wire 2S is regarded as an area where the boundary between adjacent strands 20, 20 can not be visually distinguished as described above.
  • the minimum distance of the regions is taken as the coupling length L.
  • the total length of the coupling length L is at 0.05mm or more, further 0.06mm or more, 0.08 mm or more If it exists, as mentioned above, it is easy to acquire the effect of improvement of rigidity, reduction of the contact resistance between strands 20, and improvement of welding strength.
  • the total length of the coupling length L is the smallest enveloping circle 200 including the twisted wire 2S, 3% or more and 15% or less of the diameter R of the enveloping circle 200, and 5% or more and 10% or less While being easy to acquire effects, such as the above-mentioned improvement of rigidity, reduction of the contact resistance between strands 20, improvement of welding strength, etc., it is easy to reduce the fall of flexibility of twisted line 2S.
  • the metal bonding portion 24 includes a plurality of metal bonding portions 24 of the central strand 21 and the outer circumferential strands 22 and a plurality of metal bonding portions 24 of the outer circumferential strands 22 and 22 adjacent to each other
  • the total length of the bonding length L at the metal bonding portion 24 between the central strand 21 and the outer circumferential strand 22 is 0.05 mm or more, and the total length of the bonding length L at the metal bonding portion 24 between the outer circumferential strands 22 and 22 It is easy to acquire effects, such as the improvement of the above-mentioned rigidity, the reduction of the contact resistance between the strands 20, and the improvement of welding strength, as it is 0.05 mm or more, and preferable.
  • the conductor 2 (strand 2S) A tensile strength of 450 MPa or more, a breaking elongation of conductor 2 (twisted wire 2S) of 5% or more, and a conductivity of conductor 2 (twisted wire 2S) of 55% IACS or more Can.
  • the tensile strength is 450 MPa or more, the tensile strength is high, buckling is difficult, and the welding strength is excellent. If the breaking elongation is 5% or more, it is easy to bend.
  • the conductivity is 55% IACS or more, the conductivity is excellent and the conductor cross-sectional area can be easily made smaller.
  • the tensile strength is 450 MPa or more and the breaking elongation is 5% or more, it is excellent in both the strength and the toughness and is more excellent in impact resistance and preferable. It is more preferable to satisfy all the three matters listed.
  • the tensile strength of the conductor 2 (twisted wire 2S) is 220 MPa or more
  • the breaking elongation of the conductor 2 (twisted wire 2S) is 15% or more
  • the conductor 2 (twisted wire 2S) is conductive
  • the rate may satisfy at least one of 98% IACS or more.
  • the tensile strength, the elongation at break, and the conductivity can typically be set to predetermined values by adjusting the composition and manufacturing conditions of the copper alloy. For example, when the degree of wiredrawing is increased to use a small diameter wire 20 or if the wire 20 is made of a copper alloy and the additive element is increased, the tensile strength tends to be high and the conductivity is low. It is in. For example, when heat treatment temperature is increased when heat treatment is performed, breaking elongation tends to be high and tensile strength tends to be low. In the case where the strands 20 are made of a precipitation type copper alloy, the conductivity tends to be high when the aging treatment is performed.
  • the insulating material constituting the insulating covering layer 3 examples include polyvinyl chloride (PVC) and halogen-free resin (for example, polypropylene (PP) and the like), materials excellent in flame retardancy, and the like.
  • PVC polyvinyl chloride
  • PP polypropylene
  • PVC can be a coated wire 1 that is relatively soft and easy to bend and the like.
  • the halogen-free resin can be used as the coated wire 1 which is relatively hard and which is difficult to buckle even if the thickness of the insulating coating layer 3 is relatively thin.
  • a well-known insulating material can be utilized for the said insulating material.
  • the thickness of the insulating covering layer 3 can be appropriately selected in a range having a predetermined insulating strength according to the conductor cross-sectional area and the like.
  • the average thickness of the insulating coating layer 3 is preferably 0.21 mm or more, and more preferably 0.22 mm or more and 0.23 mm or more. It is because the rigidity improvement of the covered electric wire 1 by thickening of the insulation coating layer 3 can be anticipated, and it can be hard to be buckled.
  • the average thickness refers to the opposing location of the outer peripheral surface of the adjacent outer peripheral wires 22 and 22 among the outer peripheral surfaces of the individual wires (the outer peripheral wires 22 in FIG.
  • the average thickness corresponds to the average distance from the smallest envelope circle 200 (FIG. 2) containing the conductor 2 to the outer peripheral surface of the insulating covering layer 3.
  • the insulating covering layer 3 is preferably formed to a uniform thickness with respect to the conductor 2. This is because the integration of the conductor 2 and the insulating covering layer 3 can easily increase the rigidity and make it difficult to buckle.
  • the covered electric wire 1 of embodiment can be utilized for various wiring. In particular, it is suitable for the use etc. which are used in the state to which the terminal part was attached to the edge part of the coated wire 1.
  • the coated electric wire 1 can be used for wiring of various electric devices such as devices such as automobiles and airplanes and control devices such as industrial robots, for example, wiring of various wire harnesses such as wire harnesses for automobiles.
  • the stranded wire 2S of the embodiment can be used for the conductor 2 of various wires such as the coated wire 1 of the embodiment.
  • the terminal-attached electric wire 10 of the embodiment includes the coated electric wire 1 of the embodiment as shown in FIG. 3 and the terminal portion 4 attached to the end of the coated electric wire 1.
  • the female or male fitting portion 42 is provided at one end, and the other end is provided with an insulation barrel portion 44 for gripping the insulating covering layer 3 and the conductor 2 is gripped at the intermediate portion.
  • the crimp terminal provided with the wire barrel part 40 is illustrated. The crimp terminal is crimped to the end of the conductor 2 exposed by removing the insulating covering layer 3 at the end of the coated wire 1 and electrically and mechanically connected to the conductor 2.
  • melt and connect the conductor 2 is mentioned.
  • the terminal-equipped electric wire 10 may have a mode in which one terminal portion 4 is provided for a plurality of coated electric wires 1, in addition to a mode (FIG. 3) in which one terminal portion 4 is attached to each coated electric wire 1.
  • a mode FOG. 3
  • the terminal-equipped wire 10 can be handled easily.
  • the ratio of the cross-sectional area of the compression portion to which the terminal portion 4 is attached to the cross-sectional area of the non-compression portion to which the terminal portion 4 is not attached When the remaining area ratio is large, it is preferable because the characteristics such as impact resistance are excellent even if the cross-sectional area of the conductor 2 is small as described above. Quantitatively, it is mentioned that the residual area ratio is more than 0.76. As the remaining area ratio is larger, the compressed portion of the terminal portion 4 in the conductor 2 can easily maintain the excellent characteristics of the non-compressed portion in the conductor 2, and the entire terminal-equipped wire 10 is excellent in impact resistance and the like. In consideration of the improvement of impact resistance etc., the above-mentioned ratio of the remaining area can be made 0.77 or more, further 0.78 or more, 0.79 or more, 0.80 or more.
  • the residual area ratio adjusts the degree of compression at the time of attaching the terminal portion 4, and in particular, reduces the crimp height (C / H, the height of the wire barrel portion 40 in the terminal-attached electric wire 10)
  • the adjustment can satisfy the above-mentioned range. Since the terminal-equipped wire 10 of the embodiment has the coated wire 1 of the embodiment using the stranded wire 2S of the embodiment as the conductor 2, the conductor 2 and the terminal portion 4 are small even if the degree of compression is small as described above. The contact resistance between them can be reduced (see the test example described later).
  • the non-compression point of the conductor 2 in the terminal-attached electric wire 10 of the embodiment maintains the specifications (composition, structure, twisting state, shape, characteristics, etc.) of the conductor 2 provided in the coated electric wire 1 of the embodiment described above It has similar characteristics and the like. The details of each item are as described above.
  • the terminal-attached electric wire 10 of the embodiment can be used for wiring of various electric devices such as the above-described automobile, airplane, control device, etc., particularly for wiring of various wire harnesses such as automobile wire harness.
  • branching can be performed by welding a branch wire or the like to a part of the conductor 2.
  • the conductor 2 is directly welded to a part of the strands 20, typically the strands 20 disposed outside and the branch lines, etc.
  • the wires 20 of the part typically the wires 20 arranged inside, and the wires 20 outside the wires arranged at a distance from the branch wires are not directly welded to the branch wires and the like.
  • the conductor 2 is formed of the stranded wire 2S in which the metal bonding portion 24 exists, the welding strength is excellent even when the wire 20 which is not directly welded to the branch wire or the like as described above is included. In addition, it is expected that the connection resistance of the welded portion can be reduced by including the metal bonding portion 24.
  • a branch line can be made into the thing of the same composition as the covered electric wire 1 of an embodiment, and the electric wire 10 with a terminal of an embodiment.
  • the branch line may be a coated wire or the like provided with a copper conductor composed of pure copper.
  • the branch covered wire provided with the copper conductor formed of pure copper It is possible to construct a welded structure of a wire including the exposed portion exposed from the insulating covering layer 3 and the welded portion where a portion of the copper conductor is welded. Pure copper is generally less strong than copper alloys. Therefore, in the welded structure of the electric wire, if the cross-sectional area of the copper conductor is made larger than that of the conductor 2 made of copper alloy, it is easy to increase the strength of the welded portion.
  • the coated electric wire 1 of the embodiment and the terminal-equipped electric wire 10 of the embodiment use the conductor 2 as the stranded wire 2S, since the twisted wire 2S includes the metal connection portion 24, contact resistance between the strands 20 which is difficult to buckle
  • the coated wire 1 and the terminal-equipped wire 10 having excellent welding strength can be constructed.
  • the stranded wire 2S of the embodiment can be manufactured typically by preparing a plurality of copper wires or copper alloy wires and twisting them together.
  • the basic production conditions of copper wires, copper alloy wires and their strands can be referred to known production methods.
  • Coated electric wire 1 of the embodiment can be manufactured by a manufacturing method including a step of preparing conductor 2 typically made of copper or a copper alloy, and a step of forming insulating covering layer 3 on the outer periphery of conductor 2 .
  • the conductor 2 uses a stranded wire 2S.
  • the basic manufacturing conditions and the like of the coated electric wire 1 can be referred to a known manufacturing method of manufacturing a coated electric wire including a conductor of a stranded wire and an insulating covering layer covering the outer periphery of the conductor.
  • An extrusion method etc. can be utilized for formation of the insulation coating layer 3.
  • a step of performing heat treatment to form a metal bonding portion 24 after twisting a plurality of copper wires or a plurality of copper alloy wires can be mentioned.
  • This heat treatment can be made independent of the aging treatment and the softening treatment, but if it is also used as the aging treatment and the softening treatment, the number of heat treatment steps can be reduced and the mass productivity is excellent.
  • the copper wire or copper alloy wire before twisting may be referred to as a single wire material, and the twisted wire before heat treatment forming the metal bonding portion 24 may be referred to as an unbonded twisted wire.
  • the inventor has found that when the amount of oil attached to the surface of each strand forming the above-mentioned unbonded stranded wire is small to some extent, the metal bonding portion 24 is easily formed.
  • the oil adhesion amount on the surface of each wire is preferably 10 ⁇ g or less (10 ⁇ g / g or less) per 1 g of wire mass. Therefore, one of the manufacturing conditions of the stranded wire 2S including the metal bonding portion 24 is to set the oil adhesion amount of each strand forming the unbonded stranded wire to 10 ⁇ g / g or less.
  • the oil attached to the surface of each strand mentioned above is typically a mineral oil, a synthetic oil, etc., and is a lubricant used in the process of producing a copper wire or copper alloy wire to be a strand (discoloring prevention function Etc., which may be shared with functions other than the lubrication function).
  • lubricants are typically used in plastic working such as wire drawing.
  • each single wire material used for conductor 2 is a step of casting copper or copper alloy, a step of subjecting the cast material to plastic working such as rolling or conform extrusion, and a plastically worked member And a step of wire drawing processing.
  • Various types of continuous casting can be used for casting.
  • As a raw material to be subjected to wire drawing it can be used as a continuously cast and rolled material which is rolled subsequently to continuous casting.
  • Heat treatment can be appropriately performed during wire drawing or after wire drawing. The heat treatment here may be, for example, one for the purpose of removing processing distortion accompanying wire drawing.
  • the heat treatment here may be adjusted so that the above-mentioned oil adhesion amount is 10 ⁇ g / g or less according to the components of the oil and the like.
  • the heat treatment for reducing and removing the lubricant can be omitted.
  • ⁇ Unbonded stranded wire> A plurality of prepared single-wire materials are twisted together at a predetermined twisting pitch.
  • a plurality of single wire materials are twisted around the outer periphery of one or more single wire materials at a predetermined twist pitch.
  • twist pitch can be selected appropriately.
  • the twist pitch may be 12 mm or more and 20 mm or less. If the twist pitch is 12 mm or more, it is large to some extent, so even if the conductor cross-sectional area is small, the strength is excellent and buckling is difficult. If the twisting pitch is 20 mm or less, the size is not too large, and the strands 20 are easy to move integrally. It is hard to be buckled from this point.
  • the twist pitch can be 14 mm or more, and further 14.5 mm or more, 15 mm or more, 15.5 mm or more. If further integration of the strands of wire 20 is desired, the twist pitch may be 18 mm or less, and further 16 mm or less.
  • ⁇ Compression ratio If the conductor 2 (twisted wire 2S) is a non-compressed twisted wire in which the strands 20 are twisted together, the compression molding process can be made unnecessary. Alternatively, in the case of a compressed stranded wire (see FIG. 1) formed by compression molding after the conductor 2 (twisted wire 2S) is twisted, the following effects can be obtained. (1) The outer diameter of the stranded wire 2S can be smaller than that of the non-compressed stranded wire, and the coated wire 1 with a small diameter can be obtained. (2) The cross-sectional shape can be made into a desired shape such as a circular shape.
  • the ratio of the cross-sectional area reduced by compression molding to the total cross-sectional area of single-wire blanks before twisting (for example, the total area of seven single-wire blanks in the case of 7 strands), ie ⁇ ( Assuming that the total cross-sectional area of the single-wire material-cross-sectional area of the compressed stranded wire) / total cross-sectional area of the single-wire material before twisting ⁇ ⁇ 100 is the compression ratio (%) of the compression twisted wire, the strength improves as the compression ratio increases. Easy to do.
  • the compression ratio of the compressed stranded wire is preferably 10% to 30%, and more preferably 12% to 25%, and 12% to 20%. it can.
  • the compression ratio can be set in advance in the manufacturing process, and can be in the above-mentioned range by compression molding based on the set value.
  • Heat treatment When the single-wire material before twisting or the as-twisted stranded wire (an example of an unbonded stranded wire) or a compressed stranded wire (another example of an unbonded stranded wire) is made of a copper alloy wire, it also depends on the composition of the copper alloy However, by performing heat treatment such as aging treatment or softening treatment, the strength of the precipitate is enhanced by dispersion strengthening (precipitation-type alloy), and the conductivity is improved by reduction of solid solution elements (precipitation-type alloy, solid-solution-type alloy) It can be expected to improve the elongation by softening and the impact resistance (precipitation type alloy, solid solution type alloy) and the like. In the case where the above-described single-wire raw material or the stranded wire or the compressed twisted wire is made of a copper wire, the softening treatment can be expected to improve elongation, impact resistance, conductivity and the like.
  • composition (1) Heat treatment temperature: 400 ° C. to 650 ° C., and further 450 ° C. to 600 ° C. Holding time: 1 hour to 40 hours, further 4 hours to 20 hours
  • Composition (2) Heat treatment temperature: 350 ° C. to 550 ° C. C. to 500.degree. C. Holding time: 1 hour to 40 hours, and further 4 hours to 20 hours.
  • Examples of heat treatment conditions for the purpose of softening pure copper include the following. Heat treatment temperature: 100 ° C. or more and 350 ° C. or less, further 120 ° C. or more and 200 ° C. or less Holding time: 1 hour or more and 8 hours or less, and further 2 hours or more and 4 hours or less
  • the present inventor particularly adjusts the atmosphere of the heat treatment to apply the heat treatment for the purpose of the above-mentioned aging, softening, etc. to the above-mentioned unbonded stranded wire (in the form of a stranded wire or a compressed stranded wire). It has been found that at least a part of the contact points of the wires 20, 20 is easy to be metallurgically bonded. Specifically, it has been found that it is preferable to set a reducing atmosphere with a low content of oxygen or an inert atmosphere with a low content of oxygen.
  • the content of oxygen in the atmosphere of the above-mentioned heat treatment may be 10 ppm or less by volume.
  • a reducing gas or an inert gas Hydrogen, carbon monoxide, etc. are mentioned as reducing gas which makes a reducing atmosphere.
  • the inert gas forming the inert atmosphere include nitrogen and argon.
  • the heat treatment temperature and the holding time are set to the above specific range and the heat treatment atmosphere is heat treated to be a low oxygen reducing atmosphere or an inert atmosphere
  • the above-mentioned volatilization of oil occurs at the contact points of adjacent strands and in the vicinity thereof.
  • the formation of a new surface and the metal bonding are sequentially made, and the aging precipitation and the softening are performed at other places in each strand.
  • the above-mentioned oil content reduction and removal may be possible in the temperature raising process up to the above-described predetermined heat treatment temperature, the initial stage of holding at the predetermined heat treatment temperature, or the like.
  • the terminal portion 4 is a crimped terminal
  • crimping is performed with a predetermined crimp height (C / H).
  • C / H crimp height
  • Test Example 1 The stranded wire which uses a copper alloy wire as a strand was produced, and the connection state of the adjacent strand was investigated. In addition, a coated electric wire using this stranded wire as a conductor was produced, and a terminal portion was attached to the end of the coated electric wire to check a buckling state and a contact resistance with the terminal portion. Furthermore, the copper conductor was welded to the produced coated wire, and welding strength was investigated.
  • the copper alloy wire used as a wire is produced as follows. A continuous casting material (diameter ⁇ 12.5 mm) is produced using a molten copper alloy, and the surface is appropriately cut and then cold rolled. The obtained rolled material is subjected to wire drawing processing, and using the obtained copper alloy wire (round wire with a diameter of 0.172 mm), seven concentric wires cover the outer periphery of one central wire. Make a stranded wire. After twisting, compression molding is carried out to produce a compressed stranded wire. Furthermore, heat treatment is applied to the compressed stranded wire.
  • the copper alloy contains 0.61% by mass of Fe, 0.12% by mass of P, and 0.26% by mass of Sn, with the balance being Cu and unavoidable impurities.
  • a lubricant is used for wire drawing. In the copper alloy wire after wire drawing, adjust the amount of lubricant applied so that the oil adhesion amount on the surface is 10 ⁇ g or less with respect to 1 g of copper alloy wire mass, or use the lubricant remaining after wire drawing Remove it.
  • the twist pitch is selected from the range of 14 mm or more and 20 mm or less.
  • the compression ratio is 20%, and the cross-sectional area of the compression stranded wire after compression molding is 0.13 mm 2 .
  • the compression ratio (%) is ⁇ (total cross-sectional area of seven copper alloy wires before twisting-cross-sectional area of compressed stranded wire) / total cross-sectional area of seven copper alloy wires before twisting ⁇ ⁇ 100 Ask.
  • the compressed and twisted wire is subjected to heat treatment under the following heat treatment conditions as a conductor.
  • the heat treatment temperature is selected from the range of 400 ° C. or more and 500 ° C. or less.
  • the holding time is selected from the range of 4 hours to 12 hours.
  • the heat treatment atmosphere is a reducing atmosphere mainly containing hydrogen, and the content of oxygen is 10 ppm or less in volume ratio.
  • Sample No. 1-1 to No. In 1-8 the heat treatment temperature is made the same, and the larger the sample number, the longer the retention time, and thus the range is selected.
  • Sample No. In sample No. 1-101 the heat treatment temperature and the heat treatment atmosphere were set to sample no. Sample No. 1-1, etc., and holding time is less than 4 hours, which is outside the above range. Make it shorter than 1-1.
  • the heat treatment temperature and the holding time of sample no Same as 1-1, and the oxygen content in the heat treatment atmosphere is made different. Specifically, the content of oxygen was made about 0.1% by volume ratio, and sample No. 1 was prepared. Do more than 1-1.
  • this heat treatment corresponds to aging treatment, and sample No. 1 1-1 to No. In 1-8, the heat treatment corresponds to the formation of the metal bond.
  • FIG. 2 corresponds to a schematic diagram obtained by tracing the observed image.
  • a region where the boundaries between adjacent strands can not be visually distinguished is extracted as a metal bonding portion.
  • metal bonding points are present in a portion surrounded by a dashed dotted line circle in FIG. 2.
  • the bond length of each metal bond point is the minimum distance of the area where the above-mentioned boundary in the observation image can not be visually distinguished (see bond length L in FIG.
  • the total distance of the minimum distances of each point is the total length (Mm)
  • the length of the measurement sample is 50 mm or more and 100 mm or less
  • the number of cross sections collected from this sample is 3 or more
  • the average is shown in Table 1.
  • the metal bonding site was recognized at an interval of 2% or more and 20% or less with respect to the length of the measurement sample.
  • An insulation coating layer of the constituent materials shown in Table 1 is formed by extrusion on the outer periphery of the conductor (conductor cross-sectional area 0.13 mm 2 ) prepared as described above so as to have a coating thickness (mm) shown in Table 1 Do.
  • PVC polyvinyl chloride
  • HF (PP) halogen-free polypropylene.
  • the coating thickness in Table 1 is the average of the thickness of the portion covering the above-mentioned crown portion.
  • the average thickness of the insulation coating layer was measured about the coated wire of each sample finally obtained, it has confirmed that it is substantially equal to the value shown in Table 1.
  • the terminal portion of the terminal-attached electric wire is gripped, and the tip end of the coated electric wire opposite to the terminal portion is pressed against the flat plate.
  • the length of the coated electric wire is 10 mm (in the coated electric wire, it protrudes from the grip point of the terminal portion and the length to the tip end), the speed of the gripped electric wire with a terminal is 200 mm / min.
  • the load at the time of pressing the tip of the plate against the flat plate is changed to perform the pressing operation. Then, the maximum load when the coated wire is buckled is measured, and this maximum load is taken as a buckling force (N).
  • the crimp terminal was attached to the edge part, and the electric wire with a terminal was produced.
  • the crimp height was adjusted so that the above-mentioned remaining area ratio was 0.85.
  • the contact resistance (m ⁇ / m) between the conductor and the terminal portion was measured for the prepared terminal-attached wire of each sample based on JASO D 616, automobile part-low voltage wire, item 6.8.
  • crimped terminals are attached to each end of the coated wire, and two points 150 mm apart from each crimped terminal are used as measurement points of resistance.
  • a power supply is attached to both crimp terminals, the applied voltage is 15 mV, and the conduction current is 15 mA.
  • a wire with a terminal provided with crimp terminals at both ends is energized, and the resistance between the above two points is measured.
  • the value obtained by subtracting the resistance of the coated wire from the measured resistance value is taken as the contact resistance (m ⁇ / m).
  • the measurement results are shown in Table 1.
  • the two coated wires including the copper conductor are pulled away from each other.
  • the welding portion and the coated electric wire of each sample are arranged in the horizontal direction to fix the coated electric wire, and the two coated electric wires provided with the copper conductor are arranged in the vertical direction Then pull one of them upward and the other downward.
  • the tensile test uses a commercially available tensile tester or the like. Measure the maximum load (N) until the welded part breaks, and let this maximum load be the welding strength.
  • the copper conductor of pure copper is inferior in strength to the conductor of a copper alloy. Therefore, the total cross-sectional area (mm 2 ) of two of the copper conductors of pure copper is made larger than the cross-sectional area (0.13 mm 2 ) of the conductor composed of the copper alloy of each sample.
  • a sample No. 1 is provided with a portion (metal bonding portion) where the conductor is a copper-based stranded wire and the adjacent strands of the strands forming the stranded wire are metal-bonded.
  • 1-1 to No. 1-8 no. Sample No. 1-101 has no metal bond. It can be seen that the buckling force is high and buckling is difficult compared to 1-102. In particular, sample no. 1-1 to No. Sample No. 1-8. Compared with 1-101, the buckling force is higher (a), the number of metal joints is more (b), the total length of the coupling length is longer (c), and the terminal part is inserted into the housing It is understood that the workability at the time of doing is also excellent.
  • Sample No. 1-1 to No. Quantitatively, for 1-8 it is as follows.
  • the buckling force is 7N or more.
  • B There are three or more metal bonding portions between the central strand and the outer circumferential strands, and three or more metal bonding portions between the adjacent outer circumferential strands, each having a plurality thereof.
  • C The total length of the bond lengths at the metal bond between the central strand and the outer strand, and the total length of the bond lengths at the metal bond between adjacent outer strands, are all greater than 0.02 mm, Furthermore, it is 0.05 mm or more, further 0.06 mm or more, and there are many samples of 0.10 mm or more.
  • the sum of the total length of the bond lengths in the metal bond between the central strand and the outer strand and the total length of the bond lengths in the metal bond of the adjacent outer strands is 0.05 mm or more, preferably 0. There are many samples of 10 mm or more and 0.20 mm or more.
  • sample No. 1 equipped with the above-mentioned metal bond part. 1-1 to No. 1-8, no. Sample No. 1-101 has no metal bond. It can be seen that the contact resistance between the conductor and the terminal portion is low even if the above-described remaining area ratio is as large as 0.85 and the degree of compression of the terminal portion in the conductor is small compared to 1-102. In particular, sample no. 1-1 to No. Sample No. 1-8. The contact resistance is lower compared to 1-101. Quantitatively, for sample no. 1-1 to No. The contact resistance of 1-8 is 0.4 m ⁇ / m or less, and further 0.3 m ⁇ / m or less, and many samples are 0.2 m ⁇ / m or less. Furthermore, sample no.
  • sample No. 1 provided with the above-mentioned metal bond part. 1-1 to No. 1-8, no. Sample No. 1-101 has no metal bond. It turns out that welding strength is excellent compared with 1-102. In particular, sample no. 1-1 to No. Sample No. 1-8. Weld strength is higher compared to 1-101. Quantitatively, for sample no. 1-1 to No. The welding strength of 1-8 is 12 N or more, and further 15 N or more, and many samples of 18 N or more are also included. Furthermore, sample no. 1-1 to No. In comparison with 1-8, it can be said that the welding strength tends to be higher as the number of metal bonding parts is larger and the total length of bonding length is longer.
  • the tensile strength of the conductor is 450 MPa or more, further 500 MPa or more, and is high in strength. It is thought that such high strength contributed to the improvement of the buckling force and the improvement of the welding strength.
  • the elongation at break of the conductor is 5% or more, further 8% or more, and also has high toughness. As described above, because of high strength and high toughness, sample no. 1-1 to No. The coated wire 1-8 is expected to be excellent in impact resistance and the like.
  • the tensile strength and the elongation at break of the conductor were measured as follows.
  • the coated wire is cut into a predetermined length, and the insulating coating layer is removed by a suitable cutting tool such as feather to expose the conductor.
  • a tensile test was performed using a general-purpose tensile tester with a marking distance GL of 250 mm and a tensile speed of 50 mm / min according to JIS Z 2241 (Metal Material Tensile Test Method, 1998) .
  • the tensile strength (MPa) was determined from ⁇ breaking load (N) / cross-sectional area of conductor (mm 2 ) ⁇ .
  • the breaking elongation (total elongation,%) was determined from ⁇ breaking displacement (mm) / 250 (mm) ⁇ ⁇ 100.
  • the composition of the copper alloy of Test Example 1 can be appropriately changed.
  • the conductor is a stranded wire made of a copper alloy wire
  • the above-mentioned compositions (1), (3), (4), etc. can be used.
  • the conductor can be a stranded wire made of copper wire.
  • a stranded wire made of a copper wire when a new surface is generated as described above in the manufacturing process, it is expected that the metal bonding portion is more easily formed since precipitates and the like do not substantially exist on the new surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Non-Insulated Conductors (AREA)
  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
  • Conductive Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

導体と、前記導体の外周を覆う絶縁被覆層とを備える被覆電線であって、前記導体は、銅又は銅合金から構成される複数の素線が撚り合わされてなる撚線であり、隣り合う前記素線が金属結合された金属結合部を備える被覆電線。

Description

被覆電線、端子付き電線、及び撚線
 本開示は、被覆電線、端子付き電線、及び撚線に関する。
 本出願は、2017年07月14日付の日本国出願の特願2017-138646に基づく優先権を主張し、前記日本国出願に記載された全ての記載内容を援用するものである。
 特許文献1,2は、自動車に用いられるワイヤーハーネスを開示する。ワイヤーハーネスとは、代表的には、導体の外周に絶縁被覆層を備える被覆電線と、被覆電線の端部に取り付けられた端子部とを備える複数の端子付き電線を束ねたものである。特許文献1,2は、上記導体として銅合金撚線を開示する。
特開2015-086452号公報 特開2012-146431号公報
 本開示の被覆電線は、
 導体と、前記導体の外周を覆う絶縁被覆層とを備える被覆電線であって、
 前記導体は、銅又は銅合金から構成される複数の素線が撚り合わされてなる撚線であり、
 隣り合う前記素線が金属結合された金属結合部を備える。
 本開示の端子付き電線は、
 上記の本開示の被覆電線と、
 前記被覆電線の端部に取り付けられた端子部とを備える。
 本開示の撚線は、
 電線の導体に利用される撚線であって、
 銅又は銅合金から構成される複数の素線が撚り合わされてなり、
 隣り合う前記素線が金属結合された金属結合部を備える。
実施形態の被覆電線の一例を模式的に示す横断面図である。 実施形態の被覆電線に備えられる導体をなす撚線を説明する説明図である。 実施形態の端子付き電線について、端子部近傍を示す概略側面図である。 試験例1において、試料No.1-1の導体の横断面を示す顕微鏡写真である。
[本開示が解決しようとする課題]
 上述のワイヤーハーネスに備えられる端子付き電線のように、端部に端子部が取り付けられて利用される被覆電線に対して、座屈し難いものが望まれている。
 特許文献1,2に記載されるように導体の断面積を0.22mm以下とより小さくすれば(細径化すれば)、導体が銅合金から構成されていても、軽量化を図ることができる。しかし、導体の断面積を小さくすると、導体の剛性が低くなり易く、ひいては被覆電線の剛性も低くなり易い。剛性が低い被覆電線を上述の端子付き電線に利用すると、端子部をハウジングの端子収納部に挿入する際などで、被覆電線における端子部近傍が局所的に座屈する(いわゆる腰折れする)可能性がある。従って、端子部の挿入作業性を向上するなどの観点から、導体の断面積が小さい場合でも座屈し難い被覆電線が望まれる。また、特許文献1,2に記載されるように被覆電線の導体を撚線とすれば、ある程度剛性を高めても曲げなどを行い易い。従って、座屈し難く、曲げなども行い易い被覆電線を構築できる撚線が望まれる。
 また、上述のように端部に端子部が取り付けられて利用される被覆電線に対して、導体における端子部の圧縮度合が小さくても、端子部との接触抵抗が低いことが望まれている。
 特許文献1は、導体の断面積が0.22mmの撚線導体、又は0.13mmの撚線導体に端子部を圧着固定し、クリンプハイトを0.76としたときの接触抵抗が小さいことを開示する。ここで、圧着端子を取り付ける場合にその圧縮度合を大きくすれば、撚線の撚り合せ状態を崩して各素線と端子部との接触面積を大きく確保し易くなり、接触抵抗を低くし易いと考えられる。しかし、上記圧縮度合が大きいほど、導体における端子部の圧縮箇所の残存面積割合(詳細は後述)が小さくなる。そのため、導体における端子部の圧縮箇所及びその近傍では、導体における端子部が取り付けられていない未圧縮箇所に比較して、例えば衝撃を受けた際に破断することなく耐えられる力(N)が小さく、耐衝撃性の弱点になり易い。上記圧縮度合を小さくすれば、導体における端子部の圧縮箇所及びその近傍の残存面積割合を大きく確保でき、未圧縮箇所の優れた特性、例えば耐衝撃性を維持でき、耐衝撃性に優れる端子付き電線とすることができる。従って、上述のような導体の断面積が小さい場合、更には上記圧縮度合がより小さい場合、特に導体における端子部の圧縮箇所の残存面積割合が0.76超である場合でも、接触抵抗が低い被覆電線や接触抵抗が低い被覆電線を構築できる撚線が望まれる。
 更に、上述のように端部に端子部が取り付けられて利用される被覆電線に対して、分岐線などを溶接した場合に溶接強度が高いことが望まれる。また、溶接強度がより高い被覆電線を構築できる撚線が望まれる。
 そこで、座屈し難い被覆電線、端子付き電線、及び撚線を提供することを目的の一つとする。
[本開示の効果]
 本開示の被覆電線、本開示の端子付き電線、及び上記の本開示の撚線は座屈し難い。
[本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
(1)本開示の一態様に係る被覆電線は、
 導体と、前記導体の外周を覆う絶縁被覆層とを備える被覆電線であって、
 前記導体は、銅又は銅合金から構成される複数の素線が撚り合わされてなる撚線であり、
 隣り合う前記素線が金属結合された金属結合部を備える。
 上記の撚線は、複数の素線(ここでは銅線又は銅合金線)を撚り合せたままであって、圧縮成形していない非圧縮撚線の他、撚り合せ後に圧縮成形されてなる圧縮撚線を含む。
 上記の被覆電線は、導体を撚線とするものの、上記金属結合部を備えるため、素線同士が滑り難く、複数の素線が一体となって動き易い。この点から導体の剛性を高められて、上記の被覆電線は、座屈し難い。導体の断面積が小さい場合、例えば0.22mm以下、更に0.2mm以下、0.15mm以下である場合でも、上述のように素線が一体となって動き易いことで剛性に優れて、座屈し難い。このような上記の被覆電線は、端子付き電線に利用した場合に、端子部をハウジングの端子収納部に挿入する際などで端子部近傍が座屈し難く、挿入作業性に優れる。
 また、上記の被覆電線は、端部に端子部が取り付けられて、導体における端子部の圧縮度合が小さい場合でも、端子部との接触抵抗が低い。金属結合部によって素線間の接触抵抗を低減できることで、上記圧縮度合を小さくしても接触抵抗を低くし易いと考えられるからである。また、上記圧縮度合が小さければ、導体における端子部の圧縮箇所の残存面積割合を大きくでき、導体における非圧縮箇所の優れた特性を維持できる。例えば、耐衝撃性に優れる導体であれば、その断面積が小さい場合、特に0.22mm以下、更に0.2mm以下、0.15mm以下である場合でも、耐衝撃性に優れる端子付き電線を構築できる。このような上記の被覆電線は、端子付き電線に利用した場合に、上述のように導体の断面積が小さい場合でも、更には上記圧縮度合がより小さい場合でも、接触抵抗が低い上に耐衝撃性にも優れる。
 更に、上記の被覆電線は、導体に分岐線などを溶接した場合に溶接強度に優れる。上記導体をなす撚線において分岐線などが直接溶接された箇所の近傍に、分岐線などが直接溶接されていないものの、金属結合部によって素線間が強固に接合された箇所を含み得るからである。
(2)上記の被覆電線の一例として、
 前記撚線は、前記複数の素線が同心撚りされてなり、少なくとも一つの中心素線と、前記中心素線の外周を覆う複数の外周素線とを備え、
 前記金属結合部は、前記中心素線とこの中心素線に隣り合う前記外周素線とが金属結合された箇所を複数含む形態が挙げられる。
 上記形態は、中心素線と外周素線とが金属結合部によって強固に接合されているため、座屈し難い。また、上記形態は、金属結合部によって中心素線と外周素線との間の接触抵抗を低減できるため、上述のように導体における端子部の圧縮度合を小さくした場合に主に外周素線と端子部とが直接接触し、中心素線が端子部に直接接触していなくても、端子部との接触抵抗を低くし易い。更に、上記形態は、中心素線と外周素線とが金属結合部によって強固に接合されているため、分岐線などを溶接した場合に主に外周素線と分岐線などとが直接溶接され、中心素線が分岐線などに直接溶接されていなくても、溶接強度に優れる。
(3)上記の被覆電線の一例として、
 前記素線は、前記銅合金からなり、
 前記銅合金は、Fe,Ti,Mg,Sn,Ag,Ni,In,Zn,Cr,Al,及びPから選択される1種又は2種以上の元素を合計で0.01質量%以上5.5質量%以下含有し、残部がCu及び不可避不純物からなる形態が挙げられる。
 上記の特定の組成の銅合金は、純銅に比較して強度に優れる。また、上記の銅合金は、代表的には熱処理によって伸びを高められた場合には耐衝撃性にも優れる。更に、上記の銅合金のうち、析出型合金は時効といった熱処理によって強度及び導電率を高め易い上に、伸びなどの靭性も向上し易い。このような銅合金からなる素線が撚り合わされた撚線を導体に備える上記形態は、高強度、高靭性や高い耐衝撃性、高導電率などが要求されるワイヤーハーネスなどの配線に好適に利用できる。
(4)本開示の一態様に係る端子付き電線は、
 上記(1)から(3)のいずれか一つに記載の被覆電線と、
 前記被覆電線の端部に取り付けられた端子部とを備える。
 上記の端子付き電線は、上述の金属結合部を含む撚線を導体とする上記の被覆電線を備えるため、上述のように座屈し難い、端子部の取付箇所の圧縮度合が小さくても導体と端子部との接触抵抗が低い、溶接強度に優れるという効果を奏する。
(5)本開示の一態様に係る撚線は、
 電線の導体に利用される撚線であって、
 銅又は銅合金から構成される複数の素線が撚り合わされてなり、
 隣り合う前記素線が金属結合された金属結合部を備える。
 上記の撚線は上述の金属結合部を含むため、この撚線を導体に備える被覆電線は、上述のように座屈し難い、端子部の取付箇所の圧縮度合が小さくても端子部との接触抵抗が低い、溶接強度に優れるという効果を奏する。
[本開示の実施形態の詳細]
 以下、適宜、図面を参照して、本開示の実施の形態を詳細に説明する。図中、同一符号は同一名称物を示す。銅合金の組成において、元素の含有量は、断りが無い限り質量割合(質量%又は質量ppm)とする。
 図1は、実施形態の被覆電線1をその軸方向に直交する平面で切断した横断面図である。ここでは、金属結合部24が分かり易いように金属結合部24にクロスハッチングを付して示し、素線20のハッチングを省略している。
 図2は、実施形態の被覆電線1に備えられる導体2をその軸方向に直交する平面で切断した横断面図である。ここでは、金属結合部24が分かり易いように、金属結合部24及びその近傍を一点鎖線円で囲んで示し、素線20のハッチングを省略している。
[被覆電線]
 実施形態の被覆電線1は、図1に示すように、導体2と、導体2の外周を覆う絶縁被覆層3とを備える。導体2は、銅又は銅合金から構成される複数の素線20が撚り合わされてなる撚線2Sである。実施形態の撚線2Sは、被覆電線1といった電線の導体2に利用されるものであり、銅又は銅合金から構成される複数の素線20が撚り合わされてなる。撚線2Sの代表例として、図1に示すような複数の素線20が同心撚りされてなる同心撚線が挙げられる。同心撚線は、少なくとも一つの中心素線21と、中心素線21の外周を覆う複数の外周素線22とを備え、中心素線21を中心として、その外周に外周素線22が同心状に撚り合わされる。図1は、1本の中心素線21の外周に6本の外周素線22を撚り合わせた7本撚りの同心撚線であって、圧縮成形されてなる圧縮撚線を例示する。その他の撚線2Sとして、複数の素線20が一括して撚り合わされてなる集合撚線(図示せず)などが挙げられる。実施形態の被覆電線1に備えられる導体2をなす撚線2S及び実施形態の撚線2Sは、隣り合う素線20,20が金属結合された金属結合部24を備える(図4の顕微鏡写真も参照)。以下、導体2をなす撚線2S、絶縁被覆層3を順に説明する。
(導体)
 撚線2Sをなす各素線20は、銅(いわゆる純銅)からなる線材、又は添加元素を含み、残部がCu及び不可避不純物からなる銅合金からなる線材である。
 純銅は、Cuの含有量が99.95%以上であるものが挙げられる。
 銅合金は、例えば、Fe,Ti,Mg,Sn,Ag,Ni,In,Zn,Cr,Al,及びPから選択される1種又は2種以上の元素を合計で0.01%以上5.5%以下含有し、残部がCu及び不可避不純物からなるものが挙げられる。この銅合金は、純銅に比較して強度に優れる、熱処理によって伸びを高めることで耐衝撃性にも優れる、析出型合金である場合には時効処理によって強度及び導電率を高め易く、靭性も向上し易い。添加元素の種類にもよるが、添加元素の合計の含有量が多いほど引張強さが高くなり易く強度や剛性に優れ、少ないほど導電率が高くなり易い。具体的な組成として、以下が挙げられる(残部はCu及び不可避不純物)。
組成(1 析出+固溶型合金)Feを0.2%以上2.5%以下と、Tiを0.01%以上1.0%以下と、Mg,Sn,Ag,Ni,In,Zn,Cr,Al,及びPから選択される1種又は2種以上の元素を合計で0.01%以上2.0%以下とを含む。
組成(2 析出+固溶型合金)Feを0.1%以上1.6%以下と、Pを0.05%以上0.7%以下と、Sn及びMgの少なくとも一方の元素を合計で0%以上0.7%以下とを含む。
組成(3 固溶型合金)Snを0.15%以上0.7%以下含む。
組成(4 固溶型合金)Mgを0.01%以上1.0%以下含む。
 上記組成(1)において、Feの含有量は0.4%以上2.0%以下、更に0.5%以上1.5%以下、
 Tiの含有量は0.1%以上0.7%以下、更に0.1%以上0.5%以下、
 Mgの含有量は0.01%以上0.5%以下、更に0.01%以上0.2%以下、
 Snの含有量は0.01%以上0.7%以下、更に0.01%以上0.3%以下、
 Agの含有量は0.01%以上1.0%以下、更に0.01%以上0.2%以下、
 Ni,In,Zn,Cr,Al,及びPの合計含有量は0.01%以上0.3%以下、更に0.01%以上0.2%以下とすることができる。
 上記組成(2)において、Feの含有量は0.2%以上1.5%以下、更に0.3%以上1.2%以下、
 Pの含有量は0.1%以上0.6%以下、更に0.11%以上0.5%以下、
 Mgの含有量は0.01%以上0.5%以下、更に0.02%以上0.4%以下、
 Snの含有量は0.05%以上0.6%以下、更に0.1%以上0.5%以下とすることができる。
 上記組成(3)において、Snの含有量は0.15%以上0.5%以下、更に0.15%以上0.4%以下とすることができる。
 上記組成(4)において、Mgの含有量は0.02%以上0.5%以下、更に0.03%以上0.4%以下とすることができる。
 その他、C,Si,及びMnから選択される1種又は2種以上の元素を合計で10ppm以上500ppm以下含有することができる。これらの元素は、上述のFeやSnなどの元素の酸化防止剤として機能することができる。
<組織>
 各素線20を構成する銅合金が時効処理を施すと析出物を形成する析出型銅合金(例、上述の組成(1),(2)など)である場合、時効処理が施されていれば、代表的には析出物を含む組織を有する。析出物が均一的に分散した組織を有すると、析出強化による高強度化、添加元素の固溶量の低減による高導電率化などを期待できる。
<断面積>
 導体断面積、即ち撚線2Sを構成する素線20の合計断面積は、被覆電線1の用途に応じて適宜選択できる。特に、上記断面積が0.22mm以下であれば軽量な被覆電線1とすることができる。このような被覆電線1は、軽量化が望まれる用途、例えば自動車用ワイヤーハーネスなどに好適に利用できる。更なる軽量を考慮すると、上記断面積は、0.2mm以下、更に0.15mm以下、0.13mm以下とすることができる。
 導体断面積が所定の大きさとなるように、撚り合せ前の各素線20の断面積、形状などを選択するとよい。撚り合せ前の素線20として、断面積や形状が異なる素線20を含むことができるが、各素線20の断面積や形状が等しいと撚り合わせ条件を調整し易い。
<素線数>
 撚線2Sの素線数は適宜選択できる。同心撚線の素線数は、7本、19本、37本などが挙げられる。図1に示す7本撚りの同心撚線では、1本の中心素線21の外周に6本の外周素線22から構成される1層の外周層を備える。19本撚りでは2層の外周層を備え、37本撚りでは3層の外周層を備える。その他、同心撚線では、中心素線21を2本以上の線材とすることができる。
<形状>
 撚線2S(導体2)の外形は、撚り合せ状態に応じた形状を有する。圧縮撚線では、代表的には、横断面形状又は端面形状が円形に近いもの(図1参照)が挙げられる。その他、圧縮成形時の成形金型の形状を適宜選択することで、横断面形状を楕円状、六角形状などの多角形状などとすることもできる。
 圧縮撚線は、圧縮度合にもよるが、隣り合う素線20,20同士が面接触した箇所を有し易い。そのため、撚線2Sが圧縮撚線であれば、金属結合部24をより多く有したり、結合長さL(図2)がより長い金属結合部24を有したりし易いと期待される。
<金属結合部>
 実施形態の被覆電線1に備えられる導体2をなす撚線2S、及び実施形態の撚線Sでは、少なくとも一つの金属結合部24が存在する横断面を有する。図2は、撚線2Sにおいて、金属結合部24が存在する横断面の一例を模式的に示す。金属結合部24は、撚線2Sをなす複数の素線20のうち、隣り合う素線20,20の主成分であるCuが金属結合してなるものである。金属結合部24によって隣り合う素線20,20同士が強固に接合されて、撚線2Sはばらけ難い。そのため、金属結合部24を備える撚線2Sは、剛性を高められて座屈し難い上に、曲げなどが行い易い。また、金属結合部24を有する撚線2Sは、素線20間の接触抵抗を低減できる。更に、撚線2Sの一部に分岐線などが溶接された場合に、撚線2Sにおける分岐線などに直接溶接されている箇所の近傍に、分岐線などとは直接溶接されていないものの金属結合部24を有する場合には、溶接強度を高められる。従って、金属結合部24を有する撚線2Sを導体2に備えることで、座屈し難い上に曲げなどが行い易く、更に素線20間の接触抵抗が低く、溶接強度にも優れる被覆電線1を構築することができる。
 金属結合部24は、簡略的には、被覆電線1又は撚線2Sの横断面をとり、この横断面を光学顕微鏡又は金属顕微鏡などの顕微鏡で観察することで確認できる。上記顕微鏡による観察像、又は適宜画像処理が施された処理像において、隣り合う素線20,20の接触箇所であって、隣り合う素線20,20の境界を視覚的に判別できない領域を金属結合部24と見做すことができる(図4も参照)。より厳密には、クロスセクションポリッシャー(CP)によって断面を研磨し、走査型電子顕微鏡(SEM)にて観察するなどにより、金属結合された箇所を抽出することが挙げられる。また、撚線2Sのみの状態において、撚線2Sを手などで撚りを開くように解すと、撚りが解れずに素線20,20同士が接合された箇所を簡単に見つけられる。より簡易的には、この接合箇所を金属結合部24と見做すことができる。この接合箇所及びその近傍の横断面をとれば、金属結合部24を効率よく抽出できると期待される。
 被覆電線1又は撚線2Sをその軸方向にみたとき、上述の金属結合部24が存在する横断面を多く有するほど、撚線2Sの剛性を高められる、素線20間の接触抵抗を低減できる、溶接強度を高められるという効果を得易い。例えば、被覆電線1などがリールに巻き取られたコイル材であれば、被覆電線1又は撚線2Sはその長さ3mごとに上記金属結合部24が存在する横断面を一つ以上備えることが挙げられる。被覆電線1又は撚線2Sの長さに対して2%以上20%以下の間隔で上記金属結合部24が存在する横断面を一つ以上備えることが好ましい。端的に言うと、この被覆電線1又は撚線2Sをその軸方向にみれば、複数の異なる箇所に金属結合部24を有する。又は、ワイヤーハーネスなどに備えられており、長さが比較的短い場合、例えば長さが0.5m以上5m以下程度である被覆電線1では、上記金属結合部24が存在する横断面を一つ以上備えることが挙げられる。特に端子部の取付箇所の近傍に金属結合部24を含むと、ハウジングの端子収納部への挿入作業時に被覆電線1の端子部近傍が座屈し難く好ましい。
 被覆電線1又は撚線2Sからとった一つの横断面において、金属結合部24の個数が多いほど、撚線2Sの剛性を高められる、素線20間の接触抵抗を低減できる、溶接強度を高められるという効果を得易い。即ち、撚線2Sは、隣り合う素線20,20の組のうち、少なくとも一組が金属結合部24を備えており、更に過半数の組、特に全ての組が金属結合部24を備えると、上述の効果を得易い。金属結合部24は一つの横断面に複数存在していなくてもよく、被覆電線1又は撚線2Sをその軸方向にみて、上述の隣り合う素線20,20の組であって複数組が金属結合部24を備えることが好ましい。上記一つの横断面における金属結合部24の個数が多くても、被覆電線1をその軸方向にみて、複数の金属結合部24が離間して存在すれば、曲げなども行い易い。隣り合う素線20,20の組とは、例えば、撚線2Sが図1,図2に示す、一つの中心素線21と一層の外周層とを備える同心撚線である場合、中心素線21と外周素線22との組、隣り合う外周素線22,22同士の組が挙げられる。この例では、合計6組の隣り合う素線20,20の組が金属結合部24を有する。その他の隣り合う素線20,20の組として、複数の中心素線21を備える同心撚線である場合、更に、隣り合う中心素線21,21の組が挙げられる。複数の外周層を備える同心撚線である場合には、更に各外周層における隣り合う外周素線22,22同士の組、内外に隣り合う外周素線22,22同士の組が挙げられる。
 被覆電線1又は撚線2Sからとった一つの横断面において、金属結合部24は、撚線2Sをなす素線20のうち、内側に配置される素線20と外側に配置される素線20とが金属結合された箇所を一つ以上含む形態が好ましく、複数含むことがより好ましい。この形態は、素線20同士が強固に接合されて座屈し難い上に、例えば、比較的小さな圧縮度合で撚線2Sに端子部を取り付けた場合に、中心素線21などの内側の素線20が端子部に直接接触しておらず、実質的に外周素線22などの外側の素線20のみが端子部に接触しても、端子部との接触抵抗を低くし易い。また、例えば、撚線2Sに分岐線などを溶接した場合に、中心素線21などの内側の素線20と分岐線などとが直接溶接されておらず、実質的に外周素線22などの外側の素線20のみと分岐線などとが溶接されていても、溶接強度を高め易い。従って、この形態の撚線2Sを備えることで、座屈し難い上に、圧縮度合が小さくても端子部との接触抵抗が低く、溶接強度にも優れる被覆電線1を構築することができる。
 特に、同心撚線では、中心素線21と外周素線22との金属結合部24を二つ以上、隣り合う外周素線22,22同士の金属結合部24を二つ以上備えると、より座屈し難く、圧縮度合が小さくても端子部との接触抵抗がより低く、溶接強度がより高くなり易く好ましい。図1,図2では、金属結合部24は、中心素線21と、この中心素線21に隣り合う外周素線22とが金属結合された箇所を複数(ここでは三つ)含むと共に、隣り合う外周素線22,22同士が金属結合され合箇所を複数(ここでは三つ)含む場合を例示する。更に、撚線2Sをなす全ての素線20は、隣り合う素線20,20の組のいずれかの金属結合部24を介して互いに接合されていることが好適である。図1に示す例では、紙面左側に位置する二つの外周素線22,22の一方が例えば中心素線20との金属結合部24を含めば、7本全ての素線20が金属結合部24を介して互いに接合される。
 被覆電線1又は撚線2Sからとった一つの横断面に存在する各金属結合部24を、上述のように隣り合う素線20,20の境界を視覚的に判別できない領域と見做し、この領域の最小距離を結合長さLとする。各結合長さLが長いほど、また結合長さLの合計長が長いほど、金属結合部24によって強固に接合されて剛性に優れたり、素線20間の接触抵抗を低減できたり、上述の溶接強度を高めたりし易い。例えば、導体断面積が0.1mm以上0.22mm以下程度である場合には、結合長さLの合計長が0.05mm以上であると、更に0.06mm以上、0.08mm以上であると、上述のように剛性の向上や素線20間の接触抵抗の低減、溶接強度の向上といった効果を得易い。又は、例えば、結合長さLの合計長は、撚線2Sを内包する最小の包絡円200をとり、この包絡円200の直径Rの3%以上15%以下程度、更に5%以上10%以下程度であると、上述の剛性の向上、素線20間の接触抵抗の低減、溶接強度の向上などの効果を得易い上に、撚線2Sの可撓性の低下を低減し易い。
 上述のように金属結合部24が中心素線21と外周素線22との金属結合部24を複数備え、かつ隣り合う外周素線22,22同士の金属結合部24を複数備える場合には、中心素線21と外周素線22との金属結合部24における結合長さLの合計長が0.05mm以上、かつ外周素線22,22同士の金属結合部24における結合長さLの合計長が0.05mm以上であると、上述の剛性の向上、素線20間の接触抵抗の低減、溶接強度の向上などの効果を得易く好ましい。
<特性>
 各素線20の組成や撚線Sの製造条件などにもよるが、各素線20が上述の組成(1)~(4)のいずれかの銅合金からなる場合、導体2(撚線2S)の引張強さが450MPa以上、導体2(撚線2S)の破断伸びが5%以上、及び導体2(撚線2S)の導電率が55%IACS以上の少なくとも一つを満たすものとすることができる。引張強さが450MPa以上であれば、高強度であり、座屈し難く、溶接強度に優れる。破断伸びが5%以上であれば、曲げ易い。導電率が55%IACS以上であれば、導電性に優れ、導体断面積をより小さくし易い。特に引張強さが450MPa以上であり、かつ破断伸びが5%以上であれば、強度と靭性との双方に優れる上に、耐衝撃性により優れて好ましい。列挙した三つの事項を全て満たすことがより好ましい。各素線20が純銅からなる場合、導体2(撚線2S)の引張強さが220MPa以上、導体2(撚線2S)の破断伸びが15%以上、及び導体2(撚線2S)の導電率が98%IACS以上の少なくとも一つを満たすものとすることができる。
 引張強さ、破断伸び、導電率は、代表的には、銅合金の組成や製造条件を調整することで所定の大きさにすることができる。例えば、伸線加工度を高めて細径の素線20を用いたり、素線20が銅合金からなる場合には添加元素を多くしたりすると、引張強さが高く、導電率が低くなる傾向にある。例えば、熱処理を行う場合に熱処理温度を高めると、破断伸びが高く、引張強さが低くなる傾向にある。素線20が析出型銅合金からなる場合では時効処理を行うと導電率が高くなる傾向にある。
(絶縁被覆層)
<構成材料>
 絶縁被覆層3を構成する絶縁材料は、例えば、ポリ塩化ビニル(PVC)やハロゲンフリー樹脂(例えば、ポリプロピレン(PP)など)、難燃性に優れる材料などが挙げられる。PVCは、比較的柔らかく、曲げなどが行い易い被覆電線1とすることができる。ハロゲンフリー樹脂は、比較的硬く、絶縁被覆層3の厚さが比較的薄くても座屈し難い被覆電線1とすることができる。上記絶縁材料には、公知の絶縁材料を利用できる。
<厚さ>
 絶縁被覆層3の厚さは、導体断面積などに応じて、所定の絶縁強度を有する範囲で適宜選択できる。特に、導体断面積が0.22mm以下である場合には、絶縁被覆層3の平均厚さは0.21mm以上が好ましく、更に0.22mm以上、0.23mm以上がより好ましい。絶縁被覆層3の厚肉化による被覆電線1の剛性の向上を期待でき、座屈し難くできるからである。ここでの平均厚さとは、導体2の最外側に配置される各素線(図1では外周素線22)の外周面のうち、隣り合う外周素線22,22の外周面の対向箇所に形成される撚り溝を除くクラウン部から絶縁被覆層3の外周面までの最小距離の平均である。簡略的には、上記平均厚さは、導体2を内包する最小の包絡円200(図2)から絶縁被覆層3の外周面までの平均距離に相当する。絶縁被覆層3は、導体2に対して均一的な厚さで形成されていることが好ましい。導体2と絶縁被覆層3との一体化による剛性を高め易く、座屈し難くできるからである。
(用途)
 実施形態の被覆電線1は、各種の配線に利用できる。特に、被覆電線1の端部に端子部が取り付けられた状態で使用される用途などに適する。具体的には、被覆電線1は、自動車や飛行機等の機器、産業用ロボット等の制御機器といった各種の電気機器の配線、例えば自動車用ワイヤーハーネスといった各種のワイヤーハーネスの配線などに利用できる。実施形態の撚線2Sは、実施形態の被覆電線1などの各種の配線の導体2に利用できる。
[端子付き電線]
 実施形態の端子付き電線10は、図3に示すように実施形態の被覆電線1と、被覆電線1の端部に取り付けられた端子部4とを備える。図3では、端子部4として、一端に雌型又は雄型の嵌合部42を備え、他端に絶縁被覆層3を把持するインシュレーションバレル部44を備え、中間部に導体2を把持するワイヤバレル部40を備える圧着端子を例示する。圧着端子は、被覆電線1の端部において絶縁被覆層3が除去されて露出された導体2の端部に圧着されて、導体2と電気的及び機械的に接続される。その他の端子部4として、導体2を溶融して接続する溶融型のものなどが挙げられる。
 端子付き電線10は、被覆電線1ごとに一つの端子部4が取り付けられた形態(図3)の他、複数の被覆電線1に対して一つの端子部4を備える形態が挙げられる。複数の被覆電線1を結束具などによって束ねると、端子付き電線10を取り扱い易い。
 端子付き電線10に備えられる端子部4が圧着端子である場合、導体2における端子部4が取り付けられていない未圧縮箇所の断面積に対する端子部4が取り付けられた圧縮箇所の断面積の比を残存面積割合とし、この残存面積割合が大きいと、導体2の断面積が上述のように小さい場合でも、耐衝撃性などの特性に優れて好ましい。定量的には、上記残存面積割合が0.76超であることが挙げられる。上記残存面積割合が大きいほど、導体2における端子部4の圧縮箇所は、導体2における未圧縮箇所の優れた特性を維持し易く、端子付き電線10全体として耐衝撃性などに優れる。耐衝撃性などの向上を考慮すると、上記残存面積割合は、0.77以上、更に0.78以上、0.79以上、0.80以上とすることができる。
 上記残存面積割合は、端子部4を取り付ける際の圧縮度合を調整する、特に小さくすることで、代表的にはクリンプハイト(C/H、端子付き電線10におけるワイヤバレル部40の高さ)を調整することで、上述の範囲を満たすことができる。実施形態の端子付き電線10は、実施形態の撚線2Sを導体2とする実施形態の被覆電線1を構成要素とするため、上述のように圧縮度合が小さくても、導体2と端子部4間の接触抵抗を低くできる(後述の試験例参照)。
 実施形態の端子付き電線10における導体2の非圧縮箇所は、上述した実施形態の被覆電線1に備えられる導体2の仕様(組成、組織、撚り合せ状態、形状、特性など)を維持する、又は同等程度の特性などを有する。各項目の詳細は上述の通りである。
(用途)
 実施形態の端子付き電線10は、上述の自動車や飛行機、制御機器などといった各種の電気機器の配線、特に自動車用ワイヤーハーネスといった各種のワイヤーハーネスの配線などに利用できる。
[電線の溶接構造]
 実施形態の被覆電線1や実施形態の端子付き電線10では、導体2の一部に分岐線などを溶接して分岐をとることができる。この場合、導体2は、撚線2Sをなす複数の素線20のうち、一部の素線20、代表的には外側に配置される素線20と分岐線などとが直接溶接され、他部の素線20、代表的には内側に配置される素線20や分岐線から離れた位置に配置される外側の素線20と分岐線などとが直接溶接されていない状態が有り得る。しかし、導体2は、金属結合部24が存在する撚線2Sからなるため、上述のように分岐線などに直接溶接されていない素線20を含む場合でも溶接強度に優れる。また、金属結合部24を含むことで、溶接箇所の接続抵抗も低減できると期待される。
 分岐線は、実施形態の被覆電線1や実施形態の端子付き電線10と同様の構成のものとすることができる。又は、導体2(撚線2S)をなす素線20が銅合金線である場合には、分岐線を、純銅から構成される銅導体を備える被覆電線などとすることができる。この場合、銅合金線の撚線2Sからなる導体2を備える実施形態の被覆電線1又は実施形態の端子付き電線10と、純銅から構成される銅導体を備える分岐用被覆電線と、導体2において絶縁被覆層3から露出された露出箇所と銅導体の一部とが溶接された溶接箇所とを備える電線の溶接構造を構築することができる。純銅は一般に銅合金よりも強度に劣る。そのため、この電線の溶接構造では、銅合金から構成される導体2よりも銅導体の断面積を大きくすると、溶接箇所の強度を高め易い。
[効果]
 実施形態の被覆電線1、及び実施形態の端子付き電線10は、導体2を撚線2Sとするものの、撚線2Sが金属結合部24を含むため、座屈し難い、素線20間の接触抵抗を低減でき、端子部4の圧縮度合が小さい場合でも導体2(撚線2S)と端子部4との接触抵抗が低い、分岐線などを溶接した場合に溶接強度に優れる、といった格別の効果を奏する。これらの効果を後述の試験例1で具体的に説明する。実施形態の撚線2Sは、導体2に用いることで、曲げなどを行うことができながらも、座屈し難い被覆電線1や端子付き電線10を構築できる。また、実施形態の撚線2Sは、導体2に用いることで、端子部4の圧縮度合が小さい場合でも端子部4との接触抵抗が低い被覆電線1や端子付き電線10、分岐線などを溶接した場合に溶接強度に優れる被覆電線1や端子付き電線10を構築できる。
[撚線、被覆電線の製造方法]
 実施形態の撚線2Sは、代表的には、複数の銅線又は銅合金線を用意し、撚り合わせることで製造できる。銅線や銅合金線、これらの撚線の基本的な製造条件は、公知の製造方法を参照できる。実施形態の被覆電線1は、代表的には、銅又は銅合金から構成される導体2を準備する工程と、導体2の外周に絶縁被覆層3を形成する工程とを備える製造方法によって製造できる。導体2には撚線2Sを用いる。被覆電線1の基本的な製造条件などは、撚線の導体と、この導体の外周を覆う絶縁被覆層とを備える被覆電線を製造する公知の製造方法を参照できる。絶縁被覆層3の形成は、押出法などが利用できる。
 特に、実施形態の撚線2S(実施形態の被覆電線1の導体2)の製造には、複数の銅線又は複数の銅合金線を撚り合わせた後に金属結合部24を形成する熱処理を行う工程を備えることが挙げられる。この熱処理は、時効処理や軟化処理とは独立したものとすることができるが、時効処理や軟化処理を兼ねるものとすると、熱処理工程数を低減でき、量産性に優れて好ましい。
 以下、撚り合せ前の銅線又は銅合金線を単線素材、上記金属結合部24を形成する熱処理前の撚線を未結合撚線と呼ぶことがある。
 更に、本発明者は、上述の未結合撚線をなす各素線の表面に付着する油量がある程度少ないと、金属結合部24を形成し易い、との知見を得た。定量的には、上記各素線の表面の油付着量は、素線の質量1gに対して10μg以下であること(10μg/g以下)が好ましい、との知見を得た。そこで、金属結合部24を備える撚線2Sの製造条件の一つとして、未結合撚線をなす各素線の油付着量を10μg/g以下とすることが挙げられる。
 なお、上記各素線の表面に付着する油とは、代表的には鉱物油、合成油などであり、素線となる銅線や銅合金線の製造過程で使用する潤滑剤(変色防止機能など、潤滑機能以外の機能を兼用する場合がある)に由来するものである。このような潤滑剤は、代表的には伸線加工などの塑性加工時に用いられる。
(導体の準備工程)
<単線素材>
 導体2(撚線2S)に用いる各単線素材は、代表的には、銅又は銅合金を鋳造する工程と、鋳造材に圧延やコンフォーム押出などの塑性加工を施す工程と、塑性加工材に伸線加工を施す工程とを備える製造方法によって製造できる。鋳造には、各種の連続鋳造が利用できる。伸線加工に供する素材として、連続鋳造に引き続いて圧延を行う連続鋳造圧延材とすることができる。伸線加工の途中又は伸線加工後に適宜熱処理を施すことができる。ここでの熱処理は例えば伸線加工に伴う加工歪みの除去などを目的としたものが挙げられる。
 伸線加工時には、適宜な潤滑剤を利用すると断線し難く、伸線加工性に優れる。潤滑剤を用いる場合、潤滑剤の塗布量を少なくしたり、伸線加工後に残存する潤滑剤を低減、除去する熱処理を施したりして、撚り合せ前の単線素材の油付着量を10μg/g以下とすることが挙げられる。又は、単線素材を撚り合せたり、更に圧縮成形したりした後、残存する潤滑剤を低減、除去する熱処理を施して、未結合撚線をなす素線の付着量を10μg/g以下とすることが挙げられる。ここでの熱処理は、油の成分などに応じて、上述の油付着量が10μg/g以下となるように調整するとよい。塗布量を少なくすることで上記油付着量を10μg/g以下を満たす場合には、潤滑剤を低減、除去するための熱処理を省略することができる。
<未結合撚線>
 用意した複数の単線素材は所定の撚りピッチで撚り合わせる。同心撚線とする場合には、1本以上の単線素材を中心として、その外周に所定の撚りピッチで複数の単線素材を撚り合わせる。
《撚りピッチ》
 撚りピッチは、適宜選択できる。例えば、同心撚線からなり、断面積が0.22mm以下である導体2(撚線2S)とする場合、撚りピッチを12mm以上20mm以下とすることが挙げられる。撚りピッチが12mm以上であればある程度大きいため、導体断面積が小さくても強度に優れ、座屈し難い。撚りピッチが20mm以下であれば大き過ぎず、素線20同士が一体として動き易い。この点からも座屈し難い。より高強度を望む場合には、上記撚りピッチは14mm以上、更に14.5mm以上、15mm以上、15.5mm以上とすることができる。素線20の更なる一体化を望む場合には、上記撚りピッチは18mm以下、更に16mm以下とすることができる。
《圧縮割合》
 導体2(撚線2S)が素線20を撚り合せたままの非圧縮撚線であれば、圧縮成形工程を不要にできる。又は、導体2(撚線2S)が撚り合せた後、圧縮成形されてなる圧縮撚線(図1参照)であれば、以下の効果を奏する。
(1)撚線2Sの外径を非圧縮撚線よりも小さくできて細径の被覆電線1とすることができる。
(2)横断面形状を円形状などの所望の形状にすることができる。
(3)金属結合部24を形成する熱処理前の未結合撚線において、隣り合う素線同士が面接触した箇所が多くなり、金属結合部24を形成し易い。
(4)絶縁被覆層3を形成し易い。
(5)圧縮加工時の加工硬化による強度の向上が期待できる。
 ひいてはより座屈し難い被覆電線1や、素線20間の接触抵抗が低い被覆電線1、溶接強度により優れる被覆電線1とすることができる。
 撚り合せ前の単線素材の合計断面積(例、7本撚線であれば7本の単線素材の合計面積)に対して、圧縮成形によって減少した断面積の割合、即ち{(撚り合せ前の単線素材の合計断面積-圧縮撚線の断面積)/撚り合せ前の単線素材の合計断面積}×100を圧縮撚線の圧縮割合(%)とすると、この圧縮割合が大きいほど強度を向上し易い。但し、上記圧縮割合が大き過ぎると破断伸びなどの靭性の低下や耐衝撃性の低下を招いたり、端子部を圧着し難くなったりする可能性がある。強度の向上、靭性や耐衝撃性の確保などを考慮すると、圧縮撚線の圧縮割合は10%以上30%以下が好ましく、更に12%以上25%以下、12%以上20%以下とすることができる。圧縮割合は、製造過程で予め設定しておき、設定値に基づいて圧縮成形することで上述の範囲とすることができる。
《熱処理》
 撚り合せ前の単線素材又は撚り合わせたままの撚線(未結合撚線の一例)又は圧縮撚線(未結合撚線の別例)が銅合金線からなる場合、銅合金の組成にもよるが、時効処理や軟化処理などの熱処理を施すことで、析出物の分散強化による強度の向上(析出型合金)や固溶元素の低減による導電率の向上(析出型合金、固溶型合金)、軟化による伸びの向上や耐衝撃性の向上(析出型合金、固溶型合金)などが期待できる。上述の単線素材又は撚線まま又は圧縮撚線が銅線からなる場合には、軟化処理を施すことで、伸びや耐衝撃性、導電率の向上などが期待できる。
 上述の組成(1),(2)に対する時効や軟化などを目的とした熱処理条件として、例えば以下が挙げられる。
組成(1)熱処理温度:400℃以上650℃以下、更に450℃以上600℃以下
     保持時間:1時間以上40時間以下、更に4時間以上20時間以下
組成(2)熱処理温度:350℃以上550℃以下、更に400℃以上500℃以下
     保持時間:1時間以上40時間以下、更に4時間以上20時間以下
 純銅に対する軟化を目的とした熱処理条件として、例えば以下が挙げられる。
 熱処理温度:100℃以上350℃以下、更に120℃以上200℃以下
 保持時間:1時間以上8時間以下、更に2時間以上4時間以下
 本発明者は、特に、上述の未結合撚線(撚線まま又は圧縮撚線)に上述の時効や軟化などを目的とした熱処理を施す場合に熱処理の雰囲気を調整することで、隣り合う素線20,20の接触箇所の少なくとも一部が金属結合し易い、との知見を得た。具体的には、酸素の含有量が少ない還元雰囲気、又は酸素の含有量が少ない不活性雰囲気とすることが好ましい、との知見を得た。また、上述のように未結合撚線をなす各素線の油付着量が少ないと、金属結合部24をより確実に形成し易い、との知見を得た。この理由の一つとして、以下のように考えられる。酸素の含有量が少ない還元雰囲気又は不活性雰囲気として熱処理を行うと、素線表面に残存する潤滑剤由来の油分が揮発する。この揮発時に素線の新生面を出現させると共に、酸素が非常に少ないため、新生面が酸化することなく、新生面同士が金属結合すると考えられる。また、油付着量が比較的少ないことで揮発し易くなり、ひいては上記新生面を生成し易いと考えられる。
 上記の熱処理の雰囲気における酸素の含有量は体積割合で10ppm以下が挙げられる。酸素の含有量が上記の範囲を満たすように、熱処理炉内の酸素を低減、除去してから、熱処理炉内に還元性ガスや不活性ガスを充填するとよい。還元雰囲気をなす還元性ガスは、水素、一酸化炭素などが挙げられる。不活性雰囲気をなす不活性ガスは、窒素やアルゴンなどが挙げられる。特に、還元雰囲気とすると、出現した新生面の酸化を防止し易く、新生面同士の金属結合がより確実に行えると考えられる。熱処理温度及び保持時間を上述の特定の範囲とすると共に、熱処理雰囲気を低酸素な還元雰囲気又は不活性雰囲気とする熱処理を行うと、隣り合う素線における接触箇所及びその近傍では上述の油分の揮発、新生面の生成、金属結合が順次なされ、各素線におけるそれ以外の箇所では時効析出や軟化がなされる。なお、上述の所定の熱処理温度までの昇温過程や、所定の熱処理温度での保持開始初期などで、上述の油分の低減、除去をできる場合がある。
 上記の熱処理温度を一定とする場合、保持時間を上述の範囲で長くすると、金属結合部24の個数を多くしたり、上述の結合長さL、結合長さLの合計長を長くしたりし易い傾向にある。
[端子付き電線の製造方法]
 実施形態の端子付き電線10は、例えば、被覆電線1の少なくとも一端側の絶縁被覆層3を除去して導体2の端部を露出させる工程と、導体2の端部に端子部4を取り付ける工程とを備える製造方法によって製造できる。端子部4が圧着端子であれば、所定のクリンプハイト(C/H)で圧着する。このとき、導体2の残存面積割合(詳細は上述)が上述のようにある程度大きくなるようにC/Hを調整することが好ましい。
[試験例1]
 銅合金線を素線とする撚線を作製し、隣り合う素線の結合状態を調べた。また、この撚線を導体に用いた被覆電線を作製し、この被覆電線の端部に端子部を取り付けて座屈状態、端子部との接触抵抗を調べた。更に、作製した被覆電線に銅導体を溶接して溶接強度を調べた。
(試料の作製)
 素線とする銅合金線は、以下のように作製する。銅合金の溶湯を用いて連続鋳造材(直径φ12.5mm)を作製し、表面を適宜切削した後、冷間圧延を施す。得られた圧延材に伸線加工を施し、得られた銅合金線(直径φ0.172mmの丸線)を7本用いて、一つの中心素線の外周を6本の外周素線が覆う同心撚線を作製する。撚り合せ後、圧縮成形して圧縮撚線を作製する。更に圧縮撚線に熱処理を施す。
 この試験では、各試料の熱処理条件が異なる点を除いて、以下の事項は共通とする。
(共通事項)
 上記銅合金は、Feを0.61質量%、Pを0.12質量%、Snを0.26質量%含有し、残部がCu及び不可避不純物からなる。
 伸線加工には、潤滑剤を用いる。伸線後の銅合金線において、その表面の油付着量が銅合金線の質量1gに対して、10μg以下となるように潤滑剤の塗布量を調整したり、伸線後に残存する潤滑剤を除去したりする。
 撚りピッチは、14mm以上20mm以下の範囲から選択する。圧縮成形は、圧縮割合を20%とし、圧縮成形後の圧縮撚線の断面積を0.13mmとする。圧縮割合(%)は、{(撚り合せ前の7本の銅合金線の合計断面積-圧縮撚線の断面積)/撚り合せ前の7本の銅合金線の合計断面積}×100で求める。
 圧縮撚線に、以下の熱処理条件で熱処理を施したものを導体とする。
(熱処理条件)
 熱処理温度は、400℃以上500℃以下の範囲から選択する。保持時間は、4時間以上12時間以下の範囲から選択する。熱処理雰囲気は、水素を主体とする還元雰囲気とし、酸素の含有量を体積割合で10ppm以下とする。
 試料No.1-1~No.1-8では、熱処理温度を同じとし、試料番号が大きいほど保持時間が長くなるように上記範囲から選択する。
 試料No.1-101では、熱処理温度及び熱処理雰囲気を試料No.1-1などと同じとし、保持時間を上記範囲外である4時間未満とし、試料No.1-1などよりも短くする。
 試料No.1-102では、熱処理温度及び保持時間を試料No.1-1と同じとし、熱処理雰囲気における酸素の含有量を異ならせる。具体的には、酸素の含有量を体積割合で0.1%程度とし、試料No.1-1などよりも多くする。
 なお、この熱処理は、時効処理に相当すると共に、試料No.1-1~No.1-8では、金属結合部の形成のための熱処理に相当する。
(撚線の評価)
 上述の条件で熱処理を施した圧縮撚線を、その軸方向に直交する平面で切断した横断面をとり、この横断面を光学顕微鏡で観察し、隣り合う素線の状態を調べた。ここでは、隣り合う素線同士が金属結合した箇所の有無を調べた。また、金属結合した箇所があれば、その個数、及び金属結合した箇所の結合長さの合計長(mm)を求めた。ここでは、中心素線と外周素線とが金属結合した箇所Aと、隣り合う外周素線同士が金属結合した箇所Bとにそれぞれ分けて、金属結合箇所の個数、及び結合長さを調べた。結果を表1に示す。図4は、試料No.1-1の圧縮撚線(上述の熱処理を施した7本同心撚線)について、光学顕微鏡による観察像であり、図2はこの観察像をトレースした模式図に相当する。ここでは、観察像において、隣り合う素線の境界を視覚的に判別できない領域を金属結合箇所として抽出する。図4の観察像では、図2において一点鎖線円で囲まれる箇所に金属結合箇所が存在する。各金属結合箇所の結合長さは、上記観察像における上述の境界を視覚的に判別できない領域の最小距離とし(図2の結合長さL参照)、各箇所の最小距離の合計距離を合計長(mm)とする。ここでは、測定用試料の長さを50mm以上100mm以下とし、この試料から採取する横断面数を3以上とし、その平均を表1に示す。なお、この試験では、金属結合箇所が認められた試料は、上記測定用試料の長さに対して2%以上20%以下の間隔で金属結合箇所が認められた。
 上述のようにして用意した導体(導体断面積0.13mm)の外周に、表1に示す構成材料の絶縁被覆層を表1に示す被覆厚さ(mm)になるように押出にて形成する。表1の被覆種類においてPVCとはポリ塩化ビニル、HF(PP)とはハロゲンフリーのポリプロピレンである。表1の被覆厚さとは、上述のクラウン部を覆う箇所の厚さの平均である。なお、最終的に得られる各試料の被覆電線について、絶縁被覆層の平均厚さを測定したところ、表1に示す値に実質的に等しいことを確認している。
(被覆電線の評価)
・座屈力
 用意した各試料の被覆電線について、端部に圧着端子を取り付けて、端子付き電線を作製した。ここでは、導体における端子部が取り付けられていない未圧縮箇所の断面積に対する端子部が取り付けられた圧縮箇所の断面積の比(残存面積割合)が0.79となるように、クリンプハイトを調整した。
 用意した各試料の端子付き電線について、端子部をハウジングの端子収納部に収納するときの座屈力を以下のように仮想して測定した。その結果を表1に示す。
 端子付き電線における端子部を把持して、被覆電線における端子部とは反対側の先端部を平板に押し当てる。この試験では、被覆電線の長さを10mmとし(被覆電線において端子部の把持箇所から突出し、上記先端部までの長さ)、把持した端子付き電線の速度を200mm/minとし、上述の被覆電線の先端部を平板に押し当てる際の荷重を変化させて、押し当て動作を行う。そして、被覆電線が座屈するときの最大荷重を測定し、この最大荷重を座屈力(N)とする。
・端子挿入性
 用意した各試料の端子付き電線について、上述の座屈力が7N以上であれば、座屈し難く端子挿入性に優れるとしてG、7N未満であれば、座屈し易く端子挿入性に劣るとしてBと評価した。評価結果を表1に示す。
・接触抵抗
 用意した各試料の被覆電線について、端部に圧着端子を取り付けて、端子付き電線を作製した。ここでは、上述の残存面積割合が0.85となるように、クリンプハイトを調整した。
 用意した各試料の端子付き電線について、JASO D616、自動車部品―低圧電線、項目6.8に基づいて、導体と端子部との接触抵抗(mΩ/m)を測定した。この試験では、被覆電線の各端部に圧着端子を取り付け、各圧着端子から150mm離れた二点を抵抗の測定点とする。両圧着端子に電源を取り付け、印加電圧を15mV、通電電流を15mAとして、両端部に圧着端子を備える端子付き電線に通電し、上述の二点間の抵抗を測定する。測定した抵抗値から、被覆電線の抵抗分を差し引いた値を接触抵抗(mΩ/m)とする。測定結果を表1に示す。
・溶接強度
 用意した各試料の被覆電線について、純銅から構成される銅導体を溶接し、特許文献1の図5に示すピール力の測定方法を参照して、溶接強度(N)を測定した。その結果を表1に示す。
 ここでは、試料ごとに1本の被覆電線と、純銅の銅導体を備える2本の被覆電線とを用意し(いずれも長さ150mm)、各被覆電線の端部から絶縁被覆層を除去して銅合金の導体と、銅導体とを露出させ、銅合金の導体を挟むように銅導体を重ね合せて超音波溶接した。溶接には、市販の溶接装置を用いた。そして、各試料の銅合金の導体を備える被覆電線を固定した状態で、銅導体を備える2本の被覆電線を互いに離れる方向に引っ張る。例えば、特許文献1の図5に示されるように、溶接箇所及び各試料の被覆電線を水平方向に配置して上記被覆電線を固定し、銅導体を備える2本の被覆電線を上下方向に配置して、その一方を上方向、他方を下方向に引っ張る。引張試験は市販の引張試験機などを利用する。溶接箇所が破壊するまでの最大荷重(N)を測定し、この最大荷重を溶接強度とする。なお、純銅の銅導体は、銅合金の導体よりも強度に劣る。そのため、ここでは、純銅の銅導体について2本の合計断面積(mm)を、各試料の銅合金から構成される導体の断面積(0.13mm)よりも大きくした。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、導体を銅系撚線とし、撚線をなす素線のうち、隣り合う素線が金属結合された箇所(金属結合部)を備える試料No.1-1~No.1-8,No.1-101は、金属結合部を備えていない試料No.1-102に比較して、座屈力が高く、座屈し難いことが分かる。特に、試料No.1-1~No.1-8は、試料No.1-101に比較して、座屈力がより高く(a)、金属結合部の個数がより多く(b)、結合長さの合計長がより長く(c)、更に端子部をハウジングに挿入する際の作業性にも優れることが分かる。
 試料No.1-1~No.1-8について、定量的には、以下の通りである。
(a)座屈力が7N以上である。
(b)中心素線と外周素線との金属結合部が三つ以上、かつ隣り合う外周素線同士の金属結合部が三つ以上であり、いずれも複数備える。
(c)中心素線と外周素線との金属結合部における結合長さの合計長、及び隣り合う外周素線同士の金属結合部における結合長さの合計長がいずれも、0.02mm超、更に0.05mm以上、更には0.06mm以上であり、0.10mm以上の試料も多い。中心素線と外周素線との金属結合部における結合長さの合計長と隣り合う外周素線同士の金属結合部における結合長さの合計長との総和は、0.05mm以上、更に0.10mm以上であり、0.20mm以上の試料も多い。
 試料No.1-1~No.1-8を比較すれば、金属結合部の個数が多く、結合長さの合計長が長いほど、座屈力が高い傾向にあるといえる。このような結果が得られた理由の一つとして、複数の金属結合部を備えたり、その結合長さが長かったりすることで、隣り合う素線同士が滑り難くなって複数の素線が一体となって動き易くなり、撚線全体としての剛性を高められたため、と考えられる。これらのことから、隣り合う素線が金属結合されてなる金属結合部の有無は、座屈し難さに影響を及ぼすといえ、金属結合部の個数がより多かったり、その結合長さがより長かったりすると、より座屈し難いといえる。
 また、上述の金属結合部を備える試料No.1-1~No.1-8,No.1-101は、金属結合部を備えていない試料No.1-102に比較して、上述の残存面積割合が0.85と大きく、導体における端子部の圧縮度合が小さくても、導体と端子部との接触抵抗が低いことが分かる。特に、試料No.1-1~No.1-8は、試料No.1-101に比較して、上記接触抵抗がより低い。定量的には、試料No.1-1~No.1-8の上記接触抵抗は、0.4mΩ/m以下、更に0.3mΩ/m以下であり、多くの試料は0.2mΩ/m以下である。更に、試料No.1-1~No.1-8を比較すれば、金属結合部の個数が多く、結合長さの合計長が長いほど、上記接触抵抗が低い傾向にあるといえる。このような結果が得られた理由の一つとして、複数の素線のうち、端子部に直接接触していない素線が存在していても、複数の金属結合部を備えたり、その結合長さが長かったりすることで素線間の接触抵抗を低減できたため、と考えられる。これらのことから、隣り合う素線が金属結合されてなる金属結合部の有無は、素線間の接触抵抗、撚線からなる導体と端子部との接触抵抗に影響を及ぼすといえ、金属結合部の個数がより多かったり、その結合長さがより長かったりすると、上記接触抵抗をより低減し易いといえる。
 更に、上述の金属結合部を備える試料No.1-1~No.1-8,No.1-101は、金属結合部を備えていない試料No.1-102に比較して、溶接強度に優れることが分かる。特に、試料No.1-1~No.1-8は、試料No.1-101に比較して、溶接強度がより高い。定量的には、試料No.1-1~No.1-8の溶接強度は、12N以上、更に15N以上であり、18N以上の試料も多い。更に、試料No.1-1~No.1-8を比較すれば、金属結合部の個数が多く、結合長さの合計長が長いほど、溶接強度が高い傾向にあるといえる。このような結果が得られた理由の一つとして、導体をなす撚線において、分岐線とは直接溶接されていない箇所が存在していても、溶接箇所の近傍に、複数の金属結合部を備えたり、その結合長さが長かったりすることで素線間が強固に接合された箇所を含むことができたため、と考えられる。これらのことから、隣り合う素線が金属結合されてなる金属結合部の有無は、溶接強度に影響を及ぼすといえ、金属結合部の個数がより多かったり、その結合長さがより長かったりすると、溶接強度をより高め易いといえる。
 その他、この試験から以下のことが分かる。
(x)試料No.1-1~No.1-8では、導体断面積が0.15mm以下、更に0.13mm以下と小さいものの、撚りピッチが14mm以上と大きい。このことからも導体を構成する撚線の強度を高められる上に、素線同士が一体となって動き易くなり、座屈力の向上に寄与したと考えられる。
(y)試料No.1-1~No.1-8では、導体を圧縮撚線とすると共に、ここではその圧縮割合を10%以上30%以下という特定の範囲としている。このことは、圧縮成形時の加工硬化による強度の向上が期待でき、座屈力の向上に寄与したと考えられる。また、圧縮成形によって、各素線と端子部とが面接触し易くなって、上述の接触抵抗の低下に寄与したと考えられる。
(z)金属結合部を形成するには、撚り合せ後に熱処理を施すこと、特にこの熱処理雰囲気を、酸素の含有量が10体積ppm以下の還元雰囲気とすることが好ましい。上記熱処理の保持時間を4時間以上と長めにすると、金属結合部をより多く形成したり、結合長さを長くしたりし易い。更に、上記熱処理前において、撚線をなす素線の表面の油付着量を少なくしておくことが好ましい。
 その他、用意した試料No.1-1~No.1-8の被覆電線は、導体の引張強さが450MPa以上、更に500MPa以上であり、高強度である。このように高強度であることは、座屈力の向上、溶接強度の向上に寄与したと考えられる。また、試料No.1-1~No.1-8の被覆電線は、導体の破断伸びが5%以上、更に8%以上であり、高靭性でもある。このように高強度及び高靭性であるため、試料No.1-1~No.1-8の被覆電線は、耐衝撃性などにも優れると期待される。なお、ここでは、導体の引張強さ及び破断伸びは以下のように測定した。被覆電線を所定の長さに切断して、絶縁被覆層をフェザーなどの適宜な切削工具で除去して導体を露出させる。この導体を試料とし、JIS Z 2241(金属材料引張試験方法、1998)に準拠して、汎用の引張試験機を用い、評点距離GLを250mmとし、引張速度を50mm/minとして引張試験を行った。引張強さ(MPa)は{破断荷重(N)/導体の断面積(mm)}から求めた。破断伸び(全伸び、%)は、{破断変位(mm)/250(mm)}×100から求めた。
 本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 例えば、試験例1の銅合金の組成、銅合金線の断面積、素線数、熱処理条件などを適宜変更できる。導体を銅合金線からなる撚線とする場合には、上述の組成(1)、(3)、(4)などとすることができる。又は、導体を銅線からなる撚線とすることができる。銅線からなる撚線では、製造過程で上述のように新生面が生成された際に、新生面に析出物などが実質的に存在しないため、金属結合部をより形成し易いと期待される。
 1 被覆電線
 10 端子付き電線
 2 導体
 2S 撚線
 20 素線
 21 中心素線
 22 外周素線
 24 金属結合部
 200 包絡円
 3 絶縁被覆層
 4 端子部
 40 ワイヤバレル部
 42 嵌合部
 44 インシュレーションバレル部

Claims (5)

  1.  導体と、前記導体の外周を覆う絶縁被覆層とを備える被覆電線であって、
     前記導体は、銅又は銅合金から構成される複数の素線が撚り合わされてなる撚線であり、
     隣り合う前記素線が金属結合された金属結合部を備える被覆電線。
  2.  前記撚線は、前記複数の素線が同心撚りされてなり、少なくとも一つの中心素線と、前記中心素線の外周を覆う複数の外周素線とを備え、
     前記金属結合部は、前記中心素線とこの中心素線に隣り合う前記外周素線とが金属結合された箇所を複数含む請求項1に記載の被覆電線。
  3.  前記素線は、前記銅合金からなり、
     前記銅合金は、Fe,Ti,Mg,Sn,Ag,Ni,In,Zn,Cr,Al,及びPから選択される1種又は2種以上の元素を合計で0.01質量%以上5.5質量%以下含有し、残部がCu及び不可避不純物からなる請求項1又は請求項2に記載の被覆電線。
  4.  請求項1から請求項3のいずれか1項に記載の被覆電線と、
     前記被覆電線の端部に取り付けられた端子部とを備える端子付き電線。
  5.  電線の導体に利用される撚線であって、
     銅又は銅合金から構成される複数の素線が撚り合わされてなり、
     隣り合う前記素線が金属結合された金属結合部を備える撚線。
PCT/JP2018/025420 2017-07-14 2018-07-04 被覆電線、端子付き電線、及び撚線 WO2019013074A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880046232.7A CN110914923B (zh) 2017-07-14 2018-07-04 包覆电线、附带端子的电线及绞合线
DE112018003604.9T DE112018003604B4 (de) 2017-07-14 2018-07-04 Ummantelter elektrischer draht, mit einem anschluss ausgerüsteter elektrischer draht und verdrillter draht
US16/628,538 US10957463B2 (en) 2017-07-14 2018-07-04 Covered electrical wire, terminal-equipped electrical wire, and twisted wire
JP2019529086A JP6845999B2 (ja) 2017-07-14 2018-07-04 被覆電線、端子付き電線、及び撚線

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-138646 2017-07-14
JP2017138646 2017-07-14

Publications (1)

Publication Number Publication Date
WO2019013074A1 true WO2019013074A1 (ja) 2019-01-17

Family

ID=65002536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025420 WO2019013074A1 (ja) 2017-07-14 2018-07-04 被覆電線、端子付き電線、及び撚線

Country Status (5)

Country Link
US (1) US10957463B2 (ja)
JP (1) JP6845999B2 (ja)
CN (1) CN110914923B (ja)
DE (1) DE112018003604B4 (ja)
WO (1) WO2019013074A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023047514A1 (ja) * 2021-09-24 2023-03-30 昭和電線ケーブルシステム株式会社 絶縁電線およびその製造方法ならびに端子付き絶縁電線およびその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224570U (ja) * 1975-08-11 1977-02-21
US20020062985A1 (en) * 1999-05-28 2002-05-30 Spring Rutledge Tuned patch cable
JP2015086452A (ja) * 2013-11-01 2015-05-07 株式会社オートネットワーク技術研究所 銅合金線、銅合金撚線、被覆電線、ワイヤーハーネス及び銅合金線の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3131469A (en) * 1960-03-21 1964-05-05 Tyler Wayne Res Corp Process of producing a unitary multiple wire strand
US5763823A (en) * 1996-01-12 1998-06-09 Belden Wire & Cable Company Patch cable for high-speed LAN applications
JP2005276766A (ja) 2004-03-26 2005-10-06 Yazaki Corp 電線、電線の製造方法及びワイヤーハーネス
US7947904B2 (en) * 2005-04-01 2011-05-24 Autonetworks Technologies, Ltd. Conductor and wire harness
CN101483085A (zh) * 2008-12-22 2009-07-15 杨贻方 一种石墨复合电缆
JP2012146431A (ja) 2011-01-11 2012-08-02 Auto Network Gijutsu Kenkyusho:Kk 電線導体及び絶縁電線
JP6201815B2 (ja) 2014-02-28 2017-09-27 株式会社オートネットワーク技術研究所 銅合金撚線の製造方法
JP6079818B2 (ja) 2015-04-28 2017-02-15 株式会社オートネットワーク技術研究所 アルミニウム合金素線、アルミニウム合金撚線およびその製造方法、自動車用電線ならびにワイヤーハーネス
JP2017138646A (ja) 2016-02-01 2017-08-10 アルプス電気株式会社 視線検出装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224570U (ja) * 1975-08-11 1977-02-21
US20020062985A1 (en) * 1999-05-28 2002-05-30 Spring Rutledge Tuned patch cable
JP2015086452A (ja) * 2013-11-01 2015-05-07 株式会社オートネットワーク技術研究所 銅合金線、銅合金撚線、被覆電線、ワイヤーハーネス及び銅合金線の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023047514A1 (ja) * 2021-09-24 2023-03-30 昭和電線ケーブルシステム株式会社 絶縁電線およびその製造方法ならびに端子付き絶縁電線およびその製造方法
JP7494402B2 (ja) 2021-09-24 2024-06-03 Swcc株式会社 絶縁電線およびその製造方法ならびに端子付き絶縁電線およびその製造方法

Also Published As

Publication number Publication date
US20200219635A1 (en) 2020-07-09
US10957463B2 (en) 2021-03-23
CN110914923A (zh) 2020-03-24
DE112018003604T5 (de) 2020-05-20
JP6845999B2 (ja) 2021-03-24
DE112018003604B4 (de) 2023-11-09
JPWO2019013074A1 (ja) 2020-10-15
CN110914923B (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
US11315701B2 (en) Covered electrical wire, terminal-equipped electrical wire, copper alloy wire, and copper alloy stranded wire
JP6864856B2 (ja) 被覆電線、及び端子付き電線
JP7503240B2 (ja) 被覆電線、端子付き電線、銅合金線、銅合金撚線、及び銅合金線の製造方法
JP6845999B2 (ja) 被覆電線、端子付き電線、及び撚線
US20190360074A1 (en) Covered Electrical Wire, Terminal-Equipped Electrical Wire, Copper Alloy Wire, and Copper Alloy Stranded Wire
JP6807041B2 (ja) 被覆電線、端子付き電線、銅合金線、及び銅合金撚線
JP7054482B2 (ja) 被覆電線の製造方法、銅合金線の製造方法、及び銅合金撚線の製造方法
JP6807040B2 (ja) 被覆電線、端子付き電線、及び銅合金線
US11380458B2 (en) Covered electrical wire, terminal-equipped electrical wire, copper alloy wire, and copper alloy stranded wire
JP6807027B2 (ja) 被覆電線、端子付き電線、銅合金線、及び銅合金撚線
US20210183532A1 (en) Covered electrical wire, terminal-equipped electrical wire, copper alloy wire, copper alloy stranded wire, and method for manufacturing copper alloy wire
JP2021144805A (ja) 接続構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019529086

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18831272

Country of ref document: EP

Kind code of ref document: A1