JP4540941B2 - Waste stabilization treatment method - Google Patents

Waste stabilization treatment method Download PDF

Info

Publication number
JP4540941B2
JP4540941B2 JP2003100138A JP2003100138A JP4540941B2 JP 4540941 B2 JP4540941 B2 JP 4540941B2 JP 2003100138 A JP2003100138 A JP 2003100138A JP 2003100138 A JP2003100138 A JP 2003100138A JP 4540941 B2 JP4540941 B2 JP 4540941B2
Authority
JP
Japan
Prior art keywords
waste
phosphoric acid
fluorine
mixing
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003100138A
Other languages
Japanese (ja)
Other versions
JP2004305833A (en
Inventor
泰典 柴田
和人 丸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2003100138A priority Critical patent/JP4540941B2/en
Publication of JP2004305833A publication Critical patent/JP2004305833A/en
Application granted granted Critical
Publication of JP4540941B2 publication Critical patent/JP4540941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、排煙脱硫石膏、脱水スラッジ、上水汚泥、下水汚泥、砕石スラッジ、汚染土壌、廃石膏ボード、集塵ダスト等の廃棄物の安定化処理方法に関し、より詳細には、これらの廃棄物が含有している微量の有害物質を難溶化し、環境への溶出を抑制する処理方法に関するものである。
【0002】
【従来の技術】
廃棄物中には、環境規制物質として指定されている微量の環境有害元素が含まれている場合が多く、埋立処分時又は有効利用時に問題となる。特に2001年に土壌環境基準に追加されたフッ素、ホウ素等の溶出量が規制値を超える場合が問題となる。
【0003】
廃棄物の中で、副生品として有効利用が進められているものの一つに、副生石膏がある。副生石膏には、石炭、石油などを用いるプラントに設置されている排煙脱硫装置より排出される排脱石膏と、リン酸や酸化チタン等の製造の際に排出される化学石膏とがあり、合計で約550万t/年排出されている。排脱石膏及び化学石膏(以後、単に「石膏」と称する。)は、セメント添加材、石膏ボード原料等として利用されているが、セメント、石膏ボードの生産量は低下する一方で、石膏の排出量は増加している。また、脱水スラッジ等の他の廃棄物においても、環境規制強化などにより、利用に際しての環境有害物質の除去、安定化が問題となり、特に有害物質に含まれるフッ素、ホウ素等の有害元素の除去が課題となっている。従って、廃棄物の用途拡大、利用量向上のためには、フッ素、ホウ素等の難溶化、安定化技術の開発が望まれている。
【0004】
廃棄物に由来するフッ素、ホウ素等の低減方法として、以下のような従来技術が知られている。
【0005】
例えば、フッ素の除去、安定化方法として、次の(1)〜(4)の技術が知られている。
【0006】
(1)フッ素を含む廃棄物を水と混練して泥状とした後、カルシウム化合物(水酸化カルシウムなど)を添加し、100℃以上で水熱処理よりを行うことにより、溶出試験によるフッ素溶出量を10mg/L程度とする技術(特許文献1)。
【0007】
(2)排煙脱硫において、pH5〜6の吸収液のフッ素量に見合うリン酸又はリン酸化合物(リン酸カルシウムなど)を供給し、フッ素をフルオロアパタイトとすることにより、吸収液中のアルミニウム、フッ素濃度を低減する技術(特許文献2)。
【0008】
(3)フッ素イオンを含む廃水に水酸化カルシウムなどの塩基性カルシウム化合物を添加し、次に塩基性カルシウム化合物に対して0.1〜0.4倍当量のリン酸を添加してフルオロアパタイト反応を行なわしめ、次いで鉱酸(硫酸など)の添加により、廃水のpHを7〜10とした後、沈殿物を分離し、廃水のフッ素濃度を2mg/L以下とする技術(特許文献3)。
【0009】
(4)フッ素とセレンを含む排水にリン酸を加えた後に、消石灰などのアルカリ剤にてpHを6〜10に調整してフルオロアパタイトを沈殿させ、更に第一鉄化合物とアルカリ剤を加え、pHを8〜12に調整して水酸化鉄を沈殿させ、固液分離することにより、排水のフッ素濃度を5mg/L以下とする技術(特許文献4)。
【0010】
一方、ホウ素の除去、安定化方法として、次の(5)の技術が知られている。
【0011】
(5)ホウ素含有水に硫酸アルミニウム、消石灰などの添加剤を加え、アルミニウムイオン、硫酸イオン、カルシウムイオンの存在下、pHを10〜12.5となるように調整し、ホウ素をホウ酸アルミン酸硫酸カルシウム塩として沈殿させ、固液分離することにより、排水のホウ素濃度を20mg/L程度とする技術(特許文献5)。
【0012】
また、ホウ素とフッ素を同時に除去、安定化させる方法として、次の(6)の技術が知られている。
【0013】
(6)ホウフッ化物を含有するpH6以下の廃水に、水酸化アルミニウムを添加して曝気し、次いで水酸化カルシウムなどの石灰系アルカリ剤を添加して中和し、塩化鉄などの鉄化合物と硫酸マグネシウムなどのマグネシウム化合物とを添加し、pHを8以上に維持した後、固液分離処理することにより、廃水のホウ素、フッ素の濃度を数mg/L程度とする技術(特許文献6)。
【0014】
しかしながら、上記従来の技術では、安全性、安定性及び得られる処理物の品質において、以下に示す問題点を有している。
【0015】
まず、安全性の点については、有害元素であるフッ素及びホウ素の溶出液中に於ける濃度を同時に土壌環境基準(フッ素:0.8mg/L以下、ホウ素:1.0mg/L以下)以下にすることはできないという問題がある。また、安定性の点については、廃棄物の有害元素の濃度が変われば、処理後の濃度も変わり、確実性に欠けるという問題がある。更に、得られる処理物の品質の点については、溶出液pHが排水基準の5.8〜8.6を満足せず、廃棄物の処理後の有効利用が不可能となるという問題がある。また、溶解性の不純物が残存するので、処理物の品質が低下し、かつ変動するという問題点も抱えている。
【0016】
【特許文献1】
特開昭52−136882号公報
【特許文献2】
特開昭58−49422号公報
【特許文献3】
特開平6−343977号公報
【特許文献4】
特開2002−316172号公報
【特許文献5】
特開2002−233881号公報
【特許文献6】
特開2000−189980号公報
【0017】
【発明が解決しようとする課題】
本発明は上記の諸点に鑑みなされたものであり、本発明の目的は、有害元素であるフッ素、ホウ素等の溶出を同時に低減し、廃棄物の処理前の有害元素の濃度に拘わらず、得られる処理物からの溶出液中に於ける有害元素や溶解性の不純物の濃度を一定基準以下に確実に低減させ、しかも、処理後の廃棄物の有効利用が可能となる廃棄物の安定化処理方法を提供することであり、また、そのような処理物を提供することである。
【0018】
【課題を解決するための手段】
本発明は、スラリ、ケーキ、これらの乾燥物等の性状を為す廃棄物に、リン酸及びアルカリ物質を所定の順序で加えて撹拌・混練を行い、必要に応じて固液分離して得られる固形物に対し、所定温度で所定時間養生を行う養生工程を設けることにより、廃棄物に微量含まれるフッ素、ホウ素等の有害元素を難溶化して土壌環境基準値以下とすることができることを見出したことに基づいて為されたものである。
【0019】
即ち、本発明の廃棄物の安定化処理方法は、廃棄物に含まれる環境有害物質を難溶化するための処理方法であって、前記廃棄物にリン酸又はその水溶液を加えて混合処理を行うリン酸添加混合工程と、前記リン酸の添加混合処理を行った廃棄物にアルカリ物質を加えて混合処理を行うアルカリ添加混合工程と、得られた廃棄物を静置することにより、前記環境有害物質の難溶化を促進する養生工程とを包含することを特徴とする。
【0020】
また、他の実施形態では、前記廃棄物にリン酸及びアルカリ物質の混合物又はその水溶液若しくはスラリを加えて混合処理を行う酸アルカリ添加混合工程と、得られた廃棄物を静置することにより、前記環境有害物質の難溶化を促進する養生工程とを包含することを特徴とする。
【0021】
更なる実施形態では、前期廃棄物にアルカリ物質又はその水溶液を加えて混合処理を行うアルカリ添加混合工程と、前記廃棄物にリン酸又はその水溶液加えて混合処理を行うリン酸添加混合工程と、得られた廃棄物を静置することにより、前記環境有害物質の難溶化を促進する養生工程とを包含することを特徴とする。
【0022】
上記に於いては、前記養生工程に先だって、前記廃棄物の固液分離を行う固液分離工程を更に設けてもよい。
【0023】
ここで、本発明が対象とする前記廃棄物は、スラリ、ケーキ又はこれらの乾燥物である。
【0024】
また、上記のリン酸添加混合工程後、酸アルカリ添加混合工程、又はアルカリ添加混合工程後の廃棄物は、それぞれ含水率4〜30重量%のケーキであることが好ましい。
【0025】
前記リン酸の添加量は、前記廃棄物の固形分100重量部に対して、0.1〜5重量部、好ましくは0.2〜3重量部である。
【0026】
前記アルカリ物質の添加量は、前記リン酸の0.1〜1倍当量、好ましくは0.2〜0.8倍当量である。
【0027】
また、リン酸の添加混合とアルカリ物質の添加混合とを別々に行う構成に於いては、前記リン酸添加混合工程及び前記アルカリ添加混合工程に於ける混合温度は常温〜95℃、好ましくは15〜60℃の範囲であり、混合時間は1〜60分、好ましくは2〜30分である。
【0028】
また、リン酸の添加混合とアルカリ物質の添加混合とを同時に行う構成に於いては、前記酸アルカリ添加混合工程に於ける混合温度は、常温〜95℃、好ましくは15〜60℃の範囲であり、混合時間は1〜60分、好ましくは2〜30分である。
【0029】
前記養生工程は、常温〜95℃、好ましくは15〜60℃の温度範囲で、10分〜36時間、好ましくは20分〜24時間行われる。
【0030】
本発明が対象とする廃棄物としては、排煙脱硫石膏、脱水スラッジ、上水汚泥、下水汚泥、砕石スラッジ、汚染土壌、廃石膏ボード、集塵ダスト等を挙げることができる。
【0031】
上記アルカリ物質としては、消石灰、生石灰、炭酸カルシウム、水酸化マグネシウム、スラグ粉末、セメント、水酸化ナトリウム、水酸化カリウム、アルミン酸ナトリウム、水ガラス、炭酸ナトリウム、炭酸カリウム等を例示することができる。
【0032】
また、本発明が対象とする環境有害物質としては、含フッ素化合物、含ホウ素化合物、これらの混合物等を挙げることができる。
【0033】
本発明の廃棄物の安定化処理物は、上記の廃棄物の安定化処理方法によって得られ、土木建築資材としてとして有用なものである。
【0034】
【発明の実施の形態】
以下、本発明の実施の形態について、適宜図面を参照しながら説明する。なお、本発明は下記の実施の形態に限定されるものでなく、適宜変更して実施可能なものである。
【0035】
本発明に於いては、得られる廃棄物の安定化処理物の安全性、安定性及び得られる処理物の品質は、以下のような作用機序によって確保される。
【0036】
(安全性)
スラリ、ケーキ、乾燥状態等の性状の廃棄物に対して、リン酸又はリン酸及びアルカリ物質の混合物を添加し、酸性側で撹拌・混練することにより、フッ素などが固着している炭酸カルシウム等を分解し、フルオロアパタイトとしてフッ素などが固定されることにより、安全性確保される。ただし、処理物が酸性側であると未反応のリン酸が残存するので、アルカリ物質を加えて撹拌・混練することにより、リン酸はアパタイトなどの難溶物となる一方、廃棄物より新たに溶出してきた物質がアパタイト等と反応し、フロオロアパタイトやホウ酸アルミニウム酸塩などを生成し、これにより環境有害物質が固定される。アルカリ物質はリン酸の0.1〜1倍当量の範囲の添加で良好な水和反応が確保され、処理後の廃棄物の溶出液のpHが排水基準(5.8〜8.6)を満たすとともに、有害物質の溶出量が土壌環境基準を満たし、これにより安全性が確保される。このような作用機序は、アルカリ物質を先に添加し、続いてリン酸を添加する場合にも発揮される。
【0037】
(安定性)
スラリ、ケーキ、乾燥状態等の性状の廃棄物に対して、リン酸又はリン酸及びアルカリ物質の混合物を添加し、有害物をアパタイトなどで固定した後、アルカリ物質を加えることにより、過剰のリン酸を難溶化する一方、廃棄物よりアルミニウム等の溶出を促進し、フッ素、ホウ素等の固定化をより促進することにより、安定性が確保される。これにより、有害物の含有量の変動による処理効果の変動が小さく、有害物の含有量を一定基準以下に確実に低減させて、常に安定した処理物が得られる。更に、常温〜95℃で養生することにより、水和反応が進行するので、より確実に安定化を図ることができる。このような作用機序は、アルカリ物質を先に添加し、続いてリン酸を添加する場合にも発揮される。なお、養生の水蒸気分圧は高い方が好ましい。これは、処理した廃棄物の水分の蒸発を抑制することができ、フルオロアパタイトを生成する水和反応が継続的に進行するため、養生効果に優れているからである。
【0038】
(品質)
リン酸、アルカリ物質による処理又はリン酸とアルカリ物質の混合物による処理と、養生処理との組み合わせで有害物の安定化を図ることにより、得られる処理物の品質が確保される。これにより、処理物からの溶出液のpHは排水基準を満たし、しかも有害物の溶出量が土壌環境基準を確実に満たすこととなる。また、廃棄物に対して少量の添加量で有害物等を難溶物として安定化するので、溶解物質等により、得られる処理物の長期的な品質が低下することはない。
【0039】
図1は、本発明の実施の第一形態に係る廃棄物の安定化処理方法を実施する装置の概略構成を示している。以下では排煙脱硫石膏を例に説明する。
【0040】
脱水装置11へ入る前の石膏スラリの段階で、石膏スラリの固形分100重量部に対し、リン酸を0.1〜5重量部添加し、撹拌装置10を用いて常温〜95℃で1〜30分撹拌してpHが4〜7のスラリを得る。次に、リン酸の0.1〜1倍当量のアルカリ物質を加えてスラリのpHを5〜9とし、撹拌装置10を用いて常温〜95℃で1〜60分撹拌処理を行う。次に、脱水装置11を用いて固液分離した後、養生室12に導入して養生を行う。養生室12での養生は、常温〜95℃で10分〜36時間静置することにより行う。一般に、養生温度が高ければ養生時間は短くすることができ、養生温度が低ければ養生時間は長くなる。この養生工程により、廃棄物に含まれるフッ素、ホウ素等の環境有害物質の難溶化を促進し、安定化した高品質の処理物を得る。
【0041】
上記においては、リン酸の添加量が0.1重量部未満であると、反応の進行が不十分とあり、5重量部を超えると未反応のリン酸が多く残存し、アルカリ物質の添加量が多くなり、経済的でない。アルカリ物質の添加量がリン酸の0.1倍当量未満であると、未反応のリン酸が多く残存するとともに、水和反応の進行が不十分となり、1倍当量を超えるとpHが高くなり、処理後の溶出液pHが排水基準を満たさなくなるとともに、経済的でない。リン酸添加後及びアルカリ物質添加後の撹拌時間は1分より短いと反応の進行が不十分であり、60分より長くなると大きな設備が必要となり、実用的ではない。リン酸添加後及びアルカリ物質添加後の撹拌温度及び養生温度が95℃を超えると設備コストが高くなり、実用的ではない。また、リン酸添加後のスラリpHがアルカリ側であると、炭酸カルシウムなどの分解が進行せず、pHが低すぎるとアルカリ物質が多く必要となり、経済的でない。
【0042】
また、上記において養生時間が10分未満であると反応進行が不十分となり、また、36時間を超えると大きな養生室が必要となり、実用的ではない。本実施形態に於いては、脱水装置11から排出される固液分離後の排水はリン酸を含まないので、再度排煙脱硫装置の吸収液として使用することができる。
【0043】
図2は、本発明の第二の実施形態に係る廃棄物安定化処理方法を実施する装置の概略構成を示している。以下では排脱石膏を例に説明する。
【0044】
まず、石膏スラリの固形分100重量部に対し、リン酸を0.1〜5重量部とリン酸の0.1〜1倍当量のアルカリ物質を予め予備撹拌装置13で混合してpHが9未満のスラリ状態の水溶液を調製する。次に、脱水装置15に入る前の段階で、撹拌装置14に石膏スラリとリン酸及びアルカリ物質のスラリとを投入して、常温〜95℃で1〜60分撹拌処理を行う。次に、脱水装置15を用いて固液分離した後、養生室16に導入して養生を行う。養生室12での養生は、常温〜95℃で10分〜36時間静置することにより行う。リン酸、アルカリ物質等の添加量、混練時間、養生時間などの影響は前記と同様である。これにより、廃棄物に含まれるフッ素、ホウ素等の環境有害物質を難溶化し、安定化した高品質の処理物を得る。
【0045】
リン酸とアルカリ物質との混合スラリのpHは、石膏に含まれる炭酸カルシウムなどの不純物量に応じて調整することが望ましく、不純物が多い場合にはpHを酸性側にすることで、安定化効果を向上させることができる。
【0046】
図3は、本発明の第三の実施形態に係る廃棄物の安定化処理方法を実施する装置の概略構成を示している。本実施形態は、脱水後のケーキの性状の廃棄物、又は乾燥状態で排出される廃棄物を想定したものである。以下では排煙脱硫石膏を例に説明する。混練装置17に脱水後のケーキの性状の石膏を導入し、その固形分100重量部に対して、リン酸及び必要に応じて水を加えて、含水率4〜30%に調整する。次に、常温〜95℃で1〜60分間、混練装置17を用いて混練した後、リン酸の0.1〜1倍当量のアルカリ物質を加えて、1〜60分間更に混練処理を行う。次に、常温〜95℃にて10分〜36時間、養生室18にて養生を行う。これにより、廃棄物に含まれるフッ素、ホウ素等の環境有害物質を難溶化し、安定化した高品質の処理物を得る。リン酸、アルカリ物質等の添加量、混練時間、養生時間などの影響は前記と同様である。リン酸添加後の混練物の含水率が4%未満であると、水和反応の進行が不十分となり、30%を超えるとスラリ状となり、ハンドリング困難となる。
【0047】
図4は、本発明の第四の実施形態に係る廃棄物の安定化処理方法を実施する装置の概略構成を示している。本実施形態は、上記の第三の実施形態と同様に、脱水後のケーキの性状の廃棄物、又は乾燥状態で排出される廃棄物を想定したものである。以下では排煙脱硫石膏を例に説明する。まず、脱水後の石膏の固形分100重量部に対して、リン酸を0.1〜5重量部とリン酸の0.1〜1倍当量のアルカリ物質を予め予備撹拌装置19で混合してpHが9未満のスラリ状態の水溶液を調製する。次に、混練装置20に石膏スラリとリン酸及びアルカリ物質のスラリとを投入し、含水率4〜30%に調整し、常温〜95℃で1〜60分、混練装置20を用いて混練処理を行う。次に、養生室21に導入して養生を行う。養生室21での養生は、常温〜95℃にて10分〜36時間静置することにより行う。これにより、廃棄物に含まれるフッ素、ホウ素等の環境有害物質を難溶化し、安定化した高品質の処理物を得る。リン酸、アルカリ物質等の添加量、混練時間、養生時間などの影響は前記と同じである。
【0048】
なお、上記では、副生石膏を例に挙げて説明したが、本発明は、脱水スラッジ、上水汚泥、下水汚泥、砕石スラッジ、汚染土壌、廃石膏ボードおよび集塵ダスト等の廃棄物に対しても有効である。
【0049】
また、上記各実施形態では、廃棄物にリン酸の添加混合処理を行った後にアルカリ物質を加えて混合処理する場合と、廃棄物にリン酸及びアルカリ物質の混合スラリを加えて混合処理を行う場合とについて説明したが、本発明に於いては、廃棄物にアルカリ物質を加えて混合処理を行った後にリン酸の添加混合処理を行ってもよい。フッ素、ホウ素等を難溶化する効果としては、リン酸及びアルカリ物質の混合スラリを加えて混合処理を行う場合が最も高く、リン酸の添加混合処理を行った後にアルカリ物質を加えて混合処理する場合がその次に高くなる。
【0050】
【実施例】
下記の表1に示す組成の石膏を例にとり、本発明の実施例、参考例及び比較例について説明する。
【0051】
【表1】

Figure 0004540941
【0052】
参考例1)
25%石膏スラリの固形分100重量部に対し、リン酸0.5重量部を添加してスラリのpHを5.6とし、常温(20℃)で5分間撹拌を行った。次に、リン酸の0.66倍当量に相当する0.25重量部の消石灰をアルカリ物質として添加し、更に5分間撹拌を行ってスラリのpHを7.0とした。次に、固液分離を行い、得られた固形物を常温(20℃)で1時間養生を行うことにより、安定化石膏を製造した。
【0053】
安定化石膏の溶出試験結果(環境庁告示46号準拠)は、pHが7.2、フッ素溶出量が0.2mg/L以下、ホウ素の溶出量が0.1mg/L以下で、排水基準(pH:5.8〜8.6)、土壌環境基準(フッ素:0.8mg/L以下、ホウ素:1mg/L以下)を満たしていた。なお、他の有害重金属(Pb,Cd,As,Se,Cr6+,Hg)も基準値を満たしていた。
【0054】
参考例2)
脱水後の石膏ケーキ(含水率:9.1%)の固形分100重量部に対し、リン酸0.5重量部を添加して、常温(20℃)で3分間混練処理を行った。次に、リン酸の0.53倍当量に相当する0.20重量部の生石灰をアルカリ物質として添加し、更に常温(20℃)で3分間混練を行って、常温(20℃)で10時間養生を行うことにより、安定化石膏を製造した。
【0055】
安定化石膏の溶出試験結果(環境庁告示46号準拠)は、pHが7.1、フッ素溶出量が0.2mg/L以下、ホウ素の溶出量が0.1mg/L以下で、排水基準(pH:5.8〜8.6)、土壌環境基準(フッ素:0.8mg/L以下、ホウ素:1mg/L以下)を満たしていた。なお、他の有害重金属(Pb,Cd,As,Se,Cr6+,Hg)も基準値を満たしていた。
【0056】
(実施例
脱水後の石膏ケーキ(含水率:9.1%)の固形分100重量部に対して0.6重量部のリン酸に、リン酸の0.88倍当量に相当する0.30重量の生石灰を添加し、常温(20℃)で3分間撹拌処理してスラリを得た。このスラリを前述の石膏ケーキに投入し、常温で3分間混練後、30℃で2時間養生を行い、安定化石膏を製造した。
【0057】
安定化石膏の溶出試験結果(環境庁告示46号準拠)は、pHが7.3、フッ素溶出量が0.2mg/L以下、ホウ素の溶出量が0.1mg/L以下で、排水基準(pH:5.8〜8.6)、土壌環境基準(フッ素:0.8mg/L以下、ホウ素:1mg/L以下)を満たしていた。なお、他の有害重金属(Pb,Cd,As,Se,Cr6+,Hg)も基準値を満たしていた。
【0058】
(比較例1)
脱水後の石膏ケーキ(含水率:9.1%)の固形分100重量部に対し、消石灰0.4重量部を添加して、常温(20℃)で10分間混練処理を行い、安定化石膏を製造した。
【0059】
安定化石膏の溶出試験結果(環境庁告示46号準拠)は、pHが11.4、フッ素溶出量が3.1mg/L、ホウ素の溶出量が0.1mg/L以下で、排水基準(pH:5.8〜8.6)、土壌環境基準(フッ素:0.8mg/L以下、ホウ素:1mg/L以下)を満たしていなかった。
【0060】
(比較例2)
脱水後の石膏ケーキ(含水率:9.1%)固形分100重量部に対し、リン酸1重量部を添加して、常温(20℃)で10分間混練処理を行い、安定化石膏を製造した。
【0061】
安定化石膏の溶出試験結果(環境庁告示46号準拠)は、pHが5.6、フッ素溶出量が1.5mg/L、ホウ素の溶出量が0.3mg/Lで、排水基準(pH:5.8〜8.6)、土壌環境基準(フッ素:0.8mg/L以下、ホウ素:1mg/L以下)を満たしていなかった。
【0062】
次に、排水処理後の脱水スラッジ、廃棄された石膏ボードを例にとって他の実施例を説明する。
【0063】
(実施例
脱水スラッジ(含水率:23%、フッ素、ホウ素の溶出量が土壌環境基準を超えるもの)の固形分100重量部に対し、リン酸1重量部を添加して、5分間混練処理を行った。次に、リン酸の0.92倍当量に相当する0.7重量部の消石灰を添加し、更に5分間混練を行って、60℃、相対湿度80%下で1時間養生を行い、安定化スラッジを製造した。
【0064】
安定化スラッジの溶出試験結果(環境庁告示46号準拠)は、pHが7.4、フッ素溶出量が0.2mg/L以下、ホウ素の溶出量が0.1mg/L以下で、排水基準(pH:5.8〜8.6)、土壌環境基準(フッ素:0.8mg/L以下、ホウ素:1mg/L以下)を満たしていた。なお、他の有害重金属(Pb,Cd,As,Se,Cr6+,Hg)も基準値を満たしていた。
【0065】
参考例3
廃石膏ボード(フッ素溶出量:3.6mg/L)を170℃に焼成し、破砕を行って半水石膏粉末とした後、この半水石膏100重量部に対し、リン酸0.8重量部とリン酸の0.79倍当量に相当する消石灰0.48重量部と水との混合スラリ65重量部を添加し、1.5分間混練を行った。次に、常温で2時間養生を行って硬化させた。
【0066】
硬化した石膏の溶出試験結果(環境庁告示46号準拠)は、pHが7.2、フッ素溶出量が0.2mg/L以下で、排水基準(pH:5.8〜8.6)、土壌環境基準(フッ素:0.8mg/L以下)を満たしていた。なお、他の有害重金属(Pb,Cd,As,Se,Cr6+,Hg,B)も基準値を満たしていた。
【0067】
【発明の効果】
本発明によれば、廃棄物に微量含まれる含フッ素化合物、含ホウ素化合物等に由来するフッ素、ホウ素等の有害元素を同時に難溶化することができ、その溶出を低減させることができる。しかも、廃棄物の処理前の有害元素の濃度に拘わらず、処理後の溶出液中に於ける有害元素や溶解性の不純物の濃度を一定基準以下に確実に低減させることができる。また、本発明の安定化処理方法により、処理後の廃棄物の有効利用が可能となる。
【図面の簡単な説明】
【図1】本発明の実施の第一形態に係る廃棄物の安定化処理方法を実施する装置の概略構成図である。
【図2】本発明の第二の実施形態に係る廃棄物安定化処理方法を実施する装置の概略構成図である。
【図3】本発明の第三の実施形態に係る廃棄物の安定化処理方法を実施する装置の概略構成図である。
【図4】本発明の第四の実施形態に係る廃棄物の安定化処理方法を実施する装置の概略構成図である。
【符号の説明】
11 脱水装置
12 養生室
13 予備撹拌装置
14 撹拌装置
15 脱水装置
16 養生室
17 混練装置
18 養生室
19 予備撹拌装置
20 混練装置
21 養生室[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for stabilizing waste such as flue gas desulfurization gypsum, dewatered sludge, dewatered sludge, sewage sludge, crushed sludge, contaminated soil, waste gypsum board, and dust collection dust. The present invention relates to a treatment method for making a trace amount of harmful substances contained in wastes slightly soluble and suppressing elution into the environment.
[0002]
[Prior art]
Wastes often contain trace amounts of environmentally hazardous elements that are designated as environmentally regulated substances, which is problematic during landfill disposal or effective use. In particular, there is a problem when the amount of elution of fluorine, boron, etc. added to the soil environment standard in 2001 exceeds the regulation value.
[0003]
By-product gypsum is one of the wastes that are being effectively used as a by-product. By-product gypsum includes exhaust gypsum discharged from flue gas desulfurization equipment installed in plants using coal, oil, etc., and chemical gypsum discharged during the production of phosphoric acid, titanium oxide, etc. A total of about 5.5 million tons / year is discharged. Elimination gypsum and chemical gypsum (hereinafter simply referred to as “gypsum”) are used as cement additives, gypsum board raw materials, etc., but the production volume of cement and gypsum board decreases, while gypsum discharge The amount is increasing. Also, with other wastes such as dewatered sludge, the removal and stabilization of environmental hazardous substances during use has become a problem due to stricter environmental regulations, and in particular, removal of harmful elements such as fluorine and boron contained in harmful substances It has become a challenge. Therefore, in order to expand the use of waste and improve the amount of use, development of a technique for making it difficult to solubilize and stabilize fluorine, boron and the like is desired.
[0004]
The following conventional techniques are known as methods for reducing fluorine, boron, and the like derived from waste.
[0005]
For example, the following techniques (1) to (4) are known as methods for removing and stabilizing fluorine.
[0006]
(1) After the waste containing fluorine is kneaded with water to form a mud, a calcium compound (calcium hydroxide, etc.) is added, and hydrothermal treatment is performed at 100 ° C or higher, so that the amount of fluorine eluted by the dissolution test Is a technique for making the amount of about 10 mg / L (Patent Document 1).
[0007]
(2) In flue gas desulfurization, supply phosphoric acid or phosphoric acid compound (calcium phosphate, etc.) that matches the amount of fluorine in the absorbing solution at pH 5-6, and convert fluorine to fluoroapatite, so that the concentration of aluminum and fluorine in the absorbing solution (Patent document 2) which reduces this.
[0008]
(3) Fluoroapatite reaction by adding basic calcium compound such as calcium hydroxide to waste water containing fluorine ions, then adding 0.1-0.4 times equivalent phosphoric acid to basic calcium compound Next, the pH of the wastewater is adjusted to 7 to 10 by adding a mineral acid (such as sulfuric acid), and then the precipitate is separated to make the fluorine concentration of the wastewater 2 mg / L or less (Patent Document 3).
[0009]
(4) After adding phosphoric acid to wastewater containing fluorine and selenium, the pH is adjusted to 6 to 10 with an alkaline agent such as slaked lime to precipitate fluoroapatite, and a ferrous compound and an alkaline agent are further added. The technique which adjusts pH to 8-12, precipitates iron hydroxide, solid-liquid separates, and makes the fluorine density | concentration of waste water 5 mg / L or less (patent document 4).
[0010]
On the other hand, the following technique (5) is known as a method for removing and stabilizing boron.
[0011]
(5) Additives such as aluminum sulfate and slaked lime to boron-containing water, and adjust the pH to 10 to 12.5 in the presence of aluminum ions, sulfate ions, calcium ions, and boron as aluminate borate The technique which makes the boron density | concentration of a waste_water | drain become about 20 mg / L by making it precipitate as calcium sulfate salt and carrying out solid-liquid separation (patent document 5).
[0012]
The following technique (6) is known as a method for simultaneously removing and stabilizing boron and fluorine.
[0013]
(6) Aluminum hydroxide is added to a waste water containing borofluoride with a pH of 6 or less and aerated, and then neutralized by adding a lime-based alkaline agent such as calcium hydroxide, and iron compounds such as iron chloride and sulfuric acid. A technique in which the concentration of boron and fluorine in wastewater is set to about several mg / L by adding a magnesium compound such as magnesium and maintaining the pH at 8 or higher, followed by solid-liquid separation treatment (Patent Document 6).
[0014]
However, the above conventional techniques have the following problems in terms of safety, stability, and quality of the processed product.
[0015]
First, regarding safety, the concentration in the eluate of fluorine and boron, which are harmful elements, is simultaneously reduced to the soil environment standard (fluorine: 0.8 mg / L or less, boron: 1.0 mg / L or less). There is a problem that you can not do. In addition, regarding the stability, if the concentration of harmful elements in the waste changes, the concentration after treatment also changes, and there is a problem of lack of certainty. Furthermore, with respect to the quality of the processed product to be obtained, there is a problem that the pH of the eluate does not satisfy the drainage standard of 5.8 to 8.6, and effective use after waste processing becomes impossible. Further, since soluble impurities remain, there is a problem that the quality of the processed product is deteriorated and fluctuates.
[0016]
[Patent Document 1]
Japanese Patent Laid-Open No. 52-136882
[Patent Document 2]
JP 58-49422 A
[Patent Document 3]
Japanese Patent Laid-Open No. 6-343977
[Patent Document 4]
JP 2002-316172 A
[Patent Document 5]
JP 2002-233881 A
[Patent Document 6]
JP 2000-189980 A
[0017]
[Problems to be solved by the invention]
The present invention has been made in view of the above points, and an object of the present invention is to reduce the elution of harmful elements such as fluorine and boron at the same time, regardless of the concentration of harmful elements before waste treatment. Waste stabilization process that reliably reduces the concentration of harmful elements and soluble impurities in the eluate from the treated product to below a certain standard and enables effective use of the treated waste. It is to provide a method and to provide such a treatment.
[0018]
[Means for Solving the Problems]
The present invention is obtained by adding phosphoric acid and an alkaline substance in a predetermined order to a waste having properties such as slurry, cake, and dried product thereof, stirring and kneading, and solid-liquid separation as necessary. It has been found that by providing a curing process for curing solid materials at a predetermined temperature for a predetermined time, harmful elements such as fluorine and boron contained in a small amount of waste can be made slightly soluble so as to be below the soil environmental standard value. It was made based on that.
[0019]
In other words, the waste stabilization method of the present invention is a treatment method for making environmentally hazardous substances contained in waste hardly soluble, and phosphoric acid or an aqueous solution thereof is added to the waste for mixing treatment. A phosphoric acid addition mixing step, an alkali addition mixing step in which an alkaline substance is added to the waste subjected to the phosphoric acid addition mixing treatment, and a mixture treatment is performed, and the obtained waste is left to stand to And a curing process for promoting the insolubilization of the substance.
[0020]
In another embodiment, an acid-alkali addition mixing step of adding a mixture of phosphoric acid and an alkaline substance or an aqueous solution or slurry thereof to the waste to perform a mixing process, and leaving the obtained waste, And a curing process that promotes poor solubilization of the environmentally hazardous substances.
[0021]
In a further embodiment, an alkali addition mixing step in which an alkaline substance or an aqueous solution thereof is added to the waste in the previous period to perform mixing treatment, and a phosphoric acid addition mixing step in which phosphoric acid or an aqueous solution thereof is added to the waste to perform a mixing treatment, And a curing step for promoting the insolubilization of the environmentally hazardous substance by allowing the obtained waste to stand still.
[0022]
In the above, a solid-liquid separation step for performing solid-liquid separation of the waste may be further provided prior to the curing step.
[0023]
Here, the waste targeted by the present invention is a slurry, a cake, or a dried product thereof.
[0024]
Moreover, it is preferable that the waste after an acid-alkali addition mixing process or an alkali addition mixing process after said phosphoric acid addition mixing process is a cake with a moisture content of 4-30 weight%, respectively.
[0025]
The addition amount of the phosphoric acid is 0.1 to 5 parts by weight, preferably 0.2 to 3 parts by weight with respect to 100 parts by weight of the solid content of the waste.
[0026]
The addition amount of the alkaline substance is 0.1 to 1 times equivalent, preferably 0.2 to 0.8 times equivalent to the phosphoric acid.
[0027]
In addition, in the configuration in which the addition and mixing of phosphoric acid and the addition and mixing of the alkaline substance are performed separately, the mixing temperature in the phosphoric acid addition and mixing step and the alkali addition and mixing step is normal temperature to 95 ° C., preferably 15 The mixing time is 1 to 60 minutes, preferably 2 to 30 minutes.
[0028]
In addition, in the configuration in which the addition and mixing of phosphoric acid and the addition and mixing of the alkaline substance are performed simultaneously, the mixing temperature in the acid-alkali addition and mixing step is in the range of normal temperature to 95 ° C, preferably 15 to 60 ° C. Yes, the mixing time is 1 to 60 minutes, preferably 2 to 30 minutes.
[0029]
The curing step is performed at a temperature ranging from room temperature to 95 ° C., preferably 15 to 60 ° C., for 10 minutes to 36 hours, preferably 20 minutes to 24 hours.
[0030]
Examples of the waste targeted by the present invention include flue gas desulfurization gypsum, dewatered sludge, clean water sludge, sewage sludge, crushed sludge, contaminated soil, waste gypsum board, and dust collection dust.
[0031]
Examples of the alkaline substance include slaked lime, quick lime, calcium carbonate, magnesium hydroxide, slag powder, cement, sodium hydroxide, potassium hydroxide, sodium aluminate, water glass, sodium carbonate, potassium carbonate and the like.
[0032]
In addition, examples of environmentally hazardous substances targeted by the present invention include fluorine-containing compounds, boron-containing compounds, and mixtures thereof.
[0033]
The waste stabilization treatment product of the present invention is obtained by the above-described waste stabilization treatment method, and is useful as a civil engineering and building material.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate. In addition, this invention is not limited to the following embodiment, It can implement by changing suitably.
[0035]
In the present invention, the safety and stability of the stabilized treated product obtained and the quality of the obtained treated product are ensured by the following mechanism.
[0036]
(safety)
Calcium carbonate etc. to which fluorine etc. are fixed by adding phosphoric acid or a mixture of phosphoric acid and alkaline substance to slurry with properties such as slurry, cake, dry state, stirring and kneading on the acidic side Is secured and fluorine is fixed as fluoroapatite to ensure safety. However, since unreacted phosphoric acid remains if the treated product is on the acidic side, phosphoric acid becomes a hardly soluble material such as apatite by adding an alkaline substance and stirring and kneading, while newer than waste. The eluted substance reacts with apatite and the like to produce fluoroapatite, boric acid aluminum salt, and the like, thereby fixing environmentally hazardous substances. Alkaline substances ensure good hydration by adding 0.1 to 1 equivalents of phosphoric acid, and the pH of the waste eluate after treatment meets the wastewater standard (5.8 to 8.6). As well as satisfying, the leaching amount of toxic substances meets the soil environmental standards, thereby ensuring safety. Such a mechanism of action is also exhibited when an alkaline substance is added first and then phosphoric acid is added.
[0037]
(Stability)
By adding phosphoric acid or a mixture of phosphoric acid and alkaline substance to wastes with properties such as slurry, cake, and dry state, fixing harmful substances with apatite, etc., then adding alkaline substance, excess phosphorus is added. While the acid is hardly soluble, stability is ensured by promoting the elution of aluminum and the like from the waste and further promoting the fixation of fluorine and boron. Thereby, the fluctuation of the treatment effect due to the fluctuation of the content of the harmful substance is small, and the content of the harmful substance is surely reduced to a certain standard or less, so that a stable treated product can be always obtained. Furthermore, since the hydration reaction proceeds by curing at room temperature to 95 ° C., stabilization can be achieved more reliably. Such a mechanism of action is also exhibited when an alkaline substance is added first and then phosphoric acid is added. In addition, the one where the water vapor partial pressure of curing is high is preferable. This is because the moisture of the treated waste can be suppressed and the hydration reaction for producing fluoroapatite proceeds continuously, so that the curing effect is excellent.
[0038]
(quality)
Stabilization of harmful substances by a combination of treatment with phosphoric acid, alkaline substance or treatment with a mixture of phosphoric acid and alkaline substance, and curing treatment ensures the quality of the obtained treated product. As a result, the pH of the eluate from the treated product satisfies the drainage standard, and the leaching amount of harmful substances reliably satisfies the soil environment standard. In addition, since harmful substances and the like are stabilized as hardly soluble substances with a small addition amount with respect to the waste, the long-term quality of the processed product is not deteriorated by dissolved substances or the like.
[0039]
FIG. 1 shows a schematic configuration of an apparatus for carrying out a waste stabilization method according to the first embodiment of the present invention. In the following, the flue gas desulfurization gypsum will be described as an example.
[0040]
At the stage of the gypsum slurry before entering the dehydrator 11, 0.1 to 5 parts by weight of phosphoric acid is added to 100 parts by weight of the solid content of the gypsum slurry, and 1 to 1 at room temperature to 95 ° C. using the stirrer 10. Stir for 30 minutes to obtain a slurry with a pH of 4-7. Next, 0.1 to 1-fold equivalent of an alkaline substance of phosphoric acid is added to adjust the pH of the slurry to 5 to 9, and stirring is performed at room temperature to 95 ° C. for 1 to 60 minutes using the stirring device 10. Next, after solid-liquid separation using the dehydrating apparatus 11, it is introduced into the curing room 12 and cured. Curing in the curing room 12 is performed by standing at room temperature to 95 ° C. for 10 minutes to 36 hours. Generally, the curing time can be shortened when the curing temperature is high, and the curing time is long when the curing temperature is low. This curing process promotes the insolubilization of environmentally hazardous substances such as fluorine and boron contained in the waste, and obtains a stabilized and high-quality processed product.
[0041]
In the above, when the addition amount of phosphoric acid is less than 0.1 parts by weight, the progress of the reaction is insufficient, and when it exceeds 5 parts by weight, a large amount of unreacted phosphoric acid remains, and the addition amount of the alkaline substance Is not economical. If the addition amount of the alkaline substance is less than 0.1 times equivalent of phosphoric acid, a large amount of unreacted phosphoric acid remains, and the progress of the hydration reaction is insufficient, and if it exceeds 1 time equivalent, the pH increases. The eluate pH after the treatment does not satisfy the drainage standard and is not economical. If the stirring time after addition of phosphoric acid and after addition of alkaline substance is shorter than 1 minute, the progress of the reaction is insufficient, and if it is longer than 60 minutes, a large facility is required, which is not practical. If the stirring temperature and curing temperature after addition of phosphoric acid and after addition of alkaline substance exceed 95 ° C., the equipment cost increases, which is not practical. Further, if the slurry pH after addition of phosphoric acid is on the alkali side, decomposition of calcium carbonate or the like does not proceed, and if the pH is too low, a large amount of alkaline substance is required, which is not economical.
[0042]
In the above, if the curing time is less than 10 minutes, the reaction progress is insufficient, and if it exceeds 36 hours, a large curing room is required, which is not practical. In the present embodiment, the waste water after solid-liquid separation discharged from the dehydrator 11 does not contain phosphoric acid, and therefore can be used again as an absorbing liquid for the flue gas desulfurization apparatus.
[0043]
FIG. 2 shows a schematic configuration of an apparatus for performing the waste stabilization processing method according to the second embodiment of the present invention. In the following, an explanation will be given by taking drainage gypsum as an example.
[0044]
First, 0.1 to 5 parts by weight of phosphoric acid and 0.1 to 1-fold equivalent of phosphoric acid are mixed in advance with the pre-stirrer 13 to 100 parts by weight of the solid content of the gypsum slurry, and the pH is 9 Prepare an aqueous solution of less than slurry state. Next, in the stage before entering the dehydrator 15, the gypsum slurry and the slurry of phosphoric acid and alkaline substance are put into the agitator 14, and the agitation is performed at normal temperature to 95 ° C for 1 to 60 minutes. Next, after performing solid-liquid separation using the dehydrating apparatus 15, it is introduced into the curing room 16 and cured. Curing in the curing room 12 is performed by standing at room temperature to 95 ° C. for 10 minutes to 36 hours. The effects of the addition amount of phosphoric acid, alkaline substance, etc., kneading time, curing time, etc. are the same as described above. As a result, environmentally hazardous substances such as fluorine and boron contained in the waste are hardly soluble, and a stabilized high-quality processed product is obtained.
[0045]
It is desirable to adjust the pH of the mixed slurry of phosphoric acid and alkaline substance according to the amount of impurities such as calcium carbonate contained in the gypsum. Can be improved.
[0046]
FIG. 3 shows a schematic configuration of an apparatus that implements the waste stabilization method according to the third embodiment of the present invention. This embodiment assumes the waste of the property of the cake after dehydration, or the waste discharged | emitted in a dry state. In the following, the flue gas desulfurization gypsum will be described as an example. Gypsum in the form of dehydrated cake is introduced into the kneading apparatus 17, and phosphoric acid and water as necessary are added to 100 parts by weight of the solid content to adjust the water content to 4 to 30%. Next, after kneading at room temperature to 95 ° C. for 1 to 60 minutes using the kneading device 17, an alkaline substance of 0.1 to 1 times equivalent of phosphoric acid is added, and further kneading is performed for 1 to 60 minutes. Next, curing is performed in the curing room 18 at room temperature to 95 ° C. for 10 minutes to 36 hours. As a result, environmentally hazardous substances such as fluorine and boron contained in the waste are hardly soluble, and a stabilized high-quality processed product is obtained. The effects of the addition amount of phosphoric acid, alkaline substance, etc., kneading time, curing time, etc. are the same as described above. If the water content of the kneaded product after addition of phosphoric acid is less than 4%, the progress of the hydration reaction is insufficient, and if it exceeds 30%, it becomes a slurry and difficult to handle.
[0047]
FIG. 4 shows a schematic configuration of an apparatus for performing the waste stabilization method according to the fourth embodiment of the present invention. As in the third embodiment, the present embodiment assumes a waste in the form of cake after dehydration or a waste discharged in a dry state. In the following, the flue gas desulfurization gypsum will be described as an example. First, 0.1 to 5 parts by weight of phosphoric acid and 0.1 to 1 times equivalent of alkaline substance of phosphoric acid are mixed in advance with the pre-stirrer 19 with respect to 100 parts by weight of the solid content of gypsum after dehydration. A slurry aqueous solution having a pH of less than 9 is prepared. Next, gypsum slurry and phosphoric acid and alkaline substance slurry are put into the kneading apparatus 20, adjusted to a moisture content of 4 to 30%, and kneaded using the kneading apparatus 20 at room temperature to 95 ° C. for 1 to 60 minutes. I do. Next, it introduces into the curing room 21 and performs curing. Curing in the curing room 21 is performed by leaving at room temperature to 95 ° C. for 10 minutes to 36 hours. As a result, environmentally hazardous substances such as fluorine and boron contained in the waste are hardly soluble, and a stabilized high-quality processed product is obtained. The effects of the addition amount of phosphoric acid, alkaline substance, etc., kneading time, curing time, etc. are the same as described above.
[0048]
In the above, by-product gypsum has been described as an example. Is also effective.
[0049]
Further, in each of the above embodiments, the case where the mixing process is performed by adding an alkaline substance after the phosphoric acid is added and mixed with the waste, and the mixing process is performed by adding a mixed slurry of phosphoric acid and an alkaline substance to the waste. However, in the present invention, phosphoric acid may be added and mixed after an alkaline substance is added to the waste and mixed. The effect of making fluorine, boron, etc. hardly soluble is highest when mixing treatment is performed by adding a mixed slurry of phosphoric acid and alkaline substance, and after adding and mixing phosphoric acid, the alkaline substance is added and mixed. The case is next higher.
[0050]
【Example】
Examples of the present invention, taking gypsum having the composition shown in Table 1 below as an example Reference examples And a comparative example is demonstrated.
[0051]
[Table 1]
Figure 0004540941
[0052]
( Reference example 1)
0.5 parts by weight of phosphoric acid was added to 100 parts by weight of the solid content of 25% gypsum slurry to adjust the pH of the slurry to 5.6, and the mixture was stirred at room temperature (20 ° C.) for 5 minutes. Next, 0.25 parts by weight of slaked lime corresponding to 0.66 times equivalent of phosphoric acid was added as an alkaline substance, and the mixture was further stirred for 5 minutes to adjust the pH of the slurry to 7.0. Next, solid-liquid separation was performed, and the obtained solid was cured at room temperature (20 ° C.) for 1 hour to produce stabilized gypsum.
[0053]
The results of the dissolution test of the stabilized gypsum (according to Notification No. 46 of the Environment Agency) are pH 7.2, fluorine elution amount 0.2 mg / L or less, boron elution amount 0.1 mg / L or less, drainage standard ( pH: 5.8 to 8.6) and soil environmental standards (fluorine: 0.8 mg / L or less, boron: 1 mg / L or less). Other harmful heavy metals (Pb, Cd, As, Se, Cr 6+ , Hg) also met the standard value.
[0054]
( Reference example 2)
0.5 parts by weight of phosphoric acid was added to 100 parts by weight of the solid content of the dehydrated gypsum cake (water content: 9.1%), and kneading was performed at room temperature (20 ° C.) for 3 minutes. Next, 0.20 parts by weight of quicklime corresponding to 0.53 times equivalent of phosphoric acid is added as an alkaline substance, and further kneaded at room temperature (20 ° C.) for 3 minutes, and at room temperature (20 ° C.) for 10 hours. Stabilized gypsum was produced by curing.
[0055]
The results of the dissolution test of the stabilized gypsum (according to Environment Agency Notification No. 46) are as follows: pH is 7.1, fluorine elution amount is 0.2 mg / L or less, boron elution amount is 0.1 mg / L or less. pH: 5.8 to 8.6) and soil environmental standards (fluorine: 0.8 mg / L or less, boron: 1 mg / L or less). Other harmful heavy metals (Pb, Cd, As, Se, Cr 6+ , Hg) also met the standard value.
[0056]
(Example 1 )
Dehydrated gypsum cake (moisture content: 9.1%) based on 100 parts by weight of solid content of 0.6 parts by weight of phosphoric acid, 0.30 weight of quicklime corresponding to 0.88 times equivalent of phosphoric acid Was added and stirred at room temperature (20 ° C.) for 3 minutes to obtain a slurry. This slurry was put into the above-mentioned gypsum cake, kneaded at room temperature for 3 minutes, and then cured at 30 ° C. for 2 hours to produce stabilized gypsum.
[0057]
The stabilization gypsum dissolution test results (according to Environment Agency Notification No. 46) show that the pH is 7.3, the fluorine elution amount is 0.2 mg / L or less, and the boron elution amount is 0.1 mg / L or less. pH: 5.8 to 8.6) and soil environmental standards (fluorine: 0.8 mg / L or less, boron: 1 mg / L or less). Other harmful heavy metals (Pb, Cd, As, Se, Cr 6+ , Hg) also met the standard value.
[0058]
(Comparative Example 1)
0.4 parts by weight of slaked lime is added to 100 parts by weight of the solid content of the dehydrated gypsum cake (water content: 9.1%), and kneaded for 10 minutes at room temperature (20 ° C.) to stabilize the gypsum. Manufactured.
[0059]
The results of the dissolution test of the stabilized gypsum (according to Environment Agency Notification No. 46) show that the pH is 11.4, the fluorine elution amount is 3.1 mg / L, the boron elution amount is 0.1 mg / L or less, and the drainage standard (pH : 5.8 to 8.6) and the soil environment standard (fluorine: 0.8 mg / L or less, boron: 1 mg / L or less).
[0060]
(Comparative Example 2)
Dehydrated gypsum cake (moisture content: 9.1%) To 100 parts by weight of solid content, add 1 part by weight of phosphoric acid and knead at room temperature (20 ° C) for 10 minutes to produce stabilized gypsum. did.
[0061]
The results of the dissolution test of the stabilized gypsum (according to Environment Agency Notification No. 46) are pH 5.6, fluorine elution amount 1.5 mg / L, boron elution amount 0.3 mg / L, drainage standard (pH: 5.8 to 8.6) and soil environmental standards (fluorine: 0.8 mg / L or less, boron: 1 mg / L or less).
[0062]
Next, another embodiment will be described taking dewatered sludge after wastewater treatment and discarded gypsum board as examples.
[0063]
(Example 2 )
1 part by weight of phosphoric acid was added to 100 parts by weight of the solid content of dewatered sludge (water content: 23%, fluorine and boron elution amounts exceeding the soil environment standard), and kneading was performed for 5 minutes. Next, 0.7 parts by weight of slaked lime corresponding to 0.92 times equivalent of phosphoric acid is added, and further kneaded for 5 minutes, followed by curing for 1 hour at 60 ° C. and 80% relative humidity to stabilize. Sludge was produced.
[0064]
The results of the dissolution test of the stabilized sludge (according to Notification No. 46 of the Environment Agency) show that the pH is 7.4, the fluorine elution amount is 0.2 mg / L or less, the boron elution amount is 0.1 mg / L or less, and the drainage standard ( pH: 5.8 to 8.6) and soil environmental standards (fluorine: 0.8 mg / L or less, boron: 1 mg / L or less). Other harmful heavy metals (Pb, Cd, As, Se, Cr 6+ , Hg) also met the standard value.
[0065]
( Reference example 3 )
Waste gypsum board (fluorine elution amount: 3.6 mg / L) was baked to 170 ° C. and crushed to give a half-water gypsum powder. Then, 100 parts by weight of the half-water gypsum was 0.8 parts by weight of phosphoric acid. Then, a mixed slurry of 0.48 parts by weight of slaked lime corresponding to 0.79 equivalents of phosphoric acid and 65 parts by weight of water was added and kneaded for 1.5 minutes. Next, curing was performed at room temperature for 2 hours.
[0066]
The dissolution test result of cured gypsum (according to Environment Agency Notification No. 46) has a pH of 7.2, a fluorine elution amount of 0.2 mg / L or less, drainage standard (pH: 5.8 to 8.6), soil The environmental standard (fluorine: 0.8 mg / L or less) was satisfied. Other harmful heavy metals (Pb, Cd, As, Se, Cr 6+ , Hg, B) also met the standard values.
[0067]
【The invention's effect】
According to the present invention, harmful elements such as fluorine and boron derived from a fluorine-containing compound and a boron-containing compound contained in a small amount of waste can be hardly solubilized at the same time, and the elution can be reduced. Moreover, regardless of the concentration of harmful elements before the treatment of waste, the concentration of harmful elements and soluble impurities in the eluate after treatment can be reliably reduced below a certain standard. Moreover, the stabilized treatment method of the present invention enables effective use of the waste after the treatment.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an apparatus for performing a waste stabilization method according to a first embodiment of the present invention.
FIG. 2 is a schematic configuration diagram of an apparatus for carrying out a waste stabilization method according to a second embodiment of the present invention.
FIG. 3 is a schematic configuration diagram of an apparatus for carrying out a waste stabilization method according to a third embodiment of the present invention.
FIG. 4 is a schematic configuration diagram of an apparatus for carrying out a waste stabilization method according to a fourth embodiment of the present invention.
[Explanation of symbols]
11 Dehydrator
12 Curing room
13 Pre-stirrer
14 Stirrer
15 Dehydrator
16 Curing room
17 Kneading equipment
18 Curing room
19 Pre-stirrer
20 Kneading equipment
21 Curing room

Claims (10)

含フッ素化合物及び含ホウ素化合物からなる環境有害物質とアルミニウムとを含む廃棄物における、前記環境有害物質に由来するフッ素及びホウ素の有害元素を同時に難溶化するための処理方法であって、
前記廃棄物に、前記廃棄物の固形分100重量部に対して0.2〜3重量部のリン酸又はその水溶液を加えて混合処理を行うリン酸添加混合工程と、
前記リン酸の添加混合処理を行った廃棄物に、前記リン酸の0.2〜0.8倍当量のアルカリ物質を加えて混合処理を行うアルカリ添加混合工程と、
得られた廃棄物を30〜95℃で静置することにより、前記有害元素の難溶化を促進する養生工程と
を包含する廃棄物の安定化処理方法。
In a waste containing an environmental hazardous substance composed of a fluorine-containing compound and a boron-containing compound and aluminum, a treatment method for simultaneously making the harmful elements of fluorine and boron derived from the environmental harmful substance hardly soluble,
A phosphoric acid addition mixing step in which 0.2 to 3 parts by weight of phosphoric acid or an aqueous solution thereof is added to the waste with respect to 100 parts by weight of the solid content of the waste, and a mixing treatment is performed;
An alkali addition mixing step of adding a 0.2 to 0.8-fold equivalent of an alkaline substance to the phosphoric acid and performing a mixing treatment on the waste subjected to the phosphoric acid addition mixing treatment;
And a curing process for promoting the insolubilization of the harmful elements by allowing the obtained waste to stand at 30 to 95 ° C.
含フッ素化合物及び含ホウ素化合物からなる環境有害物質とアルミニウムとを含む廃棄物における、前記環境有害物質に由来するフッ素及びホウ素の有害元素を同時に難溶化するための処理方法であって、
前記廃棄物に、前記廃棄物の固形分100重量部に対して0.2〜3重量部のリン酸及び該リン酸の0.2〜0.8倍当量のアルカリ物質の混合物又はその水溶液若しくはスラリを加えて混合処理を行う酸アルカリ添加混合工程と、
得られた廃棄物を30〜95℃で静置することにより、前記有害元素の難溶化を促進する養生工程と
を包含する廃棄物の安定化処理方法。
In a waste containing an environmental hazardous substance composed of a fluorine-containing compound and a boron-containing compound and aluminum, a treatment method for simultaneously making the harmful elements of fluorine and boron derived from the environmental harmful substance hardly soluble,
To the waste, a mixture of 0.2 to 3 parts by weight of phosphoric acid and 0.2 to 0.8 times equivalent of an alkaline substance with respect to 100 parts by weight of the solid content of the waste, or an aqueous solution thereof, or An acid-alkali addition mixing step in which slurry is added to perform mixing treatment;
And a curing process for promoting the insolubilization of the harmful elements by allowing the obtained waste to stand at 30 to 95 ° C.
含フッ素化合物及び含ホウ素化合物からなる環境有害物質とアルミニウムとを含む廃棄物における、前記環境有害物質に由来するフッ素及びホウ素の有害元素を同時に難溶化するための処理方法であって、
前記廃棄物にアルカリ物質又はその水溶液を加えて混合処理を行うアルカリ添加混合工程と、
前記廃棄物にリン酸又はその水溶液加えて混合処理を行うリン酸添加混合工程と、
得られた廃棄物を30〜95℃で静置することにより、前記有害元素の難溶化を促進する養生工程と
を包含する廃棄物の安定化処理方法であって、
前記リン酸の添加量は前記廃棄物の固形分100重量部に対して0.2〜3重量部であり、前記アルカリ物質の添加量は前記リン酸の0.2〜0.8倍当量である廃棄物の安定化処理方法。
In a waste containing an environmental hazardous substance composed of a fluorine-containing compound and a boron-containing compound and aluminum, a treatment method for simultaneously making the harmful elements of fluorine and boron derived from the environmental harmful substance hardly soluble,
An alkali addition mixing step of adding an alkali substance or an aqueous solution thereof to the waste to perform a mixing process;
A phosphoric acid addition mixing step in which phosphoric acid or an aqueous solution thereof is added to the waste for mixing treatment;
A method for stabilizing the waste including a curing step for promoting the insolubilization of the harmful elements by allowing the obtained waste to stand at 30 to 95 ° C.,
The addition amount of the phosphoric acid is 0.2 to 3 parts by weight with respect to 100 parts by weight of the solid content of the waste, and the addition amount of the alkaline substance is 0.2 to 0.8 times equivalent to the phosphoric acid. A method for stabilizing waste.
前記養生工程に先だって、前記廃棄物の固液分離を行う固液分離工程を更に包含している請求項1乃至3の何れかに記載の廃棄物の安定化処理方法。  The waste stabilization method according to any one of claims 1 to 3, further comprising a solid-liquid separation step of performing solid-liquid separation of the waste prior to the curing step. 前記廃棄物は、スラリ、ケーキ及びこれらの乾燥物からなる群から選択される性状である請求項1乃至4の何れかに記載の廃棄物の安定化処理方法。  The waste stabilization method according to any one of claims 1 to 4, wherein the waste is a property selected from the group consisting of a slurry, a cake, and a dried product thereof. 前記養生工程前に於ける廃棄物は、含水率4〜30重量%のケーキである請求項1乃至5の何れかに記載の廃棄物の安定化処理方法。  The waste stabilization method according to any one of claims 1 to 5, wherein the waste before the curing step is a cake having a moisture content of 4 to 30% by weight. 前記リン酸添加混合工程及び前記アルカリ添加混合工程に於ける混合温度は、常温〜95℃の範囲であり、混合時間は1〜60分である請求項1又は3記載の廃棄物の安定化処理方法。  The waste stabilization process according to claim 1 or 3, wherein a mixing temperature in the phosphoric acid addition mixing step and the alkali addition mixing step is in a range of normal temperature to 95 ° C, and a mixing time is 1 to 60 minutes. Method. 前記酸アルカリ添加混合工程に於ける混合温度は、常温〜95℃の範囲であり、混合時間は1〜60分である請求項2記載の廃棄物の安定化処理方法。  The waste stabilization method according to claim 2, wherein a mixing temperature in the acid-alkali addition mixing step is in a range of normal temperature to 95 ° C and a mixing time is 1 to 60 minutes. 前記養生工程を、10分〜36時間行うことを特徴とする請求項1乃至8の何れかに記載の廃棄物の安定化処理方法。  9. The waste stabilization method according to claim 1, wherein the curing step is performed for 10 minutes to 36 hours. 前記廃棄物は、排煙脱硫石膏、脱水スラッジ、上水汚泥、下水汚泥、砕石スラッジ、汚染土壌、廃石膏ボード及び集塵ダストからなる群から選択されるものである請求項1乃至9の何れかに記載の廃棄物の安定化処理方法。  The waste material is selected from the group consisting of flue gas desulfurization gypsum, dewatered sludge, clean water sludge, sewage sludge, crushed sludge, contaminated soil, waste gypsum board, and dust collection dust. A method for stabilizing wastes according to claim 1.
JP2003100138A 2003-04-03 2003-04-03 Waste stabilization treatment method Expired - Fee Related JP4540941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003100138A JP4540941B2 (en) 2003-04-03 2003-04-03 Waste stabilization treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003100138A JP4540941B2 (en) 2003-04-03 2003-04-03 Waste stabilization treatment method

Publications (2)

Publication Number Publication Date
JP2004305833A JP2004305833A (en) 2004-11-04
JP4540941B2 true JP4540941B2 (en) 2010-09-08

Family

ID=33464358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003100138A Expired - Fee Related JP4540941B2 (en) 2003-04-03 2003-04-03 Waste stabilization treatment method

Country Status (1)

Country Link
JP (1) JP4540941B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241429A (en) * 2005-02-07 2006-09-14 Fujita Corp Soil-improving material and engineering method for improving soil
JP4941635B2 (en) * 2006-01-05 2012-05-30 栗田工業株式会社 Solid waste treatment method and boron insolubilization agent
JP2007330884A (en) * 2006-06-14 2007-12-27 Hazama Corp Fluorine insolubilization/stabilization treatment material and treatment method of fluorine contaminated soil or fluorine contaminated ash
JP2008086911A (en) * 2006-10-02 2008-04-17 Kurita Water Ind Ltd Civil engineering material and its manufacturing method
JP2008237948A (en) * 2007-03-23 2008-10-09 Kawasaki Plant Systems Ltd Stabilization treatment method and device for waste
KR100904700B1 (en) 2008-03-10 2009-06-29 대진하이테크주식회사 Method of stabilization treatment and removing of asbestos
JP6865434B2 (en) * 2016-10-18 2021-04-28 国立大学法人九州大学 Treatment method of boron-containing water
JP2019155209A (en) * 2018-03-07 2019-09-19 住友金属鉱山株式会社 Treatment facility and treatment method of boron-containing water
CN111922027A (en) * 2020-06-18 2020-11-13 吉安创成环保科技有限责任公司 Stabilization and solidification method and application of inorganic fluoride landfill waste
CN116586414A (en) * 2023-04-19 2023-08-15 江苏维诗环境科技有限公司 Soil remediation system based on gas thermal desorption coupling bioremediation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233881A (en) * 2001-02-06 2002-08-20 Miyama Kk Method for treating boron-containing water
JP2002331272A (en) * 2001-05-09 2002-11-19 Kurita Water Ind Ltd Method for treating fluorine-containing solid waste

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849422A (en) * 1981-09-18 1983-03-23 Mitsubishi Heavy Ind Ltd Desulfurizing method for waste gas
JPH06343977A (en) * 1993-06-04 1994-12-20 Mitsui Toatsu Chem Inc Treatment process for waste water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233881A (en) * 2001-02-06 2002-08-20 Miyama Kk Method for treating boron-containing water
JP2002331272A (en) * 2001-05-09 2002-11-19 Kurita Water Ind Ltd Method for treating fluorine-containing solid waste

Also Published As

Publication number Publication date
JP2004305833A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
TWI653320B (en) Insoluble materials of specific hazardous substances and methods of insolubilization of specific hazardous substances using them
JP5599061B2 (en) Neutral solidifying material additive, neutral solidifying material and method for suppressing elution of heavy metals
JPH01127091A (en) Method for solidifying waste liquid to chemically fixing the same
JP4540941B2 (en) Waste stabilization treatment method
JPH0529516B2 (en)
JP2008231389A (en) Soil depurating and stabilizing agent
JP4694434B2 (en) By-product processing method
KR101722308B1 (en) Insolubilizing agent for specific toxic substances, method for insolubilizing specific toxic substances using same, and soil improvement method
JP2005232341A (en) Treatment agent of hexavalent chromium-containing soil
JP2008255171A (en) Fixing agent for inorganic harmful component
JP2007106622A (en) Treatment method and apparatus for stabilizing gypsum hardened body
JP3382202B2 (en) Fluorine-insoluble gypsum composition and method for producing the same
JP2003334568A (en) Method for treating drain containing heavy metal
JP5171350B2 (en) Solid waste treatment method
KR102530614B1 (en) Manufacturing method of gypsum by using biosulfur and oxidation reaction and uses of the gypsum
JPH0824900A (en) Waste water and sludge treatment agent, and treatment of waste water and sludge using the agent
JP5280405B2 (en) Method for insolubilizing and detoxifying hexavalent chromium
JPS62183896A (en) Method for stabilizing coal ash
JPH09136072A (en) Fly ash treatment method
CN104138884A (en) Non-solvation agent of heavy metal and non-solvation method of heavy metal
JP5147146B2 (en) Waste incineration fly ash treatment method
KR100204949B1 (en) Method for treatment of electric arc furnace dust
JP6227879B2 (en) Insolubilizing material for specified hazardous substances and method for insolubilizing specified hazardous substances using the same
KR101163966B1 (en) Method for manufacturing fertilizer using waste water
KR101018168B1 (en) Slag silicate fertilizer and manufacturing method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4540941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140702

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees