WO2019009303A1 - Solid waste treatment method - Google Patents

Solid waste treatment method Download PDF

Info

Publication number
WO2019009303A1
WO2019009303A1 PCT/JP2018/025263 JP2018025263W WO2019009303A1 WO 2019009303 A1 WO2019009303 A1 WO 2019009303A1 JP 2018025263 W JP2018025263 W JP 2018025263W WO 2019009303 A1 WO2019009303 A1 WO 2019009303A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorus
incineration ash
mass
solid waste
amount
Prior art date
Application number
PCT/JP2018/025263
Other languages
French (fr)
Japanese (ja)
Inventor
清隆 吉井
有記 長尾
吉田 洋一
崇宏 関
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to JP2019527728A priority Critical patent/JPWO2019009303A1/en
Publication of WO2019009303A1 publication Critical patent/WO2019009303A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/10Treatment of sludge; Devices therefor by pyrolysis

Definitions

  • the present invention relates to a method of treating solid waste.
  • a method of suppressing harmful trace element elution from incinerated ash As a method of suppressing harmful trace element elution from incinerated ash, a method of adding a drug, a method of extracting with a solvent, a method of heat treatment and the like are known. Among them, although a method of adding a drug is widely used as a method capable of suppressing elution of harmful trace elements with relatively high productivity, since the added drug squeezes the manufacturing cost, it has been an economical processing method so far. Had a challenge.
  • Patent Document 2 describes a treatment method in which water, silica gel and a phosphoric acid-based heavy metal fixing agent are added to heavy metal-containing ash and kneaded. The same document discloses an example of reducing the elution amount of lead.
  • Patent Document 3 phosphorous acid and / or hypophosphorous acid is added to solid waste, and heated to 300 ° C. or less to cause harmful metals such as lead in solid waste and organic chlorinated compounds. A process for the treatment of solid waste to be detoxified is described.
  • Patent Document 4 describes a method for producing a porous sintered body by firing a material to be fired containing one or two or more wastes selected from the group consisting of incineration ash, sludge, and construction generated soil. It is described that the temperature at the time of the baking is set to 650 to 1000 ° C., and the elution amount of hexavalent chromium can be made equal to or less than the environmental standard value by this manufacturing method.
  • Patent Documents 1 to 3 there is a need for an insolubilizing method of harmful elements capable of insolubilizing various harmful elements at lower cost. Furthermore, as described in Patent Document 3, phosphorous acid and / or hypophosphorous acid is added to solid waste and heated to 300 ° C. or lower, as in Patent Document 4, incineration ash or sludge alone. In the case of firing only, the harmful metal elution suppressing effect is not sufficient.
  • incineration ash derived from household waste and industrial waste, which is increasing yearly.
  • reuse and landfill use in civil engineering projects such as building materials can be mentioned.
  • these projects are premised on reusing waste as a material that is used outdoors for a long time, so there is concern about environmental pollution due to elution of harmful trace elements contained in incineration ash. Therefore, in order to promote the effective use of incinerator ash, it is necessary to develop a method that has a high effect of suppressing the elution of harmful trace elements.
  • the present invention has been made in view of the above problems, and contains harmful trace elements which adversely affect the environment, such as boron, arsenic, selenium, fluorine, hexavalent chromium, lead, mercury and / or cadmium and the like.
  • An object of the present invention is to provide a method for treating incineration ash which reduces the elution of harmful trace elements from the incineration ash.
  • the present invention solves the above-mentioned problems by providing a method for treating solid waste comprising the steps of mixing incineration ash and a phosphorus source and heating the mixture at 600 ° C. or more and 1200 ° C. or less.
  • the present invention comprises a step of mixing incineration ash and a phosphorus source and heating the mixture at 600 ° C. to 1200 ° C., boron, arsenic, selenium, fluorine, hexavalent chromium, lead contained in the incineration ash or phosphorus source And a method of inhibiting the elution of at least one element of the group consisting of mercury and cadmium.
  • This embodiment is a method for treating solid waste, which has a step of mixing incineration ash and a phosphorus source and heating the mixture at 600 ° C. or more and 1200 ° C. or less.
  • Solid waste refers to incinerated ash in this embodiment.
  • Examples of the incineration ash to be treated in the present embodiment include incineration ash of general waste discharged from a household, incineration ash generated from an industrial waste incineration facility, or fly ash or clinker discharged from a coal-fired power plant.
  • Examples include coal ash such as ash.
  • the coal ash may be incineration ash generated by burning coal alone, or may be incineration ash generated by burning a mixture of coal and biomass.
  • Biomass is organic matter derived from organisms, such as agricultural products and timber products. Specifically, agricultural waste such as rice straw, firs and pheasant, agricultural chips such as lice and wood pellets, thinning materials, waste wood for construction And other timber-derived materials.
  • a mass ratio of coal ash: biomass is 1: 0.01 to 2.0.
  • the incineration ash contains a large amount of elements such as fluorine and boron specified in the Soil Contamination Countermeasures Act, in addition to heavy metal elements such as arsenic, selenium, lead, hexavalent chromium, mercury and cadmium.
  • elements such as fluorine and boron specified in the Soil Contamination Countermeasures Act
  • heavy metal elements such as arsenic, selenium, lead, hexavalent chromium, mercury and cadmium.
  • the environmental standard value described in the following examples may be exceeded. Therefore, if the incineration ash is discarded as it is, these elements may leach into the environment and contribute to environmental pollution.
  • the treatment method of the present invention is to reduce the elution amount from incineration ash with respect to at least one element of the group consisting of the above eight elements being regulated.
  • the treatment method of the present embodiment is particularly effective for the elution suppression of boron, fluorine and / or he
  • the total amount (A) of arsenic, chromium and boron in 10 g of incinerated ash is generally 0.1 mg or more and 50 mg or less, and from the viewpoint of the effectiveness of the treatment method of this embodiment, 1.0 mg or more and 30 mg or less More preferable.
  • the total amount of arsenic, chromium and boron in 10 g of incinerated ash is measured by inductively coupled plasma mass spectrometry (ICP-MS) or the like for any of the elements.
  • the amount of phosphorus in 10 g of the incinerated ash is not particularly limited, and generally, 1 mg to 100 mg can be mentioned.
  • the amount of phosphorus here is the amount of phosphorus atom conversion.
  • the amount of phosphorus in 10 g of incinerated ash is measured by the following method. The residue obtained by heating the sample at 900 ° C. for 3 hours is subjected to fluorescent X-ray analysis (XRF), and the measured value of phosphorus pentoxide is converted to the amount of phosphorus alone.
  • XRF fluorescent X-ray analysis
  • the amount of calcium in 10 g of the incinerated ash is also not particularly limited, but, for example, 10 mg to 5000 mg, particularly 100 mg to 3000 mg is a general range.
  • the preferred amount of calcium in 10 g of incineration ash is 10 mg to 500 mg
  • the preferred amount of calcium in 10 g of incineration ash is 500 mg to 5000 mg .
  • the amount of calcium in 10 g of incinerated ash is measured by the following method. The residue is heated at 900 ° C. for 3 hours and the residue is subjected to X-ray fluorescence analysis (XRF) and calcium oxide measurements are converted to calcium alone.
  • XRF X-ray fluorescence analysis
  • any of phosphorus-containing waste and phosphorus-containing compounds can be used as a phosphorus source to treat incineration ash.
  • the inorganic compound containing phosphorus is preferable.
  • condensed phosphoric acid also called polyphosphoric acid
  • phosphoric acid H 3 PO 4
  • phosphorous acid H 3 PO 3
  • hypophosphorous acid H 3 PO 2
  • phosphonic acid H 2 PHO 3
  • Such salts include, for example, alkali metal salts and alkaline earth metal salts such as calcium and magnesium salts.
  • the phosphorus-containing compound used in the present embodiment is preferably polyphosphate, sodium polyphosphate, potassium polyphosphate, calcium polyphosphate, metaphosphate, sodium metaphosphate, potassium metaphosphate, calcium metaphosphate, pyrophosphate, sodium pyrophosphate, pyrophosphate Potassium, calcium pyrophosphate, pentasodium triphosphate, pentapotassium triphosphate, sodium dihydrogenphosphate, disodium hydrogenphosphate, sodium phosphate, potassium dihydrogenphosphate, dipotassium hydrogenphosphate, potassium phosphate, phosphorus
  • it is at least one selected from the group consisting of pentapotassium triphosphate, polyphosphate, polyphosphate and hypophosphite.
  • polyphosphoric acid sodium polyphosphate, pentapotassium triphosphate, phosphoric acid, potassium dihydrogenphosphate, dipotassium hydrogen phosphate, tripotassium phosphate, sodium phosphite, calcium hypophosphite and sodium phosphinate As well as their hydrates.
  • These phosphorus-containing compounds can be used alone or in combination of two or more.
  • the phosphorus-containing waste used in the present embodiment broadly includes phosphorus-containing waste.
  • the phosphorus-containing waste includes sewage sludge-based phosphorus-containing waste, agricultural and fishery-based phosphorus-containing waste, industrial phosphorus-containing waste, and food-based phosphorus-containing waste.
  • Sewage sludge-based phosphorus-containing wastes include general sewage sludge and industrial sewage sludge.
  • the general sewage sludge includes sewage sludge generated at a sewage treatment plant that processes domestic wastewater.
  • Examples of industrial sewage sludge include sewage sludge generated in a sewage treatment facility when wastewater and waste liquid from a factory such as a food factory or a chemical factory is treated in a sewage treatment facility in the factory.
  • Sewage sludge that treats domestic wastewater and sewage treatment facilities that treat industrial wastewater discharged from food factories etc. decompose and adsorb various substances that cause environmental pollution contained in wastewater by microorganisms, and then water Purify. In the process of purification, the dead bodies of microorganisms gather and precipitate and become sludge. These sludges contain a large amount of phosphorus.
  • the agricultural and fishery-based phosphorus-containing wastes include animal-derived wastes such as meat and bone meal of livestock and fish, livestock excrement, and plant-derived wastes such as wheat straw.
  • Industrial-use phosphorus-containing wastes include zinc phosphate chemical conversion treatment process discharged sludge, cleaning solutions for processing or degreasing processes of electronic parts and printed circuit boards, and the like.
  • Examples of the food-based phosphorus-containing waste include okara, soy sauce cake, and leftovers. These may be used alone or in combination of two or more.
  • the treatment method of the present invention preferably uses phosphorus-containing waste as a phosphorus source.
  • Phosphorus-containing wastes are generally traded for reverse payment, so increasing the amount of phosphorus-containing waste used in the present invention has the advantage of lowering the cost of treating incineration ash.
  • many phosphorus-containing wastes themselves also have combustion heat, and this combustion heat also has the effect of reducing the energy cost during heat treatment with incineration ash.
  • a suitable balance of the amount of calcium and phosphorus in the mixture of incineration ash and phosphorus-containing waste can be obtained.
  • the phosphorus-containing waste is preferably at least one selected from sewage sludge-based phosphorus-containing waste, agro-fishery-based phosphorus-containing waste and industrial phosphorus-containing waste, more preferably a sewage sludge-based waste.
  • Phosphorus-containing waste and / or agro-fishery-based phosphorus-containing waste particularly preferably general sewage sludge (referred to simply as “sewage sludge” in the following embodiment), industrial sewage sludge (only in the following embodiment “industrial sludge” And at least one selected from meat and bone meal.
  • sewage sludge general sewage sludge
  • industrial sewage sludge only in the following embodiment “industrial sludge”
  • at least one selected from meat and bone meal is preferred.
  • One of the most preferable forms in terms of reducing the elution amount of boron, hexavalent chromium and arsenic is general sewage sludge or a combination of industrial sewage sludge and meat and bone meal.
  • These wastes may be any of water-containing matter, dried matter and heated matter.
  • the phosphorus-containing waste used in the present invention is not mixed with incineration ash alone and is 600 ° C. or more and 1200 ° C. or less
  • the elution amount of the soil environment-based target element such as boron, arsenic, hexavalent chromium or phosphorus
  • the present invention can reduce the elution amount by mixing phosphorus-containing waste with incineration ash and heating the mixture at 600 ° C. or more and 1200 ° C. or less to form a heat-treated product. It is possible.
  • the present invention includes, for example, mixing incineration ash and phosphorus-containing waste and heating the mixture at 600 ° C. or more and 1200 ° C. or less, such as boron, arsenic, hexavalent chromium or phosphorus from phosphorus-containing waste.
  • the present invention may provide a method for suppressing the elution of the target element of the soil environment standard.
  • the phosphorus content in the phosphorus-containing waste used in the present invention largely changes depending on the form and liquid content of the phosphorus-containing waste used, from the viewpoint that the effects of the present invention are more significantly exhibited.
  • general dewatered sludge has a moisture content of 80-90% by mass, but not only such water-containing products called dewatered sludge but also dried products from which water has been removed and organic matter at 200 to 900 ° C. Any of the decomposed sludge heating products can be used. Therefore, although the usage mode of the phosphorus-containing waste is not particularly limited, some of them contain a large amount of water and organic substances, and thus P 2 in the fluorescent X-ray analysis (XRF) measured while heating at 900 ° C.
  • XRF fluorescent X-ray analysis
  • the value in terms of O 5 is preferably 5 to 60% by mass, and more preferably 10 to 40% by mass, with respect to the mass of phosphorus-containing waste heated at 900 ° C. for 3 hours.
  • the heating here is performed under an air atmosphere.
  • the phosphorus content is high, the elution suppression effect of the present invention is reduced.
  • the amount is small, problems such as a large decrease in productivity occur. Further, by mixing these wastes with incineration ash and heating them, the elution amount of harmful trace elements contained in the incineration ash and phosphorus-containing waste can be suppressed, and the waste can be reduced.
  • the incineration ash is mixed with a phosphorus source to treat the incineration ash.
  • the addition amount of the phosphorus source used at this time is 0.001 mass part 60 mass in phosphorus element (P) conversion with respect to 100 mass parts of incinerated ash from the viewpoint that the elution inhibitory effect of harmful trace element appears more significantly.
  • the content is preferably not more than 0.01 parts by weight and not more than 40 parts by weight, more preferably 0.05 parts by weight and 20 parts by weight, and still more preferably 0.1 parts by weight and 10 parts by weight. It is more preferable that it is the following.
  • the addition amount of the phosphorus source By setting the addition amount of the phosphorus source to 0.001 parts by mass or more, particularly 0.01 parts by mass or more, the effect of suppressing elution of harmful trace elements is sufficiently exhibited. Further, by setting the addition amount of the phosphorus source to 60 parts by mass or less, it is easy to make the elution amount of phosphorus from the treated material of the incineration ash equal to or less than the environmental standard value.
  • the phosphorus source mentioned here is phosphorus-containing waste
  • the amount of phosphorus in the waste can be measured by the following method. The residue obtained by heating the sample at 900 ° C. for 3 hours is subjected to fluorescent X-ray analysis (XRF), and the measured value of phosphorus pentoxide is converted to the amount of phosphorus alone.
  • XRF fluorescent X-ray analysis
  • the amount is preferably 1 times by mass or more, more preferably 10 times by mass or more, and particularly preferably 15 times by mass or more.
  • the amount of phosphorus in the mixture of the incineration ash and the phosphorus source is 400 mass times or less with respect to the total amount of arsenic, chromium and boron in the incineration ash, It is preferable because it is easy to make the elution amount of phosphorus equal to or less than the environmental standard value, and 300 mass times or less is more preferable.
  • the mixture contains phosphorus-containing components other than incineration ash and phosphorus-containing waste in addition to the phosphorus-containing components of incineration ash and phosphorus-containing waste, the amount of phosphorus in the mixture referred to here The amount of phosphorus is also included.
  • the amount of phosphorus in the mixture of the incineration ash and the phosphorus source is 18 with respect to the total amount of arsenic, chromium and boron in the incineration ash. It is still more preferable that the amount is equal to or more than the mass ratio in terms of reducing the amount of elution of arsenic.
  • the amount of calcium is also important in order to enhance the elution suppression effect of arsenic, hexavalent chromium and boron in the present embodiment.
  • the amount of calcium in the mixture of incineration ash and phosphorus source is preferably at least 10 times by mass, preferably at least 30 times by mass, the total amount of arsenic, chromium and boron in the incineration ash Is particularly preferred.
  • the amount of calcium in the mixture of incineration ash and phosphorus source is 75 mass times or more relative to the total amount of arsenic, chromium and boron in incineration ash, the elution suppression effect of arsenic is very excellent. It is preferable because the
  • calcium in the mixture of the incineration ash and the phosphorus source is present in a certain amount or more with respect to the total amount of arsenic, chromium and boron in the incineration ash, but it is preferable to exist more than a certain amount. It may affect the elution suppression of chromium.
  • the amount of calcium in the mixture of the incineration ash and the phosphorus source is 1000 mass times or less with respect to the total amount of arsenic, chromium and boron in the incineration ash It is more preferably 800 mass times or less, and particularly preferably 450 mass times or less.
  • the amount of calcium in the mixture of the coal ash and the phosphorus source is 10 times by mass to 800 times by mass the total amount of arsenic, chromium and boron in the incineration ash Is more preferably 30 to 450 mass times, and most preferably 445 mass times or less.
  • the amount of calcium in the mixture of general waste incineration ash and the phosphorus source is 400 mass times the total amount of arsenic, chromium and boron in the incineration ash It is preferable that it is 1000 mass times or less, and more preferable that it is 600 mass times or more and 800 mass times or less.
  • the amount of calcium in the above mixture includes calcium content of incineration ash and phosphorus-containing waste, as well as calcium content of the calcium-containing component if the mixture contains calcium addition components other than incineration ash and phosphorus-containing waste. Also includes the amount of
  • the calcium amount of the phosphorus source can be measured by the following method. The residue is heated at 900 ° C. for 3 hours and the residue is subjected to X-ray fluorescence analysis (XRF) and calcium oxide measurements are converted to calcium alone.
  • XRF X-ray fluorescence analysis
  • the mass ratio (Ca / P) of the amount of calcium in the mixture to the amount of phosphorus in the mixture is 0.5 or more, which is particularly effective for the elution of boron and arsenic in the resulting treated product. It is preferable because it can be reduced, and in particular, it is preferable that it is 1 or more because the effect of reducing the elution amount of boron and arsenic is the highest.
  • the mass ratio (Ca / P) of the amount of calcium in the mixture to the amount of phosphorus in the mixture is preferably 50 or less because the elution amount of hexavalent chromium can be more effectively reduced, and particularly 30 It is preferable that it is the following.
  • the amount of phosphorus (element P equivalent amount) in the mixture of incineration ash and phosphorus source is not particularly limited, but it is 0.1 mass% or more and 10 mass% or less and the elution amount of arsenic, hexavalent chromium and boron Is preferable in that it can reduce effectively, and it is particularly preferable that the content is 0.3% by mass or more and 5.0% by mass or less.
  • the amount of calcium in the mixture of incineration ash and phosphorus source is not particularly limited, but that 0.1 mass% or more and 50 mass% or less can effectively reduce the elution amount of arsenic, hexavalent chromium and boron.
  • the content is preferably 1.0% by mass or more and 35% by mass or less.
  • the phosphorus-containing waste and a phosphorus-containing component other than the incineration ash are contained in a mixture of the phosphorus-containing waste and the incineration ash to obtain the above preferable phosphorus amount. You may adjust.
  • phosphorus-containing component various phosphorus-containing compounds mentioned above can be mentioned, and in particular, sodium phosphate, polyphosphate, sodium polyphosphate, pentapotassium triphosphate, phosphate, potassium dihydrogenphosphate Dipotassium hydrogen phosphate, tripotassium phosphate, sodium phosphite, and hydrates of these, with sodium phosphate being particularly preferred.
  • the addition amount of phosphorus components other than phosphorus-containing waste and incineration ash is preferably 0.1 to 40 parts by mass with respect to 100 parts by mass of incineration ash as solid content, in 0.5 to 20 parts by mass It is more preferable that
  • the mixture of the phosphorus source and the incineration ash may contain a calcium-containing component and / or a phosphorus-containing component other than the phosphorus source and the incineration ash to adjust to the above-mentioned suitable calcium amount.
  • the phosphorus source in this case is particularly preferably phosphorus-containing waste.
  • the calcium-containing component include calcium oxide, calcium hydroxide, calcium chloride, calcium carbonate, calcium sulfate, calcium phosphate, and paper sludge ash which is a waste in a paper mill having a large amount of calcium, particularly paper. Sludge ash and calcium oxide are preferred.
  • the amount of the calcium-containing component other than the phosphorus-containing waste and the incineration ash is preferably 0.1 to 40 parts by mass with respect to 100 parts by mass of the incineration ash as solid content. It is more preferable that
  • the phosphorus source in this case is particularly preferably phosphorus-containing waste.
  • the sodium component include sodium chloride, sodium hydroxide, sodium carbonate, sodium phosphate and seawater, and sodium chloride, sodium hydroxide and sodium phosphate are particularly preferable.
  • the addition amount of the sodium component is preferably 0.1 to 40 parts by mass, and more preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the incinerated ash as solid content.
  • the elution amount of hexavalent chromium can be easily reduced by incorporating a sodium component such as sodium chloride in the mixture of the waste incineration ash and the phosphorus source. It is preferable because it can be done.
  • the treated product of the present embodiment obtained by adding the sodium component to the mixture of phosphorus-containing waste and incineration ash In the above, reduction of the elution amount of boron can also be suppressed.
  • the method of mixing the incineration ash and the phosphorus source is not particularly limited.
  • a method of physically mixing incineration ash and phosphorus source a method of impregnating incineration ash with a solution or slurry in which a phosphorus source is dissolved or suspended in a solvent, physically mixing incineration ash and phosphorus source The method of adding a solvent later, etc. are mentioned.
  • a solvent to be used one which can dissolve or suspend a phosphorus source can be used.
  • aqueous solvents such as water (tap water, distilled water, ion-exchanged water and the like) and seawater, and organic solvents including alcohols such as methanol, ethanol and isopropyl alcohol.
  • the preferred solvent is water.
  • the amount of the solvent used is preferably 5 parts by mass or more and 200 parts by mass or less, and more preferably 10 parts by mass or more and 100 parts by mass with respect to 100 parts by mass of the incinerated ash from the viewpoint More preferably, it is at most parts by mass.
  • the method of the heat treatment is not particularly limited, and, for example, a general calciner, a ring furnace, a calciner such as a kiln can be used.
  • the atmosphere for the heat treatment is not particularly limited, and may be, for example, an oxygen-containing atmosphere such as air and oxygen, and an inert gas atmosphere such as nitrogen and argon. From an economic point of view, it is preferable to carry out the heat treatment in air. When heat-processing in air, it is preferable to heat-process, distribute
  • the heat treatment is preferably performed at a temperature that can suppress the elution amount of harmful trace elements from the heat-treated product.
  • a temperature that can suppress the elution amount of harmful trace elements from the heat-treated product As a result of studies by the present inventor, it was found that heating at 600 ° C. or higher can sufficiently suppress the elution amount of harmful trace elements from the heat-treated product. From this point of view, the higher the heating temperature, the more the elution amount of harmful trace elements can be suppressed. Therefore, the heat treatment is preferably performed at 600 ° C. or more (particularly, more than 600 ° C.) 1200 ° C. or less, and more preferably 700 ° C. or more and 1200 ° C. or less. In particular, when the incineration ash is coal ash, it is more preferably 750 ° C.
  • the temperature is particularly preferable to set the temperature to 850 ° C. or more and 1000 ° C. or less.
  • the heating temperature is more preferably 600 ° C. or more and 1000 ° C. or less, 650 ° C. or more and 850 ° C. from the viewpoint of the elution suppression of hexavalent chromium, arsenic and boron. It is still more preferable to set it as the following, and it is especially preferable to set it as 700 degreeC or more and 780 degreeC or less.
  • the phosphorus source is unburned carbon contained in incineration ash such as coal ash by heat treatment at 600 ° C. or higher, particularly 700 ° C. or higher. It also makes it possible to promote the decomposition of carbon and reduce the unburned carbon content in incineration ash. This is particularly advantageous when the incineration ash is coal ash generated by burning a mixture of biomass and coal, which is a carbon-rich substance. By reducing the unburned carbon content in the incineration ash, it is possible to reduce the amount of cement used, for example, when preparing a filling material for adding cement to coal ash. Moreover, when adding a coal ash at the time of concrete manufacture, carbon float derived from coal ash can be suppressed.
  • the heat treatment time is preferably 30 minutes to 24 hours, more preferably 1 hour to 10 hours, and still more preferably 1 hour to 5 hours.
  • the mixture of incineration ash and a phosphorus source previously at 80 degreeC or more and 300 degrees C or less, and then to perform said heat processing.
  • the method of the heat treatment and the atmosphere of the heat treatment include the method of heat treatment of the above heat treatment at 600 ° C. to 1200 ° C. And those mentioned above as the heat treatment atmosphere.
  • a heating time in the case of heating the mixture of incineration ash and a phosphorus source previously at 80 degreeC or more and 300 degrees C or less, 15 minutes or more and 10 hours or less are preferable from the point which exhibits the effect by said advantage still higher. More preferably, 30 minutes or more and 5 hours or less.
  • the present invention may or may not have a granulation step before the above-mentioned heat treatment at 600 ° C., preferably 700 ° C. or more.
  • a granulation step before the above-mentioned heat treatment at 600 ° C., preferably 700 ° C. or more.
  • the properties of the heat-treated product after the heat treatment at 600 ° C. or more, preferably 700 ° C. or more described above include powdery matter and granular matter.
  • soil pollution measures included in incineration ash which are highly productive, easily industrially and without being influenced by the physical properties, composition and raw materials of incineration ash It is possible to simultaneously reduce the elution amount of a plurality of harmful trace elements defined in the law below the environmental standard value.
  • the elution amount of at least one element in the group consisting of boron, arsenic, selenium, fluorine, hexavalent chromium, lead, mercury and cadmium can be reduced, and preferably is included in these groups
  • the elution amount of two or more elements can be reduced, more preferably the elution amount of three or more elements can be reduced, and particularly preferably the elution amounts of boron, arsenic and hexavalent chromium are reduced.
  • the elution amount of all the elements contained in these groups can be reduced.
  • the heat-treated product obtained by the treatment method of the present embodiment has an effect that elution of harmful trace elements can be suppressed even under a pH environment other than neutral.
  • a pH environment other than neutral conditions acidic conditions of pH 2.0 to 5.0 at 25 ° C. and basic conditions of pH 8.0 to 12.0 can be mentioned.
  • the heat-treated product obtained by the treatment method of the present invention suppresses the elution amount of harmful trace elements contained in the heat-treated product even when it is left outdoors, the heat-treated product is an environmentally friendly material. It can be reused. As applications of reuse, for example, building materials such as cement / concrete admixtures, ground improvers, roadbed materials, embankments, backfill materials, civil engineering materials and the like are preferably mentioned.
  • the environmental standard values described in each table are the standard values established by the Ministry of the Environment of Japan. Although not described in any of the following tables, the environmental standard value of mercury is 0.0005 mg / L or less, and the environmental standard value of cadmium is 0.01 mg / L or less.
  • the dissolution test method adopted in each of the following Examples and Comparative Examples in accordance with the Japan Environment Agency Notification No. 46 of 1991 is as follows.
  • (Preparation method of test solution) It is prepared by the following method according to the method described in the Annex 46 of Japan Environment Agency Notice. (1) Mix a sample (unit g) and a solvent (hydrochloric acid added to pure water so that the hydrogen ion concentration index is 5.8 or more and 6.3 or less) (unit ml) at a weight volume ratio of 10%, And, the mixture was adjusted to 50 to 500 ml.
  • Example A-1 Plant sludge A (water content 88.5 mass%, phosphorus content after heating at 900 ° C for 3 hours 34.4 mass% in terms of P 2 O 5 in XRF) as phosphorus-containing waste 250 g coal ash A 10 g To a mixture to obtain a mixture.
  • Coal ash A is a residue produced by burning coal.
  • Factory sludge A is sewage sludge generated at a wastewater treatment facility of a chemical factory. The obtained mixture was dried at 200 ° C. for 1 hour in a baking furnace (a bench-top electric furnace) and then heat-treated at 900 ° C. for 3 hours.
  • a test solution was obtained from the obtained powdery heat-treated product by the above method, and the concentration of harmful trace elements in the test solution was measured by the above method.
  • the harmful trace elements other than boron, arsenic and hexavalent chromium were mercury ⁇ 0.0005 mg / L, cadmium ⁇ 0.001 mg / L, and phosphorus ⁇ 0.1 mg / L in addition to Table 5.
  • the carbon content in elemental analysis (decomposition at 1150 ° C.) in the heat-treated product was below the detection limit ( ⁇ 0.01 mass%).
  • Example A-1 conditions relating to the type of incineration ash, the type of phosphorus-containing waste, the amount of phosphorus-containing waste used, and / or the temperature of heat treatment after drying are as shown in Table 1 below. changed. Moreover, about the example described as "annular furnace" in the term of the shape of a furnace, the baking furnace was changed from the table-top electric furnace to the annular electric furnace, and it heat-processed, distribute
  • Coal ash B is a residue produced by burning a mixture of coal and biomass in a mass ratio of 1: 0.05 (the same applies hereinafter).
  • Coal ash C is a residue produced by burning coal (same below).
  • Coal ash D is a residue produced by burning coal (the same applies hereinafter).
  • Example A-9 In the term of amount used (g / g) in Table 1, for example, the description “40 (+ meat and bone meal 2.5) / 10” in Example A-9 is 40 g of factory sludge and 2.5 g of meat and bone meal It shows that it mixed with 10 g of incinerated ash. The same applies to other examples in which meat and bone meal is added to other phosphorus-containing wastes.
  • the elution amounts of harmful trace elements were compared according to the presence or absence of the use of the phosphorus-containing waste, and it was found that the phosphorus-containing waste was obtained by using the phosphorus-containing waste of Example A-1 to A-15. It can be seen that the elution amounts of boron, arsenic and hexavalent chromium can be reduced as compared with Comparative Examples 1 to 3 in which only incinerated ash is used without using.
  • Example B-1 As a phosphorus-containing waste, 100 g of factory sludge A was added to 10 g of waste incineration ash to obtain a mixture.
  • Garbage incineration ash is a residue produced by burning general household waste (hereinafter, also simply referred to as “garbage incineration ash”).
  • the mixture was dried at 200 ° C. for 1 hour in a baking furnace and then heat-treated at 900 ° C. for 3 hours.
  • a test solution was obtained from the obtained powdery heat-treated product by the above method, and the concentration of harmful trace elements in the test solution was measured by the above method.
  • the harmful trace elements other than boron, arsenic and hexavalent chromium were mercury ⁇ 0.0005 mg / L, cadmium ⁇ 0.001 mg / L and phosphorus ⁇ 0.1 mg / L.
  • the carbon content in the elemental analysis (decomposed at 1150 ° C.) in the heat-treated product was below the detection limit ( ⁇ 0.01 mass%).
  • Sewage sludge C has a moisture content of 81.2% by mass, and a phosphorus content after heating at 900 ° C. for 3 hours of 25.7% by mass in terms of P 2 O 5 in XRF (the same applies hereinafter).
  • Comparative Examples 10 and 11 In Comparative Example 10, the same operation as in Example B-1 was performed except that the phosphorus-containing waste was not used in Example B-1. In Comparative Example 11, the same operation as in Example B-3 was performed except that the phosphorus-containing waste was not used in Example B-3.
  • Example C-1 In Example A-1, the phosphorus-containing waste used was sewage sludge A and meat-and-bone meal, and the amount of phosphorus-containing waste used was changed as shown in Table 1. The same operation as in Example A-1 was performed except for these points.
  • Examples C-2 to C-21 The process was the same as Example C-1 except that the type of phosphorus-containing waste, the amount of phosphorus-containing waste, or the temperature of heat treatment was changed to the conditions in Table 3. The analysis results obtained are shown in Table 3. Sewage sludge B had a water content of 81.7% by mass, and the phosphorus content after heating at 900 ° C. for 3 hours was 16.5% by mass in terms of P 2 O 5 in XRF. Dry sewage sludge D is granular sludge obtained by flash drying sewage sludge at 200 ° C., and the moisture content is 9 mass%, and the phosphorus content after heating at 900 ° C.
  • the carbon content in elemental analysis (decomposition at 1150 ° C.) in the heat-treated product was below the detection limit ( ⁇ 0.01 mass%).
  • harmful trace elements other than boron, arsenic, and hexavalent chromium are mercury ⁇ 0.0005 mg / L, cadmium ⁇ 0.001 mg / L, lead It was ⁇ 0.01 mg / L and phosphorus ⁇ 0.1 mg / L.
  • the carbon content in elemental analysis (decomposition at 1150 ° C.) in the heat-treated product was below the detection limit ( ⁇ 0.01 mass%).
  • Comparative Examples 12 to 16 Only one of the incinerated ash and the phosphorus-containing waste was used.
  • the amount of incineration ash or phosphorus-containing waste used was as shown in Table 3, and the temperature of heat treatment after drying was as shown in Table 3 below. The other conditions were the same as in Example C-1.
  • the harmful trace elements other than boron, arsenic and hexavalent chromium were mercury ⁇ 0.0005 mg / L and cadmium ⁇ 0.001 mg / L except as shown in Table 6.
  • the carbon content in the elemental analysis (decomposed at 1150 ° C.) in the heat-treated product was below the detection limit ( ⁇ 0.01 mass%).
  • Example D-2 and D-3 The same operation as in Example D-1 was performed except that the amount of the meat and bone powder used in the phosphorus-containing waste used in Example D-1 and the heating temperature thereof were the amounts and temperatures shown in Table 3.
  • Comparative Example 17 It was the same as Example 1 except that incinerated ash was not used.
  • Example E-1 As a phosphorus-containing waste, 40 g of factory sludge A was added to 10 g of coal ash A to obtain a mixture. Coal ash A is a residue produced by burning coal. The mixture was dried at 200 ° C. for 1 hour in a baking furnace and then heat-treated at 900 ° C. for 3 hours. To 1 part by mass of the obtained powdery heat-treated product, 10 parts by mass of an aqueous solution of “extract solution pH” in Table 7 is added instead of the solvent used in the above method, and mixed to prepare a test solution, The concentration of harmful elements was measured for the test solution by the above method. The results are shown in Table 7.
  • Example E-1 except that the conditions relating to the type of phosphorus-containing waste, the amount of phosphorus-containing waste, the type of incineration ash, the temperature of heat treatment, or the type of extraction solvent used are changed as shown in Table 7 It was the same as. The results are shown in Table 7.
  • Examples E-1 to E-16 were all harmful trace elements compared with Comparative Examples (Comparative Examples 18, 19 or 20) using only coal ash A of the corresponding pH. It can be seen that the elution amount can be reduced. Further, it can be seen from Examples E-17 to E-19 that elution standards can be maintained in a wide pH range also when different types of incinerated ash are used.
  • Example F-1 An aqueous solution prepared by dissolving 1.47 parts by mass of 85% phosphoric acid as a phosphorus-containing compound in 40 parts by mass of water was added to 100 parts by mass of coal ash A to obtain a mixture.
  • Coal ash A is a residue produced by burning coal.
  • the mixture was dried at 110 ° C. for 3 hours in a baking furnace and then heat treated at 900 ° C. for 3 hours.
  • a test solution was obtained from the obtained powdery heat-treated product by the above method, and the concentration of harmful trace elements in the test solution was measured by the above method.
  • Example F-2 to F-14 The same operation as in Example F-1 was performed except that the phosphorus-containing compound used in Example F-1 and the amount thereof used were changed as shown in Table 8 below. The analysis results of the obtained heat-treated product are shown in Table 8.
  • Example F-15 An aqueous solution prepared by dissolving 1.25 parts by mass of pentapotassium triphosphate (K 5 P 3 O 10 ) as a phosphorus-containing compound in 40 parts by mass of water was added to 100 parts by mass of coal ash E to obtain a mixture.
  • Coal ash E is a residue formed by mixing and burning coal and biomass at a mass ratio of 1: 0.05.
  • the mixture was heat treated at 900 ° C. for 1 hour in a baking furnace.
  • the same analysis as in the above F-1 was performed on the obtained heat-treated product. The analysis results are shown in Table 9.
  • Examples F-16 to F-23 Example F except using coal ash shown in Table 9 or waste incineration ash instead of the coal ash E used in Example F-15 and replacing the amount of the phosphorus-containing compound with the values shown in Table 9 The same operation as -15 was performed. The analysis results of the obtained heat-treated product are shown in Table 9.
  • Coal ash F-K is a residue produced by burning coal.
  • Examples F-24 to F-29 As the incineration ash, 100 parts by mass of coal ash A was used. In addition, the phosphorus-containing compound and the amount used thereof were changed as shown in Table 10. Furthermore, it heat-processed at the temperature shown in Table 10. Except for these, the operation of Example F-1 was performed. The analysis results of the obtained heat-treated product are shown in Table 10.
  • Example F-24 [Comparative Examples 28 and 29] The same operation as in Example F-24 was performed except that the heating temperature in Example F-24 was changed to the heating temperature shown in Table 10. The analysis results of the obtained heat-treated product are shown in Table 10.
  • Example F-24 The same operation as in Example F-24 was performed except that the phosphorus-containing compound was not used in Example F-24, and the heating temperature shown in Table 10 was changed. The analysis results of the obtained heat-treated product are shown in Table 10.
  • Example F-30 100 parts by mass of coal ash A and 10 parts by mass of pentapotassium triphosphate (K 5 P 3 O 10 ) as a phosphorus-containing compound were mixed and heat-treated at 900 ° C. for 3 hours. The analysis results of the obtained heat-treated product are shown in Table 11.
  • Example F-30 As shown in Table 11, the same operation as in Example F-30 was performed, except that the phosphorus-containing compound and the heat treatment temperature were changed. The analysis results of the obtained heat-treated product are shown in Table 11.
  • Example F-31 The same operation as in Example F-30 was performed, except that the phosphorus compound type and the amount thereof were changed.
  • the analysis results of the obtained heat-treated product are shown in Table 11.
  • Example F-32 An aqueous solution prepared by dissolving 1.25 parts by mass of pentapotassium triphosphate (K 5 P 3 O 10 ) as a phosphorus-containing compound in 40 parts by mass of water was added to 100 parts by mass of coal ash A to obtain a mixture. The mixture was heat treated in a baking furnace at 900 ° C. for 1 hour. A test solution was obtained for the obtained powdery heat-treated product by the above method, and the concentration of harmful trace elements in this test solution was measured by the above method. However, 5.0 mmol / L hydrochloric acid aqueous solution (pH 2.3) was used as a solvent to be mixed with the heat-treated product for preparation of a test solution. The analysis results of the obtained heat-treated product are shown in Table 12.
  • Comparative Example 37 A test solution was obtained by the above method for coal ash A itself used in Example F-32, and the concentration of each harmful trace element in the test solution was measured by the above method. However, 5.0 mmol / L hydrochloric acid aqueous solution (pH 2.3) was used as a solvent to be mixed with the coal ash A for preparation of a test solution. The analysis results are shown in Table 12.
  • Examples F-34 and F-35 A mixture was obtained by adding 8 parts by mass or 16 parts by mass of phosphoric acid (H 3 PO 4 ) as a phosphorus-containing compound to 100 parts by mass of refuse incineration ash. The mixture was heat treated at 700 ° C. for 1 hour in a baking furnace. A test solution was obtained from the obtained powdery heat-treated product by the above method, and the concentration of harmful trace elements in the test solution was measured by the above method. The analysis results of the obtained heat-treated product are shown in Table 13.
  • the treatment method of the present invention can be applied without being influenced by the physical properties or composition of incineration ash, and can reduce the elution amount of harmful trace elements from the incineration ash.
  • the treatment method of the present invention elution of harmful trace elements from incineration ash containing various harmful trace elements is highly productive, economical, efficient, and industrial without using various agents. It can be simply suppressed.
  • the elution amount of harmful trace elements can be reduced even under acidic conditions assuming acid rain or under basic conditions due to the presence of a basic compound liberated from the concrete structure. It is possible to effectively reduce the influence of the internal and external pH environment.
  • the treatment method of the present invention is applicable to incineration ash of various physical properties and compositions such as coal ash and waste incineration ash.
  • the treatment method of this embodiment is environmental pollution such as reutilization of incinerated ash in construction projects and civil engineering projects, landfill use of waste treated ash that has been dumped in waste disposal sites, soil improvers, etc. It contributes to the effective use of incineration ash in consideration of prevention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

In a solid waste treatment method according to the present invention, incinerated ash and a phosphorus source are mixed and heated at 600-1200ºC. Examples of the phosphorus source include phosphorus-containing waste and phosphorus-containing compounds, and it is preferable that the phosphorus source be phosphorus-containing waste. In particular, it is preferable that the phosphorus source be at least one type selected from a group consisting of sewage-sludge-based phosphorus-containing waste, agriculture/fishery-based phosphorus-containing waste, industrial phosphorus-containing waste, and food-based phosphorus-containing waste. It is also preferable that the incinerated ash be coal ash generated by combusting coal alone or a mixture of coal and biomass.

Description

固体廃棄物の処理方法Solid waste disposal method
 本発明は固体廃棄物の処理方法に関する。 The present invention relates to a method of treating solid waste.
 焼却灰からの有害微量元素溶出抑制方法としては、これまで、薬剤を添加する方法、溶媒で抽出する方法、加熱処理する方法等が知られている。この中でも比較的高い生産性で有害微量元素の溶出を抑制できる方法として、薬剤を添加する方法が汎用されているものの、添加する薬剤が製造コストを圧迫するため、これまで経済的な処理方法としては課題を有していた。 As a method of suppressing harmful trace element elution from incinerated ash, a method of adding a drug, a method of extracting with a solvent, a method of heat treatment and the like are known. Among them, although a method of adding a drug is widely used as a method capable of suppressing elution of harmful trace elements with relatively high productivity, since the added drug squeezes the manufacturing cost, it has been an economical processing method so far. Had a challenge.
 例えば特許文献1には、ホウ素とフッ素とを含有する固体廃棄物に、リン酸化合物とカルシウム化合物とを混合して、ホウ素、フッ素を不溶化する方法が記載されている。 For example, Patent Document 1 describes a method of insolubilizing boron and fluorine by mixing a phosphoric acid compound and a calcium compound with a solid waste containing boron and fluorine.
 特許文献2には、重金属含有灰に水、シリカゲル及びリン酸系重金属固定化剤を加えて混練する処理法が記載されている。同文献には、鉛の溶出量を低減する実施例が開示されている。 Patent Document 2 describes a treatment method in which water, silica gel and a phosphoric acid-based heavy metal fixing agent are added to heavy metal-containing ash and kneaded. The same document discloses an example of reducing the elution amount of lead.
 特許文献3には、固体状廃棄物に、亜リン酸類及び/又は次亜リン酸類を添加し、300℃以下に加熱して固体状廃棄物中の鉛等の有害な金属及び有機塩素化物を無害化する固体状廃棄物の処理方法が記載されている。 In Patent Document 3, phosphorous acid and / or hypophosphorous acid is added to solid waste, and heated to 300 ° C. or less to cause harmful metals such as lead in solid waste and organic chlorinated compounds. A process for the treatment of solid waste to be detoxified is described.
 特許文献4には、焼却灰、汚泥、及び建設発生土の群の中から選ばれる一種または二種以上の廃棄物を含む被焼成物を焼成して多孔質焼結体を製造する方法であって、前記焼成に際しての温度が650~1000℃とすること、この製造方法により6価クロムの溶出量を環境基準値以下にすることができると記載されている。 Patent Document 4 describes a method for producing a porous sintered body by firing a material to be fired containing one or two or more wastes selected from the group consisting of incineration ash, sludge, and construction generated soil. It is described that the temperature at the time of the baking is set to 650 to 1000 ° C., and the elution amount of hexavalent chromium can be made equal to or less than the environmental standard value by this manufacturing method.
特開2007-181758号公報Japanese Patent Application Publication No. 2007-181758 特開平10-174952号公報Unexamined-Japanese-Patent No. 10-174952 US6137027AUS6137027A 特開2009-132566号公報JP, 2009-132566, A
 しかしながら、特許文献1~3に記載の技術に対して、更に低コストに、またより多種の有害元素を不溶化できる有害元素の不溶化方法が望まれている。
 更に、特許文献3に記載のように固体状廃棄物に、亜リン酸類及び/又は次亜リン酸類を添加し、300℃以下に加熱した場合や、特許文献4のように焼却灰又は汚泥単独のみを焼成させた場合では、有害金属溶出抑制効果が十分なものではない。
However, with respect to the techniques described in Patent Documents 1 to 3, there is a need for an insolubilizing method of harmful elements capable of insolubilizing various harmful elements at lower cost.
Furthermore, as described in Patent Document 3, phosphorous acid and / or hypophosphorous acid is added to solid waste and heated to 300 ° C. or lower, as in Patent Document 4, incineration ash or sludge alone. In the case of firing only, the harmful metal elution suppressing effect is not sufficient.
 また、日本国内の廃棄物処分場のひっ迫に起因して、年々排出量が増加している家庭ごみ及び産業廃棄物由来の焼却灰の有効利用が望まれている。焼却灰の有効利用の例として、建築材料などの土木事業での再利用や埋立利用が挙げられる。しかしこれらの事業では、廃棄物を、屋外で長期間使用する材料に再利用することを前提としているので、焼却灰に含まれている有害微量元素の溶出による環境汚染が懸念される。そこで、焼却灰の有効利用を進める上で、有害微量元素の溶出抑制効果が高い方法の開発が必要となっている。 In addition, due to the tightness of waste disposal sites in Japan, effective use of incineration ash derived from household waste and industrial waste, which is increasing yearly, is desired. As an example of the effective use of incineration ash, reuse and landfill use in civil engineering projects such as building materials can be mentioned. However, these projects are premised on reusing waste as a material that is used outdoors for a long time, so there is concern about environmental pollution due to elution of harmful trace elements contained in incineration ash. Therefore, in order to promote the effective use of incinerator ash, it is necessary to develop a method that has a high effect of suppressing the elution of harmful trace elements.
 本発明は前記の課題に鑑みなされたものであり、環境に悪影響を及ぼす有害微量元素である、ホウ素、砒素、セレン、フッ素、6価クロム、鉛、水銀及び/又はカドミウム等を含有している焼却灰からの有害微量元素の溶出を低減させる焼却灰の処理方法を提供することにある。具体的には、従来よりも生産性が高く、これらの有害微量元素の溶出量を土壌汚染対策法に規定される環境基準値以下に低減させ得る焼却灰の処理方法を提供することにある。 The present invention has been made in view of the above problems, and contains harmful trace elements which adversely affect the environment, such as boron, arsenic, selenium, fluorine, hexavalent chromium, lead, mercury and / or cadmium and the like. An object of the present invention is to provide a method for treating incineration ash which reduces the elution of harmful trace elements from the incineration ash. Specifically, it is an object of the present invention to provide a method for treating incineration ash which has higher productivity than before and can reduce the elution amount of these harmful trace elements to an environmental standard value or less defined in the Soil Contamination Countermeasures Law.
 本発明は、焼却灰とリン源とを混合して600℃以上1200℃以下で加熱する工程を有する固体廃棄物の処理方法を提供することにより、前記の課題を解決したものである。 The present invention solves the above-mentioned problems by providing a method for treating solid waste comprising the steps of mixing incineration ash and a phosphorus source and heating the mixture at 600 ° C. or more and 1200 ° C. or less.
 また、本発明は、焼却灰とリン源とを混合して600℃以上1200℃以下で加熱する工程を有する、焼却灰又はリン源に含まれるホウ素、砒素、セレン、フッ素、6価クロム、鉛、水銀及びカドミウムからなる群の少なくとも1種の元素の溶出抑制方法を提供するものである。 Further, the present invention comprises a step of mixing incineration ash and a phosphorus source and heating the mixture at 600 ° C. to 1200 ° C., boron, arsenic, selenium, fluorine, hexavalent chromium, lead contained in the incineration ash or phosphorus source And a method of inhibiting the elution of at least one element of the group consisting of mercury and cadmium.
 以下に本発明を、その好ましい実施形態に基づき説明する。しかし、本発明は以下の実施形態に制限されるものではない。
 本実施形態は、焼却灰とリン源とを混合して600℃以上1200℃以下で加熱する工程を有する固体廃棄物の処理方法である。固体廃棄物は本実施形態において焼却灰を指す。
The present invention will be described below based on its preferred embodiments. However, the present invention is not limited to the following embodiments.
This embodiment is a method for treating solid waste, which has a step of mixing incineration ash and a phosphorus source and heating the mixture at 600 ° C. or more and 1200 ° C. or less. Solid waste refers to incinerated ash in this embodiment.
 本実施形態の処理の対象となる焼却灰としては例えば、家庭から排出される一般ごみの焼却灰、産業廃棄物焼却施設から発生する焼却灰、又は石炭火力発電所から排出されるフライアッシュやクリンカアッシュ等の石炭灰等が挙げられる。前記石炭灰は、石炭単独を燃焼させて発生する焼却灰であってもよく、あるいは、石炭とバイオマスとの混合物を燃焼させて発生する焼却灰であってもよい。バイオマスとは生物由来の有機物であり、例えば農作由来物、材木由来物であり、具体的には稲わら、もみ、ヤジガラ等の農作廃棄物や木質チップや木質ペレット、間伐材、建設用廃木材等の材木由来物などである。石炭とバイオマスとの混合物を燃焼させる場合の混合比率としては石炭灰:バイオマスの質量比が1:0.01~2.0が挙げられる。 Examples of the incineration ash to be treated in the present embodiment include incineration ash of general waste discharged from a household, incineration ash generated from an industrial waste incineration facility, or fly ash or clinker discharged from a coal-fired power plant. Examples include coal ash such as ash. The coal ash may be incineration ash generated by burning coal alone, or may be incineration ash generated by burning a mixture of coal and biomass. Biomass is organic matter derived from organisms, such as agricultural products and timber products. Specifically, agricultural waste such as rice straw, firs and pheasant, agricultural chips such as lice and wood pellets, thinning materials, waste wood for construction And other timber-derived materials. As a mixing ratio in the case of burning a mixture of coal and biomass, a mass ratio of coal ash: biomass is 1: 0.01 to 2.0.
 前記焼却灰には、砒素、セレン、鉛、6価クロム、水銀及びカドミウムなどの重金属元素だけでなく、土壌汚染対策法に規定されるフッ素及びホウ素等の元素が多く含有されている場合、例えば後述する実施例のとおり環境庁告示第46号に準じた方法で溶出量を測定した場合に下記実施例に記載の環境基準値を超えている場合がある。したがって、焼却灰をそのまま廃棄すると、これらの元素が環境中へ溶出し環境汚染の一因となるおそれがある。本発明の処理方法は、規制対象となっている前記8種の元素からなる群の少なくとも1種の元素について、焼却灰からの溶出量を低減するものである。本実施形態の処理方法は、特にホウ素、フッ素及び/又は6価クロムの溶出抑制に有効である。 For example, when the incineration ash contains a large amount of elements such as fluorine and boron specified in the Soil Contamination Countermeasures Act, in addition to heavy metal elements such as arsenic, selenium, lead, hexavalent chromium, mercury and cadmium. When the elution amount is measured by a method according to Environment Agency Notification No. 46 as in the examples described later, the environmental standard value described in the following examples may be exceeded. Therefore, if the incineration ash is discarded as it is, these elements may leach into the environment and contribute to environmental pollution. The treatment method of the present invention is to reduce the elution amount from incineration ash with respect to at least one element of the group consisting of the above eight elements being regulated. The treatment method of the present embodiment is particularly effective for the elution suppression of boron, fluorine and / or hexavalent chromium.
 焼却灰10g中の砒素、クロム及びホウ素の合計量(A)としては、一般に0.1mg以上50mg以下が挙げられ、本実施形態の処理方法の有効性の観点から、1.0mg以上30mg以下が更に好ましい。焼却灰10g中の砒素、クロム及びホウ素の合計量は、何れの元素も誘導結合プラズマ質量分析法(ICP-MS)等で測定される。ICP-MSで測定を行う場合には、試料に硫酸、硝酸及び、フッ化水素酸を加えて215℃、16hr密閉容器で加圧酸分解後、超純水で希釈した検液として定量を行う。 The total amount (A) of arsenic, chromium and boron in 10 g of incinerated ash is generally 0.1 mg or more and 50 mg or less, and from the viewpoint of the effectiveness of the treatment method of this embodiment, 1.0 mg or more and 30 mg or less More preferable. The total amount of arsenic, chromium and boron in 10 g of incinerated ash is measured by inductively coupled plasma mass spectrometry (ICP-MS) or the like for any of the elements. When measuring by ICP-MS, add sulfuric acid, nitric acid and hydrofluoric acid to the sample and perform quantitative analysis as a test solution diluted with ultrapure water after pressurized acid decomposition in a closed container at 215 ° C for 16 hours .
 また、焼却灰10g中のリン量は特に限定されず、一般に、1mg~100mgが挙げられる。ここでいうリン量はリン原子換算の量である。
 焼却灰10g中のリン量は以下の方法で測定される。
 試料を900℃で3時間加熱した残渣を蛍光X線分析(XRF)し、5酸化2リン濃度測定値をリン単独での量に換算する。
Further, the amount of phosphorus in 10 g of the incinerated ash is not particularly limited, and generally, 1 mg to 100 mg can be mentioned. The amount of phosphorus here is the amount of phosphorus atom conversion.
The amount of phosphorus in 10 g of incinerated ash is measured by the following method.
The residue obtained by heating the sample at 900 ° C. for 3 hours is subjected to fluorescent X-ray analysis (XRF), and the measured value of phosphorus pentoxide is converted to the amount of phosphorus alone.
 焼却灰10g中のカルシウム量も特に限定されないが、例えば、10mg~5000mg、特に100mg~3000mgが一般的な範囲である。焼却灰が石炭灰である場合、焼却灰10g中の好適なカルシウム量は10mg~500mgであり、焼却灰がごみ焼却灰である場合、焼却灰10g中の好適なカルシウム量は500mg~5000mgである。
 焼却灰10g中のカルシウム量は以下の方法で測定される。
 試料を900℃で3時間加熱した残渣を蛍光X線分析(XRF)し、酸化カルシウム測定値をカルシウム単独での量に換算する。
The amount of calcium in 10 g of the incinerated ash is also not particularly limited, but, for example, 10 mg to 5000 mg, particularly 100 mg to 3000 mg is a general range. When the incineration ash is coal ash, the preferred amount of calcium in 10 g of incineration ash is 10 mg to 500 mg, and in the case where the incineration ash is waste incineration ash, the preferred amount of calcium in 10 g of incineration ash is 500 mg to 5000 mg .
The amount of calcium in 10 g of incinerated ash is measured by the following method.
The residue is heated at 900 ° C. for 3 hours and the residue is subjected to X-ray fluorescence analysis (XRF) and calcium oxide measurements are converted to calcium alone.
 本実施形態においては、リン源として、リン含有廃棄物及びリン含有化合物のいずれを用いて焼却灰を処理することもできる。 In the present embodiment, any of phosphorus-containing waste and phosphorus-containing compounds can be used as a phosphorus source to treat incineration ash.
 リン含有化合物としては、リンを含有する無機化合物が好ましい。例えば、縮合リン酸(ポリリン酸とも呼ばれる。)、リン酸(HPO)、亜リン酸(HPO)、次亜リン酸(HPO)、ホスホン酸(HPHO)及びホスフィン酸(HPH)並びにこれらの塩及びこれらの水和物からなる群から選択される少なくとも1種のリン含有化合物が挙げられる。前記の塩としては、例えばアルカリ金属塩、並びにカルシウム塩及びマグネシウム塩などのアルカリ土類金属塩が挙げられる。これらのリン含有化合物は1種を単独で又は複数種を組み合わせて使用することができる。 As a phosphorus containing compound, the inorganic compound containing phosphorus is preferable. For example, condensed phosphoric acid (also called polyphosphoric acid), phosphoric acid (H 3 PO 4 ), phosphorous acid (H 3 PO 3 ), hypophosphorous acid (H 3 PO 2 ), phosphonic acid (H 2 PHO 3) And at least one phosphorus-containing compound selected from the group consisting of phosphinic acids (HPH 2 O 2 ) and their salts and their hydrates. Such salts include, for example, alkali metal salts and alkaline earth metal salts such as calcium and magnesium salts. These phosphorus-containing compounds can be used alone or in combination of two or more.
 本実施形態に用いるリン含有化合物としては、好ましくはポリリン酸、ポリリン酸ナトリウム、ポリリン酸カリウム、ポリリン酸カルシウム、メタリン酸、メタリン酸ナトリウム、メタリン酸カリウム、メタリン酸カルシウム、ピロリン酸、ピロリン酸ナトリウム、ピロリン酸カリウム、ピロリン酸カルシウム、三リン酸五ナトリウム、三リン酸五カリウム、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸カリウム、リン酸マグネシウム、リン酸カルシウム、リン酸一水素カルシウム、リン酸二水素カルシウム、亜リン酸ナトリウム、亜リン酸カリウム、亜リン酸カルシウム、次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸カルシウム、ホスホン酸ナトリウム、ホスホン酸カリウム、ホスフィン酸ナトリウム、ホスフィン酸カリウム及びホスフィン酸カルシウム並びにこれらの水和物が挙げられる。より好ましくは 三リン酸五カリウム、ポリリン酸、ポリリン酸塩及び次亜リン酸塩からなる群から選択される少なくとも1種である。更に一層好ましくは、ポリリン酸、ポリリン酸ナトリウム、三リン酸五カリウム、リン酸、リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、亜リン酸ナトリウム、次亜リン酸カルシウム及びホスフィン酸ナトリウム並びにこれらの水和物を挙げることができる。これらのリン含有化合物は1種を単独で又は複数種を組み合わせて使用することができる。 The phosphorus-containing compound used in the present embodiment is preferably polyphosphate, sodium polyphosphate, potassium polyphosphate, calcium polyphosphate, metaphosphate, sodium metaphosphate, potassium metaphosphate, calcium metaphosphate, pyrophosphate, sodium pyrophosphate, pyrophosphate Potassium, calcium pyrophosphate, pentasodium triphosphate, pentapotassium triphosphate, sodium dihydrogenphosphate, disodium hydrogenphosphate, sodium phosphate, potassium dihydrogenphosphate, dipotassium hydrogenphosphate, potassium phosphate, phosphorus Magnesium acid, calcium phosphate, calcium monohydrogen phosphate, calcium dihydrogen phosphate, sodium phosphite, potassium phosphite, calcium phosphite, sodium hypophosphite, sodium hypophosphite, potassium hypophosphite, calcium hypophosphite, phosphonic acid Sodium, potassium phosphonate, sodium phosphinate, calcium phosphinate potassium and phosphinic acid as well as their hydrates and the like. More preferably, it is at least one selected from the group consisting of pentapotassium triphosphate, polyphosphate, polyphosphate and hypophosphite. Still more preferably, polyphosphoric acid, sodium polyphosphate, pentapotassium triphosphate, phosphoric acid, potassium dihydrogenphosphate, dipotassium hydrogen phosphate, tripotassium phosphate, sodium phosphite, calcium hypophosphite and sodium phosphinate As well as their hydrates. These phosphorus-containing compounds can be used alone or in combination of two or more.
 本実施形態に用いるリン含有廃棄物としてはリンを含有している廃棄物を広く包含する。リン含有廃棄物としては、下水汚泥系リン含有廃棄物、農水産系リン含有廃棄物、工業系リン含有廃棄物、食品系リン含有廃棄物が挙げられる。下水汚泥系リン含有廃棄物としては、一般下水汚泥、工業下水汚泥などが挙げられる。一般下水汚泥とは、生活排水を処理する下水処理場において生成する下水汚泥が挙げられる。工業下水汚泥としては、食品工場や化学工場などの工場からの排水及び廃液を、当該工場内の下水処理施設で処理する場合に該下水処理施設において生成する下水汚泥が挙げられる。生活排水を処理する下水汚泥や食品工場などから排出される工業排水を処理する下水処理施設では、排水中に含まれる環境汚染の原因となる様々な物質を、微生物により分解及び吸着し、水を浄化する。浄化の過程で微生物の死骸は集まって沈殿し、汚泥となる。これらの汚泥には、リンが多く含まれている。農水産系リン含有廃棄物としては、家畜や魚類の肉骨粉、家畜排泄物などの動物由来廃棄物並びに麦わらなどの植物由来廃棄物が挙げられる。工業系リン含有廃棄物としては、リン酸亜鉛化成処理工程排出スラッジ、電子部品及びプリント基板の加工又は脱脂工程等の洗浄液などが挙げられる。食品系リン含有廃棄物としては、おから、醤油かす、残飯等が挙げられる。これらは1種又は2種以上を組みあわせて用いることができる。 The phosphorus-containing waste used in the present embodiment broadly includes phosphorus-containing waste. The phosphorus-containing waste includes sewage sludge-based phosphorus-containing waste, agricultural and fishery-based phosphorus-containing waste, industrial phosphorus-containing waste, and food-based phosphorus-containing waste. Sewage sludge-based phosphorus-containing wastes include general sewage sludge and industrial sewage sludge. The general sewage sludge includes sewage sludge generated at a sewage treatment plant that processes domestic wastewater. Examples of industrial sewage sludge include sewage sludge generated in a sewage treatment facility when wastewater and waste liquid from a factory such as a food factory or a chemical factory is treated in a sewage treatment facility in the factory. Sewage sludge that treats domestic wastewater and sewage treatment facilities that treat industrial wastewater discharged from food factories etc. decompose and adsorb various substances that cause environmental pollution contained in wastewater by microorganisms, and then water Purify. In the process of purification, the dead bodies of microorganisms gather and precipitate and become sludge. These sludges contain a large amount of phosphorus. The agricultural and fishery-based phosphorus-containing wastes include animal-derived wastes such as meat and bone meal of livestock and fish, livestock excrement, and plant-derived wastes such as wheat straw. Industrial-use phosphorus-containing wastes include zinc phosphate chemical conversion treatment process discharged sludge, cleaning solutions for processing or degreasing processes of electronic parts and printed circuit boards, and the like. Examples of the food-based phosphorus-containing waste include okara, soy sauce cake, and leftovers. These may be used alone or in combination of two or more.
 特に本発明の処理方法は、リン源としてリン含有廃棄物を用いることが好ましい。リン含有廃棄物は一般的に逆有償で取引されることが多く、そのため本発明においてリン含有廃棄物の使用量を増やすことで、焼却灰の処理コストを下げるメリットがある。更にリン含有廃棄物自体にも燃焼熱を有するものも多く、この燃焼熱により焼却灰との加熱処理時のエネルギーコストを下げる効果も有している。
 特に、焼却灰とリン含有廃棄物との混合物を600℃以上1200℃以下で加熱することで、焼却灰とリン含有廃棄物の混合物中のカルシウム量・リン量の好適なバランスが得られ、その結果、得られた焼却物において、ホウ素、6価クロム及び/又は砒素の溶出量を低いものとすることができる。この場合の溶出量の低減は、単に石炭灰の単独物からの溶出量に比した場合のみならず、リン含有廃棄物単独焼却物からの溶出量に比しても優れたものとなる。
 これらの観点から、リン含有廃棄物としては、好ましくは下水汚泥系リン含有廃棄物、農水産系リン含有廃棄物及び工業系リン含有廃棄物から選ばれる少なくとも一種であり、更に好ましくは下水汚泥系リン含有廃棄物及び/又は農水産系リン含有廃棄物であり、特に好ましくは一般下水汚泥(下記実施例では単に「下水汚泥」と記載する)、工業下水汚泥(下記実施例では単に「工業汚泥」と記載する)及び肉骨粉から選ばれる少なくとも一種である。ホウ素、6価クロム及び砒素の溶出量を低減する点で最も好ましい形態の一つは、一般下水汚泥又は工業下水汚泥と肉骨粉との組み合わせである。これらの廃棄物は含水物、乾燥物及び加熱物の何れであってもよい。
In particular, the treatment method of the present invention preferably uses phosphorus-containing waste as a phosphorus source. Phosphorus-containing wastes are generally traded for reverse payment, so increasing the amount of phosphorus-containing waste used in the present invention has the advantage of lowering the cost of treating incineration ash. Furthermore, many phosphorus-containing wastes themselves also have combustion heat, and this combustion heat also has the effect of reducing the energy cost during heat treatment with incineration ash.
In particular, by heating the mixture of incineration ash and phosphorus-containing waste at 600 ° C. or more and 1200 ° C. or less, a suitable balance of the amount of calcium and phosphorus in the mixture of incineration ash and phosphorus-containing waste can be obtained. As a result, in the incinerator obtained, the elution amount of boron, hexavalent chromium and / or arsenic can be made low. In this case, the reduction of the elution amount is superior not only to the elution amount from coal ash alone but also to the elution amount from phosphorus-containing waste alone incinerator.
From these viewpoints, the phosphorus-containing waste is preferably at least one selected from sewage sludge-based phosphorus-containing waste, agro-fishery-based phosphorus-containing waste and industrial phosphorus-containing waste, more preferably a sewage sludge-based waste. Phosphorus-containing waste and / or agro-fishery-based phosphorus-containing waste, particularly preferably general sewage sludge (referred to simply as “sewage sludge” in the following embodiment), industrial sewage sludge (only in the following embodiment “industrial sludge” And at least one selected from meat and bone meal. One of the most preferable forms in terms of reducing the elution amount of boron, hexavalent chromium and arsenic is general sewage sludge or a combination of industrial sewage sludge and meat and bone meal. These wastes may be any of water-containing matter, dried matter and heated matter.
 例えば、後述する比較例4、5、6、13、15、16、17に示すように本発明で用いるリン含有廃棄物は、これを焼却灰と混合せずに単独で600℃以上1200℃以下で加熱した加熱処理物としたときに、土壌環境基準対象元素、例えばホウ素、砒素、6価クロム又はリンの溶出量が一定以上であるものであってもよい。後述する実施例に示すように、本発明は、リン含有廃棄物を焼却灰と混合して600℃以上1200℃以下で加熱して加熱処理物とすることにより、その溶出量を低減させることが可能である。従って、本発明は、例えば、焼却灰とリン含有廃棄物とを混合して600℃以上1200℃以下で加熱する工程を有する、リン含有廃棄物からのホウ素、砒素、6価クロム又はリン等の土壌環境基準対象元素の溶出抑制方法を提供するものであってもよい。 For example, as shown in Comparative Examples 4, 5, 6, 13, 15, 16 and 17 described later, the phosphorus-containing waste used in the present invention is not mixed with incineration ash alone and is 600 ° C. or more and 1200 ° C. or less When the heat-treated product is heated according to the above, the elution amount of the soil environment-based target element such as boron, arsenic, hexavalent chromium or phosphorus may be a certain amount or more. As shown in Examples described later, the present invention can reduce the elution amount by mixing phosphorus-containing waste with incineration ash and heating the mixture at 600 ° C. or more and 1200 ° C. or less to form a heat-treated product. It is possible. Therefore, the present invention includes, for example, mixing incineration ash and phosphorus-containing waste and heating the mixture at 600 ° C. or more and 1200 ° C. or less, such as boron, arsenic, hexavalent chromium or phosphorus from phosphorus-containing waste. The present invention may provide a method for suppressing the elution of the target element of the soil environment standard.
 本発明の効果が一層顕著に発現する観点から、本発明に用いるリン含有廃棄物中のリン含有量は、使用するリン含有廃棄物の形態や含液率によって大きく変化する。例えば一般的な脱水汚泥は含水率が80-90質量%となっているが、このような脱水汚泥と呼ばれる含水品だけでなく、水分を除去した乾燥品、更には200~900℃で有機物を分解した汚泥加熱品の何れも使用することができる。従ってリン含有廃棄物の使用態様は特に制限されないものの、水分や有機物を大量に含んでいるものもあるため、900℃で3時間加熱した状態で測定した蛍光X線分析(XRF)でのP換算での値が、900℃で3時間加熱したリン含有廃棄物の質量に対して、5~60質量パーセントが好ましく、10~40質量パーセントであることがより好ましい。ここでいう加熱は、空気雰囲気下で行う。リン含有量が多い場合には、本発明の溶出抑制効果が小さくなる。また逆に少ない場合には生産性が大きく低下する等の課題が生じる。またこれらの廃棄物を用い、これを焼却灰と混合して加熱することによって、焼却灰並びにリン含有廃棄物に含まれる有害微量元素の溶出量を抑制できるとともに廃棄物の削減に寄与できる。 The phosphorus content in the phosphorus-containing waste used in the present invention largely changes depending on the form and liquid content of the phosphorus-containing waste used, from the viewpoint that the effects of the present invention are more significantly exhibited. For example, general dewatered sludge has a moisture content of 80-90% by mass, but not only such water-containing products called dewatered sludge but also dried products from which water has been removed and organic matter at 200 to 900 ° C. Any of the decomposed sludge heating products can be used. Therefore, although the usage mode of the phosphorus-containing waste is not particularly limited, some of them contain a large amount of water and organic substances, and thus P 2 in the fluorescent X-ray analysis (XRF) measured while heating at 900 ° C. for 3 hours. The value in terms of O 5 is preferably 5 to 60% by mass, and more preferably 10 to 40% by mass, with respect to the mass of phosphorus-containing waste heated at 900 ° C. for 3 hours. The heating here is performed under an air atmosphere. When the phosphorus content is high, the elution suppression effect of the present invention is reduced. On the other hand, when the amount is small, problems such as a large decrease in productivity occur. Further, by mixing these wastes with incineration ash and heating them, the elution amount of harmful trace elements contained in the incineration ash and phosphorus-containing waste can be suppressed, and the waste can be reduced.
 本発明においては焼却灰とリン源とを混合して該焼却灰を処理する。この時使用するリン源の添加量は、有害微量元素の溶出抑制効果が一層顕著に発現する観点から、焼却灰100質量部に対してリン元素(P)換算で、0.001質量部60質量部以下であることが好ましく、0.01質量部以上40質量部以下であることが好ましく、0.05質量部以上20質量部以下であることがより好ましく、0.1質量部以上10質量部以下であることが更に好ましい。リン源の添加量を0.001質量部以上、特に0.01質量部以上に設定することで、有害微量元素の溶出抑制効果が十分発揮される。また、リン源の添加量を60質量部以下にすることで、焼却灰の処理物からのリンの溶出量を環境基準値以下にすることが容易である。
 ここでいうリン源がリン含有廃棄物である場合、該廃棄物中のリンの量は、以下の方法で測定できる。
 試料を900℃で3時間加熱した残渣を蛍光X線分析(XRF)し、5酸化2リン濃度測定値をリン単独での量に換算する。
In the present invention, the incineration ash is mixed with a phosphorus source to treat the incineration ash. The addition amount of the phosphorus source used at this time is 0.001 mass part 60 mass in phosphorus element (P) conversion with respect to 100 mass parts of incinerated ash from the viewpoint that the elution inhibitory effect of harmful trace element appears more significantly. The content is preferably not more than 0.01 parts by weight and not more than 40 parts by weight, more preferably 0.05 parts by weight and 20 parts by weight, and still more preferably 0.1 parts by weight and 10 parts by weight. It is more preferable that it is the following. By setting the addition amount of the phosphorus source to 0.001 parts by mass or more, particularly 0.01 parts by mass or more, the effect of suppressing elution of harmful trace elements is sufficiently exhibited. Further, by setting the addition amount of the phosphorus source to 60 parts by mass or less, it is easy to make the elution amount of phosphorus from the treated material of the incineration ash equal to or less than the environmental standard value.
When the phosphorus source mentioned here is phosphorus-containing waste, the amount of phosphorus in the waste can be measured by the following method.
The residue obtained by heating the sample at 900 ° C. for 3 hours is subjected to fluorescent X-ray analysis (XRF), and the measured value of phosphorus pentoxide is converted to the amount of phosphorus alone.
 更に、砒素、6価クロム及びホウ素の溶出量低減効果を一層高める観点から、焼却灰中の砒素、クロム及びホウ素の合計量に対して、前記焼却灰と前記リン源との混合物中のリンの量が、1質量倍以上であることが好ましく、10質量倍以上であることがより好ましく、15質量倍以上であることが特に好ましい。一方、焼却灰中の砒素、クロム及びホウ素の合計量に対して、前記焼却灰と前記リン源との混合物中のリンの量は400質量倍以下であることが、焼却灰の処理物からのリンの溶出量を環境基準値以下にすることが容易であるために好ましく、300質量倍以下であることが、一層好ましい。ここでいう混合物中のリンの量には、焼却灰及びリン含有廃棄物それぞれのリン含有成分のほか、混合物が焼却灰及びリン含有廃棄物以外のリン含有成分を含む場合、当該リン含有成分のリンの量も含まれる。特に焼却灰が石炭灰であり且つ一般下水汚泥である場合に、焼却灰中の砒素、クロム及びホウ素の合計量に対して、前記焼却灰と前記リン源との混合物中のリンの量が18質量倍以上であることは砒素溶出量低減の点で更に一層好ましい。 Furthermore, from the viewpoint of further enhancing the elution amount reduction effect of arsenic, hexavalent chromium and boron, phosphorus in the mixture of the incineration ash and the phosphorus source relative to the total amount of arsenic, chromium and boron in the incineration ash The amount is preferably 1 times by mass or more, more preferably 10 times by mass or more, and particularly preferably 15 times by mass or more. On the other hand, the amount of phosphorus in the mixture of the incineration ash and the phosphorus source is 400 mass times or less with respect to the total amount of arsenic, chromium and boron in the incineration ash, It is preferable because it is easy to make the elution amount of phosphorus equal to or less than the environmental standard value, and 300 mass times or less is more preferable. When the mixture contains phosphorus-containing components other than incineration ash and phosphorus-containing waste in addition to the phosphorus-containing components of incineration ash and phosphorus-containing waste, the amount of phosphorus in the mixture referred to here The amount of phosphorus is also included. In particular, when the incineration ash is coal ash and general sewage sludge, the amount of phosphorus in the mixture of the incineration ash and the phosphorus source is 18 with respect to the total amount of arsenic, chromium and boron in the incineration ash. It is still more preferable that the amount is equal to or more than the mass ratio in terms of reducing the amount of elution of arsenic.
 本実施形態において砒素、6価クロム及びホウ素の溶出抑制効果を高めるために、カルシウム量も重要である。例えば、焼却灰中の砒素、クロム及びホウ素の合計量に対して、焼却灰とリン源との混合物中のカルシウムの量が、10質量倍以上であることが好ましく、30質量倍以上であることが特に好ましい。特に、焼却灰中の砒素、クロム及びホウ素の合計量に対して、焼却灰とリン源との混合物中のカルシウムの量が、75質量倍以上であると、砒素の溶出抑制効果が非常に優れたものとなるため好ましい。 The amount of calcium is also important in order to enhance the elution suppression effect of arsenic, hexavalent chromium and boron in the present embodiment. For example, the amount of calcium in the mixture of incineration ash and phosphorus source is preferably at least 10 times by mass, preferably at least 30 times by mass, the total amount of arsenic, chromium and boron in the incineration ash Is particularly preferred. In particular, when the amount of calcium in the mixture of incineration ash and phosphorus source is 75 mass times or more relative to the total amount of arsenic, chromium and boron in incineration ash, the elution suppression effect of arsenic is very excellent. It is preferable because the
 焼却灰とリン源との混合物中のカルシウム量が重要である理由は明確ではないが、発明者は以下の理由と推測している。
 例えば、焼却灰とリン源との混合物の加熱物において、リンとカルシウムとが加熱処理中にリン酸カルシウムを形成し、これが混合物表面を被覆した状態となることで、ホウ素、砒素及び6価クロムの溶出抑制効果が得やすいと考えられる。また、砒素は加熱処理中にカルシウムと結合して水不溶性のヒ酸カルシウム可能性も考えられる。
 前記焼却灰中の砒素、クロム及びホウ素の合計量に対して、前記焼却灰と前記リン源との混合物中のカルシウムは上記の通り、一定量以上存在することが好ましいが、多すぎると6価クロムの溶出抑制に影響する場合がある。6価クロムを効果的に抑制する観点から、焼却灰中の砒素、クロム及びホウ素の合計量に対して、前記焼却灰と前記リン源との混合物中のカルシウムの量は、1000質量倍以下であることが好ましく、800質量倍以下であることが更に好ましく、450質量倍以下であることが特に好ましい。
Although the reason why the amount of calcium in the mixture of incineration ash and phosphorus source is important is not clear, the inventor speculates that it is the following reason.
For example, in a heated mixture of incineration ash and a phosphorus source, phosphorus and calcium form calcium phosphate during heat treatment, and this covers the surface of the mixture, whereby the elution of boron, arsenic and hexavalent chromium is caused. It is thought that the suppression effect is easy to obtain. Also, arsenic is considered to be water insoluble calcium arsenate which binds to calcium during heat treatment.
It is preferable that calcium in the mixture of the incineration ash and the phosphorus source is present in a certain amount or more with respect to the total amount of arsenic, chromium and boron in the incineration ash, but it is preferable to exist more than a certain amount. It may affect the elution suppression of chromium. From the viewpoint of effectively suppressing hexavalent chromium, the amount of calcium in the mixture of the incineration ash and the phosphorus source is 1000 mass times or less with respect to the total amount of arsenic, chromium and boron in the incineration ash It is more preferably 800 mass times or less, and particularly preferably 450 mass times or less.
 特に、焼却灰が石炭灰である場合、焼却灰中の砒素、クロム及びホウ素の合計量に対して、石炭灰と前記リン源との混合物中のカルシウムの量は10質量倍以上800質量倍以下であることが更に好ましく、30質量倍以上450質量倍以下であることが特に好ましく、445質量倍以下であることが最も好ましい。
また、焼却灰が一般ごみ焼却灰である場合、焼却灰中の砒素、クロム及びホウ素の合計量に対して、一般ごみ焼却灰と前記リン源との混合物中のカルシウムの量は、400質量倍以上1000質量倍以下であることが好ましく、600質量倍以上800質量倍以下であることが更に好ましい。
In particular, when the incineration ash is coal ash, the amount of calcium in the mixture of the coal ash and the phosphorus source is 10 times by mass to 800 times by mass the total amount of arsenic, chromium and boron in the incineration ash Is more preferably 30 to 450 mass times, and most preferably 445 mass times or less.
When the incineration ash is general waste incineration ash, the amount of calcium in the mixture of general waste incineration ash and the phosphorus source is 400 mass times the total amount of arsenic, chromium and boron in the incineration ash It is preferable that it is 1000 mass times or less, and more preferable that it is 600 mass times or more and 800 mass times or less.
 上記の混合物中のカルシウムの量には、焼却灰及びリン含有廃棄物それぞれのカルシウム含有成分のほか、混合物が焼却灰及びリン含有廃棄物以外のカルシウム含有成分を含む場合、当該カルシウム含有成分のカルシウムの量も含まれる。
 例えばリン源のカルシウム量は以下の方法で測定できる。
 試料を900℃で3時間加熱した残渣を蛍光X線分析(XRF)し、酸化カルシウム測定値をカルシウム単独での量に換算する。
The amount of calcium in the above mixture includes calcium content of incineration ash and phosphorus-containing waste, as well as calcium content of the calcium-containing component if the mixture contains calcium addition components other than incineration ash and phosphorus-containing waste. Also includes the amount of
For example, the calcium amount of the phosphorus source can be measured by the following method.
The residue is heated at 900 ° C. for 3 hours and the residue is subjected to X-ray fluorescence analysis (XRF) and calcium oxide measurements are converted to calcium alone.
 更に、混合物中のカルシウム量と混合物中のリンの量との質量比率(Ca/P)は、0.5以上であることが、特に得られる処理物においてホウ素、砒素の溶出量を効果的に低減できるために好ましく、特に1以上であることがホウ素、砒素の溶出量の低減効果が最も高いため好ましい。一方、混合物中のカルシウム量と混合物中のリンの量との質量比率(Ca/P)は、50以下であることが6価クロムの溶出量を一層効果的に軽減できるために好ましく、とりわけ30以下であることが好ましい。 Furthermore, the mass ratio (Ca / P) of the amount of calcium in the mixture to the amount of phosphorus in the mixture is 0.5 or more, which is particularly effective for the elution of boron and arsenic in the resulting treated product. It is preferable because it can be reduced, and in particular, it is preferable that it is 1 or more because the effect of reducing the elution amount of boron and arsenic is the highest. On the other hand, the mass ratio (Ca / P) of the amount of calcium in the mixture to the amount of phosphorus in the mixture is preferably 50 or less because the elution amount of hexavalent chromium can be more effectively reduced, and particularly 30 It is preferable that it is the following.
 焼却灰とリン源との混合物中のリン(元素P換算量)の量は、特に限定されないが、0.1質量%以上10質量%以下であることが砒素、6価クロム及びホウ素の溶出量を効果的に低減できる点で好ましく、とりわけ0.3質量%以上5.0質量%以下であることが好ましい。 The amount of phosphorus (element P equivalent amount) in the mixture of incineration ash and phosphorus source is not particularly limited, but it is 0.1 mass% or more and 10 mass% or less and the elution amount of arsenic, hexavalent chromium and boron Is preferable in that it can reduce effectively, and it is particularly preferable that the content is 0.3% by mass or more and 5.0% by mass or less.
 焼却灰とリン源との混合物中のカルシウムの量は特に限定されないが、0.1質量%以上50質量%以下であることが砒素、6価クロム及びホウ素の溶出量を効果的に低減できる点で好ましく、とりわけ1.0質量%以上35質量%以下であることが好ましい。 The amount of calcium in the mixture of incineration ash and phosphorus source is not particularly limited, but that 0.1 mass% or more and 50 mass% or less can effectively reduce the elution amount of arsenic, hexavalent chromium and boron. In particular, the content is preferably 1.0% by mass or more and 35% by mass or less.
 本実施形態においてリン源としてリン含有廃棄物を用いる場合、リン含有廃棄物及び焼却灰の混合物に、リン含有廃棄物及び焼却灰以外のリン含有成分を含有させて、上記の好適なリン量に調整してもよい。
 また、前記のリン含有成分としては、上記で挙げた各種リン含有化合物が挙げられるが、特に、リン酸ナトリウム、ポリリン酸、ポリリン酸ナトリウム、三リン酸五カリウム、リン酸、リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、亜リン酸ナトリウム、並びにこれらの水和物 が挙げられ、特にリン酸ナトリウムが好ましい。
 リン含有廃棄物及び焼却灰以外のリン成分の添加量は、固形分として、焼却灰100質量部に対して、0.1~40質量部であることが好ましく、0.5~20質量部であることがより好ましい。
When a phosphorus-containing waste is used as a phosphorus source in the present embodiment, the phosphorus-containing waste and a phosphorus-containing component other than the incineration ash are contained in a mixture of the phosphorus-containing waste and the incineration ash to obtain the above preferable phosphorus amount. You may adjust.
Further, as the above-mentioned phosphorus-containing component, various phosphorus-containing compounds mentioned above can be mentioned, and in particular, sodium phosphate, polyphosphate, sodium polyphosphate, pentapotassium triphosphate, phosphate, potassium dihydrogenphosphate Dipotassium hydrogen phosphate, tripotassium phosphate, sodium phosphite, and hydrates of these, with sodium phosphate being particularly preferred.
The addition amount of phosphorus components other than phosphorus-containing waste and incineration ash is preferably 0.1 to 40 parts by mass with respect to 100 parts by mass of incineration ash as solid content, in 0.5 to 20 parts by mass It is more preferable that
 本実施形態においてリン源及び焼却灰の混合物に、リン源及び焼却灰以外のカルシウム含有成分及び/又はリン含有成分を含有させて、上記の好適なカルシウム量に調整してもよい。この場合のリン源は特にリン含有廃棄物であることが好ましい。前記のカルシウム含有成分としては、酸化カルシウム、水酸化カルシウム、塩化カルシウム、炭酸カルシウム、硫酸カルシウム、リン酸カルシウム、並びに、カルシウム分を多く有する製紙工場での廃棄物であるペーパースラッジ灰が挙げられ、特にペーパースラッジ灰、酸化カルシウムが好ましい。
 リン含有廃棄物及び焼却灰以外のカルシウム含有成分の添加量は、固形分として、焼却灰100質量部に対して、0.1~40質量部であることが好ましく、0.5~20質量部であることがより好ましい。
In the present embodiment, the mixture of the phosphorus source and the incineration ash may contain a calcium-containing component and / or a phosphorus-containing component other than the phosphorus source and the incineration ash to adjust to the above-mentioned suitable calcium amount. The phosphorus source in this case is particularly preferably phosphorus-containing waste. Examples of the calcium-containing component include calcium oxide, calcium hydroxide, calcium chloride, calcium carbonate, calcium sulfate, calcium phosphate, and paper sludge ash which is a waste in a paper mill having a large amount of calcium, particularly paper. Sludge ash and calcium oxide are preferred.
The amount of the calcium-containing component other than the phosphorus-containing waste and the incineration ash is preferably 0.1 to 40 parts by mass with respect to 100 parts by mass of the incineration ash as solid content. It is more preferable that
 また、本発明においてリン源及び焼却灰の混合物に、ナトリウム成分を含有させると、特に得られた処理物において、ホウ素及び/又は6価クロムの溶出量を低減させることが出来るため好ましい。この場合のリン源は特にリン含有廃棄物であることが好ましい。ナトリウム成分としては、塩化ナトリウム、水酸化ナトリウム、炭酸ナトリウム、リン酸ナトリウム及び海水が挙げられ、特に塩化ナトリウム、水酸化ナトリウム、リン酸ナトリウムが好ましく挙げられる。ナトリウム成分の添加量は、固形分として、焼却灰100質量部に対して、0.1~40質量部であることが好ましく、0.5~20質量部であることがより好ましい。特に実施例B-4とB-5との比較から明らかな通り、ごみ焼却灰とリン源との混合物に塩化ナトリウム等のナトリウム成分を含有させることで、6価クロムの溶出量を容易に低減できるため好ましい。
 また実施例C-16と、C-17及びC-18との比較から明らかな通り、ナトリウム成分をリン含有廃棄物と焼却灰との混合物に添加することで、得られる本実施形態の処理物において、ホウ素の溶出量の低減を抑制することもできる。
Further, in the present invention, it is preferable to contain a sodium component in the mixture of the phosphorus source and the incineration ash, because the elution amount of boron and / or hexavalent chromium can be reduced particularly in the obtained treated product. The phosphorus source in this case is particularly preferably phosphorus-containing waste. Examples of the sodium component include sodium chloride, sodium hydroxide, sodium carbonate, sodium phosphate and seawater, and sodium chloride, sodium hydroxide and sodium phosphate are particularly preferable. The addition amount of the sodium component is preferably 0.1 to 40 parts by mass, and more preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the incinerated ash as solid content. In particular, as apparent from the comparison between Example B-4 and B-5, the elution amount of hexavalent chromium can be easily reduced by incorporating a sodium component such as sodium chloride in the mixture of the waste incineration ash and the phosphorus source. It is preferable because it can be done.
Further, as apparent from the comparison of Example C-16 with C-17 and C-18, the treated product of the present embodiment obtained by adding the sodium component to the mixture of phosphorus-containing waste and incineration ash In the above, reduction of the elution amount of boron can also be suppressed.
 本発明の処理方法において、焼却灰とリン源とを混合する方法に特に制限はない。例えば、焼却灰とリン源とを物理的に混合する方法、溶媒にリン源を溶解又は懸濁させた溶液又はスラリーを焼却灰に含浸する方法、焼却灰とリン源とを物理的に混合した後に溶媒を添加する方法などが挙げられる。 In the treatment method of the present invention, the method of mixing the incineration ash and the phosphorus source is not particularly limited. For example, a method of physically mixing incineration ash and phosphorus source, a method of impregnating incineration ash with a solution or slurry in which a phosphorus source is dissolved or suspended in a solvent, physically mixing incineration ash and phosphorus source The method of adding a solvent later, etc. are mentioned.
 使用する溶媒としては、リン源を溶解し得るか、又は懸濁させ得るものを用いることができる。例えば、水(水道水、蒸留水、イオン交換水等)及び海水などの水性溶媒、並びにメタノール、エタノール及びイソプロピルアルコール等のアルコール類を初めとする有機溶媒を挙げることができる。好ましい溶媒は水である。有害微量元素の溶出抑制効果が一層顕著に発現する観点から、溶媒の使用量は、焼却灰100質量部に対して、5質量部以上200質量部以下であることが好ましく、10質量部以上100質量部以下であることがより好ましい。 As a solvent to be used, one which can dissolve or suspend a phosphorus source can be used. Examples include aqueous solvents such as water (tap water, distilled water, ion-exchanged water and the like) and seawater, and organic solvents including alcohols such as methanol, ethanol and isopropyl alcohol. The preferred solvent is water. The amount of the solvent used is preferably 5 parts by mass or more and 200 parts by mass or less, and more preferably 10 parts by mass or more and 100 parts by mass with respect to 100 parts by mass of the incinerated ash from the viewpoint More preferably, it is at most parts by mass.
 本発明においては、焼却灰とリン源とを混合して混合物を得た後に、該混合物を加熱処理することが、有害微量元素の溶出抑制効果を十分に得る観点から好ましい。加熱処理の方法は特に制限はなく、例えば、一般的な焼成炉、環状炉、キルンなどの焼成装置を用いることができる。加熱処理の雰囲気は特に制限されず、例えば空気及び酸素等の酸素含有雰囲気、並びに窒素及びアルゴン等の不活性ガス雰囲気とすることができる。経済的な観点からは、空気中で加熱処理を行うことが好ましい。空気中で加熱処理する場合、有害微量元素の溶出抑制効果が一層顕著になる観点から、空気を流通させながら加熱処理を行うことが好ましい。 In the present invention, it is preferable to heat treat the mixture after mixing the incineration ash and the phosphorus source to obtain a mixture, from the viewpoint of sufficiently obtaining the elution suppressing effect of harmful trace elements. The method of the heat treatment is not particularly limited, and, for example, a general calciner, a ring furnace, a calciner such as a kiln can be used. The atmosphere for the heat treatment is not particularly limited, and may be, for example, an oxygen-containing atmosphere such as air and oxygen, and an inert gas atmosphere such as nitrogen and argon. From an economic point of view, it is preferable to carry out the heat treatment in air. When heat-processing in air, it is preferable to heat-process, distribute | circulating air from a viewpoint from which the elution inhibitory effect of harmful trace element becomes much more remarkable.
 加熱処理は、加熱処理物からの有害微量元素の溶出量を抑制できる温度で行うことが好ましい。本発明者の検討の結果、600℃以上で加熱すると、加熱処理物からの有害微量元素の溶出量を十分に抑制できることが判明した。この観点から、加熱温度は高ければ高いほど有害微量元素の溶出量を抑制できるが、例えば高温で逆に溶出しやすくなるものもある。そこで加熱処理は、600℃以上(特に600℃超)1200℃以下とすることが好ましく、700℃以上1200℃以下とすることが更に好ましい。
 特に焼却灰が石炭灰である場合、6価クロム、砒素及びホウ素の溶出抑制の観点から、750℃以上1200℃以下とすることが一層好ましく、800℃以上1100℃以下とすることが更に一層好ましく、850℃以上1000℃以下とすることが特に好ましい。一方、焼却灰が一般ごみの焼却灰である場合、6価クロム、砒素及びホウ素の溶出抑制の観点から、加熱温度は、600℃以上1000℃以下とすることが一層好ましく、650℃以上850℃以下とすることが更に一層好ましく、700℃以上780℃以下とすることが特に好ましい。
The heat treatment is preferably performed at a temperature that can suppress the elution amount of harmful trace elements from the heat-treated product. As a result of studies by the present inventor, it was found that heating at 600 ° C. or higher can sufficiently suppress the elution amount of harmful trace elements from the heat-treated product. From this point of view, the higher the heating temperature, the more the elution amount of harmful trace elements can be suppressed. Therefore, the heat treatment is preferably performed at 600 ° C. or more (particularly, more than 600 ° C.) 1200 ° C. or less, and more preferably 700 ° C. or more and 1200 ° C. or less.
In particular, when the incineration ash is coal ash, it is more preferably 750 ° C. or more and 1200 ° C. or less, and still more preferably 800 ° C. or more and 1100 ° C. or less from the viewpoint of the elution suppression of hexavalent chromium, arsenic and boron. It is particularly preferable to set the temperature to 850 ° C. or more and 1000 ° C. or less. On the other hand, when the incineration ash is the incineration ash of general waste, the heating temperature is more preferably 600 ° C. or more and 1000 ° C. or less, 650 ° C. or more and 850 ° C. from the viewpoint of the elution suppression of hexavalent chromium, arsenic and boron. It is still more preferable to set it as the following, and it is especially preferable to set it as 700 degreeC or more and 780 degreeC or less.
 本発明で用いる焼却灰としては石炭灰又は一般ごみ焼却灰の場合、600℃以上、特に700℃以上で加熱処理することで、リン源が、石炭灰などの焼却灰中に含まれる未燃炭素の分解を促進し、焼却灰中の未燃炭素含有量を低減させることも可能となる。このことは特に、焼却灰が、炭素が豊富な物質であるバイオマスと石炭との混合物を燃焼させて発生する石炭灰である場合に有利である。焼却灰中の未燃炭素含有量を低減させることによって、例えば石炭灰にセメントを添加する盛土材の調製時に、使用するセメント量を低減することができる。またコンクリート製造時に石炭灰を添加する場合には、石炭灰由来のカーボン浮きを抑制することができる。 In the case of coal ash or general waste incineration ash as the incineration ash used in the present invention, the phosphorus source is unburned carbon contained in incineration ash such as coal ash by heat treatment at 600 ° C. or higher, particularly 700 ° C. or higher. It also makes it possible to promote the decomposition of carbon and reduce the unburned carbon content in incineration ash. This is particularly advantageous when the incineration ash is coal ash generated by burning a mixture of biomass and coal, which is a carbon-rich substance. By reducing the unburned carbon content in the incineration ash, it is possible to reduce the amount of cement used, for example, when preparing a filling material for adding cement to coal ash. Moreover, when adding a coal ash at the time of concrete manufacture, carbon float derived from coal ash can be suppressed.
 加熱処理の時間は、加熱温度が上述の範囲である場合には、30分以上24時間以内が好ましく、1時間以上10時間以内が更に好ましく、1時間以上5時間以内が一層好ましい。この範囲の時間で加熱を行うことで、加熱処理物からの有害微量元素の溶出量を十分に且つ経済的に抑制できる。 When the heating temperature is in the above-mentioned range, the heat treatment time is preferably 30 minutes to 24 hours, more preferably 1 hour to 10 hours, and still more preferably 1 hour to 5 hours. By heating within the time of this range, the elution amount of harmful trace elements from the heat-treated product can be sufficiently and economically suppressed.
 また、焼却灰とリン源との混合物を予め80℃以上300℃以下で加熱し、次いで、上記の加熱処理を行うことも好ましい。このようにすると、水分などの低沸点化合物の除去を効率的に行うことができるだけでなく、その後の高温加熱における有機物の分解も促進できるという利点がある。焼却灰とリン源との混合物を予め80℃以上300℃以下で加熱する場合、この加熱処理の方法及び加熱処理の雰囲気としては、上記の600℃以上1200℃以下の加熱処理の加熱処理の方法及び加熱処理の雰囲気として上記で挙げたものが挙げられる。また、焼却灰とリン源との混合物を予め80℃以上300℃以下で加熱する場合の加熱時間としては、上記の利点による効果をより一層高く奏させる点から、15分以上10時間以下が好ましく、30分以上5時間以下が更に好ましい。 Moreover, it is also preferable to heat the mixture of incineration ash and a phosphorus source previously at 80 degreeC or more and 300 degrees C or less, and then to perform said heat processing. In this way, not only can removal of low boiling point compounds such as water be efficiently performed, but there is also an advantage that decomposition of organic substances in subsequent high temperature heating can be promoted. When the mixture of incineration ash and phosphorus source is heated in advance at 80 ° C. to 300 ° C., the method of the heat treatment and the atmosphere of the heat treatment include the method of heat treatment of the above heat treatment at 600 ° C. to 1200 ° C. And those mentioned above as the heat treatment atmosphere. Moreover, as a heating time in the case of heating the mixture of incineration ash and a phosphorus source previously at 80 degreeC or more and 300 degrees C or less, 15 minutes or more and 10 hours or less are preferable from the point which exhibits the effect by said advantage still higher. More preferably, 30 minutes or more and 5 hours or less.
 また、本発明において、上述した600℃超、好ましくは700℃以上における加熱処理の前に造粒工程を有していても有していなくてもよい。
 上述した600℃以上、好ましくは700℃以上における加熱処理後の加熱処理物の性状としては、例えば粉状物、粒状物等が挙げられる。
Further, in the present invention, it may or may not have a granulation step before the above-mentioned heat treatment at 600 ° C., preferably 700 ° C. or more.
Examples of the properties of the heat-treated product after the heat treatment at 600 ° C. or more, preferably 700 ° C. or more described above include powdery matter and granular matter.
 以上のとおりの本発明の処理方法を用いることにより、生産性が高く、工業的に簡便に、且つ焼却灰の物性、組成及び原料に影響されることなく、焼却灰に含まれる、土壌汚染対策法に規定される複数の有害微量元素の溶出量を同時に環境基準値以下に低減させることができる。具体的には、ホウ素、砒素、セレン、フッ素、6価クロム、鉛、水銀及びカドミウムからなる群の少なくとも1種の元素の溶出量を低減させることができ、好ましくは、これらの群に含まれる2種以上の元素の溶出量を低減させることができ、更に好ましくは3種以上の元素の溶出量を低減させることができ、特に好ましくは、ホウ素、砒素及び6価クロムの溶出量を低減させることができ、最も好ましくは、これらの群に含まれるすべての元素の溶出量を低減させることができる。 By using the treatment method of the present invention as described above, soil pollution measures included in incineration ash which are highly productive, easily industrially and without being influenced by the physical properties, composition and raw materials of incineration ash It is possible to simultaneously reduce the elution amount of a plurality of harmful trace elements defined in the law below the environmental standard value. Specifically, the elution amount of at least one element in the group consisting of boron, arsenic, selenium, fluorine, hexavalent chromium, lead, mercury and cadmium can be reduced, and preferably is included in these groups The elution amount of two or more elements can be reduced, more preferably the elution amount of three or more elements can be reduced, and particularly preferably the elution amounts of boron, arsenic and hexavalent chromium are reduced. Most preferably, the elution amount of all the elements contained in these groups can be reduced.
 本実施形態の処理方法によって得られた加熱処理物は、中性以外のpH環境下においても、有害微量元素の溶出を抑制できるという効果を有する。例えば、中性以外のpH環境下としては、25℃でのpH2.0~5.0の酸性条件下や、pH8.0~12.0の塩基性条件下が挙げられる。 The heat-treated product obtained by the treatment method of the present embodiment has an effect that elution of harmful trace elements can be suppressed even under a pH environment other than neutral. For example, as a pH environment other than neutral conditions, acidic conditions of pH 2.0 to 5.0 at 25 ° C. and basic conditions of pH 8.0 to 12.0 can be mentioned.
 本発明の処理方法によって得られた加熱処理物は、これを屋外に放置しても、それに含まれる有害微量元素の溶出量が抑制されたものなので、該加熱処理物を、環境に配慮した素材として再利用することができる。再利用の用途としては例えば、セメントやコンクリートの混和材、地盤改良材、路盤材、盛土、埋め戻し材等の建築材料及び土木材料などが好適に挙げられる。 Since the heat-treated product obtained by the treatment method of the present invention suppresses the elution amount of harmful trace elements contained in the heat-treated product even when it is left outdoors, the heat-treated product is an environmentally friendly material. It can be reused. As applications of reuse, for example, building materials such as cement / concrete admixtures, ground improvers, roadbed materials, embankments, backfill materials, civil engineering materials and the like are preferably mentioned.
 次に、実施例を挙げて本発明を具体的に説明するが、本発明はこれら実施例に制限されるものではない。以下の実施例及び比較例において、ホウ素、砒素、セレン、フッ素、6価クロム、鉛、カドミウム及び水銀の溶出試験は、平成3年日本環境庁告示第46号に定められた方法に準じて行った。また、リンの溶出試験も日本環境庁告示第46号と同様に行った。なお、以下の各実施例における焼却炉中での乾燥及び加熱は、いずれも大気雰囲気中で行った。またXRFとしては、リガク社製のZSX Primusを用いた。
 各表に記載する環境基準値は日本の環境省が定めた基準値である。なお下記のいずれの表にも記載していないが、水銀の環境基準値は0.0005mg/L以下であり、カドミウムの環境基準値は0.01mg/L以下である。
EXAMPLES The present invention will next be described in detail by way of examples, which should not be construed as limiting the invention thereto. In the following examples and comparative examples, the elution test of boron, arsenic, selenium, fluorine, hexavalent chromium, lead, cadmium and mercury is performed according to the method specified in the Japan Environment Agency Notification No. 46 of 1991. The In addition, the dissolution test of phosphorus was also performed in the same manner as in Japan Environment Agency Notification No. 46. The drying and heating in the incinerator in each of the following examples were all performed in the air. As XRF, ZSX Primus manufactured by Rigaku Corporation was used.
The environmental standard values described in each table are the standard values established by the Ministry of the Environment of Japan. Although not described in any of the following tables, the environmental standard value of mercury is 0.0005 mg / L or less, and the environmental standard value of cadmium is 0.01 mg / L or less.
 平成3年日本環境庁告示第46号に準じ下記の各実施例・比較例で採用した溶出試験方法は具体的には、以下の通りである。
(検液の調製方法)日本環境庁告示第46号付表に記載の方法に準じて下記方法で作成する。
(1)試料(単位g)と溶媒(純水に塩酸を加え、水素イオン濃度指数が5.8以上6.3以下となるようにしたもの)(単位ml)を重量体積比10%の割合で混合し、かつ、その混合液が50~500mlとなるようにした。
(2)調製した試料液を常温(おおむね20℃)常圧(おおむね1気圧)で振とう機(あらかじめ振とう回数を毎分約200回に、振とう幅を4cm以上5cm以下に調整したもの)を用いて、6時間連続して振とうした。
(3)(1)から(2)の操作を行って得られた試料液を10分から30分程度静置後、毎分約3,000回転で20分間遠心分離した後の上澄み液を孔径0.45μmのメンブランフィルターでろ過してろ液を取り、定量に必要な量を正確に計り取って、これを検液とした。
(各元素の測定方法)
 ホウ素、砒素、セレン、鉛、カドミウム、水銀、及びリン
 誘導結合プラズマ質量分析法(ICP-MS)にて測定を行った。その際検液を0.3mol/l硝酸水溶液で希釈した溶液で各元素の定量を行った。
 使用したICP-MSは、アジレント・テクノロジー製Agilent8000型である。 
 フッ素、6価クロムは、イオンクロマトグラフにて測定を行った。その際検液を超純水で希釈した溶液で各元素の定量を行った。
 使用したイオンクロマトグラフは、サーモフィッシャーサイエンスティフィック製ICS-2100型+MSQ Plusである。
Specifically, the dissolution test method adopted in each of the following Examples and Comparative Examples in accordance with the Japan Environment Agency Notification No. 46 of 1991 is as follows.
(Preparation method of test solution) It is prepared by the following method according to the method described in the Annex 46 of Japan Environment Agency Notice.
(1) Mix a sample (unit g) and a solvent (hydrochloric acid added to pure water so that the hydrogen ion concentration index is 5.8 or more and 6.3 or less) (unit ml) at a weight volume ratio of 10%, And, the mixture was adjusted to 50 to 500 ml.
(2) Shaker prepared at normal temperature (approximately 20 ° C.) and normal pressure (approximately 1 atm) (previously adjust the shaking frequency to about 200 times per minute and adjust the shaking width to 4 cm or more and 5 cm or less) The mixture was shaken continuously for 6 hours using.
(3) The sample solution obtained by performing the procedure from (1) to (2) is allowed to stand for about 10 minutes to 30 minutes and then centrifuged at about 3,000 rotations per minute for 20 minutes for 20 minutes. The filtrate was collected by filtration with a membrane filter, and the amount necessary for quantification was accurately measured and used as a test solution.
(Method of measuring each element)
Measurements were made using boron, arsenic, selenium, lead, cadmium, mercury, and phosphorus inductively coupled plasma mass spectrometry (ICP-MS). At that time, each element was quantified with a solution obtained by diluting the test solution with 0.3 mol / l nitric acid aqueous solution.
The ICP-MS used is Agilent Technologies Agilent 8000 type.
The fluorine and hexavalent chromium were measured by ion chromatography. At that time, each element was quantified with a solution obtained by diluting the test solution with ultrapure water.
The ion chromatograph used is ICS-2100 manufactured by Thermo Fisher Scientific Inc. + MSQ Plus.
  〔実施例A-1〕
 リン含有廃棄物として工場汚泥A(含水率88.5質量%、900℃で3時間加熱後のリン含有量がXRFでのP換算で34.4質量%)250gを石炭灰A 10gに添加して混合物を得た。石炭灰Aは、石炭を燃焼させて生じた残渣である。また、工場汚泥Aは、化学工場の排水処理施設で生じた下水汚泥である。得られた混合物を、焼成炉(卓上電気炉)中、200℃で1時間乾燥した後、900℃で3時間加熱処理した。得られた粉体状の加熱処理物から上記方法で検液を得て、当該検液中の有害微量元素の濃度を上記方法にて測定した。ホウ素、砒素、6価クロム以外の有害微量元素は、表5以外に、水銀<0.0005mg/L、カドミウム<0.001mg/L、リン<0.1mg/Lであった。加熱処理物における元素分析(1150℃で分解)での炭素含有量は検出限界以下(<0.01質量%)であった。
Example A-1
Plant sludge A (water content 88.5 mass%, phosphorus content after heating at 900 ° C for 3 hours 34.4 mass% in terms of P 2 O 5 in XRF) as phosphorus-containing waste 250 g coal ash A 10 g To a mixture to obtain a mixture. Coal ash A is a residue produced by burning coal. Factory sludge A is sewage sludge generated at a wastewater treatment facility of a chemical factory. The obtained mixture was dried at 200 ° C. for 1 hour in a baking furnace (a bench-top electric furnace) and then heat-treated at 900 ° C. for 3 hours. A test solution was obtained from the obtained powdery heat-treated product by the above method, and the concentration of harmful trace elements in the test solution was measured by the above method. The harmful trace elements other than boron, arsenic and hexavalent chromium were mercury <0.0005 mg / L, cadmium <0.001 mg / L, and phosphorus <0.1 mg / L in addition to Table 5. The carbon content in elemental analysis (decomposition at 1150 ° C.) in the heat-treated product was below the detection limit (<0.01 mass%).
  〔実施例A-2~A-20〕
 実施例A-1において、焼却灰の種類、リン含有廃棄物の種類、リン含有廃棄物の使用量、及び/又は、乾燥後の加熱処理の温度に係る条件を以下の表1に示す通りに変更した。また、炉の形状の項に「環状炉」と記載されている例については、焼成炉を卓上電気炉から環状電気炉に替えて、空気を流通させながら加熱処理した。焼成した。その点以外は実施例A-1と同様とした。
 表1中、肉骨粉は、含水率13質量%、900℃で3時間加熱後のリン含有量がXRFでのP換算で31.9質量%のものを用いた(以下同様)。
 工場汚泥Bは、含水率80質量%、900℃で3時間加熱後のリン含有量がXRFでのP換算で18.5質量%のものを用いた(以下同様)。
 石炭灰Bは、石炭とバイオマスとの質量比が1:0.05の混合物を燃焼させて生じた残渣である(以下同様)。
 石炭灰Cは、石炭を燃焼させて生じた残渣である(以下同様)。
 石炭灰Dは、石炭を燃焼させて生じた残渣である(以下同様)。
 なお、表1における使用量(g/g)の項において、例えば、実施例A-9の「40(+肉骨粉2.5)/10」との記載は、工場汚泥40g及び肉骨粉2.5gを焼却灰10gと混合したことを示す。他のリン含有廃棄物に肉骨粉を加えたその他の実施例についても同様である。
[Examples A-2 to A-20]
In Example A-1, conditions relating to the type of incineration ash, the type of phosphorus-containing waste, the amount of phosphorus-containing waste used, and / or the temperature of heat treatment after drying are as shown in Table 1 below. changed. Moreover, about the example described as "annular furnace" in the term of the shape of a furnace, the baking furnace was changed from the table-top electric furnace to the annular electric furnace, and it heat-processed, distribute | circulating air. I baked it. The other conditions were the same as in Example A-1.
In Table 1, the meat-and-bone powder used had a moisture content of 13% by mass and a phosphorus content after heating at 900 ° C. for 3 hours of 31.9% by mass in terms of P 2 O 5 in XRF (the same applies hereinafter).
The plant sludge B used had a water content of 80% by mass and a phosphorus content after heating at 900 ° C. for 3 hours of 18.5% by mass in terms of P 2 O 5 in XRF (the same applies hereinafter).
Coal ash B is a residue produced by burning a mixture of coal and biomass in a mass ratio of 1: 0.05 (the same applies hereinafter).
Coal ash C is a residue produced by burning coal (same below).
Coal ash D is a residue produced by burning coal (the same applies hereinafter).
In the term of amount used (g / g) in Table 1, for example, the description “40 (+ meat and bone meal 2.5) / 10” in Example A-9 is 40 g of factory sludge and 2.5 g of meat and bone meal It shows that it mixed with 10 g of incinerated ash. The same applies to other examples in which meat and bone meal is added to other phosphorus-containing wastes.
  〔比較例1~9〕
 焼却灰及びリン含有廃棄物についていずれか一方のみを用いた。用いた焼却灰又はリン含有廃棄物の種類及びその量は表1に記載のものとし、乾燥後の加熱処理の温度、加熱処理の有無(有る場合は温度を記載、無い場合は「未焼成」と記載)、炉の形状について、以下の表1に示す通りとした。その点以外は、実施例A-1と同様とした。
[Comparative Examples 1 to 9]
Only one of the incinerated ash and the phosphorus-containing waste was used. The types and amounts of incineration ash or phosphorus-containing waste used are those described in Table 1, temperature of heat treatment after drying, presence or absence of heat treatment (if there is a temperature described, if not, "unbaked" And the shape of the furnace are as shown in Table 1 below. The other conditions were the same as in Example A-1.
 実施例A-1~A-20、比較例1~9におけるホウ素、砒素、6価クロムの溶出試験の結果を表1に示す。 The results of the dissolution tests of boron, arsenic and hexavalent chromium in Examples A-1 to A-20 and Comparative Examples 1 to 9 are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、リン含有廃棄物の使用の有無による有害微量元素の溶出量を比較したところ、実施例A-1ないしA-15のリン含有廃棄物を使用することによって、リン含有廃棄物を使用せず焼却灰のみを使用する比較例1ないし3と比較して、ホウ素、砒素及び6価クロムの溶出量を低減できることが判る。また逆に石炭灰の使用の有無による有害微量元素の溶出量を比較したところ、実施例A-1ないしA-12の石炭灰Aを使用することによって、焼却灰を使用せずリン含有廃棄物のみを使用する比較例4及び5と比較して、ホウ素、砒素及び6価クロムの溶出量を低減できることが判る。また同様にA-13ないしA-15についてもリン含有廃棄物のみを使用する比較例6を比較してホウ素、砒素及び6価クロムの溶出量を低減できることが判る。つまり焼却灰とリン含有廃棄物の混合下で加熱処理することで、各々を単独で処理する以上に複数の有害微量元素の溶出量を低減できることが判る。
 また、実施例A-16~A-20と、対応する各比較例との比較により、上記と同様に、焼却灰単独に比してホウ素、砒素及び6価クロムの溶出量を低減できることが判る。
As shown in Table 1, the elution amounts of harmful trace elements were compared according to the presence or absence of the use of the phosphorus-containing waste, and it was found that the phosphorus-containing waste was obtained by using the phosphorus-containing waste of Example A-1 to A-15. It can be seen that the elution amounts of boron, arsenic and hexavalent chromium can be reduced as compared with Comparative Examples 1 to 3 in which only incinerated ash is used without using. Conversely, when the elution amounts of harmful trace elements were compared according to the presence or absence of the use of coal ash, by using coal ash A of Examples A-1 to A-12, phosphorus-containing waste without using incineration ash It can be seen that the elution amounts of boron, arsenic and hexavalent chromium can be reduced as compared with Comparative Examples 4 and 5 using only. Similarly, it is understood that the elution amounts of boron, arsenic and hexavalent chromium can be reduced by comparing Comparative Example 6 in which only phosphorus-containing waste is used for A-13 to A-15. That is, it can be seen that the heat treatment under the mixture of the incineration ash and the phosphorus-containing waste can reduce the elution amount of the plurality of harmful trace elements more than treating each of them individually.
In addition, comparisons between Examples A-16 to A-20 and the corresponding Comparative Examples show that the elution amounts of boron, arsenic and hexavalent chromium can be reduced as compared with incineration ash alone, as described above. .
 〔実施例B-1〕
 リン含有廃棄物として工場汚泥A100gをごみ焼却灰10gに添加して混合物を得た。ごみ焼却灰は、一般家庭ごみを燃焼させて生じた残渣である(以下、単に「ごみ焼却灰」ともいう)。この混合物を、焼成炉中200℃で1時間乾燥した後、900℃で3時間加熱処理した。得られた粉体状の加熱処理物から上記方法で検液を得て、当該検液中の有害微量元素の濃度を上記方法にて測定した。ホウ素、砒素、6価クロム以外の有害微量元素は、水銀<0.0005mg/L、カドミウム<0.001mg/L、リン<0.1mg/Lであった。加熱処理物における元素分析(1150℃で分解)での炭素含有量は検出限界以下((<0.01質量%)であった。
Example B-1
As a phosphorus-containing waste, 100 g of factory sludge A was added to 10 g of waste incineration ash to obtain a mixture. Garbage incineration ash is a residue produced by burning general household waste (hereinafter, also simply referred to as “garbage incineration ash”). The mixture was dried at 200 ° C. for 1 hour in a baking furnace and then heat-treated at 900 ° C. for 3 hours. A test solution was obtained from the obtained powdery heat-treated product by the above method, and the concentration of harmful trace elements in the test solution was measured by the above method. The harmful trace elements other than boron, arsenic and hexavalent chromium were mercury <0.0005 mg / L, cadmium <0.001 mg / L and phosphorus <0.1 mg / L. The carbon content in the elemental analysis (decomposed at 1150 ° C.) in the heat-treated product was below the detection limit (<0.01 mass%).
  〔実施例B-2~B-7〕
 実施例B-1での加熱温度、リン含有廃棄物の種類又はリン含有廃棄物の量を表2に示す通りとした。その点以外は、実施例B-1と同様の操作を行った。また、実施例B-5は、石炭灰及びリン含有廃棄物の混合物に、更に石炭灰1質量部に対して0.1質量部の塩化ナトリウムを添加した。
 下水汚泥Aは、含水率84.3質量%、900℃で3時間加熱後のリン含有量がXRFでのP換算で26.8質量%である(以下同様)。
 下水汚泥Cは含水率81.2質量%、900℃で3時間加熱後のリン含有量がXRFでのP換算で25.7質量%である(以下同様)。
[Examples B-2 to B-7]
The heating temperature, type of phosphorus-containing waste or amount of phosphorus-containing waste in Example B-1 are as shown in Table 2. Except for that point, the same operation as in Example B-1 was performed. In Example B-5, 0.1 part by mass of sodium chloride was further added to 1 part by mass of coal ash to the mixture of coal ash and phosphorus-containing waste.
Sewage sludge A has a moisture content of 84.3% by mass, and a phosphorus content after heating at 900 ° C. for 3 hours of 26.8% by mass in terms of P 2 O 5 in XRF (the same applies hereinafter).
Sewage sludge C has a moisture content of 81.2% by mass, and a phosphorus content after heating at 900 ° C. for 3 hours of 25.7% by mass in terms of P 2 O 5 in XRF (the same applies hereinafter).
  〔比較例10及び11〕
 比較例10は実施例B-1において、リン含有廃棄物を使用しない以外は、実施例B-1と同様の操作を行った。比較例11は実施例B-3においてリン含有廃棄物を使用しない以外は、実施例B-3と同様の操作を行った。
[Comparative Examples 10 and 11]
In Comparative Example 10, the same operation as in Example B-1 was performed except that the phosphorus-containing waste was not used in Example B-1. In Comparative Example 11, the same operation as in Example B-3 was performed except that the phosphorus-containing waste was not used in Example B-3.
 実施例B-1~B-7、比較例10及び11におけるホウ素、砒素、6価クロムの溶出試験の結果を表2に示す。 The results of the dissolution tests of boron, arsenic and hexavalent chromium in Examples B-1 to B-7 and Comparative Examples 10 and 11 are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 
 
Figure JPOXMLDOC01-appb-T000002
 
 
 表2に示すとおり、ごみ焼却灰にリン含有廃棄物を混合して加熱した実施例B-1ないしB-7では、ごみ焼却灰のみを加熱した比較例10及び11と比較して、特に6価クロムの溶出が抑制されていることが判る。得られた分析結果を表3に示す。 As shown in Table 2, in Examples B-1 to B-7 in which the phosphorus-containing waste was mixed with the waste incineration ash and heated, especially compared with Comparative Examples 10 and 11 in which only the waste incineration ash was heated, 6 It can be seen that the elution of valence chromium is suppressed. The analysis results obtained are shown in Table 3.
 〔実施例C-1〕
 実施例A-1において、使用するリン含有廃棄物を下水汚泥A及び肉骨粉とし、リン含有廃棄物の使用量を表1のように変更した。これらの点以外は、実施例A-1と同様の操作を行った。
Example C-1
In Example A-1, the phosphorus-containing waste used was sewage sludge A and meat-and-bone meal, and the amount of phosphorus-containing waste used was changed as shown in Table 1. The same operation as in Example A-1 was performed except for these points.
 〔実施例C-2~C-21〕
 リン含有廃棄物の種類、リン含有廃棄物の量又は加熱処理の温度を表3の条件に変更した以外は、実施例C-1と同様とした。得られた分析結果を表3に示す。下水汚泥Bは含水率81.7質量%、900℃で3時間加熱後のリン含有量がXRFでのP換算で16.5質量%であった。乾燥下水汚泥Dは200℃で下水汚泥を気流乾燥した粒状汚泥であり、含水率9質量%であって、900℃で3時間加熱後のリン含有量がXRFでのP換算で27.2質量%であった。
 なお、表3における添加剤の項に記載のNaPOは、リン酸ナトリウム12水和物を用いた。PS灰とは、ペーパースラッジ灰を指す。添加剤はいずれも乾燥及び加熱処理に先立ち、石炭灰とリン含有廃棄物との混合物に添加した。
 また、C-3で得られた加熱処理物の溶出液の分析において、ホウ素、砒素、6価クロム以外の有害微量元素は、水銀<0.0005mg/L、カドミウム<0.001mg/L、鉛<0.01mg/L、リン<0.1mg/Lであった。加熱処理物における元素分析(1150℃で分解)での炭素含有量は検出限界以下(<0.01質量%)であった。
 また、実施例C-13で得られた加熱処理物の溶出液において、ホウ素、砒素、6価クロム以外の有害微量元素は、水銀<0.0005mg/L、カドミウム<0.001mg/L、鉛<0.01mg/L、リン<0.1mg/Lであった。加熱処理物における元素分析(1150℃で分解)での炭素含有量は検出限界以下(<0.01質量%)であった。
[Examples C-2 to C-21]
The process was the same as Example C-1 except that the type of phosphorus-containing waste, the amount of phosphorus-containing waste, or the temperature of heat treatment was changed to the conditions in Table 3. The analysis results obtained are shown in Table 3. Sewage sludge B had a water content of 81.7% by mass, and the phosphorus content after heating at 900 ° C. for 3 hours was 16.5% by mass in terms of P 2 O 5 in XRF. Dry sewage sludge D is granular sludge obtained by flash drying sewage sludge at 200 ° C., and the moisture content is 9 mass%, and the phosphorus content after heating at 900 ° C. for 3 hours is 27 in P 2 O 5 conversion in XRF. It was .2 mass%.
Incidentally, Na 3 PO 4 as described in the item of additives in Table 3, with sodium phosphate 12-hydrate. PS ash refers to paper sludge ash. All additives were added to the mixture of coal ash and phosphorus-containing waste prior to drying and heat treatment.
In addition, in the analysis of the eluate of the heat-treated product obtained in C-3, harmful trace elements other than boron, arsenic and hexavalent chromium are mercury <0.0005 mg / L, cadmium <0.001 mg / L, lead It was <0.01 mg / L and phosphorus <0.1 mg / L. The carbon content in elemental analysis (decomposition at 1150 ° C.) in the heat-treated product was below the detection limit (<0.01 mass%).
In the eluate of the heat-treated product obtained in Example C-13, harmful trace elements other than boron, arsenic, and hexavalent chromium are mercury <0.0005 mg / L, cadmium <0.001 mg / L, lead It was <0.01 mg / L and phosphorus <0.1 mg / L. The carbon content in elemental analysis (decomposition at 1150 ° C.) in the heat-treated product was below the detection limit (<0.01 mass%).
 〔比較例12~16〕
 焼却灰及びリン含有廃棄物についていずれか一方のみを用いた。用いた焼却灰又はリン含有廃棄物の量は表3に記載のものとし、乾燥後の加熱処理の温度について、以下の表3に示すとおりとした。その点以外は、実施例C-1と同様とした。
Comparative Examples 12 to 16
Only one of the incinerated ash and the phosphorus-containing waste was used. The amount of incineration ash or phosphorus-containing waste used was as shown in Table 3, and the temperature of heat treatment after drying was as shown in Table 3 below. The other conditions were the same as in Example C-1.
 実施例C-1~C-21、比較例12~16におけるホウ素、砒素、6価クロムの溶出試験の結果を表3に示す。 The results of the dissolution tests of boron, arsenic and hexavalent chromium in Examples C-1 to C-21 and Comparative Examples 12 to 16 are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 表3に示すとおり、実施例C-1~C-25では、石炭灰のみを用いた比較例1及び2と比較して、リン含有廃棄物の由来に関係なく有害微量元素、特にホウ素及び6価クロムの溶出を低減できることが判る。 As shown in Table 3, in Examples C-1 to C-25, harmful trace elements, in particular boron and 6 as compared with Comparative Examples 1 and 2 using only coal ash, regardless of the origin of the phosphorus-containing waste It can be seen that the elution of valent chromium can be reduced.
  〔実施例D-1〕
 リン含有廃棄物として肉骨粉(含水率13質量%、900℃で3時間加熱後のリン含有量がXRFでのP換算で31.9質量%)10gを石炭灰A10gに添加して混合物を得た。この混合物を、焼成炉中200℃で1時間乾燥した後、900℃で3時間加熱処理した。得られた粉体状の加熱処理物から上記方法で検液を得て、当該検液中の有害微量元素の濃度を上記方法にて測定した。ホウ素、砒素、6価クロム以外の有害微量元素は、表6に示す以外、水銀<0.0005mg/L、カドミウム<0.001mg/Lであった。加熱処理物における元素分析(1150℃で分解)での炭素含有量は検出限界以下((<0.01質量%)であった。
Example D-1
Meat and bone meal (water content 13 wt%, 31.9 wt% of phosphorus content after 3 hours heating at terms of P 2 O 5 in the XRF at 900 ° C.) as the phosphorus-containing waste by adding 10g coal ash A10g A mixture was obtained. The mixture was dried at 200 ° C. for 1 hour in a baking furnace and then heat-treated at 900 ° C. for 3 hours. A test solution was obtained from the obtained powdery heat-treated product by the above method, and the concentration of harmful trace elements in the test solution was measured by the above method. The harmful trace elements other than boron, arsenic and hexavalent chromium were mercury <0.0005 mg / L and cadmium <0.001 mg / L except as shown in Table 6. The carbon content in the elemental analysis (decomposed at 1150 ° C.) in the heat-treated product was below the detection limit (<0.01 mass%).
 〔実施例D-2及びD-3〕
 実施例D-1で使用したリン含有廃棄物の肉骨粉の使用量及びその加熱温度を表3に示した量及び温度とした以外は、実施例D-1と同様の操作を行った。
[Examples D-2 and D-3]
The same operation as in Example D-1 was performed except that the amount of the meat and bone powder used in the phosphorus-containing waste used in Example D-1 and the heating temperature thereof were the amounts and temperatures shown in Table 3.
 〔比較例17〕
 焼却灰を用いなかった以外は実施例1と同様とした。
Comparative Example 17
It was the same as Example 1 except that incinerated ash was not used.
 実施例D-1~D-3、比較例17におけるホウ素、砒素、6価クロムの溶出試験の結果を表4に示す。 The results of the dissolution tests of boron, arsenic, and hexavalent chromium in Examples D-1 to D-3 and Comparative Example 17 are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 表4に示すとおり、石炭灰Aと肉骨粉を混合して所定温度で加熱することにより、石炭灰A単独物に比して、ホウ素、砒素の溶出量が低減することが判る。また肉骨粉単独での加熱品に比して6価クロムの溶出量が低減することも判る。 As shown in Table 4, it can be seen that by mixing the coal ash A and the meat-and-bone meal and heating at a predetermined temperature, the elution amount of boron and arsenic is reduced compared to the coal ash A alone. In addition, it can also be seen that the elution amount of hexavalent chromium is reduced as compared to a heated product of meat and bone powder alone.
 上記の各実施例及び比較例の一部について、セレン及びフッ素並びに鉛又はリンの溶出量を測定した結果を下記表5及び6に示す。 The results of measuring the elution amounts of selenium and fluorine and lead or phosphorus for some of the above-mentioned Examples and Comparative Examples are shown in Tables 5 and 6 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表5及び表6に示すように、焼却灰及びリン含有化合物を混合して所定温度で加熱することにより、焼却灰単独又はその加熱品におけるセレンやフッ素の溶出を低減できるほか、汚泥単独の加熱品における鉛又はリンの溶出を低減できることが判る。 As shown in Tables 5 and 6, by mixing the incineration ash and the phosphorus-containing compound and heating the mixture at a predetermined temperature, it is possible to reduce the elution of selenium and fluorine in the incineration ash alone or in the heated product, and heat the sludge alone. It can be seen that the elution of lead or phosphorus in the product can be reduced.
 〔実施例E-1〕
  リン含有廃棄物として工場汚泥A40gを石炭灰A 10gに添加して混合物を得た。石炭灰Aは、石炭を燃焼させて生じた残渣である。この混合物を、焼成炉中、200℃で1時間乾燥した後、900℃で3時間加熱処理した。得られた粉体状の加熱処理物1質量部に、上記方法で用いた溶媒の代わりに、表7の「抽出液pH」の水溶液10質量部を添加し混合して検液を作成し、当該検液について上記方法にて有害元素の濃度を測定した。その結果を表7に示す。
 なお、以下表7の「抽出液pH」の項において、「2.8」とは25℃でのpH=2.8の希硫酸水溶液を指し、「11.9」とは、25℃でのpH=11.9の消石灰水を指し、「2.1」とは25℃でのpH=2.1の希硫酸水溶液を指す。
Example E-1
As a phosphorus-containing waste, 40 g of factory sludge A was added to 10 g of coal ash A to obtain a mixture. Coal ash A is a residue produced by burning coal. The mixture was dried at 200 ° C. for 1 hour in a baking furnace and then heat-treated at 900 ° C. for 3 hours. To 1 part by mass of the obtained powdery heat-treated product, 10 parts by mass of an aqueous solution of “extract solution pH” in Table 7 is added instead of the solvent used in the above method, and mixed to prepare a test solution, The concentration of harmful elements was measured for the test solution by the above method. The results are shown in Table 7.
In the "extraction pH" section of Table 7 below, "2.8" refers to a dilute sulfuric acid aqueous solution of pH = 2.8 at 25 ° C, and "11.9" is at 25 ° C. It refers to slaked lime water of pH = 11.9, and “2.1” refers to a dilute sulfuric acid aqueous solution of pH = 2.1 at 25 ° C.
 〔実施例E-2~E-19、比較例18~20〕
 リン含有廃棄物の種類、リン含有廃棄物の量、焼却灰の種類、加熱処理の温度又は使用する抽出溶媒の種類に係る条件について、表7に示す通りに変更した以外は実施例E-1と同様にした。結果を表7に示す。
[Examples E-2 to E-19, Comparative Examples 18 to 20]
Example E-1 except that the conditions relating to the type of phosphorus-containing waste, the amount of phosphorus-containing waste, the type of incineration ash, the temperature of heat treatment, or the type of extraction solvent used are changed as shown in Table 7 It was the same as. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7に示すとおり、実施例E-1~E-16は、対応するpHの石炭灰Aのみをもちいた比較例(比較例18、19又は20)と比較して、いずれも有害微量元素の溶出量を低減できることが判る。また実施例E-17~E-19から、焼却灰種を異ならせた場合も、幅広いpH範囲で溶出基準を守ることができていることが判る。 As shown in Table 7, Examples E-1 to E-16 were all harmful trace elements compared with Comparative Examples (Comparative Examples 18, 19 or 20) using only coal ash A of the corresponding pH. It can be seen that the elution amount can be reduced. Further, it can be seen from Examples E-17 to E-19 that elution standards can be maintained in a wide pH range also when different types of incinerated ash are used.
 次にリン含有化合物を用いた実施例・比較例について説明する。なお、下記表8~13における混合物は、焼却灰100質量部として10.0g用いたものである。
  〔実施例F-1〕
 リン含有化合物として85%リン酸1.47質量部を水40質量部に溶解させた水溶液を石炭灰A100質量部に添加して混合物を得た。石炭灰Aは、石炭を燃焼させて生じた残渣である。この混合物を、焼成炉中110℃で3時間乾燥した後、900℃で3時間加熱処理した。得られた粉体状の加熱処理物から上記方法で検液を得て、当該検液中の有害微量元素の濃度を上記方法により測定した。その結果を表8に示す。また、他の有害微量元素は、水銀<0.0005mg/L、カドミウム<0.001mg/L、鉛<0.01mg/L、リン2.2mg/Lであった。加熱処理物における元素分析での炭素含有量は検出限界以下(1150℃で分解)であった。
Next, Examples and Comparative Examples using the phosphorus-containing compound will be described. The mixtures in Tables 8 to 13 below were 10.0 g as 100 parts by mass of incineration ash.
Example F-1
An aqueous solution prepared by dissolving 1.47 parts by mass of 85% phosphoric acid as a phosphorus-containing compound in 40 parts by mass of water was added to 100 parts by mass of coal ash A to obtain a mixture. Coal ash A is a residue produced by burning coal. The mixture was dried at 110 ° C. for 3 hours in a baking furnace and then heat treated at 900 ° C. for 3 hours. A test solution was obtained from the obtained powdery heat-treated product by the above method, and the concentration of harmful trace elements in the test solution was measured by the above method. The results are shown in Table 8. In addition, other harmful trace elements were mercury <0.0005 mg / L, cadmium <0.001 mg / L, lead <0.01 mg / L, and phosphorus 2.2 mg / L. The carbon content in the elemental analysis of the heat-treated product was below the detection limit (decomposed at 1150 ° C.).
  〔実施例F-2ないしF-14〕
 実施例F-1で使用したリン含有化合物及びその使用量を、以下の表8に示すとおりに変更した以外は、実施例F-1と同様の操作を行った。得られた加熱処理物の分析結果を表8に示す。
Examples F-2 to F-14
The same operation as in Example F-1 was performed except that the phosphorus-containing compound used in Example F-1 and the amount thereof used were changed as shown in Table 8 below. The analysis results of the obtained heat-treated product are shown in Table 8.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
  〔実施例F-15〕
 リン含有化合物として三リン酸五カリウム(K10)1.25質量部を水40質量部に溶解させた水溶液を石炭灰E100質量部に添加して混合物を得た。石炭灰Eは、石炭とバイオマスとを質量比1:0.05で混合させて燃焼させて生じた残渣である。この混合物を、焼成炉中900℃で1時間加熱処理した。得られた加熱処理物について、上記F-1と同様の分析を行った。分析結果を表9に示す。
Example F-15
An aqueous solution prepared by dissolving 1.25 parts by mass of pentapotassium triphosphate (K 5 P 3 O 10 ) as a phosphorus-containing compound in 40 parts by mass of water was added to 100 parts by mass of coal ash E to obtain a mixture. Coal ash E is a residue formed by mixing and burning coal and biomass at a mass ratio of 1: 0.05. The mixture was heat treated at 900 ° C. for 1 hour in a baking furnace. The same analysis as in the above F-1 was performed on the obtained heat-treated product. The analysis results are shown in Table 9.
  〔実施例F-16ないしF-23〕
 実施例F-15で使用した石炭灰Eに代えて、表9に示す石炭灰又はごみ焼却灰を用い、且つリン含有化合物の使用量を表9に示す値に代えた以外は、実施例F-15と同様の操作を行った。得られた加熱処理物の分析結果を表9に示す。石炭灰F-Kは、石炭を燃焼させて生じた残渣である。
Examples F-16 to F-23
Example F except using coal ash shown in Table 9 or waste incineration ash instead of the coal ash E used in Example F-15 and replacing the amount of the phosphorus-containing compound with the values shown in Table 9 The same operation as -15 was performed. The analysis results of the obtained heat-treated product are shown in Table 9. Coal ash F-K is a residue produced by burning coal.
  〔比較例23ないし27〕
 実施例F-15ないしF-23で用いた石炭灰E、F、G及びJ並びにごみ焼却灰そのものについて上記方法で得た検液について、上記と同様に各有害微量元素の濃度測定を行った。その結果を表9に示す。
[Comparative examples 23 to 27]
Concentrations of harmful trace elements were measured in the same manner as above for the test solutions obtained by the above method for coal ash E, F, G and J used in Examples F-15 to F-23 and waste incineration ash itself. . The results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
  〔実施例F-24ないしF-29〕
 焼却灰として石炭灰A100質量部を使用した。また、リン含有化合物及びその使用量を、表10に示すとおりに変更した。更に、表10に示す温度で加熱処理した。これら以外は実施例F-1の操作を行った。得られた加熱処理物の分析結果を表10に示す。
Examples F-24 to F-29
As the incineration ash, 100 parts by mass of coal ash A was used. In addition, the phosphorus-containing compound and the amount used thereof were changed as shown in Table 10. Furthermore, it heat-processed at the temperature shown in Table 10. Except for these, the operation of Example F-1 was performed. The analysis results of the obtained heat-treated product are shown in Table 10.
  〔比較例28及び29〕
 実施例F-24の加熱温度を、表10に示す加熱温度に変更した以外は実施例F-24と同様の操作を行った。得られた加熱処理物の分析結果を表10に示す。
[Comparative Examples 28 and 29]
The same operation as in Example F-24 was performed except that the heating temperature in Example F-24 was changed to the heating temperature shown in Table 10. The analysis results of the obtained heat-treated product are shown in Table 10.
  〔比較例30及び31〕
 実施例F-24においてリン含有化合物を使用せず、且つ表10に示す加熱温度に変更した以外は実施例F-24と同様の操作を行った。得られた加熱処理物の分析結果を表10に示す。
[Comparative Examples 30 and 31]
The same operation as in Example F-24 was performed except that the phosphorus-containing compound was not used in Example F-24, and the heating temperature shown in Table 10 was changed. The analysis results of the obtained heat-treated product are shown in Table 10.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
  〔実施例F-30〕
 石炭灰A100質量部と、リン含有化合物として三リン酸五カリウム(K10)10質量部とを混合し、900℃で3時間加熱処理した。得られた加熱処理物の分析結果を表11に示す。
Example F-30
100 parts by mass of coal ash A and 10 parts by mass of pentapotassium triphosphate (K 5 P 3 O 10 ) as a phosphorus-containing compound were mixed and heat-treated at 900 ° C. for 3 hours. The analysis results of the obtained heat-treated product are shown in Table 11.
  〔比較例33ないし36〕
 実施例F-30において、表11に示すとおり、リン含有化合物及び加熱処理温度を変更した以外は実施例F-30と同様の操作を行った。得られた加熱処理物の分析結果を表11に示す。
[Comparative Examples 33 to 36]
In Example F-30, as shown in Table 11, the same operation as in Example F-30 was performed, except that the phosphorus-containing compound and the heat treatment temperature were changed. The analysis results of the obtained heat-treated product are shown in Table 11.
  〔実施例F-31〕
リン化合物種及びその量を変更した以外は、実施例F-30と同様の操作を行った。得られた加熱処理物の分析結果を表11に示す。
Example F-31
The same operation as in Example F-30 was performed, except that the phosphorus compound type and the amount thereof were changed. The analysis results of the obtained heat-treated product are shown in Table 11.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
  〔実施例F-32〕
 リン含有化合物として三リン酸五カリウム(K10)1.25質量部を水40質量部に溶解させた水溶液を石炭灰A100質量部に添加して混合物を得た。この混合物を焼成炉中900℃で1時間加熱処理した。得られた粉体状の加熱処理物について上記方法で検液を得、この検液における有害微量元素の濃度を、上記の方法で測定した。ただし、検液作成のために加熱処理物と混合する溶媒として、5.0mmol/L塩酸水溶液(pH2.3)を用いた。得られた加熱処理物の分析結果を表12に示す。
Example F-32
An aqueous solution prepared by dissolving 1.25 parts by mass of pentapotassium triphosphate (K 5 P 3 O 10 ) as a phosphorus-containing compound in 40 parts by mass of water was added to 100 parts by mass of coal ash A to obtain a mixture. The mixture was heat treated in a baking furnace at 900 ° C. for 1 hour. A test solution was obtained for the obtained powdery heat-treated product by the above method, and the concentration of harmful trace elements in this test solution was measured by the above method. However, 5.0 mmol / L hydrochloric acid aqueous solution (pH 2.3) was used as a solvent to be mixed with the heat-treated product for preparation of a test solution. The analysis results of the obtained heat-treated product are shown in Table 12.
  〔実施例F-33〕
 リン含有化合物として三リン酸五カリウム(K10)1.25質量部を水40質量部に溶解させた水溶液を石炭灰A100質量部に添加して混合物を得た。この混合物を焼成炉中900℃で1時間加熱処理した。得られた粉体状の加熱処理物について上記の方法で検液を得て、この検液中の有害微量元素の濃度を上記方法で測定した。ただし、検液作成のために加熱処理物と混合する溶媒として、3.85mmol/L消石灰水溶液(pH=11.9)を用いた。得られた加熱処理物の分析結果を表12に示す。
Example F-33
An aqueous solution prepared by dissolving 1.25 parts by mass of pentapotassium triphosphate (K 5 P 3 O 10 ) as a phosphorus-containing compound in 40 parts by mass of water was added to 100 parts by mass of coal ash A to obtain a mixture. The mixture was heat treated in a baking furnace at 900 ° C. for 1 hour. A test solution was obtained for the obtained powdery heat-treated product by the above method, and the concentration of harmful trace elements in the test solution was measured by the above method. However, 3.85 mmol / L slaked lime aqueous solution (pH = 11.9) was used as a solvent mixed with a heat-treated product for preparation of a test solution. The analysis results of the obtained heat-treated product are shown in Table 12.
  〔比較例37〕
 実施例F-32で用いた石炭灰Aそのものについて上記方法で検液を得て、この検液中の各有害微量元素の濃度を上記方法にて測定した。ただし、検液作成のために石炭灰Aと混合する溶媒として、5.0mmol/L塩酸水溶液(pH2.3)を用いた。分析結果を表12に示す。
Comparative Example 37
A test solution was obtained by the above method for coal ash A itself used in Example F-32, and the concentration of each harmful trace element in the test solution was measured by the above method. However, 5.0 mmol / L hydrochloric acid aqueous solution (pH 2.3) was used as a solvent to be mixed with the coal ash A for preparation of a test solution. The analysis results are shown in Table 12.
  〔比較例38〕
 実施例F-32で用いた石炭灰Aそのものについて上記方法にて検液を得て、当該検液について、上記方法にて各有害微量元素の濃度測定を行った。ただし、検液作成のために石炭灰Aと混合する溶媒として、3.85mmol/L消石灰水溶液(pH=11.9)を用いた。分析結果を表12に示す。
Comparative Example 38
A test solution was obtained for coal ash A itself used in Example F-32 by the above method, and the concentration of each harmful trace element was measured for the test solution by the above method. However, 3.85 mmol / L slaked lime aqueous solution (pH = 11.9) was used as a solvent mixed with the coal ash A for test solution preparation. The analysis results are shown in Table 12.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
  〔実施例F-34及びF-35〕
 リン含有化合物としてリン酸(HPO)8質量部又は16質量部をゴミ焼却灰100質量部に添加して混合物を得た。この混合物を焼成炉中700℃で1時間加熱処理した。得られた粉体状の加熱処理物から上記方法にて検液を得て、この検液中の有害微量元素の濃度を上記方法で測定した。得られた加熱処理物の分析結果を表13に示す。
Examples F-34 and F-35
A mixture was obtained by adding 8 parts by mass or 16 parts by mass of phosphoric acid (H 3 PO 4 ) as a phosphorus-containing compound to 100 parts by mass of refuse incineration ash. The mixture was heat treated at 700 ° C. for 1 hour in a baking furnace. A test solution was obtained from the obtained powdery heat-treated product by the above method, and the concentration of harmful trace elements in the test solution was measured by the above method. The analysis results of the obtained heat-treated product are shown in Table 13.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 以上のとおり、本発明の処理方法は、焼却灰の物性や組成に影響されることなく適用可能であり、焼却灰からの有害微量元素の溶出量を低減できることが判る。 As described above, it is understood that the treatment method of the present invention can be applied without being influenced by the physical properties or composition of incineration ash, and can reduce the elution amount of harmful trace elements from the incineration ash.
 本発明の処理方法により、様々な有害微量元素を含有する焼却灰からの有害微量元素の溶出を、多種多様の薬剤を使用することなく、生産性が高く、経済的で効率的に、且つ工業的に簡便に抑制することができる。また、本発明の処理方法によれば、酸性雨を想定した酸性条件下や、コンクリート構造物から遊離する塩基性化合物の存在に起因する塩基性条件下においても、有害微量元素の溶出量における屋内外のpH環境による影響を効果的に低減することができる。本発明の処理方法は、石炭灰やゴミ焼却灰等の様々な物性や組成の焼却灰に適用可能である。このため本実施形態の処理方法は、建築事業や土木事業等での焼却灰の再利用や、廃棄物処分場に投棄していた廃棄物扱いの灰の埋立利用、土壌改良剤など、環境汚染防止に配慮した焼却灰の有効利用に寄与する。 According to the treatment method of the present invention, elution of harmful trace elements from incineration ash containing various harmful trace elements is highly productive, economical, efficient, and industrial without using various agents. It can be simply suppressed. In addition, according to the treatment method of the present invention, the elution amount of harmful trace elements can be reduced even under acidic conditions assuming acid rain or under basic conditions due to the presence of a basic compound liberated from the concrete structure. It is possible to effectively reduce the influence of the internal and external pH environment. The treatment method of the present invention is applicable to incineration ash of various physical properties and compositions such as coal ash and waste incineration ash. For this reason, the treatment method of this embodiment is environmental pollution such as reutilization of incinerated ash in construction projects and civil engineering projects, landfill use of waste treated ash that has been dumped in waste disposal sites, soil improvers, etc. It contributes to the effective use of incineration ash in consideration of prevention.

Claims (29)

  1.  焼却灰とリン源とを混合して600℃以上1200℃以下で加熱する工程を有する固体廃棄物の処理方法。 A method of treating solid waste, comprising the step of mixing incineration ash and a phosphorus source and heating the mixture at 600 ° C. or more and 1200 ° C. or less.
  2.  前記リン源として、リン含有廃棄物を用いる、請求項1に記載の固体廃棄物の処理方法。 The method for treating solid waste according to claim 1, wherein phosphorus-containing waste is used as the phosphorus source.
  3.  前記リン源として、リン含有化合物を用いる、請求項1に記載の固体廃棄物の処理方法。 The method of treating solid waste according to claim 1, wherein a phosphorus-containing compound is used as the phosphorus source.
  4.  前記焼却灰中の砒素、クロム及びホウ素の合計量に対して、前記焼却灰と前記リン源との混合物中のリンの量が、10質量倍以上である、請求項1~3の何れか1項に記載の固体廃棄物の処理方法。 The amount of phosphorus in the mixture of the incineration ash and the phosphorus source is 10 times by mass or more relative to the total amount of arsenic, chromium and boron in the incineration ash. The solid waste disposal method as described in a paragraph.
  5.  前記焼却灰中の砒素、クロム及びホウ素の合計量に対して、前記焼却灰と前記リン源との混合物中のカルシウムの量が、30質量倍以上である、請求項1~4の何れか1項に記載の固体廃棄物の処理方法。 The amount of calcium in the mixture of the incineration ash and the phosphorus source is 30 mass times or more with respect to the total amount of arsenic, chromium and boron in the incineration ash. The solid waste disposal method as described in a paragraph.
  6.  前記焼却灰中の砒素、クロム及びホウ素の合計量に対して、前記焼却灰と前記リン源との混合物中のカルシウムの量が、75質量倍以上である、請求項5に記載の固体廃棄物の処理方法。 The solid waste according to claim 5, wherein the amount of calcium in the mixture of the incineration ash and the phosphorus source is at least 75 times by mass relative to the total amount of arsenic, chromium and boron in the incineration ash. How to handle
  7.  前記リン含有廃棄物が下水汚泥系リン含有廃棄物、農水産系リン含有廃棄物、工業系リン含有廃棄物及び食品系リン含有廃棄物からなる群から選択される少なくとも1種である、請求項2に記載の固体廃棄物の処理方法。 The method according to claim 1, wherein the phosphorus-containing waste is at least one selected from the group consisting of sewage sludge-based phosphorus-containing waste, agricultural and fishery-based phosphorus-containing waste, industrial phosphorus-containing waste, and food-based phosphorus-containing waste. The method for treating solid waste according to 2.
  8.  前記リン含有廃棄物が肉骨粉を含む、請求項2又は7に記載の固体廃棄物の処理方法。 The method for treating solid waste according to claim 2 or 7, wherein the phosphorus-containing waste comprises meat and bone meal.
  9.  前記リン含有廃棄物として、一般下水汚泥又は工業下水汚泥と肉骨粉との組み合わせを用いる、請求項2、7又は8に記載の固体廃棄物の処理方法。 The method for treating solid waste according to claim 2, 7 or 8, wherein general sewage sludge or a combination of industrial sewage sludge and meat-and-bone meal is used as the phosphorus-containing waste.
  10.  前記焼却灰中の砒素、クロム及びホウ素の合計量に対して、前記焼却灰と前記リン源との混合物中のカルシウムの量が、1000質量倍以下である、請求項1~9の何れか1項に記載の固体廃棄物の処理方法。 The amount of calcium in the mixture of the incineration ash and the phosphorus source is 1000 mass times or less with respect to the total amount of arsenic, chromium and boron in the incineration ash. The solid waste disposal method as described in a paragraph.
  11.  前記焼却灰中の砒素、クロム及びホウ素の合計量に対して、前記焼却灰と前記リン源との混合物中のカルシウムの量が、450質量倍以下である、請求項10に記載の固体廃棄物の処理方法。 The solid waste according to claim 10, wherein the amount of calcium in the mixture of the incineration ash and the phosphorus source is 450 mass times or less with respect to the total amount of arsenic, chromium and boron in the incineration ash. How to handle
  12.  焼却灰が石炭灰であって加熱処理の温度が750℃以上であるか、焼却灰がごみ焼却灰であって加熱処理の温度が780℃以下である、請求項1~11の何れか1項に記載の固体廃棄物の処理方法。 12. The method according to claim 1, wherein the incineration ash is coal ash and the temperature of heat treatment is 750 ° C. or more, or the incineration ash is waste incineration ash and the temperature of heat treatment is 780 ° C. or less. The solid waste disposal method described in.
  13.  前記焼却灰と前記リン源との混合物中のリンの量が、0.1質量%以上10質量%以下である、請求項1~12の何れか1項に記載の固体廃棄物の処理方法。 The method of treating solid waste according to any one of claims 1 to 12, wherein the amount of phosphorus in the mixture of the incineration ash and the phosphorus source is 0.1% by mass or more and 10% by mass or less.
  14.  前記焼却灰と前記リン源との混合物中のカルシウムの量が、0.1質量%以上50質量%以下である、請求項1~13の何れか1項に記載の固体廃棄物の処理方法。 The method of treating solid waste according to any one of claims 1 to 13, wherein the amount of calcium in the mixture of the incineration ash and the phosphorus source is 0.1% by mass or more and 50% by mass or less.
  15.  前記リン源中のリン濃度が、900℃で3時間焼成した状態で測定した蛍光X線分析におけるP換算での値において、5質量%以上60質量%以下である、請求項1~14に記載の固体廃棄物の処理方法。 The phosphorus concentration in the phosphorus source is 5% by mass or more and 60% by mass or less in a value in terms of P 2 O 5 in fluorescent X-ray analysis measured in a state of being calcined at 900 ° C. for 3 hours. The solid waste disposal method as described in 14.
  16.  前記リン源の使用量が、焼却灰100質量部に対してリン元素換算で、0.1質量部以上60質量部以下である、請求項1~15の何れか1項に記載の固体廃棄物の処理方法。 The solid waste according to any one of claims 1 to 15, wherein the amount of the phosphorus source used is 0.1 parts by mass or more and 60 parts by mass or less in terms of phosphorus element with respect to 100 parts by mass of incinerated ash. How to handle
  17.  焼却灰とリン源との混合物を80℃以上300℃以下で加熱し、次いで、600℃以上1200℃以下で加熱する、請求項1~16の何れか1項に記載の固体廃棄物の処理方法。 The method of treating solid waste according to any one of claims 1 to 16, wherein the mixture of incineration ash and phosphorus source is heated at 80 ° C to 300 ° C and then heated to 600 ° C to 1200 ° C. .
  18.  前記焼却灰が、石炭単独又は石炭とバイオマスとの混合物を燃焼させて発生する石炭灰である請求項1~17の何れか1項に記載の固体廃棄物の処理方法。 The solid waste disposal method according to any one of claims 1 to 17, wherein the incineration ash is coal ash generated by burning coal alone or a mixture of coal and biomass.
  19.  前記焼却灰に対して、前記リン源に加えて、ペーパースラッジ灰を添加した後に、600℃以上1200℃以下で加熱する、請求項1~18の何れか1項に記載の固体廃棄物の処理方法。 The solid waste treatment according to any one of claims 1 to 18, wherein paper sludge ash is added to the incineration ash in addition to the phosphorus source and then heated at 600 ° C to 1200 ° C. Method.
  20.  前記焼却灰に対して、前記リン源に加えて、ナトリウム成分を添加した後に、600℃以上1200℃以下で加熱する、請求項1~19の何れか1項に記載の固体廃棄物の処理方法。 The solid waste disposal method according to any one of claims 1 to 19, wherein the incineration ash is heated at 600 ° C or more and 1200 ° C or less after adding a sodium component in addition to the phosphorus source. .
  21.  前記ナトリウム成分がリン酸ナトリウム、水酸化ナトリウム及び塩化ナトリウムから選ばれる少なくとも一種である、請求項20に記載の固体廃棄物の処理方法。 The solid waste disposal method according to claim 20, wherein the sodium component is at least one selected from sodium phosphate, sodium hydroxide and sodium chloride.
  22.  前記ナトリウム成分が塩化ナトリウムである、請求項21に記載の固体廃棄物の処理方法。 22. The method of treating solid waste according to claim 21, wherein the sodium component is sodium chloride.
  23.  前記焼却灰がごみ焼却灰であり、前記リン源が下水汚泥系リン含有廃棄物を含む、ごみ焼却灰におけるホウ素、砒素及び6価クロムの溶出量の低減方法である請求項19~22の何れか1項に記載の固体廃棄物の処理方法。 The method according to any one of claims 19 to 22, wherein the incineration ash is waste incineration ash, and the phosphorus source is a method for reducing the elution of boron, arsenic and hexavalent chromium in waste incineration ash containing sewage sludge-based phosphorus-containing waste. The method for treating solid waste according to item 1 or 2.
  24.  前記リン含有化合物が、縮合リン酸、リン酸、亜リン酸、次亜リン酸、ホスホン酸及びホスフィン酸並びにこれらの塩及びこれらの水和物からなる群から選択される少なくとも1種である請求項3に記載の固体廃棄物の処理方法。 The phosphorus-containing compound is at least one selected from the group consisting of condensed phosphoric acid, phosphoric acid, phosphorous acid, hypophosphorous acid, phosphonic acid and phosphinic acid, and salts thereof and hydrates thereof. The solid waste disposal method according to Item 3.
  25.  前記リン含有化合物が、三リン酸五カリウム、縮合リン酸、縮合リン酸塩及び次亜リン酸塩からなる群から選択される少なくとも1種である請求項3又は24に記載の固体廃棄物の処理方法。 The solid waste according to claim 3 or 24, wherein the phosphorus-containing compound is at least one selected from the group consisting of pentapotassium triphosphate, condensed phosphoric acid, condensed phosphate and hypophosphite. Processing method.
  26.  前記焼却灰又はリン源に含まれるホウ素、砒素、セレン、フッ素、6価クロム、鉛、水銀及びカドミウムからなる群の少なくとも1種の溶出量を低減させる請求項1~25の何れか1項に記載の固体廃棄物の処理方法。 The method according to any one of claims 1 to 25, wherein the elution amount of at least one member selected from the group consisting of boron, arsenic, selenium, fluorine, hexavalent chromium, lead, mercury and cadmium contained in the incineration ash or phosphorus source is reduced. Solid waste disposal method described.
  27.  前記焼却灰又はリン源に含まれるホウ素、砒素、6価クロムからなる群の少なくとも1種の溶出量を低減させる請求項26に記載の固体廃棄物の処理方法。 The method for treating solid waste according to claim 26, wherein the elution amount of at least one member of the group consisting of boron, arsenic and hexavalent chromium contained in the incineration ash or phosphorus source is reduced.
  28.  焼却灰とリン源とを混合して600℃以上1200℃以下で加熱する工程を有する、焼却灰又はリン源に含まれるホウ素、砒素、セレン、フッ素、6価クロム、鉛、水銀及びカドミウムからなる群の少なくとも1種の溶出抑制方法。 Consists of boron, arsenic, selenium, fluorine, hexavalent chromium, lead, mercury and cadmium contained in incineration ash or phosphorus source, which has a step of mixing incineration ash and phosphorus source and heating at 600 ° C. to 1200 ° C. At least one elution suppression method of the group.
  29.  ホウ素、砒素及び6価クロムからなる群から選ばれる少なくとも1種の溶出を抑制する、請求項28に記載の溶出抑制方法。
     
    The elution inhibiting method according to claim 28, wherein the elution inhibiting of at least one selected from the group consisting of boron, arsenic and hexavalent chromium is inhibited.
PCT/JP2018/025263 2017-07-04 2018-07-03 Solid waste treatment method WO2019009303A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019527728A JPWO2019009303A1 (en) 2017-07-04 2018-07-03 Solid waste treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017131532 2017-07-04
JP2017-131532 2017-07-04

Publications (1)

Publication Number Publication Date
WO2019009303A1 true WO2019009303A1 (en) 2019-01-10

Family

ID=64950995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025263 WO2019009303A1 (en) 2017-07-04 2018-07-03 Solid waste treatment method

Country Status (2)

Country Link
JP (1) JPWO2019009303A1 (en)
WO (1) WO2019009303A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020044458A (en) * 2018-09-14 2020-03-26 株式会社神戸製鋼所 Method for detoxicating coal ash
JP7478053B2 (en) 2020-07-27 2024-05-02 Ube三菱セメント株式会社 Sewage sludge fermentation raw material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212260A (en) * 1986-03-14 1987-09-18 明星工業株式会社 Method of converting waste matter to ceramics
JPH0461978A (en) * 1990-06-28 1992-02-27 Sanai Fujita Preparation of solidifying material
JPH1111992A (en) * 1997-06-23 1999-01-19 Techno Japan:Kk Cement based material to be solidified or hydraulic material of incineration ash in which harmful heavy metal is insolubilized
JP2000334416A (en) * 1999-05-28 2000-12-05 Bogenpfeil:Kk Low temperature melt-solidifying aggregate for ash dust such as incineration ash and incineration fly ash and low temperature melt-solidifying method of ash dust such as incineration ash and incineration fly ash
JP2003185119A (en) * 2001-12-14 2003-07-03 Nippon Steel Corp Processing method for meat and bone meal
JP2004526555A (en) * 2000-12-13 2004-09-02 ソルヴェイ Method for inactivating ash, artificial pozzolan obtained by the method
JP2007015874A (en) * 2005-07-05 2007-01-25 Ehime Univ Method for producing hydroxyapatite-containing body, hydroxyapatite-zeolite complex, hydroxyapatite, hydroxyapatite-titanium oxide complex and hydroxyapatite-zeolite-titanium oxide complex, and functional fiber
JP2009279481A (en) * 2008-05-20 2009-12-03 Jikco Ltd Method of treating heavy metal in solid waste

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212260A (en) * 1986-03-14 1987-09-18 明星工業株式会社 Method of converting waste matter to ceramics
JPH0461978A (en) * 1990-06-28 1992-02-27 Sanai Fujita Preparation of solidifying material
JPH1111992A (en) * 1997-06-23 1999-01-19 Techno Japan:Kk Cement based material to be solidified or hydraulic material of incineration ash in which harmful heavy metal is insolubilized
JP2000334416A (en) * 1999-05-28 2000-12-05 Bogenpfeil:Kk Low temperature melt-solidifying aggregate for ash dust such as incineration ash and incineration fly ash and low temperature melt-solidifying method of ash dust such as incineration ash and incineration fly ash
JP2004526555A (en) * 2000-12-13 2004-09-02 ソルヴェイ Method for inactivating ash, artificial pozzolan obtained by the method
JP2003185119A (en) * 2001-12-14 2003-07-03 Nippon Steel Corp Processing method for meat and bone meal
JP2007015874A (en) * 2005-07-05 2007-01-25 Ehime Univ Method for producing hydroxyapatite-containing body, hydroxyapatite-zeolite complex, hydroxyapatite, hydroxyapatite-titanium oxide complex and hydroxyapatite-zeolite-titanium oxide complex, and functional fiber
JP2009279481A (en) * 2008-05-20 2009-12-03 Jikco Ltd Method of treating heavy metal in solid waste

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020044458A (en) * 2018-09-14 2020-03-26 株式会社神戸製鋼所 Method for detoxicating coal ash
JP7055943B2 (en) 2018-09-14 2022-04-19 株式会社神戸製鋼所 Detoxification method of coal ash
JP7478053B2 (en) 2020-07-27 2024-05-02 Ube三菱セメント株式会社 Sewage sludge fermentation raw material

Also Published As

Publication number Publication date
JPWO2019009303A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
Kim et al. A simultaneous stabilization and solidification of the top five most toxic heavy metals (Hg, Pb, As, Cr, and Cd)
Mao et al. Inhibition of Cr (III) oxidation during thermal treatment of simulated tannery sludge: The role of phosphate
CN101279825B (en) Method for cooperative reclaiming flyash and sludge in refuse incineration
DK2411339T3 (en) A method for eliminating pollutants from the sewage sludge and the process for the preparation of phosphates and phosphate-containing compounds
CN105924220B (en) Chemical engineering sludge incineration residue adds the technique that compound stabilizer prepares filler
Hu et al. Pyrolysis of the mixture of MSWI fly ash and sewage sludge for co-disposal: Effect of ferrous/ferric sulfate additives
WO2019009303A1 (en) Solid waste treatment method
KR101789701B1 (en) Manufacturing method of potassium chloride using cement bypass dust
TWI646994B (en) Hazardous substance treatment agent
CN103274670B (en) Method for preparing light porous low-toxicity chemical sludge-based filler
JP2019089040A (en) Friedel&#39;s salt removal method and Friedel&#39;s salt removal system
CN1258492C (en) Method for inerting ash, artificial pozzolan obtained by said method
CN105417784A (en) Method for curing solidification treatment of heavy metal-containing sour water
JP4540941B2 (en) Waste stabilization treatment method
JP2008255171A (en) Fixing agent for inorganic harmful component
KR102510079B1 (en) Method for producing carbonate composite using combustion ashes
JP2004261693A (en) Water quality improving agent and its manufacturing method
KR101705248B1 (en) Calcium Chloroaluminate Mineral and Method for Preparing the Same
JP2009095754A (en) Treatment method of boiler ash
JP2007181758A (en) Treatment method and treatment chemical for solid waste
KR102200001B1 (en) Refind Gypsum from phosphate for Cement
JP2006240976A (en) Method for manufacturing phosphorus-calcium composite material, and phosphorus-calcium composite material as well as heavy metal scavenger using phosphorus-calcium composite material
JP6874577B2 (en) Solid waste treatment method
JP4904300B2 (en) Method for dechlorination of husk
JP6850500B1 (en) Composite treatment agent and composite treatment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18827507

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019527728

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18827507

Country of ref document: EP

Kind code of ref document: A1