WO2019009427A1 - Solder joint and bonding method - Google Patents

Solder joint and bonding method Download PDF

Info

Publication number
WO2019009427A1
WO2019009427A1 PCT/JP2018/025799 JP2018025799W WO2019009427A1 WO 2019009427 A1 WO2019009427 A1 WO 2019009427A1 JP 2018025799 W JP2018025799 W JP 2018025799W WO 2019009427 A1 WO2019009427 A1 WO 2019009427A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleation
intermetallic compound
solder
joined
solder joint
Prior art date
Application number
PCT/JP2018/025799
Other languages
French (fr)
Japanese (ja)
Inventor
西村 哲郎
キース スウェットマン
貴利 西村
クリストファー グーレイ
ザオロン マ
セルゲイ ベリャコフ
Original Assignee
株式会社日本スペリア社
インペリアル イノベーションズ リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本スペリア社, インペリアル イノベーションズ リミテッド filed Critical 株式会社日本スペリア社
Publication of WO2019009427A1 publication Critical patent/WO2019009427A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin

Definitions

  • the present invention relates to a solder joint in which at least two members to be joined are joined using a lead-free solder alloy containing Sn and a joining method.
  • ⁇ Sn In electrical and electronic bonding using soldering, ⁇ Sn is the main phase. However, ⁇ Sn has very anisotropic thermophysical properties. For example, the thermal expansion coefficient, the rigidity, and the diffusion coefficient of the solute largely differ depending on the direction of ⁇ Sn. Also, in research on the reliability of solder joints, it is known that the thermal cycling ability, the shear fatigue life and the electron transfer ability depend on the orientation of ⁇ Sn in the [001] direction with respect to the surface of the substrate where the soldering is performed There is. In the case of the electron transfer capability, the electron transfer is very good in a solder joint in which the [001] direction of ⁇ Sn particles is substantially parallel to the direction of the current, ie, perpendicular to the plane of the substrate.
  • Patent Document 1 the annealing atmosphere in the manufacturing process or the pickling method after annealing is appropriately selected, and the crystal grain diameter measured in the direction perpendicular to the rolling direction on the surface is 30 ⁇ m or less.
  • the orientation of ⁇ Sn particles plays an important role in determining the properties of a solder joint, controlling the orientation of ⁇ Sn particles formed during solder bonding, and ⁇ Sn particles There was no ingenuity in controlling the structure of. About these, in the technique concerning the Sn containing copper alloy material of patent documents 1, neither disclosure nor device are made.
  • the present invention has been made in view of such circumstances, and the object of the present invention is a solder joint in which the ⁇ Sn particles are oriented in a desired specific direction and the ⁇ Sn particles have a desired structure, and the solder.
  • An object of the present invention is to provide a joining method according to a joint.
  • the solder joint according to the present invention is a solder joint in which at least two members to be joined are joined using a lead-free solder alloy containing Sn, wherein the solder portion related to the lead-free solder alloy is formed at the time of soldering [100] or [010] direction intersects the thickness direction of the layer of the intermetallic compound, the layer of the intermetallic compound, the nucleation particle of the intermetallic compound bonded to the layer of the intermetallic compound, And a single grain ⁇ Sn crystal-oriented so that the [001] direction is substantially parallel to the bonding surface of the members to be bonded.
  • the solder joint according to the present invention is characterized in that the single grain ⁇ Sn is oriented such that the [001] direction is substantially parallel to the surface of the workpiece.
  • the solder joint according to the present invention is characterized in that the nucleation particle of the intermetallic compound contains at least one of PtSn 4 , PdSn 4 , ⁇ IrSn 4 or ⁇ CoSn 3 .
  • the minimum dimension of the nucleation particle is 25 ⁇ m in width (longest dimension in FIG. 1) and 0.2 ⁇ m in thickness (in cross direction) is there.
  • the largest dimension must be smaller than the surface of the workpiece (e.g., the copper substrate of FIG. 2).
  • the minimum dimension of the nucleation particle is 10 ⁇ m in width (longest dimension in FIG. 1) and 0. 2 ⁇ m (in the cross direction).
  • the largest dimension must be smaller than the surface of the workpiece (e.g., the copper substrate of FIG. 2).
  • the solder joint according to the present invention is characterized in that the member to be joined has a plate shape, and the maximum size of the nucleation particle is the same as the size of the joint surface of the member to be joined.
  • the solder joint according to the present invention is characterized in that the layer of the intermetallic compound is formed at a bonding interface between any of the members to be bonded and the solder portion.
  • the bonding method according to the present invention at least two members to be joined are soldered using a lead-free solder alloy containing Sn, and the two members to be joined are joined by the solder portion of the lead-free solder alloy. Placing the crystal of the intermetallic compound at the location where the solder portion is to be formed, and the soldering step of performing the soldering such that the solder portion includes the crystal of the intermetallic compound. And including.
  • the disposing step fixes the crystal of the intermetallic compound to any one of the members to be joined such that the largest facet of the crystal of the intermetallic compound is in a specific direction. It is characterized by including.
  • the disposing step includes a step of performing Sn coating on a position where the crystal of the intermetallic compound is to be fixed in any of the members to be bonded, and the crystal of the intermetallic compound is coated It is characterized by being fixed on Sn.
  • the bonding method according to the present invention is characterized in that the crystal of the intermetallic compound is fixed on a portion covered with Sn by an excessive liquid phase bonding method.
  • the bonding method according to the present invention is characterized in that a reflow method is used in the soldering step.
  • the bonding method according to the present invention is characterized in that the crystal of the intermetallic compound has a rectangular plate shape.
  • the bonding method according to the present invention is characterized in that the intermetallic compound contains at least one of PtSn 4 , PdSn 4 , ⁇ IrSn 4 or ⁇ CoSn 3 .
  • ⁇ -Sn particles can be oriented in a specific direction, and ⁇ -Sn particles can be brought into a desired structure.
  • FIG. 1 shows an example of extracted nucleation particles.
  • FIG. 2 is an explanatory view illustrating a process of manufacturing a solder joint according to the present embodiment using the bonding method according to the present embodiment.
  • FIG. 3 is an enlarged photograph of an enlarged portion between the copper substrate and the nucleation particle when soldering is performed on the copper substrate on which the nucleation particle is fixed.
  • FIG. 4 shows the results of analysis of a solder joint by reflection electron image and electron backscattering diffraction (EBSD) in the case of using PtSn 4 as nucleation particles.
  • EBSD electron backscattering diffraction
  • FIG. 5 shows the results of analysis of the solder joints by electron beam backscattering diffraction when PtSn 4 , ⁇ IrSn 4 and ⁇ CoSn 3 are used as nucleation particles.
  • FIG. 6 shows an example of the solder joint according to the present embodiment manufactured by the bonding method according to the present embodiment.
  • FIG. 7 shows the results of examining the influence of the size of nucleation particles on the control of nucleation and crystal orientation of ⁇ Sn.
  • FIG. 8 shows the result of examining the influence of the number of solderings on the control of nucleation and crystal orientation of ⁇ Sn.
  • FIG. 9 is another result of examining the influence of the number of solderings on the control of nucleation and crystal orientation of ⁇ Sn.
  • FIG. 11 shows the electron beam of the solder joint when ⁇ CoSn 3 is used as nucleation particles in the solder joint according to the present embodiment and a Sn-0.7Cu-0.05Ni-Ge alloy is used as the lead-free solder alloy. It is the result of analyzing by the backscattering diffraction method.
  • nucleation particles crystals used for the nucleation and orientation of ⁇ Sn include PtSn 4 , PdSn 4 , ⁇ IrSn 4 or ⁇ CoSn 3 Intermetallic compounds were considered. A method of generating nucleation particles of these intermetallic compounds will be described. Within the mold, the desired nucleation surface is grown as a facet in a series of treatments to solidify hypereutectic Sn-Pt, Sn-Pd, Sn-Ir, or Sn-Co alloys.
  • FIG. 1 shows an example of extracted nucleation particles.
  • Most of the nucleation particles grown by the above-described method are substantially rectangular, and the largest facets formed are the desired surfaces for nucleation of ⁇ Sn.
  • nucleation particles are grown to a width of 1 ⁇ m to 200 ⁇ m.
  • a method of manufacturing the solder joint according to the present embodiment will be described using nucleation particles of the above-described intermetallic compound.
  • FIG. 2 is an explanatory view illustrating a process of manufacturing the solder joint 10 according to the present embodiment using the bonding method according to the present embodiment.
  • a portion to be soldered particularly a portion to be fixed to the nucleation particle 4 as described later, is covered with Sn.
  • the thickness of the coating layer 3 of Sn is approximately 1 ⁇ m. At least one nucleation particle 4 is fixed on the coated Sn.
  • the nucleation particles 4 are placed on the Sn coating layer 3 and fixed using an excess liquid phase bonding method.
  • the excess liquid phase bonding method is performed at a temperature of 240 ° C. to 300 ° C. for 5 to 180 minutes.
  • the largest facet of the nucleation particle 4 of the intermetallic compound is placed in parallel with the surface 21 (joint surface) to be soldered in the copper substrate 2.
  • ⁇ Sn generated in the soldering is such that the [001] direction is parallel to the facet of nucleation particle 4, in other words, a direction substantially parallel to surface 21 of copper substrate 2. It is nucleated to grow crystals.
  • ⁇ Sn is nucleated and crystal grows so that the [100] direction or the [010] direction intersects the thickness direction of the layer of the intermetallic compound (see FIG. 2).
  • this embodiment is not limited to this.
  • the arrangement of the facets of the nucleation particle 4 may be appropriately adjusted as needed, that is, in accordance with the desired direction of ⁇ Sn nucleation and crystal growth.
  • FIG. 3 is an enlarged photograph of a portion between the copper substrate 2 and the nucleation particle 4 when soldering is performed on the copper substrate 2 on which the nucleation particle 4 is fixed. Specifically, FIG. 3 is an enlarged photograph of the round dotted portion in FIG. (A), (b) and (c) of FIG.
  • nucleation particle 4 is ⁇ CoSn 3 , PtSn 4 and ⁇ IrSn 4 , respectively.
  • a layer related to nucleation particles 4 is formed at the bonding interface between solder ball 1 ( ⁇ Sn) and copper substrate 2.
  • a layer of an intermetallic compound of Cu 3 Sn and Cu 6 Sn 5 is formed between the copper substrate 2 and the nucleation particles 4.
  • the layer of intermetallic compound of Cu 3 Sn and Cu 6 Sn 5 is a layer of intermetallic compound formed during soldering. Thereafter, in order to bond the other copper substrate 2 to the solder ball 1, soldering using the reflow method is performed again.
  • FIG. 4 shows the result of analysis of the solder joint 10 by reflection electron image and electron backscattering diffraction (EBSD) in the case of using PtSn 4 as the nucleation particle 4.
  • EBSD reflection electron image and electron backscattering diffraction
  • FIG. 4A shows the distributions of four phases ( ⁇ Sn, PtSn 4 , Cu 6 Sn 5 and Cu) in green, red, blue and yellow, respectively. From (b) to (d) in FIG.
  • the ⁇ -Sn dendrite phase is formed in the solder ball 1 and the eutectic mixture of ⁇ -Sn, Ag 3 Sn, and Cu 6 Sn 5 is formed between the dendrite arms .
  • (e) to (h) in FIG. 4 represent the orientation of the crystal by color.
  • the solder ball 1 shows a single color of green, indicating that ⁇ Sn is a single crystal oriented in the ⁇ 100> direction in the Z direction (ie, perpendicular to the copper substrate 2). ing. Therefore, the [001] direction of ⁇ Sn is parallel to the surface 21 of the copper substrate 2. Further, from (e) to (f) in FIG.
  • FIG. 5 shows the result of analyzing the joint 10 including the solder ball 1 and the copper substrate 2 by the electron beam backscattering diffraction method when PtSn 4 , ⁇ IrSn 4 and ⁇ CoSn 3 are used as the nucleation particles 4.
  • a Sn-3Ag-0.5Cu alloy is used as a lead-free solder alloy.
  • (A) to (c) of FIG. 5 are mapping images of ⁇ Sn when nucleation particles 4 are PtSn 4 , ⁇ IrSn 4 and ⁇ CoSn 3 respectively, and (d) of FIG. 5 quantitatively determines the crystal orientation of ⁇ Sn It is summarized in From (a) to (c) in FIG. 5, all the solder balls 1 represent one ⁇ Sn crystal orientation (green).
  • ⁇ Sn is oriented in the ⁇ 100> direction along the Z direction.
  • all the solder balls 1 have an XY plane, that is, a ⁇ 001> direction on the surface 21 of the copper substrate 2 and all the solder balls 1 in the ⁇ 100> direction.
  • One direction is in the Z direction, ie, perpendicular to the copper substrate 2.
  • all the solder balls 1 have an [001] direction within 15 ° with respect to the XY plane, ie the plane 21 of the copper substrate 2. From the above, it can be seen that the nucleation and crystal orientation of ⁇ Sn produced during soldering occur along the largest facets of the nucleation particles 4.
  • FIG. 6 shows an example of the solder joint 10 according to the present embodiment manufactured by the bonding method according to the present embodiment.
  • ⁇ CoSn 3 is used as the nucleation particle 4, and the nucleation and crystal orientation of ⁇ Sn are controlled according to the application.
  • FIG. 6A shows a state in which nucleation particles 4 are fixed on four copper substrates 2.
  • FIG. 6 (b) shows the microstructures of the four solder joints 10 after soldering.
  • FIG. 6C is a result of analyzing the four solder joints 10 by the electron beam backscattering diffraction method, and is a mapping image of ⁇ Sn in the X direction and the Y direction.
  • (d) of FIG. 6 is a crystal orientation map corresponding to (c).
  • each c / b axis of each nucleation particle 4 is on the XY plane and is about 45 ° with respect to the X direction It is fixed to be positioned (see (a) of FIG. 6).
  • ⁇ -Sn has a c-axis ([001] direction) facing surface 21 of copper substrate 2. Top and approximately 45 ° to the main shear direction (X direction).
  • Such a structure is reported as a structure that provides the longest shear fatigue life (see red region in (d) of FIG. 6).
  • FIG. 7 shows the result of examining the influence of the size of the nucleation particle 4 on the control of the nucleation and crystal orientation of ⁇ Sn.
  • (A) to (d) of FIG. 7 show a state where the nucleation particle 4 is fixed on the copper substrate 2 when ⁇ CoSn 3 is used as the nucleation particle 4.
  • (e) to (h) in FIG. 7 are results of analyzing the solder joint 10 according to (a) to (d) by electron beam backscattering diffraction, and are mapping images of ⁇ Sn in the Z direction.
  • a Sn-3Ag-0.5Cu alloy is used as a lead-free solder alloy.
  • ⁇ CoSn 3 was used as the nucleation particle 4, it was found that it is not possible to control the nucleation and crystal orientation of ⁇ Sn when the size of the nucleation particle 4 is 25 ⁇ m or less in width (longest dimension) (see FIG. 7 (d) and (h)). More specifically, when ⁇ CoSn 3 is used as nucleation particle 4, the minimum dimension of nucleation particle 4 is 25 ⁇ m in width (longest dimension in the direction along surface 21 of copper substrate 2) and 0.2 ⁇ m in thickness (crossing In the direction) (see FIG. 1). At this time, the maximum size of the nucleation particle 4 is the same as the size of the surface 21 of the copper substrate 2. Further, in FIG.
  • the maximum size of the nucleation particle 4 is the same as the size of the surface 21 of the copper substrate 2.
  • ⁇ CoSn 3 reacts with copper and the liquid phase at the fastest rate among nucleation particles 4 to form (Cu, Co) 6 Sn 5 .
  • ⁇ CoSn 3 near the (Cu, Co) 6 Sn 5 layer prevents contact between ArufaCoSn 3 and the liquid phase. Therefore, when ⁇ CoSn 3 is used as the nucleation particle 4, the number of times of soldering (reflow method) may affect the control of nucleation and crystal orientation of ⁇ Sn.
  • FIG. 8 shows the result of examining the influence of the number of solderings on the control of nucleation and crystal orientation of ⁇ Sn.
  • ⁇ CoSn 3 was used as nucleation particles 4 and soldering was performed by the reflow method.
  • (A), (b) of FIG. 8 and (c), (d) of FIG. 8 respectively show the solder joint 10 when the soldering is performed twice and five times by the electron beam backscattering diffraction method It is a result of analysis, and is a mapping image of ⁇ Sn in the Z direction. Further, (e) of FIG. 8 is a summary of (a) to (d).
  • a Sn-3Ag-0.5Cu alloy is used as a lead-free solder alloy.
  • a Sn-3Ag-0.5Cu alloy is used as the lead-free solder alloy.
  • soldering by the reflow method is performed in a state where the copper substrate 2 is stopped, and when soldering by the reflow method is performed while moving the copper substrate 2 in a convection oven, No difference was observed in the control of nucleation and crystal orientation.
  • the lead-free solder alloy may be a Sn-3.5Ag alloy or a Sn-0.7Cu-0.05Ni-Ge alloy.
  • ⁇ CoSn 3 is used as nucleation particles 4 in the solder joint 10 according to the present embodiment, and Sn-3.5Ag alloy and Sn-0.7Cu-0.05Ni-, respectively, as lead-free solder alloys.
  • Ge alloy it is the result of analyzing the solder joint 10 by the electron beam backscattering diffraction method, and is a mapping image of (beta) Sn in a Z direction. In either case of FIGS. 10 and 11, it can be seen that the control of the nucleation and crystal orientation of ⁇ Sn is effectively performed.
  • solder ball (solder part) 2 Copper substrate (member to be joined) 3 coating layer 4 nucleation particle 10 solder joint 21 (of copper substrate) face

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

Provided are a solder joint in which βSn grains are oriented in a specific desired direction, the βSn grains having a desired structure, and a bonding method relating to the solder joint. Provided is a solder joint in which at least two copper substrates (2) are bonded to each other using a lead-free solder alloy including Sn. A solder ball (1) relating to the lead-free solder alloy comprises: one or a plurality of nucleation grains (4); and a single grain βSn of which a [001] direction is parallel with a facet plane of the nucleation grains (4), and which is crystal-oriented in a specific direction with respect to the copper substrates (2).

Description

はんだ継手及び接合方法Solder joint and joining method
 本発明は、Snを含む鉛フリーはんだ合金を用いて少なくとも2つの被接合部材を接合させたはんだ継手及び接合方法に関する。 The present invention relates to a solder joint in which at least two members to be joined are joined using a lead-free solder alloy containing Sn and a joining method.
 はんだ付けを用いた電気的及び電子的接合においてはβSnが主な相となる。しかし、βSnはその熱物理的特性が非常に異方的である。例えば、熱膨張係数、剛性、溶質の拡散係数はβSnの方向によって大きく異なる。また、はんだ接合の信頼性に対する研究では、熱サイクル能力、せん断疲労寿命及び電子移動能力が、はんだ付けが行われる基板の面に対するβSnの[001]方向の配向に左右されることが知られている。
 電子移動能力の場合は、βSn粒子の[001]方向が電流の方向と略平行である、すなわち基板の面に対して垂直方向であるはんだ継手において、電子移動が非常に良好である。これは、Cu、Ni、Ag又はAuのような溶質原子の[001]方向(c軸)に沿う拡散率が高いからである。換言すれば、βSn粒子の[001]方向を基板の面に平行するようにすることにより、電子移動を最小化することが出来る。
 熱サイクル能力に対するβSn粒子配向の影響は、はんだ継手の応力状態、形状を含む因子に左右される。せん断疲労において、[001]方向を基板の面に有し、且つせん断方向に対して略35~65°に配向されたβSnを有するはんだ継手は、疲労損傷の影響を受け難いことが報告されている。
 一方、特許文献1においては、製造工程における焼鈍雰囲気あるいは焼鈍後の酸洗方法を適宜選択し、かつ表面において圧延方向に直角な方向にて測定した結晶粒径が30μm以下となるようにすることにより、その表面をX線光電子分光法によって測定したときの定量分析のピークエリア面積比のSn3d/Cu2p比が0.3以下である、はんだ付け性に優れたSn含有銅合金材料を得ることについて開示されている。
In electrical and electronic bonding using soldering, βSn is the main phase. However, βSn has very anisotropic thermophysical properties. For example, the thermal expansion coefficient, the rigidity, and the diffusion coefficient of the solute largely differ depending on the direction of βSn. Also, in research on the reliability of solder joints, it is known that the thermal cycling ability, the shear fatigue life and the electron transfer ability depend on the orientation of βSn in the [001] direction with respect to the surface of the substrate where the soldering is performed There is.
In the case of the electron transfer capability, the electron transfer is very good in a solder joint in which the [001] direction of βSn particles is substantially parallel to the direction of the current, ie, perpendicular to the plane of the substrate. This is because the diffusivity along the [001] direction (c axis) of solute atoms such as Cu, Ni, Ag or Au is high. In other words, electron transfer can be minimized by making the [001] direction of the βSn particle parallel to the plane of the substrate.
The effect of β-Sn particle orientation on thermal cycling ability depends on factors including the stress state, shape of the solder joint. In shear fatigue, solder joints that have [001] direction in the plane of the substrate and have βSn oriented at approximately 35 to 65 ° with respect to the shear direction are reported to be less susceptible to fatigue damage There is.
On the other hand, in Patent Document 1, the annealing atmosphere in the manufacturing process or the pickling method after annealing is appropriately selected, and the crystal grain diameter measured in the direction perpendicular to the rolling direction on the surface is 30 μm or less. The Sn-containing copper alloy material excellent in solderability, wherein the Sn3d / Cu2p ratio of the peak area area ratio of quantitative analysis when the surface is measured by X-ray photoelectron spectroscopy It is disclosed.
特開2000−144285号公報JP 2000-144285 A
 以上のように、はんだ継手の特性の決定において、βSn粒子の配向が重要な役割を果たしているにも関わらず、はんだ接合の際に形成されるβSn粒子の配向を制御すること、及び、βSn粒子の構造を制御することについては工夫されていなかった。これらについては、特許文献1のSn含有銅合金材料に係る技術においても、開示も工夫もされていない。
 本発明は、斯かる事情に鑑みてなされたものであり、その目的とするところは、希望する特定の方向にβSn粒子が配向され、かつβSn粒子が希望する構造を有するはんだ継手と、該はんだ継手に係る接合方法を提供することにある。
As described above, although the orientation of βSn particles plays an important role in determining the properties of a solder joint, controlling the orientation of βSn particles formed during solder bonding, and βSn particles There was no ingenuity in controlling the structure of. About these, in the technique concerning the Sn containing copper alloy material of patent documents 1, neither disclosure nor device are made.
The present invention has been made in view of such circumstances, and the object of the present invention is a solder joint in which the βSn particles are oriented in a desired specific direction and the βSn particles have a desired structure, and the solder. An object of the present invention is to provide a joining method according to a joint.
 本発明に係るはんだ継手は、Snを含む鉛フリーはんだ合金を用いて少なくとも2つの被接合部材を接合させたはんだ継手において、前記鉛フリーはんだ合金に係るはんだ部分は、はんだ付けの際に形成された金属間化合物の層と、前記金属間化合物の層に接合された金属間化合物の核生成粒子と、[100]又は[010]方向が前記金属間化合物の層の厚み方向と交差し、[001]方向が前記被接合部材の接合面と略平行するように結晶配向された単粒βSnとを含むことを特徴とする。
 本発明に係るはんだ継手は、前記単粒βSnはその[001]方向が前記被接合部材の面と略平行するように配向されていることを特徴とする。
 本発明に係るはんだ継手は、前記金属間化合物の核生成粒子は、PtSn、PdSn、βIrSn又はαCoSnのうち少なくとも1つを含むことを特徴とする。
 本発明に係るはんだ継手は、αCoSnの金属間化合物に対しては、核生成粒子の最小寸法は、幅(図1の最長寸法)が25μmで、厚みが0.2μm(交差方向において)である。最大寸法は、被接合部材の面(例えば、図2の銅基板)より小さくしないといけない。
 本発明に係るはんだ継手は、PtSn、PdSn、又はβIrSnの金属間化合物に対しては、核生成粒子の最小寸法は、幅(図1の最長寸法)が10μmで、厚みが0.2μm(交差方向において)である。最大寸法は、被接合部材の面(例えば、図2の銅基板)より小さくしないといけない。
 本発明に係るはんだ継手は、前記被接合部材は板形状であり、前記核生成粒子の最大サイズは 前記被接合部材の前記接合面のサイズと同じであることを特徴とする。
 本発明に係るはんだ継手は、前記金属間化合物の層は何れかの被接合部材と前記はんだ部分との接合界面に形成されていることを特徴とする。
 本発明に係る接合方法は、少なくとも2つの被接合部材に対してSnを含む鉛フリーはんだ合金を用いてはんだ付けを行い、前記鉛フリーはんだ合金に係るはんだ部分によって前記2つの被接合部材が接合される接合方法において、前記はんだ部分を形成すべき箇所に金属間化合物の結晶を配置する配置ステップと、前記はんだ部分が前記金属間化合物の結晶を含むように、前記はんだ付けを行うはんだ付けステップとを含むことを特徴とする。
 本発明に係る接合方法は、前記配置ステップは、前記金属間化合物の結晶の最も大きいファセット面が特定方向になるように、前記金属間化合物の結晶を何れかの被接合部材に固定するステップを含むことを特徴とする。
 本発明に係る接合方法は、前記配置ステップは、前記何れかの被接合部材において前記金属間化合物の結晶を固定すべき箇所にSn被覆を行うステップを含み、前記金属間化合物の結晶は被覆されたSn上に固定されることを特徴とする。
 本発明に係る接合方法は、過度液相接合法によって、前記金属間化合物の結晶はSnで被覆された箇所の上に固定されることを特徴とする。
 本発明に係る接合方法は、前記はんだ付けステップでは、リフロー法が用いられることを特徴とする。
 本発明に係る接合方法は、前記金属間化合物の結晶は矩形の板状をなすことを特徴とする。
 本発明に係る接合方法は、前記金属間化合物は、PtSn、PdSn、βIrSn又はαCoSnのうち少なくとも1つを含むことを特徴とする。
The solder joint according to the present invention is a solder joint in which at least two members to be joined are joined using a lead-free solder alloy containing Sn, wherein the solder portion related to the lead-free solder alloy is formed at the time of soldering [100] or [010] direction intersects the thickness direction of the layer of the intermetallic compound, the layer of the intermetallic compound, the nucleation particle of the intermetallic compound bonded to the layer of the intermetallic compound, And a single grain β Sn crystal-oriented so that the [001] direction is substantially parallel to the bonding surface of the members to be bonded.
The solder joint according to the present invention is characterized in that the single grain β Sn is oriented such that the [001] direction is substantially parallel to the surface of the workpiece.
The solder joint according to the present invention is characterized in that the nucleation particle of the intermetallic compound contains at least one of PtSn 4 , PdSn 4 , βIrSn 4 or αCoSn 3 .
In the solder joint according to the present invention, with respect to the intermetallic compound of αCoSn 3 , the minimum dimension of the nucleation particle is 25 μm in width (longest dimension in FIG. 1) and 0.2 μm in thickness (in cross direction) is there. The largest dimension must be smaller than the surface of the workpiece (e.g., the copper substrate of FIG. 2).
In the solder joint according to the present invention, with respect to the intermetallic compound of PtSn 4 , PdSn 4 or βIrSn 4 , the minimum dimension of the nucleation particle is 10 μm in width (longest dimension in FIG. 1) and 0. 2 μm (in the cross direction). The largest dimension must be smaller than the surface of the workpiece (e.g., the copper substrate of FIG. 2).
The solder joint according to the present invention is characterized in that the member to be joined has a plate shape, and the maximum size of the nucleation particle is the same as the size of the joint surface of the member to be joined.
The solder joint according to the present invention is characterized in that the layer of the intermetallic compound is formed at a bonding interface between any of the members to be bonded and the solder portion.
In the bonding method according to the present invention, at least two members to be joined are soldered using a lead-free solder alloy containing Sn, and the two members to be joined are joined by the solder portion of the lead-free solder alloy. Placing the crystal of the intermetallic compound at the location where the solder portion is to be formed, and the soldering step of performing the soldering such that the solder portion includes the crystal of the intermetallic compound. And including.
In the bonding method according to the present invention, the disposing step fixes the crystal of the intermetallic compound to any one of the members to be joined such that the largest facet of the crystal of the intermetallic compound is in a specific direction. It is characterized by including.
In the bonding method according to the present invention, the disposing step includes a step of performing Sn coating on a position where the crystal of the intermetallic compound is to be fixed in any of the members to be bonded, and the crystal of the intermetallic compound is coated It is characterized by being fixed on Sn.
The bonding method according to the present invention is characterized in that the crystal of the intermetallic compound is fixed on a portion covered with Sn by an excessive liquid phase bonding method.
The bonding method according to the present invention is characterized in that a reflow method is used in the soldering step.
The bonding method according to the present invention is characterized in that the crystal of the intermetallic compound has a rectangular plate shape.
The bonding method according to the present invention is characterized in that the intermetallic compound contains at least one of PtSn 4 , PdSn 4 , βIrSn 4 or αCoSn 3 .
 本発明によれば、必要に応じて、特定の方向にβSn粒子を配向させ、かつβSn粒子に希望する構造をもたらすことが出来る。 According to the present invention, if necessary, β-Sn particles can be oriented in a specific direction, and β-Sn particles can be brought into a desired structure.
 図1は抽出された核生成粒子の一例を示す。
 図2は本実施の形態に係る接合方法を用いて、本実施の形態に係るはんだ継手を製造する工程を説明する説明図である。
 図3は核生成粒子が固定された銅基板にはんだ付けが行われた場合における、銅基板と核生成粒子との間を拡大した拡大写真である。
 図4は核生成粒子にPtSnを用いた場合における、はんだ継手を反射電子像及び電子線後方散乱回折法(EBSD)によって分析した結果である。
 図5は核生成粒子としてPtSn、βIrSn及びαCoSnを用いた場合における、はんだ継手を電子線後方散乱回折法によって分析した結果である。
 図6は本実施の形態に係る接合方法にて製造された、本実施の形態に係るはんだ継手の一例を示す。
 図7は核生成粒子の寸法がβSnの核生成及び結晶配向の制御に及ぼす影響を調べた結果である。
 図8ははんだ付けの数がβSnの核生成及び結晶配向の制御に及ぼす影響を調べた結果である。
 図9ははんだ付けの数がβSnの核生成及び結晶配向の制御に及ぼす影響を調べた他の結果である。
 図10は本実施の形態に係るはんだ継手に核生成粒子としてαCoSnが用いられ、鉛フリーはんだ合金としてSn‐3.5Ag合金が用いられた場合、はんだ継手を電子線後方散乱回折法によって分析した結果である。
 図11は本実施の形態に係るはんだ継手に核生成粒子としてαCoSnが用いられ、鉛フリーはんだ合金としてSn‐0.7Cu‐0.05Ni‐Ge合金が用いられた場合、はんだ継手を電子線後方散乱回折法によって分析した結果である。
FIG. 1 shows an example of extracted nucleation particles.
FIG. 2 is an explanatory view illustrating a process of manufacturing a solder joint according to the present embodiment using the bonding method according to the present embodiment.
FIG. 3 is an enlarged photograph of an enlarged portion between the copper substrate and the nucleation particle when soldering is performed on the copper substrate on which the nucleation particle is fixed.
FIG. 4 shows the results of analysis of a solder joint by reflection electron image and electron backscattering diffraction (EBSD) in the case of using PtSn 4 as nucleation particles.
FIG. 5 shows the results of analysis of the solder joints by electron beam backscattering diffraction when PtSn 4 , βIrSn 4 and αCoSn 3 are used as nucleation particles.
FIG. 6 shows an example of the solder joint according to the present embodiment manufactured by the bonding method according to the present embodiment.
FIG. 7 shows the results of examining the influence of the size of nucleation particles on the control of nucleation and crystal orientation of βSn.
FIG. 8 shows the result of examining the influence of the number of solderings on the control of nucleation and crystal orientation of βSn.
FIG. 9 is another result of examining the influence of the number of solderings on the control of nucleation and crystal orientation of βSn.
When αCoSn 3 is used as nucleation particles in the solder joint according to this embodiment and Sn-3.5Ag alloy is used as the lead-free solder alloy in FIG. 10, the solder joint is analyzed by electron beam backscattering diffraction. The result is
FIG. 11 shows the electron beam of the solder joint when αCoSn 3 is used as nucleation particles in the solder joint according to the present embodiment and a Sn-0.7Cu-0.05Ni-Ge alloy is used as the lead-free solder alloy. It is the result of analyzing by the backscattering diffraction method.
 Snを含む鉛フリーはんだ合金を用いてはんだ付けを行う際に形成されるβSnと比較的に良好な格子整合性を有する結晶はβSnの結晶成長に重要な役割を成し得ると期待されていた。すなわち、斯かる結晶がいわゆる種となり、その上でβSn結晶が成長すると考えられている。詳しいメカニズムは、これら結晶の最も大きいファセット面の上でβSnの(100)面が特定の配向関係にて核を形成する。ここでファセット面とは、結晶における扁平表面を指す。
 以上のような事実に基づいて本実施の形態においては、はんだ継手におけるβSnの核生成及び配向の制御を試みた。
 格子整合分析に基づく考察の結果、上述したように、βSnの核生成及び配向に用いられる結晶(以下、核生成粒子と言う。)としては、PtSn、PdSn、βIrSn又はαCoSnのような金属間化合物が考えられた。
 これら金属間化合物の核生成粒子の生成方法について説明する。
 モールド内で、過共晶のSn‐Pt、Sn‐Pd、Sn‐Ir、又はSn‐Co合金を凝固する一連の処理で希望の核生成面をファセット面として成長させる。次いで、蒸留水にo−ニトロフェノール及び水酸化ナトリウムを加えた溶液中又は塩酸の溶液中で、βSnを除去することによって、金属間化合物の核生成粒子単結晶を抽出する。
 図1は抽出された核生成粒子の一例を示す。上述した方法によって成長された核生成粒子の殆どは略矩形であり、形成された最も大きいファセット面がβSnの核生成する希望の面である。図1に示しているように、核生成粒子は1μm~200μmの幅まで成長している。
 以下においては、上述した金属間化合物の核生成粒子を用いて、本実施の形態に係るはんだ継手を製造する方法について説明する。便宜上、2枚の銅基板を、Snを含む鉛フリーはんだ合金を用いて接合する場合を例に挙げて説明する。例えば、斯かる鉛フリーはんだ合金はSn‐3Ag‐0.5Cu合金である。図2は本実施の形態に係る接合方法を用いて、本実施の形態に係るはんだ継手10を製造する工程を説明する説明図である。
 まず、何れか一方の銅基板2において、はんだ付けが行われるべき箇所、特に後述するように核生成粒子4を固定すべき箇所をSnで被覆する。例えば、Snの被覆層3の厚みは略1μmである。
 被覆されたSnの上に、少なくとも何れか一つの核生成粒子4を固定する。詳しくは、Snの被覆層3の上に核生成粒子4を載置し、過度液相接合法を用いて固定する。過度液相接合法は240℃~300℃の温度で、5~180分間行われる。
 この際、金属間化合物の核生成粒子4の最も大きいファセット面が斯かる銅基板2においてはんだ付けされる面21(接合面)と平行するように載置する。これによって、はんだ付けの際に生成されるβSnは、その[001]方向が核生成粒子4のファセット面に対して平行するように、換言すれば、銅基板2の面21と略平行な方向に核生成されて結晶成長していく。すなわち、βSnは[100]方向又は[010]方向が金属間化合物の層(図2参照)の厚み方向と交差するように核生成されて結晶成長していく。
 以上においては、核生成粒子4のファセット面が銅基板2の面21と平行するように載置する場合を例に挙げて説明したが、本実施の形態はこれに限るものでない。必要に応じて、すなわち、希望するβSnの核生成及び結晶成長の方向に応じて、核生成粒子4のファセット面の配置を適宜調整しても良い。
 続いて、核生成粒子4が固定された銅基板2の面21上にSn‐3Ag‐0.5Cu合金を用いてはんだ付けを行い、直径600μm程度のはんだボール(はんだ部分)1が形成される。この際、核生成粒子4ははんだボール1内に含まれ、はんだボール1はβSn相を含む。斯かるはんだ付けは、例えばリフロー法を用いる。
 図3は核生成粒子4が固定された銅基板2にはんだ付けが行われた場合における、銅基板2と核生成粒子4との間を拡大した拡大写真である。詳しくは、図3は、図2の丸い点線部分の拡大写真である。図3の(a)、(b)、(c)は、核生成粒子4が夫々αCoSn、PtSn及びβIrSnである場合を示す。図2及び図3から分かるように、核生成粒子4に係る層がはんだボール1(βSn)と銅基板2との接合界面に形成されている。また、銅基板2と核生成粒子4との間には、CuSn及びCuSnの金属間化合物の層が生成されている。CuSn及びCuSnの金属間化合物の層ははんだ付けの際に生成された金属間化合物の層である。
 以後、他方の銅基板2をはんだボール1と接合させるために、再びリフロー法を用いたはんだ付けが行われる。これによって、はんだボール1を介して2つの銅基板2が接合され、本実施の形態に係るはんだ継手が製造される。
 以上においては、核生成粒子4の固定には過度液相接合法を用い、はんだ付けにはリフロー法を用いる場合を例として説明したが、これに限るものでなく、他の方法用いても良い。
 このように製造されたはんだ継手10の微細構造を観察した。図4は核生成粒子4にPtSnを用いた場合における、はんだ継手10を反射電子像及び電子線後方散乱回折法(EBSD)によって分析した結果である。(a)はEBSDによるマッピング像であり、(b)~(d)ははんだボール1の微細構造を示しており、(e)~(h)は夫々βSn、PtSn、CuSn及び銅基板2(Cu)のZ方向に対するEBSDのIPF(Inverse Pole Figure)マップである。
 図4の(a)は4つの相(βSn、PtSn、CuSn及びCu)の分布を、夫々緑色、赤色、青色、黄色にて示している。図4の(b)~(d)からはんだボール1内にはβSnデンドライト相が形成されており、デンドライトアーム間にはβSn、AgSn、CuSnの共晶混合物が形成されている。また、図4の(e)~(h)は結晶の配向を色で表している。
 図4の(e)においてはんだボール1は緑色の単色を示しており、βSnがZ方向にて<100>方向(すなわち、銅基板2に垂直方向)に配向された単結晶であることを表している。従って、βSnの[001]方向は銅基板2の面21に平行である。
 また、図4の(e)~(f)から、βSnの[100]方向とPtSnの[001]方向とが平行しており(□印参照)、βSnの[010]方向とPtSnの[010]方向とが平行しており(○印参照)、βSnの[001]方向とPtSnの[100]方向とが平行していることが分かる(△印参照)。このようなことから、βSn粒子はPtSn結晶から結晶配向を受け継いでいるように見られる。
 更に、このような構造は、電子移動損傷を最も少なくする構造として報告されている。
 核生成粒子4としてPtSnでなくβIrSn又はαCoSnを用いた場合においても、図4の場合と同様の結果が得られた。図5は核生成粒子4としてPtSn、βIrSn及びαCoSnを用いた場合における、はんだボール1と銅基板2とを含む継手10を電子線後方散乱回折法によって分析した結果である。鉛フリーはんだ合金としてはSn‐3Ag‐0.5Cu合金が用いられている。
 図5の(a)~(c)は夫々核生成粒子4がPtSn、βIrSn及びαCoSnである場合におけるβSnのマッピング像であり、図5の(d)はβSnの結晶配向を定量的にまとめたものである。
 図5の(a)~(c)から、全てのはんだボール1は一つのβSn結晶配向(緑色)を表している。すなわち、βSnはZ方向に沿って<100>方向に配向されている。
 また、図5の(d)から、全てのはんだボール1がX‐Y面、すなわち、銅基板2の面21に<001>方向を有すると共に、全てのはんだボール1において<100>方向中の一つの方向がZ方向、すなわち、銅基板2に垂直方向に存在する。
 更に、図5の(d)は、全てのはんだボール1が、X‐Y面、すなわち、銅基板2の面21に対して15°以内に[001]方向を有することが分かる。
 以上のことから、はんだ付けの際に生成されるβSnの核生成及び結晶配向は、核生成粒子4の最も大きいファセット面に沿って行われることが分かる。換言すれば、核生成粒子4のファセット面の配置を制御することにより、βSnの核生成及び結晶配向を制御することができる。また、βSnを選択的に単結晶又は多結晶にすることもできる。
 ひいては、βSnの核生成及び結晶配向を制御できるので、はんだ継手の特性(例えば、熱サイクル能力、せん断疲労寿命及び電子移動能力等)を、その用途に応じて制御することが出来る。
 図6は本実施の形態に係る接合方法にて製造された、本実施の形態に係るはんだ継手10の一例を示す。斯かるはんだ継手10においては、核生成粒子4としてαCoSnが用いられており、その用途に応じてβSnの核生成及び結晶配向が制御されている。また、鉛フリーはんだ合金としてはSn‐3Ag‐0.5Cu合金が用いられている。
 図6の(a)は、4つの銅基板2上に核生成粒子4が固定されている状態を示している。また、図6の(b)ははんだ付け後における、4つのはんだ継手10の微細構造を示している。また、図6の(c)は前記4つのはんだ継手10を電子線後方散乱回折法によって分析した結果であり、X方向及びY方向におけるβSnのマッピング像である。更に、図6の(d)は(c)に対応する結晶方位マップである。
 図6に係る本実施の形態の接合方法(はんだ継手)では、各核生成粒子4は、夫々のc/b軸が、X‐Y面上であって、X方向に対して約45°に位置されるように固定されている(図6の(a)参照)。
 その結果、図6の(c)及び(d)から分かるように、4つの全てのはんだ継手10(はんだボール1)において、βSnは、c軸([001]方向)が銅基板2の面21上に、かつ、主なせん断方向(X方向)に対して約45°に位置している。このような構造は、最も長いせん断疲労寿命が得られる構造として報告されている(図6の(d)における赤い領域参照)。
 すなわち、核生成粒子4(ファセット面)の配置を制御することによって、βSnの[001]方向を制御し、斯かるはんだ継手10(はんだボール1)に最も長いせん断疲労寿命をもたらせることができた。
 図2においては、2つの銅基板2のうち、下側の銅基板2に核生成粒子4を固定する場合を例に挙げているが、本実施の形態はこれに限るものでない。上側の銅基板2に核生成粒子4を固定しても同じ効果を得ることは言うまでもない。
 βSnの核生成及び結晶配向の制御に及ぼす核生成粒子4の寸法の影響について調べた。図7は核生成粒子4の寸法がβSnの核生成及び結晶配向の制御に及ぼす影響を調べた結果である。図7の(a)~(d)は核生成粒子4としてαCoSnを用いた場合において、銅基板2上に核生成粒子4が固定されている状態を示している。また、図7の(e)~(h)は、(a)~(d)に係るはんだ継手10を電子線後方散乱回折法によって分析した結果であり、Z方向におけるβSnのマッピング像である。鉛フリーはんだ合金としてはSn‐3Ag‐0.5Cu合金が用いられている。
 核生成粒子4としてαCoSnを用いた場合は、核生成粒子4の寸法が幅(最長寸法)25μm以下である場合は、βSnの核生成及び結晶配向の制御はできなくなることが分かった(図7の(d)及び(h)参照)。
 より詳しくは、核生成粒子4としてαCoSn用いた場合、核生成粒子4の最小寸法は、幅(銅基板2の面21に沿う方向の最長寸法)が25μmで、厚みが0.2μm(交差方向において)である(図1参照)。この際、核生成粒子4の最大サイズは、銅基板2の面21のサイズと同じである。
 また、図7の(i)、(j)は核生成粒子4としてPtSnを用いた場合におけるはんだ継手10を電子線後方散乱回折法によって分析した結果であり、βSnのマッピング像である。この際、PtSnの寸法は幅(最長寸法)10~20μmであり、βSnの核生成及び結晶配向の制御が有効に可能であった。
 より詳しくは、核生成粒子4としてPtSn、PdSn、又はβIrSnを用いた場合、核生成粒子4の最小寸法は、幅(銅基板2の面21に沿う方向の最長寸法)が10μmで、厚みが0.2μm(交差方向において)である(図1参照)。この際、核生成粒子4の最大サイズは、銅基板2の面21のサイズと同じである。
 αCoSnは核生成粒子4のうち最も早い速度で銅及び液相と反応して(Cu、Co)Snを形成する。また、αCoSn付近の(Cu、Co)Sn層はαCoSnと液相との接触を防止する。従って、核生成粒子4としてαCoSnを用いた場合は、はんだ付け(リフロー法)回数がβSnの核生成及び結晶配向の制御に影響を及ぼすことがあり得る。
 図8ははんだ付けの数がβSnの核生成及び結晶配向の制御に及ぼす影響を調べた結果である。核生成粒子4としてαCoSnが用いられ、リフロー法によるはんだ付けが行われた。図8の(a)、(b)と、図8の(c)、(d)とは、夫々はんだ付けが2回及び5回行われた場合におけるはんだ継手10を電子線後方散乱回折法によって分析した結果であり、Z方向におけるβSnのマッピング像である。また、図8の(e)は(a)~(d)をまとめたものである。鉛フリーはんだ合金としてはSn‐3Ag‐0.5Cu合金が用いられている。
 核生成粒子4としてαCoSnを用いた際には、2回のリフロー法によるはんだ付けの場合、βSnの核生成及び結晶配向の制御が100%有効であった(図8の(a)、(b)、(e)参照)。しかし、5回のリフロー法によるはんだ付けの場合、βSnの核生成及び結晶配向の制御は50%しかできなかった(図8の(c)、(d)、(e)参照)。
 一方、核生成粒子4としてPtSn又はβIrSnを用いた際には、図9に示しているように、10回以上のリフロー法によるはんだ付けの場合でも、βSnの核生成及び結晶配向の制御が100%有効であった。図9において、鉛フリーはんだ合金としてはSn‐3Ag‐0.5Cu合金が用いられている。
 また、銅基板2が停止している状態でリフロー法によるはんだ付けが行われた場合と、対流オーブン内で銅基板2を移動させながらリフロー法によるはんだ付けが行われた場合とでは、βSnの核生成及び結晶配向の制御に違いは見られなかった。
 以上においては、鉛フリーはんだ合金としてはSn‐3Ag‐0.5Cu合金が用いられた場合を例として説明したが、本実施の形態はこれに限るものでない。例えば、鉛フリーはんだ合金としてはSn‐3.5Ag合金であっても良く、Sn‐0.7Cu‐0.05Ni‐Ge合金であっても良い。
 図10及び図11は本実施の形態に係るはんだ継手10に核生成粒子4としてαCoSnが用いられ、鉛フリーはんだ合金として夫々Sn‐3.5Ag合金及びSn‐0.7Cu‐0.05Ni‐Ge合金が用いられた場合、はんだ継手10を電子線後方散乱回折法によって分析した結果であり、Z方向におけるβSnのマッピング像である。
 図10及び図11の何れの場合においても、βSnの核生成及び結晶配向の制御が有効に行われていることが見て取れる。
 以上においては、核生成粒子4として、PtSn、PdSn、βIrSn又はαCoSnの何れか一つを銅基板2の一ヶ所に固定する場合を例に挙げて説明したが、本実施の形態はこれに限るものでない。
 例えば、二つ以上の同一の核生成粒子4を銅基板2の複数箇所に固定しても良い。また、異なる複数の核生成粒子4を銅基板2の複数の箇所に固定しても良い。この場合は、部分的にβSnの核生成及び結晶配向の制御が可能である。
 以上においては、銅基板2を用いた場合を例に挙げて説明したが、本実施の形態はこれに限るものでない。銅の代わりに、銅のような遷移金属の基板を用いても良い。
It was expected that crystals with relatively good lattice matching with βSn formed when soldering using lead-free solder alloy containing Sn could play an important role in crystal growth of βSn . That is, it is considered that such crystals become so-called seeds, on which βSn crystals grow. The detailed mechanism is that the (100) plane of βSn forms nuclei in a specific orientation relationship on the largest facet of these crystals. Here, a facet plane refers to a flat surface in a crystal.
Based on the above facts, in the present embodiment, control of nucleation and orientation of βSn in a solder joint was tried.
As a result of consideration based on lattice matching analysis, as described above, crystals (hereinafter referred to as nucleation particles) used for the nucleation and orientation of βSn include PtSn 4 , PdSn 4 , βIrSn 4 or αCoSn 3 Intermetallic compounds were considered.
A method of generating nucleation particles of these intermetallic compounds will be described.
Within the mold, the desired nucleation surface is grown as a facet in a series of treatments to solidify hypereutectic Sn-Pt, Sn-Pd, Sn-Ir, or Sn-Co alloys. Next, the nucleation particle single crystal of the intermetallic compound is extracted by removing βSn in a solution of o-nitrophenol and sodium hydroxide in distilled water or in a solution of hydrochloric acid.
FIG. 1 shows an example of extracted nucleation particles. Most of the nucleation particles grown by the above-described method are substantially rectangular, and the largest facets formed are the desired surfaces for nucleation of βSn. As shown in FIG. 1, nucleation particles are grown to a width of 1 μm to 200 μm.
Hereinafter, a method of manufacturing the solder joint according to the present embodiment will be described using nucleation particles of the above-described intermetallic compound. For convenience, the case where two copper substrates are joined using a lead-free solder alloy containing Sn will be described as an example. For example, such a lead-free solder alloy is a Sn-3Ag-0.5Cu alloy. FIG. 2 is an explanatory view illustrating a process of manufacturing the solder joint 10 according to the present embodiment using the bonding method according to the present embodiment.
First, in one of the copper substrates 2, a portion to be soldered, particularly a portion to be fixed to the nucleation particle 4 as described later, is covered with Sn. For example, the thickness of the coating layer 3 of Sn is approximately 1 μm.
At least one nucleation particle 4 is fixed on the coated Sn. Specifically, the nucleation particles 4 are placed on the Sn coating layer 3 and fixed using an excess liquid phase bonding method. The excess liquid phase bonding method is performed at a temperature of 240 ° C. to 300 ° C. for 5 to 180 minutes.
At this time, the largest facet of the nucleation particle 4 of the intermetallic compound is placed in parallel with the surface 21 (joint surface) to be soldered in the copper substrate 2. By this, β Sn generated in the soldering is such that the [001] direction is parallel to the facet of nucleation particle 4, in other words, a direction substantially parallel to surface 21 of copper substrate 2. It is nucleated to grow crystals. That is, βSn is nucleated and crystal grows so that the [100] direction or the [010] direction intersects the thickness direction of the layer of the intermetallic compound (see FIG. 2).
In the above, although the case where it mounts so that the facet side of nucleation particle 4 may be parallel to field 21 of copper substrate 2 was mentioned as an example and explained, this embodiment is not limited to this. The arrangement of the facets of the nucleation particle 4 may be appropriately adjusted as needed, that is, in accordance with the desired direction of β Sn nucleation and crystal growth.
Subsequently, the surface 21 of the copper substrate 2 on which the nucleation particles 4 are fixed is soldered using a Sn-3Ag-0.5Cu alloy to form a solder ball (solder portion) 1 having a diameter of about 600 μm. . At this time, the nucleation particles 4 are contained in the solder ball 1, and the solder ball 1 contains the βSn phase. Such soldering uses, for example, a reflow method.
FIG. 3 is an enlarged photograph of a portion between the copper substrate 2 and the nucleation particle 4 when soldering is performed on the copper substrate 2 on which the nucleation particle 4 is fixed. Specifically, FIG. 3 is an enlarged photograph of the round dotted portion in FIG. (A), (b) and (c) of FIG. 3 show the case where the nucleation particle 4 is αCoSn 3 , PtSn 4 and βIrSn 4 , respectively. As can be seen from FIGS. 2 and 3, a layer related to nucleation particles 4 is formed at the bonding interface between solder ball 1 (βSn) and copper substrate 2. Further, between the copper substrate 2 and the nucleation particles 4, a layer of an intermetallic compound of Cu 3 Sn and Cu 6 Sn 5 is formed. The layer of intermetallic compound of Cu 3 Sn and Cu 6 Sn 5 is a layer of intermetallic compound formed during soldering.
Thereafter, in order to bond the other copper substrate 2 to the solder ball 1, soldering using the reflow method is performed again. As a result, the two copper substrates 2 are joined via the solder balls 1, and the solder joint according to the present embodiment is manufactured.
In the above, the case of using the excessive liquid phase bonding method for fixing the nucleation particles 4 and using the reflow method for soldering has been described as an example, but the method is not limited to this, and other methods may be used. .
The microstructure of the solder joint 10 manufactured in this manner was observed. FIG. 4 shows the result of analysis of the solder joint 10 by reflection electron image and electron backscattering diffraction (EBSD) in the case of using PtSn 4 as the nucleation particle 4. (A) is a mapping image by EBSD, (b) to (d) show the fine structure of the solder ball 1, (e) to (h) show βSn, PtSn 4 , Cu 6 Sn 5 and copper respectively It is an IPF (Inverse Pole Figure) map of EBSD with respect to the Z direction of board | substrate 2 (Cu).
FIG. 4A shows the distributions of four phases (βSn, PtSn 4 , Cu 6 Sn 5 and Cu) in green, red, blue and yellow, respectively. From (b) to (d) in FIG. 4, the β-Sn dendrite phase is formed in the solder ball 1 and the eutectic mixture of β-Sn, Ag 3 Sn, and Cu 6 Sn 5 is formed between the dendrite arms . Further, (e) to (h) in FIG. 4 represent the orientation of the crystal by color.
In (e) of FIG. 4, the solder ball 1 shows a single color of green, indicating that β Sn is a single crystal oriented in the <100> direction in the Z direction (ie, perpendicular to the copper substrate 2). ing. Therefore, the [001] direction of βSn is parallel to the surface 21 of the copper substrate 2.
Further, from (e) to (f) in FIG. 4, the [100] direction of βSn and the [001] direction of PtSn 4 are parallel (see □), the [010] direction of βSn and PtSn 4 It can be seen that the [010] direction is parallel (see ○), and the [001] direction of βSn and the [100] direction of PtSn 4 are parallel (see Δ). As such, the βSn particles appear to inherit the crystal orientation from PtSn 4 crystals.
Furthermore, such structures are reported as structures that minimize electron transfer damage.
In the case of using the BetaIrSn 4 or ArufaCoSn 3 not PtSn 4 as nucleating particles 4, the same results as in FIG. 4 were obtained. FIG. 5 shows the result of analyzing the joint 10 including the solder ball 1 and the copper substrate 2 by the electron beam backscattering diffraction method when PtSn 4 , βIrSn 4 and αCoSn 3 are used as the nucleation particles 4. A Sn-3Ag-0.5Cu alloy is used as a lead-free solder alloy.
(A) to (c) of FIG. 5 are mapping images of βSn when nucleation particles 4 are PtSn 4 , βIrSn 4 and αCoSn 3 respectively, and (d) of FIG. 5 quantitatively determines the crystal orientation of βSn It is summarized in
From (a) to (c) in FIG. 5, all the solder balls 1 represent one βSn crystal orientation (green). That is, βSn is oriented in the <100> direction along the Z direction.
Further, from (d) of FIG. 5, all the solder balls 1 have an XY plane, that is, a <001> direction on the surface 21 of the copper substrate 2 and all the solder balls 1 in the <100> direction. One direction is in the Z direction, ie, perpendicular to the copper substrate 2.
Furthermore, it can be seen in FIG. 5 (d) that all the solder balls 1 have an [001] direction within 15 ° with respect to the XY plane, ie the plane 21 of the copper substrate 2.
From the above, it can be seen that the nucleation and crystal orientation of βSn produced during soldering occur along the largest facets of the nucleation particles 4. In other words, by controlling the arrangement of the facets of the nucleation particle 4, the nucleation and crystal orientation of βSn can be controlled. Also, βSn can be selectively made single crystal or polycrystal.
Furthermore, since the nucleation and crystal orientation of β-Sn can be controlled, the properties of the solder joint (eg, thermal cycling ability, shear fatigue life, electron transfer ability, etc.) can be controlled according to the application.
FIG. 6 shows an example of the solder joint 10 according to the present embodiment manufactured by the bonding method according to the present embodiment. In such a solder joint 10, αCoSn 3 is used as the nucleation particle 4, and the nucleation and crystal orientation of βSn are controlled according to the application. Moreover, a Sn-3Ag-0.5Cu alloy is used as a lead-free solder alloy.
FIG. 6A shows a state in which nucleation particles 4 are fixed on four copper substrates 2. Also, FIG. 6 (b) shows the microstructures of the four solder joints 10 after soldering. Further, FIG. 6C is a result of analyzing the four solder joints 10 by the electron beam backscattering diffraction method, and is a mapping image of βSn in the X direction and the Y direction. Further, (d) of FIG. 6 is a crystal orientation map corresponding to (c).
In the bonding method (solder joint) of the present embodiment according to FIG. 6, each c / b axis of each nucleation particle 4 is on the XY plane and is about 45 ° with respect to the X direction It is fixed to be positioned (see (a) of FIG. 6).
As a result, as can be seen from (c) and (d) of FIG. 6, in all four solder joints 10 (solder balls 1), β-Sn has a c-axis ([001] direction) facing surface 21 of copper substrate 2. Top and approximately 45 ° to the main shear direction (X direction). Such a structure is reported as a structure that provides the longest shear fatigue life (see red region in (d) of FIG. 6).
That is, by controlling the arrangement of the nucleation particle 4 (facet surface), the [001] direction of βSn can be controlled to provide such a solder joint 10 (solder ball 1) with the longest shear fatigue life. did it.
In FIG. 2, although the case where the nucleation particle 4 is fixed to the copper substrate 2 of lower side among two copper substrates 2 is mentioned as an example, this embodiment is not limited to this. It goes without saying that the same effect can be obtained even if the nucleation particles 4 are fixed to the upper copper substrate 2.
The influence of the size of nucleation particle 4 on the control of the nucleation and crystal orientation of βSn was investigated. FIG. 7 shows the result of examining the influence of the size of the nucleation particle 4 on the control of the nucleation and crystal orientation of βSn. (A) to (d) of FIG. 7 show a state where the nucleation particle 4 is fixed on the copper substrate 2 when αCoSn 3 is used as the nucleation particle 4. Further, (e) to (h) in FIG. 7 are results of analyzing the solder joint 10 according to (a) to (d) by electron beam backscattering diffraction, and are mapping images of βSn in the Z direction. A Sn-3Ag-0.5Cu alloy is used as a lead-free solder alloy.
When αCoSn 3 was used as the nucleation particle 4, it was found that it is not possible to control the nucleation and crystal orientation of βSn when the size of the nucleation particle 4 is 25 μm or less in width (longest dimension) (see FIG. 7 (d) and (h)).
More specifically, when αCoSn 3 is used as nucleation particle 4, the minimum dimension of nucleation particle 4 is 25 μm in width (longest dimension in the direction along surface 21 of copper substrate 2) and 0.2 μm in thickness (crossing In the direction) (see FIG. 1). At this time, the maximum size of the nucleation particle 4 is the same as the size of the surface 21 of the copper substrate 2.
Further, in FIG. 7 (i), (j) is the result of the analysis of the solder joint 10 by electron backscatter diffraction method in the case of using the PtSn 4 as nucleation particles 4 is a mapping image of BetaSn. At this time, the dimension of PtSn 4 was 10 to 20 μm in width (longest dimension), and it was possible to effectively control the nucleation of β Sn and the crystal orientation.
More specifically, when PtSn 4 , PdSn 4 or βIrSn 4 is used as the nucleation particle 4, the minimum size of the nucleation particle 4 is 10 μm in width (longest dimension in the direction along the surface 21 of the copper substrate 2) , 0.2 μm (in the cross direction) (see FIG. 1). At this time, the maximum size of the nucleation particle 4 is the same as the size of the surface 21 of the copper substrate 2.
αCoSn 3 reacts with copper and the liquid phase at the fastest rate among nucleation particles 4 to form (Cu, Co) 6 Sn 5 . Further, αCoSn 3 near the (Cu, Co) 6 Sn 5 layer prevents contact between ArufaCoSn 3 and the liquid phase. Therefore, when αCoSn 3 is used as the nucleation particle 4, the number of times of soldering (reflow method) may affect the control of nucleation and crystal orientation of βSn.
FIG. 8 shows the result of examining the influence of the number of solderings on the control of nucleation and crystal orientation of βSn. ΑCoSn 3 was used as nucleation particles 4 and soldering was performed by the reflow method. (A), (b) of FIG. 8 and (c), (d) of FIG. 8 respectively show the solder joint 10 when the soldering is performed twice and five times by the electron beam backscattering diffraction method It is a result of analysis, and is a mapping image of βSn in the Z direction. Further, (e) of FIG. 8 is a summary of (a) to (d). A Sn-3Ag-0.5Cu alloy is used as a lead-free solder alloy.
When αCoSn 3 is used as the nucleation particle 4, in the case of soldering by two reflow methods, the control of the nucleation and crystal orientation of βSn was 100% effective ((a) of FIG. b) see (e)). However, in the case of soldering by five reflow methods, the control of the nucleation and crystal orientation of βSn could only be 50% (see (c), (d) and (e) in FIG. 8).
On the other hand, when PtSn 4 or βIrSn 4 is used as the nucleation particle 4, as shown in FIG. 9, even in the case of soldering by a reflow method of 10 times or more, control of nucleation and crystal orientation of βSn Was 100% effective. In FIG. 9, a Sn-3Ag-0.5Cu alloy is used as the lead-free solder alloy.
In addition, when soldering by the reflow method is performed in a state where the copper substrate 2 is stopped, and when soldering by the reflow method is performed while moving the copper substrate 2 in a convection oven, No difference was observed in the control of nucleation and crystal orientation.
In the above, although the case where a Sn-3Ag-0.5Cu alloy was used as a lead-free solder alloy was described as an example, this embodiment is not limited to this. For example, the lead-free solder alloy may be a Sn-3.5Ag alloy or a Sn-0.7Cu-0.05Ni-Ge alloy.
10 and 11, αCoSn 3 is used as nucleation particles 4 in the solder joint 10 according to the present embodiment, and Sn-3.5Ag alloy and Sn-0.7Cu-0.05Ni-, respectively, as lead-free solder alloys. When Ge alloy is used, it is the result of analyzing the solder joint 10 by the electron beam backscattering diffraction method, and is a mapping image of (beta) Sn in a Z direction.
In either case of FIGS. 10 and 11, it can be seen that the control of the nucleation and crystal orientation of βSn is effectively performed.
In the above, the case of fixing any one of PtSn 4 , PdSn 4 , βIrSn 4 or αCoSn 3 as nucleation particles 4 to one place of the copper substrate 2 has been described as an example. Is not limited to this.
For example, two or more identical nucleation particles 4 may be fixed to a plurality of locations on the copper substrate 2. Further, different nucleation particles 4 may be fixed to a plurality of locations of the copper substrate 2. In this case, it is possible to control the nucleation and crystal orientation of βSn partially.
Although the case where copper substrate 2 was used was mentioned as an example and explained above, this embodiment is not limited to this. Instead of copper, a substrate of a transition metal such as copper may be used.
 1 はんだボール(はんだ部分)
 2 銅基板(被接合部材)
 3 被覆層
 4 核生成粒子
 10 はんだ継手
 21 (銅基板の)面
1 Solder ball (solder part)
2 Copper substrate (member to be joined)
3 coating layer 4 nucleation particle 10 solder joint 21 (of copper substrate) face

Claims (14)

  1.  Snを含む鉛フリーはんだ合金を用いて少なくとも2つの被接合部材を接合させたはんだ継手において、
     前記鉛フリーはんだ合金に係るはんだ部分は、
     接合の際に形成された金属間化合物の層と、
     [100]方向又は[010]方向が前記金属間化合物の層の厚み方向と交差するように結晶配向された単粒βSnと、
     前記金属間化合物の層及び前記単粒βSnの間に介在し、該単粒βSnの結晶配向に関わる核生成粒子と
    を含むことを特徴とするはんだ継手。
    In a solder joint in which at least two members to be joined are joined using a lead-free solder alloy containing Sn,
    The solder portion of the lead-free solder alloy is
    A layer of intermetallic compound formed during bonding,
    Single-grain β Sn crystal-oriented so that the [100] direction or the [010] direction intersects the thickness direction of the layer of the intermetallic compound,
    A solder joint comprising: a layer of the intermetallic compound and nucleation particles involved in the crystal orientation of the single grain βSn, which are interposed between the single grain βSn.
  2.  前記単粒βSnは[001]方向が前記被接合部材の接合面に沿うように配向されていることを特徴とする請求項1に記載のはんだ継手。 The solder joint according to claim 1, wherein the single grain β Sn is oriented such that the [001] direction is along the bonding surface of the members to be bonded.
  3.  前記核生成粒子は、PtSn、PdSn、βIrSn又はαCoSnのうち少なくとも1つを含むことを特徴とする請求項2に記載のはんだ継手。 The solder joint according to claim 2, wherein the nucleation particle comprises at least one of PtSn 4 , PdSn 4 , βIrSn 4 or αCoSn 3 .
  4.  前記αCoSnの核生成粒子は、前記被接合部材の前記接合面に沿う方向における最長寸法が25μm以上で、該方向との交差方向における寸法が0.2μm以上であることを特徴とする請求項3に記載のはんだ継手。 The nucleation particle of αCoSn 3 is characterized in that the longest dimension in the direction along the bonding surface of the member to be joined is 25 μm or more, and the dimension in the direction intersecting with the direction is 0.2 μm or more. Solder joint according to 3.
  5.  前記PtSn、PdSn、又はβIrSnの核生成粒子は、前記被接合部材の前記接合面に沿う方向における最長寸法が10μm以上で、該方向との交差方向における寸法が0.2μm以上であることを特徴とする請求項3に記載のはんだ継手。 The nucleation particles of PtSn 4 , PdSn 4 or βIrSn 4 have a longest dimension of 10 μm or more in a direction along the bonding surface of the members to be joined and a dimension of 0.2 μm or more in a direction intersecting the direction The solder joint according to claim 3, characterized in that:
  6.  前記被接合部材は板形状であり、
     前記核生成粒子の最大サイズは 前記被接合部材の前記接合面のサイズと同じであることを特徴とする請求項2から5の何れか一項に記載のはんだ継手。
    The to-be-joined member is plate-shaped,
    The solder joint according to any one of claims 2 to 5, wherein the maximum size of said nucleation particle is the same as the size of said junction face of said member to be joined.
  7.  前記金属間化合物の層は何れかの被接合部材と前記はんだ部分との接合界面に形成されていることを特徴とする請求項1から6の何れか一項に記載のはんだ継手。 The solder joint according to any one of claims 1 to 6, wherein the layer of the intermetallic compound is formed at a bonding interface between any of the members to be bonded and the solder portion.
  8.  少なくとも2つの被接合部材に対してSnを含む鉛フリーはんだ合金を用いてはんだ付けを行い、前記鉛フリーはんだ合金に係るはんだ部分によって前記2つの被接合部材が接合される接合方法において、
     前記はんだ部分を形成すべき箇所に、前記はんだ部分の結晶配向に関わる金属間化合物の核生成粒子を少なくとも一つ配置する配置ステップと、
     前記はんだ部分が前記金属間化合物の核生成粒子を含むように、前記はんだ付けを行うはんだ付けステップとを含むことを特徴とする接合方法。
    In a bonding method, soldering is performed using a lead-free solder alloy containing Sn to at least two members to be joined, and the two members to be joined are joined by a solder portion of the lead-free solder alloy,
    Placing at least one nucleation particle of an intermetallic compound involved in crystal orientation of the solder portion at a position where the solder portion is to be formed;
    Performing the soldering such that the solder portion includes nucleation particles of the intermetallic compound.
  9.  前記配置ステップは、
     前記金属間化合物の核生成粒子の最も大きいファセット面が特定方向になるように、前記金属間化合物の核生成粒子を何れかの被接合部材に固定するステップを含むことを特徴とする請求項8に記載の接合方法。
    The placement step is
    8. The method according to claim 8, further comprising the step of fixing the nucleation particle of the intermetallic compound to any one of the members to be joined such that the largest facet of the nucleation particle of the intermetallic compound is in a specific direction. The joining method described in.
  10.  前記配置ステップは、前記何れかの被接合部材において前記金属間化合物の核生成粒子を固定すべき箇所にSn被覆を行うステップを含み、
     前記金属間化合物の核生成粒子はSnで被覆された箇所の上に固定されることを特徴とする請求項9に記載の接合方法。
    The disposing step includes the step of performing Sn coating on the place where the nucleation particle of the intermetallic compound is to be fixed in any of the members to be joined,
    10. The bonding method according to claim 9, wherein the nucleation particles of the intermetallic compound are fixed on the portions covered with Sn.
  11.  過度液相接合法によって、前記金属間化合物の核生成粒子は被覆されたSn上に固定されることを特徴とする請求項10に記載の接合方法。 The bonding method according to claim 10, wherein the nucleation particles of the intermetallic compound are fixed on the coated Sn by an excess liquid phase bonding method.
  12.  前記はんだ付けステップでは、リフロー法が用いられることを特徴とする請求項8から11の何れか一項に記載の接合方法。 The bonding method according to any one of claims 8 to 11, wherein a reflow method is used in the soldering step.
  13.  前記金属間化合物の核生成粒子は矩形の板状をなすことを特徴とする請求項8から12の何れか一項に記載の接合方法。 13. The bonding method according to any one of claims 8 to 12, wherein nucleation particles of the intermetallic compound have a rectangular plate shape.
  14.  前記金属間化合物は、PtSn、PdSn、βIrSn又はαCoSnのうち少なくとも1つを含むことを特徴とする請求項8から13の何れか一項に記載の接合方法。 The intermetallic compound, PtSn 4, PdSn 4, the bonding method according to any one of claims 8 13, characterized in that it comprises at least one of BetaIrSn 4 or αCoSn 3.
PCT/JP2018/025799 2017-07-06 2018-07-02 Solder joint and bonding method WO2019009427A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-133073 2017-07-06
JP2017133073A JP6770280B2 (en) 2017-07-06 2017-07-06 Solder joints and joining methods

Publications (1)

Publication Number Publication Date
WO2019009427A1 true WO2019009427A1 (en) 2019-01-10

Family

ID=64950112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025799 WO2019009427A1 (en) 2017-07-06 2018-07-02 Solder joint and bonding method

Country Status (2)

Country Link
JP (1) JP6770280B2 (en)
WO (1) WO2019009427A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110193642A (en) * 2019-06-04 2019-09-03 北京理工大学 A kind of welding procedure that regulation scolding tin connector crystal grain is orientated and organizes
CN114192918A (en) * 2021-12-31 2022-03-18 北京工业大学 Application of SnAgBiIn brazing filler metal in preparation of Sn-based brazing filler metal interconnection welding spots

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7481285B2 (en) 2021-03-23 2024-05-10 株式会社デンソー Semiconductor device and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1072694A (en) * 1996-08-30 1998-03-17 Ishihara Chem Co Ltd Surface coating material by tin and tin-lead alloy plating and electronic parts by utilizing the coating material
JP2007134476A (en) * 2005-11-10 2007-05-31 Matsushita Electric Ind Co Ltd Soldering method and soldering structure of electronic component

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1072694A (en) * 1996-08-30 1998-03-17 Ishihara Chem Co Ltd Surface coating material by tin and tin-lead alloy plating and electronic parts by utilizing the coating material
JP2007134476A (en) * 2005-11-10 2007-05-31 Matsushita Electric Ind Co Ltd Soldering method and soldering structure of electronic component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110193642A (en) * 2019-06-04 2019-09-03 北京理工大学 A kind of welding procedure that regulation scolding tin connector crystal grain is orientated and organizes
CN114192918A (en) * 2021-12-31 2022-03-18 北京工业大学 Application of SnAgBiIn brazing filler metal in preparation of Sn-based brazing filler metal interconnection welding spots
CN114192918B (en) * 2021-12-31 2023-09-19 北京工业大学 Method for obtaining interconnection welding spot with grain orientation of cross crystal

Also Published As

Publication number Publication date
JP2019013957A (en) 2019-01-31
JP6770280B2 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
KR100791435B1 (en) Lead-free tin-silver-copper alloy solder composition
Zribi et al. The growth of intermetallic compounds at Sn-Ag-Cu solder/Cu and Sn-Ag-Cu solder/Ni interfaces and the associated evolution of the solder microstructure
JP2005517535A5 (en)
US6689488B2 (en) Lead-free solder and solder joint
Minor Growth of a Au-Ni-Sn intermetallic compound on the solder-substrate interface after aging
WO2019009427A1 (en) Solder joint and bonding method
Hwang et al. Interfaces in lead-free soldering
CN104668792B (en) Controllable preparation method of tin and indium interconnection welding spot IMCs ( intermetallic compounds)
JP6111952B2 (en) Lead-free solder alloy, bonding material and bonded body
JPH04305395A (en) Dispersed reinforced lead-tin alloy wax and brazing method
TWI761683B (en) Cu core balls, solder joints, solder paste and foam solder
JP2017075382A (en) Oxygen free copper plate, manufacturing method of oxygen free copper plate and ceramic wiring board
WO2011027820A1 (en) Lead-free solder alloy, joining member and manufacturing method thereof, and electronic component
CN108422117B (en) Method for preparing lead-free interconnection welding spot with polycrystalline structure by applying current
Bae et al. Microstructure and adhesion properties of Sn–0.7 Cu/Cu solder joints
US9999945B2 (en) Solder alloy
KR20100132470A (en) Pb-free solder alloy
Wentlent et al. Effects of laser selective reflow on solder joint microstructure and reliability
EP3414039B1 (en) Thermal treatment for preconditioning or restoration of a solder joint
CN110193642A (en) A kind of welding procedure that regulation scolding tin connector crystal grain is orientated and organizes
Zeng et al. Intermetallic reactions between lead-free SnAgCu solder and Ni (P)/Au surface finish on PWBs
JP2009142890A (en) Laminated solder material, soldering method using the same, and solder junction
KR102114590B1 (en) Solder ball, solder joint and method for bonding
Lee et al. Formation and growth of intermetallics around metallic particles in eutectic Sn-Ag solder
JP2021502259A (en) Low silver tin alternative solder alloy to standard SAC alloy for high reliability applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828443

Country of ref document: EP

Kind code of ref document: A1