WO2019011040A1 - 一种内外双线圈的双筒式磁流变减振器 - Google Patents

一种内外双线圈的双筒式磁流变减振器 Download PDF

Info

Publication number
WO2019011040A1
WO2019011040A1 PCT/CN2018/084830 CN2018084830W WO2019011040A1 WO 2019011040 A1 WO2019011040 A1 WO 2019011040A1 CN 2018084830 W CN2018084830 W CN 2018084830W WO 2019011040 A1 WO2019011040 A1 WO 2019011040A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
cylinder
end cover
piston
damper
Prior art date
Application number
PCT/CN2018/084830
Other languages
English (en)
French (fr)
Inventor
陈步高
张栋梁
曹福顺
Original Assignee
盐城市步高汽配制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 盐城市步高汽配制造有限公司 filed Critical 盐城市步高汽配制造有限公司
Publication of WO2019011040A1 publication Critical patent/WO2019011040A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/53Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically
    • F16F9/535Magnetorheological [MR] fluid dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/04Fluids
    • F16F2224/045Fluids magnetorheological

Definitions

  • the invention relates to the technical field of vehicle vibration reduction, and mainly relates to a double cylinder magnetorheological damper with inner and outer double coils.
  • magnetorheological damper has the advantages of fast response, large damping force, low energy consumption, etc. It can effectively attenuate between the wheel and the road. The transmission of vibration on the vehicle improves the comfort of the ride and driving of the vehicle, and thus is increasingly used in the field of vehicle dampers.
  • the application range of the existing magnetorheological damper is limited to high-end vehicles due to processing difficulty and cost limitation, even in mid-end vehicles, not to mention the wider low-end vehicles.
  • the reason why the magnetorheological damper is difficult to process is that, firstly, the existing magnetorheological damper mostly uses the circumferential groove of the piston to arrange the coil, so that although the coil structure is simple, the coil is thus arranged in the damper cylinder Internally, it moves with the movement of the piston. In order to take out the coil wire, it is necessary to open the hole in the middle of the piston rod, and the processing cost is high.
  • the gas pressure in the compensation gas chamber is higher, the pressure inside the damper is larger, which requires higher dynamic sealing performance of the piston rod and the port.
  • the present invention proposes a double-cylinder magnetorheological damper having an inner and outer double coil.
  • the damper has a simple structure, a difficult processing, a good sealing performance, and has good research and promotion value.
  • Double-cylinder magnetorheological damper with inner and outer double coils mainly including piston rod, piston, inner cylinder, outer cylinder, end cover, dust ring, internal O-ring, external O-ring, internal a coil, an outer coil, a coil protection layer, a compensation air bag, a bottom positioning member, a nut
  • the piston rod is connected to the piston
  • the piston is located inside the inner cylinder tube, and is slidingly sealed with the inner cylinder tube
  • the piston rod extends through the through hole in the middle of the end cover
  • the inner cylinder is fixed by the end cover and the bottom positioning member, the bottom positioning member is fastened to the outer cylinder tube, and the through hole is provided in the middle for compensating the airbag valve port to extend to the outside of the damper, the end cover and the outer portion
  • the cylinder is tightly connected, sealed by an external O-ring, and the piston rod is sealed by the internal O-ring and the inner coil.
  • the inner coil and the outer coil are wound around the end cover, and the dust ring is
  • the inside and outside of the end cap also has a coil groove for winding the inner and outer coils.
  • the inner and outer coils are wound in the same groove.
  • the inner coil is wound inside the end cover groove, and is mainly used for dynamic sealing between the piston rod and the end cover, and the outer coil is wound around the inner coil, mainly for adjusting the damping force of the damper.
  • the inner and outer coils are wound in the same direction, and the current flows in the same direction to ensure the same direction of the generated magnetic field.
  • the internal coil is energized, and the generated magnetic field causes the magnetorheological fluid between the piston rod and the end cap to be in a semi-solid state, preventing the magnetorheological fluid from leaking and functioning as a seal.
  • the piston reciprocates up and down inside the inner cylinder under the action of external force. Because the piston and the inner cylinder are slidingly sealed, the magnetorheological fluid can only pass through the inner cylinder under the action of the piston.
  • the gap between the upper and lower ends and the gap between the inner and outer cylinders circulate between the upper and lower liquid chambers to generate a viscous damping force.
  • the external coil is energized to generate a magnetic field, and the magnetic field and the magnetic field generated by the inner coil are merged.
  • the coil is arranged on the end cover instead of the piston, which avoids complicated processing of the piston and the piston rod, has a simple structure, and reduces the processing and assembly cost of the damper.
  • the coil is divided into an inner coil and an outer coil, and the inner coil can realize a sealing function, thereby improving the sealing effect of the damper.
  • the inner and outer coils are wound in the same direction, so that the inner coil can function to assist the external coil to adjust the magnetic field while having a sealing function, and the energy consumption is low.
  • Figure 1 is a schematic view of the structure of the present invention.
  • Figure 2 is a cross-sectional view showing part of the structure of the present invention.
  • Figure 3 is a schematic view showing the structure of the end cap according to the present invention.
  • Figure 4 is a schematic view of the magnetic field of the external coil in the non-operating state of the present invention.
  • Fig. 5 is a schematic view showing the magnetic field of the external coil in the working state of the present invention.
  • a double-cylinder magnetorheological damper with internal and external double coils mainly includes a piston rod 1, a piston 11, an inner cylinder 10, an outer cylinder 9, an end cover 4, and a dustproof The ring 2, the inner O-ring 3, the outer O-ring 5, the inner coil 6, the outer coil 7, the coil protective layer 8, the compensation airbag 12, the bottom positioning member 13, the nut 14, and the like.
  • the piston rod 1 is tightly connected with the piston 11, and the piston 11 is located inside the inner cylinder 10, and is slidably sealed with the inner cylinder 10, and the piston rod 1 extends to the outside of the damper through the through hole in the middle of the end cover 4, and the inner cylinder 10 passes
  • the end cover 4 is fixed to the bottom positioning member 13, the bottom positioning member 13 is fastened to the outer cylinder tube 9, and the through hole is provided in the middle for compensating the valve port of the air bag 12 to extend to the outside of the damper, and the end cover 4 and the outer cylinder tube 9 are tightly closed.
  • the solid connection is sealed by the outer O-ring 5, and the piston rod 1 is slidably sealed by the inner O-ring 3 and the inner coil 6, the inner coil 6 and the outer coil 7 are wound around the end cover 4, and the dust seal 2 is mounted on the end cover. 4 At the top of the inner hole, there is an end groove below the end cover, and a compensation air bag is installed at the bottom of the inner cylinder of the damper.
  • the inner cover 4 has an inner and outer coil 6 for winding.
  • the coil groove 44 of the seventh coil, the inner and outer coils 6, 7 are wound in the same coil groove 44, and the inner coil 6 is wound inside the coil groove 44, and is mainly used for dynamic sealing between the piston rod 1 and the end cap 4.
  • the outer coil 7 is wound around the inner coil 6, and mainly functions to adjust the damping force of the damper.
  • the inner and outer coils 6, 7 are wound in the same direction, and the current flows in the same direction to ensure the same direction of the generated magnetic field.
  • Fig. 4 a schematic diagram of the magnetic field when the external coil 7 is not in operation and the internal coil 6 is turned on. Regardless of whether the damper is in working state, the internal coil is energized, and the generated magnetic field causes the magnetorheological fluid between the piston rod 1 and the end cap 4 to be in a semi-solid state, preventing the leakage of the magnetorheological fluid and functioning as a seal. .
  • the piston 11 When the magnetorheological damper is in operation, the piston 11 reciprocates up and down inside the inner cylinder 10 under the action of an external force. Because the piston 11 and the inner cylinder 10 are slidingly sealed, the magnetorheological fluid is only under the action of the piston 11.
  • the gap between the upper and lower end grooves 17 of the inner cylinder tube 10 and the inner and outer cylinder tubes 9, 10 can be circulated between the upper and lower liquid chambers to generate a viscous damping force.
  • the external coil 7 When the damping force needs to be adjusted, the external coil 7 is energized to generate a magnetic field, and the magnetic field generated by the external coil 7 is merged with the magnetic field generated by the internal coil 6 to form a new magnetic field.
  • the magnetic field structure is as shown in FIG. 5, and the inner and outer cylinders 9, In the top 10 parts, the magnetic field passes through the gap vertically, which changes the characteristics of the magnetorheological fluid, and generates shear damping force to realize the damping force adjustment of the damper.
  • the purpose of the notch of the end groove 17 is to serve as a magnetorheological fluid passage.
  • the limiting groove 45 is annular, and the inner cylinder is just mounted in the groove 45 for positioning.
  • the end groove 17 The gap is that a gap is formed in the inner cylinder at the joint of the limiting groove 45 and the inner cylinder.
  • the double-cylinder magnetorheological damper of the inner and outer double coils is arranged on the end cover instead of the piston, which avoids complicated processing of the piston and the piston rod, has simple structure and reduces the reduction.
  • the vibration is processed and assembled; the coil is divided into an inner coil 6 and an outer coil 7, and the inner coil 6 can realize a sealing function, thereby improving the sealing effect of the damper; the inner and outer coils are wound in the same direction, so that the inner coil has a sealing function. At the same time, it can function to adjust the magnetic field to assist the external coil, and the energy consumption is low.
  • the technical means disclosed in the solution of the present invention is not limited to the technical means disclosed in the above embodiments, and includes a technical solution composed of any combination of the above technical features.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

一种内外双线圈的双筒式磁流变减振器,包括活塞杆(1)、活塞(11)、内缸筒(10)、外缸筒(9)、端盖(4)、防尘圈(2)、内部线圈(6)、外部线圈(7)、线圈保护层(8)、补偿气囊(12)、底部定位件(13)、螺母(14),活塞杆(1)与活塞(11)紧固连接,活塞(11)位于内缸筒(10)内部,内缸筒(10)通过端盖(4)与底部定位件(13)固定,底部定位件(13)与外缸筒(9)紧固连接,中间有通孔用于补偿气囊(12)阀口延伸到减振器外部,内缸筒底部安装有补偿气囊(12),端盖(4)与外缸筒(9)紧固连接,内部线圈(6)与外部线圈(7)缠绕在端盖上,防尘圈(2)安装在端盖内孔顶部,端盖下方设有端部凹槽。该减振器能够调节阻尼,且内部线圈具有密封功能,密封性能好。

Description

一种内外双线圈的双筒式磁流变减振器 技术领域
本发明涉及车辆减振技术领域,主要涉及一种内外双线圈的双筒式磁流变减振器。
技术背景
随着经济社会的不断发展与进步,消费者对于车辆的要求也越来越高,不论是乘用车还是商用车,除了满足原有的性能要求外,消费者对驾驶与乘坐的舒适性要求也也越来越高。磁流变减振器作为一种新型的智能型减振器,具有响应速度快、阻尼力动力调节范围大、能耗低等优点,应用在车辆减振系统上可以有效衰减车轮与路面间的振动在车辆上的传递,提高车辆乘坐与驾驶的舒适性,因此在车辆减振器领域的应用越来越广泛。
但是现有的磁流变减振器的应用范围因加工难度与成本限制还局限于高端车辆,即使在中端车辆上的应用也不多见,更不用说受众更广的低端车。磁流变减振器加工难度大的原因在于,首先,现有的磁流变减振器多采用活塞周向开槽来布置线圈,这样虽然线圈结构简单,但是线圈却因此布置在减振器缸筒内部,随活塞的运动而运动,为了将线圈导线引出,还必须将活塞杆中间开孔,加工成本较高。其次,因为补偿气室内的气体压力较高,减振器内部的压强较大,这对活塞杆与端口的动密封性能的要求较高,需要采用多级密封圈配合使用来逐级降低压力差来实现密封效果,结构复杂,加工装配难度较高。最后,因为单筒式减振器侧向受力能力较低,需要对悬架系统进行相应的结构改进或采用滑柱式单筒充气减振器结构,使得成本进一步提高。因此,研究开发新型的磁流变减振器,降低成本,提高减振器性能,对促进磁流变减振器的普及应用,提高汽车工业水平具有重要意义。
发明内容
为了克服上述问题,本发明提出了一种内外双线圈的双筒式磁流变减振器。该减振器结构简单,加工难度底,密封性能好,具有较好的研究与推广价值。
本发明为了解决其技术问题所采用的技术方案是:
一种内外双线圈的双筒式磁流变减振器,主要包括活塞杆、活塞、内缸筒、外缸筒、端盖、防尘圈、内部O型圈、外部O型圈、内部线圈、外部线圈、线圈保护层、补偿气囊、底部定位件、螺母,所述活塞杆与活塞连接,活塞位于内缸筒内部,与内缸筒滑动密封,活塞杆通过端盖中间的通孔延伸到减振器外部,内缸筒通过端盖与底部定位件固定,底部定位件与外缸筒紧固连接,中间有通孔用于补偿气囊阀口延伸到减振 器外部,端盖与外缸筒紧固连接,通过外部O型圈密封,与活塞杆通过内部O型圈与内部线圈滑动密封,内部线圈与外部线圈缠绕在端盖上,防尘圈安装在端盖内孔顶部,端盖下方设有端部凹槽,减振器内缸筒底部安装有补偿气囊。
端盖内外除了有用于安装O型圈与防尘圈的凹槽外,还具有用于缠绕内外线圈的线圈凹槽。内外线圈缠绕在同一个凹槽内。内部线圈缠绕在端盖凹槽内部,主要用于活塞杆与端盖间的动密封,外部线圈缠绕在内部线圈外,主要起到调节减振器阻尼力的作用。且内外线圈缠绕方向相同,电流流向相同,保证产生的磁场方向相同。
无论减振器是否处于工作状态,内部线圈都处于通电状态,产生的磁场使得活塞杆与端盖间的磁流变液处于半固体状态,防止磁流变液泄漏,起到密封的作用。
当磁流变减振器工作时,活塞在外力的作用下在内缸筒内部上下往复运动,因为活塞与内缸筒间滑动密封,磁流变液在活塞的作用下只能通过内缸筒上下两端的凹槽与内外缸筒间的间隙在上下液腔间循环流动,产生黏滞阻尼力,当需要对阻尼力进行调节时,外部线圈通电产生磁场,磁场与内部线圈产生的磁场融合行程新的磁场,且在内外缸筒间顶端部分,磁场垂直通过缝隙,使磁流变液特性随之改变,产生剪切阻尼力,实现减振器阻尼力调节的作用。
本发明的有益效果是:
1、线圈布置在端盖上而不是活塞上,避免了对活塞和活塞杆的复杂加工,结构简单,降低了减振器加工装配成本。
2、线圈分为内部线圈和外部线圈,内部线圈可以实现密封功能,提高了减振器的密封效果。
3、内外线圈缠绕方向相同,使得内部线圈在具有密封功能的同时可以起到为辅助外部线圈调节磁场的功能,能耗较低。
附图说明
图1为本发明的结构示意图。
图2为本发明部分结构剖视图。
图3为本发明所述的端盖结构示意图。
图4为本发明外部线圈非工作状态下磁场示意图。
图5为本发明外部线圈工作状态下磁场示意图。
图中:1——活塞杆,2——防尘圈3——内O型圈,4——端盖,5——外O型圈,6——内部线圈,7——外部线圈,8——线圈保护层,9——外缸筒,10——内缸筒,11——活塞,12——补偿气囊,13——底部定位件,14——螺母,15——上液腔,16—— 下液腔,17——端部凹槽,41——防尘圈凹槽,42——内O型圈凹槽,43——外O型圈凹槽,44——线圈凹槽,45——限位凹槽。
具体实施方式
下面结合附图和具体实施方式进一步阐述本发明,应理解下述具体实施方式仅用于本发明但不用于限制本发明的范围。需要说明的是,下面描述中使用的词语“前“、”“后”、“左”、“右”、“上”和“下”指的是附图中表示的方向。
如图1和2所示的一种内外双线圈的双筒式磁流变减振器,主要包括活塞杆1、活塞11、内缸筒10、外缸筒9、端盖4、防尘圈2、内部O型圈3、外部O型圈5、内部线圈6、外部线圈7、线圈保护层8、补偿气囊12、底部定位件13、螺母14等。活塞杆1与活塞11紧固连接,活塞11位于内缸筒10内部,与内缸筒10滑动密封,活塞杆1通过端盖4中间的通孔延伸到减振器外部,内缸筒10通过端盖4与底部定位件13固定,底部定位件13与外缸筒9紧固连接,中间有通孔用于补偿气囊12阀口延伸到减振器外部,端盖4与外缸筒9紧固连接,通过外O型圈5密封,与活塞杆1通过内O型圈3和内部线圈6滑动密封,内部线圈6与外部线圈7缠绕在端盖4上,防尘圈2安装在端盖4内孔顶部,端盖下方设有端部凹槽,减振器内缸筒底部安装有补偿气囊。
如图3所示,端盖4内外除了有用于安装内O型圈3的内O型圈凹槽42与安装防尘圈2的防尘圈凹槽41外,还具有用于缠绕内外线圈6、7的线圈凹槽44,内外线圈6、7缠绕在同一个线圈凹槽44内,内部线圈6缠绕在线圈凹槽44内部,主要用于活塞杆1与端盖4间的动密封。外部线圈7缠绕在内部线圈6外,主要起到调节减振器阻尼力的作用。且内外线圈6、7缠绕方向相同,电流流向相同,保证产生的磁场方向相同。
如图4所示的是外部线圈7不工作,内部线圈6导通时的磁场示意图。无论减振器是否处于工作状态,内部线圈都处于通电状态,产生的磁场使得活塞杆1与端盖4间的磁流变液处于半固体状态,防止磁流变液泄漏,起到密封的作用。
当磁流变减振器工作时,活塞11在外力的作用下在内缸筒10内部上下往复运动,因为活塞11与内缸筒10间滑动密封,磁流变液在活塞11的作用下只能通过内缸筒10上下两端的端部凹槽17与内外缸筒9、10间的间隙在上下液腔间循环流动,产生黏滞阻尼力。当需要对阻尼力进行调节时,外部线圈7通电产生磁场,外部线圈7产生的磁场与内部线圈6产生的磁场融合行成新的磁场,磁场结构如图5所示,在内外缸筒9、10间顶端部分,磁场垂直通过缝隙,使磁流变液特性随之改变,产生剪切阻尼力,实现减振器阻尼力调节的作用。
端部凹槽17的缺口的目的是用来作为磁流变液通道的,限位凹槽45是环形的,内缸筒正好装在凹槽45中,起到定位作用,端部凹槽17的缺口就是在限位凹槽45和内缸筒配合处,将内缸筒上开个缺口。
本发明所述的一种内外双线圈的双筒式磁流变减振器,线圈布置在端盖上而不是活塞上,避免了对活塞和活塞杆的复杂加工,结构简单,降低了减振器加工装配成本;线圈分为内部线圈6和外部线圈7,内部线圈6可以实现密封功能,提高了减振器的密封效果;内、外线圈缠绕方向相同,使得内部线圈在具有密封功能的同时可以起到为辅助外部线圈调节磁场的功能,能耗较低。
本发明方案所公开的技术手段不仅限于上述实施方式所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。

Claims (3)

  1. 一种内外双线圈的双筒式磁流变减振器,其特征在于:包括活塞杆、活塞、内缸筒、外缸筒、端盖、防尘圈、内部O型圈、外部O型圈、内部线圈、外部线圈、线圈保护层、补偿气囊、底部定位件、螺母,所述活塞杆与活塞紧固连接,所述活塞位于所述内缸筒内部,与内缸筒滑动密封,所述活塞杆通过所述端盖中间的通孔延伸到减振器外部,所述内缸筒通过所述端盖与所述底部定位件固定,所述底部定位件与所述外缸筒紧固连接,中间有通孔用于所述补偿气囊阀口延伸到减振器外部,内缸筒底部安装有补偿气囊,所述端盖与所述外缸筒紧固连接,通过所述外部O型圈密封,与所述活塞杆通过所述内部O型圈与所述内部线圈滑动密封,所述内部线圈与所述外部线圈缠绕在所述端盖上,所述防尘圈安装在所述端盖内孔顶部,端盖下方设有端部凹槽。
  2. 根据权利要求1所述的一种内外双线圈的双筒式磁流变减振器,其特征在于:所述端盖内设有线圈凹槽,所述内外线圈缠绕在同一个凹槽内,内部线圈缠绕在线圈凹槽内部,外部线圈缠绕在内部线圈外。
  3. 根据权利要求2所述的一种内外双线圈的双筒式磁流变减振器,其特征在于:所述内部线圈与外部线圈导线缠绕方向相同。
PCT/CN2018/084830 2017-07-13 2018-04-27 一种内外双线圈的双筒式磁流变减振器 WO2019011040A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710569322.1 2017-07-13
CN201710569322.1A CN107314077B (zh) 2017-07-13 2017-07-13 一种内外双线圈的双筒式磁流变减振器

Publications (1)

Publication Number Publication Date
WO2019011040A1 true WO2019011040A1 (zh) 2019-01-17

Family

ID=60177708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084830 WO2019011040A1 (zh) 2017-07-13 2018-04-27 一种内外双线圈的双筒式磁流变减振器

Country Status (2)

Country Link
CN (1) CN107314077B (zh)
WO (1) WO2019011040A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114382820A (zh) * 2022-01-25 2022-04-22 江苏省特种设备安全监督检验研究院 一种基于磁流变胶的双轴独立可控制动器
CN114718977A (zh) * 2022-05-06 2022-07-08 重庆大学 磁流变油气弹簧
CN114940109A (zh) * 2022-06-23 2022-08-26 天津大学 一种多维减振座椅
CN115045949A (zh) * 2022-06-13 2022-09-13 上海正念汽车科技有限公司 一种防漏油多用途减振器
CN115045949B (zh) * 2022-06-13 2024-05-14 博渠企业管理咨询(上海)有限公司 一种防漏油多用途减振器

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107314077B (zh) * 2017-07-13 2023-01-24 盐城市步高汽配制造有限公司 一种内外双线圈的双筒式磁流变减振器
CN207161607U (zh) * 2017-07-13 2018-03-30 盐城市步高汽配制造有限公司 一种内外双线圈的双筒式磁流变减振器
CN108412943B (zh) * 2018-03-28 2019-06-28 辽宁机电职业技术学院 一种阻尼可变汽车悬架减震器及其控制方法
CN109611498B (zh) * 2018-11-16 2020-02-11 重庆大学 底置双通道双筒抗沉降磁流变阻尼器
KR102387873B1 (ko) 2018-12-13 2022-04-18 베이징 다지아 인터넷 인포메이션 테크놀로지 컴퍼니 리미티드 구축된 아핀 병합 후보들을 도출하기 위한 방법
CN111779787B (zh) * 2019-07-16 2022-05-20 北京京西重工有限公司 磁流变阻尼器
CN113858000A (zh) * 2021-10-14 2021-12-31 福州天瑞线锯科技有限公司 一种单驱动复合磨削机构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184007A (ja) * 1983-03-31 1984-10-19 Nhk Spring Co Ltd 車輛用懸架装置
US6497309B1 (en) * 2001-08-13 2002-12-24 Delphi Technologies, Inc. Magneto-rheological damper with an external coil
CN201786985U (zh) * 2010-09-26 2011-04-06 华侨大学 一种双线圈磁流变减振器
CN104595412A (zh) * 2015-01-08 2015-05-06 重庆材料研究院有限公司 基于流动模式的双筒结构磁流变减振器
CN204553671U (zh) * 2015-04-20 2015-08-12 中国人民解放军装甲兵工程学院 双筒式磁流变阻尼器
CN105889397A (zh) * 2016-05-26 2016-08-24 河南机电高等专科学校 一种单出杆双筒双线圈磁流变减振器
CN107314077A (zh) * 2017-07-13 2017-11-03 盐城市步高汽配制造有限公司 一种内外双线圈的双筒式磁流变减振器
CN207161607U (zh) * 2017-07-13 2018-03-30 盐城市步高汽配制造有限公司 一种内外双线圈的双筒式磁流变减振器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10169696A (ja) * 1996-12-12 1998-06-23 Fuji Seiki Co Ltd ショックアブソーバ
CN100371623C (zh) * 2004-05-28 2008-02-27 重庆大学 一种汽车悬架系统磁流变液阻尼装置
CN100340794C (zh) * 2005-08-04 2007-10-03 浙江大学 微型汽车的磁流变智能减振器
CN202301705U (zh) * 2011-11-03 2012-07-04 长春孔辉汽车科技有限公司 一种磁流变泵式变阻尼减振器
CN103089889B (zh) * 2011-11-03 2016-01-20 长春孔辉汽车科技股份有限公司 一种磁流变泵式变阻尼减振器
CN103322114A (zh) * 2013-05-28 2013-09-25 吉林大学 螺旋阀孔式磁流变减振器
CN203641377U (zh) * 2014-01-14 2014-06-11 株洲时代新材料科技股份有限公司 一种阻尼力可调直筒式磁流变阻尼器
CN103935721B (zh) * 2014-03-11 2015-06-03 中国矿业大学 一种磁流变液变阻尼托辊
CN106678254B (zh) * 2016-12-21 2018-11-06 中国矿业大学 一种磁流变减振器及其工作方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184007A (ja) * 1983-03-31 1984-10-19 Nhk Spring Co Ltd 車輛用懸架装置
US6497309B1 (en) * 2001-08-13 2002-12-24 Delphi Technologies, Inc. Magneto-rheological damper with an external coil
CN201786985U (zh) * 2010-09-26 2011-04-06 华侨大学 一种双线圈磁流变减振器
CN104595412A (zh) * 2015-01-08 2015-05-06 重庆材料研究院有限公司 基于流动模式的双筒结构磁流变减振器
CN204553671U (zh) * 2015-04-20 2015-08-12 中国人民解放军装甲兵工程学院 双筒式磁流变阻尼器
CN105889397A (zh) * 2016-05-26 2016-08-24 河南机电高等专科学校 一种单出杆双筒双线圈磁流变减振器
CN107314077A (zh) * 2017-07-13 2017-11-03 盐城市步高汽配制造有限公司 一种内外双线圈的双筒式磁流变减振器
CN207161607U (zh) * 2017-07-13 2018-03-30 盐城市步高汽配制造有限公司 一种内外双线圈的双筒式磁流变减振器

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114382820A (zh) * 2022-01-25 2022-04-22 江苏省特种设备安全监督检验研究院 一种基于磁流变胶的双轴独立可控制动器
CN114382820B (zh) * 2022-01-25 2023-04-28 江苏省特种设备安全监督检验研究院 一种基于磁流变胶的双轴独立可控制动器
CN114718977A (zh) * 2022-05-06 2022-07-08 重庆大学 磁流变油气弹簧
CN114718977B (zh) * 2022-05-06 2024-01-26 重庆大学 磁流变油气弹簧
CN115045949A (zh) * 2022-06-13 2022-09-13 上海正念汽车科技有限公司 一种防漏油多用途减振器
CN115045949B (zh) * 2022-06-13 2024-05-14 博渠企业管理咨询(上海)有限公司 一种防漏油多用途减振器
CN114940109A (zh) * 2022-06-23 2022-08-26 天津大学 一种多维减振座椅
CN114940109B (zh) * 2022-06-23 2024-02-13 天津大学 一种多维减振座椅

Also Published As

Publication number Publication date
CN107314077A (zh) 2017-11-03
CN107314077B (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
WO2019011040A1 (zh) 一种内外双线圈的双筒式磁流变减振器
US20070193839A1 (en) Variable attenuation power damper
CN205745069U (zh) 一种新型磁流变液阻尼器
CN105452708A (zh) 带有依赖频率的被动阀的减震器
CN109083965B (zh) 汽车悬挂系统用隔振装置及其设计方法
CN208619581U (zh) 一种集成压电式传感器的车辆悬架用磁流变阻尼器
CN108488293A (zh) 一种减震器阻尼机构及应用其的液压-气压组合阻尼减震器
WO2019011041A1 (zh) 一种内外双线圈的双筒式磁流变减振器
CN102359531B (zh) 单筒式减振器
CN110107636A (zh) 一种双向磁流变阻尼调节阀
WO2015005472A1 (ja) 車体用振動減衰装置
KR102096138B1 (ko) 조향 모터
CN108730400B (zh) 利用温控元件保持阻尼力并防止空化畸变的双筒减振器
CN106763428B (zh) 一种被动式双偏频变阻尼减振器
CN201401476Y (zh) 减振器变节流阀
WO2019011042A1 (zh) 一种外置线圈的磁流变减振器
CN208311350U (zh) 一种减震器阻尼机构及应用其的液压-气压组合阻尼减震器
CN108843722B (zh) 电控可变节流孔式半主动悬置
CN110715015A (zh) 一种吸能式汽车发动机悬置
CN210068837U (zh) 一种用于高速动车双循环抗蛇行油压减振器的底阀组件
WO2019011043A1 (zh) 一种外置线圈的磁流变减振器
CN211501444U (zh) 一种空心活塞杆内置电磁阀式减震器
CN204784386U (zh) 一种用于商务车的油气组合减振器
CN202833830U (zh) 双级磁流变液减震器
CN210623456U (zh) 一种刚度可调的集成防护式空气弹簧减振器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18832829

Country of ref document: EP

Kind code of ref document: A1