WO2019009644A1 - 모터 구동 장치 - Google Patents

모터 구동 장치 Download PDF

Info

Publication number
WO2019009644A1
WO2019009644A1 PCT/KR2018/007637 KR2018007637W WO2019009644A1 WO 2019009644 A1 WO2019009644 A1 WO 2019009644A1 KR 2018007637 W KR2018007637 W KR 2018007637W WO 2019009644 A1 WO2019009644 A1 WO 2019009644A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
phase
control unit
pwm signal
voltage
Prior art date
Application number
PCT/KR2018/007637
Other languages
English (en)
French (fr)
Inventor
정한수
조석희
제정문
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP18827944.2A priority Critical patent/EP3651348B1/en
Priority to AU2018295871A priority patent/AU2018295871B2/en
Priority to US16/629,267 priority patent/US11258393B2/en
Publication of WO2019009644A1 publication Critical patent/WO2019009644A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/12Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation pulsing by guiding the flux vector, current vector or voltage vector on a circle or a closed curve, e.g. for direct torque control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/26Rotor flux based control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/36Arrangements for braking or slowing; Four quadrant control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/14Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by regenerative braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements

Definitions

  • the present invention relates to a motor drive apparatus, and more particularly, to a motor drive apparatus capable of immediately restarting by maintaining sensorless control during a motor stop operation.
  • Small precision control motors are classified into AC motor, DC motor, Brushless DC motor and Reluctance motor.
  • the BLDC motor is a brushless and commutator-free motor.
  • the BLCD motor may include an inverter for providing a three-phase AC voltage and a control unit for controlling an output voltage of the inverter. At this time, the control unit can control the inverter using the PWM control method.
  • a sensorless algorithm that does not use a position sensor may be used as the control method of the BLCD motor.
  • the BLDC motor does not use the position sensor, which can reduce the production cost of the product.
  • An object of the present invention is to provide a motor drive apparatus capable of immediately restarting a motor when a user requests it, while maintaining sensorless control even during a motor stop operation in a sensorless system.
  • a motor driving apparatus includes an inverter for driving a motor using an AC voltage and a control unit for controlling operation of a switching element included in the inverter.
  • the control unit reduces the duty ratio of the PWM signal to decrease the speed of the motor until the current speed of the motor becomes smaller than the predetermined minimum speed.
  • the restart command is inputted in a state in which the duty ratio of the PWM signal is reduced, the control unit can immediately restart the motor by increasing the duty ratio of the PWM signal.
  • the motor drive apparatus can immediately restart the motor when requested by the user by maintaining the sensorless control during the stop operation. This minimizes the response time to the restart request and improves the control stability of the motor.
  • FIG. 1 is a block diagram showing a motor driving apparatus according to an embodiment of the present invention.
  • Fig. 2 is a block diagram showing the components of the control unit of Fig. 1. Fig.
  • FIG. 3 is a circuit diagram for explaining the inverter of FIG.
  • FIG. 4 is a flowchart for explaining the operation of the motor driving apparatus according to the embodiment of the present invention.
  • 5 to 7 are graphs showing waveforms of a PWM signal according to the operation of the motor driving apparatus.
  • FIG. 8 is a graph for explaining the operation of the motor driving apparatus according to the embodiment of the present invention.
  • FIG. 1 is a block diagram showing a motor driving apparatus according to an embodiment of the present invention.
  • a motor driving apparatus may include a motor 110, an inverter 120, and a control unit 130.
  • the motor 110 may include a stator in which a three-phase coil (not shown) is wound and a rotor disposed in the stator and rotated by a magnetic field generated in the three-phase coil.
  • the permanent magnets included in the rotor rotate in accordance with the magnetic field generated in the three-phase coil.
  • the motor 110 is not limited to the three-phase motor operated by the three-phase coil.
  • the motor 110 may further include a single-phase motor using a single-phase coil.
  • the characteristics of the present invention will be described with reference to a three-phase motor.
  • the motor 110 may include an induction motor, a BLDC motor, a reluctance motor, and the like.
  • the motor 110 may be a Surface Mounted Permanent Magnet Synchronous Motor (SMPMSM), an Interior Permanent Magnet Synchronous Motor (IPMSM), and a Synchronous Reluctance Motor (Synchronous Reluctance Motor; Synrm), and the like.
  • SMPMSM Surface Mounted Permanent Magnet Synchronous Motor
  • IPMSM Interior Permanent Magnet Synchronous Motor
  • Synrm Synchronous Reluctance Motor
  • the inverter 120 may comprise three-phase switch elements.
  • the three-phase switching elements operate in a switch-on and off state when an operation control signal (hereinafter, referred to as 'PWM (Pulse Width Modulation)' signal) supplied to the control unit 130 is inputted and supplies the inputted DC voltage Vdc to three- Voltage (Vua, Vvb, Vwc) and supplied to the three-phase coil.
  • 'PWM Pulse Width Modulation
  • control unit 130 sets the ON-time interval and the OFF-time interval for the OFF operation of each of the three-phase switching elements on the basis of the target command value and the electric angle position of the rotor And can output the signal PWMS.
  • the motor drive apparatus further includes an input current detection unit A, a DC voltage detection unit B, a DC capacitor C, an electric motor current detection unit E, an input voltage detection unit F, and inductors L1 and L2 .
  • an input current detection unit A a DC voltage detection unit B, a DC capacitor C, an electric motor current detection unit E, an input voltage detection unit F, and inductors L1 and L2 .
  • the present invention is not limited thereto, and some of the above-described additional components may be omitted.
  • the input current detection section A can detect the input current ig input from the commercial AC power source 101.
  • a current transformer (CT), a shunt resistor, or the like may be used as the input current detector A.
  • the detected input current ig can be input to the control unit 130 for power control as a discrete signal in the form of a pulse.
  • the input voltage detecting section F can detect the input voltage vg input from the commercial AC power source 101.
  • the input voltage detecting unit F may include a resistance element, an amplifier, and the like.
  • the detected input voltage vg can be input to the control unit 130 for power control as a discrete signal in the form of a pulse.
  • the inductors L1 and L2 are disposed between the commercial AC power supply 101 and the rectifying unit 105 so as to perform an operation such as noise elimination.
  • the rectifying section 105 rectifies and outputs the commercial AC power source 101 through the inductors L1 and L2.
  • the rectifying unit 105 may include a full bridge diode having four diodes connected thereto, but may be variously modified.
  • the capacitor C stores the input power.
  • one element is exemplified by the DC short-circuit capacitor C, but a plurality of elements are provided to secure the element stability.
  • the DC voltage detection unit B can detect the DC voltage Vdc at both ends of the capacitor C.
  • the DC voltage detection unit B may include a resistance element, an amplifier, and the like.
  • the detected DC short voltage Vdc can be input to the control unit 130 for generation of the PWM signal PWMS as a discrete signal in the form of a pulse.
  • the motor current detection unit E detects the output current io flowing between the inverter 120 and the three-phase motor 110. [ That is, the current flowing in the three-phase motor 110 is detected.
  • the motor current detecting unit E can detect all of the output currents ia, ib, and ic of each phase, or can detect the output currents of two phases using three-phase equilibrium.
  • the motor current detection unit E may be located between the inverter 120 and the three-phase motor 110.
  • a current transformer (CT), a shunt resistor, or the like may be used for current detection.
  • the detected output current io can be applied to the control unit 130 as a discrete signal in the form of a pulse and the PWM signal PWMS is generated based on the detected output current io.
  • the detected output current io is three-phase output currents (ia, ib, ic).
  • control unit 130 determines whether or not the input current Iig detected by the input current detection unit A, the input voltage vg detected by the input voltage detection unit F, the DC voltage Vd detected by the DC voltage detection unit B, It is possible to control the operation of the inverter 120 using the short-circuit voltage Vdc and the output current io detected by the motor current detector E.
  • Fig. 2 is a block diagram showing the components of the control unit of Fig. 1. Fig.
  • the control unit 130 includes a three-phase / two-phase axis converting unit 210, a position estimating unit 220, a speed calculating unit 230, a setpoint generating unit 240, A conversion unit 250, a signal generation unit 260, a deceleration controller 270, and a switch unit 280.
  • the three-phase / two-phase axial conversion unit 210 receives the three-phase currents ia, ib, ic output from the motor 110 and converts the three-phase currents ia, ib, ic into a two-phase current i ⁇ , i ⁇ in the stationary coordinate system.
  • the 3-phase / 2-phase axial conversion unit 210 can convert the 2-phase currents i ⁇ and i ⁇ in the stationary coordinate system into the 2-phase currents id and iq in the rotational coordinate system.
  • the position estimating unit 220 detects at least one of the three-phase currents ia, ib and ic and the three-phase voltages Va, Vb and Vc to estimate the position H of the rotor included in the motor 110 can do.
  • the speed calculating unit 230 can calculate the current speed of the rotor ⁇ ⁇ r based on at least one of the position H estimated by the position estimating unit 220 and the three-phase voltages Va, Vb and Vc have. That is, the speed calculator 230 can calculate the current speed? ⁇ R by dividing the position H by the time.
  • the speed calculation unit 230 may output the location and the calculated electrical angle position ( ⁇ ⁇ r) and the calculated current speed ( ⁇ ⁇ r) based on (H).
  • the command value generation unit 240 may include a current command generation unit 242 and a voltage command generation unit 244.
  • the current command generation section 242 generates the current command value (i * q ) based on the speed command value? * R.
  • the command current generating unit 242 a PI control on the current speed ( ⁇ ⁇ r) and a reference speed ( ⁇ r) of the speed command value ( ⁇ * r), PI controller 243 on the basis of the difference between , And can generate the current command value (i * q ).
  • the current command generation section 242 can generate the d-axis current command value (i * d ) together with the q-axis current command value (i * q ).
  • the value of the d-axis current command value i * d may be set to zero.
  • the current command generation section 242 may further include a limiter (not shown) for limiting the current command value i * q so that the current command value i * q does not exceed the allowable range.
  • the switch unit 280 may select any one of the current command generator 242 and the deceleration controller 270 and may transmit the signal output from the selected element to the voltage command generator 244. [ At this time, the output signal may include the current command value (i * d , i * q ).
  • the current command value (i * d , i * q ) generated by the current command generator 242 may be transmitted to the voltage command generator 244 via the switch unit 280.
  • the switch unit 280 may connect the current command generator 242 and the voltage command generator 244 when an instruction of an acceleration operation or a holding operation is received in the control unit 130.
  • the switch unit 280 may connect the deceleration controller 270 and the voltage command generator 244.
  • the deceleration controller 270 may receive a stop command (St) and the current speed ( ⁇ ⁇ r), and the operation on the basis of the sensor-less algorithm (Sensorless Algorithm).
  • the input is a deceleration controller 270 may stop instruction (St), the current speed ( ⁇ ⁇ r) is predetermined, until less than the minimum speed ( ⁇ r_limit), the duty ratio of the PWM signal (PWMS) ( the current command value i * d , i * q , which causes the duty ratio to be reduced, can be output.
  • this control method is called zero current control.
  • the PWM signal PWMS having a reduced duty ratio is output, so that the control unit 130 can maintain the continuity of the sensorless control for the motor 110.
  • control unit 130 can estimate the position of the magnetic polarity of the motor 110, so that when the restart command is input, immediate restart can be possible.
  • control unit 130 can not estimate the position of the magnetic pole of the motor 110, so that it is possible to restart the motor 110 after the motor 110 is stopped.
  • the deceleration controller 270 sets the current command value i * d (i) to increase the duty ratio of the PWM signal PWMS when a restart command is input to the control unit 130 while the duty ratio of the PWM signal PWMS is decreased , i * q ) can be output.
  • deceleration controller 270 is the current command value such that the duty ratio of "0" of the PWM signal (PWMS), to a forced braking ( i * d , i * q ). A detailed description thereof will be given later with reference to Fig.
  • the voltage command generation section 244 generates the voltage command generation section 244 based on the d-axis and q-axis currents i d and i q that are axis-converted into the rotation coordinate system and the current command values (i * d and i * q ) in the current command generation section 242, D and q-axis voltage command values v * d and v * q based on the voltage command values v * d and v * q .
  • the voltage command generation unit 244 performs PI control in the PI controller 245 based on the difference between the q-axis current (i q ) and the q-axis current command value (i * q ) It is possible to generate the axial voltage command value v * q .
  • voltage command generation unit 244 on the basis of the difference between the d-axis current (i d) and, the d-axis current command value (i * d), and performs the PI control in the PI controller (246), d-axis voltage It is possible to generate the command value v * d .
  • the value of the d-axis voltage command value v * d may be set to zero corresponding to the case where the value of the d-axis current command value i * d is set to zero.
  • the voltage command generator 244 may further include a limiter (not shown) for limiting the level of the d-axis and q-axis voltage command values v * d and v * q so that they do not exceed the permissible range .
  • the generated d-axis and q-axis voltage instruction values (v * d , v * q ) are input to the 2-phase / 3-phase axis conversion unit 250.
  • 2-phase / 3-phase-axis transformation unit 250 and the position ( ⁇ ⁇ r) calculated in the speed calculating section (230), d-axis, q-axis voltage command value (v * d, v * q) receives, Axis Conversion is performed.
  • the two-phase / three-phase axial conversion unit 250 performs conversion from the two-phase rotation coordinate system to the two-phase stationary coordinate system.
  • the electric angular position (? ⁇ R ) calculated by the speed calculating unit 230 can be used.
  • the two-phase / three-phase axial conversion unit 250 performs conversion from the two-phase stationary coordinate system to the three-phase stationary coordinate system. Through this conversion, the 2-phase / 3-phase axial conversion unit 250 outputs the 3-phase output voltage set values v * a, v * b and v * c.
  • the PWM generator 260 generates and outputs an inverter PWM signal PWMS according to a pulse width modulation (PWM) method based on the three-phase output voltage set values v * a, v * b and v * c.
  • PWM pulse width modulation
  • the PWM signal PWMS may be converted to a gate driving signal in a gate driver (not shown) and input to the gate of the three-phase switching elements in the inverter 120. Thereby, the three-phase switching elements in the inverter 120 perform the switching operation.
  • PWM generator 260 to vary the on-time intervals and off-time period of the PWM signal (PWMS) based on the aforementioned electrical angular position ( ⁇ ⁇ r) and the three-phase voltage (Va, Vb, Vc), The switch operation of the three-phase switch elements can be controlled.
  • the PWM generator 260 sets a plurality of algorithms for generating the PWM signal PWMS.
  • the PWM generator 260 can generate the output voltage command value vector based on the three-phase output voltage command values v * a, v * b, and v * c.
  • PWM generator 260 may receive a stop command (St) and the current speed ( ⁇ ⁇ r), and operating the sensor-less algorithm on the basis of .
  • the deceleration controller 270 and the switch unit 280 described above may be omitted.
  • the PWM generator 260 sets the duty ratio of the PWM signal PWMS until the current speed ⁇ ⁇ r becomes smaller than the predetermined minimum speed ⁇ r_limit Current control can be performed.
  • the zero current control outputs a PWM signal PWMS with a reduced duty ratio, and can maintain continuity with the sensorless control of the control unit 130.
  • the PWM generator 260 can increase the duty ratio of the PWM signal PWMS again when a restart command is input to the control unit 130 in a state in which the duty ratio of the PWM signal PWMS is reduced.
  • PWM generating section 260 may make a duty ratio of the PWM signal (PWMS), to a forced braking to zero .
  • PWMS PWM signal
  • FIG. 3 is a circuit diagram for explaining the inverter of FIG.
  • the inverter 120 may include three-phase switching elements, and may be switched on and off by the PWM signal PWMS supplied from the control unit 130, Phase alternating-current voltages Vua, Vvb, and Vwc having a predetermined frequency or duty and outputting the converted direct-current voltage Vdc to the motor 110.
  • the three-phase switch elements are a pair of first to third cantilever switches Sa, Sb and Sc and first to third down-arm switches S'a, S'b and S'b connected in series to each other,
  • the total of three pairs of first through third cantilever switches and first through third downward arms (Sa & S'a, Sb & S'b, Sc & S'c) may be connected in parallel with each other.
  • the first and the lower arm switches Sa and S'a are connected to the first phase coil La among the three-phase coils La, Lb and Lc of the motor 110 to generate the three-phase AC voltages Vua, Vvb and Vwc
  • the first phase AC voltage Vua is supplied.
  • the second and third phase switches Sb and S'b supply the second phase AC voltage Vvb to the second phase coil Lb and the third phase and the bottom arm switches Sc and S'c
  • the third phase AC voltage Vwc can be supplied to the third phase coil Lc.
  • each of the first to third cantilever switches Sa, Sb, Sc and the first to third bottom arm switches S'a, S'b, S'b is connected to the input PWM signal Phase AC voltages Vua, Vvb, and Vwc are supplied to the three-phase coils La, Lb, and Lc, respectively, in accordance with the control signal PWMS .
  • the control unit 130 transmits the PWM signal PWMS to the first through third cantilever switches Sa, Sb and Sc and the first through third bottom arm switches S'a, S'b and S'b, Phase AC voltages Vua, Vvb, and Vwc are supplied to the three-phase coils La, Lb, and Lc.
  • the control unit 130 also transmits the PWM signal PWMS by the zero current control so that the three phase ac voltages Vua, Vvb and Vwc are supplied to the three-phase coils La, Lb and Lc during the decelerating operation Can be controlled. At this time, the magnitude of the current flowing through the three-phase coils La, Lb, and Lc may be smaller than the magnitude of the current before the deceleration operation.
  • the control unit 130 also outputs a PWM signal PWMS for forcibly braking the motor 110 so that the first to third cantilever switches Sa, Sb and Sc and the first to third lower arm switches S 'a, S'b, S'b).
  • forcible braking includes a power generation braking system and an available braking system.
  • the power generation braking system is a method of generating a counter electromotive force in the motor 110 to stop the motor 110 quickly.
  • the control unit 130 turns off the first to third cantilever switches Sa, Sb, Sc and turns on the first to third lower arm switches S'a, S'b, S'b .
  • the reel braking system is a method of freewheeling the motor 110 to decelerate the speed through natural deceleration by mechanical loss (for example, frictional force or wind loss).
  • the control unit 130 can turn off the first to third cantilever switches Sa, Sb, Sc and the first to third down arm switches S'a, S'b, S'b.
  • the sensorless system can not obtain voltage or current information, and sensorless control can not be maintained.
  • the motor driving apparatus it is possible to keep the sensor-less control by the zero-current control until less than the current speed ( ⁇ ⁇ r) has a predetermined minimum speed ( ⁇ r_limit).
  • ⁇ r_limit a predetermined minimum speed
  • the motor 110 can be restarted after it is stopped by the forced braking.
  • the forced braking corresponds to a relatively fast braking method, so that the present invention can perform an immediate restart operation while minimizing the stopping time.
  • the pause time may be less than one second, but the present invention is not limited thereto.
  • FIG. 4 is a flowchart for explaining the operation of the motor driving apparatus according to the embodiment of the present invention.
  • 5 to 7 are graphs showing waveforms of a PWM signal according to the operation of the motor driving apparatus.
  • a motor driving apparatus performs a motor control operation (S110).
  • the motor 110 can perform the acceleration or deceleration operation based on the command speed r .
  • the control unit 130 receives the stop command St (S120).
  • the stop command St may be generated by a user's request or command.
  • the control unit 130 performs a deceleration operation of the motor 110 through the zero current control (S130).
  • the zero current control is an operation for reducing the duty ratio of the PWM signal PWMS used for controlling the motor 110. [ Through the zero current control, the control unit 130 can perform the deceleration operation while maintaining the sensorless control.
  • FIG 5 shows a current I1 transferred to the first phase coil of the motor 110 during a normal operation and a PWM signal PWM1 for controlling the current I1.
  • FIG. 6 shows a current I2 transferred to the first phase coil in the zero current control operation and a PWM signal PWM2 for controlling the current I2.
  • the magnitude H2 of the current I2 transferred to the first phase coil in the zero current control operation may be smaller than the magnitude H1 of the current I1 transmitted to the first phase coil in the normal operation.
  • the duty ratio d2 of the PWM signal PWM2 in the zero current control operation may be smaller than the duty ratio d1 of the PWM signal PWM1 in the normal operation.
  • the period T2 of the PWM signal PWM2 during the zero current control operation may be larger than the period T1 of the PWM signal PWM1 during normal operation, but the present invention is not limited thereto.
  • control unit 130 can perform the decelerating operation for decelerating the rotation speed of the motor 110 and can maintain the sensorless control.
  • control unit 130 confirms whether a restart command has been received (S140).
  • the control unit 130 If a restart command is received during the zero current control, the control unit 130 increases the duty ratio of the PWM signal PWMS again to accelerate the motor 110 (S145). The control unit 130 can immediately perform the restart operation since the sensorless control is maintained.
  • the control unit 130 determines whether less than a predetermined minimum speed ( ⁇ r_limit), current speed ( ⁇ ⁇ r) of the motor (110) (S150 ).
  • the minimum speed? R_limit may be the minimum speed that is smaller than the maximum speed of the motor 110 and enables sensorless operation.
  • the lowest speed ([omega] r_limit ) may be a value less than half of the maximum speed of the motor 110.
  • the control unit 130 may force the braking operation of the motor (110) (S160).
  • the above-described power generation braking system or the available braking system may be used. A duplicate description thereof will be omitted here.
  • the sensorless control may not be maintained.
  • FIGS. 6 and 7 will be described in order to explain a change in the duty ratio of the PWM signal PWMS during the forced braking operation.
  • FIG. 6 shows a current I2 transferred to the first phase coil in the zero current control operation and a PWM signal PWM2 for controlling the current I2.
  • FIG. 7 shows a current I3 transmitted to the first phase coil of the motor 110 during the forced braking operation and a PWM signal PWM3 for controlling the current I3.
  • the magnitude H3 of the current I3 transmitted to the first phase coil during the forced braking operation may be smaller than the magnitude H2 of the current I2 transmitted to the first phase coil during the zero current control operation.
  • the duty ratio of the PWM signal PWM3 during the forced braking operation may be smaller than the duty ratio d2 of the PWM signal PWM2 during the zero current control.
  • the PWM signal PWM3 during the forced braking operation may be '0', but the present invention is not limited thereto.
  • control unit 130 can not maintain the sensorless control of the motor 110. Therefore, the control unit 130 can minimize the braking time of the motor 110 through the forced braking operation.
  • control unit 130 confirms whether or not the restart command is received (S170).
  • the control unit 130 determines whether the minimum stop time has passed since the stop command St was received (S180).
  • the minimum stop time may refer to a point in time when a predetermined time elapsed from the time when the stop command St is received from the control unit 130.
  • the minimum stopping time may be set to 1 second, but the present invention is not limited thereto.
  • the motor 110 can be stopped through the forced braking operation via the sensorless control state.
  • the control unit 130 sets the motor 110 to OFF by providing the PWM signal PWMS output in the normal operation (S145). That is, the control unit 130 can restart the motor 110. [ At this time, since the motor 110 can be restarted in a completely stopped state, the control unit 130 can maintain continuity of the control of the motor 110. [
  • step < RTI ID 0.0 > S180 < / RTI > At this time, when the motor 110 is stopped, the control unit 130 can restart the motor 110 irrespective of the minimum stop time.
  • the present invention is not limited thereto.
  • the motor drive apparatus can immediately restart the motor when the user requests by maintaining the sensorless control during the stop operation.
  • the restart operation is performed after the minimum stop time has elapsed, so that the continuity of the control of the motor 110 can be maintained.
  • the motor driving apparatus of the present invention can minimize the response time to the user's restart request and improve the operational stability of the motor control.
  • FIG. 8 is a graph for explaining the operation of the motor driving apparatus according to the embodiment of the present invention.
  • Figure 8 illustrates the phase current (I) which is used to drive the reference speed ( ⁇ r), the current speed ( ⁇ ⁇ r), and a motor 110 at the time of the motor drive operation.
  • the section A is the section in which the command speed ( ⁇ r ) is increased and represents the acceleration section.
  • the increased reference speed ( ⁇ r) that increases with the current road speed ( ⁇ ⁇ r) of the motor 110, and reaches the target speed, it is possible to maintain a constant speed.
  • the magnitude of the phase current I can be increased and input to the motor 110.
  • the section B is a section for performing the sensorless control through the zero current control after the stop command St is inputted to the control unit 130.
  • stop command (St) on the control unit 130 is input, reference speed ( ⁇ r) is reduced, which decreases in accordance with the current speed ( ⁇ ⁇ r) also command speed ( ⁇ r).
  • the control unit 130 can perform the decelerating operation while maintaining the sensorless control. Specifically, the control unit 130 can perform the decelerating operation while maintaining the sensorless control by reducing the duty ratio of the PWM signal PWMS.
  • the section C is a period during which the restart command is received and the motor 110 is restarted while performing the zero current control in the control unit 130.
  • the control unit 130 can maintain the sensorless control through the zero current control. When the sensorless control is maintained, the control unit 130 can estimate the position of the magnetic pole of the motor 110, so that immediately when the restart command is inputted, immediate restart is possible. Therefore, the control unit 130 can promptly react to the restart command to accelerate the motor 110.
  • D section is a section for performing sensorless control through zero current control after the stop command St is inputted to the control unit 130 as in the section B.
  • the control unit 130 can perform the decelerating operation while maintaining the sensorless control in a range where the command speed r is larger than the predetermined minimum speed r_limit .
  • the control unit 130 performs the forced braking.
  • the command speed? R makes the PWM signal PWMS applied to the motor 110 '0', generates a counter electromotive force to the motor 110, or freewheels the motor 110 . Accordingly, it can be reduced quickly stop the current speed ( ⁇ ⁇ r) of the motor (110).
  • the sensorless control is not maintained in the control unit 130 in the E section. Therefore, even if the restart command is inputted in the middle of the section E, the control unit 130 can not estimate the position of the magnetic pole of the motor 110, and can perform the restart after the motor 110 is stopped.
  • the F period is a period in which the motor 110 is accelerated for restart after the motor 110 is stopped.
  • the F section can accelerate the motor 110 in the same manner as the A section.
  • the start point of the section F may be a time point at which the minimum stop time Ts has elapsed since the stop command St was received.
  • the present invention is not limited to this, and the start point of the section F may be a time point when the motor 110 is completely stopped.
  • the motor drive apparatus can immediately restart the motor when there is a restart command (for example, in a section C) by maintaining the sensorless control during the stop operation.
  • the control unit 130 can maintain the continuity of the control of the motor 110 by performing the restart operation after the minimum stop time has passed For example, section E).
  • the motor driving apparatus of the present invention can minimize the response time to the user's restart request and improve the operational stability of the motor control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

본 발명은 모터 구동 장치에 관한 것으로, 보다 상세하게는 모터의 정지 동작 중에 센서리스 제어를 유지함으로써 즉시 재기동이 가능한 모터 구동 장치에 관한 것이다. 상기 모터 구동 장치는, 교류 전압을 이용하여 모터를 구동하는 인버터와, 인버터에 포함된 스위칭 소자의 동작을 제어하는 제어유닛을 포함한다. 이때, 제어유닛은 정지지령이 입력되는 경우, 모터의 현재 속도가 미리 결정된 최저 속도보다 작아질 때까지 PWM 신호의 듀티비를 감소시켜 모터의 속도를 감소시킨다. 이어서, 제어유닛은 PWM 신호의 듀티비가 감소된 상태에서 재기동 지령이 입력되는 경우, PWM 신호의 듀티비를 증가시킴으로써, 모터를 즉시 재기동 시킬 수 있다.

Description

모터 구동 장치
본 발명은 모터 구동 장치에 관한 것으로, 보다 상세하게는 모터의 정지 동작 중에 센서리스 제어를 유지함으로써 즉시 재기동이 가능한 모터 구동 장치에 관한 것이다.
소형 정밀제어 모터는 크게 AC 모터, DC 모터, 브러시리스(Brushless) DC 모터 및 릴럭턴스(Reluctance) 모터로 구분된다.
이러한 소형모터는 AV 기기용, 컴퓨터용, 가전 및 주택설비용, 산업용 등 많은 곳에서 사용되고 있다. 특히 가전 분야는 소형모터의 최대 시장을 형성해 가고 있는 분야이다. 가전제품은 점차 고급화 되어 가고 있으며 그에 따라 구동되는 모터의 소형화, 저소음화, 저소비전력화 등이 요구된다.
이 중, BLDC모터는 브러쉬와 정류자가 없는 모터로서, 기계적인 마찰손실이나 불꽃, 노이즈가 원칙적으로는 발생하지 않으며 속도 제어나 토크 제어가 뛰어나다. 또한, 속도 제어에 의한 손실이 없고, 소형모터로서는 효율이 높아 가전분야의 제품에 많이 사용되고 있다.
BLCD 모터는 3상 교류 전압을 제공하는 인버터와, 인버터의 출력 전압을 제어하는 제어유닛을 포함할 수 있다. 이때, 제어유닛은 PWM 제어 방식을 이용하여 인버터를 제어할 수 있다.
BLCD 모터의 제어 방식에는 위치 센서(예를 들어, 홀센서)를 사용하지 않는 센서리스 알고리즘(Sensorless Algorithm)이 이용될 수 있다. 이 경우, BLDC 모터는 위치 센서를 사용하지 않음으로써 제품의 생산 비용을 절감할 수 있다.
종래의 위치 센서를 가지고 있는 시스템의 경우, 정지 중 다시 운전을 재기해야 하는 경우, 모터의 회전자 정보를 이용하여 회전 중에 즉시 재기동하는 것이 가능하였다.
다만, 센서리스 알고리즘을 이용하여 모터를 제어하는 센서리스 시스템(Sensorless System)에서는 정지 중 즉시 재기동을 하기 위해서는 별도의 알고리즘이 요구되는 문제점이 있었다.
본 발명의 목적은, 센서리스 시스템에서 모터의 정지 동작 중에도 센서리스 제어를 유지하면서, 사용자의 요청이 있는 경우 즉시 재기동이 가능한 모터 구동 장치를 제공하는 것이다.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명에 따른 모터 구동 장치는, 교류 전압을 이용하여 모터를 구동하는 인버터와, 인버터에 포함된 스위칭 소자의 동작을 제어하는 제어유닛을 포함한다. 이때, 제어유닛은 정지지령이 입력되는 경우, 모터의 현재 속도가 미리 결정된 최저 속도보다 작아질 때까지 PWM 신호의 듀티비를 감소시켜 모터의 속도를 감소시킨다. 이어서, 제어유닛은 PWM 신호의 듀티비가 감소된 상태에서 재기동 지령이 입력되는 경우, PWM 신호의 듀티비를 증가시킴으로써, 모터를 즉시 재기동 시킬 수 있다.
본 발명에 따른 모터 구동 장치는, 정지 동작 중에 센서리스 제어를 유지함으로써 사용자의 요청이 있는 경우 모터를 즉시 재기동시킬 수 있다. 이를 통해, 재기동 요청에 대한 반응 시간을 최소화할 수 있으며, 모터의 제어 안정성을 향상시킬 수 있다.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.
도 1은 본 발명의 실시예에 따른 모터 구동 장치를 나타내는 블럭도이다. 
도 2는 도 1의 제어유닛의 구성요소를 나타내는 블록도이다.
도 3은 도 1의 인버터를 설명하기 위한 회로도이다.
도 4는 본 발명의 실시예에 따른 모터 구동 장치의 동작을 설명하기 위한 순서도이다. 
도 5 내지 도 7은 모터 구동 장치의 동작에 따른 PWM 신호의 파형을 나타내는 그래프이다.
도 8은 본 발명의 실시예에 따른 모터 구동 장치의 동작을 설명하기 위한 그래프이다. 
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다.
이하에서는, 도 1 내지 도 8을 참조하여, 본 발명의 실시예에 따른 모터 구동 장치를 설명하도록 한다.
도 1은 본 발명의 실시예에 따른 모터 구동 장치를 나타내는 블럭도이다. 
도 1을 참조하면, 본 발명의 실시예에 따른 모터 구동 장치는, 모터(110), 인버터(120) 및 제어유닛(130)를 포함할 수 있다.
모터(110)는 3상 코일(미도시)이 권선된 스테이터(stator) 및 스테이터 내에 배치되며 3상 코일에서 발생된 자기장에 의해 회전하는 로터(rotor)를 포함할 수 있다.
인버터(120)로부터 3상 교류 전압(Vua, Vvb, Vwc)이 3상 코일로 공급되면, 모터(110)에서는 3상 코일에서 발생된 자계에 따라 로터에 포함된 영구자석이 회전한다.
다만, 본 발명의 실시예에 따른 모터(110)가 3상 코일에 의해 동작하는 3상 모터에 한정되는 것은 아니다. 예를 들어, 모터(110)는 단상 코일을 이용하는 단상 모터를 더 포함할 수 있다. 다만, 이하에서는, 3상 모터를 기준으로 본 발명의 특징을 설명하도록 한다.
모터(110)는 유도 모터(induction motor), BLDC 모터(blushless DC motor), 릴럭턴스 모터(reluctance motor) 등을 포함할 수 있다. 예를 들어, 모터(110)는 표면 부착형 영구자석 동기 모터(Surface-Mounted Permanent-Magnet Synchronous Motor; SMPMSM), 매입형 영구자석 동기 모터(Interior Permanent Magnet Synchronous Motor; IPMSM), 및 동기 릴럭턴스 모터(Synchronous Reluctance Motor; Synrm) 등을 포함할 수 있다.
인버터(120)는 3상 스위치 소자들을 포함할 수 있다. 3상 스위치 소자들은 제어유닛(130)으로 공급된 동작 제어 신호(이하, 'PWM(Pulse Width Modulation) 신호)가 입력되면, 스위치 온 및 오프로 동작하여 입력된 직류 전압(Vdc)을 3상 교류 전압(Vua, Vvb, Vwc)로 변환하여 3상 코일로 공급할 수 있다. 3상 스위치 소자들에 대한 자세한 설명은 도 3을 참조하여 자세히 후술하기로 한다.
제어유닛(130)는 목표 지령값 입력시, 목표 지령값 및 로터의 전기각 위치를 기초로 3상 스위치소자들 각각의 온 동작에 대한 온 시간구간 및 오프동작에 대한 오프 시간구간을 결정하는 PWM 신호(PWMS)를 출력할 수 있다.
모터 구동 장치는 입력 전류 검출부(A), 직류단 전압 검출부(B), 직류단 커패시터(C), 전동기 전류 검출부(E), 입력 전압 검출부(F), 및 인덕터(L1, L2) 등을 더 포함할 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니며, 앞의 추가적인 구성요소 중 일부는 생략되어 실시될 수 있다.
입력 전류 검출부(A)는, 상용 교류 전원(101)으로부터 입력되는 입력 전류(ig)를 검출할 수 있다. 이를 위하여, 입력 전류 검출부(A)로, CT(current trnasformer), 션트 저항 등이 사용될 수 있다. 검출되는 입력 전류(ig)는, 펄스 형태의 이산 신호(discrete signal)로서, 전력 제어를 위해 제어유닛(130)에 입력될 수 있다.
입력 전압 검출부(F)는, 상용 교류 전원(101)으로부터 입력되는 입력 전압(vg)을 검출할 수 있다. 이를 위하여, 입력 전압 검출부(F)는 저항 소자, 증폭기 등을 포함할 수 있다. 검출되는 입력 전압(vg)은, 펄스 형태의 이산 신호(discrete signal)로서, 전력 제어를 위해 제어유닛(130)에 입력될 수 있다.
인덕터(L1, L2)는, 상용 교류 전원(101)과 정류부(105) 사이에 배치되어, 노이즈 제거 등의 동작을 수행할 수 있다.
정류부(105)는, 인덕터(L1, L2)를 거친 상용 교류 전원(101)을 정류하여 출력한다. 예를 들어, 정류부(105)는, 4개의 다이오드가 연결된 풀 브릿지 다이오드를 구비할 수 있으나, 다양하게 변형되어 적용될 수 있다.
커패시터(C)는, 입력되는 전원을 저장한다. 도면에서는, 직류단 커패시터(C)로 하나의 소자를 예시하나, 복수개가 구비되어, 소자 안정성을 확보할 수도 있다.
직류단 전압 검출부(B)는 커패시터(C)의 양단인 직류단 전압(Vdc)을 검출할 수 있다. 이를 위하여, 직류단 전압 검출부(B)는 저항 소자, 증폭기 등을 포함할 수 있다. 검출되는 직류단 전압(Vdc)은, 펄스 형태의 이산 신호(discrete signal)로서, PWM 신호(PWMS)의 생성을 위해 제어유닛(130)에 입력될 수 있다.
전동기 전류 검출부(E)는, 인버터(120)와 3상 모터(110) 사이에 흐르는 출력전류(io)를 검출한다. 즉, 3상 모터(110)에 흐르는 전류를 검출한다. 전동기 전류 검출부(E)는 각 상의 출력 전류(ia, ib, ic)를 모두 검출할 수 있으며, 또는 3상 평형을 이용하여 두 상의 출력 전류를 검출할 수도 있다.
전동기 전류 검출부(E)는 인버터(120)와 3상 모터(110) 사이에 위치할 수 있으며, 전류 검출을 위해, CT(current trnasformer), 션트 저항 등이 사용될 수 있다.
검출된 출력전류(io)는, 펄스 형태의 이산 신호(discrete signal)로서, 제어유닛(130)에 인가될 수 있으며, 검출된 출력전류(io)에 기초하여 PWM 신호(PWMS)가 생성된다. 이하에서는 검출된 출력전류(io)가 3상의 출력 전류(ia,ib,ic)인 것으로 하여 기술한다.
이에, 제어유닛(130)는, 입력 전류 검출부(A)에서 검출되는 입력 전류(ig)와 입력 전압 검출부(F)에서 검출되는 입력 전압(vg), 직류단 전압 검출부(B)에서 검출되는 직류단 전압(Vdc), 전동기 전류 검출부(E)에서 검출되는 출력전류(io)를 이용하여 인버터(120)의 동작 제어를 수행할 수 있다.
도 2는 도 1의 제어유닛의 구성요소를 나타내는 블록도이다.
도 2를 참조하면, 제어유닛(130)는 3상/2상 축변환부(210), 위치 추정부(220), 속도 연산부(230), 지령치 생성부(240), 2상/3상 축변환부(250), 신호 생성부(이하, 'PWM 생성부'라 칭함, 260), 감속 제어기(270) 및 스위치부(280)를 포함할 수 있다.
3상/2상 축변환부(210)는 모터(110)에서 출력된 3상 전류(ia, ib, ic)를 입력받아, 정지좌표계의 2상 전류(iα, iβ)로 변환한다.
한편, 3상/2상 축변환부(210)는 정지좌표계의 2상 전류(iα, iβ)를 회전좌표계의 2상 전류(id, iq)로 변환할 수 있다.
위치 추정부(220)는 3상 전류(ia, ib, ic) 및 3상 전압(Va, Vb, Vc) 중 적어도 하나를 검출하여, 모터(110)에 포함된 로터의 위치(H)를 추정할 수 있다.
속도 연산부(230)는 위치 추정부(220)에서 추정한 위치(H) 및 3상 전압(Va, Vb, Vc) 중 적어도 하나에 기초하여, 로터의 현재 속도(ω^ r)를 연산할 수 있다. 즉, 속도 연산부(230)는 위치(H)를 시간으로 나누어 현재 속도(ω^ r)를 연산할 수 있다.
또한, 속도 연산부(230)는 위치(H)에 기초하여 연산된 전기각 위치(θ^ r)와 연산된 현재 속도(ω^ r)를 출력할 수 있다.
지령치 생성부(240)는 전류 지령 생성부(242) 및 전압 지령 생성부(244)를 포함할 수 있다.
전류 지령 생성부(242)는 연산된 현재 속도(ω^ r)와 입력된 목표 지령값에 대응하는 지령 속도(ωr)에 기초하여, 속도 지령치(ω* r)를 연산한다.
이후, 전류 지령 생성부(242)는 속도 지령치(ω* r)에 기초하여, 전류 지령치(i* q)를 생성한다.
예를 들어, 전류 지령 생성부(242)는, 현재 속도(ω^ r)와 지령 속도(ωr)의 차이인 속도 지령치(ω* r)에 기초하여, PI 제어기(243)에서 PI 제어를 수행하며, 전류 지령치(i* q)를 생성할 수 있다. 전류 지령 생성부(242)는 q축 전류 지령치(i* q)의 생성시, d축 전류 지령치(i* d)를 함께 생성할 수 있다. 한편, d축 전류 지령치(i* d)의 값은 0으로 설정될 수도 있다.
또한, 전류 지령 생성부(242)는, 전류 지령치(i* q)가 허용 범위를 초과하지 않도록 그 레벨을 제한하는 리미터(미도시)를 더 구비할 수도 있다.
스위치부(280)는 전류 지령 생성부(242)와 감속 제어기(270) 중 어느 하나를 선택하여, 전압 지령 생성부(244)에 선택된 소자에서 출력된 신호를 전달할 수 있다. 이때, 출력된 신호는 전류 지령치(i* d, i* q)를 포함할 수 있다.
즉, 전류 지령 생성부(242)에서 생성된 전류 지령치(i* d, i* q)는 스위치부(280)를 거쳐 전압 지령 생성부(244)로 전달될 수 있다. 여기에서, 제어유닛(130)에 가속 동작 또는 유지 동작의 지령이 수신되는 경우, 스위치부(280)는 전류 지령 생성부(242)와 전압 지령 생성부(244)를 연결할 수 있다.
반면, 제어유닛(130)에 정지 지령(St)이 수신되는 경우, 스위치부(280)는 감속 제어기(270)와 전압 지령 생성부(244)를 연결할 수 있다.
여기에서, 감속 제어기(270)는 정지 지령(St)과 현재 속도(ω^ r)를 수신하고, 센서리스 알고리즘(Sensorless Algorithm)을 기초로 동작할 수 있다.
구체적으로, 감속 제어기(270)는 정지 지령(St)이 입력되는 경우, 현재 속도(ω^ r)가 미리 결정된 최저 속도(ωr_limit)보다 작아질 때까지, PWM 신호(PWMS)의 듀티비(duty ratio)가 감소되도록 하는 전류 지령치(i* d, i* q)를 출력할 수 있다. 여기에서, 위와 같은 제어 방법을 영전류 제어(Zero Current Control)라 명명한다.
영전류 제어에서는 듀티비가 감소된 PWM 신호(PWMS)를 출력하는 바, 제어유닛(130)는 모터(110)에 대한 센서리스 제어의 연속성을 유지할 수 있다.
센서리스 제어가 유지되는 경우, 제어유닛(130)은 모터(110)의 자극(Magnetic polarity)의 위치를 추정할 수 있으므로, 재기동 지령이 입력되는 경우, 즉각적인 재기동이 가능할 수 있다.
반면, 센서리스 제어가 유지되지 않는 경우, 제어유닛(130)은 모터(110)의 자극의 위치를 추정할 수 없으므로, 모터(110)가 정지된 이후에나 재기동이 가능할 수 있다.
이어서, 감속 제어기(270)는 PWM 신호(PWMS)의 듀티비가 감소된 상태에서 제어유닛(130)에 재기동 지령이 입력되는 경우, PWM 신호(PWMS)의 듀티비가 증가되도록 하는 전류 지령치(i* d, i* q)를 출력할 수 있다.
반면, 현재 속도(ω^ r)가 미리 결정된 최저 속도(ωr_limit)보다 작아지는 경우, 감속 제어기(270)는 강제 제동을 위하여 PWM 신호(PWMS)의 듀티비가 '0' 이 되도록 하는 전류 지령치(i* d, i* q)를 출력할 수 있다. 이에 대한 자세한 설명은 도 4를 참조하여 후술하도록 한다.
전압 지령 생성부(244)는, 회전 좌표계로 축변환된 d축, q축 전류(id, iq)와, 전류 지령 생성부(242) 등에서의 전류 지령치(i* d, i* q)에 기초하여, d축, q축 전압 지령치(v* d, v* q)를 생성한다.
예를 들어, 전압 지령 생성부(244)는, q축 전류(iq)와, q축 전류 지령치(i* q)의 차이에 기초하여, PI 제어기(245)에서 PI 제어를 수행하며, q축 전압 지령치(v* q)를 생성할 수 있다.
또한, 전압 지령 생성부(244)는, d축 전류(id)와, d축 전류 지령치(i* d)의 차이에 기초하여, PI 제어기(246)에서 PI 제어를 수행하며, d축 전압 지령치(v* d)를 생성할 수 있다.
한편, d축 전압 지령치(v* d)의 값은, d축 전류 지령치(i* d)의 값은 0으로 설정되는 경우에 대응하여, 0으로 설정될 수도 있다.
한편, 전압 지령 생성부(244)는, d 축, q축 전압 지령치(v* d,v* q)가 허용 범위를 초과하지 않도록 그 레벨을 제한하는 리미터(미도시)를 더 구비할 수도 있다.
한편, 생성된 d축, q축 전압 지령치(v* d,v* q)는, 2상/3상 축변환부(250)에 입력된다.
2상/3상 축변환부(250)는, 속도 연산부(230)에서 연산된 위치(θ^ r)와, d축, q축 전압 지령치(v* d,v* q)를 입력받아, 축변환을 수행한다.
먼저, 2상/3상 축변환부(250)는, 2상 회전 좌표계에서 2상 정지 좌표계로 변환을 수행한다. 이때, 속도 연산부(230)에서 연산된 전기각 위치(θ^ r)가 사용될 수 있다.
그리고, 2상/3상 축변환부(250)는, 2상 정지 좌표계에서 3상 정지 좌표계로 변환을 수행한다. 이러한 변환을 통해, 2상/3상 축변환부(250)는, 3상 출력 전압 지령치(v*a, v*b, v*c)를 출력하게 된다.
PWM 생성부(260)는 3상 출력 전압 지령치(v*a,v*b,v*c)에 기초하여 펄스폭 변조(PWM) 방식에 따른 인버터용 PWM 신호(PWMS)를 생성하여 출력한다.
PWM 신호(PWMS)는 게이트 구동부(미도시)에서 게이트 구동 신호로 변환되어, 인버터(120) 내의 3상 스위칭 소자들의 게이트에 입력될 수 있다. 이에 의해, 인버터(120) 내의 3상 스위칭 소자들이 스위칭 동작을 하게 된다.
여기서, PWM 생성부(260)는 상술한 전기각 위치(θ^ r) 및 3상 전압(Va, Vb, Vc)를 기반으로 PWM 신호(PWMS)의 온 시간구간 및 오프 시간구간을 가변시켜, 3상 스위치소자들의 스위치 동작을 제어할 수 있다.
PWM 생성부(260)는 PWM 신호(PWMS)를 생성하기 위한 복수 개의 알고리즘이 설정되어 있다. PWM 생성부(260)는 3상 출력 전압 지령치(v*a,v*b,v*c)를 기초로 출력 전압 지령치 벡터를 생성할 수 있다.
도면에 명확하게 도시하지는 않았으나, 본 발명의 다른 실시예에서, PWM 생성부(260)는 정지 지령(St)과 현재 속도(ω^ r)를 수신하고, 센서리스 알고리즘을 기초로 동작할 수 있다. 이 경우, 앞에서 설명한 감속 제어기(270)와 스위치부(280)는 생략될 수 있다.
구체적으로, PWM 생성부(260)는 정지 지령(St)이 입력되는 경우, 현재 속도(ω^ r)가 미리 결정된 최저 속도(ωr_limit)보다 작아질 때까지, PWM 신호(PWMS)의 듀티비를 감소시키는 영전류 제어를 수행할 수 있다. 영전류 제어는 듀티비가 감소된 PWM 신호(PWMS)를 출력하는 바, 제어유닛(130)의 센서리스 제어에 대한 연속성을 유지시킬 수 있다.
이어서, PWM 생성부(260)는 PWM 신호(PWMS)의 듀티비가 감소된 상태에서 제어유닛(130)에 재기동 지령이 입력되는 경우, PWM 신호(PWMS)의 듀티비를 다시 증가시킬 수 있다.
반면, 현재 속도(ω^ r)가 미리 결정된 최저 속도(ωr_limit)보다 작아지는 경우, PWM 생성부(260)는 강제 제동을 위하여 PWM 신호(PWMS)의 듀티비를 '0'으로 만들 수 있다. 마찬가지로, 이에 대한 자세한 설명은 도 4를 참조하여 후술하도록 한다. 다만, 본 발명이 이에 한정되는 것은 아니며, 제어유닛(130)은 다른 구성요소를 이용하여 센서리스 알고리즘을 수행할 수 있다.
도 3은 도 1의 인버터를 설명하기 위한 회로도이다.
도 3을 참조하면, 본 발명의 실시예에 따른 인버터(120)는 3상 스위치소자들을 포함할 수 있으며, 제어유닛(130)으로부터 공급된 PWM 신호(PWMS)에 의해 스위치 온 및 오프 동작하여 입력된 직류 전압(Vdc)을 소정 주파수 또는 듀티를 갖는 3상 교류 전압(Vua, Vvb, Vwc)으로 변환하여 모터(110)로 출력할 수 있다.
3상 스위치소자들은 서로 직렬 연결되는 제1 내지 제3 상암 스위치(Sa, Sb, Sc) 및 제1 내지 제3 하암 스위치(S'a, S'b, S'b)가 서로 한 쌍이 되며, 총 세쌍의 제1 내지 제3 상암 스위치 및 제1 내지 제3 하암 스위치((Sa&S'a, Sb&S'b, Sc&S'c)가 서로 병렬 연결될 수 있다.
즉, 제1 상, 하암 스위치(Sa, S'a)는 모터(110)의 3상 코일(La, Lb, Lc) 중 제1 상 코일(La)로 3상 교류 전압(Vua, Vvb, Vwc) 중 제1 상 교류 전압(Vua)를 공급한다.
또한, 제2 상, 하암 스위치(Sb, S'b)는 제2 상 코일(Lb)로 제2 상 교류 전압(Vvb)을 공급하며, 제3 상, 하암 스위치(Sc, S'c)는 제3 상 코일(Lc)로 제3 상 교류 전압(Vwc)를 공급할 수 있다.
여기서, 제1 내지 제3 상암 스위치(Sa, Sb, Sc) 및 제1 내지 제3 하암 스위치(S'a, S'b, S'b) 각각은 로터의 일 회전당, 입력된 PWM 신호(PWMS)에 따라 한번 온 및 오프로 동작하여, 3상 코일(La, Lb, Lc) 각각으로 3상 교류 전압(Vua, Vvb, Vwc)을 공급함으로써, 모터(110)의 동작을 제어할 수 있다.
제어유닛(130)은 제1 내지 제3 상암 스위치(Sa, Sb, Sc) 및 제1 내지 제3 하암 스위치(S'a, S'b, S'b) 각각으로 PWM 신호(PWMS)를 전달하여, 3상 코일(La, Lb, Lc)로 3상 ac 전압(Vua, Vvb, Vwc)이 공급되게 제어할 수 있다.
또한, 제어유닛(130)은 영전류 제어에 의한 PWM 신호(PWMS)를 전달하여, 감속 운전 중에도 3상 코일(La, Lb, Lc)로 3상 ac 전압(Vua, Vvb, Vwc)이 공급되도록 제어할 수 있다. 이때, 3상 코일(La, Lb, Lc)에 흐르는 전류의 크기는 감속 운전 이전의 전류의 크기보다 작아질 수 있다.
또한, 제어유닛(130)은 모터(110)를 강제 제동시키기 위한 PWM 신호(PWMS)를 출력하여, 제1 내지 제3 상암 스위치(Sa, Sb, Sc) 및 제1 내지 제3 하암 스위치(S'a, S'b, S'b)를 제어할 수 있다.
구체적으로, 강제 제동에는 발전 제동 방식과 여력 제동 방식이 있다.
발전 제동 방식은, 모터(110)에 역기전력을 발생시켜 빠르게 모터(110)를 정지시키는 방식이다. 이때, 제어유닛(130)은 제1 내지 제3 상암 스위치(Sa, Sb, Sc)를 모두 오프시키고, 제1 내지 제3 하암 스위치(S'a, S'b, S'b)를 모두 온시킬 수 있다.
여력 제동 방식은 모터(110)를 프리휠시켜 기계적인 손실(예를 들어, 마찰력 또는 풍손실)에 의한 자연 감쇄 동작을 통해 속도를 감속하는 방식이다. 이때, 제어유닛(130)은 제1 내지 제3 상암 스위치(Sa, Sb, Sc) 및 제1 내지 제3 하암 스위치(S'a, S'b, S'b)를 모두 오프시킬 수 있다.
다만, 이러한 강제 제동의 동작 시에는 센서리스 시스템에서는 전압 또는 전류 정보를 얻을 수 없어, 센서리스 제어를 유지할 수 없다. 이에 본 발명의 실시예에 따른 모터 구동 장치에서는 현재 속도(ω^ r)가 미리 결정된 최저 속도(ωr_limit)보다 작아지기 전까지 영전류 제어를 통해 센서리스 제어를 유지시킬 수 있다. 또한, 현재 속도(ω^ r)가 미리 결정된 최저 속도(ωr_limit)보다 작아지는 경우, 강제 제동을 통하여 감속 시간을 최소화시킬 수 있다.
본 발명의 실시예에 따른 모터 구동 장치는 영전류 제어가 수행되는 도중, 재기동 지령이 입력되는 경우 센서리스 제어가 유지되는 상태이기에 즉각 재기동이 이루어질 수 있다.
반면, 강제 제동의 동작 중에 재기동 지령이 입력되는 경우, 센서리스 제어가 유지되지 않는 상태이기에, 모터(110)가 강제 제동에 의해 정지된 이후 재기동을 수행할 수 있다. 이 경우, 강제 제동은 상대적으로 빠른 제동 방법에 해당하기에 본 발명은 정지 시간을 최소화하면서 즉각적인 재기동 동작을 수행할 수 있다. 예를 들어, 이러한 정지 시간은 1초 미만일 수 있으나 본 발명이 이에 한정되는 것은 아니다.
이하에서는 도 4를 참조하여, 모터 구동 장치의 센서리스 알고리즘에 따른 동작을 자세히 설명하도록 한다.
도 4는 본 발명의 실시예에 따른 모터 구동 장치의 동작을 설명하기 위한 순서도이다.  도 5 내지 도 7은 모터 구동 장치의 동작에 따른 PWM 신호의 파형을 나타내는 그래프이다.  설명의 편의를 위하여, 이하에서는 앞서 설명한 실시예와 동일한 사항에 대해서는 중복된 설명을 생략하고 차이점을 중심으로 설명하도록 한다.
도 4를 참조하면, 우선 본 발명의 실시예에 따른 모터 구동 장치는 모터 제어 동작을 수행한다(S110). 모터(110)는 지령 속도(ωr)에 기초하여 가속 또는 감속 운전을 수행할 수 있다.
이어서, 제어유닛(130)은 정지 지령(St)을 수신한다(S120). 이때, 정지 지령(St)은 사용자의 요청 또는 명령에 의해 발생될 수 있다.
이어서, 제어유닛(130)은 영전류 제어를 통한 모터(110)의 감속 동작을 수행한다(S130). 앞에서 설명한 바와 같이, 영전류 제어는 모터(110)의 제어에 이용되는 PWM 신호(PWMS)의 듀티비를 감소시키는 동작이다. 영전류 제어를 통해, 제어유닛(130)는 센서리스 제어를 유지하면서 감속 동작을 수행할 수 있다.
영전류 제어를 하는 동안 PWM 신호(PWMS)의 듀티비의 변화를 설명하기 위해 이하에서는 도 5 및 도 6을 살펴본다.
도 5는 일반 동작시에 모터(110)의 제1상 코일에 전달되는 전류(I1)와, 이를 제어하기 위한 PWM 신호(PWM1)를 나타낸다.
도 6은 영전류 제어 동작시에 제1상 코일에 전달되는 전류(I2)와 이를 제어하기 위한 PWM 신호(PWM2)를 나타낸다.
영전류 제어 동작시에 제1상 코일에 전달되는 전류(I2)의 크기(H2)는, 일반 동작시에 제1상 코일에 전달되는 전류(I1)의 크기(H1)보다 작을 수 있다. 마찬가지로, 영전류 제어 동작시의 PWM 신호(PWM2)의 듀티비(d2)는, 일반 동작시의 PWM 신호(PWM1)의 듀티비(d1)보다 작을 수 있다. 이때, 영전류 제어 동작시의 PWM 신호(PWM2)의 주기(T2)는, 일반 동작시의 PWM 신호(PWM1)의 주기(T1)보다 클 수 있으나, 본 발명이 이에 한정되는 것은 아니다.
이를 통해, 제어유닛(130)은 모터(110)의 회전 속도를 감속시키는 감속 동작을 수행함과 동시에 센서리스 제어를 유지할 수 있다.
이어서, 다시 도 4를 참조하면, 제어유닛(130)은 재기동 지령의 수신 여부를 확인한다(S140).
만약, 영전류 제어 중에 재기동 지령의 수신되는 경우, 제어유닛(130)은 PWM 신호(PWMS)의 듀티비를 다시 증가시켜 모터(110)를 가속시킨다(S145). 제어유닛(130)은 센서리스 제어가 유지되는 상태이기에, 즉각적으로 재기동 동작을 수행할 수 있다.
반면, 영전류 제어 중에 재기동 지령의 수신되지 않는 경우, 제어유닛(130)은 모터(110)의 현재 속도(ω^ r)가 미리 결정된 최저 속도(ωr_limit)보다 작은지 여부를 판단한다(S150).
여기에서 최저 속도(ωr_limit)는 모터(110)의 최고 속도보다 작고, 센서리스 동작이 가능한 최소 속도일 수 있다. 예를 들어, 최저 속도(ωr_limit)는 모터(110)의 최고 속도의 절반보다 작은 값일 수 있다.
만약, 모터(110)의 현재 속도(ω^ r)가 미리 결정된 최저 속도(ωr_limit)보다 작지 않은 경우, 앞서 설명했던 S140 단계 내지 S150 단계를 반복 수행할 수 있다.
이와 달리, 모터(110)의 현재 속도(ω^ r)가 미리 결정된 최저 속도(ωr_limit)보다 작은 경우, 제어유닛(130)는 강제 제동 동작을 수행한다(S160). 강제 제동 동작은 앞에서 설명한 발전 제동 방식 또는 여력 제동 방식이 이용될 수 있다. 이에 대한 중복된 설명은 여기에서 생략하도록 한다. 이러한 강제 제동 동작 중에는 센서리스 제어가 유지되지 않을 수 있다.
이때, 강제 제동 동작을 하는 동안 PWM 신호(PWMS)의 듀티비의 변화를 설명하기 위해 이하에서는 도 6 및 도 7을 살펴본다.
도 6은 영전류 제어 동작시에 제1상 코일에 전달되는 전류(I2)와 이를 제어하기 위한 PWM 신호(PWM2)를 나타낸다.
도 7은 강제 제동 동작시에 모터(110)의 제1상 코일에 전달되는 전류(I3)와, 이를 제어하기 위한 PWM 신호(PWM3)를 나타낸다.
강제 제동 동작시에 제1상 코일에 전달되는 전류(I3)의 크기(H3)는, 영전류 제어 동작시에 제1상 코일에 전달되는 전류(I2)의 크기(H2)보다 작을 수 있다.
또한, 강제 제동 동작시의 PWM 신호(PWM3)의 듀티비는, 영전류 제어시의 PWM 신호(PWM2)의 듀티비(d2)보다 작을 수 있다. 이때, 강제 제동 동작시의 PWM 신호(PWM3)는 '0'일 수 있으나, 본 발명이 이에 한정되는 것은 아니다.
이러한 강제 제동 동작시에 제어유닛(130)은 모터(110)의 센서리스 제어를 유지할 수 없다. 따라서, 제어유닛(130)은 강제 제동 동작을 통하여 모터(110)의 제동 시간을 최소로 가져갈 수 있다.
이어서, 다시 도 4를 참조하면, 제어유닛(130)은 재기동 지령의 수신 여부를 확인한다(S170).
만약, 강제 제동 동작 중에 재기동 지령이 수신되지 않는 경우, 모터(110)는 그대로 정지하게 된다.
반면, 강제 제동 동작 중에 재기동 지령이 수신되는 경우, 제어유닛(130)은 정지 지령(St)을 수신한 이후 최소 정지 시간이 도과되었는지 판단한다(S180). 여기에서 최소 정지 시간은 제어유닛(130)에서 정지 지령(St)을 수신한 때로부터 미리 설정된 특정 시간이 경과한 시점을 의미할 수 있다. 예를 들어, 최소 정지 시간은 1초로 설정될 수 있으나, 본 발명이 이에 한정되는 것은 아니다.
정지 지령(St)이 수신된 때로부터 최소 정지 시간이 경과하는 경우, 모터(110)는 센서리스 제어 상태를 거쳐 강제 제동 동작을 통해 정지될 수 있다.
이어서, 제어유닛(130)은 정지 지령(St)을 수신한 이후 최소 정지 시간이 도과하는 경우, 제어유닛(130)은 일반 동작시에 출력되는 PWM 신호(PWMS)를 제공함으로써 모터(110)를 가속시킨다(S145). 즉, 제어유닛(130)은 모터(110)를 재기동시킬 수 있다. 이때, 모터(110)는 완전히 멈춘 상태에서 재기동 될 수 있으므로, 제어유닛(130)은 모터(110)의 제어에 대한 연속성을 유지시킬 수 있다.
본 발명의 다른 실시예에서, S180 단계는 생략되어 실시될 수 있다. 이때, 제어유닛(130)은 모터(110)가 정지되는 경우, 최소 정지 시간과는 무관하게 모터(110)를 재기동 시킬 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니다.
이를 통해, 본 발명의 몇몇 실시예에 따른 모터 구동 장치는, 정지 동작 중에 센서리스 제어를 유지함으로써 사용자의 요구가 있는 경우 모터를 즉시 재기동시킬 수 있다.
또한, 센서리스 제어가 유지되지 않는 강제 제동의 동작 구간을 감소시킬 수 있다. 강제 제동 동작을 수행하는 동안 재기동 지령이 입력되는 경우, 최소 정지 시간이 도과된 이후에 재기동 동작을 수행함으로써, 모터(110)의 제어에 대한 연속성을 유지시킬 수 있다.
이를 통해, 본 발명의 모터 구동 장치는 사용자의 재기동 요청에 대한 반응 시간을 최소화할 수 있으며, 모터 제어의 동작 안정성을 향상시킬 수 있다.
도 8은 본 발명의 실시예에 따른 모터 구동 장치의 동작을 설명하기 위한 그래프이다. 
도 8을 참조하면, 도 8은 모터 구동 장치의 동작시의 지령 속도(ωr), 현재 속도(ω^ r), 및 모터(110)의 구동에 이용되는 상전류(I)가 나타낸다.
A 구간은 지령 속도(ωr)가 증가되는 구간으로 가속 구간을 나타낸다. 지령 속도(ωr)가 증가됨에 따라 모터(110)의 현재 속도(ω^ r)도 함께 증가하고, 목표 속도에 도달하는 경우, 일정한 속도를 유지할 수 있다. 지령 속도(ωr)가 증가함에 따라, 상전류(I)의 크기는 증가되어 모터(110)에 입력될 수 있다.
B 구간은 제어유닛(130)에 정지 지령(St)이 입력된 이후, 영전류 제어를 통해 센서리스 제어를 수행하는 구간이다. 제어유닛(130)에 정지 지령(St)이 입력되는 경우, 지령 속도(ωr)는 감소되며, 현재 속도(ω^ r)도 지령 속도(ωr)를 따라 함께 감소한다. 다만, 지령 속도(ωr)가 미리 결정된 최저 속도(ωr_limit)보다 큰 범위에서, 제어유닛(130)은 센서리스 제어를 계속 유지하면서 감속 운전을 수행할 수 있다. 구체적으로, 제어유닛(130)은 PWM 신호(PWMS)의 듀티비를 감소시킴으로써, 센서리스 제어를 유지하면서 감속 운전을 수행할 수 있다.
C 구간은 제어유닛(130)에서 영전류 제어를 수행하는 도중, 재기동 지령이 수신되어 모터(110)가 재기동하는 구간이다. 제어유닛(130)은 영전류 제어를 통해 센서리스 제어를 유지할 수 있다. 센서리스 제어가 유지되는 경우, 제어유닛(130)은 모터(110)의 자극의 위치를 추정할 수 있으므로, 재기동 지령이 입력되는 경우, 즉각적인 재기동이 가능할 수 있다. 따라서, 제어유닛(130)은 재기동 지령에 대하여 즉각 반응하여, 모터(110)를 가속시킬 수 있다.
D 구간은 B 구간과 마찬가지로, 제어유닛(130)에 정지 지령(St)이 입력된 이후, 영전류 제어를 통해 센서리스 제어를 수행하는 구간이다. 지령 속도(ωr)가 미리 결정된 최저 속도(ωr_limit)보다 큰 범위에서, 제어유닛(130)은 센서리스 제어를 계속 유지하면서 감속 운전을 수행할 수 있다.
E 구간에서 지령 속도(ωr)가 미리 결정된 최저 속도(ωr_limit)보다 작아지는 경우, 제어유닛(130)은 강제 제동을 수행한다. 강제 제동 동작에서 지령 속도(ωr)은 모터(110)에 인가되는 PWM 신호(PWMS)를 '0'으로 만들고, 모터(110)에 역기전력을 발생시키거나, 모터(110)를 프리휠 시킬 수 있다. 이에 따라, 모터(110)의 현재 속도(ω^ r)는 빠르게 감소되어 정지될 수 있다.
E 구간에서 제어유닛(130)에는 센서리스 제어가 유지되지 않는다. 따라서, E 구간의 중간에 재기동 지령이 입력되더라도, 제어유닛(130)은 모터(110)의 자극의 위치를 추정할 수 없으므로, 모터(110)가 정지된 이후에 재기동을 수행할 수 있다.
F 구간은 모터(110)가 정지된 이후에 재기동을 위해 가속되는 구간이다. F 구간은 A 구간과 동일한 방식으로 모터(110)를 가속시킬 수 있다. 이때, F 구간의 시작지점은 정지 지령(St)이 수신된 이후에 최소 정지 시간(Ts)이 경과한 시점이 될 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니며, F 구간의 시작지점은 모터(110)가 완전히 정지된 시점이 될 수 있다.
결론적으로, 본 발명의 몇몇 실시예에 따른 모터 구동 장치는, 정지 동작 중에 센서리스 제어를 유지함으로써 재기동 명령이 있는 경우(예를 들어, C 구간) 모터를 즉시 재기동시킬 수 있다.
또한, 센서리스 제어가 유지되지 않는 강제 제동의 동작 구간(예를 들어, E 구간)을 감소시킬 수 있다. 강제 제동 동작을 수행하는 동안 재기동 지령이 입력되는 경우, 제어유닛(130)은 최소 정지 시간이 도과된 이후에 재기동 동작을 수행함으로써, 모터(110)의 제어에 대한 연속성을 유지시킬 수 있다(예를 들어, E 구간).
이를 통해, 본 발명의 모터 구동 장치는 사용자의 재기동 요청에 대한 반응 시간을 최소화할 수 있으며, 모터 제어의 동작 안정성을 향상시킬 수 있다.
전술한 본 발명은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니다.

Claims (19)

  1. 교류 전압을 이용하여 모터를 구동시키는 인버터; 및
    상기 인버터에 포함된 스위칭 소자의 동작을 제어하는 PWM 신호를 출력하는 제어유닛을 포함하되,
    상기 제어유닛은,
    상기 모터에 대한 정지 지령이 입력되는 경우, 상기 모터의 현재 속도가 미리 결정된 최저 속도보다 작아질 때까지 상기 PWM 신호의 듀티비를 감소시키고,
    상기 PWM 신호의 듀티비가 감소된 상태에서 재기동 지령이 입력되는 경우, 상기 PWM 신호의 듀티비를 증가시키는 것을 포함하는
    모터 구동 장치.
  2. 제1항에 있어서,
    상기 제어유닛은, 상기 모터의 상기 현재 속도가 미리 결정된 상기 최저 속도보다 작아지는 경우, 상기 모터를 강제 제동시키는 것을 포함하는 모터 구동 장치.
  3. 제2항에 있어서,
    상기 제어유닛은, 상기 강제 제동의 상태에서 재기동 지령이 입력되는 경우, 상기 정지 지령이 입력된 때로부터 특정시간이 경과된 이후에 상기 PWM 신호의 듀티비를 증가시키는 것을 포함하는 모터 구동 장치.
  4. 제2항에 있어서,
    상기 제어유닛은, 상기 강제 제동의 상태에서 재기동 지령이 입력되는 경우, 상기 모터가 정지된 이후에 상기 PWM 신호의 듀티비를 증가시키는 것을 포함하는 모터 구동 장치.
  5. 제2항에 있어서,
    상기 강제 제동은,
    상기 모터에 역기전력을 발생시키는 발전 제동과,
    상기 모터를 프리휠시키는 여력 제동을 포함하는 모터 구동 장치.
  6. 제1항에 있어서,
    상기 최저 속도는, 상기 모터의 최고속도의 절반보다 작은 모터 구동 장치.
  7. 제1항에 있어서,
    상기 정지 지령이 입력되어 상기 PWM 신호의 듀티비가 감소되는 경우, 상기 인버터의 출력 전류의 크기는, 상기 정지 지령이 입력되기 전의 상기 출력 전류의 크기보다 작은 모터 구동 장치.
  8. 제1항에 있어서,
    상기 모터는, 3상 코일이 권선된 스테이터와, 상기 스테이터 내에 배치되며 상기 3상 코일에서 발생된 자기장에 의해 회전하는 로터를 포함하고,
    상기 인버터는, 상기 3상 코일로 3상 교류 전압을 공급 또는 차단하도록 온 및 오프동작하는 3상 스위치소자들을 포함하는 모터 구동 장치.
  9. 제8항에 있어서,
    상기 3상 코일은,
    상기 3상 교류 전압 중 제1 상 교류 전압이 공급되는 제1 상 코일과, 상기 3상 교류 전압 중 제2 상 교류 전압이 공급되는 제2 상 코일과, 상기 3상 교류 전압 중 제3 상 교류 전압이 공급되는 제3 상 코일을 포함하고,
    상기 3상 스위치소자들은,
    상기 제1 상 교류 전압이 공급되게 온 및 오프 동작하며, 상기 제1 상 코일과 병렬 연결된 제1 상암 스위치 및 제1 하암 스위치와,
    상기 제2 상 교류 전압이 공급되게 온 및 오프 동작하며, 상기 제2 상 코일과 병렬 연결된 제2 상암 스위치 및 제2 하암 스위치와,
    상기 제3 상 교류 전압이 공급되게 온 및 오프 동작하며, 상기 제3 상 코일과 병렬 연결된 제3 상암 스위치 및 제3 하암 스위치를 포함하는 모터 구동 장치.
  10. 제9항에 있어서,
    상기 제1 내지 제3 상암 스위치 및 상기 제1 내지 제3 하암 스위치 각각은, 상기 PWM 신호에 따라 온 및 오프 동작하는 모터 구동 장치.
  11. 제9항에 있어서,
    상기 제어유닛은, 상기 모터의 상기 현재 속도가 미리 결정된 상기 최저 속도보다 작아지는 경우, 상기 제1 내지 제3 상암 스위치를 모두 오프시키고, 상기 제1 내지 제3 하암 스위치를 모두 온시키는 모터 구동 장치.
  12. 제9항에 있어서,
    상기 제어유닛은, 상기 모터의 상기 현재 속도가 미리 결정된 상기 최저 속도보다 작아지는 경우, 상기 제1 내지 제3 상암 스위치 및 상기 제1 내지 제3 하암 스위치를 모두 오프시키는 모터 구동 장치.
  13. 3상 코일이 권선된 스테이터 및 상기 스테이터 내에 배치되며 상기 3상 코일에서 발생된 자기장에 의해 회전하는 로터를 포함하는 모터;
    상기 3상 코일로 3상 교류 전압을 공급 및 차단하도록 온 및 오프동작하는 3상 스위치소자들을 포함하는 인버터; 및
    상기 3상 스위치소자들의 동작을 제어하는 PWM 신호를 출력하는 제어유닛을 포함하되,
    상기 제어유닛은,
    상기 모터에 대한 정지 지령이 입력되는 경우, 상기 모터의 현재 속도가 미리 결정된 최저 속도보다 작아질 때까지 상기 PWM 신호의 듀티비를 감소시키고,
    상기 모터의 상기 현재 속도가 미리 결정된 상기 최저 속도보다 작아지는 경우, 상기 모터를 강제 제동시키는 것을 포함하는
    모터 구동 장치.
  14. 제13항에 있어서,
    상기 제어유닛은, 상기 PWM 신호의 듀티비가 감소된 상태에서 재기동 지령이 입력되는 경우, 상기 PWM 신호의 듀티비를 증가시키는 것을 포함하는 모터 구동 장치.
  15. 제13항에 있어서,
    상기 제어유닛은, 상기 강제 제동 중인 상태에서 재기동 지령이 입력되는 경우, 상기 정지 지령이 입력된 때로부터 특정시간이 경과된 이후에 상기 PWM 신호의 듀티비를 증가시키는 것을 포함하는 모터 구동 장치.
  16. 제13항에 있어서,
    상기 제어유닛은, 상기 강제 제동의 상태에서 상기 PWM 신호를 상기 인버터에 비인가하는 모터 구동 장치.
  17. 제13항에 있어서,
    상기 3상 코일은,
    상기 3상 교류 전압 중 제1 상 교류 전압이 공급되는 제1 상 코일과, 상기 3상 교류 전압 중 제2 상 교류 전압이 공급되는 제2 상 코일과, 상기 3상 교류 전압 중 제3 상 교류 전압이 공급되는 제3 상 코일을 포함하고,
    상기 3상 스위치소자들은,
    상기 제1 상 교류 전압이 공급되게 온 및 오프 동작하며, 상기 제1 상 코일과 병렬 연결된 제1 상암 스위치 및 제1 하암 스위치와,
    상기 제2 상 교류 전압이 공급되게 온 및 오프 동작하며, 상기 제2 상 코일과 병렬 연결된 제2 상암 스위치 및 제2 하암 스위치와,
    상기 제3 상 교류 전압이 공급되게 온 및 오프 동작하며, 상기 제3 상 코일과 병렬 연결된 제3 상암 스위치 및 제3 하암 스위치를 포함하는 모터 구동 장치.
  18. 제17항에 있어서,
    상기 제어유닛은, 상기 모터의 상기 현재 속도가 미리 결정된 상기 최저 속도보다 작아지는 경우, 상기 제1 내지 제3 상암 스위치를 모두 오프시키고, 상기 제1 내지 제3 하암 스위치를 모두 온시키는 모터 구동 장치.
  19. 제17항에 있어서,
    상기 제어유닛은, 상기 모터의 상기 현재 속도가 미리 결정된 상기 최저 속도보다 작아지는 경우, 상기 제1 내지 제3 상암 스위치 및 상기 제1 내지 제3 하암 스위치를 모두 오프시키는 모터 구동 장치.
PCT/KR2018/007637 2017-07-07 2018-07-05 모터 구동 장치 WO2019009644A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18827944.2A EP3651348B1 (en) 2017-07-07 2018-07-05 Motor drive apparatus
AU2018295871A AU2018295871B2 (en) 2017-07-07 2018-07-05 Motor drive apparatus
US16/629,267 US11258393B2 (en) 2017-07-07 2018-07-05 Motor drive apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170086488A KR101939474B1 (ko) 2017-07-07 2017-07-07 모터 구동 장치
KR10-2017-0086488 2017-07-07

Publications (1)

Publication Number Publication Date
WO2019009644A1 true WO2019009644A1 (ko) 2019-01-10

Family

ID=64951121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007637 WO2019009644A1 (ko) 2017-07-07 2018-07-05 모터 구동 장치

Country Status (5)

Country Link
US (1) US11258393B2 (ko)
EP (1) EP3651348B1 (ko)
KR (1) KR101939474B1 (ko)
AU (1) AU2018295871B2 (ko)
WO (1) WO2019009644A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209217985U (zh) * 2017-08-18 2019-08-06 南京德朔实业有限公司 手持式圆锯、圆锯以及其中的电机控制系统
CN115642846A (zh) * 2021-07-20 2023-01-24 中山大洋电机股份有限公司 基于无感矢量控制的永磁同步电机运行的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100041794A (ko) * 2007-08-08 2010-04-22 알레그로 마이크로시스템스 인코포레이티드 모터 제어 회로
KR20130031728A (ko) * 2011-09-21 2013-03-29 한라공조주식회사 Bldc 모터의 센서리스 제어방법
JP2013198235A (ja) * 2012-03-19 2013-09-30 Hitachi Appliances Inc モータ駆動装置、及びこれを備えた空気調和機、並びにモータ駆動方法
KR20160098886A (ko) * 2015-02-11 2016-08-19 엘지전자 주식회사 모터 구동 장치
KR101652061B1 (ko) * 2015-06-12 2016-08-30 주식회사 에이디티 공조기용 모터 제어 장치 및 방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151885A (ja) * 1982-03-03 1983-09-09 Hitachi Ltd モ−タの位置制御方法
JP3756008B2 (ja) * 1999-02-15 2006-03-15 シャープ株式会社 ドラム式洗濯機
EP1139555A3 (en) * 2000-03-30 2004-05-12 Lg Electronics Inc. Single-phase switched reluctance motor driving apparatus and method
JP4011872B2 (ja) * 2000-08-29 2007-11-21 カルソニックカンセイ株式会社 ブラシレスモータの制御装置
WO2002085663A1 (fr) * 2001-04-20 2002-10-31 Seiko Epson Corporation Controleur de direction d'un objet de commande
JP5178400B2 (ja) 2008-08-28 2013-04-10 株式会社東芝 洗濯乾燥機
JP5433657B2 (ja) * 2011-09-15 2014-03-05 株式会社東芝 モータ制御装置
JP5364138B2 (ja) * 2011-09-29 2013-12-11 日立アプライアンス株式会社 モータ駆動制御装置および空調機器
JP6107385B2 (ja) * 2013-04-26 2017-04-05 日立工機株式会社 電動工具
WO2015023263A1 (en) * 2013-08-13 2015-02-19 Otis Elevator Company Elevator braking in a battery powered elevator system
US9479090B2 (en) * 2013-12-20 2016-10-25 Semiconductor Components Industries, Llc Motor control circuit and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100041794A (ko) * 2007-08-08 2010-04-22 알레그로 마이크로시스템스 인코포레이티드 모터 제어 회로
KR20130031728A (ko) * 2011-09-21 2013-03-29 한라공조주식회사 Bldc 모터의 센서리스 제어방법
JP2013198235A (ja) * 2012-03-19 2013-09-30 Hitachi Appliances Inc モータ駆動装置、及びこれを備えた空気調和機、並びにモータ駆動方法
KR20160098886A (ko) * 2015-02-11 2016-08-19 엘지전자 주식회사 모터 구동 장치
KR101652061B1 (ko) * 2015-06-12 2016-08-30 주식회사 에이디티 공조기용 모터 제어 장치 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3651348A4 *

Also Published As

Publication number Publication date
US20200162008A1 (en) 2020-05-21
AU2018295871A1 (en) 2020-02-06
EP3651348A4 (en) 2021-07-28
AU2018295871B2 (en) 2023-03-30
KR101939474B1 (ko) 2019-01-16
EP3651348B1 (en) 2024-03-20
US11258393B2 (en) 2022-02-22
EP3651348A1 (en) 2020-05-13

Similar Documents

Publication Publication Date Title
WO2010071361A2 (en) Apparatus and method for start-up of a sensorless bldc motor
Matsui Sensorless PM brushless DC motor drives
JP3297159B2 (ja) 直流ブラシレスモータの駆動装置およびその良否識別方法
Matsui Sensorless operation of brushless DC motor drives
WO2017061817A1 (ko) 모터 구동장치 및 이를 구비하는 홈 어플라이언스
KR20160098886A (ko) 모터 구동 장치
WO2016035298A1 (ja) モータ駆動装置およびブラシレスモータ
KR20080000001A (ko) 센서리스 비엘디씨 전동기의 제어방법
JP2013078200A (ja) 同期電動機の制御装置及び制御方法
US11456684B2 (en) Electric motor control device
WO2019009644A1 (ko) 모터 구동 장치
JP4590761B2 (ja) 永久磁石形同期電動機の制御装置
KR102362995B1 (ko) 모터 구동 장치 및 시스템
JP6463966B2 (ja) モータ駆動装置およびモータ駆動用モジュール並びに冷凍機器
WO2019013491A1 (ko) 모터 구동 장치
KR20210111678A (ko) 구동 장치, 구동 시스템 및 전동기의 구동 방법
WO2013165100A1 (en) Double wound rotor type motor with constant alternating current or direct current power supply input and control method thereof
WO2019117680A1 (ko) 위상천이 회로를 이용한 고장난 홀센서 신호 발생 장치 및 그 방법
KR20000046679A (ko) 동기식 리럭턴스 모터의 속도제어 방법 및 장치
CN108075690B (zh) 马达驱动系统及其运转回复方法
WO2019168356A1 (ko) 모터 구동 장치
WO2024111987A1 (ko) 모터 구동 장치, 그 제어 방법, 및 모터에 의하여 구동되는 전자 기기
KR20170126639A (ko) 모터 구동 제어장치 및 그의 센서리스 기동 방법
CN107482965B (zh) 同步电动机的控制装置
JP2001251877A (ja) 同期モータおよび同期モータの起動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18827944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018295871

Country of ref document: AU

Date of ref document: 20180705

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018827944

Country of ref document: EP

Effective date: 20200207