WO2019010865A1 - 一种单面发光的led器件及封装方法 - Google Patents
一种单面发光的led器件及封装方法 Download PDFInfo
- Publication number
- WO2019010865A1 WO2019010865A1 PCT/CN2017/108376 CN2017108376W WO2019010865A1 WO 2019010865 A1 WO2019010865 A1 WO 2019010865A1 CN 2017108376 W CN2017108376 W CN 2017108376W WO 2019010865 A1 WO2019010865 A1 WO 2019010865A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- glue
- fluorescent
- led
- light
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 238000004806 packaging method and process Methods 0.000 title claims abstract description 19
- 239000003292 glue Substances 0.000 claims abstract description 90
- 239000011265 semifinished product Substances 0.000 claims abstract description 32
- 239000000758 substrate Substances 0.000 claims abstract description 26
- 238000005240 physical vapour deposition Methods 0.000 claims abstract description 14
- 239000011248 coating agent Substances 0.000 claims abstract description 8
- 238000000576 coating method Methods 0.000 claims abstract description 8
- 239000010410 layer Substances 0.000 claims description 161
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 99
- 238000010438 heat treatment Methods 0.000 claims description 26
- 238000007789 sealing Methods 0.000 claims description 23
- 238000000151 deposition Methods 0.000 claims description 21
- 239000008393 encapsulating agent Substances 0.000 claims description 20
- 239000012790 adhesive layer Substances 0.000 claims description 14
- 238000005520 cutting process Methods 0.000 claims description 13
- 230000008021 deposition Effects 0.000 claims description 13
- 239000000565 sealant Substances 0.000 claims description 11
- 229920001971 elastomer Polymers 0.000 claims description 5
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical group [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 2
- 229910019142 PO4 Inorganic materials 0.000 claims description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 2
- 150000004645 aluminates Chemical class 0.000 claims description 2
- 150000004767 nitrides Chemical class 0.000 claims description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 2
- 239000010452 phosphate Substances 0.000 claims description 2
- 239000000047 product Substances 0.000 abstract description 8
- 239000011324 bead Substances 0.000 abstract description 6
- 238000005507 spraying Methods 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 239000000843 powder Substances 0.000 abstract 4
- 238000000926 separation method Methods 0.000 abstract 1
- 238000000197 pyrolysis Methods 0.000 description 9
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 229920002635 polyurethane Polymers 0.000 description 5
- 239000004814 polyurethane Substances 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 4
- 238000004321 preservation Methods 0.000 description 4
- 229910052761 rare earth metal Inorganic materials 0.000 description 4
- 229920002050 silicone resin Polymers 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- -1 rare earth ion Chemical class 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- IBIRZFNPWYRWOG-UHFFFAOYSA-N phosphane;phosphoric acid Chemical compound P.OP(O)(O)=O IBIRZFNPWYRWOG-UHFFFAOYSA-N 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/483—Containers
- H01L33/486—Containers adapted for surface mounting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
- H01L33/507—Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/52—Encapsulations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0041—Processes relating to semiconductor body packages relating to wavelength conversion elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/005—Processes relating to semiconductor body packages relating to encapsulations
Definitions
- the invention belongs to the technical field of LED packaging, and relates to an LED device and a packaging method, in particular to a single-sided white-emitting LED device and a packaging method.
- LED Light Emitting Diode
- LED is a solid-state semiconductor device that uses a solid semiconductor chip as a light-emitting material. When a forward voltage is applied to both ends, carriers in the semiconductor recombine, releasing excess energy and causing photon emission. Produces visible light. In the production, in addition to soldering the two electrodes of the LED chip to lead out the positive and negative electrodes, it is also necessary to protect the LED chip and the two electrodes, that is, to perform LED packaging.
- the mainstream LED package form on the market is an LED light source with a bracket.
- the size of the packaged light source in this package is much larger than the size of the chip itself.
- the phosphor process uses conventional dispensing, spraying, etc., but this conventional package Forms have gradually failed to meet the user's demand for miniaturization, integration, and high brightness of LED products, especially as electronic products such as mobile phones are increasingly pursuing narrow bezels and thinner, LED lamp beads as backlights must also be more Small and thinner, according to the structural design of the traditional bracket type backlight product, reducing the structure of the bracket will reduce the size of the LED chip, thereby reducing the brightness of the lamp bead, but for backlight products, the brightness of the bead is continuously increasing and decreasing.
- the brightness of the product is bound to be unacceptable to consumers.
- the LED of the bracket structure is limited by the packaging process, and the smaller the size, the higher the processing difficulty.
- the thickness of the LED lamp bead is less than or equal to 0.3 mm, the structure of the bracket is difficult to realize.
- the Chinese patent document CN104716247A discloses a side-emitting light-emitting device, which is small in size and light in weight, but the fluorescent glue is Prepared by the spraying process, the process has low utilization rate of the fluorescent glue and low concentration of the color zone of the finished lamp bead.
- the technical problem to be solved by the present invention is that the conventional bracket type LED device has a large size, is not suitable for a thin and light type product, and the improved product has a problem of low utilization rate of the fluorescent glue and low concentration of the color region, thereby proposeing a reduction.
- a single-sided LED device package method that does not reduce the luminance and color concentration of the small device size.
- the technical solution of the present invention is:
- the present invention provides a single-sided light-emitting LED device, the device comprising a PCB (Printed Circuit Board) board and a light-emitting chip, a fluorescent glue layer and a top surface package arranged in a direction away from the PCB board.
- the glue layer, the light-emitting chip, the fluorescent glue layer and the top sealant layer form a light-emitting component, and the side of the light-emitting component is provided with a side sealant layer.
- the fluorescent glue layer is composed of a first phosphor layer, a second phosphor layer, and an encapsulating glue layer away from the light emitting chip, and the first phosphor layer emits light at a wavelength of 500 nm. At 680 nm, the second phosphor layer emits light at a wavelength of 500 nm to 680 nm.
- the invention also provides a method for packaging the single-sided light-emitting LED device, comprising the following steps:
- the refractive index of the first encapsulating glue is not less than 1.50;
- the semi-finished product obtained in the baking step S3 is solidified into the encapsulating glue to obtain a cured fluorescent rubber layer;
- the second package glue has a refractive index of not less than 1.40;
- the method further includes:
- step S9 cutting the semi-finished product obtained in step S8 to obtain a single LED
- the process parameters of the physical vapor deposition to form the phosphor layer are: chamber pressure 100 Pa to 1000 Pa, power 100 watts to 500 watts; deposition time of the first phosphor layer is 0.5 min to 20 min, The deposition time of the second phosphor layer is from 0.5 min to 35 min.
- the baking process in the step S4 is: first, the semi-finished product obtained in the step S3 is raised from room temperature to 40 ° C to 60 ° C at a heating rate of 1 ° C / min to 10 ° C / min, Incubate for 0.5h ⁇ 2h, then raise the temperature to 65°C ⁇ 90°C at a heating rate of 1°C/min ⁇ 10°C/min, keep warm for 0.5h ⁇ 4h, and finally heat up at the heating rate of 1°C/min ⁇ 10°C/min. 120 ° C ⁇ 200 ° C, heat preservation 1h ⁇ 12h.
- the baking and curing process in the step S5 is: firstly, the semi-finished product coated with the second package glue is raised from the normal temperature to 50 ° C at a heating rate of 1 ° C / min to 10 ° C / min. ⁇ 80°C, heat for 1h ⁇ 3h, then raise the temperature to 100°C ⁇ 200°C at a heating rate of 1°C/min ⁇ 10°C/min, and keep warm for 1h ⁇ 9h.
- the step S2 further includes the step of repeating step S2 to prepare a plurality of phosphor layers.
- the fluorescent film has a thickness of from 100 ⁇ m to 400 ⁇ m.
- the phosphor is a silicate, aluminate, fluoride, phosphate, nitride or sulfide phosphor, and the LED chip emits light having a wavelength of 230 nm to 480 nm; the step S8
- the medium baking temperature is from 120 ° C to 180 ° C.
- the single-sided light-emitting LED device of the present invention comprising a PCB board and a light-emitting chip, a fluorescent glue layer and a top surface sealant layer disposed in a direction away from the PCB board, the light-emitting chip
- the phosphor layer and the top encapsulant layer form a light-emitting component, and the side of the light-emitting component is provided with a side encapsulant layer.
- the LED device has small size and high brightness, and is suitable for backlighting of a mobile phone with a small size, and can improve the overall brightness of the backlight of the mobile phone by increasing the number of LED devices.
- the utility model has the advantages of low thickness and is suitable for a backlight which has high requirements for lightness and thinness, such as a mobile phone, and solves the problem that the conventional bracket type LED device is difficult to reduce the size and the production yield is low, and at the same time, the phosphor layer and the encapsulating glue layer are wet and dry.
- the separate preparation method also solves the problem that the existing dispensing process and the spraying process have low utilization rate of the packaging glue, improves the utilization rate of the fluorescent glue, and ensures the brightness and color zone concentration of the LED device.
- FIG. 1 is a schematic structural view of a large-surface light-emitting LED device according to an embodiment of the present invention
- FIG. 2 is a schematic structural view of a single light emitting component in a single-sided light emitting LED device according to an embodiment of the invention.
- the reference numerals in the figure are indicated as: 1-PCB board; 2-light-emitting chip; 3-fluorescent layer; 4- Top encapsulant layer; 5-side sealant layer.
- the embodiment provides a single-sided light-emitting LED device.
- the device includes a PCB board 1 and a light-emitting chip 2 disposed along a direction away from the PCB board 1 and a fluorescent glue layer 3 and The top encapsulant layer 4, the light-emitting chip 2, the fluorescent glue layer 3 and the top encapsulant layer 4 form a light-emitting component, and the side of the light-emitting component is provided with a side sealant layer 5.
- the fluorescent glue layer 3 is composed of a first phosphor layer, a second phosphor layer, and an encapsulating glue layer disposed successively away from the light emitting chip 2, wherein the first phosphor layer emits light wavelength
- the wavelength of the emitted light of the second phosphor layer is from 500 nm to 680 nm; alternatively, the wavelength of the emitted light of the first phosphor layer is from 580 nm to 680 nm, and the emission of the second phosphor layer
- the light wavelength is from 500 nm to 580 nm.
- the embodiment further provides a single-sided LED device packaging method, which comprises the following steps:
- a substrate is provided, the substrate is a glass substrate, a surface of the substrate is coated with a pyrolysis film layer, and a first phosphor layer is deposited on the surface of the pyrolysis film layer by physical vapor deposition, the first phosphor layer
- the raw material is a commercially available rare earth ion-doped silicate phosphor having an emission wavelength of 500 nm and a deposition time of 0.5 min.
- the material of the second phosphor layer is a sialon phosphor
- the emission wavelength is 500 nm
- the deposition time is 35 min
- the physical gas phase During the deposition process, the chamber pressure was 100 Pa and the power was 100 watts.
- the first encapsulating glue is a silicone resin having a refractive index of not less than 1.5, and the deposition time is 1 h, and then the first encapsulating glue whose surface of the phosphor layer is not deeped into the phosphor is removed to make the surface flat.
- step S4 the semi-finished product obtained in step S3 is placed in an oven, and the semi-finished product is first raised from room temperature to 40 ° C at a heating rate of 1 ° C / min, kept for 0.5 h, and then heated to 65 at a heating rate of 1 ° C / min. °C, heat preservation for 0.5h, and finally heated to 120 ° C at a heating rate of 1 ° C / min, and kept for 1 h, to obtain a cured fluorescent rubber layer 3.
- the second encapsulating glue is a polyurethane encapsulant having a refractive index of not less than 1.4, and placing the semi-finished product coated with the polyurethane encapsulant in an oven at 1 ° C/
- the heating rate of min is to increase the semi-finished product coated with the second encapsulating glue from normal temperature to 50 ° C, heat for 1 h, then raise the temperature to 100 ° C at a heating rate of 1 ° C / min, and keep it for 1 h to obtain a top encapsulant layer 4 .
- the top encapsulant layer 4 and the phosphor layer 3 constitute a fluorescent film having a thickness of 100 ⁇ m.
- the pyrolysis film layer is removed by heating, and the fluorescent film is separated from the substrate.
- the pyrolysis film layer is again applied on the surface of the substrate, and the fluorescent film is placed on the film layer in an inverted manner, so that the first phosphor layer is located on the top surface (the upper surface of the fluorescent film).
- the single LED is adhered to the PCB board 1 with a silver adhesive conductive adhesive, and then the adhesive is baked and solidified, and then the sealing glue is filled around the LED, and the sealing glue can be a high viscosity silicone resin, and the reflectivity is greater than Or equal to 75%, the sealing glue is baked and cured.
- This embodiment provides a single-sided LED device packaging method, which includes the following steps:
- a substrate is provided, the substrate is a ceramic substrate, a UV (Ultraviolet Rays) film layer is pasted on the surface of the substrate, and a first phosphor layer is deposited on the surface of the UV film layer by physical vapor deposition.
- a phosphor layer material is a commercially available rare earth ion doped phosphate phosphor having an emission wavelength of 680 nm and a deposition time of 20 min.
- step S4 the semi-finished product obtained in step S3 is placed in an oven, and the semi-finished product is first raised from room temperature to 60 ° C at a heating rate of 10 ° C / min, kept for 2 h, and then heated to 90 ° C at a heating rate of 10 ° C / min. After 4 hours of heat preservation, the temperature was raised to 200 ° C at a heating rate of 10 ° C / min, and the temperature was maintained for 12 hours to obtain a cured fluorescent rubber layer 3 .
- the second encapsulating glue is a silicone encapsulant
- placing the semi-finished product coated with the silicone encapsulant in an oven first at a heating rate of 10 ° C / min
- the semi-finished product coated with the second encapsulating glue is raised from normal temperature to 80 ° C, kept for 3 h, and then heated to 200 ° C at a heating rate of 10 ° C / min, and kept for 9 h to obtain a top encapsulant layer 4, the top surface encapsulant
- the layer 4 and the fluorescent gel layer 3 constitute a fluorescent film having a thickness of 400 ⁇ m.
- the pyrolysis film layer is again applied on the surface of the substrate, and the fluorescent film is placed on the film layer in an inverted manner, so that the first phosphor layer is located on the top surface (the upper surface of the fluorescent film).
- the single LED is adhered to the PCB board 1 with a solder paste, the solder paste is cured in a reflow oven, and then the sealing glue is filled around the LED, and the sealing glue can be a high viscosity silicone resin having a reflectance greater than or equal to 75%. , the sealing glue is baked and cured.
- This embodiment provides a single-sided LED device packaging method, which includes the following steps:
- the substrate is an aluminum plate
- the surface of the substrate is coated with a pyrolysis film layer
- a first phosphor layer is deposited on the surface of the pyrolysis film layer by physical vapor deposition, the first phosphor layer material
- It is a commercially available rare earth ion-doped silicate phosphor having an emission wavelength of 615 nm and a deposition time of 10 min.
- a second phosphor layer on the surface of the first phosphor layer by physical vapor deposition, wherein the material of the second phosphor layer is a sialon phosphor having an emission wavelength of 525 nm, a deposition time of 5 min, and a physical vapor phase.
- the chamber pressure was 600 Pa and the power was 300 watts.
- step S4 the semi-finished product obtained in step S3 is placed in an oven, and the semi-finished product is first raised from room temperature to 50 ° C at a heating rate of 5 ° C / min, kept for 1 h, and then heated to 85 ° C at a heating rate of 6 ° C / min. After heat preservation for 3 hours, the temperature was raised to 160 ° C at a heating rate of 4 ° C / min, and the temperature was maintained for 6 hours to obtain a cured fluorescent rubber layer 3 .
- the second encapsulating glue is a polyurethane encapsulant
- the semi-finished product with the second encapsulating glue is raised from normal temperature to 65 ° C, kept for 1.5 h, and then heated to 175 ° C at a heating rate of 7 ° C / min, and kept for 5 h to obtain a top encapsulant layer 4, the top encapsulant layer 4 and a fluorescent gel layer constitute a fluorescent film having a thickness of 270 ⁇ m.
- the pyrolysis film layer is again applied on the surface of the substrate, and the fluorescent film is placed on the film layer in an inverted manner, so that the first phosphor layer is located on the top surface (the upper surface of the fluorescent film).
- the single LED is adhered to the PCB board with silver glue or other conductive adhesive, and then the adhesive is baked and solidified, and then the sealing glue is filled around the LED, and the sealing glue can be a high viscosity silicone resin whose reflectivity is greater than Or equal to 75%, the sealing glue is baked and cured.
- the operation of the step 2 may be repeated after the step 2 to prepare a multilayer phosphor layer.
- the single-sided light-emitting LED device of the present invention comprising a PCB board and a light-emitting chip, a fluorescent glue layer and a top surface sealant layer disposed in a direction away from the PCB board, the light-emitting chip
- the phosphor layer and the top encapsulant layer form a light-emitting component, and the side of the light-emitting component is provided with a side encapsulant layer.
- the LED device has small size and high brightness, and is suitable for backlighting of a mobile phone with a small size, and can improve the overall brightness of the backlight of the mobile phone by increasing the number of LED devices.
- the utility model has the advantages of low thickness and is suitable for a backlight which has high requirements for lightness and thinness, such as a mobile phone, and solves the problem that the conventional bracket type LED device is difficult to reduce the size and the production yield is low, and at the same time, the phosphor layer and the encapsulating glue layer are wet and dry.
- the separate preparation method also solves the problem that the existing dispensing process and the spraying process have low utilization rate of the packaging glue, improves the utilization rate of the fluorescent glue, and ensures the brightness and color zone concentration of the LED device.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Led Device Packages (AREA)
- Luminescent Compositions (AREA)
Abstract
一种单面发光的LED器件及封装方法,器件尺寸小、亮度高,封装方法采用物理气相沉积法制备荧光粉层,在荧光粉层表面填充第一封装胶水得到荧光胶层(3),涂覆第二封装胶水并使之固化得到荧光膜后将得到的半成品倒置于基板上,在荧光粉层表面粘结LED芯片固化后切割即得到封装后的器件,这种方法制得的LED器件体积小,厚度薄,适用于对轻薄度要求较高的背光源,解决了传统的支架型LED器件难于缩小尺寸、生产良率低的问题;将荧光粉层与封装胶水层进行干湿分离分别制备的方法,解决了现有点胶工艺和喷涂工艺对封装荧光胶利用率低的问题,此方法有效减小了LED灯珠产品尺寸,提高了荧光胶的利用率、保证了LED器件的亮度和色区集中度。
Description
本申请要求于2017年07月12日提交中国专利局、申请号为201710566326.4、发明名称为“一种单面发光的LED器件及封装方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明属于LED封装技术领域,涉及一种LED器件及封装方法,具体地说涉及一种单面发白光的LED器件及封装方法。
发光二极管(Light Emitting Diode,LED)是一种固态半导体器件,利用固体半导体芯片作为发光材料,当两端加上正向电压,半导体中的载流子发生复合,放出过剩的能量而引起光子发射产生可见光。在制作上,除了要对LED芯片的两个电极进行焊接,从而引出正、负极之外,还需要对LED芯片和两个电极进行保护,即进行LED封装。
目前,市面上主流的LED封装形式为带支架的LED光源,这种封装形式封装光源的尺寸比芯片本身尺寸要大很多,荧光粉工艺沿用传统的点胶、喷涂等,但是这种传统的封装形式已逐渐无法满足用户对LED产品小型化、集成化、高亮度的需求,尤其是随着手机等电子产品越来越追求窄边框和轻薄化,作为背光源的LED灯珠也要做到更小和更薄,按照传统支架式背光产品的结构设计,将支架结构缩小则会减小LED芯片的尺寸,从而降低灯珠的亮度,但是对于背光产品,灯珠亮度是在持续增加的,降低亮度的产品势必无法被消费者接受,同时,支架式结构的LED由于受到封装工艺的限制,尺寸越小加工难度越高,当LED灯珠厚度小于或等于0.3mm时,支架结构很难实现。
为了解决传统支架式LED封装结构中芯片安放时受到固晶机台高度的限制、无法在支架结构缩小的前提下安放大尺寸芯片来满足用户对高亮度的需求这一问题,中国专利文献CN104716247A公开了一种侧发光的发光装置,该发光装置体积小且轻薄,但是其荧光胶是以
喷涂的工艺制备的,这种工艺对荧光胶利用率低、成品灯珠的色区集中度也较低。
发明内容
为此,本发明所要解决的技术问题在于传统支架型LED器件尺寸大,不适于轻薄型产品、而改进的产品又存在荧光胶利用率低、色区集中度低的问题,从而提出一种减小器件尺寸的同时不降低发光亮度和色区集中度的单面发光的LED器件封装方法。
为解决上述技术问题,本发明的技术方案为:
本发明提供一种单面发光的LED器件,所述器件包括PCB(Printed Circuit Board,印制电路板)板和沿远离所述PCB板方向顺次设置的发光芯片、荧光胶层和顶面封装胶层,所述发光芯片、荧光胶层和顶面封装胶层形成发光组件,所述发光组件侧面设置有侧面封装胶层。
作为可选实施例,所述荧光胶层由沿远离所述发光芯片的第一荧光粉层、第二荧光粉层和封装胶水层组成,所述第一荧光粉层的发射光波长为500nm~680nm,所述第二荧光粉层的发射光波长为500nm~680nm。
本发明还提供一种所述的单面发光的LED器件的封装方法,其包括如下步骤:
S1、在基板表面贴覆胶膜层,采用物理气相沉积法在胶膜层表面沉积第一荧光粉层;
S2、在第一荧光粉层表面物理气相沉积第二荧光粉层;
S3、在第二荧光粉层表面填充第一封装胶水,得到荧光胶层,所述第一封装胶水的折射率不小于1.50;
S4、烘烤步骤S3得到的半成品至封装胶水固化,得到固化的荧光胶层;
S5、在所述荧光胶层表面涂覆第二封装胶水,并烘烤固化第二封装胶水,得到顶面封装胶层,所述顶面封装胶层与荧光胶层组成荧光
膜,所述第二封装胶水的折射率不小于1.40;
S6、去除所述胶膜层,将荧光膜与基板分离;
S7、在基板表面贴覆胶膜层,将荧光膜倒置贴覆于所述胶膜层,使第一荧光粉层位于顶面;
S8、在第一荧光粉层表面粘结LED芯片,并烘烤使LED芯片固定。
作为可选实施例,所述步骤S8后还包括:
S9、切割步骤S8得到的半成品,得到单颗LED;
S10、将单颗LED粘结于PCB板并在LED周围填充密封胶水,得到侧面封装胶层,所述密封胶水的反射率不低于75%;
S11、去除LED芯片顶部的密封胶水,沿PCB板上两颗相邻的LED间隙进行切割,得到单面发光的LED器件。
作为可选实施例,所述物理气相沉积形成荧光粉层的工艺参数为:腔室压力100Pa~1000Pa,功率100瓦~500瓦;所述第一荧光粉层的沉积时间为0.5min~20min,所述第二荧光粉层的沉积时间为0.5min~35min。
作为可选实施例,所述步骤S4中的烘烤过程为:首先以1℃/min~10℃/min的升温速率将所述步骤S3得到的半成品由室温升至40℃~60℃,保温0.5h~2h,然后以1℃/min~10℃/min的升温速率升温至65℃~90℃,保温0.5h~4h,最后以1℃/min~10℃/min的升温速率升温至120℃~200℃,保温1h~12h。
作为可选实施例,所述步骤S5中所述烘烤固化的过程为:首先以1℃/min~10℃/min的升温速率将涂覆有第二封装胶水的半成品由常温升至50℃~80℃,保温1h~3h,然后以1℃/min~10℃/min的升温速率升温至100℃~200℃,保温1h~9h。
作为可选实施例,所述步骤S2后还包括重复步骤S2,制备若干层荧光粉层的步骤。
作为可选实施例,所述荧光膜的厚度为100μm~400μm。
作为可选实施例,所述荧光粉为硅酸盐、铝酸盐、氟化物、磷酸盐、氮化物或硫化物荧光粉,所述LED芯片的发射光波长为230nm~480nm;所述步骤S8中烘烤的温度为120℃~180℃。
本发明的上述技术方案相比现有技术具有以下优点:
(1)本发明所述的单面发光的LED器件,所述器件包括PCB板和沿远离所述PCB板方向顺次设置的发光芯片、荧光胶层和顶面封装胶层,所述发光芯片、荧光胶层和顶面封装胶层形成发光组件,所述发光组件侧面设置有侧面封装胶层。所述LED器件尺寸小、亮度高,适用与尺寸较小的手机背光,并可通过增加LED器件数量的方法来提高手机背光的整体亮度。
(2)本发明所述的单面发光的LED器件封装方法,采用物理气相沉积法制备若干层荧光粉层,然后在荧光粉层表面填充第一封装胶水得到荧光胶层,涂覆第二荧光胶水并使之固化得到荧光膜后将得到的半成品倒置于基板上,在第一层荧光粉层表面粘结LED芯片固化后切割即得到封装后的器件,这种方法制得的LED器件体积小,厚度低,适用于手机等对轻薄度要求较高的背光源,解决了传统的支架型LED器件难于缩小尺寸、生产良率低的问题,同时,将荧光粉层与封装胶水层进行干湿分离分别制备的方法还解决了现有点胶工艺和喷涂工艺对封装胶水利用率低的问题,提高了荧光胶的利用率、保证了LED器件的亮度和色区集中度。
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1是本发明实施例所述的大面发光的LED器件的结构示意图;
图2是本发明实施例所述的单面发光的LED器件中单个发光组件的结构示意图。
图中附图标记表示为:1-PCB板;2-发光芯片;3-荧光胶层;4-
顶面封装胶层;5-侧面密封胶层。
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例对本发明作进一步详细的说明。
实施例1
本实施例提供一种单面发光的LED器件,如图1-2所示,所述器件包括PCB板1和沿远离所述PCB板1方向顺次设置的发光芯片2、荧光胶层3和顶面封装胶层4,所述发光芯片2、荧光胶层3和顶面封装胶层4形成一个发光组件,所述发光组件侧面设置有侧面密封胶层5。
具体地,所述荧光胶层3由沿远离所述发光芯片2顺次设置的第一荧光粉层、第二荧光粉层和封装胶水层组成,其中所述第一荧光粉层的发射光波长为500nm~680nm,所述第二荧光粉层的发射光波长为500nm~680nm;可选地,所述第一荧光粉层的发射光波长为580nm~680nm,所述第二荧光粉层的发射光波长为500nm~580nm。
本实施例还提供一种单面发光的LED器件封装方法,其包括如下步骤:
S1、提供一基板,所述基板为玻璃基板,在基板表面贴覆热解胶膜层,采用物理气相沉积法在热解胶膜层表面沉积第一荧光粉层,所述第一荧光粉层原料为市售的掺杂稀土离子的硅酸盐荧光粉,其发射光波长为500nm,沉积时间为0.5min。
S2、采用物理气相沉积法在第一荧光粉层表面沉积第二荧光粉层,所述第二荧光粉层的原料为塞隆荧光粉,其发射光波长为500nm,沉积时间为35min,物理气相沉积过程中,腔室压力为100Pa,功率为100瓦。
S3、在第二荧光粉表面填充第一封装胶水,将第一封装胶水添加到第二荧光粉层表面,使其自然流动沉积,填充于荧光粉的空隙中,
第一封装胶水为折射率不小于1.5的硅树脂,其沉积时间为1h,然后去除荧光粉层表面未深入荧光粉的第一封装胶水,使其表面平整。
S4、将步骤S3得到的半成品置于烘箱中,先以1℃/min的升温速率将所述半成品由室温升至40℃,保温0.5h,然后以1℃/min的升温速率升温至65℃,保温0.5h,最后以1℃/min的升温速率升温至120℃,保温1h,得到固化的荧光胶层3。
S5、在荧光胶层3表面涂覆第二封装胶水,所述第二封装胶水为折射率不小于1.4的聚氨酯封装胶,将涂覆有聚氨酯封装胶的半成品置于烘箱,先以1℃/min的升温速率将涂覆有第二封装胶水的半成品由常温升至50℃,保温1h,然后以1℃/min的升温速率升温至100℃,保温1h,得到顶面封装胶层4,所述顶面封装胶层4与荧光胶层3组成荧光膜,所述荧光膜的厚度为100μm。
S6、加热去除热解胶膜层,将荧光膜与基板分离。
S7、在基板表面再次贴覆热解胶膜层,将荧光膜倒置贴覆于所述胶膜层,使第一荧光粉层位于顶面(荧光膜的上表面)。
S8、在第一荧光粉层表面涂覆粘结剂,并在预设的位置上粘结若干LED倒装芯片,所述LED倒装芯片的发射光波长为480nm,将得到的半成品置于烘箱在120℃下烘烤使粘结剂固化,发光芯片2发射的蓝光与第一荧光粉层的红光、第二荧光粉层的绿光复合,形成白光发射,得到整片的白光LED器件半成品。
S9、沿LED芯片的间隙切割所述整片白光LED器件半成品,将其分割为单颗LED,切割的刀片厚度为0.05mm。
S10、将单颗LED用银胶导电粘合剂粘附于PCB板1,然后将粘结剂烘烤固化,然后在LED周围填充密封胶水,密封胶水可以为高粘度硅树脂,其反射率大于或等于75%,将密封胶水烘烤固化。
S11、去除LED芯片顶部的密封胶水,保留侧面的密封胶水,得到侧面密封胶层5,然后沿PCB板上两颗相邻的LED间隙进行切割,即得到单独的单面发光的LED器件。
实施例2
本实施例提供一种单面发光的LED器件封装方法,其包括如下步骤:
S1、提供一基板,所述基板为陶瓷基板,在基板表面贴覆UV(Ultraviolet Rays,紫外线)胶膜层,采用物理气相沉积法在UV胶膜层表面沉积第一荧光粉层,所述第一荧光粉层原料为市售的掺杂稀土离子的磷酸盐荧光粉,其发射光波长为680nm,沉积时间为20min。
S2、采用物理气相沉积法在第一荧光粉层表面沉积第二荧光粉层,所述第二荧光粉层的原料为掺杂有稀土离子的硫化物荧光粉,其发射光波长为680nm,沉积时间为0.5min,物理气相沉积过程中,腔室压力为1000Pa,功率为500瓦。
S3、在第二荧光粉表面填充第一封装胶水,将第一封装胶水添加到第二荧光粉层表面,使其自然流动沉积,填充于荧光粉的空隙中,第一封装胶水为折射率不小于1.5的环氧树脂,其沉积时间为24h,然后去除荧光粉层表面未深入荧光粉的第一封装胶水,使其表面平整。
S4、将步骤S3得到的半成品置于烘箱中,先以10℃/min的升温速率将所述半成品由室温升至60℃,保温2h,然后以10℃/min的升温速率升温至90℃,保温4h,最后以10℃/min的升温速率升温至200℃,保温12h,得到固化的荧光胶层3。
S5、在荧光胶层表面涂覆第二封装胶水,所述第二封装胶水为硅树脂封装胶,将涂覆有硅树脂封装胶的半成品置于烘箱,先以10℃/min的升温速率将涂覆有第二封装胶水的半成品由常温升至80℃,保温3h,然后以10℃/min的升温速率升温至200℃,保温9h,得到顶面封装胶层4,所述顶面封装胶层4与荧光胶层3组成荧光膜,所述荧光膜的厚度为400μm。
S6、去除UV胶膜层,将荧光膜与基板分离。
S7、在基板表面再次贴覆热解胶膜层,将荧光膜倒置贴覆于所述胶膜层,使第一荧光粉层位于顶面(荧光膜的上表面)。
S8、在第一荧光粉层表面涂覆粘结剂,并在预设的位置上粘结若干LED倒装芯片,所述LED倒装芯片的发射光波长为230nm,将得到的半成品置于烘箱在180℃下烘烤使粘结剂固化,发光芯片2发射的紫外光与第一荧光粉层的红光、第二荧光粉层的绿光复合,形成白光发射,得到整片的白光LED器件半成品。
S9、沿LED芯片的间隙切割所述整片白光LED器件半成品,将其分割为单颗LED,切割的刀片厚度为2mm。
S10、将单颗LED用锡膏粘附于PCB板1,将锡膏在回流焊炉中固化,然后在LED周围填充密封胶水,密封胶水可以为高粘度硅树脂其反射率大于或等于75%,将密封胶水烘烤固化。
S11、去除LED芯片顶部的密封胶水,保留侧面的密封胶水,得到侧面密封胶层5,然后沿PCB板上两颗相邻的LED间隙进行切割,即得到单独的单面发光的LED器件。
实施例3
本实施例提供一种单面发光的LED器件封装方法,其包括如下步骤:
S1、提供一基板,所述基板为铝板,在基板表面贴覆热解胶膜层,采用物理气相沉积法在热解胶膜层表面沉积第一荧光粉层,所述第一荧光粉层原料为市售的掺杂稀土离子的硅酸盐荧光粉,其发射光波长为615nm,沉积时间为10min。
S2、采用物理气相沉积法在第一荧光粉层表面沉积第二荧光粉层,所述第二荧光粉层的原料为塞隆荧光粉,其发射光波长为525nm,沉积时间为5min,物理气相沉积过程中,腔室压力为600Pa,功率为300瓦。
S3、在第二荧光粉表面填充第一封装胶水,将第一封装胶水添加到第二荧光粉层表面,使其自然流动沉积,填充于荧光粉的空隙中,第一封装胶水为折射率不小于1.45的聚氨酯,其沉积时间为10h,然后去除荧光粉层表面未深入荧光粉的第一封装胶水,使其表面平整。
S4、将步骤S3得到的半成品置于烘箱中,先以5℃/min的升温速率将所述半成品由室温升至50℃,保温1h,然后以6℃/min的升温速率升温至85℃,保温3h,最后以4℃/min的升温速率升温至160℃,保温6h,得到固化的荧光胶层3。
S5、在荧光胶层表面涂覆第二封装胶水,所述第二封装胶水为聚氨酯封装胶,将涂覆有聚氨酯封装胶的半成品置于烘箱,先以6℃/min的升温速率将涂覆有第二封装胶水的半成品由常温升至65℃,保温1.5h,然后以7℃/min的升温速率升温至175℃,保温5h,得到顶面封装胶层4,所述顶面封装胶层4与荧光胶层组成荧光膜,所述荧光膜的厚度为270μm。
S6、加热去除热解胶膜层,将荧光膜与基板分离;
S7、在基板表面再次贴覆热解胶膜层,将荧光膜倒置贴覆于所述胶膜层,使第一荧光粉层位于顶面(荧光膜的上表面)。
S8、在第一荧光粉层表面涂覆粘结剂,并在预设的位置上粘结若干LED倒装芯片,所述LED倒装芯片的发射光波长为370nm,将得到的半成品置于烘箱在160℃下烘烤使粘结剂固化,发光芯片2发射的紫外光与第一荧光粉层的红光、第二荧光粉层的绿光复合,形成白光发射,得到整片的白光LED器件半成品。
S9、沿LED芯片的间隙切割所述整片白光LED器件半成品,将其分割为单颗LED,切割的刀片厚度为1mm。
S10、将单颗LED用银胶或其它导电粘合剂粘附于PCB板,然后将粘结剂烘烤固化,然后在LED周围填充密封胶水,密封胶水可以为高粘度硅树脂其反射率大于或等于75%,将密封胶水烘烤固化。
S11、去除LED芯片顶部的密封胶水,保留侧面的密封胶水,得到侧面密封胶层5,然后沿PCB板上两颗相邻的LED间隙进行切割,即得到单独的单面发光的LED器件。
作为可变换的实施方式,还可以在步骤2后重复步骤2的操作,制备多层荧光粉层。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。
(1)本发明所述的单面发光的LED器件,所述器件包括PCB板和沿远离所述PCB板方向顺次设置的发光芯片、荧光胶层和顶面封装胶层,所述发光芯片、荧光胶层和顶面封装胶层形成发光组件,所述发光组件侧面设置有侧面封装胶层。所述LED器件尺寸小、亮度高,适用与尺寸较小的手机背光,并可通过增加LED器件数量的方法来提高手机背光的整体亮度。
(2)本发明所述的单面发光的LED器件封装方法,采用物理气相沉积法制备若干层荧光粉层,然后在荧光粉层表面填充第一封装胶水得到荧光胶层,涂覆第二荧光胶水并使之固化得到荧光膜后将得到的半成品倒置于基板上,在第一层荧光粉层表面粘结LED芯片固化后切割即得到封装后的器件,这种方法制得的LED器件体积小,厚度低,适用于手机等对轻薄度要求较高的背光源,解决了传统的支架型LED器件难于缩小尺寸、生产良率低的问题,同时,将荧光粉层与封装胶水层进行干湿分离分别制备的方法还解决了现有点胶工艺和喷涂工艺对封装胶水利用率低的问题,提高了荧光胶的利用率、保证了LED器件的亮度和色区集中度。
Claims (10)
- 一种单面发光的LED器件,其特征在于,所述器件包括PCB板和沿远离所述PCB板方向顺次设置的发光芯片、荧光胶层和顶面封装胶层,所述发光芯片、荧光胶层和顶面封装胶层形成发光组件,所述发光组件侧面设置有侧面密封胶层。
- 根据权利要求1所述的单面发光的LED器件,其特征在于,所述荧光胶层由沿远离所述发光芯片顺次设置的第一荧光粉层、第二荧光粉层和填充于荧光粉中的封装胶水组成,所述第一荧光粉层的发射光波长范围为500nm~680nm,所述第二荧光粉层的发射光波长范围为500nm~680nm。
- 一种如权利要求1或2所述的单面发光的LED器件的封装方法,其特征在于,包括如下步骤:S1、在基板表面贴覆胶膜层,采用物理气相沉积法在胶膜层表面沉积第一荧光粉层;S2、在第一荧光粉层表面物理气相沉积第二荧光粉层;S3、在第二荧光粉层表面填充第一封装胶水,得到荧光胶层,所述第一封装胶水的折射率不小于1.50;S4、烘烤步骤S3得到的半成品至封装胶水固化,得到固化的荧光胶层;S5、在所述荧光胶层表面涂覆第二封装胶水,并烘烤固化第二封装胶水,得到顶面封装胶层,所述顶面封装胶层与荧光胶层组成荧光膜,所述第二封装胶水的折射率不小于1.40;S6、去除所述胶膜层,将荧光膜与基板分离;S7、在基板表面贴覆胶膜层,将荧光膜倒置贴覆于所述胶膜层,使第一荧光粉层位于顶面;S8、在第一荧光粉层表面粘结LED芯片,并烘烤使LED芯片固定。
- 根据权利要求3所述的单面发光的LED器件封装方法,其特 征在于,所述步骤S8后还包括:S9、切割步骤S8得到的半成品,得到单颗LED;S10、将单颗LED粘结于PCB板并在LED周围填充密封胶水,得到侧面封装胶层,所述密封胶水的反射率不低于75%;S11、去除LED芯片顶部的密封胶水,沿PCB板上两颗相邻的LED间隙进行切割,得到单面发光的LED器件。
- 根据权利要求4所述的单面发光的LED器件封装方法,其特征在于,所述物理气相沉积形成荧光粉层的工艺参数为:腔室压力100Pa~1000Pa,功率100瓦~500瓦;所述第一荧光粉层的沉积时间为0.5min~20min,所述第二荧光粉层的沉积时间为0.5min~35min。
- 根据权利要求5所述的单面发光的LED器件封装方法,其特征在于,所述步骤S4中的烘烤过程为:首先以1℃/min~10℃/min的升温速率将所述步骤S3得到的半成品由室温升至40℃~60℃,保温0.5h~2h,然后以1℃/min~10℃/min的升温速率升温至65℃~90℃,保温0.5h~4h,最后以1℃/min~10℃/min的升温速率升温至120℃~200℃,保温1h~12h。
- 根据权利要求6所述的单面发光的LED器件封装方法,其特征在于,所述步骤S5中所述烘烤固化的过程为:首先以1℃/min~10℃/min的升温速率将涂覆有第二封装胶水的半成品由常温升至50℃~80℃,保温1h~3h,然后以1℃/min~10℃/min的升温速率升温至100℃~200℃,保温1h~9h。
- 根据权利要求7所述的单面发光的LED器件封装方法,其特征在于,所述步骤S2后还包括重复步骤S2,制备若干层荧光粉层的步骤。
- 根据权利要求8所述的单面发光的LED器件封装方法,其特征在于,所述荧光膜的厚度为100μm~400μm。
- 根据权利要求9所述的单面发光的LED器件封装方法,其特征在于,所述荧光粉为硅酸盐、铝酸盐、氟化物、磷酸盐、氮化物或 硫化物荧光粉,所述LED芯片的发射光波长为230nm~480nm;所述步骤S8中烘烤的温度为120℃~180℃。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710566326.4 | 2017-07-12 | ||
CN201710566326.4A CN107275460A (zh) | 2017-07-12 | 2017-07-12 | 一种单面发光的led器件及封装方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019010865A1 true WO2019010865A1 (zh) | 2019-01-17 |
Family
ID=60072662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/108376 WO2019010865A1 (zh) | 2017-07-12 | 2017-10-30 | 一种单面发光的led器件及封装方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107275460A (zh) |
WO (1) | WO2019010865A1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107275460A (zh) * | 2017-07-12 | 2017-10-20 | 惠州市聚飞光电有限公司 | 一种单面发光的led器件及封装方法 |
CN109980068A (zh) * | 2017-12-27 | 2019-07-05 | 深圳市聚飞光电股份有限公司 | Led器件及封装方法、背光模组、液晶显示模组和终端 |
CN109980069A (zh) * | 2017-12-27 | 2019-07-05 | 深圳市聚飞光电股份有限公司 | Led器件及封装方法、背光模组、液晶显示模组和终端 |
CN109980072A (zh) * | 2017-12-27 | 2019-07-05 | 深圳市聚飞光电股份有限公司 | Led器件及封装方法、背光模组、液晶显示模组和终端 |
CN111106228A (zh) * | 2018-10-26 | 2020-05-05 | 江西省晶能半导体有限公司 | Led灯珠制备方法 |
CN109273579B (zh) * | 2018-11-22 | 2022-04-22 | 江西省晶能半导体有限公司 | Led灯珠制备方法 |
CN109830474B (zh) * | 2018-12-17 | 2023-07-11 | 江西省晶能半导体有限公司 | 彩光led芯片制备方法及彩光led灯珠制备方法 |
CN109709654A (zh) * | 2019-02-27 | 2019-05-03 | 维沃移动通信有限公司 | 光学组件、光学组件的制作方法及终端设备 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102272953A (zh) * | 2008-11-13 | 2011-12-07 | 行家光电有限公司 | 用于荧光粉转换型发光设备的荧光粉涂敷的光抽取结构 |
CN202153536U (zh) * | 2011-07-20 | 2012-02-29 | 福建泰德视讯数码科技有限公司 | 一种大功率led封装结构 |
CN202473911U (zh) * | 2011-12-23 | 2012-10-03 | 惠州市华阳多媒体电子有限公司 | 提高出光效率的led器件 |
US20150214442A1 (en) * | 2014-01-28 | 2015-07-30 | Lextar Electronics Corporation | Light emitting diode package structure and method thereof |
CN204834670U (zh) * | 2015-07-10 | 2015-12-02 | 晶能光电(江西)有限公司 | 一种白光led芯片封装结构 |
CN105895787A (zh) * | 2016-06-06 | 2016-08-24 | 青岛海信电器股份有限公司 | Led、led封装方法、直下式背光模组和液晶电视 |
CN106033789A (zh) * | 2015-03-18 | 2016-10-19 | 比亚迪股份有限公司 | 荧光粉基板及其制作方法和复合发光led及其制作方法 |
CN106449943A (zh) * | 2016-11-30 | 2017-02-22 | 芜湖聚飞光电科技有限公司 | 一种倒装型量子点led灯珠的成型封装方法 |
CN107275460A (zh) * | 2017-07-12 | 2017-10-20 | 惠州市聚飞光电有限公司 | 一种单面发光的led器件及封装方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9348453B2 (en) * | 2013-02-04 | 2016-05-24 | Nokia Technologies Oy | Touch sensing arrangement with first and second shield electrodes |
-
2017
- 2017-07-12 CN CN201710566326.4A patent/CN107275460A/zh active Pending
- 2017-10-30 WO PCT/CN2017/108376 patent/WO2019010865A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102272953A (zh) * | 2008-11-13 | 2011-12-07 | 行家光电有限公司 | 用于荧光粉转换型发光设备的荧光粉涂敷的光抽取结构 |
CN202153536U (zh) * | 2011-07-20 | 2012-02-29 | 福建泰德视讯数码科技有限公司 | 一种大功率led封装结构 |
CN202473911U (zh) * | 2011-12-23 | 2012-10-03 | 惠州市华阳多媒体电子有限公司 | 提高出光效率的led器件 |
US20150214442A1 (en) * | 2014-01-28 | 2015-07-30 | Lextar Electronics Corporation | Light emitting diode package structure and method thereof |
CN106033789A (zh) * | 2015-03-18 | 2016-10-19 | 比亚迪股份有限公司 | 荧光粉基板及其制作方法和复合发光led及其制作方法 |
CN204834670U (zh) * | 2015-07-10 | 2015-12-02 | 晶能光电(江西)有限公司 | 一种白光led芯片封装结构 |
CN105895787A (zh) * | 2016-06-06 | 2016-08-24 | 青岛海信电器股份有限公司 | Led、led封装方法、直下式背光模组和液晶电视 |
CN106449943A (zh) * | 2016-11-30 | 2017-02-22 | 芜湖聚飞光电科技有限公司 | 一种倒装型量子点led灯珠的成型封装方法 |
CN107275460A (zh) * | 2017-07-12 | 2017-10-20 | 惠州市聚飞光电有限公司 | 一种单面发光的led器件及封装方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107275460A (zh) | 2017-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019010865A1 (zh) | 一种单面发光的led器件及封装方法 | |
CN105895785B (zh) | 倒装led芯片集成封装的光源组件结构及其制作方法 | |
CN104393154A (zh) | 一种led芯片级白光光源的晶圆级封装方法 | |
JP5422599B2 (ja) | 発光ダイオードパッケージ構造およびその製造方法 | |
CN109713026A (zh) | 一种硅基电致发光显示面板及其制造方法、显示装置 | |
WO2015085657A1 (zh) | Led封装件及其制作方法 | |
TWI458134B (zh) | 具有磷光膜之封裝發光二極體及相關之系統和方法 | |
CN101123286A (zh) | 发光二极管封装结构和方法 | |
JP2013191872A (ja) | 発光素子パッケージ | |
TWI509839B (zh) | 發光二極體封裝結構及封裝方法 | |
TW201251145A (en) | Light emitting device module and method of manufacturing the same | |
CN108987602B (zh) | 有机电致发光器件的封装结构及制作方法 | |
CN109273579A (zh) | Led灯珠制备方法 | |
CN105280781B (zh) | 一种倒装白光led器件及其制作方法 | |
JP2019502254A (ja) | 固体蛍光体集積光源のデュアルチャンネル伝熱パッケージング構造及びパッケージング方法 | |
WO2016037466A1 (zh) | 发光二极管器件及其制作方法 | |
TW201342672A (zh) | 發光二極體封裝結構的製造方法 | |
CN111682094B (zh) | 一种led发光背板及其生产方法 | |
JP2011114222A (ja) | 半導体発光装置、半導体発光装置アセンブリ、および半導体発光装置の製造方法 | |
TWI472064B (zh) | Led封裝件及其製法 | |
CN108615805A (zh) | 一种芯片级封装白光芯片及其封装方法 | |
KR101752426B1 (ko) | 발광소자 및 이를 포함하는 발광다이오드 패키지 | |
CN204885205U (zh) | 倒装led封装结构 | |
CN106058021A (zh) | 芯片级封装发光装置及其制造方法 | |
CN109545945B (zh) | 一种白光led用夹层荧光玻璃的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17917511 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17917511 Country of ref document: EP Kind code of ref document: A1 |