WO2019009429A1 - Wire bonding device - Google Patents

Wire bonding device Download PDF

Info

Publication number
WO2019009429A1
WO2019009429A1 PCT/JP2018/025859 JP2018025859W WO2019009429A1 WO 2019009429 A1 WO2019009429 A1 WO 2019009429A1 JP 2018025859 W JP2018025859 W JP 2018025859W WO 2019009429 A1 WO2019009429 A1 WO 2019009429A1
Authority
WO
WIPO (PCT)
Prior art keywords
capillary
inert gas
opening
unit
chamber block
Prior art date
Application number
PCT/JP2018/025859
Other languages
French (fr)
Japanese (ja)
Inventor
貴義 小作
Original Assignee
株式会社新川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社新川 filed Critical 株式会社新川
Publication of WO2019009429A1 publication Critical patent/WO2019009429A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/781Means for controlling the bonding environment, e.g. valves, vacuum pumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/787Means for aligning
    • H01L2224/78703Mechanical holding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85053Bonding environment
    • H01L2224/85054Composition of the atmosphere
    • H01L2224/85075Composition of the atmosphere being inert
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details

Definitions

  • the present disclosure relates to a wire bonding apparatus.
  • Patent documents 1 to 3 disclose techniques for suppressing the oxidation of free air balls. These techniques provide an inert gas to the area where free air balls are formed. The techniques disclosed in Patent Documents 1 and 2 place the exhaust port of the gas supply pipe near the tip of the capillary. Then, a cover gas is provided from the outlet toward the ball. According to the technology disclosed in Patent Document 3, an oxidation suppression gas such as nitrogen gas supplied to a closed feeder is jetted toward a capillary tool.
  • an oxidation suppression gas such as nitrogen gas supplied to a closed feeder is jetted toward a capillary tool.
  • Patent Documents 1 to 3 techniques for suppressing free air ball oxidation using an inert gas.
  • Patent Documents 1 to 3 Further improvement in the ability to suppress oxidation is desired.
  • the present disclosure describes a wire bonding apparatus that can improve the ability to inhibit the oxidation of free air balls and thus ensure good bonding quality.
  • a wire bonding apparatus supports a substrate having a first opening in a wire connection region, and has a bonding stage having a second opening for spraying a first inert gas onto the substrate, and wire connection of the substrate.
  • a window clamper having a plurality of third openings that open corresponding to the area, a window clamper for fixing the substrate to the bonding stage, an upper bonding mechanism having a capillary for crimping a wire to the wire connection area, and And the passage of the first inert gas passing through the first opening, the second opening and the third opening as the capillary passes, and the fourth opening for leading the first inert gas to the tip of the capillary And a shutter having a part.
  • the first inert gas supplied from the second opening of the bonding stage is sprayed to the substrate. According to this configuration, it is possible to form an inert gas region around the substrate. Then, after passing through the first opening and the third opening, the flow of the first inert gas blown to the substrate is narrowed at the fourth opening of the shutter. That is, the first inert gas is led to the tip of the capillary of the upper bonding mechanism by the fourth opening. According to this configuration, it is possible to form an inert gas region at the tip of the capillary. Therefore, an inert gas region can be suitably formed around the free air ball at the tip of the capillary. As a result, the ability to suppress the oxidation of the free air ball is improved. Therefore, the wire bonding apparatus can ensure good bonding quality.
  • the ability to suppress the oxidation of free air balls can be improved, and as a result, good bonding quality can be ensured.
  • FIG. 1 is a perspective view showing a first embodiment of a wire bonding apparatus according to the present embodiment.
  • FIG. 2 is an exploded perspective view of the movable arm.
  • FIG. 3 is a plan view showing the left chamber block and the right chamber block.
  • FIG. 4 is a front view showing the left chamber block and the right chamber block.
  • FIG. 5 is a perspective view showing an inert gas region.
  • FIG. 6 is a perspective view showing a second embodiment of the wire bonding apparatus.
  • FIG. 7 is a side view showing a second embodiment of the wire bonding apparatus.
  • FIG. 8 is an enlarged cross-sectional perspective view of the feeder unit.
  • FIG. 9 is a cross-sectional view of a feeder unit and a shutter unit showing the flow of inert gas.
  • FIG. 9 is a cross-sectional view of a feeder unit and a shutter unit showing the flow of inert gas.
  • FIG. 10 is an enlarged perspective view showing the vicinity of the shutter opening of the shutter unit.
  • FIG. 11 is a view showing a cross section of the shutter plate.
  • FIG. 12 is another cross-sectional view of the feeder unit and the shutter unit showing the flow of inert gas.
  • FIG. 13 is a cross-sectional view of a feeder unit and a shutter unit according to a comparative example showing a flow of inert gas.
  • the wire bonding apparatus 1 shown in FIG. 1 crimps a wire to an electrode of a semiconductor chip or an electrode of a substrate.
  • the wire bonding apparatus 1 has a base unit 2 (base portion), a capillary unit 3 (capillary portion), and a chamber unit 4 (chamber member).
  • the base unit 2, the capillary unit 3 and the chamber unit 4 constitute a bonding tool 10 (upper bonding mechanism).
  • the wire bonding apparatus 1 has other components such as a housing and a control device. However, they are omitted in the following description and drawings.
  • the wire bonding apparatus 1 holds the wire so as to slightly protrude from the capillary unit 3. Next, the wire bonding apparatus 1 forms a free air ball (Free Air Ball) at the tip of the protruding wire. Next, the wire bonding apparatus 1 performs ball bonding. Specifically, the free air ball is pressed against the electrode of the semiconductor chip using the capillary unit 3. This action bonds the wire to the electrode.
  • a free air ball Free Air Ball
  • the wire bonding apparatus 1 takes a closed form (first form) as shown in FIG. 1, and the inert gas area SB (second Form an active gas region).
  • the chamber unit 4 blows an inert gas (for example, nitrogen gas) in the area where the free air ball is disposed.
  • an inert gas region SB (see FIGS. 1, 4 and 5) is formed.
  • the chamber unit 4 physically encloses the area to which this inert gas is blown.
  • the inert gas is confined to the enclosed area.
  • the wire bonding apparatus 1 can maintain a good inert gas area SB.
  • the vertical direction D1 is a direction along the vertical direction or an extension direction of the capillary 6 described later.
  • the longitudinal direction D2 is a direction from the wire bonding apparatus 1 toward the worker.
  • the worker side is "front”.
  • the device side is "after”.
  • the left-right direction D3 is a direction orthogonal to each of the vertical direction D1 and the front-rear direction D2.
  • "right” and “left” are for convenience of description. “Right” and “left” correspond to “right” and “left” as viewed from a worker standing in front of the wire bonding apparatus 1.
  • the base unit 2 is a base that supports the capillary unit 3 and the chamber unit 4. While the wire bonding apparatus 1 is in operation, the base unit 2 maintains a predetermined position.
  • the capillary unit 3 and the chamber unit 4 are provided movably with respect to the base unit 2. For example, the capillary unit 3 reciprocates in the vertical direction D1.
  • the capillary unit 3 has a capillary 6 and a capillary arm 7.
  • the capillary 6 bonds the wire to the electrode of the semiconductor chip.
  • the capillary 6 is a cylindrical member extending along the vertical direction D1.
  • the upper end of the capillary 6 is detachably held by the capillary arm 7.
  • the capillary 6 has a through hole extending from the upper end side to the lower end side. An opening is provided at the lower end of the capillary 6.
  • the wire is inserted through the through hole.
  • the capillary 6 switches between the state of holding the wire and the state of releasing the wire according to a configuration not shown.
  • the capillary arm 7 connects the capillary 6 to the base unit 2.
  • the capillary arm 7 is a cantilever extending in the front-rear direction D2.
  • the rear end of the capillary arm 7 is reciprocably coupled to the base unit 2 along the vertical direction D1.
  • the front end of the capillary arm 7 detachably holds the upper end of the capillary 6.
  • the chamber unit 4 has a left chamber unit 4L and a right chamber unit 4R.
  • One of the left chamber unit 4L and the right chamber unit 4R is movable relative to the other.
  • the left chamber unit 4L is fixed to the base unit 2. That is, the left chamber unit 4L does not move at all.
  • the right chamber unit 4R is movable relative to the base unit 2. In other words, the right chamber unit 4R is movable relative to the left chamber unit 4L fixed to the base unit 2.
  • the left chamber unit 4L has a left arm 8L (holding unit), a left gas supply unit 9L (see FIG. 3 and the like), and a left chamber block 11L (second chamber block).
  • the proximal end side of the left arm 8L is fixed to the base unit 2.
  • the left chamber block 11L is fixed to the tip side of the left arm 8L.
  • the right chamber unit 4R has a right arm 8R, a right gas supply unit 9R, and a right chamber block 11R (first chamber block).
  • the left chamber block 11L and the right chamber block 11R constitute a chamber 11 (chamber member). Therefore, the left chamber block 11L and the right chamber block 11R are separate from each other.
  • the left gas supply unit 9L and the right gas supply unit 9R constitute a gas supply unit 9 (inert gas supply path).
  • the proximal end side of the right arm 8R is fixed to the base unit 2.
  • the right chamber block 11R is fixed to the front end side of the right arm 8R.
  • the right arm 8R has a fixed arm 12 and a movable arm 13.
  • the proximal end of the fixed arm 12 is fixed to the base unit 2.
  • the movable arm 13 is connected to the fixed arm 12.
  • the movable arm 13 has an L-shaped shape.
  • the proximal end 13 a of the movable arm 13 is rotatably coupled to the fixed arm 12.
  • the right chamber block 11R is fixed to the tip 13b of the movable arm 13. That is, when the movable arm 13 rotates with respect to the fixed arm 12, the right chamber block 11R moves relative to the left chamber block 11L.
  • the movable arm 13 is coupled to the fixed arm 12 using a bolt 14.
  • the shaft portion 14 a of the bolt 14 is inserted into the insertion hole 13 h of the movable arm 13.
  • the tip of the shaft portion 14 a is screwed into the connection hole 12 a of the fixed arm 12.
  • the diameter of the shaft portion 14a is slightly smaller than the inner diameter of the insertion hole 13h. Accordingly, the movable arm 13 rotates smoothly with respect to the bolt 14.
  • the connection hole 12a, the insertion hole 13h, and the bolt 14 constitute a movable mechanism 15 (movable portion).
  • the right chamber unit 4R may have a latch mechanism 17 as needed.
  • the latch mechanism 17 holds the position of the movable arm 13. Specifically, the position of the right chamber block 11R in the closed mode (first mode, see FIG. 1) is held, and the position of the right chamber block 11R in the open mode (second mode, see FIG. 6) is kept.
  • the latch mechanism 17 has a first suction unit 18 and a second suction unit 19.
  • the first adsorption unit 18 has a first magnet M1 and a second magnet M2.
  • the first suction unit 18 maintains the position of the right chamber block 11R. That is, the first suction unit 18 maintains the position of the movable arm 13 with respect to the fixed arm 12. This maintenance is based on the attraction between the first magnet M1 and the second magnet M2. Therefore, when a force in the opposite direction larger than the suction force is applied to the movable arm 13, the state in which the position of the right chamber block 11R is maintained is released.
  • the second adsorption unit 19 includes a first magnet M1 and a third magnet M3.
  • the second suction unit 19 maintains the position of the right chamber block 11R. That is, the second suction unit 19 maintains the position of the movable arm 13 with respect to the fixed arm 12. This maintenance is based on the attraction between the first magnet M1 and the third magnet M3. Therefore, when a force in the opposite direction larger than the suction force is applied to the movable arm 13, the state in which the position of the right chamber block 11R is maintained is released.
  • the wire bonding apparatus 1 When the wire bonding apparatus 1 is in operation, various components in the wire bonding apparatus 1 are mechanically moved. According to the first suction unit 18, the displacement of the position of the right chamber block 11R can be suppressed by vibration or the like caused by the movement of these components. Therefore, while the wire bonding apparatus 1 is in operation, the inert gas area SB can be suitably maintained.
  • the position of the right chamber block 11R can be held. For example, even if the worker mistakenly touches the movable arm 13, the position of the right chamber block 11R can be maintained.
  • the latch mechanism 17 may further include a first buffer 21 and a second buffer 22.
  • the first buffer portion 21 dampens the force of the movable arm 13 when switching from the open mode to the closed mode. Therefore, collision of the movable arm 13 with the fixed arm 12 can be suppressed. That is, when switching from the open mode to the closed mode, the movable arm 13 is held by the first suction unit 18 after the momentum is reduced by the first buffer unit 21.
  • the second buffer 22 dampens the momentum of the movable arm 13 when switching from the closed mode to the open mode. That is, when the mode is switched from the closed mode to the open mode, the movable arm 13 is held by the second suction unit 19 after the second cushioning section 22 reduces the force.
  • the first buffer unit 21 has a fourth magnet M4 and a fifth magnet M5.
  • the fourth magnet M4 is disposed on the fixed arm 12.
  • the fifth magnet M5 is disposed on the movable arm 13.
  • the fourth magnet M4 and the fifth magnet M5 face each other. That is, the first buffer unit 21 plays its function immediately before the transition to the closed mode is completed.
  • the first buffer unit 21 reduces the force of the movable arm 13 using the repulsive force generated by the fourth magnet M4 and the fifth magnet M5. Therefore, the faces of the same poles of the fourth magnet M4 and the fifth magnet M5 face each other.
  • the second buffer portion 22 has a fourth magnet M4 and a sixth magnet M6.
  • the sixth magnet M6 is disposed on the fixed arm 12. When in the open configuration, the fourth magnet M4 and the sixth magnet M6 face each other. That is, the second buffer unit 22 plays its function immediately before the transition to the open mode is completed. The faces of the same poles of the fourth magnet M4 and the sixth magnet M6 face each other.
  • the left chamber block 11L has a third surrounding surface P3 and a left gas supply hole 9La.
  • the left chamber block 11L is disposed on the left side of the capillary 6.
  • the tip end 11La of the left chamber block 11L is disposed rearward of the front end face 7c of the capillary arm 7. That is, the left chamber block 11L partially surrounds the left side surface 7a of the capillary arm 7.
  • the portion facing the left side surface 7a of the capillary arm 7 is a third surrounding surface P3.
  • the third surrounding surface P3 is a surface orthogonal to the left-right direction D3.
  • the chamber plate 16 (plate member) is attached to the block lower surface 11Lb of the left chamber block 11L.
  • the chamber plate 16 is provided with a passage hole 16 a through which the capillary 6 is inserted.
  • the chamber plate 16 extends from the third surrounding surface P3 toward the right chamber block 11R described later.
  • the chamber plate 16 is disposed further below the bottom surface 7 d of the capillary arm 7 when the capillary arm 7 is positioned at the lowermost position.
  • the chamber plate 16 covers the bottom surface 7 d of the capillary arm 7.
  • the left gas supply hole 9La has a discharge opening formed in the third surrounding surface P3.
  • the left gas supply hole 9La discharges the inert gas supplied from the left gas supply pipe 9Lb from the discharge opening.
  • the axis A2 of the discharge opening of the left gas supply hole 9La intersects with the axis A1 of the capillary 6.
  • the right chamber block 11R has a first surrounding surface P1, a second surrounding surface P2, a first right gas supply hole 9Ra, and a second right gas supply hole 9Rc.
  • the right chamber block 11R is disposed on the right side of the capillary 6.
  • the right chamber block 11R surrounds the capillary arm 7 from the right side surface 7b of the capillary arm 7 to the front end surface 7c.
  • the portion facing the right side surface 7b of the capillary arm 7 is a first surrounding surface P1.
  • a portion facing the front end surface 7c of the capillary arm 7 is a second surrounding surface P2.
  • the first surrounding surface P1 faces the third surrounding surface P3.
  • the first surrounding surface P1 is a surface orthogonal to the left-right direction D3.
  • the second surrounding surface P2 is a surface intersecting with the front-rear direction D2.
  • the second surrounding surface P2 includes a right surrounding surface P2a and a left surrounding surface P2b.
  • the right surrounding surface P2a is continuous with the first surrounding surface P1.
  • the left surrounding surface P2b is continuous with the right surrounding surface P2a.
  • the angle between the right surrounding surface P2a and the left surrounding surface P2b is about 90 degrees.
  • the boundary between the right surrounding surface P2a and the left surrounding surface P2b may pass through the axis A1 and intersect with an axis parallel to the front-rear direction D2.
  • the right surrounding surface P2a faces the right side of the front end surface 7c of the capillary arm 7.
  • the left surrounding surface P2b faces the left side of the front end surface 7c of the capillary arm 7.
  • a gap is provided between the tip of the left surrounding surface P2b and the tip 11La of the left chamber block 11L.
  • the gas pipe 9Rb is connected to the first right gas supply hole 9Ra.
  • the first right gas supply hole 9Ra has a discharge opening formed in the second surrounding surface P2.
  • the discharge opening discharges the inert gas toward the capillary 6.
  • the axis A3 of the discharge opening of the first right gas supply hole 9Ra passes through the axis A1.
  • the gas pipe 9Rd is connected to the second right gas supply hole 9Rc.
  • the second right gas supply hole 9Rc has an exhaust opening formed on the lower surface of the right chamber block 11R.
  • the discharge opening discharges the inert gas.
  • the wire bonding apparatus 1 can switch between a closed mode (see FIG. 1) and an open mode (see FIGS. 6 and 7).
  • the wire bonding apparatus 1 is in a closed form when performing wire bonding.
  • the wire bonding apparatus 1 is in an open form.
  • This operation includes inspection work and maintenance work.
  • an operation of replacing the capillary 6 may be mentioned as an example of the operation.
  • the switching operation may be performed, for example, by the worker manually moving the movable arm 13.
  • the position of the right chamber block 11R is different between the closed mode and the open mode.
  • the positions of the left chamber block 11L are the same as each other.
  • the position of the capillary 6 does not matter in the closed mode and the open mode.
  • the closed mode is a mode for forming the inert gas region SB.
  • the inactive gas region SB is a region that suppresses the oxidation of the free air ball, as described in terms of its function.
  • the inert gas region SB is a region surrounded by at least the left chamber block 11L and the right chamber block 11R, as described from the structure thereof.
  • the inert gas region SB is a space surrounded by the third surrounding surface P3, the chamber plate 16, the first surrounding surface P1, the right surrounding surface P2a, and the left surrounding surface P2b. That is, the inert gas area SB is an area in which five surfaces are enclosed.
  • the position of the right chamber block 11R for surrounding the periphery of the capillary 6 in this manner is called a first position. Therefore, when the right chamber block 11R is in the first position, a part of the right chamber block 11R (a part of the first surrounding surface P1 and the second surrounding surface P2) is disposed on the front side of the capillary 6.
  • the capillary arm 7 is disposed above the free air ball (see FIG. 4). Therefore, the inert gas area SB is an area where six surfaces are surrounded by adding the bottom surface 7 d of the capillary arm 7.
  • the inert gas is contained in the third surrounding surface P3, the chamber plate 16, the first surrounding surface P1, the right surrounding surface P2a, the left surrounding surface P2b, and the bottom surface of the capillary arm 7. It can be confined in the space surrounded by 7d. Therefore, it is possible to keep the inert gas in the inert gas region SB. As a result, oxidation of the free air ball can be suitably suppressed.
  • the open mode is a mode for forming the work space S2, as described from the function thereof.
  • an area that is, a work space S2
  • the open configuration is a configuration in which the right chamber block 11R is separated from the capillary arm 7, as described from the structure thereof. This spaced position is the second position of the right chamber block 11R.
  • the right chamber block 11R in each axial direction will be described.
  • the right chamber block 11R is disposed above the tip of the capillary arm 7 and the capillary 6.
  • the right chamber block 11R is disposed behind the tip of the capillary arm 7 and the capillary 6. This position is between the tip of capillary arm 7 and capillary 6 and base unit 2.
  • the right chamber block 11R is separated to the right from the tip of the capillary arm 7 and the capillary 6.
  • the right chamber block 11R moves obliquely backward right with respect to the tip of the capillary arm 7.
  • the configuration in which the right chamber block 11R is separated from the capillary arm 7 is realized by the movable mechanism 15.
  • the axis AR of the bolt 14 of the movable mechanism 15 is orthogonal to the front-rear direction D2. Further, the axis AR is inclined with respect to each of the vertical direction D1 and the horizontal direction D3. For example, the axis AR of the bolt 14 is inclined 45 degrees with respect to the left-right direction D3.
  • the axis AR is disposed between the capillary 6 and the base unit 2.
  • the right side surface 7b and the front end surface 7c of the capillary arm 7 can be opened. That is, the operator can visually observe the front end surface 7c side of the capillary arm 7 from the front. Further, the operator can access from the side of the right side surface 7 b of the capillary arm 7 and perform the replacement work of the capillary 6 or the like.
  • the right chamber block 11R is located above the front end surface 7c of the capillary arm 7. As a result, the operator can access the right side surface 7 b of the capillary arm 7 from right to left. Therefore, the workability can be further improved.
  • the wire bonding apparatus 1 includes a shutter unit 30 and a feeder unit 40.
  • the shutter unit 30 is disposed on the feeder unit 40. Then, the shutter unit 30 guides the inert gas discharged from the feeder unit 40 to the lower side of the capillary 6.
  • the shutter unit 30 cooperates with the chamber unit 4 to form an inert gas area forming unit 20.
  • the feeder unit 40 sequentially transports the semiconductor chip unit 100 (described later) to which the wire is not connected below the capillary 6. Further, the feeder unit 40 carries out the semiconductor chip unit 100 to which the wire is connected from below the capillary 6. Furthermore, the feeder unit 40 forms a closed space. An inert gas is supplied to this enclosed space.
  • an inert gas region is formed inside the feeder unit 40.
  • the inert gas region includes where the free air ball is connected to the electrode. Therefore, it is possible to suppress the oxidation of free air balls and the oxidation of electrodes during wire connection. That is, the wire bonding apparatus 1 forms an inert gas region.
  • the inert gas region includes from the position where the capillary 6 forms the free air ball to the position where the capillary 6 connects the free air ball to the electrode.
  • the feeder unit 40 includes a housing 41, a gas supply unit 42, a bonding stage 43, and a window clamper 44.
  • the housing 41 has a hollow box shape.
  • the housing 41 transports the semiconductor chip unit 100 in the left-right direction D3 by a transport mechanism (not shown).
  • the housing 41 extends along the left-right direction D3.
  • the housing 41 has a housing upper plate 41a, a housing lower plate 41b, and an opening 41h.
  • the housing upper plate 41 a faces the shutter unit 30.
  • the opening 41 h is formed in the housing upper plate 41 a.
  • the opening 41 h has a rectangular shape in plan view.
  • the gas supply unit 42 is disposed inside the housing 41.
  • the gas supply unit 42 supplies an inert gas to the periphery of the semiconductor chip unit 100.
  • the gas supply unit 42 has a main surface 42a, a back surface 42b, a gas receiving pipe 42c, and a gas supply hole 42h.
  • the gas supply unit 42 has a box shape.
  • the gas supply unit 42 is connected to an external gas source using a gas receiving pipe 42c.
  • the main surface 42a faces the housing upper plate 41a.
  • the back surface 42b faces the housing lower plate 41b.
  • the gas supply holes 42 h are provided in the main surface 42 a.
  • the bonding stage 43 supports the semiconductor chip unit 100. In addition, the bonding stage 43 distributes the inert gas supplied from the gas supply unit 42 around the semiconductor chip unit 100.
  • Bonding stage 43 has main surface 43a, back surface 43b, distribution region 43s, and opening 43h (second opening).
  • the main surface 43a faces the housing upper plate 41a.
  • the semiconductor chip unit 100 is mounted on the main surface 43a.
  • the back surface 43 b faces the main surface 42 a of the gas supply unit 42.
  • the distribution area 43s is provided on the back surface 43b.
  • the distribution area 43s is an area recessed from the back surface 43b in the thickness direction.
  • the opening 43 h is a thin hole penetrating from the distribution area 43 s to the main surface 43 a.
  • Bonding stage 43 has a plurality of openings 43 h.
  • the semiconductor chip unit 100 is mounted on the main surface 43 a of the bonding stage 43.
  • the semiconductor chip unit 100 has a substrate 101 and a plurality of semiconductor chips (not shown).
  • the substrate 101 has a main surface 101 a and a back surface 101 b.
  • the main surface 101 a contacts the wind clamper 44.
  • a plurality of wire connection areas 101c are set on the main surface 101a.
  • the wire connection area 101 c includes a conductive connection portion to which a wire is connected using the capillary 6 and an opening 101 h (first opening).
  • the openings 101 h are formed regularly or irregularly. Some openings 101h communicate with the openings 43h.
  • the back surface 101 b is in contact with the bonding stage 43.
  • the wind clamper 44 is attached to the housing 41. Specifically, the window clamper 44 is attached to the housing upper plate 41a. As a result, the wind clamper 44 closes the opening 41 h of the housing 41.
  • the window clamper 44 presses the film-like semiconductor chip unit 100 against the bonding stage 43. As a result, the position of the semiconductor chip unit 100 is held. That is, the semiconductor chip unit 100 is held by the window clamper 44 and the bonding stage 43.
  • the window clamper 44 has a main surface 44a, a back surface 44b, a clamp portion 44c, and an opening 44h (third opening).
  • the main surface 44 a faces the shutter unit 30.
  • the back surface 44 b faces the housing upper plate 41 a, the bonding stage 43 and the semiconductor chip unit 100.
  • the clamp portion 44c is provided on the back surface 44b. Further, the clamp portion 44 c protrudes toward the semiconductor chip unit 100.
  • the clamp unit 44 c contacts the semiconductor chip unit 100.
  • the clamp portion 44 c is formed on the semiconductor chip unit 100.
  • the openings 44h of the wind clamper 44 are provided in two rows along the left-right direction D3.
  • a plurality of openings 44 h are provided in the front-rear direction D2.
  • the opening 44 h is a through hole penetrating from the main surface 44 a to the contact surface of the clamp portion 44 c.
  • the openings 44 h communicate with any of the openings 101 h provided in the semiconductor chip unit 100.
  • the opening 44 h is provided corresponding to the wire connection area 101 c.
  • the opening 44 h guides the tip of the capillary 6 to the semiconductor chip unit 100.
  • the opening 44 h exposes the wire connection area 101 c.
  • the wire connection area 101 c includes a conductive connection portion such as an electrode pad of the semiconductor chip unit 100 to which bonding is performed.
  • One opening 44 h may expose one wire connection area 101 c.
  • one opening 44 h may expose a plurality of wire connection areas 101 c.
  • the shutter unit 30 is disposed on the feeder unit 40.
  • the shutter unit 30 has a shutter plate 31 (shutter), a right connecting portion 32R, and a left connecting portion 32L.
  • the shutter plate 31 covers a part of the housing upper plate 41a.
  • the right connecting portion 32R and the left connecting portion 32L connect the shutter plate 31 to the bonding tool 10.
  • the bonding tool 10 moves along the horizontal surface (the plane formed by the front-rear direction D2 and the left-right direction D3)
  • the shutter unit 30 also moves in the horizontal direction as the bonding tool 10 moves. . That is, the shutter unit 30 moves relative to the window clamper 44 and the substrate 101 together with the capillary 6 when the capillary 6 connects a wire to the wire connection area 101 c.
  • the shutter plate 31 is disposed on the window clamper 44 of the feeder unit 40.
  • the shutter plate 31 covers the wind clamper 44. More specifically, the shutter plate 31 is disposed on the opening 44 h of the window clamper 44.
  • the shutter plate 31 has a main surface 31a, a back surface 31b, an opening 31h (fourth opening), and a block facing portion 31c (first facing portion) (see FIG. 10). A slight gap is formed between the back surface 31 b of the shutter plate 31 and the main surface 44 a of the window clamper 44.
  • the opening 31h includes a capillary introducing hole 32a and a block introducing hole 32b.
  • the capillary introduction hole 32a is provided at a position intersecting the movement trajectory (vertical direction D1) of the capillary 6.
  • the opening 31 h exposes a part of the wind clamper 44.
  • a portion of the wind clamper 44 includes an opening 44 h. Accordingly, the tip of the capillary 6 can reach the semiconductor chip unit 100 through the capillary introduction hole 32a and the opening 44h.
  • the block introduction hole 32b accommodates a part of the left chamber block 11L. As shown in FIG. 11, specifically, the block introduction hole 32b accommodates the lower portion of the left chamber block 11L, the chamber plate 16, and the chamber flange 11s.
  • the plate lower surface 16 c of the chamber plate 16 may be disposed between the main surface 31 a and the back surface 31 b of the shutter plate 31. Also, the plate lower surface 16c may be disposed flush with the back surface 31b.
  • the block facing portion 31c is formed in the vicinity of the opening 31h.
  • the block facing portion 31c faces the block lower surface 11Rb of the right chamber block 11R.
  • the right chamber block 11R is disposed at a position where a slight gap is formed between the right chamber block 11R and the main surface 31a. Therefore, the right chamber block 11R does not enter the shutter plate 31 like the left chamber block 11L.
  • the right connecting portion 32R is fixed to the main surface 31a.
  • the right connecting portion 32R is connected to the right arm 8R via an angle member.
  • the left connecting portion 32L is fixed to the main surface 31a.
  • the left connecting portion 32L is separated from the right connecting portion 32R in the left direction.
  • the left connecting portion 32L is connected to the left arm 8L. That is, the shutter unit 30 is connected to the bonding tool 10 via the right arm 8R and the left arm 8L.
  • the inert gas supplied from the opening 43 h of the bonding stage 43 is sprayed to the substrate 101.
  • the inert gas sprayed onto the substrate 101 passes through the openings 101 h and 44 h, and then the flow is narrowed at the opening 31 h in the shutter plate 31. That is, the inert gas is led to the tip of the capillary 6 which the bonding tool 10 has by the opening 31 h.
  • the inert gas areas SA and SB can be suitably formed around the free air ball at the tip of the capillary 6, the ability to suppress the oxidation of the free air ball is improved. As a result, the wire bonding apparatus 1 can ensure good bonding quality.
  • FIG. 13 shows a cross section of the feeder unit 40 along a plane orthogonal to the left-right direction D3 in the wire bonding apparatus 200 according to the comparative example. Arrow lines indicate the movement of the inert gas.
  • the inert gas is discharged upward from the gas supply holes 42h. As a result, the inert gas moves to the distribution area 43s. Next, the inert gas is exhausted from the distribution area 43s through the plurality of openings 43h. The discharged inert gas is further discharged upward through the opening 101 h of the substrate 101 and the opening 44 h of the wind clamper 44.
  • an opening 44h formed below the right chamber block 11R and the left chamber block 11L is covered. However, all the other openings 44h are open. Then, the inert gas is discharged to the atmosphere from the opened opening 44h. The discharged inert gas is not reused.
  • the shutter unit 30 is disposed above the opening 44h with a gap therebetween. Then, the inert gas discharged from the opening 44h moves in the front-rear direction D2 through the gap between the back surface 31b and the main surface 44a. Then, when the inert gas reaches the opening 31 h, it moves upward again. An inert gas region SB surrounded by the right chamber block 11R and the left chamber block 11L is formed above the opening 31h. That is, the inert gas discharged from the feeder unit 40 is led to the inert gas region SB by the shutter unit 30.
  • the inert gas in the feeder unit 40 is used in two modes.
  • the inert gas is used to form an inert gas area SA (first inert gas area) around the semiconductor chip unit 100.
  • an inert gas is used to form an inert gas area SB around the free air ball.
  • An inert gas is supplied to the inert gas area SB from the first right gas supply hole 9Ra, the second right gas supply hole 9Rc, and the left gas supply hole 9La. Therefore, the inert gas is supplied from two places to the inert gas region SB. As a result, it is possible to form an inactive region capable of sufficiently suppressing the oxidation of the free air ball.
  • the above-described induction of the inert gas also occurs in the left-right direction D3.
  • an inert gas is introduced from a gas receiving pipe 42c. Then, the inert gas is discharged upward from the gas supply hole 42 h. Next, the inert gas is discharged further upward through the plurality of openings 43 h, the opening 101 h and the opening 44 h of the wind clamper 44.
  • a plurality of openings 44 h are provided along the left-right direction D3.
  • the shutter unit 30 is disposed so as to close the other opening 44h except the opening 44h for exposing the wire connection area 101c to be operated. According to such a configuration, the inert gas is retained in the opening 44 h.
  • an inert gas area SA is formed. Then, the inert gas moves in the left-right direction D3 via the gap between the back surface 31b and the main surface 44a. Next, after reaching the opening 31 h, the inert gas moves upward again and is led to the inert gas region SB.
  • the wire bonding apparatus 1 can effectively use the inert gas provided to the feeder unit 40. Then, in forming the inert gas region SB for the free air ball, the wire bonding apparatus 1 further adds to the inert gas supplied from the gas supply unit 42 of the right chamber block 11R and the left chamber block 11L, , An inert gas derived from the feeder unit 40 is used. Therefore, the wire bonding apparatus 1 can improve the ability to form a gas atmosphere. As a result, the wire bonding apparatus 1 can form an inert gas region SB having a desired oxygen concentration. The wire bonding apparatus 1 can form a free air ball of good quality. Therefore, the wire bonding apparatus 1 can ensure good bonding quality.
  • the shutter plate 31 moves relative to the window clamper 44 and the substrate 101 together with the capillary 6 when the capillary 6 connects a wire to the wire connection area 101 c.
  • the inert gas area SA can be formed using the inert gas discharged from the feeder unit 40 without providing a complicated mechanism.
  • the bonding tool 10 includes a chamber plate 16 having a passage hole 16a through which the tip of the capillary 6 passes, a chamber unit 4 surrounding the capillary 6, a second inert gas in a region surrounded by the chamber plate 16 and the chamber unit 4 And supplying an inert gas supply path.
  • the inert gas area SB can be further formed. Therefore, the wire bonding apparatus 1 can more preferably suppress the oxidation of the free air ball.
  • the inert gas that has passed through the opening 44 h forms an inert gas area SA.
  • the inert gas area SA is a space in which the tip of the capillary 6 which has passed through the passage hole 16a downward is disposed.
  • the inert gas supply path is constituted by the first right gas supply hole 9Ra, the second right gas supply hole 9Rc, and the left gas supply hole 9La.
  • the inert gas supplied from the inert gas supply path forms an inert gas region SB.
  • the inert gas region SB is a space in which the tip of the capillary 6 located above the passage hole 16a is disposed.
  • the inert gas regions SA and SB are focused on with reference to FIG.
  • the inert gas area SA suppresses oxidation of the free air ball and the conductive connection when bonding the free air ball to the substrate 101 in the wire connection area 101c.
  • the inert gas area SB suppresses the oxidation of the free air ball formed at the tip of the capillary 6.
  • the inert gas area SA is formed below the inert gas area SB along the vertical direction D1.
  • the thresholds of the inert gas area SA and the inert gas area SB may be, for example, the chamber plate 16. That is, the inactive area formed below the chamber plate 16 is the inert gas area SA.
  • the inactive area formed above the chamber plate 16 is an inert gas area SB.
  • the chamber unit 4 includes a right chamber block 11R, a left chamber block 11L separate from the right chamber block 11R, and a movable mechanism 15 for moving the right chamber block 11R relative to the capillary 6.
  • the movable mechanism 15 has a first form in which the periphery of the capillary 6 is surrounded by the right chamber block 11R and the right chamber block 11R, and a second form in which a part of the periphery of the capillary 6 is opened by moving the right chamber block 11R. , Switch between each other.
  • the movable mechanism 15 switches from the open mode to the closed mode by moving the left chamber block 11L.
  • the closed mode the capillary 6 is surrounded by the left chamber block 11L and the right chamber block 11R. Accordingly, the inert gas can be retained around the capillary 6. As a result, oxidation of free air balls can be suppressed.
  • the movable mechanism 15 moves the left chamber block 11L in the opposite direction.
  • the closed mode is switched to the open mode.
  • the open mode a part of the periphery of the capillary 6 is open. Therefore, the wire bonding apparatus 1 can secure the work space S2. Therefore, the wire bonding apparatus 1 can improve the workability of wire bonding. As a result, the wire bonding apparatus 1 can ensure both good bonding quality and improvement in workability.
  • the wire bonding apparatus 1 includes a movable mechanism 15 that moves the right chamber block 11R.
  • the shutter unit 30 includes a block facing portion 31c facing the block lower surface 11Lb of the right chamber block 11R. According to this configuration, the block facing portion 31c covers the opening 44h. That is, the area of the shutter plate 31 covering the opening 44 h is increased. Therefore, the wire bonding apparatus 1 can efficiently guide the inert gas discharged from the feeder unit 40 to the inert gas area SB.
  • the chamber unit 4 of the wire bonding apparatus 1 further includes a left arm 8L that holds the relative position of the left chamber block 11L to the capillary 6.
  • the shutter unit 30 further includes an opening 31 h for receiving the lower surface 11 Lb of the left chamber block 11 L and the chamber plate 16. According to this configuration, the opening 31 h becomes large. As a result, the shutter plate 31 can be reduced in weight. And, according to the shutter plate 31 which is reduced in weight, the inertial force caused by the mass is reduced. Therefore, the high speed operation of the bonding tool 10 is not impeded. Further, the opening 44h not covered by the shutter plate 31 is covered by the left chamber block 11L or the like received in the opening 31h. That is, the left chamber block 11L can substitute the function of the shutter plate 31. Therefore, the wire bonding apparatus 1 can efficiently guide the inert gas discharged from the feeder unit 40 to the inert gas area SB.
  • the wire bonding apparatus according to the present disclosure has been described in detail based on the embodiment.
  • the wire bonding apparatus according to the present disclosure is not limited to the above embodiment.
  • the wire bonding apparatus according to the present disclosure can be variously modified without departing from the scope of the invention.
  • the left chamber block 11L is fixed, and the right chamber block 11R is moved.
  • the left chamber block 11L may be operated by the second movable portion (second mechanism).
  • the shutter unit 30 further includes a block facing portion 31d (second facing portion) facing the block lower surface 11Lb of the left chamber block 11L. That is, the opening 31 h is further reduced. As a result, the inert gas discharged from the feeder unit 40 can be more efficiently guided to the inert gas region SB.
  • the gas supply part 9 was provided in both the left chamber block 11L and the right chamber block 11R.
  • the gas supply unit 9 may be provided only in one of the left chamber block 11L and the right chamber block 11R.
  • the second position of the right chamber block 11 ⁇ / b> R is obliquely above the right with respect to the capillary 6 and further rearward.
  • the second position of the right chamber block 11R is not limited to this arrangement as long as the capillary 6 and a part of the tip of the capillary arm 7 can be opened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

A wire bonding device 1 is provided with: a bonding stage 43 which supports a substrate 101 including an opening 101h in a wire connection region 101c, and which includes an opening 43h for spraying inert gas onto the substrate 101; a window clamper 44 which includes a plurality of openings 44h opened in correspondence to the wire connection region 101c of the substrate 101, and which fixes the substrate 101 onto the bonding stage 43; a bonding tool 10 which includes a capillary 6 for press-attaching a wire to the wire connection region 101c; and a shutter plate 31 which is disposed above the window clamper 44 and includes an opening 31h through which the capillary 6 is passed, the opening 31h narrowing the flow passageway of the inert gas that has passed through the openings 101h, 43h, 44h and guiding the inert gas to a distal end of the capillary 6.

Description

ワイヤボンディング装置Wire bonding equipment
 本開示は、ワイヤボンディング装置に関する。 The present disclosure relates to a wire bonding apparatus.
 半導体チップの電極にワイヤを接合するとき、ボールボンディングが行われる。ボールボンディングでは、キャピラリ先端から突出させたワイヤの先端を溶融させる。その結果、ワイヤの先端にフリーエアボールが形成される。そして、フリーエアボールを電極に押圧する。フリーエアボールは、溶融金属であるので酸化しやすい。フリーエアボールの酸化は、ワイヤと電極との接続不良の原因になる。 When bonding a wire to an electrode of a semiconductor chip, ball bonding is performed. In ball bonding, the tip of the wire protruding from the tip of the capillary is melted. As a result, a free air ball is formed at the tip of the wire. Then, the free air ball is pressed against the electrode. Free air balls are easily oxidized because they are molten metal. Oxidation of the free air ball causes poor connection between the wire and the electrode.
特開2007-294975号公報JP 2007-294975 A 米国特許出願公開第2007/0251980号明細書U.S. Patent Application Publication No. 2007/0251980 特開平5-235080号公報Unexamined-Japanese-Patent No. 5-235080
 特許文献1~3は、フリーエアボールの酸化を抑制する技術を開示する。これらの技術は、フリーエアボールが形成される領域へ不活性ガスを提供する。特許文献1,2に開示された技術は、キャピラリの先端の近傍にガス供給管の排出口を配置する。そして、当該排出口からボールに向けてカバーガスを提供する。特許文献3に開示された技術は、密閉型フィーダに供給される窒素ガス等の酸化抑制ガスをキャピラリツールに向けて噴出させる。 Patent documents 1 to 3 disclose techniques for suppressing the oxidation of free air balls. These techniques provide an inert gas to the area where free air balls are formed. The techniques disclosed in Patent Documents 1 and 2 place the exhaust port of the gas supply pipe near the tip of the capillary. Then, a cover gas is provided from the outlet toward the ball. According to the technology disclosed in Patent Document 3, an oxidation suppression gas such as nitrogen gas supplied to a closed feeder is jetted toward a capillary tool.
 当該技術分野においては、不活性ガスを利用するフリーエアボールの酸化抑制技術(特許文献1~3)が知られている。しかし、当該技術分野においては、酸化抑制能力の更なる向上が望まれている。 In the related art, techniques for suppressing free air ball oxidation using an inert gas (Patent Documents 1 to 3) are known. However, in the art, further improvement in the ability to suppress oxidation is desired.
 そこで本開示は、フリーエアボールの酸化を抑制する能力を向上させ、ひいては良好なボンディング品質を確保できるワイヤボンディング装置を説明する。 Thus, the present disclosure describes a wire bonding apparatus that can improve the ability to inhibit the oxidation of free air balls and thus ensure good bonding quality.
 本開示の一形態であるワイヤボンディング装置は、ワイヤ接続領域に第1開口部を有する基板を支持し、基板に第1不活性ガスを吹き付ける第2開口部を有するボンディングステージと、基板のワイヤ接続領域に対応して開口する複数の第3開口部を有し、基板をボンディングステージに固定するウインドクランパと、ワイヤ接続領域にワイヤを圧着するキャピラリを有する上部ボンディング機構と、ウインドクランパの上方に配置され、キャピラリが通過すると共に、第1開口部、第2開口部及び第3開口部を通過した第1不活性ガスの流路を絞りキャピラリの先端に第1不活性ガスを導出する第4開口部を有するシャッタと、を備える。 A wire bonding apparatus according to an embodiment of the present disclosure supports a substrate having a first opening in a wire connection region, and has a bonding stage having a second opening for spraying a first inert gas onto the substrate, and wire connection of the substrate. A window clamper having a plurality of third openings that open corresponding to the area, a window clamper for fixing the substrate to the bonding stage, an upper bonding mechanism having a capillary for crimping a wire to the wire connection area, and And the passage of the first inert gas passing through the first opening, the second opening and the third opening as the capillary passes, and the fourth opening for leading the first inert gas to the tip of the capillary And a shutter having a part.
 ボンディングステージの第2開口部から供給された第1不活性ガスは、基板に吹き付けられる。この構成によれば、基板の周囲に不活性ガス領域を形成することが可能である。そして、基板に吹き付けられた第1不活性ガスは、第1開口部、第3開口部を通過した後に、シャッタにおける第4開口部において、その流れが絞られる。すなわち、第1不活性ガスは、第4開口部によって上部ボンディング機構が有するキャピラリの先端に導出される。この構成によれば、キャピラリの先端に不活性ガス領域を形成することが可能である。従って、キャピラリの先端におけるフリーエアボールの周囲に、不活性ガス領域を好適に形成できる。その結果、フリーエアボールの酸化を抑制する能力が向上する。従って、ワイヤボンディング装置は、良好なボンディング品質を確保することができる。 The first inert gas supplied from the second opening of the bonding stage is sprayed to the substrate. According to this configuration, it is possible to form an inert gas region around the substrate. Then, after passing through the first opening and the third opening, the flow of the first inert gas blown to the substrate is narrowed at the fourth opening of the shutter. That is, the first inert gas is led to the tip of the capillary of the upper bonding mechanism by the fourth opening. According to this configuration, it is possible to form an inert gas region at the tip of the capillary. Therefore, an inert gas region can be suitably formed around the free air ball at the tip of the capillary. As a result, the ability to suppress the oxidation of the free air ball is improved. Therefore, the wire bonding apparatus can ensure good bonding quality.
 本開示に係るワイヤボンディング装置によれば、フリーエアボールの酸化を抑制する能力を向上させ、ひいては良好なボンディング品質を確保できる。 According to the wire bonding apparatus according to the present disclosure, the ability to suppress the oxidation of free air balls can be improved, and as a result, good bonding quality can be ensured.
図1は、本実施形態に係るワイヤボンディング装置の第1形態を示す斜視図である。FIG. 1 is a perspective view showing a first embodiment of a wire bonding apparatus according to the present embodiment. 図2は、可動アームを分解して示す斜視図である。FIG. 2 is an exploded perspective view of the movable arm. 図3は、左チャンバブロック及び右チャンバブロックを示す平面図である。FIG. 3 is a plan view showing the left chamber block and the right chamber block. 図4は、左チャンバブロック及び右チャンバブロックを示す正面図である。FIG. 4 is a front view showing the left chamber block and the right chamber block. 図5は、不活性ガス領域を示す斜視図である。FIG. 5 is a perspective view showing an inert gas region. 図6は、ワイヤボンディング装置の第2形態を示す斜視図である。FIG. 6 is a perspective view showing a second embodiment of the wire bonding apparatus. 図7は、ワイヤボンディング装置の第2形態を示す側面図である。FIG. 7 is a side view showing a second embodiment of the wire bonding apparatus. 図8は、フィーダユニットの構成を拡大して示す断面斜視図である。FIG. 8 is an enlarged cross-sectional perspective view of the feeder unit. 図9は、不活性ガスの流れを示すフィーダユニット及びシャッタユニットの断面図である。FIG. 9 is a cross-sectional view of a feeder unit and a shutter unit showing the flow of inert gas. 図10は、シャッタユニットのシャッタ開口の近傍を拡大して示す斜視図である。FIG. 10 is an enlarged perspective view showing the vicinity of the shutter opening of the shutter unit. 図11は、シャッタ板の断面を示す図である。FIG. 11 is a view showing a cross section of the shutter plate. 図12は、不活性ガスの流れを示すフィーダユニット及びシャッタユニットの別の断面図である。FIG. 12 is another cross-sectional view of the feeder unit and the shutter unit showing the flow of inert gas. 図13は、不活性ガスの流れを示す比較例に係るフィーダユニット及びシャッタユニットの断面図である。FIG. 13 is a cross-sectional view of a feeder unit and a shutter unit according to a comparative example showing a flow of inert gas.
 以下、添付図面を参照しながら本開示のワイヤボンディング装置を実施するための形態を詳細に説明する。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, an embodiment for implementing the wire bonding apparatus of the present disclosure will be described in detail with reference to the attached drawings. In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description.
 図1に示すワイヤボンディング装置1は、半導体チップの電極又は基板の電極にワイヤを圧着する。ワイヤボンディング装置1は、ベースユニット2(基体部)と、キャピラリユニット3(キャピラリ部)と、チャンバユニット4(チャンバ部材)とを有する。ベースユニット2、キャピラリユニット3およびチャンバユニット4は、ボンディングツール10(上部ボンディング機構)を構成する。なお、ワイヤボンディング装置1は、筐体及び制御装置といったその他の構成要素を有する。しかし、以下の説明及び図面においてはそれらを省略する。 The wire bonding apparatus 1 shown in FIG. 1 crimps a wire to an electrode of a semiconductor chip or an electrode of a substrate. The wire bonding apparatus 1 has a base unit 2 (base portion), a capillary unit 3 (capillary portion), and a chamber unit 4 (chamber member). The base unit 2, the capillary unit 3 and the chamber unit 4 constitute a bonding tool 10 (upper bonding mechanism). The wire bonding apparatus 1 has other components such as a housing and a control device. However, they are omitted in the following description and drawings.
 ワイヤボンディング装置1は、キャピラリユニット3から僅かに突出するようにワイヤを保持する。次に、ワイヤボンディング装置1は、突出させたワイヤの先端にフリーエアボール(Free Air Ball)を形成する。次に、ワイヤボンディング装置1は、ボールボンドを行う。具体的には、キャピラリユニット3を利用してフリーエアボールを半導体チップの電極に押し当てる。この動作により、ワイヤが電極に接合される。 The wire bonding apparatus 1 holds the wire so as to slightly protrude from the capillary unit 3. Next, the wire bonding apparatus 1 forms a free air ball (Free Air Ball) at the tip of the protruding wire. Next, the wire bonding apparatus 1 performs ball bonding. Specifically, the free air ball is pressed against the electrode of the semiconductor chip using the capillary unit 3. This action bonds the wire to the electrode.
 ボールボンドを行うとき、上述したように、ワイヤの先端にフリーエアボールを形成する。フリーエアボールは、例えば溶融した銅である。従ってフリーエアボールは、酸化しやすい。そこで、ワイヤボンディング装置1は、図1に示されるような閉鎖形態(第1形態)をとり、チャンバユニット4によって、フリーエアボールの酸化を抑制する領域としての不活性ガス領域SB(第2不活性ガス領域)を形成する。チャンバユニット4は、フリーエアボールが配置される領域に不活性ガス(例えば、窒素ガス)を吹付ける。その結果、不活性ガス領域SB(図1、図4及び図5参照)が形成される。さらに、チャンバユニット4は、この不活性ガスが吹付けられる領域を物理的に囲う。従って、不活性ガスは囲われた領域に留められる。その結果、ワイヤボンディング装置1は、良好な不活性ガス領域SBを維持することができる。 When performing ball bonding, as described above, free air balls are formed at the tip of the wire. The free air ball is, for example, molten copper. Therefore, free air balls are easily oxidized. Therefore, the wire bonding apparatus 1 takes a closed form (first form) as shown in FIG. 1, and the inert gas area SB (second Form an active gas region). The chamber unit 4 blows an inert gas (for example, nitrogen gas) in the area where the free air ball is disposed. As a result, an inert gas region SB (see FIGS. 1, 4 and 5) is formed. Furthermore, the chamber unit 4 physically encloses the area to which this inert gas is blown. Thus, the inert gas is confined to the enclosed area. As a result, the wire bonding apparatus 1 can maintain a good inert gas area SB.
 以下、ワイヤボンディング装置1の具体的な構成について説明する。ワイヤボンディング装置1の説明では、説明の便宜上、上下方向D1、前後方向D2及び左右方向D3を用いる。これらの方向は、ワイヤボンディング装置1を操作する作業者から見た相対的な方向である。例えば、上下方向D1は、鉛直方向に沿う方向又は後述するキャピラリ6の延在方向である。前後方向D2は、ワイヤボンディング装置1から作業者に向かう方向である。そして、作業者側は「前」である。装置側は「後」である。左右方向D3は、上下方向D1及び前後方向D2のそれぞれに直交する方向である。また、「右」及び「左」とは、説明の便宜上のものである。「右」及び「左」は、ワイヤボンディング装置1の正面に立つ作業者から見たときの「右」及び「左」に一致する。 The specific configuration of the wire bonding apparatus 1 will be described below. In the description of the wire bonding apparatus 1, for convenience of explanation, the vertical direction D1, the longitudinal direction D2, and the lateral direction D3 are used. These directions are relative directions seen from the operator who operates the wire bonding apparatus 1. For example, the vertical direction D1 is a direction along the vertical direction or an extension direction of the capillary 6 described later. The longitudinal direction D2 is a direction from the wire bonding apparatus 1 toward the worker. And the worker side is "front". The device side is "after". The left-right direction D3 is a direction orthogonal to each of the vertical direction D1 and the front-rear direction D2. Also, "right" and "left" are for convenience of description. “Right” and “left” correspond to “right” and “left” as viewed from a worker standing in front of the wire bonding apparatus 1.
 ベースユニット2は、キャピラリユニット3とチャンバユニット4とを支持する基体である。ワイヤボンディング装置1が稼働している期間において、ベースユニット2は、予め定められた位置を維持する。キャピラリユニット3及びチャンバユニット4は、ベースユニット2に対して移動可能に設けられる。例えば、キャピラリユニット3は、上下方向D1に往復移動する。 The base unit 2 is a base that supports the capillary unit 3 and the chamber unit 4. While the wire bonding apparatus 1 is in operation, the base unit 2 maintains a predetermined position. The capillary unit 3 and the chamber unit 4 are provided movably with respect to the base unit 2. For example, the capillary unit 3 reciprocates in the vertical direction D1.
 キャピラリユニット3は、キャピラリ6と、キャピラリアーム7と、を有する。キャピラリ6は、ワイヤを半導体チップの電極に接合する。キャピラリ6は、上下方向D1に沿って延在する円筒状の部材である。キャピラリ6の上端は、キャピラリアーム7に着脱可能に保持される。キャピラリ6は、上端側から下端側に向けて延びる貫通孔を有する。キャピラリ6の下端には開口が設けられる。貫通孔には、ワイヤが挿通される。キャピラリ6は、図示しない構成によって、ワイヤを保持する状態とワイヤを解放する状態とを相互に切り替える。キャピラリアーム7は、キャピラリ6をベースユニット2に対して連結する。キャピラリアーム7は、前後方向D2に延びる片持ち梁である。キャピラリアーム7の後端は、ベースユニット2に対して上下方向D1に沿って往復移動が可能に連結される。キャピラリアーム7の前端は、キャピラリ6の上端を着脱可能に保持する。 The capillary unit 3 has a capillary 6 and a capillary arm 7. The capillary 6 bonds the wire to the electrode of the semiconductor chip. The capillary 6 is a cylindrical member extending along the vertical direction D1. The upper end of the capillary 6 is detachably held by the capillary arm 7. The capillary 6 has a through hole extending from the upper end side to the lower end side. An opening is provided at the lower end of the capillary 6. The wire is inserted through the through hole. The capillary 6 switches between the state of holding the wire and the state of releasing the wire according to a configuration not shown. The capillary arm 7 connects the capillary 6 to the base unit 2. The capillary arm 7 is a cantilever extending in the front-rear direction D2. The rear end of the capillary arm 7 is reciprocably coupled to the base unit 2 along the vertical direction D1. The front end of the capillary arm 7 detachably holds the upper end of the capillary 6.
 チャンバユニット4は、左チャンバユニット4Lと、右チャンバユニット4Rと、を有する。左チャンバユニット4L及び右チャンバユニット4Rは、一方が他方に対して相対的に移動可能である。具体的には、左チャンバユニット4Lは、ベースユニット2に対して固定されている。つまり、左チャンバユニット4Lは、なんらの移動も行わない。一方、右チャンバユニット4Rは、ベースユニット2に対して相対的に移動可能である。換言すると、右チャンバユニット4Rは、ベースユニット2に固定された左チャンバユニット4Lに対して相対的に移動可能である。 The chamber unit 4 has a left chamber unit 4L and a right chamber unit 4R. One of the left chamber unit 4L and the right chamber unit 4R is movable relative to the other. Specifically, the left chamber unit 4L is fixed to the base unit 2. That is, the left chamber unit 4L does not move at all. On the other hand, the right chamber unit 4R is movable relative to the base unit 2. In other words, the right chamber unit 4R is movable relative to the left chamber unit 4L fixed to the base unit 2.
 左チャンバユニット4Lは、左アーム8L(保持部)と、左ガス供給部9L(図3等参照)と、左チャンバブロック11L(第2チャンバブロック)と、を有する。左アーム8Lの基端側は、ベースユニット2に対して固定される。左アーム8Lの先端側には、左チャンバブロック11Lが固定される。 The left chamber unit 4L has a left arm 8L (holding unit), a left gas supply unit 9L (see FIG. 3 and the like), and a left chamber block 11L (second chamber block). The proximal end side of the left arm 8L is fixed to the base unit 2. The left chamber block 11L is fixed to the tip side of the left arm 8L.
 右チャンバユニット4Rは、右アーム8Rと、右ガス供給部9Rと、右チャンバブロック11R(第1チャンバブロック)と、を有する。本開示においては、左チャンバブロック11L及び右チャンバブロック11Rは、チャンバ11(チャンバ部材)を構成する。従って、左チャンバブロック11L及び右チャンバブロック11Rは、互いに別体である。また、左ガス供給部9L及び右ガス供給部9Rは、ガス供給部9(不活性ガス供給路)を構成する。 The right chamber unit 4R has a right arm 8R, a right gas supply unit 9R, and a right chamber block 11R (first chamber block). In the present disclosure, the left chamber block 11L and the right chamber block 11R constitute a chamber 11 (chamber member). Therefore, the left chamber block 11L and the right chamber block 11R are separate from each other. The left gas supply unit 9L and the right gas supply unit 9R constitute a gas supply unit 9 (inert gas supply path).
 右アーム8Rの基端側は、ベースユニット2に対して固定される。右アーム8Rの先端側には、右チャンバブロック11Rが固定される。右アーム8Rは、固定アーム12と、可動アーム13とを有する。固定アーム12の基端は、ベースユニット2に対して固定される。固定アーム12には、可動アーム13が連結される。可動アーム13は、L字状の形状を呈する。可動アーム13の基端13aは、固定アーム12に対して回動可能に連結される。可動アーム13の先端13bには、右チャンバブロック11Rが固定される。つまり、可動アーム13が固定アーム12に対して回動することにより、右チャンバブロック11Rが左チャンバブロック11Lに対して相対的に移動する。 The proximal end side of the right arm 8R is fixed to the base unit 2. The right chamber block 11R is fixed to the front end side of the right arm 8R. The right arm 8R has a fixed arm 12 and a movable arm 13. The proximal end of the fixed arm 12 is fixed to the base unit 2. The movable arm 13 is connected to the fixed arm 12. The movable arm 13 has an L-shaped shape. The proximal end 13 a of the movable arm 13 is rotatably coupled to the fixed arm 12. The right chamber block 11R is fixed to the tip 13b of the movable arm 13. That is, when the movable arm 13 rotates with respect to the fixed arm 12, the right chamber block 11R moves relative to the left chamber block 11L.
 図2に示すように、可動アーム13は、固定アーム12に対してボルト14を利用して連結される。ボルト14の軸部14aは、可動アーム13の挿通穴13hに挿通される。軸部14aの先端は、固定アーム12の連結穴12aにねじ込まれる。その結果、可動アーム13は、ボルト14のヘッド14bと固定アーム12との間に挟み込まれる。軸部14aの直径は、挿通穴13hの内径よりも僅かに小さい。従って、可動アーム13は、ボルト14に対して滑らかに回動する。これら連結穴12a、挿通穴13h及びボルト14は、可動機構15(可動部)を構成する。 As shown in FIG. 2, the movable arm 13 is coupled to the fixed arm 12 using a bolt 14. The shaft portion 14 a of the bolt 14 is inserted into the insertion hole 13 h of the movable arm 13. The tip of the shaft portion 14 a is screwed into the connection hole 12 a of the fixed arm 12. As a result, the movable arm 13 is sandwiched between the head 14 b of the bolt 14 and the fixed arm 12. The diameter of the shaft portion 14a is slightly smaller than the inner diameter of the insertion hole 13h. Accordingly, the movable arm 13 rotates smoothly with respect to the bolt 14. The connection hole 12a, the insertion hole 13h, and the bolt 14 constitute a movable mechanism 15 (movable portion).
 なお、右チャンバユニット4Rは、必要に応じてラッチ機構17を有してもよい。ラッチ機構17は、可動アーム13の位置を保持する。具体的には、閉鎖形態(第1形態、図1参照)における右チャンバブロック11Rの位置を保持すると共に、開放形態(第2形態、図6参照)における右チャンバブロック11Rの位置を保持する。ラッチ機構17は、第1吸着部18と第2吸着部19とを有する。 The right chamber unit 4R may have a latch mechanism 17 as needed. The latch mechanism 17 holds the position of the movable arm 13. Specifically, the position of the right chamber block 11R in the closed mode (first mode, see FIG. 1) is held, and the position of the right chamber block 11R in the open mode (second mode, see FIG. 6) is kept. The latch mechanism 17 has a first suction unit 18 and a second suction unit 19.
 第1吸着部18は、第1磁石M1及び第2磁石M2を有する。ワイヤボンディング装置1が閉鎖形態であるとき、第1吸着部18が右チャンバブロック11Rの位置を維持する。つまり、第1吸着部18は、固定アーム12に対して可動アーム13の位置を維持する。この維持は、第1磁石M1と第2磁石M2との間の吸引力に基づく。従って、可動アーム13に吸引力より大きい逆方向の力を加えると、右チャンバブロック11Rの位置が維持された状態が解除される。 The first adsorption unit 18 has a first magnet M1 and a second magnet M2. When the wire bonding apparatus 1 is in the closed mode, the first suction unit 18 maintains the position of the right chamber block 11R. That is, the first suction unit 18 maintains the position of the movable arm 13 with respect to the fixed arm 12. This maintenance is based on the attraction between the first magnet M1 and the second magnet M2. Therefore, when a force in the opposite direction larger than the suction force is applied to the movable arm 13, the state in which the position of the right chamber block 11R is maintained is released.
 第2吸着部19は、第1磁石M1及び第3磁石M3を有する。ワイヤボンディング装置1が開放形態であるとき、第2吸着部19が右チャンバブロック11Rの位置を維持する。つまり、第2吸着部19は、固定アーム12に対して可動アーム13の位置を維持する。この維持は、第1磁石M1と第3磁石M3との間の吸引力に基づく。従って、可動アーム13に吸引力より大きい逆方向の力を加えると、右チャンバブロック11Rの位置が維持された状態が解除される。 The second adsorption unit 19 includes a first magnet M1 and a third magnet M3. When the wire bonding apparatus 1 is in the open mode, the second suction unit 19 maintains the position of the right chamber block 11R. That is, the second suction unit 19 maintains the position of the movable arm 13 with respect to the fixed arm 12. This maintenance is based on the attraction between the first magnet M1 and the third magnet M3. Therefore, when a force in the opposite direction larger than the suction force is applied to the movable arm 13, the state in which the position of the right chamber block 11R is maintained is released.
 ワイヤボンディング装置1が稼働しているとき、ワイヤボンディング装置1においては種々の部品が機械的に動いている。第1吸着部18によれば、これらの部品の動きに起因する振動などによって、右チャンバブロック11Rの位置がずれることを抑制できる。従って、ワイヤボンディング装置1が稼働している間において、不活性ガス領域SBを好適に維持することができる。 When the wire bonding apparatus 1 is in operation, various components in the wire bonding apparatus 1 are mechanically moved. According to the first suction unit 18, the displacement of the position of the right chamber block 11R can be suppressed by vibration or the like caused by the movement of these components. Therefore, while the wire bonding apparatus 1 is in operation, the inert gas area SB can be suitably maintained.
 第2吸着部19によれば、作業者がキャピラリ6を交換する場合に、右チャンバブロック11Rの位置を保持することができる。例えば、作業者が誤って可動アーム13に触れた場合であっても右チャンバブロック11Rの位置を維持し続けることができる。 According to the second suction unit 19, when the operator replaces the capillary 6, the position of the right chamber block 11R can be held. For example, even if the worker mistakenly touches the movable arm 13, the position of the right chamber block 11R can be maintained.
 ラッチ機構17は、さらに第1緩衝部21と第2緩衝部22とを有してもよい。 The latch mechanism 17 may further include a first buffer 21 and a second buffer 22.
 第1緩衝部21は、開放形態から閉鎖形態へ切り替えるときに可動アーム13の勢いを減衰させる。従って、可動アーム13が固定アーム12に衝突することを抑制できる。つまり、開放形態から閉鎖形態へ切り替えるとき、可動アーム13は、第1緩衝部21によって勢いが弱められた後に、第1吸着部18によって保持状態とされる。同様に、第2緩衝部22は、閉鎖形態から開放形態へ切り替えるときに可動アーム13の勢いを減衰させる。つまり、閉鎖形態から開放形態へ切り替えるとき、可動アーム13は、第2緩衝部22によって勢いが弱められた後に、第2吸着部19によって保持状態とされる。 The first buffer portion 21 dampens the force of the movable arm 13 when switching from the open mode to the closed mode. Therefore, collision of the movable arm 13 with the fixed arm 12 can be suppressed. That is, when switching from the open mode to the closed mode, the movable arm 13 is held by the first suction unit 18 after the momentum is reduced by the first buffer unit 21. Similarly, the second buffer 22 dampens the momentum of the movable arm 13 when switching from the closed mode to the open mode. That is, when the mode is switched from the closed mode to the open mode, the movable arm 13 is held by the second suction unit 19 after the second cushioning section 22 reduces the force.
 第1緩衝部21は、第4磁石M4と第5磁石M5とを有する。第4磁石M4は、固定アーム12に配置される。第5磁石M5は、可動アーム13に配置される。閉鎖形態とされたとき、第4磁石M4と第5磁石M5とは互いに対面する。つまり、第1緩衝部21は、閉鎖形態への移行が完了する直前にその機能を奏する。第1緩衝部21は、第4磁石M4及び第5磁石M5により生じる反発力を利用して、可動アーム13の勢いを弱める。そこで、第4磁石M4及び第5磁石M5は、同極の面が対面する。 The first buffer unit 21 has a fourth magnet M4 and a fifth magnet M5. The fourth magnet M4 is disposed on the fixed arm 12. The fifth magnet M5 is disposed on the movable arm 13. When in the closed mode, the fourth magnet M4 and the fifth magnet M5 face each other. That is, the first buffer unit 21 plays its function immediately before the transition to the closed mode is completed. The first buffer unit 21 reduces the force of the movable arm 13 using the repulsive force generated by the fourth magnet M4 and the fifth magnet M5. Therefore, the faces of the same poles of the fourth magnet M4 and the fifth magnet M5 face each other.
 第2緩衝部22は、第4磁石M4と第6磁石M6とを有する。第6磁石M6は、固定アーム12に配置される。開放形態とされたとき、第4磁石M4と第6磁石M6とは互いに対面する。つまり、第2緩衝部22は、開放形態への移行が完了する直前にその機能を奏する。第4磁石M4及び第6磁石M6は、同極の面が対面する。 The second buffer portion 22 has a fourth magnet M4 and a sixth magnet M6. The sixth magnet M6 is disposed on the fixed arm 12. When in the open configuration, the fourth magnet M4 and the sixth magnet M6 face each other. That is, the second buffer unit 22 plays its function immediately before the transition to the open mode is completed. The faces of the same poles of the fourth magnet M4 and the sixth magnet M6 face each other.
 続いて、左チャンバブロック11L及び右チャンバブロック11Rについて詳細に説明する。 Subsequently, the left chamber block 11L and the right chamber block 11R will be described in detail.
 図3に示すように、左チャンバブロック11Lは、第3包囲面P3と、左ガス供給穴9Laとを有する。左チャンバブロック11Lは、キャピラリ6の左側に配置される。左チャンバブロック11Lの先端11Laは、キャピラリアーム7の前端面7cよりも後側に配置される。つまり、左チャンバブロック11Lは、キャピラリアーム7の左側面7aを部分的に包囲する。キャピラリアーム7の左側面7aと対面する部分は、第3包囲面P3である。第3包囲面P3は、左右方向D3と直交する面である。 As shown in FIG. 3, the left chamber block 11L has a third surrounding surface P3 and a left gas supply hole 9La. The left chamber block 11L is disposed on the left side of the capillary 6. The tip end 11La of the left chamber block 11L is disposed rearward of the front end face 7c of the capillary arm 7. That is, the left chamber block 11L partially surrounds the left side surface 7a of the capillary arm 7. The portion facing the left side surface 7a of the capillary arm 7 is a third surrounding surface P3. The third surrounding surface P3 is a surface orthogonal to the left-right direction D3.
 図4に示すように、チャンバプレート16(板部材)は、左チャンバブロック11Lのブロック下面11Lbに取り付けられる。チャンバプレート16には、キャピラリ6が挿通される通過孔16aが設けられる。チャンバプレート16は、第3包囲面P3から後述する右チャンバブロック11Rに向けて延びる。チャンバプレート16は、キャピラリアーム7が最も下方に位置したときのキャピラリアーム7の底面7dよりもさらに下方に配置される。チャンバプレート16は、キャピラリアーム7の底面7dを覆う。 As shown in FIG. 4, the chamber plate 16 (plate member) is attached to the block lower surface 11Lb of the left chamber block 11L. The chamber plate 16 is provided with a passage hole 16 a through which the capillary 6 is inserted. The chamber plate 16 extends from the third surrounding surface P3 toward the right chamber block 11R described later. The chamber plate 16 is disposed further below the bottom surface 7 d of the capillary arm 7 when the capillary arm 7 is positioned at the lowermost position. The chamber plate 16 covers the bottom surface 7 d of the capillary arm 7.
 図3に示すように、左ガス供給穴9Laは、第3包囲面P3に形成された排出開口を有する。左ガス供給穴9Laは、左ガス供給管9Lbから供給される不活性ガスを排出開口から吐き出す。左ガス供給穴9Laの排出開口の軸線A2は、キャピラリ6の軸線A1と交差する。 As shown in FIG. 3, the left gas supply hole 9La has a discharge opening formed in the third surrounding surface P3. The left gas supply hole 9La discharges the inert gas supplied from the left gas supply pipe 9Lb from the discharge opening. The axis A2 of the discharge opening of the left gas supply hole 9La intersects with the axis A1 of the capillary 6.
 右チャンバブロック11Rは、第1包囲面P1と、第2包囲面P2と、第1右ガス供給穴9Raと、第2右ガス供給穴9Rcと、を有する。右チャンバブロック11Rは、キャピラリ6の右側に配置される。右チャンバブロック11Rは、キャピラリアーム7の右側面7bから前端面7cに亘ってキャピラリアーム7を包囲する。キャピラリアーム7の右側面7bと対面する部分は、第1包囲面P1である。キャピラリアーム7の前端面7cと対面する部分は、第2包囲面P2である。 The right chamber block 11R has a first surrounding surface P1, a second surrounding surface P2, a first right gas supply hole 9Ra, and a second right gas supply hole 9Rc. The right chamber block 11R is disposed on the right side of the capillary 6. The right chamber block 11R surrounds the capillary arm 7 from the right side surface 7b of the capillary arm 7 to the front end surface 7c. The portion facing the right side surface 7b of the capillary arm 7 is a first surrounding surface P1. A portion facing the front end surface 7c of the capillary arm 7 is a second surrounding surface P2.
 第1包囲面P1は、第3包囲面P3と対面する。また、第1包囲面P1は、左右方向D3と直交する面である。第2包囲面P2は、前後方向D2と交差する面である。第2包囲面P2は、右包囲面P2aと左包囲面P2bとを含む。右包囲面P2aは、第1包囲面P1に連続する。左包囲面P2bは、右包囲面P2aに連続する。右包囲面P2aと左包囲面P2bとの間の角度は、約90度である。右包囲面P2aと左包囲面P2bとの境界部は、軸線A1をとおり前後方向D2と平行な軸線と交差してもよい。従って、右包囲面P2aは、キャピラリアーム7の前端面7cにおける右側と対面する。左包囲面P2bは、キャピラリアーム7の前端面7cにおける左側と対面する。左包囲面P2bの先端と、左チャンバブロック11Lの先端11Laとの間には、隙間が設けられる。 The first surrounding surface P1 faces the third surrounding surface P3. The first surrounding surface P1 is a surface orthogonal to the left-right direction D3. The second surrounding surface P2 is a surface intersecting with the front-rear direction D2. The second surrounding surface P2 includes a right surrounding surface P2a and a left surrounding surface P2b. The right surrounding surface P2a is continuous with the first surrounding surface P1. The left surrounding surface P2b is continuous with the right surrounding surface P2a. The angle between the right surrounding surface P2a and the left surrounding surface P2b is about 90 degrees. The boundary between the right surrounding surface P2a and the left surrounding surface P2b may pass through the axis A1 and intersect with an axis parallel to the front-rear direction D2. Therefore, the right surrounding surface P2a faces the right side of the front end surface 7c of the capillary arm 7. The left surrounding surface P2b faces the left side of the front end surface 7c of the capillary arm 7. A gap is provided between the tip of the left surrounding surface P2b and the tip 11La of the left chamber block 11L.
 ガス管9Rbは、第1右ガス供給穴9Raに接続されている。第1右ガス供給穴9Raは、第2包囲面P2に形成された排出開口を有する。当該排出開口は、キャピラリ6に向けて不活性ガスを吐き出す。第1右ガス供給穴9Raの排出開口の軸線A3は、軸線A1をとおる。 The gas pipe 9Rb is connected to the first right gas supply hole 9Ra. The first right gas supply hole 9Ra has a discharge opening formed in the second surrounding surface P2. The discharge opening discharges the inert gas toward the capillary 6. The axis A3 of the discharge opening of the first right gas supply hole 9Ra passes through the axis A1.
 ガス管9Rdは、第2右ガス供給穴9Rcに接続されている。第2右ガス供給穴9Rcは、右チャンバブロック11Rの下面に形成された排出開口を有する。当該排出開口は、不活性ガスを吐き出す。第2右ガス供給穴9Rcの軸線A4を平面視したとき、軸線A4は、軸線A1上において、左ガス供給穴9Laの軸線A2及び第1右ガス供給穴9Raの軸線A3と交差する。 The gas pipe 9Rd is connected to the second right gas supply hole 9Rc. The second right gas supply hole 9Rc has an exhaust opening formed on the lower surface of the right chamber block 11R. The discharge opening discharges the inert gas. When the axis A4 of the second right gas supply hole 9Rc is viewed in plan, the axis A4 intersects the axis A2 of the left gas supply hole 9La and the axis A3 of the first right gas supply hole 9Ra on the axis A1.
 以下、ワイヤボンディング装置1の動作について説明する。ワイヤボンディング装置1は、閉鎖形態(図1参照)と開放形態(図6及び図7参照)とを相互に切替可能である。ワイヤボンディング装置1は、ワイヤボンドを行う場合に、閉鎖形態とされる。一方、ワイヤボンディング装置1は、作業者がワイヤボンディング装置1に対して何らかの操作を行う場合に、開放形態とされる。この操作には、点検作業及び保守作業を含む。例えば、操作の一例として、キャピラリ6を交換する作業などが挙げられる。切り替え動作は、例えば、作業者が可動アーム13を手動で動かすことにより行われてもよい。 Hereinafter, the operation of the wire bonding apparatus 1 will be described. The wire bonding apparatus 1 can switch between a closed mode (see FIG. 1) and an open mode (see FIGS. 6 and 7). The wire bonding apparatus 1 is in a closed form when performing wire bonding. On the other hand, when the operator performs some operation on the wire bonding apparatus 1, the wire bonding apparatus 1 is in an open form. This operation includes inspection work and maintenance work. For example, an operation of replacing the capillary 6 may be mentioned as an example of the operation. The switching operation may be performed, for example, by the worker manually moving the movable arm 13.
 閉鎖形態と開放形態とでは、右チャンバブロック11Rの位置が互いに相違する。一方、閉鎖形態と開放形態とでは、左チャンバブロック11Lの位置が互いに同じである。さらに、閉鎖形態と開放形態とにおいて、キャピラリ6の位置は問われない。 The position of the right chamber block 11R is different between the closed mode and the open mode. On the other hand, in the closed mode and the open mode, the positions of the left chamber block 11L are the same as each other. Furthermore, the position of the capillary 6 does not matter in the closed mode and the open mode.
 図5に示すように、ワイヤボンディング装置1を閉鎖形態としたとき、不活性ガス領域SBが形成される。従って、閉鎖形態とは、不活性ガス領域SBを形成するための形態である。不活性ガス領域SBは、その機能から説明すると、フリーエアボールの酸化を抑制する領域である。これに対して、不活性ガス領域SBは、その構造から説明すると、少なくとも左チャンバブロック11Lと右チャンバブロック11Rとに囲まれた領域である。 As shown in FIG. 5, when the wire bonding apparatus 1 is in the closed mode, an inert gas region SB is formed. Therefore, the closed mode is a mode for forming the inert gas region SB. The inactive gas region SB is a region that suppresses the oxidation of the free air ball, as described in terms of its function. On the other hand, the inert gas region SB is a region surrounded by at least the left chamber block 11L and the right chamber block 11R, as described from the structure thereof.
 具体的には、不活性ガス領域SBは、第3包囲面P3と、チャンバプレート16と、第1包囲面P1と、右包囲面P2aと、左包囲面P2bとに囲まれた空間である。すなわち、不活性ガス領域SBは、5つの面が囲まれた領域である。このようにキャピラリ6の周囲を囲むための右チャンバブロック11Rの位置を、第1位置と呼ぶ。従って、右チャンバブロック11Rが第1位置にあるとき、右チャンバブロック11Rの一部(第1包囲面P1の一部及び第2包囲面P2)は、キャピラリ6よりも前側に配置される。フリーエアボールが形成されるときには、フリーエアボールの上方にはキャピラリアーム7が配置される(図4参照)。従って、不活性ガス領域SBは、キャピラリアーム7の底面7dを加えると、6つの面が囲まれた領域である。 Specifically, the inert gas region SB is a space surrounded by the third surrounding surface P3, the chamber plate 16, the first surrounding surface P1, the right surrounding surface P2a, and the left surrounding surface P2b. That is, the inert gas area SB is an area in which five surfaces are enclosed. The position of the right chamber block 11R for surrounding the periphery of the capillary 6 in this manner is called a first position. Therefore, when the right chamber block 11R is in the first position, a part of the right chamber block 11R (a part of the first surrounding surface P1 and the second surrounding surface P2) is disposed on the front side of the capillary 6. When the free air ball is formed, the capillary arm 7 is disposed above the free air ball (see FIG. 4). Therefore, the inert gas area SB is an area where six surfaces are surrounded by adding the bottom surface 7 d of the capillary arm 7.
 このような閉鎖形態によれば、不活性ガスを、第3包囲面P3と、チャンバプレート16と、第1包囲面P1と、右包囲面P2aと、左包囲面P2bと、キャピラリアーム7の底面7dとに囲まれた空間に、閉じ込めることができる。従って、不活性ガスを不活性ガス領域SBに留めることが可能になる。その結果、フリーエアボールの酸化を好適に抑制することができる。 According to such a closed mode, the inert gas is contained in the third surrounding surface P3, the chamber plate 16, the first surrounding surface P1, the right surrounding surface P2a, the left surrounding surface P2b, and the bottom surface of the capillary arm 7. It can be confined in the space surrounded by 7d. Therefore, it is possible to keep the inert gas in the inert gas region SB. As a result, oxidation of the free air ball can be suitably suppressed.
 図6及び図7に示すように、ワイヤボンディング装置1を開放形態としたとき、作業スペースS2が形成される。開放形態は、その機能から説明すると、作業スペースS2を形成するための形態である。開放形態であるとき、作業者とキャピラリアーム7の先端との間には、物理的な部品で遮られていない領域(つまり作業スペースS2)が形成される。開放形態は、その構造から説明すると、右チャンバブロック11Rをキャピラリアーム7から離間させた形態である。この離間させた位置は、右チャンバブロック11Rの第2位置である。 As shown in FIGS. 6 and 7, when the wire bonding apparatus 1 is in the open mode, a work space S2 is formed. The open mode is a mode for forming the work space S2, as described from the function thereof. When in the open configuration, an area (that is, a work space S2) not blocked by physical parts is formed between the worker and the tip of the capillary arm 7. The open configuration is a configuration in which the right chamber block 11R is separated from the capillary arm 7, as described from the structure thereof. This spaced position is the second position of the right chamber block 11R.
 より具体的に、各軸線方向における右チャンバブロック11Rの位置を説明する。まず、上下方向D1においては、右チャンバブロック11Rは、キャピラリアーム7の先端及びキャピラリ6よりも上方に配置される。次に、前後方向D2においては、右チャンバブロック11Rは、キャピラリアーム7の先端及びキャピラリ6よりも後ろ側に配置される。この位置は、キャピラリアーム7の先端及びキャピラリ6とベースユニット2との間である。さらに、左右方向D3においては、右チャンバブロック11Rは、キャピラリアーム7の先端及びキャピラリ6よりも右側に離間する。 More specifically, the position of the right chamber block 11R in each axial direction will be described. First, in the vertical direction D1, the right chamber block 11R is disposed above the tip of the capillary arm 7 and the capillary 6. Next, in the front-rear direction D2, the right chamber block 11R is disposed behind the tip of the capillary arm 7 and the capillary 6. This position is between the tip of capillary arm 7 and capillary 6 and base unit 2. Furthermore, in the left-right direction D3, the right chamber block 11R is separated to the right from the tip of the capillary arm 7 and the capillary 6.
 閉鎖形態から開放形態に切り替えるとき、右チャンバブロック11Rは、キャピラリアーム7の先端に対して、右斜め後ろに移動する。右チャンバブロック11Rをキャピラリアーム7から離間させる構成は、可動機構15によって実現される。可動機構15のボルト14の軸線ARは、前後方向D2に対して直交する。さらに、軸線ARは、上下方向D1及び左右方向D3のそれぞれに対して傾いている。例えば、ボルト14の軸線ARは、左右方向D3に対して45度傾いている。また、軸線ARは、キャピラリ6とベースユニット2との間に配置される。 When switching from the closed mode to the open mode, the right chamber block 11R moves obliquely backward right with respect to the tip of the capillary arm 7. The configuration in which the right chamber block 11R is separated from the capillary arm 7 is realized by the movable mechanism 15. The axis AR of the bolt 14 of the movable mechanism 15 is orthogonal to the front-rear direction D2. Further, the axis AR is inclined with respect to each of the vertical direction D1 and the horizontal direction D3. For example, the axis AR of the bolt 14 is inclined 45 degrees with respect to the left-right direction D3. The axis AR is disposed between the capillary 6 and the base unit 2.
 このような第2位置によれば、キャピラリアーム7の右側面7bと前端面7cとを開放することができる。つまり、作業者は、キャピラリアーム7の前端面7c側を正面から目視することが可能になる。さらに、作業者は、キャピラリアーム7の右側面7bの側からアクセスし、キャピラリ6の交換作業などを行うことができる。このとき、右チャンバブロック11Rは、キャピラリアーム7の前端面7cよりも上方に位置する。その結果、作業者は、キャピラリアーム7の右側面7bに対して右から左に向かってアクセスすることができる。従って、作業性をより向上させ得る。 According to such a second position, the right side surface 7b and the front end surface 7c of the capillary arm 7 can be opened. That is, the operator can visually observe the front end surface 7c side of the capillary arm 7 from the front. Further, the operator can access from the side of the right side surface 7 b of the capillary arm 7 and perform the replacement work of the capillary 6 or the like. At this time, the right chamber block 11R is located above the front end surface 7c of the capillary arm 7. As a result, the operator can access the right side surface 7 b of the capillary arm 7 from right to left. Therefore, the workability can be further improved.
 さらに、図1に示すように、本開示に係るワイヤボンディング装置1は、シャッタユニット30と、フィーダユニット40とを有する。シャッタユニット30は、フィーダユニット40の上に配置される。そして、シャッタユニット30は、フィーダユニット40から排出される不活性ガスをキャピラリ6の下方まで導く。シャッタユニット30は、チャンバユニット4と協働して不活性ガス領域形成部20を構成する。フィーダユニット40は、ワイヤが接続されていない半導体チップユニット100(後述)をキャピラリ6の下方に順次搬送する。また、フィーダユニット40は、ワイヤが接続された半導体チップユニット100をキャピラリ6の下方から搬出する。さらに、フィーダユニット40は、閉鎖空間を形成する。この閉鎖空間には、不活性ガスが供給される。従って、フィーダユニット40の内部には、不活性ガス領域が形成される。この不活性ガス領域は、フリーエアボールを電極に接続する場所を含む。従って、ワイヤ接続中におけるフリーエアボールの酸化及び電極の酸化を抑制できる。つまり、ワイヤボンディング装置1は、不活性ガス領域を形成する。不活性ガス領域は、キャピラリ6がフリーエアボールを形成する位置から、キャピラリ6がフリーエアボールを電極に接続する位置までを包含する。 Furthermore, as shown in FIG. 1, the wire bonding apparatus 1 according to the present disclosure includes a shutter unit 30 and a feeder unit 40. The shutter unit 30 is disposed on the feeder unit 40. Then, the shutter unit 30 guides the inert gas discharged from the feeder unit 40 to the lower side of the capillary 6. The shutter unit 30 cooperates with the chamber unit 4 to form an inert gas area forming unit 20. The feeder unit 40 sequentially transports the semiconductor chip unit 100 (described later) to which the wire is not connected below the capillary 6. Further, the feeder unit 40 carries out the semiconductor chip unit 100 to which the wire is connected from below the capillary 6. Furthermore, the feeder unit 40 forms a closed space. An inert gas is supplied to this enclosed space. Therefore, an inert gas region is formed inside the feeder unit 40. The inert gas region includes where the free air ball is connected to the electrode. Therefore, it is possible to suppress the oxidation of free air balls and the oxidation of electrodes during wire connection. That is, the wire bonding apparatus 1 forms an inert gas region. The inert gas region includes from the position where the capillary 6 forms the free air ball to the position where the capillary 6 connects the free air ball to the electrode.
 図8に示すように、フィーダユニット40は、ハウジング41と、ガス供給部42と、ボンディングステージ43と、ウインドクランパ44と、を有する。 As shown in FIG. 8, the feeder unit 40 includes a housing 41, a gas supply unit 42, a bonding stage 43, and a window clamper 44.
 ハウジング41は、中空の箱状を呈する。ハウジング41は、図示しない搬送機構によって、半導体チップユニット100を左右方向D3に搬送する。ハウジング41は、左右方向D3に沿って延びる。ハウジング41は、ハウジング上板41aと、ハウジング下板41bと、開口41hと、を有する。ハウジング上板41aは、シャッタユニット30と対面する。開口41hは、ハウジング上板41aに形成される。開口41hは、平面視して矩形状を呈する。 The housing 41 has a hollow box shape. The housing 41 transports the semiconductor chip unit 100 in the left-right direction D3 by a transport mechanism (not shown). The housing 41 extends along the left-right direction D3. The housing 41 has a housing upper plate 41a, a housing lower plate 41b, and an opening 41h. The housing upper plate 41 a faces the shutter unit 30. The opening 41 h is formed in the housing upper plate 41 a. The opening 41 h has a rectangular shape in plan view.
 ガス供給部42は、ハウジング41の内部に配置される。ガス供給部42は、半導体チップユニット100の周囲に対して不活性ガスを供給する。ガス供給部42は、主面42aと、裏面42bと、ガス受入管42cと、ガス供給穴42hとを有する。ガス供給部42は、箱状を呈する。ガス供給部42は、ガス受入管42cを利用して外部のガス源と接続される。主面42aは、ハウジング上板41aと対面する。裏面42bは、ハウジング下板41bと対面する。ガス供給穴42hは、主面42aに設けられる。 The gas supply unit 42 is disposed inside the housing 41. The gas supply unit 42 supplies an inert gas to the periphery of the semiconductor chip unit 100. The gas supply unit 42 has a main surface 42a, a back surface 42b, a gas receiving pipe 42c, and a gas supply hole 42h. The gas supply unit 42 has a box shape. The gas supply unit 42 is connected to an external gas source using a gas receiving pipe 42c. The main surface 42a faces the housing upper plate 41a. The back surface 42b faces the housing lower plate 41b. The gas supply holes 42 h are provided in the main surface 42 a.
 ボンディングステージ43は、半導体チップユニット100を支持する。また、ボンディングステージ43は、ガス供給部42から提供された不活性ガスを半導体チップユニット100の周囲に分配する。ボンディングステージ43は、主面43aと、裏面43bと、分配領域43sと、開口43h(第2開口部)と、を有する。主面43aは、ハウジング上板41aと対面する。主面43aには、半導体チップユニット100が載置される。裏面43bは、ガス供給部42の主面42aと対面する。分配領域43sは、裏面43bに設けられる。分配領域43sは、裏面43bから厚み方向に凹んだ領域である。開口43hは、分配領域43sから主面43aに貫通する細い孔である。ボンディングステージ43は、複数の開口43hを有する。 The bonding stage 43 supports the semiconductor chip unit 100. In addition, the bonding stage 43 distributes the inert gas supplied from the gas supply unit 42 around the semiconductor chip unit 100. Bonding stage 43 has main surface 43a, back surface 43b, distribution region 43s, and opening 43h (second opening). The main surface 43a faces the housing upper plate 41a. The semiconductor chip unit 100 is mounted on the main surface 43a. The back surface 43 b faces the main surface 42 a of the gas supply unit 42. The distribution area 43s is provided on the back surface 43b. The distribution area 43s is an area recessed from the back surface 43b in the thickness direction. The opening 43 h is a thin hole penetrating from the distribution area 43 s to the main surface 43 a. Bonding stage 43 has a plurality of openings 43 h.
 半導体チップユニット100は、ボンディングステージ43の主面43a上に載置される。半導体チップユニット100は、基板101と複数の半導体チップ(不図示)とを有する。基板101は、主面101aと裏面101bと、を有する。主面101aは、ウインドクランパ44と接触する。主面101aには、複数のワイヤ接続領域101cが設定される。ワイヤ接続領域101cは、キャピラリ6を利用してワイヤが接続される導電接続部と、開口101h(第1開口部)と、を含む。開口101hは、規則的又は不規則的に形成されている。いくつかの開口101hは、開口43hと連通する。裏面101bは、ボンディングステージ43と接触する。 The semiconductor chip unit 100 is mounted on the main surface 43 a of the bonding stage 43. The semiconductor chip unit 100 has a substrate 101 and a plurality of semiconductor chips (not shown). The substrate 101 has a main surface 101 a and a back surface 101 b. The main surface 101 a contacts the wind clamper 44. A plurality of wire connection areas 101c are set on the main surface 101a. The wire connection area 101 c includes a conductive connection portion to which a wire is connected using the capillary 6 and an opening 101 h (first opening). The openings 101 h are formed regularly or irregularly. Some openings 101h communicate with the openings 43h. The back surface 101 b is in contact with the bonding stage 43.
 ウインドクランパ44は、ハウジング41に取り付けられる。具体的には、ウインドクランパ44は、ハウジング上板41aに取り付けられる。その結果、ウインドクランパ44は、ハウジング41の開口41hを閉鎖する。ウインドクランパ44は、フィルム状の半導体チップユニット100をボンディングステージ43に押し当てる。その結果、半導体チップユニット100の位置が保持される。つまり、半導体チップユニット100は、ウインドクランパ44とボンディングステージ43とによって挟持される。 The wind clamper 44 is attached to the housing 41. Specifically, the window clamper 44 is attached to the housing upper plate 41a. As a result, the wind clamper 44 closes the opening 41 h of the housing 41. The window clamper 44 presses the film-like semiconductor chip unit 100 against the bonding stage 43. As a result, the position of the semiconductor chip unit 100 is held. That is, the semiconductor chip unit 100 is held by the window clamper 44 and the bonding stage 43.
 ウインドクランパ44は、主面44aと、裏面44bと、クランプ部44cと、開口44h(第3開口部)とを有する。主面44aは、シャッタユニット30と対面する。裏面44bは、ハウジング上板41a、ボンディングステージ43及び半導体チップユニット100と対面する。クランプ部44cは、裏面44bに設けられている。また、クランプ部44cは、半導体チップユニット100に向けて突出する。クランプ部44cは、半導体チップユニット100に接触する。クランプ部44cは、半導体チップユニット100上に形成される。 The window clamper 44 has a main surface 44a, a back surface 44b, a clamp portion 44c, and an opening 44h (third opening). The main surface 44 a faces the shutter unit 30. The back surface 44 b faces the housing upper plate 41 a, the bonding stage 43 and the semiconductor chip unit 100. The clamp portion 44c is provided on the back surface 44b. Further, the clamp portion 44 c protrudes toward the semiconductor chip unit 100. The clamp unit 44 c contacts the semiconductor chip unit 100. The clamp portion 44 c is formed on the semiconductor chip unit 100.
 ウインドクランパ44の開口44hは、左右方向D3に沿って2列に設けられている。開口44hは、前後方向D2に複数個設けられる。開口44hは、主面44aからクランプ部44cの当接面まで貫通する貫通穴である。開口44hは、半導体チップユニット100に設けられたいずれかの開口101hと連通する。開口44hは、ワイヤ接続領域101cに対応して設けられる。開口44hは、キャピラリ6の先端を半導体チップユニット100まで導く。具体的には、開口44hは、ワイヤ接続領域101cを露出させる。ワイヤ接続領域101cは、ボンディングが行われる半導体チップユニット100の電極パッドといった導電接続部を含む。一つの開口44hは、一つのワイヤ接続領域101cを露出させてもよい。また、一つの開口44hは、複数のワイヤ接続領域101cを露出させてもよい。 The openings 44h of the wind clamper 44 are provided in two rows along the left-right direction D3. A plurality of openings 44 h are provided in the front-rear direction D2. The opening 44 h is a through hole penetrating from the main surface 44 a to the contact surface of the clamp portion 44 c. The openings 44 h communicate with any of the openings 101 h provided in the semiconductor chip unit 100. The opening 44 h is provided corresponding to the wire connection area 101 c. The opening 44 h guides the tip of the capillary 6 to the semiconductor chip unit 100. Specifically, the opening 44 h exposes the wire connection area 101 c. The wire connection area 101 c includes a conductive connection portion such as an electrode pad of the semiconductor chip unit 100 to which bonding is performed. One opening 44 h may expose one wire connection area 101 c. Also, one opening 44 h may expose a plurality of wire connection areas 101 c.
 図9に示すように、フィーダユニット40上には、シャッタユニット30が配置される。シャッタユニット30は、シャッタ板31(シャッタ)と、右連結部32Rと、左連結部32Lとを有する。シャッタ板31は、ハウジング上板41aの一部を覆う。右連結部32R及び左連結部32Lは、シャッタ板31をボンディングツール10に連結する。このような構成によれば、ボンディングツール10が水平面(前後方向D2及び左右方向D3が形成する平面)に沿って移動したとき、シャッタユニット30もボンディングツール10の移動に伴って水平方向に移動する。つまり、シャッタユニット30は、キャピラリ6がワイヤ接続領域101cにワイヤを接続するときに、キャピラリ6と共にウインドクランパ44及び基板101に対して移動する。 As shown in FIG. 9, the shutter unit 30 is disposed on the feeder unit 40. The shutter unit 30 has a shutter plate 31 (shutter), a right connecting portion 32R, and a left connecting portion 32L. The shutter plate 31 covers a part of the housing upper plate 41a. The right connecting portion 32R and the left connecting portion 32L connect the shutter plate 31 to the bonding tool 10. According to such a configuration, when the bonding tool 10 moves along the horizontal surface (the plane formed by the front-rear direction D2 and the left-right direction D3), the shutter unit 30 also moves in the horizontal direction as the bonding tool 10 moves. . That is, the shutter unit 30 moves relative to the window clamper 44 and the substrate 101 together with the capillary 6 when the capillary 6 connects a wire to the wire connection area 101 c.
 シャッタ板31は、フィーダユニット40のウインドクランパ44上に配置されている。シャッタ板31は、ウインドクランパ44を覆う。より具体的には、シャッタ板31は、ウインドクランパ44の開口44h上に配置される。 The shutter plate 31 is disposed on the window clamper 44 of the feeder unit 40. The shutter plate 31 covers the wind clamper 44. More specifically, the shutter plate 31 is disposed on the opening 44 h of the window clamper 44.
 シャッタ板31は、主面31aと、裏面31bと、開口31h(第4開口部)と、ブロック対面部31c(第1対面部)(図10参照)と、を有する。シャッタ板31の裏面31bとウインドクランパ44の主面44aとの間には僅かな隙間が形成される。 The shutter plate 31 has a main surface 31a, a back surface 31b, an opening 31h (fourth opening), and a block facing portion 31c (first facing portion) (see FIG. 10). A slight gap is formed between the back surface 31 b of the shutter plate 31 and the main surface 44 a of the window clamper 44.
 図10に示すように、開口31hは、キャピラリ導入穴部32aとブロック導入穴部32bとを含む。キャピラリ導入穴部32aは、キャピラリ6の移動軌跡(上下方向D1)と交差する位置に設けられる。開口31hは、ウインドクランパ44の一部を露出させる。ウインドクランパ44の一部は、開口44hを含む。従って、キャピラリ6の先端は、キャピラリ導入穴部32a及び開口44hを介して半導体チップユニット100へ到達することができる。 As shown in FIG. 10, the opening 31h includes a capillary introducing hole 32a and a block introducing hole 32b. The capillary introduction hole 32a is provided at a position intersecting the movement trajectory (vertical direction D1) of the capillary 6. The opening 31 h exposes a part of the wind clamper 44. A portion of the wind clamper 44 includes an opening 44 h. Accordingly, the tip of the capillary 6 can reach the semiconductor chip unit 100 through the capillary introduction hole 32a and the opening 44h.
 ブロック導入穴部32bは、左チャンバブロック11Lの一部を収容する。図11に示すように、具体的には、ブロック導入穴部32bは、左チャンバブロック11Lの下部と、チャンバプレート16と、チャンバフランジ11sと、を収容する。例えば、チャンバプレート16のプレート下面16cは、シャッタ板31の主面31aと裏面31bとの間に配置されてもよい。また、プレート下面16cは、裏面31bと面一に配置されてもよい。 The block introduction hole 32b accommodates a part of the left chamber block 11L. As shown in FIG. 11, specifically, the block introduction hole 32b accommodates the lower portion of the left chamber block 11L, the chamber plate 16, and the chamber flange 11s. For example, the plate lower surface 16 c of the chamber plate 16 may be disposed between the main surface 31 a and the back surface 31 b of the shutter plate 31. Also, the plate lower surface 16c may be disposed flush with the back surface 31b.
 図10に示すように、ブロック対面部31cは、開口31hの近傍に形成される。ブロック対面部31cは、右チャンバブロック11Rのブロック下面11Rbと対面する。右チャンバブロック11Rは、主面31aとの間に僅かな隙間を形成する位置に配置される。従って、右チャンバブロック11Rは、左チャンバブロック11Lのように、シャッタ板31に入り込まない。 As shown in FIG. 10, the block facing portion 31c is formed in the vicinity of the opening 31h. The block facing portion 31c faces the block lower surface 11Rb of the right chamber block 11R. The right chamber block 11R is disposed at a position where a slight gap is formed between the right chamber block 11R and the main surface 31a. Therefore, the right chamber block 11R does not enter the shutter plate 31 like the left chamber block 11L.
 右連結部32Rは、主面31aに固定されている。また、右連結部32Rは、アングル部材を介して右アーム8Rに連結される。左連結部32Lは、主面31aに固定されている。また、左連結部32Lは、右連結部32Rに対して左方向に離間する。さらに、左連結部32Lは、左アーム8Lに連結される。つまり、シャッタユニット30は、右アーム8R及び左アーム8Lを介して、ボンディングツール10に連結されている。 The right connecting portion 32R is fixed to the main surface 31a. In addition, the right connecting portion 32R is connected to the right arm 8R via an angle member. The left connecting portion 32L is fixed to the main surface 31a. In addition, the left connecting portion 32L is separated from the right connecting portion 32R in the left direction. Furthermore, the left connecting portion 32L is connected to the left arm 8L. That is, the shutter unit 30 is connected to the bonding tool 10 via the right arm 8R and the left arm 8L.
 以下、ワイヤボンディング装置1の作用効果について説明する。 Hereinafter, the operation and effect of the wire bonding apparatus 1 will be described.
 ボンディングステージ43の開口43hから供給された不活性ガスは、基板101に吹き付けられる。この構成によれば、基板101の周囲に不活性ガス領域SAを形成することが可能である。そして、基板101に吹き付けられた不活性ガスは、開口101h,44hを通過した後に、シャッタ板31における開口31hにおいて、その流れが絞られる。すなわち、不活性ガスは、開口31hによってボンディングツール10が有するキャピラリ6の先端に導出される。この構成によれば、キャピラリ6の先端に不活性ガス領域SBを形成することが可能である。従って、キャピラリ6の先端におけるフリーエアボールの周囲に、不活性ガス領域SA,SBを好適に形成できるので、フリーエアボールの酸化を抑制する能力が向上する。その結果、ワイヤボンディング装置1は、良好なボンディング品質を確保することができる。 The inert gas supplied from the opening 43 h of the bonding stage 43 is sprayed to the substrate 101. According to this configuration, it is possible to form the inert gas area SA around the substrate 101. Then, the inert gas sprayed onto the substrate 101 passes through the openings 101 h and 44 h, and then the flow is narrowed at the opening 31 h in the shutter plate 31. That is, the inert gas is led to the tip of the capillary 6 which the bonding tool 10 has by the opening 31 h. According to this configuration, it is possible to form the inert gas area SB at the tip of the capillary 6. Therefore, since the inert gas areas SA and SB can be suitably formed around the free air ball at the tip of the capillary 6, the ability to suppress the oxidation of the free air ball is improved. As a result, the wire bonding apparatus 1 can ensure good bonding quality.
 さらに、シャッタユニット30を有しない比較例に係るワイヤボンディング装置200と比較しつつ、本開示に係るワイヤボンディング装置1の作用効果について具体的に説明する。 Furthermore, the operation and effects of the wire bonding apparatus 1 according to the present disclosure will be specifically described in comparison with the wire bonding apparatus 200 according to the comparative example in which the shutter unit 30 is not provided.
 図13は、比較例に係るワイヤボンディング装置200において、左右方向D3に直交する面に沿ったフィーダユニット40の断面を示す。矢印線は、不活性ガスが移動する様子を示す。 FIG. 13 shows a cross section of the feeder unit 40 along a plane orthogonal to the left-right direction D3 in the wire bonding apparatus 200 according to the comparative example. Arrow lines indicate the movement of the inert gas.
 図13に示されるように、不活性ガスは、ガス供給穴42hから上方に排出される。その結果、不活性ガスは、分配領域43sに移動する。次に、不活性ガスは、複数の開口43hを介して分配領域43sから排出される。排出された不活性ガスは、基板101の開口101h及びウインドクランパ44の開口44hを介してさらに上方へ排出される。ここで、比較例に係るワイヤボンディング装置200では、右チャンバブロック11R及び左チャンバブロック11Lの下方に形成された開口44hが覆われている。しかし、その他の開口44hは全て開放されている。そうすると、開放された開口44hからは不活性ガスが大気中に排出される。排出された不活性ガスは、再利用されない。 As shown in FIG. 13, the inert gas is discharged upward from the gas supply holes 42h. As a result, the inert gas moves to the distribution area 43s. Next, the inert gas is exhausted from the distribution area 43s through the plurality of openings 43h. The discharged inert gas is further discharged upward through the opening 101 h of the substrate 101 and the opening 44 h of the wind clamper 44. Here, in the wire bonding apparatus 200 according to the comparative example, an opening 44h formed below the right chamber block 11R and the left chamber block 11L is covered. However, all the other openings 44h are open. Then, the inert gas is discharged to the atmosphere from the opened opening 44h. The discharged inert gas is not reused.
 図12に示すように、ワイヤボンディング装置1では、開口44hの上方に隙間を挟んでシャッタユニット30が配置されている。そうすると、開口44hから排出された不活性ガスは、裏面31bと主面44aとの間の隙間を介して、前後方向D2に移動する。そして、不活性ガスは、開口31hに達すると、再び上方に向かって移動する。開口31hの上方には、右チャンバブロック11R及び左チャンバブロック11Lに囲まれた不活性ガス領域SBが形成されている。つまり、フィーダユニット40から排出された不活性ガスは、シャッタユニット30によって不活性ガス領域SBに導かれる。 As shown in FIG. 12, in the wire bonding apparatus 1, the shutter unit 30 is disposed above the opening 44h with a gap therebetween. Then, the inert gas discharged from the opening 44h moves in the front-rear direction D2 through the gap between the back surface 31b and the main surface 44a. Then, when the inert gas reaches the opening 31 h, it moves upward again. An inert gas region SB surrounded by the right chamber block 11R and the left chamber block 11L is formed above the opening 31h. That is, the inert gas discharged from the feeder unit 40 is led to the inert gas region SB by the shutter unit 30.
 換言すると、本開示に係るワイヤボンディング装置1では、フィーダユニット40における不活性ガスが2個の態様において利用される。不活性ガスは、半導体チップユニット100の周囲における不活性ガス領域SA(第1不活性ガス領域)の形成に用いられる。その後、不活性ガスは、フリーエアボールの周囲における不活性ガス領域SBの形成に用いられる。 In other words, in the wire bonding apparatus 1 according to the present disclosure, the inert gas in the feeder unit 40 is used in two modes. The inert gas is used to form an inert gas area SA (first inert gas area) around the semiconductor chip unit 100. Thereafter, an inert gas is used to form an inert gas area SB around the free air ball.
 不活性ガス領域SBには、第1右ガス供給穴9Ra、第2右ガス供給穴9Rc及び左ガス供給穴9Laから不活性ガスが供給される。従って、不活性ガス領域SBには、2箇所から不活性ガスが供給される。その結果、フリーエアボールの酸化を充分に抑制できる不活性領域を形成することができる。 An inert gas is supplied to the inert gas area SB from the first right gas supply hole 9Ra, the second right gas supply hole 9Rc, and the left gas supply hole 9La. Therefore, the inert gas is supplied from two places to the inert gas region SB. As a result, it is possible to form an inactive region capable of sufficiently suppressing the oxidation of the free air ball.
 上述した不活性ガスの誘導は、左右方向D3においても生じる。図9に示すように不活性ガスは、ガス受入管42cから導入される。そして、不活性ガスは、ガス供給穴42hから上方に排出される。次に、不活性ガスは、複数の開口43h、開口101h及びウインドクランパ44の開口44hを介してさらに上方へ排出される。開口44hは、左右方向D3に沿って複数設けられている。シャッタユニット30は、作業対象となるワイヤ接続領域101cを露出させる開口44hを除く他の開口44hを塞ぐように配置されている。このような構成によると、開口44hには、不活性ガスが留められる。その結果、不活性ガス領域SAが形成される。そして、不活性ガスは、裏面31bと主面44aとの間の隙間を介して、左右方向D3に移動する。次に、不活性ガスは、開口31hに達した後に、再び上方に向かって移動し、不活性ガス領域SBに導かれる。 The above-described induction of the inert gas also occurs in the left-right direction D3. As shown in FIG. 9, an inert gas is introduced from a gas receiving pipe 42c. Then, the inert gas is discharged upward from the gas supply hole 42 h. Next, the inert gas is discharged further upward through the plurality of openings 43 h, the opening 101 h and the opening 44 h of the wind clamper 44. A plurality of openings 44 h are provided along the left-right direction D3. The shutter unit 30 is disposed so as to close the other opening 44h except the opening 44h for exposing the wire connection area 101c to be operated. According to such a configuration, the inert gas is retained in the opening 44 h. As a result, an inert gas area SA is formed. Then, the inert gas moves in the left-right direction D3 via the gap between the back surface 31b and the main surface 44a. Next, after reaching the opening 31 h, the inert gas moves upward again and is led to the inert gas region SB.
 従って、本開示に係るワイヤボンディング装置1は、フィーダユニット40に提供された不活性ガスを有効に利用することができる。そして、ワイヤボンディング装置1は、フリーエアボールのための不活性ガス領域SBを形成するにあたり、右チャンバブロック11R及び左チャンバブロック11Lのガス供給部42から供給される不活性ガスに加えて、さらに、フィーダユニット40から誘導される不活性ガスを用いる。従って、ワイヤボンディング装置1は、ガス雰囲気の形成能力を向上させることが可能になる。その結果、ワイヤボンディング装置1は、所望の酸素濃度を有する不活性ガス領域SBを形成することができる。ワイヤボンディング装置1は、良質のフリーエアボールを形成することが可能になる。従って、ワイヤボンディング装置1は、良好なボンディング品質を確保できる。 Therefore, the wire bonding apparatus 1 according to the present disclosure can effectively use the inert gas provided to the feeder unit 40. Then, in forming the inert gas region SB for the free air ball, the wire bonding apparatus 1 further adds to the inert gas supplied from the gas supply unit 42 of the right chamber block 11R and the left chamber block 11L, , An inert gas derived from the feeder unit 40 is used. Therefore, the wire bonding apparatus 1 can improve the ability to form a gas atmosphere. As a result, the wire bonding apparatus 1 can form an inert gas region SB having a desired oxygen concentration. The wire bonding apparatus 1 can form a free air ball of good quality. Therefore, the wire bonding apparatus 1 can ensure good bonding quality.
 シャッタ板31は、キャピラリ6がワイヤ接続領域101cにワイヤを接続する際にキャピラリ6と共にウインドクランパ44及び基板101に対して移動する。この構成によれば、複雑な機構を設けることなく、フィーダユニット40から排出される不活性ガスを利用して不活性ガス領域SAを形成することができる。 The shutter plate 31 moves relative to the window clamper 44 and the substrate 101 together with the capillary 6 when the capillary 6 connects a wire to the wire connection area 101 c. According to this configuration, the inert gas area SA can be formed using the inert gas discharged from the feeder unit 40 without providing a complicated mechanism.
 ボンディングツール10は、キャピラリ6の先端が通過する通過孔16aを有するチャンバプレート16と、キャピラリ6を囲むチャンバユニット4と、チャンバプレート16及びチャンバユニット4で囲まれた領域に第2不活性ガスを供給する不活性ガス供給路と、をさらに有する。この構成によれば、不活性ガス領域SAに加えて、不活性ガス領域SBをさらに形成することができる。従って、ワイヤボンディング装置1は、フリーエアボールの酸化をさらに好適に抑制することができる。 The bonding tool 10 includes a chamber plate 16 having a passage hole 16a through which the tip of the capillary 6 passes, a chamber unit 4 surrounding the capillary 6, a second inert gas in a region surrounded by the chamber plate 16 and the chamber unit 4 And supplying an inert gas supply path. According to this configuration, in addition to the inert gas area SA, the inert gas area SB can be further formed. Therefore, the wire bonding apparatus 1 can more preferably suppress the oxidation of the free air ball.
 図4に示すように、開口44hを通過した不活性ガスは、不活性ガス領域SAを形成する。不活性ガス領域SAは、通過孔16aを下方側に通過したキャピラリ6の先端が配置される空間である。不活性ガス供給路は、第1右ガス供給穴9Ra、第2右ガス供給穴9Rc及び左ガス供給穴9Laにより構成される。不活性ガス供給路から供給される不活性ガスは、不活性ガス領域SBを形成する。不活性ガス領域SBは、通過孔16aよりも上方に位置するキャピラリ6の先端が配置される空間である。 As shown in FIG. 4, the inert gas that has passed through the opening 44 h forms an inert gas area SA. The inert gas area SA is a space in which the tip of the capillary 6 which has passed through the passage hole 16a downward is disposed. The inert gas supply path is constituted by the first right gas supply hole 9Ra, the second right gas supply hole 9Rc, and the left gas supply hole 9La. The inert gas supplied from the inert gas supply path forms an inert gas region SB. The inert gas region SB is a space in which the tip of the capillary 6 located above the passage hole 16a is disposed.
 ここで、図4を参照しつつ、不活性ガス領域SA,SBに注目する。不活性ガス領域SAは、ワイヤ接続領域101cにおいてフリーエアボールを基板101にボンディングする際におけるフリーエアボール及び導電接続部の酸化を抑制する。一方、不活性ガス領域SBは、キャピラリ6の先端に形成されるフリーエアボールの酸化を抑制する。不活性ガス領域SAは、上下方向D1に沿って、不活性ガス領域SBの下側に形成される。不活性ガス領域SA及び不活性ガス領域SBのしきいは、例えば、チャンバプレート16としてもよい。つまり、チャンバプレート16より下側に形成される不活性領域は、不活性ガス領域SAである。チャンバプレート16より上側に形成される不活性領域は、不活性ガス領域SBである。 Here, the inert gas regions SA and SB are focused on with reference to FIG. The inert gas area SA suppresses oxidation of the free air ball and the conductive connection when bonding the free air ball to the substrate 101 in the wire connection area 101c. On the other hand, the inert gas area SB suppresses the oxidation of the free air ball formed at the tip of the capillary 6. The inert gas area SA is formed below the inert gas area SB along the vertical direction D1. The thresholds of the inert gas area SA and the inert gas area SB may be, for example, the chamber plate 16. That is, the inactive area formed below the chamber plate 16 is the inert gas area SA. The inactive area formed above the chamber plate 16 is an inert gas area SB.
 チャンバユニット4は、右チャンバブロック11Rと、右チャンバブロック11Rとは別体の左チャンバブロック11Lと、右チャンバブロック11Rをキャピラリ6に対して相対的に移動させる可動機構15と、を含む。可動機構15は、右チャンバブロック11R及び右チャンバブロック11Rによってキャピラリ6の周囲を囲む第1形態と、右チャンバブロック11Rを移動させることにより、キャピラリ6の周囲の一部を開放する第2形態と、を相互に切り替える。 The chamber unit 4 includes a right chamber block 11R, a left chamber block 11L separate from the right chamber block 11R, and a movable mechanism 15 for moving the right chamber block 11R relative to the capillary 6. The movable mechanism 15 has a first form in which the periphery of the capillary 6 is surrounded by the right chamber block 11R and the right chamber block 11R, and a second form in which a part of the periphery of the capillary 6 is opened by moving the right chamber block 11R. , Switch between each other.
 上記の構成によれば、可動機構15は、左チャンバブロック11Lを移動させることにより、開放形態から閉鎖形態に切り替わる。閉鎖形態では、キャピラリ6の周囲が左チャンバブロック11L及び右チャンバブロック11Rによって囲まれる。従って、キャピラリ6の周囲に不活性ガスを滞留させることが可能になる。その結果、フリーエアボールの酸化を抑制することができる。そして、可動機構15は、左チャンバブロック11Lを逆の方向へ移動させる。その結果、閉鎖形態から開放形態に切り替わる。開放形態は、キャピラリ6の周囲の一部が開放されている。従って、ワイヤボンディング装置1は、作業スペースS2を確保することが可能である。従って、ワイヤボンディング装置1は、ワイヤボンディングの作業性を向上させることができる。これにより、ワイヤボンディング装置1は、良好なボンディング品質の確保と作業性の向上とを両立することができる。 According to the above configuration, the movable mechanism 15 switches from the open mode to the closed mode by moving the left chamber block 11L. In the closed mode, the capillary 6 is surrounded by the left chamber block 11L and the right chamber block 11R. Accordingly, the inert gas can be retained around the capillary 6. As a result, oxidation of free air balls can be suppressed. Then, the movable mechanism 15 moves the left chamber block 11L in the opposite direction. As a result, the closed mode is switched to the open mode. In the open mode, a part of the periphery of the capillary 6 is open. Therefore, the wire bonding apparatus 1 can secure the work space S2. Therefore, the wire bonding apparatus 1 can improve the workability of wire bonding. As a result, the wire bonding apparatus 1 can ensure both good bonding quality and improvement in workability.
 本開示に係るワイヤボンディング装置1は、右チャンバブロック11Rを移動させる可動機構15を含む。シャッタユニット30は、右チャンバブロック11Rのブロック下面11Lbと対面するブロック対面部31cを含む。この構成によれば、ブロック対面部31cが開口44hを覆う。すなわち、シャッタ板31において開口44hを覆う面積が大きくなる。従って、ワイヤボンディング装置1は、フィーダユニット40から排出される不活性ガスを効率よく不活性ガス領域SBに誘導できる。 The wire bonding apparatus 1 according to the present disclosure includes a movable mechanism 15 that moves the right chamber block 11R. The shutter unit 30 includes a block facing portion 31c facing the block lower surface 11Lb of the right chamber block 11R. According to this configuration, the block facing portion 31c covers the opening 44h. That is, the area of the shutter plate 31 covering the opening 44 h is increased. Therefore, the wire bonding apparatus 1 can efficiently guide the inert gas discharged from the feeder unit 40 to the inert gas area SB.
 本開示に係るワイヤボンディング装置1のチャンバユニット4は、キャピラリ6に対する左チャンバブロック11Lの相対的な位置を保持する左アーム8Lをさらに有する。そして、シャッタユニット30は、左チャンバブロック11Lのブロック下面11Lb及びチャンバプレート16を受け入れる開口31hを含む。この構成によれば、開口31hが大きくなる。その結果、シャッタ板31を軽量化することができる。そして、軽量化されたシャッタ板31によれば、質量に起因する慣性力が小さくなる。従って、ボンディングツール10の高速動作を妨げない。さらに、シャッタ板31に覆われない開口44hは、開口31hに受け入れられた左チャンバブロック11L等によって覆われる。すなわち、シャッタ板31の機能を左チャンバブロック11Lが代替することが可能である。従って、ワイヤボンディング装置1は、フィーダユニット40から排出される不活性ガスを効率よく不活性ガス領域SBに誘導できる。 The chamber unit 4 of the wire bonding apparatus 1 according to the present disclosure further includes a left arm 8L that holds the relative position of the left chamber block 11L to the capillary 6. The shutter unit 30 further includes an opening 31 h for receiving the lower surface 11 Lb of the left chamber block 11 L and the chamber plate 16. According to this configuration, the opening 31 h becomes large. As a result, the shutter plate 31 can be reduced in weight. And, according to the shutter plate 31 which is reduced in weight, the inertial force caused by the mass is reduced. Therefore, the high speed operation of the bonding tool 10 is not impeded. Further, the opening 44h not covered by the shutter plate 31 is covered by the left chamber block 11L or the like received in the opening 31h. That is, the left chamber block 11L can substitute the function of the shutter plate 31. Therefore, the wire bonding apparatus 1 can efficiently guide the inert gas discharged from the feeder unit 40 to the inert gas area SB.
 以上、本開示に係るワイヤボンディング装置をその実施形態に基づいて詳細に説明した。しかし、本開示に係るワイヤボンディング装置は上記実施形態に限定されるものではない。本開示に係るワイヤボンディング装置は、その要旨を逸脱しない範囲で様々な変形が可能である。 Hereinabove, the wire bonding apparatus according to the present disclosure has been described in detail based on the embodiment. However, the wire bonding apparatus according to the present disclosure is not limited to the above embodiment. The wire bonding apparatus according to the present disclosure can be variously modified without departing from the scope of the invention.
 左チャンバブロック11Lを固定し、右チャンバブロック11Rを可動させる構成とした。例えば、右チャンバブロック11Rに加えて、さらに左チャンバブロック11Lを第2可動部(第2機構)によって稼働させてもよい。シャッタユニット30は、左チャンバブロック11Lのブロック下面11Lbと対面するブロック対面部31d(第2対面部)をさらに含む。つまり、開口31hがさらに縮小される。その結果、フィーダユニット40から排出される不活性ガスをさらに効率よく不活性ガス領域SBに誘導できる。 The left chamber block 11L is fixed, and the right chamber block 11R is moved. For example, in addition to the right chamber block 11R, the left chamber block 11L may be operated by the second movable portion (second mechanism). The shutter unit 30 further includes a block facing portion 31d (second facing portion) facing the block lower surface 11Lb of the left chamber block 11L. That is, the opening 31 h is further reduced. As a result, the inert gas discharged from the feeder unit 40 can be more efficiently guided to the inert gas region SB.
 左チャンバブロック11L及び右チャンバブロック11Rの両方にガス供給部9を設けた。例えば、左チャンバブロック11L及び右チャンバブロック11Rのいずれか一方にのみガス供給部9を設けてもよい。 The gas supply part 9 was provided in both the left chamber block 11L and the right chamber block 11R. For example, the gas supply unit 9 may be provided only in one of the left chamber block 11L and the right chamber block 11R.
 右チャンバブロック11Rの第2位置を、キャピラリ6に対して右斜め上方であってさらに後方とした。右チャンバブロック11Rの第2位置は、キャピラリ6及びキャピラリアーム7の先端の一部を開放可能な位置であれば、この配置に限定されない。 The second position of the right chamber block 11 </ b> R is obliquely above the right with respect to the capillary 6 and further rearward. The second position of the right chamber block 11R is not limited to this arrangement as long as the capillary 6 and a part of the tip of the capillary arm 7 can be opened.
1,200…ワイヤボンディング装置、2…ベースユニット、3…キャピラリユニット、4…チャンバユニット、4L…左チャンバユニット、4R…右チャンバユニット、6…キャピラリ、7…キャピラリアーム、7a…左側面、7b…右側面、7c…前端面、7d…底面、8L…左アーム、8R…右アーム、9…ガス供給部、9L…左ガス供給部、9La…左ガス供給穴、9Lb…左ガス供給管、9R…右ガス供給部、9Ra…第1右ガス供給穴、9Rc…第2右ガス供給穴、10…ボンディングツール、11…チャンバ、11L…左チャンバブロック、11La…先端、11Lb…ブロック下面、11R…右チャンバブロック、11Rb…ブロック下面、12…固定アーム、12a…連結穴、13…可動アーム、13a…基端、13b…先端、13h…挿通穴、14…ボルト、14a…軸部、14b…ヘッド、15…可動機構、16…チャンバプレート、16a…通過孔、16c…プレート下面、17…ラッチ機構、18…第1吸着部、19…第2吸着部、20…不活性ガス領域形成部、21…第1緩衝部、22…第2緩衝部、30…シャッタユニット、31…シャッタ板、31a…主面、31b…裏面、31c,31d…ブロック対面部、31h,41h,43h,44h,101h…開口、32R…右連結部、32L…左連結部、32a…キャピラリ導入穴部、32b…ブロック導入穴部、40…フィーダユニット、41…ハウジング、41a…ハウジング上板、41b…ハウジング下板、42…ガス供給部、42c…ガス受入管、42a…主面、42b…裏面、42h…ガス供給穴、43…ボンディングステージ、43a…主面、43b…裏面、43s…分配領域、44…ウインドクランパ、44a…主面、44b…裏面、44c…クランプ部、100…半導体チップユニット、101…基板、101a…主面、101b…裏面、A1,A2,A3,A4,AR…軸線、D1…上下方向、D2…前後方向、D3…左右方向、M1…第1磁石、M2…第2磁石、M3…第3磁石、M4…第4磁石、M5…第5磁石、M6…第6磁石、P1…第1包囲面、P2…第2包囲面、P2a…右包囲面、P2b…左包囲面、P3…第3包囲面、SA,SB…不活性ガス領域、S2…作業スペース。 1, 200: wire bonding apparatus, 2: base unit, 3: capillary unit, 4: chamber unit, 4L: left chamber unit, 4R: right chamber unit, 6: capillary, 7: capillary arm, 7a, left side, 7b ... right side surface, 7c ... front end surface, 7d ... bottom surface, 8L ... left arm, 8R ... right arm, 9 ... gas supply unit, 9L ... left gas supply unit, 9La ... left gas supply hole, 9Lb ... left gas supply pipe, 9R: right gas supply unit, 9Ra: first right gas supply hole, 9Rc: second right gas supply hole, 10: bonding tool, 11: chamber, 11L: left chamber block, 11La: tip, 11Lb: block lower surface, 11R ... right chamber block, 11 Rb ... block lower surface, 12 ... fixed arm, 12 a ... connection hole, 13 ... movable arm, 13 a ... proximal end, 13 b ... End, 13h: Insertion hole, 14: Bolt, 14a: Shaft portion, 14b: Head, 15: Movable mechanism, 16: Chamber plate, 16a: Passage hole, 16c: Plate lower surface, 17: Latch mechanism, 18: First adsorption 19: second adsorption unit 20: inert gas area formation unit 21: first buffer unit 22: second buffer unit 30: shutter unit 31: shutter plate 31a: main surface 31b: back surface 31c, 31d: block facing portion, 31h, 41h, 43h, 44h, 101h: opening, 32R: right connecting portion, 32L: left connecting portion, 32a: capillary introduction hole portion, 32b: block introduction hole portion, 40: feeder Unit 41 housing 41a housing upper plate 41b housing lower plate 42 gas supply part 42c gas receiving pipe 42a main surface 42b rear surface 42h 43: A bonding stage 43a: a principal surface 43b: a back surface 43s: a distribution area 44: a window clamper 44a: a principal surface 44b: a back surface 44c: a clamping portion 100: a semiconductor chip unit 101 Substrate, 101a: principal surface, 101b: back surface, A1, A2, A3, A4, AR: axis, D1: up and down direction, D2: front and back direction, D3: left and right direction, M1: first magnet, M2: second magnet, M3 third magnet M4 fourth magnet M5 fifth magnet M6 sixth magnet P1 first surrounding surface P2 second surrounding surface P2a right surrounding surface P2b left surrounding surface P3 ... third surrounding surface, SA, SB ... inert gas region, S2 ... work space.

Claims (5)

  1.  ワイヤ接続領域に第1開口部を有する基板を支持し、前記基板に第1不活性ガスを吹き付ける第2開口部を有するボンディングステージと、
     前記基板の前記ワイヤ接続領域に対応して開口する複数の第3開口部を有し、前記基板を前記ボンディングステージに固定するウインドクランパと、
     前記ワイヤ接続領域にワイヤを圧着するキャピラリを有する上部ボンディング機構と、
     前記ウインドクランパの上方に配置され、前記キャピラリが通過すると共に、前記第1開口部、前記第2開口部及び前記第3開口部を通過した前記第1不活性ガスの流路を絞り前記キャピラリの先端に前記第1不活性ガスを導出する第4開口部を有するシャッタと、を備える、ワイヤボンディング装置。
    A bonding stage supporting a substrate having a first opening in a wire connection area and having a second opening for blowing a first inert gas onto the substrate;
    A window clamper having a plurality of third openings opened corresponding to the wire connection area of the substrate, and fixing the substrate to the bonding stage;
    An upper bonding mechanism having a capillary for crimping a wire to the wire connection area;
    The capillary is disposed above the window clamper, and the passage of the first inert gas passing through the first opening, the second opening, and the third opening is narrowed while passing through the capillary. A shutter having a fourth opening at a tip end for leading out the first inert gas.
  2.  前記シャッタは、前記キャピラリが前記ワイヤ接続領域に前記ワイヤを接続する際に前記キャピラリと共に前記ウインドクランパ及び前記基板に対して移動する、請求項1に記載のワイヤボンディング装置。 The wire bonding apparatus according to claim 1, wherein the shutter moves relative to the window clamper and the substrate together with the capillary when the capillary connects the wire to the wire connection area.
  3.  前記上部ボンディング機構は、前記キャピラリの先端が通過する通過孔を有する板部材と、前記キャピラリを囲むチャンバ部材と、前記板部材及び前記チャンバ部材で囲まれた領域に第2不活性ガスを供給する不活性ガス供給路と、をさらに有する、請求項1又は2に記載のワイヤボンディング装置。 The upper bonding mechanism supplies a second inert gas to a plate member having a passage hole through which the tip of the capillary passes, a chamber member surrounding the capillary, and a region surrounded by the plate member and the chamber member. The wire bonding apparatus according to claim 1, further comprising: an inert gas supply path.
  4.  前記第4開口部を通過した前記第1不活性ガスは、前記通過孔を下方側に通過した前記キャピラリの先端の雰囲気となる第1不活性ガス領域を形成し、
     前記不活性ガス供給路から供給される第2不活性ガスは、前記通過孔よりも上方に位置する前記キャピラリの先端の雰囲気となる第2不活性ガス領域を形成する、請求項3に記載のワイヤボンディング装置。
    The first inert gas that has passed through the fourth opening forms a first inert gas region that is the atmosphere of the tip of the capillary that has passed downward through the passage hole,
    The second inert gas supplied from the inert gas supply passage forms a second inert gas region which is an atmosphere of the tip of the capillary located above the passage hole. Wire bonding equipment.
  5.  前記チャンバ部材は、第1チャンバブロックと、前記第1チャンバブロックとは別体の第2チャンバブロックと、前記第1チャンバブロック及び前記第2チャンバブロックの一方を前記キャピラリに対して相対的に移動させる可動部と、を含み、
     前記可動部は、前記第1チャンバブロック及び前記第2チャンバブロックによって前記キャピラリの周囲を囲む第1形態と、前記第1チャンバブロック及び前記第2チャンバブロックの少なくとも一方を移動させることにより、前記キャピラリの周囲の一部を開放する第2形態と、を相互に切り替える、請求項3に記載のワイヤボンディング装置。
     
    The chamber member moves the first chamber block, a second chamber block separate from the first chamber block, and one of the first chamber block and the second chamber block relative to the capillary. Moving parts, and
    The movable portion moves the capillary by moving at least one of a first form in which the periphery of the capillary is surrounded by the first chamber block and the second chamber block, and at least one of the first chamber block and the second chamber block. The wire bonding apparatus according to claim 3, wherein the second form in which a part of the periphery of the opening is opened is switched with each other.
PCT/JP2018/025859 2017-07-07 2018-07-09 Wire bonding device WO2019009429A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017133769A JP2020155425A (en) 2017-07-07 2017-07-07 Wire bonding device
JP2017-133769 2017-07-07

Publications (1)

Publication Number Publication Date
WO2019009429A1 true WO2019009429A1 (en) 2019-01-10

Family

ID=64950091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025859 WO2019009429A1 (en) 2017-07-07 2018-07-09 Wire bonding device

Country Status (3)

Country Link
JP (1) JP2020155425A (en)
TW (1) TWI681477B (en)
WO (1) WO2019009429A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022208624A1 (en) * 2021-03-29 2022-10-06 平田機工株式会社 Wire bonding device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275673A (en) * 1993-03-23 1994-09-30 Rohm Co Ltd Device and method for wire bonding
JP2008034811A (en) * 2006-07-03 2008-02-14 Shinkawa Ltd Ball forming device in wire bonding device, and bonding device
US20080099531A1 (en) * 2006-10-30 2008-05-01 Yam Mo Wong Apparatus for delivering shielding gas during wire bonding
JP2009059878A (en) * 2007-08-31 2009-03-19 Shinkawa Ltd Bonding equipment and bonding method
JP2012504317A (en) * 2008-06-10 2012-02-16 クリック アンド ソッファ インダストリーズ、インク. Gas delivery system for reducing oxidation in wire bonding operations
JP2012039157A (en) * 2011-11-18 2012-02-23 Kaijo Corp Wire bonding device
JP2013058716A (en) * 2011-08-16 2013-03-28 Shinkawa Ltd Wire bonding apparatus
JP2016134478A (en) * 2015-01-19 2016-07-25 株式会社新川 Bonding device and bonding method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275673A (en) * 1993-03-23 1994-09-30 Rohm Co Ltd Device and method for wire bonding
JP2008034811A (en) * 2006-07-03 2008-02-14 Shinkawa Ltd Ball forming device in wire bonding device, and bonding device
US20080099531A1 (en) * 2006-10-30 2008-05-01 Yam Mo Wong Apparatus for delivering shielding gas during wire bonding
JP2009059878A (en) * 2007-08-31 2009-03-19 Shinkawa Ltd Bonding equipment and bonding method
JP2012504317A (en) * 2008-06-10 2012-02-16 クリック アンド ソッファ インダストリーズ、インク. Gas delivery system for reducing oxidation in wire bonding operations
JP2013058716A (en) * 2011-08-16 2013-03-28 Shinkawa Ltd Wire bonding apparatus
JP2012039157A (en) * 2011-11-18 2012-02-23 Kaijo Corp Wire bonding device
JP2016134478A (en) * 2015-01-19 2016-07-25 株式会社新川 Bonding device and bonding method

Also Published As

Publication number Publication date
TWI681477B (en) 2020-01-01
JP2020155425A (en) 2020-09-24
TW201907501A (en) 2019-02-16

Similar Documents

Publication Publication Date Title
JP5515358B2 (en) Machine Tools
WO2019009429A1 (en) Wire bonding device
US7975899B2 (en) Work clamp and wire bonding apparatus
US20090236320A1 (en) Method for tandem gas metal arc welding, and welding torch and welding apparatus used therefor
JP2006123163A (en) Processing head holding device in laser processing machine
JP2011040635A (en) Wire bonding device
JP2008130825A (en) Wire bonding device
JP6748761B1 (en) Laser irradiation head
KR101587569B1 (en) Wire bonding device
EP1982795A1 (en) Machine tool
KR101168965B1 (en) Ion generating module
CN110945635B (en) Wire bonding device
JP2005219108A (en) Laser machining head and laser machining method
SG181253A1 (en) Wire feeding apparatus for wire bonders
JP2008036693A (en) Welding torch
JP2010128360A (en) Observing device for microscope
JP2005218730A (en) Game machine
JP2007030016A (en) Laser beam machine
JP4672698B2 (en) Granular material removal device
CN210024076U (en) Energy centralized plasma arc cutting torch
JP2016134361A (en) Power supply changeover switch
JP7215305B2 (en) JIG FOR PLASMA PROCESSING APPARATUS AND PLASMA PROCESSING SYSTEM
CN116887945A (en) Control panel and lathe
JP2021118259A (en) Exposure device
JP2010123786A (en) Bonding device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP