JPWO2019009303A1 - Solid waste treatment method - Google Patents

Solid waste treatment method Download PDF

Info

Publication number
JPWO2019009303A1
JPWO2019009303A1 JP2019527728A JP2019527728A JPWO2019009303A1 JP WO2019009303 A1 JPWO2019009303 A1 JP WO2019009303A1 JP 2019527728 A JP2019527728 A JP 2019527728A JP 2019527728 A JP2019527728 A JP 2019527728A JP WO2019009303 A1 JPWO2019009303 A1 JP WO2019009303A1
Authority
JP
Japan
Prior art keywords
phosphorus
ash
solid waste
mass
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019527728A
Other languages
Japanese (ja)
Inventor
清隆 吉井
清隆 吉井
有記 長尾
有記 長尾
吉田 洋一
洋一 吉田
崇宏 関
崇宏 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Publication of JPWO2019009303A1 publication Critical patent/JPWO2019009303A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/10Treatment of sludge; Devices therefor by pyrolysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

本発明の固体廃棄物の処理方法は、焼却灰とリン源とを混合して600℃以上1200℃以下で加熱する。リン源としてはリン含有廃棄物及びリン含有化合物が挙げられ、リン含有廃棄物であることが好ましい。特に、リン源が、下水汚泥系リン含有廃棄物、農水産系リン含有廃棄物、工業系リン含有廃棄物、食品系リン含有廃棄物からなる群から選択される少なくとも1種であることが好適である。焼却灰が石炭単独又は石炭とバイオマスとの混合物を燃焼させて発生する石炭灰であることも好適である。In the method for treating solid waste according to the present invention, incineration ash and a phosphorus source are mixed and heated at 600° C. or higher and 1200° C. or lower. Phosphorus sources include phosphorus-containing wastes and phosphorus-containing compounds, with phosphorus-containing wastes being preferred. In particular, the phosphorus source is preferably at least one selected from the group consisting of sewage sludge-based phosphorus-containing waste, agricultural and marine product-based phosphorus-containing waste, industrial phosphorus-containing waste, and food-based phosphorus-containing waste. Is. It is also preferable that the incineration ash is coal ash generated by burning coal alone or a mixture of coal and biomass.

Description

本発明は固体廃棄物の処理方法に関する。 The present invention relates to a method for treating solid waste.

焼却灰からの有害微量元素溶出抑制方法としては、これまで、薬剤を添加する方法、溶媒で抽出する方法、加熱処理する方法等が知られている。この中でも比較的高い生産性で有害微量元素の溶出を抑制できる方法として、薬剤を添加する方法が汎用されているものの、添加する薬剤が製造コストを圧迫するため、これまで経済的な処理方法としては課題を有していた。 As a method for suppressing elution of harmful trace elements from incinerated ash, a method of adding a chemical agent, a method of extracting with a solvent, a method of heat treatment and the like have been known so far. Among these, as a method that can suppress the elution of harmful trace elements with relatively high productivity, although a method of adding a drug is widely used, since the added drug puts pressure on the manufacturing cost, it has hitherto been an economical treatment method. Had challenges.

例えば特許文献1には、ホウ素とフッ素とを含有する固体廃棄物に、リン酸化合物とカルシウム化合物とを混合して、ホウ素、フッ素を不溶化する方法が記載されている。 For example, Patent Document 1 describes a method of insolubilizing boron and fluorine by mixing a solid waste containing boron and fluorine with a phosphoric acid compound and a calcium compound.

特許文献2には、重金属含有灰に水、シリカゲル及びリン酸系重金属固定化剤を加えて混練する処理法が記載されている。同文献には、鉛の溶出量を低減する実施例が開示されている。 Patent Document 2 describes a treatment method in which water, silica gel, and a phosphoric acid-based heavy metal fixing agent are added and kneaded to heavy metal-containing ash. The document discloses an example of reducing the elution amount of lead.

特許文献3には、固体状廃棄物に、亜リン酸類及び/又は次亜リン酸類を添加し、300℃以下に加熱して固体状廃棄物中の鉛等の有害な金属及び有機塩素化物を無害化する固体状廃棄物の処理方法が記載されている。 In Patent Document 3, phosphorous acid and/or hypophosphorous acid are added to solid waste and heated to 300° C. or lower to remove harmful metals such as lead and organic chlorinated compounds in solid waste. A method for treating detoxifying solid waste is described.

特許文献4には、焼却灰、汚泥、及び建設発生土の群の中から選ばれる一種または二種以上の廃棄物を含む被焼成物を焼成して多孔質焼結体を製造する方法であって、前記焼成に際しての温度が650〜1000℃とすること、この製造方法により6価クロムの溶出量を環境基準値以下にすることができると記載されている。 Patent Document 4 is a method for producing a porous sintered body by firing an object to be fired containing one or two or more kinds of waste selected from the group consisting of incinerated ash, sludge, and construction soil. It is described that the temperature at the time of firing is 650 to 1000° C., and the amount of hexavalent chromium eluted can be made equal to or lower than the environmental standard value by this manufacturing method.

特開2007−181758号公報JP, 2007-181758, A 特開平10−174952号公報JP, 10-174952, A US6137027AUS6137027A 特開2009−132566号公報JP, 2009-132566, A

しかしながら、特許文献1〜3に記載の技術に対して、更に低コストに、またより多種の有害元素を不溶化できる有害元素の不溶化方法が望まれている。
更に、特許文献3に記載のように固体状廃棄物に、亜リン酸類及び/又は次亜リン酸類を添加し、300℃以下に加熱した場合や、特許文献4のように焼却灰又は汚泥単独のみを焼成させた場合では、有害金属溶出抑制効果が十分なものではない。
However, with respect to the techniques described in Patent Documents 1 to 3, there is a demand for a method of insolubilizing harmful elements, which can insolubilize more harmful elements at a lower cost.
Furthermore, when phosphorous acid and/or hypophosphorous acid are added to a solid waste as described in Patent Document 3 and heated to 300° C. or lower, or incineration ash or sludge alone as in Patent Document 4 The effect of suppressing the elution of harmful metals is not sufficient when only one is fired.

また、日本国内の廃棄物処分場のひっ迫に起因して、年々排出量が増加している家庭ごみ及び産業廃棄物由来の焼却灰の有効利用が望まれている。焼却灰の有効利用の例として、建築材料などの土木事業での再利用や埋立利用が挙げられる。しかしこれらの事業では、廃棄物を、屋外で長期間使用する材料に再利用することを前提としているので、焼却灰に含まれている有害微量元素の溶出による環境汚染が懸念される。そこで、焼却灰の有効利用を進める上で、有害微量元素の溶出抑制効果が高い方法の開発が必要となっている。 In addition, due to the tightness of waste disposal sites in Japan, the effective use of incinerated ash derived from household waste and industrial waste, whose emissions are increasing year by year, is desired. Examples of effective use of incinerated ash include reuse in construction projects such as building materials and landfill use. However, in these projects, it is premised that the waste is reused as a material that is used outdoors for a long time, and thus there is concern about environmental pollution due to the elution of harmful trace elements contained in the incineration ash. Therefore, in order to promote the effective use of incinerated ash, it is necessary to develop a method with a high elution suppressing effect on harmful trace elements.

本発明は前記の課題に鑑みなされたものであり、環境に悪影響を及ぼす有害微量元素である、ホウ素、砒素、セレン、フッ素、6価クロム、鉛、水銀及び/又はカドミウム等を含有している焼却灰からの有害微量元素の溶出を低減させる焼却灰の処理方法を提供することにある。具体的には、従来よりも生産性が高く、これらの有害微量元素の溶出量を土壌汚染対策法に規定される環境基準値以下に低減させ得る焼却灰の処理方法を提供することにある。 The present invention has been made in view of the above problems, and contains harmful trace elements that adversely affect the environment, such as boron, arsenic, selenium, fluorine, hexavalent chromium, lead, mercury and/or cadmium. An object of the present invention is to provide a method for treating incinerated ash that reduces elution of harmful trace elements from the incinerated ash. Specifically, it is to provide a method for treating incinerated ash, which has higher productivity than before and can reduce the elution amount of these harmful trace elements to be equal to or lower than the environmental standard value stipulated by the Soil Contamination Countermeasures Act.

本発明は、焼却灰とリン源とを混合して600℃以上1200℃以下で加熱する工程を有する固体廃棄物の処理方法を提供することにより、前記の課題を解決したものである。 The present invention solves the above-mentioned problems by providing a method for treating solid waste having a step of mixing incinerated ash and a phosphorus source and heating the mixture at 600°C or higher and 1200°C or lower.

また、本発明は、焼却灰とリン源とを混合して600℃以上1200℃以下で加熱する工程を有する、焼却灰又はリン源に含まれるホウ素、砒素、セレン、フッ素、6価クロム、鉛、水銀及びカドミウムからなる群の少なくとも1種の元素の溶出抑制方法を提供するものである。 Moreover, this invention has the process of mixing incineration ash and a phosphorus source, and heating at 600 to 1200 degreeC, and the boron, arsenic, selenium, fluorine, hexavalent chromium, and lead contained in an incineration ash or a phosphorus source. Disclosed is a method for suppressing elution of at least one element selected from the group consisting of mercury, cadmium, and mercury.

以下に本発明を、その好ましい実施形態に基づき説明する。しかし、本発明は以下の実施形態に制限されるものではない。
本実施形態は、焼却灰とリン源とを混合して600℃以上1200℃以下で加熱する工程を有する固体廃棄物の処理方法である。固体廃棄物は本実施形態において焼却灰を指す。
The present invention will be described below based on its preferred embodiments. However, the present invention is not limited to the embodiments described below.
The present embodiment is a method for treating solid waste, which has a step of mixing incinerated ash and a phosphorus source and heating the mixture at 600° C. or higher and 1200° C. or lower. Solid waste refers to incineration ash in this embodiment.

本実施形態の処理の対象となる焼却灰としては例えば、家庭から排出される一般ごみの焼却灰、産業廃棄物焼却施設から発生する焼却灰、又は石炭火力発電所から排出されるフライアッシュやクリンカアッシュ等の石炭灰等が挙げられる。前記石炭灰は、石炭単独を燃焼させて発生する焼却灰であってもよく、あるいは、石炭とバイオマスとの混合物を燃焼させて発生する焼却灰であってもよい。バイオマスとは生物由来の有機物であり、例えば農作由来物、材木由来物であり、具体的には稲わら、もみ、ヤジガラ等の農作廃棄物や木質チップや木質ペレット、間伐材、建設用廃木材等の材木由来物などである。石炭とバイオマスとの混合物を燃焼させる場合の混合比率としては石炭灰:バイオマスの質量比が1:0.01〜2.0が挙げられる。 Examples of the incineration ash to be treated in the present embodiment include incineration ash of general waste discharged from homes, incineration ash generated from an industrial waste incineration facility, or fly ash or clinker discharged from a coal-fired power plant. Examples include coal ash such as ash. The coal ash may be incineration ash generated by burning coal alone, or may be incineration ash generated by burning a mixture of coal and biomass. Biomass is an organic substance of biological origin, for example, a product derived from farming, a product derived from timber, and specifically, agricultural waste such as rice straw, firs, and woodpeckers, wood chips and wood pellets, thinned wood, waste wood for construction. And the like derived from timber. As a mixing ratio in the case of burning a mixture of coal and biomass, a mass ratio of coal ash:biomass is 1:0.01 to 2.0.

前記焼却灰には、砒素、セレン、鉛、6価クロム、水銀及びカドミウムなどの重金属元素だけでなく、土壌汚染対策法に規定されるフッ素及びホウ素等の元素が多く含有されている場合、例えば後述する実施例のとおり環境庁告示第46号に準じた方法で溶出量を測定した場合に下記実施例に記載の環境基準値を超えている場合がある。したがって、焼却灰をそのまま廃棄すると、これらの元素が環境中へ溶出し環境汚染の一因となるおそれがある。本発明の処理方法は、規制対象となっている前記8種の元素からなる群の少なくとも1種の元素について、焼却灰からの溶出量を低減するものである。本実施形態の処理方法は、特にホウ素、フッ素及び/又は6価クロムの溶出抑制に有効である。 When the incinerated ash contains not only heavy metal elements such as arsenic, selenium, lead, hexavalent chromium, mercury and cadmium, but also many elements such as fluorine and boron specified in the Soil Contamination Countermeasures Act, for example, When the elution amount is measured by a method according to the Environmental Agency Notification No. 46 as in Examples described later, it may exceed the environmental standard value described in the Examples below. Therefore, if the incineration ash is discarded as it is, these elements may be eluted into the environment and may contribute to environmental pollution. The treatment method of the present invention reduces the amount of elution from incineration ash of at least one element in the group consisting of the above-mentioned eight elements that is subject to regulation. The treatment method of this embodiment is particularly effective for suppressing elution of boron, fluorine and/or hexavalent chromium.

焼却灰10g中の砒素、クロム及びホウ素の合計量(A)としては、一般に0.1mg以上50mg以下が挙げられ、本実施形態の処理方法の有効性の観点から、1.0mg以上30mg以下が更に好ましい。焼却灰10g中の砒素、クロム及びホウ素の合計量は、何れの元素も誘導結合プラズマ質量分析法(ICP−MS)等で測定される。ICP−MSで測定を行う場合には、試料に硫酸、硝酸及び、フッ化水素酸を加えて215℃、16hr密閉容器で加圧酸分解後、超純水で希釈した検液として定量を行う。 The total amount (A) of arsenic, chromium, and boron in 10 g of incinerated ash is generally 0.1 mg or more and 50 mg or less, and from the viewpoint of the effectiveness of the treatment method of the present embodiment, 1.0 mg or more and 30 mg or less. More preferable. The total amount of arsenic, chromium, and boron in 10 g of incinerated ash is measured by inductively coupled plasma mass spectrometry (ICP-MS) or the like for all the elements. When measurement is performed by ICP-MS, sulfuric acid, nitric acid and hydrofluoric acid are added to the sample, the acid is decomposed under pressure in a closed container at 215° C. for 16 hours, and then quantitatively determined as a test solution diluted with ultrapure water. ..

また、焼却灰10g中のリン量は特に限定されず、一般に、1mg〜100mgが挙げられる。ここでいうリン量はリン原子換算の量である。
焼却灰10g中のリン量は以下の方法で測定される。
試料を900℃で3時間加熱した残渣を蛍光X線分析(XRF)し、5酸化2リン濃度測定値をリン単独での量に換算する。
The amount of phosphorus in 10 g of incinerated ash is not particularly limited, and generally 1 mg to 100 mg can be mentioned. The amount of phosphorus referred to here is the amount in terms of phosphorus atoms.
The amount of phosphorus in 10 g of incinerated ash is measured by the following method.
The sample is heated at 900° C. for 3 hours, and the residue is subjected to fluorescent X-ray analysis (XRF) to convert the measured concentration of diphosphorus pentaoxide to the amount of phosphorus alone.

焼却灰10g中のカルシウム量も特に限定されないが、例えば、10mg〜5000mg、特に100mg〜3000mgが一般的な範囲である。焼却灰が石炭灰である場合、焼却灰10g中の好適なカルシウム量は10mg〜500mgであり、焼却灰がごみ焼却灰である場合、焼却灰10g中の好適なカルシウム量は500mg〜5000mgである。
焼却灰10g中のカルシウム量は以下の方法で測定される。
試料を900℃で3時間加熱した残渣を蛍光X線分析(XRF)し、酸化カルシウム測定値をカルシウム単独での量に換算する。
The amount of calcium in 10 g of incinerated ash is not particularly limited, but for example, 10 mg to 5000 mg, particularly 100 mg to 3000 mg is a general range. When the incineration ash is coal ash, a suitable amount of calcium in 10 g of the incineration ash is 10 mg to 500 mg, and when the incineration ash is a refuse incineration ash, the suitable amount of calcium in 10 g of the incineration ash is 500 mg to 5000 mg. ..
The amount of calcium in 10 g of incinerated ash is measured by the following method.
The residue obtained by heating the sample at 900° C. for 3 hours is subjected to fluorescent X-ray analysis (XRF), and the measured value of calcium oxide is converted into the amount of calcium alone.

本実施形態においては、リン源として、リン含有廃棄物及びリン含有化合物のいずれを用いて焼却灰を処理することもできる。 In the present embodiment, the incineration ash can be treated using either the phosphorus-containing waste or the phosphorus-containing compound as the phosphorus source.

リン含有化合物としては、リンを含有する無機化合物が好ましい。例えば、縮合リン酸(ポリリン酸とも呼ばれる。)、リン酸(HPO)、亜リン酸(HPO)、次亜リン酸(HPO)、ホスホン酸(HPHO)及びホスフィン酸(HPH)並びにこれらの塩及びこれらの水和物からなる群から選択される少なくとも1種のリン含有化合物が挙げられる。前記の塩としては、例えばアルカリ金属塩、並びにカルシウム塩及びマグネシウム塩などのアルカリ土類金属塩が挙げられる。これらのリン含有化合物は1種を単独で又は複数種を組み合わせて使用することができる。As the phosphorus-containing compound, an inorganic compound containing phosphorus is preferable. For example, condensed phosphoric acid (also referred to as polyphosphoric acid), phosphoric acid (H 3 PO 4 ), phosphorous acid (H 3 PO 3 ), hypophosphorous acid (H 3 PO 2 ), phosphonic acid (H 2 PHO 3 ). ) And phosphinic acid (HPH 2 O 2 ) and at least one phosphorus-containing compound selected from the group consisting of salts and hydrates thereof. Examples of the salts include alkali metal salts and alkaline earth metal salts such as calcium salts and magnesium salts. These phosphorus-containing compounds may be used alone or in combination of two or more.

本実施形態に用いるリン含有化合物としては、好ましくはポリリン酸、ポリリン酸ナトリウム、ポリリン酸カリウム、ポリリン酸カルシウム、メタリン酸、メタリン酸ナトリウム、メタリン酸カリウム、メタリン酸カルシウム、ピロリン酸、ピロリン酸ナトリウム、ピロリン酸カリウム、ピロリン酸カルシウム、三リン酸五ナトリウム、三リン酸五カリウム、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸カリウム、リン酸マグネシウム、リン酸カルシウム、リン酸一水素カルシウム、リン酸二水素カルシウム、亜リン酸ナトリウム、亜リン酸カリウム、亜リン酸カルシウム、次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸カルシウム、ホスホン酸ナトリウム、ホスホン酸カリウム、ホスフィン酸ナトリウム、ホスフィン酸カリウム及びホスフィン酸カルシウム並びにこれらの水和物が挙げられる。より好ましくは 三リン酸五カリウム、ポリリン酸、ポリリン酸塩及び次亜リン酸塩からなる群から選択される少なくとも1種である。更に一層好ましくは、ポリリン酸、ポリリン酸ナトリウム、三リン酸五カリウム、リン酸、リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、亜リン酸ナトリウム、次亜リン酸カルシウム及びホスフィン酸ナトリウム並びにこれらの水和物を挙げることができる。これらのリン含有化合物は1種を単独で又は複数種を組み合わせて使用することができる。 As the phosphorus-containing compound used in the present embodiment, preferably polyphosphoric acid, sodium polyphosphate, potassium polyphosphate, calcium polyphosphate, metaphosphate, sodium metaphosphate, potassium metaphosphate, calcium metaphosphate, pyrophosphate, sodium pyrophosphate, pyrophosphate Potassium, calcium pyrophosphate, pentasodium triphosphate, pentapotassium triphosphate, sodium dihydrogen phosphate, disodium hydrogen phosphate, sodium phosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, potassium phosphate, phosphorus Magnesium phosphate, calcium phosphate, calcium monohydrogen phosphate, calcium dihydrogen phosphate, sodium phosphite, potassium phosphite, calcium phosphite, sodium hypophosphite, potassium hypophosphite, calcium hypophosphite, sodium phosphonate, Mention may be made of potassium phosphonate, sodium phosphinate, potassium phosphinate and calcium phosphinate and hydrates thereof. More preferably, it is at least one selected from the group consisting of pentapotassium triphosphate, polyphosphoric acid, polyphosphate and hypophosphite. Even more preferably, polyphosphoric acid, sodium polyphosphate, pentapotassium triphosphate, phosphoric acid, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, tripotassium phosphate, sodium phosphite, calcium hypophosphite and sodium phosphinate. And hydrates thereof. These phosphorus-containing compounds may be used alone or in combination of two or more.

本実施形態に用いるリン含有廃棄物としてはリンを含有している廃棄物を広く包含する。リン含有廃棄物としては、下水汚泥系リン含有廃棄物、農水産系リン含有廃棄物、工業系リン含有廃棄物、食品系リン含有廃棄物が挙げられる。下水汚泥系リン含有廃棄物としては、一般下水汚泥、工業下水汚泥などが挙げられる。一般下水汚泥とは、生活排水を処理する下水処理場において生成する下水汚泥が挙げられる。工業下水汚泥としては、食品工場や化学工場などの工場からの排水及び廃液を、当該工場内の下水処理施設で処理する場合に該下水処理施設において生成する下水汚泥が挙げられる。生活排水を処理する下水汚泥や食品工場などから排出される工業排水を処理する下水処理施設では、排水中に含まれる環境汚染の原因となる様々な物質を、微生物により分解及び吸着し、水を浄化する。浄化の過程で微生物の死骸は集まって沈殿し、汚泥となる。これらの汚泥には、リンが多く含まれている。農水産系リン含有廃棄物としては、家畜や魚類の肉骨粉、家畜排泄物などの動物由来廃棄物並びに麦わらなどの植物由来廃棄物が挙げられる。工業系リン含有廃棄物としては、リン酸亜鉛化成処理工程排出スラッジ、電子部品及びプリント基板の加工又は脱脂工程等の洗浄液などが挙げられる。食品系リン含有廃棄物としては、おから、醤油かす、残飯等が挙げられる。これらは1種又は2種以上を組みあわせて用いることができる。 The phosphorus-containing waste used in this embodiment broadly includes phosphorus-containing waste. Examples of phosphorus-containing wastes include sewage sludge-based phosphorus-containing wastes, agricultural and marine product-based phosphorus-containing wastes, industrial phosphorus-containing wastes, and food-based phosphorus-containing wastes. Examples of sewage sludge-based phosphorus-containing wastes include general sewage sludge and industrial sewage sludge. Examples of general sewage sludge include sewage sludge generated in a sewage treatment plant that treats domestic wastewater. Examples of the industrial sewage sludge include sewage sludge generated in the sewage treatment facility when wastewater and waste liquid from a factory such as a food factory or a chemical factory are treated in the sewage treatment facility in the factory. At a sewage treatment facility that treats domestic sewage, such as sewage sludge and industrial wastewater discharged from food factories, various substances that cause environmental pollution contained in the wastewater are decomposed and adsorbed by microorganisms, Purify. During the purification process, microbial carcasses collect and settle into sludge. These sludges are high in phosphorus. Agricultural and fisheries phosphorus-containing wastes include animal-derived wastes such as meat-and-bone meal of livestock and fish, livestock excrement, and plant-derived wastes such as straw. Examples of the industrial phosphorus-containing waste include sludge discharged from the zinc phosphate chemical conversion treatment step, cleaning liquid for processing or degreasing electronic components and printed circuit boards, and the like. Examples of food-based phosphorus-containing wastes include okara, soy sauce cake, and leftover rice. These can be used alone or in combination of two or more.

特に本発明の処理方法は、リン源としてリン含有廃棄物を用いることが好ましい。リン含有廃棄物は一般的に逆有償で取引されることが多く、そのため本発明においてリン含有廃棄物の使用量を増やすことで、焼却灰の処理コストを下げるメリットがある。更にリン含有廃棄物自体にも燃焼熱を有するものも多く、この燃焼熱により焼却灰との加熱処理時のエネルギーコストを下げる効果も有している。
特に、焼却灰とリン含有廃棄物との混合物を600℃以上1200℃以下で加熱することで、焼却灰とリン含有廃棄物の混合物中のカルシウム量・リン量の好適なバランスが得られ、その結果、得られた焼却物において、ホウ素、6価クロム及び/又は砒素の溶出量を低いものとすることができる。この場合の溶出量の低減は、単に石炭灰の単独物からの溶出量に比した場合のみならず、リン含有廃棄物単独焼却物からの溶出量に比しても優れたものとなる。
これらの観点から、リン含有廃棄物としては、好ましくは下水汚泥系リン含有廃棄物、農水産系リン含有廃棄物及び工業系リン含有廃棄物から選ばれる少なくとも一種であり、更に好ましくは下水汚泥系リン含有廃棄物及び/又は農水産系リン含有廃棄物であり、特に好ましくは一般下水汚泥(下記実施例では単に「下水汚泥」と記載する)、工業下水汚泥(下記実施例では単に「工業汚泥」と記載する)及び肉骨粉から選ばれる少なくとも一種である。ホウ素、6価クロム及び砒素の溶出量を低減する点で最も好ましい形態の一つは、一般下水汚泥又は工業下水汚泥と肉骨粉との組み合わせである。これらの廃棄物は含水物、乾燥物及び加熱物の何れであってもよい。
In particular, the treatment method of the present invention preferably uses phosphorus-containing waste as a phosphorus source. Phosphorus-containing waste is generally traded for a reverse fee, and therefore, increasing the amount of phosphorus-containing waste used in the present invention has the advantage of reducing the treatment cost of incineration ash. Furthermore, many phosphorus-containing wastes themselves also have combustion heat, and this combustion heat also has the effect of reducing the energy cost during heat treatment with incinerated ash.
In particular, by heating the mixture of incinerated ash and phosphorus-containing waste at 600° C. or higher and 1200° C. or lower, a suitable balance between the amount of calcium and the amount of phosphorus in the mixture of incinerated ash and phosphorus-containing waste can be obtained. As a result, in the obtained incinerator, the elution amount of boron, hexavalent chromium and/or arsenic can be made low. In this case, the amount of elution is reduced not only when compared to the amount of coal ash leached alone, but also when compared to the amount leached from the incineration of phosphorus-containing waste alone.
From these viewpoints, the phosphorus-containing waste is preferably at least one selected from sewage sludge-based phosphorus-containing waste, agricultural and marine product-based phosphorus-containing waste and industrial phosphorus-containing waste, and more preferably sewage sludge-based waste. Phosphorus-containing wastes and/or agricultural and fisheries phosphorus-containing wastes, particularly preferably general sewage sludge (simply referred to as “sewage sludge” in the following examples) and industrial sewage sludge (simply “industrial sludge in the following examples). )” and meat-and-bone meal. One of the most preferable forms for reducing the elution amount of boron, hexavalent chromium and arsenic is a combination of general sewage sludge or industrial sewage sludge and meat-and-bone meal. These wastes may be hydrous, dried or heated.

例えば、後述する比較例4、5、6、13、15、16、17に示すように本発明で用いるリン含有廃棄物は、これを焼却灰と混合せずに単独で600℃以上1200℃以下で加熱した加熱処理物としたときに、土壌環境基準対象元素、例えばホウ素、砒素、6価クロム又はリンの溶出量が一定以上であるものであってもよい。後述する実施例に示すように、本発明は、リン含有廃棄物を焼却灰と混合して600℃以上1200℃以下で加熱して加熱処理物とすることにより、その溶出量を低減させることが可能である。従って、本発明は、例えば、焼却灰とリン含有廃棄物とを混合して600℃以上1200℃以下で加熱する工程を有する、リン含有廃棄物からのホウ素、砒素、6価クロム又はリン等の土壌環境基準対象元素の溶出抑制方法を提供するものであってもよい。 For example, as shown in Comparative Examples 4, 5, 6, 13, 15, 16, and 17, which will be described later, the phosphorus-containing waste used in the present invention is 600° C. or more and 1200° C. or less without mixing it with incinerated ash. When the heat-treated product is heated in step 1, the elution amount of a soil environmental standard target element such as boron, arsenic, hexavalent chromium or phosphorus may be a certain amount or more. As shown in Examples described later, the present invention can reduce the amount of elution by mixing phosphorus-containing waste with incinerated ash and heating at 600° C. or more and 1200° C. or less to obtain a heat-treated product. It is possible. Therefore, the present invention has, for example, a step of mixing incineration ash and phosphorus-containing waste and heating at 600° C. or higher and 1200° C. or lower, such as boron, arsenic, hexavalent chromium or phosphorus from phosphorus-containing waste. It may also provide a method for suppressing the elution of elements subject to soil environmental standards.

本発明の効果が一層顕著に発現する観点から、本発明に用いるリン含有廃棄物中のリン含有量は、使用するリン含有廃棄物の形態や含液率によって大きく変化する。例えば一般的な脱水汚泥は含水率が80−90質量%となっているが、このような脱水汚泥と呼ばれる含水品だけでなく、水分を除去した乾燥品、更には200〜900℃で有機物を分解した汚泥加熱品の何れも使用することができる。従ってリン含有廃棄物の使用態様は特に制限されないものの、水分や有機物を大量に含んでいるものもあるため、900℃で3時間加熱した状態で測定した蛍光X線分析(XRF)でのP換算での値が、900℃で3時間加熱したリン含有廃棄物の質量に対して、5〜60質量パーセントが好ましく、10〜40質量パーセントであることがより好ましい。ここでいう加熱は、空気雰囲気下で行う。リン含有量が多い場合には、本発明の溶出抑制効果が小さくなる。また逆に少ない場合には生産性が大きく低下する等の課題が生じる。またこれらの廃棄物を用い、これを焼却灰と混合して加熱することによって、焼却灰並びにリン含有廃棄物に含まれる有害微量元素の溶出量を抑制できるとともに廃棄物の削減に寄与できる。From the viewpoint that the effect of the present invention is more remarkably exhibited, the phosphorus content in the phosphorus-containing waste used in the present invention greatly changes depending on the form and liquid content of the phosphorus-containing waste used. For example, general dehydrated sludge has a water content of 80 to 90% by mass, but not only water-containing products such as dehydrated sludge, but also dried products from which water has been removed, and organic substances at 200 to 900° C. Any of the decomposed sludge heated products can be used. Therefore, the usage of the phosphorus-containing waste is not particularly limited, but some of the phosphorus-containing waste contains a large amount of water and organic matter. Therefore, P 2 in fluorescent X-ray analysis (XRF) measured under heating at 900° C. for 3 hours. The value in terms of O 5 is preferably 5 to 60 mass% and more preferably 10 to 40 mass% with respect to the mass of the phosphorus-containing waste heated at 900° C. for 3 hours. The heating here is performed in an air atmosphere. When the phosphorus content is high, the elution suppressing effect of the present invention becomes small. On the other hand, when the amount is small, there arises a problem that productivity is greatly reduced. Further, by using these wastes and mixing them with incinerated ash and heating them, it is possible to suppress the elution amount of harmful trace elements contained in the incinerated ash and the phosphorus-containing waste, and to contribute to the reduction of the wastes.

本発明においては焼却灰とリン源とを混合して該焼却灰を処理する。この時使用するリン源の添加量は、有害微量元素の溶出抑制効果が一層顕著に発現する観点から、焼却灰100質量部に対してリン元素(P)換算で、0.001質量部60質量部以下であることが好ましく、0.01質量部以上40質量部以下であることが好ましく、0.05質量部以上20質量部以下であることがより好ましく、0.1質量部以上10質量部以下であることが更に好ましい。リン源の添加量を0.001質量部以上、特に0.01質量部以上に設定することで、有害微量元素の溶出抑制効果が十分発揮される。また、リン源の添加量を60質量部以下にすることで、焼却灰の処理物からのリンの溶出量を環境基準値以下にすることが容易である。
ここでいうリン源がリン含有廃棄物である場合、該廃棄物中のリンの量は、以下の方法で測定できる。
試料を900℃で3時間加熱した残渣を蛍光X線分析(XRF)し、5酸化2リン濃度測定値をリン単独での量に換算する。
In the present invention, the incinerated ash is treated by mixing the incinerated ash and the phosphorus source. The addition amount of the phosphorus source used at this time is 0.001 parts by mass 60 parts by mass in terms of phosphorus element (P) conversion with respect to 100 parts by mass of incinerated ash from the viewpoint that the effect of suppressing the elution of harmful trace elements is more significantly exhibited. Parts by mass or less, preferably 0.01 parts by mass or more and 40 parts by mass or less, more preferably 0.05 parts by mass or more and 20 parts by mass or less, and 0.1 parts by mass or more and 10 parts by mass. The following is more preferable. By setting the addition amount of the phosphorus source to 0.001 parts by mass or more, particularly 0.01 parts by mass or more, the effect of suppressing the elution of harmful trace elements is sufficiently exhibited. Further, by setting the addition amount of the phosphorus source to 60 parts by mass or less, it is easy to make the elution amount of phosphorus from the treated product of the incinerated ash to be equal to or less than the environmental standard value.
When the phosphorus source here is a phosphorus-containing waste, the amount of phosphorus in the waste can be measured by the following method.
The sample is heated at 900° C. for 3 hours, and the residue is subjected to fluorescent X-ray analysis (XRF) to convert the measured concentration of diphosphorus pentaoxide to the amount of phosphorus alone.

更に、砒素、6価クロム及びホウ素の溶出量低減効果を一層高める観点から、焼却灰中の砒素、クロム及びホウ素の合計量に対して、前記焼却灰と前記リン源との混合物中のリンの量が、1質量倍以上であることが好ましく、10質量倍以上であることがより好ましく、15質量倍以上であることが特に好ましい。一方、焼却灰中の砒素、クロム及びホウ素の合計量に対して、前記焼却灰と前記リン源との混合物中のリンの量は400質量倍以下であることが、焼却灰の処理物からのリンの溶出量を環境基準値以下にすることが容易であるために好ましく、300質量倍以下であることが、一層好ましい。ここでいう混合物中のリンの量には、焼却灰及びリン含有廃棄物それぞれのリン含有成分のほか、混合物が焼却灰及びリン含有廃棄物以外のリン含有成分を含む場合、当該リン含有成分のリンの量も含まれる。特に焼却灰が石炭灰であり且つ一般下水汚泥である場合に、焼却灰中の砒素、クロム及びホウ素の合計量に対して、前記焼却灰と前記リン源との混合物中のリンの量が18質量倍以上であることは砒素溶出量低減の点で更に一層好ましい。 Further, from the viewpoint of further enhancing the effect of reducing the elution amount of arsenic, hexavalent chromium and boron, the phosphorus content in the mixture of the incineration ash and the phosphorus source is relative to the total amount of arsenic, chromium and boron in the incineration ash. The amount is preferably 1 times or more, more preferably 10 times or more, and particularly preferably 15 times or more. On the other hand, the amount of phosphorus in the mixture of the incineration ash and the phosphorus source is 400 mass times or less with respect to the total amount of arsenic, chromium and boron in the incineration ash. It is preferable that the elution amount of phosphorus be less than or equal to the environmental standard value, and it is more preferably 300 times or less by mass. In the amount of phosphorus in the mixture here, in addition to the phosphorus-containing components of the incineration ash and phosphorus-containing waste, if the mixture contains phosphorus-containing components other than the incineration ash and phosphorus-containing waste, The amount of phosphorus is also included. Particularly when the incinerated ash is coal ash and general sewage sludge, the amount of phosphorus in the mixture of the incinerated ash and the phosphorus source is 18 with respect to the total amount of arsenic, chromium and boron in the incinerated ash. It is even more preferable that the amount is at least twice the mass in terms of reducing the elution amount of arsenic.

本実施形態において砒素、6価クロム及びホウ素の溶出抑制効果を高めるために、カルシウム量も重要である。例えば、焼却灰中の砒素、クロム及びホウ素の合計量に対して、焼却灰とリン源との混合物中のカルシウムの量が、10質量倍以上であることが好ましく、30質量倍以上であることが特に好ましい。特に、焼却灰中の砒素、クロム及びホウ素の合計量に対して、焼却灰とリン源との混合物中のカルシウムの量が、75質量倍以上であると、砒素の溶出抑制効果が非常に優れたものとなるため好ましい。 In this embodiment, the amount of calcium is also important in order to enhance the effect of suppressing the elution of arsenic, hexavalent chromium and boron. For example, the amount of calcium in the mixture of the incinerated ash and the phosphorus source is preferably 10 times by mass or more, and 30 times by mass or more, with respect to the total amount of arsenic, chromium and boron in the incinerated ash. Is particularly preferable. In particular, when the amount of calcium in the mixture of the incinerated ash and the phosphorus source is 75 mass times or more with respect to the total amount of arsenic, chromium and boron in the incinerated ash, the effect of suppressing arsenic elution is very excellent. It is preferable because it will result in

焼却灰とリン源との混合物中のカルシウム量が重要である理由は明確ではないが、発明者は以下の理由と推測している。
例えば、焼却灰とリン源との混合物の加熱物において、リンとカルシウムとが加熱処理中にリン酸カルシウムを形成し、これが混合物表面を被覆した状態となることで、ホウ素、砒素及び6価クロムの溶出抑制効果が得やすいと考えられる。また、砒素は加熱処理中にカルシウムと結合して水不溶性のヒ酸カルシウム可能性も考えられる。
前記焼却灰中の砒素、クロム及びホウ素の合計量に対して、前記焼却灰と前記リン源との混合物中のカルシウムは上記の通り、一定量以上存在することが好ましいが、多すぎると6価クロムの溶出抑制に影響する場合がある。6価クロムを効果的に抑制する観点から、焼却灰中の砒素、クロム及びホウ素の合計量に対して、前記焼却灰と前記リン源との混合物中のカルシウムの量は、1000質量倍以下であることが好ましく、800質量倍以下であることが更に好ましく、450質量倍以下であることが特に好ましい。
The reason why the amount of calcium in the mixture of incinerated ash and phosphorus source is important is not clear, but the inventor speculates the following reasons.
For example, in a heated product of a mixture of incinerated ash and a phosphorus source, phosphorus and calcium form calcium phosphate during the heat treatment, which forms a state in which the surface of the mixture is coated, whereby boron, arsenic and hexavalent chromium are eluted. It is considered that the suppression effect is easily obtained. It is also possible that arsenic binds to calcium during heat treatment and is water-insoluble calcium arsenate.
With respect to the total amount of arsenic, chromium and boron in the incinerated ash, it is preferable that calcium in the mixture of the incinerated ash and the phosphorus source be present in a certain amount or more as described above, but if it is too much, it is hexavalent. It may affect the suppression of chromium elution. From the viewpoint of effectively suppressing hexavalent chromium, the amount of calcium in the mixture of the incineration ash and the phosphorus source is 1000 mass times or less with respect to the total amount of arsenic, chromium and boron in the incineration ash. It is preferable that the amount is 800 times or more, more preferably 800 times or less, and particularly preferably 450 times or less.

特に、焼却灰が石炭灰である場合、焼却灰中の砒素、クロム及びホウ素の合計量に対して、石炭灰と前記リン源との混合物中のカルシウムの量は10質量倍以上800質量倍以下であることが更に好ましく、30質量倍以上450質量倍以下であることが特に好ましく、445質量倍以下であることが最も好ましい。
また、焼却灰が一般ごみ焼却灰である場合、焼却灰中の砒素、クロム及びホウ素の合計量に対して、一般ごみ焼却灰と前記リン源との混合物中のカルシウムの量は、400質量倍以上1000質量倍以下であることが好ましく、600質量倍以上800質量倍以下であることが更に好ましい。
In particular, when the incineration ash is coal ash, the amount of calcium in the mixture of coal ash and the phosphorus source is 10 mass times or more and 800 mass times or less with respect to the total amount of arsenic, chromium and boron in the incineration ash. Is more preferable, 30 times or more and 450 times or less by mass is particularly preferable, and 445 times or less is most preferable.
Moreover, when the incineration ash is general waste incineration ash, the amount of calcium in the mixture of the general waste incineration ash and the phosphorus source is 400 mass times the total amount of arsenic, chromium and boron in the incineration ash. It is preferably 1000 times or more and 1000 times or less, and more preferably 600 times or more and 800 times or less.

上記の混合物中のカルシウムの量には、焼却灰及びリン含有廃棄物それぞれのカルシウム含有成分のほか、混合物が焼却灰及びリン含有廃棄物以外のカルシウム含有成分を含む場合、当該カルシウム含有成分のカルシウムの量も含まれる。
例えばリン源のカルシウム量は以下の方法で測定できる。
試料を900℃で3時間加熱した残渣を蛍光X線分析(XRF)し、酸化カルシウム測定値をカルシウム単独での量に換算する。
In the amount of calcium in the above mixture, in addition to the calcium-containing components of the incineration ash and the phosphorus-containing waste, respectively, when the mixture contains calcium-containing components other than the incineration ash and phosphorus-containing waste, calcium of the calcium-containing component The amount of is also included.
For example, the amount of calcium as a phosphorus source can be measured by the following method.
The residue obtained by heating the sample at 900° C. for 3 hours is subjected to fluorescent X-ray analysis (XRF), and the measured value of calcium oxide is converted into the amount of calcium alone.

更に、混合物中のカルシウム量と混合物中のリンの量との質量比率(Ca/P)は、0.5以上であることが、特に得られる処理物においてホウ素、砒素の溶出量を効果的に低減できるために好ましく、特に1以上であることがホウ素、砒素の溶出量の低減効果が最も高いため好ましい。一方、混合物中のカルシウム量と混合物中のリンの量との質量比率(Ca/P)は、50以下であることが6価クロムの溶出量を一層効果的に軽減できるために好ましく、とりわけ30以下であることが好ましい。 Further, the mass ratio (Ca/P) of the amount of calcium in the mixture to the amount of phosphorus in the mixture is 0.5 or more, which is effective in increasing the elution amount of boron and arsenic in the obtained treated product. It is preferable because it can be reduced, and it is particularly preferable that it is 1 or more because the effect of reducing the elution amount of boron and arsenic is the highest. On the other hand, the mass ratio (Ca/P) of the amount of calcium in the mixture to the amount of phosphorus in the mixture is preferably 50 or less because the elution amount of hexavalent chromium can be more effectively reduced, and particularly 30 The following is preferable.

焼却灰とリン源との混合物中のリン(元素P換算量)の量は、特に限定されないが、0.1質量%以上10質量%以下であることが砒素、6価クロム及びホウ素の溶出量を効果的に低減できる点で好ましく、とりわけ0.3質量%以上5.0質量%以下であることが好ましい。 The amount of phosphorus (amount converted to element P) in the mixture of incinerated ash and phosphorus source is not particularly limited, but the amount of arsenic, hexavalent chromium and boron eluted is preferably 0.1% by mass or more and 10% by mass or less. Is preferable in that it can be effectively reduced, and is particularly preferably 0.3% by mass or more and 5.0% by mass or less.

焼却灰とリン源との混合物中のカルシウムの量は特に限定されないが、0.1質量%以上50質量%以下であることが砒素、6価クロム及びホウ素の溶出量を効果的に低減できる点で好ましく、とりわけ1.0質量%以上35質量%以下であることが好ましい。 The amount of calcium in the mixture of the incinerated ash and the phosphorus source is not particularly limited, but the amount of 0.1 mass% or more and 50 mass% or less can effectively reduce the elution amount of arsenic, hexavalent chromium and boron. Is preferable, and particularly preferably 1.0% by mass or more and 35% by mass or less.

本実施形態においてリン源としてリン含有廃棄物を用いる場合、リン含有廃棄物及び焼却灰の混合物に、リン含有廃棄物及び焼却灰以外のリン含有成分を含有させて、上記の好適なリン量に調整してもよい。
また、前記のリン含有成分としては、上記で挙げた各種リン含有化合物が挙げられるが、特に、リン酸ナトリウム、ポリリン酸、ポリリン酸ナトリウム、三リン酸五カリウム、リン酸、リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウム、亜リン酸ナトリウム、並びにこれらの水和物 が挙げられ、特にリン酸ナトリウムが好ましい。
リン含有廃棄物及び焼却灰以外のリン成分の添加量は、固形分として、焼却灰100質量部に対して、0.1〜40質量部であることが好ましく、0.5〜20質量部であることがより好ましい。
When the phosphorus-containing waste is used as the phosphorus source in the present embodiment, the mixture of the phosphorus-containing waste and the incinerated ash contains a phosphorus-containing component other than the phosphorus-containing waste and the incinerated ash, and the above-mentioned suitable phosphorus amount is obtained. You may adjust.
Examples of the phosphorus-containing component include the various phosphorus-containing compounds listed above, but particularly sodium phosphate, polyphosphoric acid, sodium polyphosphate, pentapotassium triphosphate, phosphoric acid, potassium dihydrogen phosphate. , Dipotassium hydrogen phosphate, tripotassium phosphate, sodium phosphite, and hydrates thereof, with sodium phosphate being particularly preferred.
The addition amount of phosphorus components other than phosphorus-containing waste and incinerated ash is preferably 0.1 to 40 parts by mass, and 0.5 to 20 parts by mass, as solid content, relative to 100 parts by mass of incinerated ash. More preferably.

本実施形態においてリン源及び焼却灰の混合物に、リン源及び焼却灰以外のカルシウム含有成分及び/又はリン含有成分を含有させて、上記の好適なカルシウム量に調整してもよい。この場合のリン源は特にリン含有廃棄物であることが好ましい。前記のカルシウム含有成分としては、酸化カルシウム、水酸化カルシウム、塩化カルシウム、炭酸カルシウム、硫酸カルシウム、リン酸カルシウム、並びに、カルシウム分を多く有する製紙工場での廃棄物であるペーパースラッジ灰が挙げられ、特にペーパースラッジ灰、酸化カルシウムが好ましい。
リン含有廃棄物及び焼却灰以外のカルシウム含有成分の添加量は、固形分として、焼却灰100質量部に対して、0.1〜40質量部であることが好ましく、0.5〜20質量部であることがより好ましい。
In the present embodiment, the mixture of the phosphorus source and the incinerated ash may contain a calcium-containing component and/or a phosphorus-containing component other than the phosphorus source and the incinerated ash to adjust the amount of calcium to the above-mentioned suitable amount. The phosphorus source in this case is particularly preferably phosphorus-containing waste. Examples of the calcium-containing component include calcium oxide, calcium hydroxide, calcium chloride, calcium carbonate, calcium sulfate, calcium phosphate, and paper sludge ash, which is a waste product at a paper mill having a large amount of calcium, and especially paper. Sludge ash and calcium oxide are preferred.
The addition amount of calcium-containing components other than phosphorus-containing waste and incinerated ash is preferably 0.1 to 40 parts by mass, and 0.5 to 20 parts by mass, as solid content, relative to 100 parts by mass of incinerated ash. Is more preferable.

また、本発明においてリン源及び焼却灰の混合物に、ナトリウム成分を含有させると、特に得られた処理物において、ホウ素及び/又は6価クロムの溶出量を低減させることが出来るため好ましい。この場合のリン源は特にリン含有廃棄物であることが好ましい。ナトリウム成分としては、塩化ナトリウム、水酸化ナトリウム、炭酸ナトリウム、リン酸ナトリウム及び海水が挙げられ、特に塩化ナトリウム、水酸化ナトリウム、リン酸ナトリウムが好ましく挙げられる。ナトリウム成分の添加量は、固形分として、焼却灰100質量部に対して、0.1〜40質量部であることが好ましく、0.5〜20質量部であることがより好ましい。特に実施例B−4とB−5との比較から明らかな通り、ごみ焼却灰とリン源との混合物に塩化ナトリウム等のナトリウム成分を含有させることで、6価クロムの溶出量を容易に低減できるため好ましい。
また実施例C−16と、C−17及びC−18との比較から明らかな通り、ナトリウム成分をリン含有廃棄物と焼却灰との混合物に添加することで、得られる本実施形態の処理物において、ホウ素の溶出量の低減を抑制することもできる。
In addition, in the present invention, it is preferable to add a sodium component to the mixture of the phosphorus source and the incinerated ash, since the elution amount of boron and/or hexavalent chromium can be reduced particularly in the obtained treated product. The phosphorus source in this case is particularly preferably phosphorus-containing waste. Examples of the sodium component include sodium chloride, sodium hydroxide, sodium carbonate, sodium phosphate and seawater, with sodium chloride, sodium hydroxide and sodium phosphate being particularly preferred. The amount of the sodium component added is preferably 0.1 to 40 parts by mass, and more preferably 0.5 to 20 parts by mass, as solid content, relative to 100 parts by mass of incinerated ash. In particular, as is clear from the comparison between Examples B-4 and B-5, the elution amount of hexavalent chromium can be easily reduced by adding a sodium component such as sodium chloride to the mixture of the refuse incineration ash and the phosphorus source. It is preferable because it is possible.
Moreover, as is clear from the comparison between Example C-16 and C-17 and C-18, the treated product of the present embodiment obtained by adding the sodium component to the mixture of the phosphorus-containing waste and the incinerated ash. In the above, it is also possible to suppress the reduction of the elution amount of boron.

本発明の処理方法において、焼却灰とリン源とを混合する方法に特に制限はない。例えば、焼却灰とリン源とを物理的に混合する方法、溶媒にリン源を溶解又は懸濁させた溶液又はスラリーを焼却灰に含浸する方法、焼却灰とリン源とを物理的に混合した後に溶媒を添加する方法などが挙げられる。 In the treatment method of the present invention, the method of mixing the incinerated ash and the phosphorus source is not particularly limited. For example, a method of physically mixing incineration ash and a phosphorus source, a method of impregnating the incineration ash with a solution or a slurry in which a phosphorus source is dissolved or suspended in a solvent, and a physically mixed incineration ash and a phosphorus source Examples include a method of adding a solvent later.

使用する溶媒としては、リン源を溶解し得るか、又は懸濁させ得るものを用いることができる。例えば、水(水道水、蒸留水、イオン交換水等)及び海水などの水性溶媒、並びにメタノール、エタノール及びイソプロピルアルコール等のアルコール類を初めとする有機溶媒を挙げることができる。好ましい溶媒は水である。有害微量元素の溶出抑制効果が一層顕著に発現する観点から、溶媒の使用量は、焼却灰100質量部に対して、5質量部以上200質量部以下であることが好ましく、10質量部以上100質量部以下であることがより好ましい。 As the solvent to be used, one that can dissolve or suspend the phosphorus source can be used. Examples thereof include water (tap water, distilled water, ion-exchanged water, etc.) and aqueous solvents such as seawater, and organic solvents such as alcohols such as methanol, ethanol and isopropyl alcohol. The preferred solvent is water. From the viewpoint that the effect of suppressing the elution of harmful trace elements is more remarkably exhibited, the amount of the solvent used is preferably 5 parts by mass or more and 200 parts by mass or less, and 10 parts by mass or more and 100 parts by mass with respect to 100 parts by mass of the incinerated ash. It is more preferably less than or equal to parts by mass.

本発明においては、焼却灰とリン源とを混合して混合物を得た後に、該混合物を加熱処理することが、有害微量元素の溶出抑制効果を十分に得る観点から好ましい。加熱処理の方法は特に制限はなく、例えば、一般的な焼成炉、環状炉、キルンなどの焼成装置を用いることができる。加熱処理の雰囲気は特に制限されず、例えば空気及び酸素等の酸素含有雰囲気、並びに窒素及びアルゴン等の不活性ガス雰囲気とすることができる。経済的な観点からは、空気中で加熱処理を行うことが好ましい。空気中で加熱処理する場合、有害微量元素の溶出抑制効果が一層顕著になる観点から、空気を流通させながら加熱処理を行うことが好ましい。 In the present invention, it is preferable that the incineration ash and the phosphorus source are mixed to obtain a mixture, and then the mixture is heat-treated from the viewpoint of sufficiently obtaining the effect of suppressing the elution of harmful trace elements. The method of heat treatment is not particularly limited, and for example, a general firing furnace, a ring furnace, a kiln, or other firing apparatus can be used. The atmosphere for the heat treatment is not particularly limited, and may be, for example, an oxygen-containing atmosphere such as air and oxygen, or an inert gas atmosphere such as nitrogen and argon. From an economical point of view, it is preferable to perform the heat treatment in air. When the heat treatment is carried out in air, it is preferable to carry out the heat treatment while circulating air from the viewpoint that the effect of suppressing the elution of harmful trace elements becomes more remarkable.

加熱処理は、加熱処理物からの有害微量元素の溶出量を抑制できる温度で行うことが好ましい。本発明者の検討の結果、600℃以上で加熱すると、加熱処理物からの有害微量元素の溶出量を十分に抑制できることが判明した。この観点から、加熱温度は高ければ高いほど有害微量元素の溶出量を抑制できるが、例えば高温で逆に溶出しやすくなるものもある。そこで加熱処理は、600℃以上(特に600℃超)1200℃以下とすることが好ましく、700℃以上1200℃以下とすることが更に好ましい。
特に焼却灰が石炭灰である場合、6価クロム、砒素及びホウ素の溶出抑制の観点から、750℃以上1200℃以下とすることが一層好ましく、800℃以上1100℃以下とすることが更に一層好ましく、850℃以上1000℃以下とすることが特に好ましい。一方、焼却灰が一般ごみの焼却灰である場合、6価クロム、砒素及びホウ素の溶出抑制の観点から、加熱温度は、600℃以上1000℃以下とすることが一層好ましく、650℃以上850℃以下とすることが更に一層好ましく、700℃以上780℃以下とすることが特に好ましい。
The heat treatment is preferably performed at a temperature at which the amount of harmful trace elements eluted from the heat-treated product can be suppressed. As a result of the study by the present inventors, it was found that heating at 600° C. or higher can sufficiently suppress the elution amount of harmful trace elements from the heat-treated product. From this point of view, the higher the heating temperature, the more the amount of harmful trace elements eluted can be suppressed. Therefore, the heat treatment is preferably performed at 600° C. or higher (particularly more than 600° C.) and 1200° C. or lower, and more preferably 700° C. or higher and 1200° C. or lower.
Particularly when the incinerated ash is coal ash, it is more preferably 750° C. or higher and 1200° C. or lower, further preferably 800° C. or higher and 1100° C. or lower, from the viewpoint of suppressing elution of hexavalent chromium, arsenic and boron. It is particularly preferable that the temperature is 850° C. or higher and 1000° C. or lower. On the other hand, when the incineration ash is incineration ash of general waste, the heating temperature is more preferably 600° C. or higher and 1000° C. or lower, and 650° C. or higher and 850° C., from the viewpoint of suppressing elution of hexavalent chromium, arsenic and boron. The temperature is even more preferably below, and particularly preferably 700° C. or higher and 780° C. or lower.

本発明で用いる焼却灰としては石炭灰又は一般ごみ焼却灰の場合、600℃以上、特に700℃以上で加熱処理することで、リン源が、石炭灰などの焼却灰中に含まれる未燃炭素の分解を促進し、焼却灰中の未燃炭素含有量を低減させることも可能となる。このことは特に、焼却灰が、炭素が豊富な物質であるバイオマスと石炭との混合物を燃焼させて発生する石炭灰である場合に有利である。焼却灰中の未燃炭素含有量を低減させることによって、例えば石炭灰にセメントを添加する盛土材の調製時に、使用するセメント量を低減することができる。またコンクリート製造時に石炭灰を添加する場合には、石炭灰由来のカーボン浮きを抑制することができる。 As the incineration ash used in the present invention, in the case of coal ash or general waste incineration ash, the phosphorus source causes unburned carbon contained in the incineration ash such as coal ash by heat treatment at 600° C. or higher, particularly 700° C. or higher. It is also possible to accelerate the decomposition of ash and reduce the content of unburned carbon in the incineration ash. This is particularly advantageous when the incineration ash is a coal ash generated by burning a mixture of a carbon-rich substance, biomass and coal. By reducing the unburned carbon content in the incinerated ash, it is possible to reduce the amount of cement used, for example, when preparing an embankment material in which cement is added to coal ash. Further, when coal ash is added during the production of concrete, it is possible to suppress carbon floating derived from coal ash.

加熱処理の時間は、加熱温度が上述の範囲である場合には、30分以上24時間以内が好ましく、1時間以上10時間以内が更に好ましく、1時間以上5時間以内が一層好ましい。この範囲の時間で加熱を行うことで、加熱処理物からの有害微量元素の溶出量を十分に且つ経済的に抑制できる。 When the heating temperature is within the above range, the heat treatment time is preferably 30 minutes or more and 24 hours or less, more preferably 1 hour or more and 10 hours or less, and further preferably 1 hour or more and 5 hours or less. By heating for a time within this range, the elution amount of harmful trace elements from the heat-treated product can be sufficiently and economically suppressed.

また、焼却灰とリン源との混合物を予め80℃以上300℃以下で加熱し、次いで、上記の加熱処理を行うことも好ましい。このようにすると、水分などの低沸点化合物の除去を効率的に行うことができるだけでなく、その後の高温加熱における有機物の分解も促進できるという利点がある。焼却灰とリン源との混合物を予め80℃以上300℃以下で加熱する場合、この加熱処理の方法及び加熱処理の雰囲気としては、上記の600℃以上1200℃以下の加熱処理の加熱処理の方法及び加熱処理の雰囲気として上記で挙げたものが挙げられる。また、焼却灰とリン源との混合物を予め80℃以上300℃以下で加熱する場合の加熱時間としては、上記の利点による効果をより一層高く奏させる点から、15分以上10時間以下が好ましく、30分以上5時間以下が更に好ましい。 It is also preferable to preheat the mixture of incinerated ash and phosphorus source at 80° C. or higher and 300° C. or lower, and then perform the above heat treatment. This has the advantage that not only can low-boiling compounds such as water be removed efficiently, but also the decomposition of organic substances during subsequent high-temperature heating can be accelerated. When a mixture of incinerated ash and a phosphorus source is preheated at 80° C. or higher and 300° C. or lower, the heat treatment method and the atmosphere of the heat treatment are the above-mentioned heat treatment method of 600° C. or higher and 1200° C. or lower. Further, as the atmosphere of the heat treatment, those mentioned above can be mentioned. In addition, the heating time in the case of previously heating the mixture of the incinerated ash and the phosphorus source at 80° C. or higher and 300° C. or lower is preferably 15 minutes or more and 10 hours or less from the viewpoint of further enhancing the effect of the above advantages. It is more preferably 30 minutes or more and 5 hours or less.

また、本発明において、上述した600℃超、好ましくは700℃以上における加熱処理の前に造粒工程を有していても有していなくてもよい。
上述した600℃以上、好ましくは700℃以上における加熱処理後の加熱処理物の性状としては、例えば粉状物、粒状物等が挙げられる。
Further, in the present invention, the granulation step may or may not be performed before the heat treatment at 600° C. or higher, preferably 700° C. or higher.
Examples of the property of the heat-treated product after the heat treatment at 600° C. or higher, preferably 700° C. or higher include powdery substances and granular substances.

以上のとおりの本発明の処理方法を用いることにより、生産性が高く、工業的に簡便に、且つ焼却灰の物性、組成及び原料に影響されることなく、焼却灰に含まれる、土壌汚染対策法に規定される複数の有害微量元素の溶出量を同時に環境基準値以下に低減させることができる。具体的には、ホウ素、砒素、セレン、フッ素、6価クロム、鉛、水銀及びカドミウムからなる群の少なくとも1種の元素の溶出量を低減させることができ、好ましくは、これらの群に含まれる2種以上の元素の溶出量を低減させることができ、更に好ましくは3種以上の元素の溶出量を低減させることができ、特に好ましくは、ホウ素、砒素及び6価クロムの溶出量を低減させることができ、最も好ましくは、これらの群に含まれるすべての元素の溶出量を低減させることができる。 By using the treatment method of the present invention as described above, high productivity, industrially convenient, and contained in the incinerated ash without being affected by the physical properties, composition, and raw materials of the incinerated ash, soil pollution countermeasures It is possible to simultaneously reduce the elution amount of a plurality of harmful trace elements specified by law to below the environmental standard value. Specifically, the elution amount of at least one element selected from the group consisting of boron, arsenic, selenium, fluorine, hexavalent chromium, lead, mercury, and cadmium can be reduced, and preferably, it is contained in these groups. The elution amount of two or more elements can be reduced, more preferably the elution amount of three or more elements can be reduced, and particularly preferably the elution amount of boron, arsenic and hexavalent chromium is reduced. And most preferably, the elution amount of all elements contained in these groups can be reduced.

本実施形態の処理方法によって得られた加熱処理物は、中性以外のpH環境下においても、有害微量元素の溶出を抑制できるという効果を有する。例えば、中性以外のpH環境下としては、25℃でのpH2.0〜5.0の酸性条件下や、pH8.0〜12.0の塩基性条件下が挙げられる。 The heat-treated product obtained by the treatment method of the present embodiment has an effect that elution of harmful trace elements can be suppressed even in a pH environment other than neutral. For example, as a pH environment other than neutral, there may be mentioned acidic conditions of pH 2.0 to 5.0 at 25° C. and basic conditions of pH 8.0 to 12.0.

本発明の処理方法によって得られた加熱処理物は、これを屋外に放置しても、それに含まれる有害微量元素の溶出量が抑制されたものなので、該加熱処理物を、環境に配慮した素材として再利用することができる。再利用の用途としては例えば、セメントやコンクリートの混和材、地盤改良材、路盤材、盛土、埋め戻し材等の建築材料及び土木材料などが好適に挙げられる。 The heat-treated product obtained by the treatment method of the present invention is one in which the elution amount of harmful trace elements contained therein is suppressed even when the heat-treated product is left outdoors. Can be reused as Preferable examples of applications for reuse include admixtures of cement and concrete, ground improvement materials, roadbed materials, embankments, backfill materials, and other construction materials and civil engineering materials.

次に、実施例を挙げて本発明を具体的に説明するが、本発明はこれら実施例に制限されるものではない。以下の実施例及び比較例において、ホウ素、砒素、セレン、フッ素、6価クロム、鉛、カドミウム及び水銀の溶出試験は、平成3年日本環境庁告示第46号に定められた方法に準じて行った。また、リンの溶出試験も日本環境庁告示第46号と同様に行った。なお、以下の各実施例における焼却炉中での乾燥及び加熱は、いずれも大気雰囲気中で行った。またXRFとしては、リガク社製のZSX Primusを用いた。
各表に記載する環境基準値は日本の環境省が定めた基準値である。なお下記のいずれの表にも記載していないが、水銀の環境基準値は0.0005mg/L以下であり、カドミウムの環境基準値は0.01mg/L以下である。
Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. In the following Examples and Comparative Examples, the elution test of boron, arsenic, selenium, fluorine, hexavalent chromium, lead, cadmium and mercury was carried out according to the method stipulated in Japanese Environmental Agency Notification No. 46 of 1991. It was Further, the dissolution test of phosphorus was also conducted in the same manner as in Japanese Environmental Agency Notification No. 46. It should be noted that the drying and heating in the incinerator in each of the following examples were both performed in the air atmosphere. As the XRF, ZSX Primus manufactured by Rigaku Corporation was used.
The environmental standard values shown in each table are standard values established by the Japanese Ministry of the Environment. Although not described in any of the tables below, the environmental standard value of mercury is 0.0005 mg/L or less, and the environmental standard value of cadmium is 0.01 mg/L or less.

平成3年日本環境庁告示第46号に準じ下記の各実施例・比較例で採用した溶出試験方法は具体的には、以下の通りである。
(検液の調製方法)日本環境庁告示第46号付表に記載の方法に準じて下記方法で作成する。
(1)試料(単位g)と溶媒(純水に塩酸を加え、水素イオン濃度指数が5.8以上6.3以下となるようにしたもの)(単位ml)を重量体積比10%の割合で混合し、かつ、その混合液が50〜500mlとなるようにした。
(2)調製した試料液を常温(おおむね20℃)常圧(おおむね1気圧)で振とう機(あらかじめ振とう回数を毎分約200回に、振とう幅を4cm以上5cm以下に調整したもの)を用いて、6時間連続して振とうした。
(3)(1)から(2)の操作を行って得られた試料液を10分から30分程度静置後、毎分約3,000回転で20分間遠心分離した後の上澄み液を孔径0.45μmのメンブランフィルターでろ過してろ液を取り、定量に必要な量を正確に計り取って、これを検液とした。
(各元素の測定方法)
ホウ素、砒素、セレン、鉛、カドミウム、水銀、及びリン
誘導結合プラズマ質量分析法(ICP−MS)にて測定を行った。その際検液を0.3mol/l硝酸水溶液で希釈した溶液で各元素の定量を行った。
使用したICP−MSは、アジレント・テクノロジー製Agilent8000型である。
フッ素、6価クロムは、イオンクロマトグラフにて測定を行った。その際検液を超純水で希釈した溶液で各元素の定量を行った。
使用したイオンクロマトグラフは、サーモフィッシャーサイエンスティフィック製ICS-2100型+MSQ Plusである。
The dissolution test method adopted in each of the following Examples and Comparative Examples in accordance with Japanese Environmental Agency Notification No. 46 of 1991 is specifically as follows.
(Preparation method of test solution) Prepared by the following method according to the method described in the Japanese Environmental Agency Notification No. 46, Appendix.
(1) A sample (unit: g) and a solvent (hydrogen ion added to pure water so that the hydrogen ion concentration index is 5.8 or more and 6.3 or less) (unit: ml) are mixed at a ratio of 10% by weight to volume, Moreover, the mixed solution was adjusted to 50 to 500 ml.
(2) Shaker with the prepared sample liquid at room temperature (roughly 20°C) and normal pressure (roughly 1 atm) (shake frequency adjusted to about 200 times per minute, shaking width adjusted to 4 cm or more and 5 cm or less) ) Was continuously shaken for 6 hours.
(3) After the sample solution obtained by performing the operations of (1) to (2) is left standing for about 10 to 30 minutes, and then centrifuged at about 3,000 rpm for 20 minutes, the supernatant liquid with a pore diameter of 0.45 μm After filtering with a membrane filter, the filtrate was taken, and the amount necessary for quantification was accurately measured and used as the test liquid.
(Measurement method of each element)
The measurement was performed by boron, arsenic, selenium, lead, cadmium, mercury, and phosphorus inductively coupled plasma mass spectrometry (ICP-MS). At that time, each element was quantified with a solution obtained by diluting the test solution with a 0.3 mol/l nitric acid aqueous solution.
The ICP-MS used is an Agilent 8000 model manufactured by Agilent Technologies.
Fluorine and hexavalent chromium were measured by an ion chromatograph. At that time, each element was quantified with a solution obtained by diluting the test solution with ultrapure water.
The ion chromatograph used is ICS-2100 type +MSQ Plus manufactured by Thermo Fisher Science.

〔実施例A−1〕
リン含有廃棄物として工場汚泥A(含水率88.5質量%、900℃で3時間加熱後のリン含有量がXRFでのP換算で34.4質量%)250gを石炭灰A 10gに添加して混合物を得た。石炭灰Aは、石炭を燃焼させて生じた残渣である。また、工場汚泥Aは、化学工場の排水処理施設で生じた下水汚泥である。得られた混合物を、焼成炉(卓上電気炉)中、200℃で1時間乾燥した後、900℃で3時間加熱処理した。得られた粉体状の加熱処理物から上記方法で検液を得て、当該検液中の有害微量元素の濃度を上記方法にて測定した。ホウ素、砒素、6価クロム以外の有害微量元素は、表5以外に、水銀<0.0005mg/L、カドミウム<0.001mg/L、リン<0.1mg/Lであった。加熱処理物における元素分析(1150℃で分解)での炭素含有量は検出限界以下(<0.01質量%)であった。
[Example A-1]
As a phosphorus-containing waste, 250 g of factory sludge A (water content 88.5% by mass, phosphorus content after heating at 900° C. for 3 hours is 34.4% by mass in terms of P 2 O 5 by XRF) 250 g of coal ash A 10 g To give a mixture. Coal ash A is a residue produced by burning coal. Factory sludge A is sewage sludge generated in the wastewater treatment facility of a chemical factory. The obtained mixture was dried at 200° C. for 1 hour in a firing furnace (bench electric furnace) and then heat-treated at 900° C. for 3 hours. A test solution was obtained from the obtained powdery heat-treated product by the above method, and the concentration of harmful trace elements in the test solution was measured by the above method. The harmful trace elements other than boron, arsenic, and hexavalent chromium were mercury <0.0005 mg/L, cadmium <0.001 mg/L, and phosphorus <0.1 mg/L in addition to Table 5. The carbon content in elemental analysis (decomposed at 1150° C.) of the heat-treated product was below the detection limit (<0.01 mass %).

〔実施例A−2〜A−20〕
実施例A−1において、焼却灰の種類、リン含有廃棄物の種類、リン含有廃棄物の使用量、及び/又は、乾燥後の加熱処理の温度に係る条件を以下の表1に示す通りに変更した。また、炉の形状の項に「環状炉」と記載されている例については、焼成炉を卓上電気炉から環状電気炉に替えて、空気を流通させながら加熱処理した。焼成した。その点以外は実施例A−1と同様とした。
表1中、肉骨粉は、含水率13質量%、900℃で3時間加熱後のリン含有量がXRFでのP換算で31.9質量%のものを用いた(以下同様)。
工場汚泥Bは、含水率80質量%、900℃で3時間加熱後のリン含有量がXRFでのP換算で18.5質量%のものを用いた(以下同様)。
石炭灰Bは、石炭とバイオマスとの質量比が1:0.05の混合物を燃焼させて生じた残渣である(以下同様)。
石炭灰Cは、石炭を燃焼させて生じた残渣である(以下同様)。
石炭灰Dは、石炭を燃焼させて生じた残渣である(以下同様)。
なお、表1における使用量(g/g)の項において、例えば、実施例A−9の「40(+肉骨粉2.5)/10」との記載は、工場汚泥40g及び肉骨粉2.5gを焼却灰10gと混合したことを示す。他のリン含有廃棄物に肉骨粉を加えたその他の実施例についても同様である。
[Examples A-2 to A-20]
In Example A-1, the types of incineration ash, types of phosphorus-containing waste, the amount of phosphorus-containing waste used, and/or conditions relating to the temperature of heat treatment after drying are as shown in Table 1 below. changed. Further, regarding the example described as "annular furnace" in the section of the shape of the furnace, the baking furnace was changed from the table-top electric furnace to the annular electric furnace, and heat treatment was performed while circulating air. Baked. Except for this point, the same procedure as in Example A-1 was performed.
In Table 1, the meat-and-bone meal used had a water content of 13 mass% and a phosphorus content after heating for 3 hours at 900° C. of 31.9 mass% in terms of P 2 O 5 by XRF (the same applies hereinafter).
The factory sludge B used had a water content of 80 mass% and a phosphorus content after heating for 3 hours at 900° C. of 18.5 mass% in terms of P 2 O 5 by XRF (the same applies hereinafter).
Coal ash B is a residue produced by burning a mixture of coal and biomass at a mass ratio of 1:0.05 (the same applies hereinafter).
The coal ash C is a residue produced by burning coal (the same applies hereinafter).
The coal ash D is a residue produced by burning coal (the same applies hereinafter).
In addition, in the item of the usage amount (g/g) in Table 1, for example, the description “40 (+meat-and-bone meal 2.5)/10” of Example A-9 refers to 40 g of factory sludge and 2.5 g of meat-and-bone meal. It shows that it was mixed with 10 g of incinerated ash. The same applies to other examples in which meat-and-bone meal is added to other phosphorus-containing wastes.

〔比較例1〜9〕
焼却灰及びリン含有廃棄物についていずれか一方のみを用いた。用いた焼却灰又はリン含有廃棄物の種類及びその量は表1に記載のものとし、乾燥後の加熱処理の温度、加熱処理の有無(有る場合は温度を記載、無い場合は「未焼成」と記載)、炉の形状について、以下の表1に示す通りとした。その点以外は、実施例A−1と同様とした。
[Comparative Examples 1 to 9]
Only one of the incineration ash and the phosphorus-containing waste was used. The type and amount of incinerated ash or phosphorus-containing waste used are those listed in Table 1, and the temperature of heat treatment after drying, the presence or absence of heat treatment (if any, indicate the temperature; if not, "unfired") And the shape of the furnace are as shown in Table 1 below. Except for this, the same procedure as in Example A-1 was performed.

実施例A−1〜A−20、比較例1〜9におけるホウ素、砒素、6価クロムの溶出試験の結果を表1に示す。 Table 1 shows the results of elution tests of boron, arsenic, and hexavalent chromium in Examples A-1 to A-20 and Comparative Examples 1 to 9.

Figure 2019009303
Figure 2019009303

表1に示すとおり、リン含有廃棄物の使用の有無による有害微量元素の溶出量を比較したところ、実施例A−1ないしA−15のリン含有廃棄物を使用することによって、リン含有廃棄物を使用せず焼却灰のみを使用する比較例1ないし3と比較して、ホウ素、砒素及び6価クロムの溶出量を低減できることが判る。また逆に石炭灰の使用の有無による有害微量元素の溶出量を比較したところ、実施例A−1ないしA−12の石炭灰Aを使用することによって、焼却灰を使用せずリン含有廃棄物のみを使用する比較例4及び5と比較して、ホウ素、砒素及び6価クロムの溶出量を低減できることが判る。また同様にA−13ないしA−15についてもリン含有廃棄物のみを使用する比較例6を比較してホウ素、砒素及び6価クロムの溶出量を低減できることが判る。つまり焼却灰とリン含有廃棄物の混合下で加熱処理することで、各々を単独で処理する以上に複数の有害微量元素の溶出量を低減できることが判る。
また、実施例A−16〜A−20と、対応する各比較例との比較により、上記と同様に、焼却灰単独に比してホウ素、砒素及び6価クロムの溶出量を低減できることが判る。
As shown in Table 1, when comparing the elution amounts of harmful trace elements with and without the use of phosphorus-containing wastes, the phosphorus-containing wastes of Examples A-1 to A-15 were used. It can be seen that the elution amount of boron, arsenic and hexavalent chromium can be reduced as compared with Comparative Examples 1 to 3 in which only the incinerated ash is used without using. On the contrary, when the amounts of toxic trace elements eluted with and without the use of coal ash were compared, by using the coal ash A of Examples A-1 to A-12, the incineration ash was not used and the phosphorus-containing waste was not used. It can be seen that the elution amounts of boron, arsenic, and hexavalent chromium can be reduced as compared with Comparative Examples 4 and 5 which use only the above. Similarly, for A-13 to A-15, it is understood that the elution amounts of boron, arsenic and hexavalent chromium can be reduced by comparing Comparative Example 6 using only the phosphorus-containing waste. That is, it can be understood that the heat treatment under the mixture of the incinerated ash and the phosphorus-containing waste can reduce the elution amount of a plurality of harmful trace elements as compared with the case where each is treated alone.
Further, by comparing Examples A-16 to A-20 and the corresponding comparative examples, it is found that the elution amount of boron, arsenic, and hexavalent chromium can be reduced as compared with incineration ash alone, as in the above. ..

〔実施例B−1〕
リン含有廃棄物として工場汚泥A100gをごみ焼却灰10gに添加して混合物を得た。ごみ焼却灰は、一般家庭ごみを燃焼させて生じた残渣である(以下、単に「ごみ焼却灰」ともいう)。この混合物を、焼成炉中200℃で1時間乾燥した後、900℃で3時間加熱処理した。得られた粉体状の加熱処理物から上記方法で検液を得て、当該検液中の有害微量元素の濃度を上記方法にて測定した。ホウ素、砒素、6価クロム以外の有害微量元素は、水銀<0.0005mg/L、カドミウム<0.001mg/L、リン<0.1mg/Lであった。加熱処理物における元素分析(1150℃で分解)での炭素含有量は検出限界以下((<0.01質量%)であった。
[Example B-1]
As a phosphorus-containing waste, 100 g of factory sludge A was added to 10 g of refuse incineration ash to obtain a mixture. Garbage incineration ash is a residue produced by burning general household waste (hereinafter, also simply referred to as “garbage incineration ash”). This mixture was dried in a firing furnace at 200° C. for 1 hour and then heat-treated at 900° C. for 3 hours. A test solution was obtained from the obtained powdery heat-treated product by the above method, and the concentration of harmful trace elements in the test solution was measured by the above method. The harmful trace elements other than boron, arsenic, and hexavalent chromium were mercury <0.0005 mg/L, cadmium <0.001 mg/L, and phosphorus <0.1 mg/L. The carbon content in the elemental analysis (decomposed at 1150° C.) of the heat-treated product was below the detection limit ((<0.01 mass %).

〔実施例B−2〜B−7〕
実施例B−1での加熱温度、リン含有廃棄物の種類又はリン含有廃棄物の量を表2に示す通りとした。その点以外は、実施例B−1と同様の操作を行った。また、実施例B−5は、石炭灰及びリン含有廃棄物の混合物に、更に石炭灰1質量部に対して0.1質量部の塩化ナトリウムを添加した。
下水汚泥Aは、含水率84.3質量%、900℃で3時間加熱後のリン含有量がXRFでのP換算で26.8質量%である(以下同様)。
下水汚泥Cは含水率81.2質量%、900℃で3時間加熱後のリン含有量がXRFでのP換算で25.7質量%である(以下同様)。
[Examples B-2 to B-7]
The heating temperature, the type of phosphorus-containing waste or the amount of phosphorus-containing waste in Example B-1 was as shown in Table 2. Except for this point, the same operation as in Example B-1 was performed. Further, in Example B-5, 0.1 part by mass of sodium chloride was further added to 1 part by mass of the coal ash to the mixture of the coal ash and the phosphorus-containing waste.
Sewage sludge A has a water content of 84.3% by mass, and the phosphorus content after heating at 900° C. for 3 hours is 26.8% by mass in terms of P 2 O 5 by XRF (the same applies hereinafter).
Sewage sludge C has a water content of 81.2% by mass, and the phosphorus content after heating at 900° C. for 3 hours is 25.7% by mass in terms of P 2 O 5 by XRF (the same applies hereinafter).

〔比較例10及び11〕
比較例10は実施例B−1において、リン含有廃棄物を使用しない以外は、実施例B−1と同様の操作を行った。比較例11は実施例B−3においてリン含有廃棄物を使用しない以外は、実施例B−3と同様の操作を行った。
[Comparative Examples 10 and 11]
Comparative Example 10 was the same as Example B-1, except that the phosphorus-containing waste was not used. In Comparative Example 11, the same operation as in Example B-3 was performed except that the phosphorus-containing waste was not used in Example B-3.

実施例B−1〜B−7、比較例10及び11におけるホウ素、砒素、6価クロムの溶出試験の結果を表2に示す。 Table 2 shows the results of the elution test of boron, arsenic and hexavalent chromium in Examples B-1 to B-7 and Comparative Examples 10 and 11.

Figure 2019009303
Figure 2019009303

表2に示すとおり、ごみ焼却灰にリン含有廃棄物を混合して加熱した実施例B−1ないしB−7では、ごみ焼却灰のみを加熱した比較例10及び11と比較して、特に6価クロムの溶出が抑制されていることが判る。得られた分析結果を表3に示す。 As shown in Table 2, in Examples B-1 to B-7 in which the phosphorus-containing waste was mixed with the refuse incineration ash and heated, in comparison with Comparative Examples 10 and 11 in which only the refuse incineration ash was heated, especially 6 It can be seen that the elution of valent chromium is suppressed. Table 3 shows the obtained analysis results.

〔実施例C−1〕
実施例A−1において、使用するリン含有廃棄物を下水汚泥A及び肉骨粉とし、リン含有廃棄物の使用量を表1のように変更した。これらの点以外は、実施例A−1と同様の操作を行った。
[Example C-1]
In Example A-1, the phosphorus-containing waste used was sewage sludge A and meat-and-bone meal, and the amount of phosphorus-containing waste used was changed as shown in Table 1. Except for these points, the same operation as in Example A-1 was performed.

〔実施例C−2〜C−21〕
リン含有廃棄物の種類、リン含有廃棄物の量又は加熱処理の温度を表3の条件に変更した以外は、実施例C−1と同様とした。得られた分析結果を表3に示す。下水汚泥Bは含水率81.7質量%、900℃で3時間加熱後のリン含有量がXRFでのP換算で16.5質量%であった。乾燥下水汚泥Dは200℃で下水汚泥を気流乾燥した粒状汚泥であり、含水率9質量%であって、900℃で3時間加熱後のリン含有量がXRFでのP換算で27.2質量%であった。
なお、表3における添加剤の項に記載のNaPOは、リン酸ナトリウム12水和物を用いた。PS灰とは、ペーパースラッジ灰を指す。添加剤はいずれも乾燥及び加熱処理に先立ち、石炭灰とリン含有廃棄物との混合物に添加した。
また、C−3で得られた加熱処理物の溶出液の分析において、ホウ素、砒素、6価クロム以外の有害微量元素は、水銀<0.0005mg/L、カドミウム<0.001mg/L、鉛<0.01mg/L、リン<0.1mg/Lであった。加熱処理物における元素分析(1150℃で分解)での炭素含有量は検出限界以下(<0.01質量%)であった。
また、実施例C−13で得られた加熱処理物の溶出液において、ホウ素、砒素、6価クロム以外の有害微量元素は、水銀<0.0005mg/L、カドミウム<0.001mg/L、鉛<0.01mg/L、リン<0.1mg/Lであった。加熱処理物における元素分析(1150℃で分解)での炭素含有量は検出限界以下(<0.01質量%)であった。
[Examples C-2 to C-21]
Example C-1 was performed in the same manner as in Example C-1, except that the type of phosphorus-containing waste, the amount of phosphorus-containing waste, or the heat treatment temperature was changed to the conditions in Table 3. Table 3 shows the obtained analysis results. Sewage sludge B had a water content of 81.7% by mass, and the phosphorus content after heating at 900° C. for 3 hours was 16.5% by mass in terms of P 2 O 5 by XRF. The dried sewage sludge D is a granular sludge obtained by air-drying the sewage sludge at 200° C., has a water content of 9% by mass, and has a phosphorus content after heating at 900° C. for 3 hours of 27 P 2 O 5 calculated by XRF. It was 0.2% by mass.
In addition, as Na 3 PO 4 described in the section of additive in Table 3, sodium phosphate dodecahydrate was used. PS ash refers to paper sludge ash. All additives were added to the mixture of coal ash and phosphorus-containing waste prior to drying and heat treatment.
Further, in the analysis of the eluate of the heat-treated product obtained in C-3, harmful trace elements other than boron, arsenic, and hexavalent chromium were mercury <0.0005 mg/L, cadmium <0.001 mg/L, and lead. <0.01 mg/L and phosphorus <0.1 mg/L. The carbon content in elemental analysis (decomposed at 1150° C.) of the heat-treated product was below the detection limit (<0.01 mass %).
In the eluate of the heat-treated product obtained in Example C-13, harmful trace elements other than boron, arsenic, and hexavalent chromium were mercury <0.0005 mg/L, cadmium <0.001 mg/L, lead. <0.01 mg/L and phosphorus <0.1 mg/L. The carbon content in elemental analysis (decomposed at 1150° C.) of the heat-treated product was below the detection limit (<0.01 mass %).

〔比較例12〜16〕
焼却灰及びリン含有廃棄物についていずれか一方のみを用いた。用いた焼却灰又はリン含有廃棄物の量は表3に記載のものとし、乾燥後の加熱処理の温度について、以下の表3に示すとおりとした。その点以外は、実施例C−1と同様とした。
[Comparative Examples 12 to 16]
Only one of the incineration ash and the phosphorus-containing waste was used. The amount of incinerated ash or phosphorus-containing waste used was as shown in Table 3, and the temperature of the heat treatment after drying was as shown in Table 3 below. Other than that, it was the same as that of Example C-1.

実施例C−1〜C−21、比較例12〜16におけるホウ素、砒素、6価クロムの溶出試験の結果を表3に示す。 Table 3 shows the results of elution tests of boron, arsenic, and hexavalent chromium in Examples C-1 to C-21 and Comparative Examples 12 to 16.

Figure 2019009303
Figure 2019009303

表3に示すとおり、実施例C−1〜C−25では、石炭灰のみを用いた比較例1及び2と比較して、リン含有廃棄物の由来に関係なく有害微量元素、特にホウ素及び6価クロムの溶出を低減できることが判る。 As shown in Table 3, in Examples C-1 to C-25, as compared with Comparative Examples 1 and 2 using only coal ash, harmful trace elements, particularly boron and 6 were irrespective of the origin of the phosphorus-containing waste. It can be seen that the elution of valent chromium can be reduced.

〔実施例D−1〕
リン含有廃棄物として肉骨粉(含水率13質量%、900℃で3時間加熱後のリン含有量がXRFでのP換算で31.9質量%)10gを石炭灰A10gに添加して混合物を得た。この混合物を、焼成炉中200℃で1時間乾燥した後、900℃で3時間加熱処理した。得られた粉体状の加熱処理物から上記方法で検液を得て、当該検液中の有害微量元素の濃度を上記方法にて測定した。ホウ素、砒素、6価クロム以外の有害微量元素は、表6に示す以外、水銀<0.0005mg/L、カドミウム<0.001mg/Lであった。加熱処理物における元素分析(1150℃で分解)での炭素含有量は検出限界以下((<0.01質量%)であった。
[Example D-1]
As a phosphorus-containing waste, 10 g of meat-and-bone meal (water content: 13% by mass; phosphorus content after heating at 900° C. for 3 hours: 31.9% by mass in terms of P 2 O 5 in XRF) was added to 10 g of coal ash A. A mixture was obtained. This mixture was dried in a firing furnace at 200° C. for 1 hour and then heat-treated at 900° C. for 3 hours. A test solution was obtained from the obtained powdery heat-treated product by the above method, and the concentration of harmful trace elements in the test solution was measured by the above method. The harmful trace elements other than boron, arsenic, and hexavalent chromium were mercury <0.0005 mg/L and cadmium <0.001 mg/L, except for those shown in Table 6. The carbon content in the elemental analysis (decomposed at 1150° C.) of the heat-treated product was below the detection limit ((<0.01 mass %).

〔実施例D−2及びD−3〕
実施例D−1で使用したリン含有廃棄物の肉骨粉の使用量及びその加熱温度を表3に示した量及び温度とした以外は、実施例D−1と同様の操作を行った。
[Examples D-2 and D-3]
The same operation as in Example D-1 was performed, except that the amount of meat-and-bone meal of the phosphorus-containing waste used in Example D-1 and its heating temperature were changed to the amounts and temperatures shown in Table 3.

〔比較例17〕
焼却灰を用いなかった以外は実施例1と同様とした。
[Comparative Example 17]
The same procedure was performed as in Example 1 except that incineration ash was not used.

実施例D−1〜D−3、比較例17におけるホウ素、砒素、6価クロムの溶出試験の結果を表4に示す。 Table 4 shows the results of the elution test of boron, arsenic and hexavalent chromium in Examples D-1 to D-3 and Comparative Example 17.

Figure 2019009303
Figure 2019009303

表4に示すとおり、石炭灰Aと肉骨粉を混合して所定温度で加熱することにより、石炭灰A単独物に比して、ホウ素、砒素の溶出量が低減することが判る。また肉骨粉単独での加熱品に比して6価クロムの溶出量が低減することも判る。 As shown in Table 4, by mixing the coal ash A and the meat-and-bone meal and heating at a predetermined temperature, the elution amounts of boron and arsenic are reduced as compared with the case of the coal ash A alone. It can also be seen that the elution amount of hexavalent chromium is reduced as compared with the heated product containing only meat-and-bone meal.

上記の各実施例及び比較例の一部について、セレン及びフッ素並びに鉛又はリンの溶出量を測定した結果を下記表5及び6に示す。 Tables 5 and 6 below show the results of measuring the elution amounts of selenium, fluorine, and lead or phosphorus in some of the above Examples and Comparative Examples.

Figure 2019009303
Figure 2019009303

Figure 2019009303
Figure 2019009303

表5及び表6に示すように、焼却灰及びリン含有化合物を混合して所定温度で加熱することにより、焼却灰単独又はその加熱品におけるセレンやフッ素の溶出を低減できるほか、汚泥単独の加熱品における鉛又はリンの溶出を低減できることが判る。 As shown in Table 5 and Table 6, by mixing the incineration ash and the phosphorus-containing compound and heating at a predetermined temperature, it is possible to reduce the elution of selenium and fluorine in the incineration ash alone or the heated product, and to heat the sludge alone. It can be seen that the elution of lead or phosphorus in the product can be reduced.

〔実施例E−1〕
リン含有廃棄物として工場汚泥A40gを石炭灰A 10gに添加して混合物を得た。石炭灰Aは、石炭を燃焼させて生じた残渣である。この混合物を、焼成炉中、200℃で1時間乾燥した後、900℃で3時間加熱処理した。得られた粉体状の加熱処理物1質量部に、上記方法で用いた溶媒の代わりに、表7の「抽出液pH」の水溶液10質量部を添加し混合して検液を作成し、当該検液について上記方法にて有害元素の濃度を測定した。その結果を表7に示す。
なお、以下表7の「抽出液pH」の項において、「2.8」とは25℃でのpH=2.8の希硫酸水溶液を指し、「11.9」とは、25℃でのpH=11.9の消石灰水を指し、「2.1」とは25℃でのpH=2.1の希硫酸水溶液を指す。
[Example E-1]
As a phosphorus-containing waste, 40 g of factory sludge A was added to 10 g of coal ash A to obtain a mixture. Coal ash A is a residue produced by burning coal. This mixture was dried in a firing furnace at 200° C. for 1 hour and then heat-treated at 900° C. for 3 hours. To 1 part by mass of the obtained powdery heat-treated product, 10 parts by mass of an aqueous solution of "extract pH" in Table 7 was added and mixed in place of the solvent used in the above method to prepare a test solution, The concentrations of harmful elements in the test solution were measured by the above method. The results are shown in Table 7.
In the following, in the "Extract pH" section of Table 7, "2.8" means a dilute sulfuric acid aqueous solution having a pH of 2.8 at 25°C, and "11.9" means that at 25°C. It refers to slaked lime water having a pH of 11.9, and "2.1" refers to a dilute sulfuric acid aqueous solution having a pH of 2.1 at 25°C.

〔実施例E−2〜E−19、比較例18〜20〕
リン含有廃棄物の種類、リン含有廃棄物の量、焼却灰の種類、加熱処理の温度又は使用する抽出溶媒の種類に係る条件について、表7に示す通りに変更した以外は実施例E−1と同様にした。結果を表7に示す。
[Examples E-2 to E-19, Comparative Examples 18 to 20]
Example E-1 except that the conditions relating to the type of phosphorus-containing waste, the amount of phosphorus-containing waste, the type of incinerated ash, the temperature of heat treatment, and the type of extraction solvent used were changed as shown in Table 7. Same as. The results are shown in Table 7.

Figure 2019009303
Figure 2019009303

表7に示すとおり、実施例E−1〜E−16は、対応するpHの石炭灰Aのみをもちいた比較例(比較例18、19又は20)と比較して、いずれも有害微量元素の溶出量を低減できることが判る。また実施例E−17〜E−19から、焼却灰種を異ならせた場合も、幅広いpH範囲で溶出基準を守ることができていることが判る。 As shown in Table 7, Examples E-1 to E-16 all contained harmful trace elements as compared with Comparative Examples (Comparative Examples 18, 19 or 20) using only the coal ash A having the corresponding pH. It can be seen that the elution amount can be reduced. Further, from Examples E-17 to E-19, it is found that the elution standard can be kept in a wide pH range even when the incineration ash species is changed.

次にリン含有化合物を用いた実施例・比較例について説明する。なお、下記表8〜13における混合物は、焼却灰100質量部として10.0g用いたものである。
〔実施例F−1〕
リン含有化合物として85%リン酸1.47質量部を水40質量部に溶解させた水溶液を石炭灰A100質量部に添加して混合物を得た。石炭灰Aは、石炭を燃焼させて生じた残渣である。この混合物を、焼成炉中110℃で3時間乾燥した後、900℃で3時間加熱処理した。得られた粉体状の加熱処理物から上記方法で検液を得て、当該検液中の有害微量元素の濃度を上記方法により測定した。その結果を表8に示す。また、他の有害微量元素は、水銀<0.0005mg/L、カドミウム<0.001mg/L、鉛<0.01mg/L、リン2.2mg/Lであった。加熱処理物における元素分析での炭素含有量は検出限界以下(1150℃で分解)であった。
Next, examples and comparative examples using a phosphorus-containing compound will be described. In addition, the mixture in the following Tables 8-13 used 10.0 g as 100 mass parts of incineration ash.
[Example F-1]
An aqueous solution prepared by dissolving 1.47 parts by mass of 85% phosphoric acid in 40 parts by mass of water as a phosphorus-containing compound was added to 100 parts by mass of coal ash A to obtain a mixture. Coal ash A is a residue produced by burning coal. This mixture was dried at 110° C. for 3 hours in a firing furnace, and then heat-treated at 900° C. for 3 hours. A test solution was obtained from the obtained powdery heat-treated product by the above method, and the concentration of harmful trace elements in the test solution was measured by the above method. The results are shown in Table 8. Further, other harmful trace elements were mercury <0.0005 mg/L, cadmium <0.001 mg/L, lead <0.01 mg/L, and phosphorus 2.2 mg/L. The carbon content in elemental analysis of the heat-treated product was below the detection limit (decomposed at 1150°C).

〔実施例F−2ないしF−14〕
実施例F−1で使用したリン含有化合物及びその使用量を、以下の表8に示すとおりに変更した以外は、実施例F−1と同様の操作を行った。得られた加熱処理物の分析結果を表8に示す。
[Examples F-2 to F-14]
The same operation as in Example F-1 was performed, except that the phosphorus-containing compound used in Example F-1 and the amount thereof used were changed as shown in Table 8 below. Table 8 shows the analysis results of the obtained heat-treated product.

Figure 2019009303
Figure 2019009303

〔実施例F−15〕
リン含有化合物として三リン酸五カリウム(K10)1.25質量部を水40質量部に溶解させた水溶液を石炭灰E100質量部に添加して混合物を得た。石炭灰Eは、石炭とバイオマスとを質量比1:0.05で混合させて燃焼させて生じた残渣である。この混合物を、焼成炉中900℃で1時間加熱処理した。得られた加熱処理物について、上記F−1と同様の分析を行った。分析結果を表9に示す。
[Example F-15]
An aqueous solution prepared by dissolving 1.25 parts by mass of potassium pentaphosphate (K 5 P 3 O 10 ) as a phosphorus-containing compound in 40 parts by mass of water was added to 100 parts by mass of coal ash E to obtain a mixture. The coal ash E is a residue produced by mixing coal and biomass at a mass ratio of 1:0.05 and burning them. This mixture was heat-treated in a firing furnace at 900° C. for 1 hour. The same analysis as in F-1 above was performed on the obtained heat-treated product. The analysis results are shown in Table 9.

〔実施例F−16ないしF−23〕
実施例F−15で使用した石炭灰Eに代えて、表9に示す石炭灰又はごみ焼却灰を用い、且つリン含有化合物の使用量を表9に示す値に代えた以外は、実施例F−15と同様の操作を行った。得られた加熱処理物の分析結果を表9に示す。石炭灰F−Kは、石炭を燃焼させて生じた残渣である。
[Examples F-16 to F-23]
Example F-15, except that the coal ash E used in Example F-15 was replaced with coal ash or refuse incineration ash shown in Table 9, and the amount of phosphorus-containing compound used was replaced with the value shown in Table 9. The same operation as -15 was performed. Table 9 shows the analysis results of the obtained heat-treated product. The coal ash F-K is a residue produced by burning coal.

〔比較例23ないし27〕
実施例F−15ないしF−23で用いた石炭灰E、F、G及びJ並びにごみ焼却灰そのものについて上記方法で得た検液について、上記と同様に各有害微量元素の濃度測定を行った。その結果を表9に示す。
[Comparative Examples 23 to 27]
The concentration of each harmful trace element was measured in the same manner as above for the test liquid obtained by the above method for the coal ash E, F, G and J used in Examples F-15 to F-23 and the refuse incineration ash itself. .. The results are shown in Table 9.

Figure 2019009303
Figure 2019009303

〔実施例F−24ないしF−29〕
焼却灰として石炭灰A100質量部を使用した。また、リン含有化合物及びその使用量を、表10に示すとおりに変更した。更に、表10に示す温度で加熱処理した。これら以外は実施例F−1の操作を行った。得られた加熱処理物の分析結果を表10に示す。
[Examples F-24 to F-29]
As the incineration ash, 100 parts by mass of coal ash A was used. Further, the phosphorus-containing compound and the amount thereof used were changed as shown in Table 10. Furthermore, heat treatment was performed at the temperatures shown in Table 10. Except for these, the operation of Example F-1 was performed. Table 10 shows the analysis results of the obtained heat-treated product.

〔比較例28及び29〕
実施例F−24の加熱温度を、表10に示す加熱温度に変更した以外は実施例F−24と同様の操作を行った。得られた加熱処理物の分析結果を表10に示す。
[Comparative Examples 28 and 29]
The same operation as in Example F-24 was performed except that the heating temperature in Example F-24 was changed to the heating temperature shown in Table 10. Table 10 shows the analysis results of the obtained heat-treated product.

〔比較例30及び31〕
実施例F−24においてリン含有化合物を使用せず、且つ表10に示す加熱温度に変更した以外は実施例F−24と同様の操作を行った。得られた加熱処理物の分析結果を表10に示す。
[Comparative Examples 30 and 31]
The same operation as in Example F-24 was performed, except that the phosphorus-containing compound was not used in Example F-24 and the heating temperature shown in Table 10 was changed. Table 10 shows the analysis results of the obtained heat-treated product.

Figure 2019009303
Figure 2019009303

〔実施例F−30〕
石炭灰A100質量部と、リン含有化合物として三リン酸五カリウム(K10)10質量部とを混合し、900℃で3時間加熱処理した。得られた加熱処理物の分析結果を表11に示す。
[Example F-30]
100 parts by mass of coal ash A and 10 parts by mass of potassium pentaphosphate (K 5 P 3 O 10 ) as a phosphorus-containing compound were mixed and heat-treated at 900° C. for 3 hours. Table 11 shows the analysis result of the obtained heat-treated product.

〔比較例33ないし36〕
実施例F−30において、表11に示すとおり、リン含有化合物及び加熱処理温度を変更した以外は実施例F−30と同様の操作を行った。得られた加熱処理物の分析結果を表11に示す。
[Comparative Examples 33 to 36]
In Example F-30, as shown in Table 11, the same operations as in Example F-30 were performed except that the phosphorus-containing compound and the heat treatment temperature were changed. Table 11 shows the analysis result of the obtained heat-treated product.

〔実施例F−31〕
リン化合物種及びその量を変更した以外は、実施例F−30と同様の操作を行った。得られた加熱処理物の分析結果を表11に示す。
[Example F-31]
The same operation as in Example F-30 was performed except that the phosphorus compound species and the amount thereof were changed. Table 11 shows the analysis result of the obtained heat-treated product.

Figure 2019009303
Figure 2019009303

〔実施例F−32〕
リン含有化合物として三リン酸五カリウム(K10)1.25質量部を水40質量部に溶解させた水溶液を石炭灰A100質量部に添加して混合物を得た。この混合物を焼成炉中900℃で1時間加熱処理した。得られた粉体状の加熱処理物について上記方法で検液を得、この検液における有害微量元素の濃度を、上記の方法で測定した。ただし、検液作成のために加熱処理物と混合する溶媒として、5.0mmol/L塩酸水溶液(pH2.3)を用いた。得られた加熱処理物の分析結果を表12に示す。
[Example F-32]
An aqueous solution obtained by dissolving 1.25 parts by mass of pentapotassium triphosphate (K 5 P 3 O 10 ) as a phosphorus-containing compound in 40 parts by mass of water was added to 100 parts by mass of coal ash A to obtain a mixture. This mixture was heat-treated in a firing furnace at 900° C. for 1 hour. A test liquid was obtained from the obtained powdery heat-treated product by the above method, and the concentration of harmful trace elements in this test liquid was measured by the above method. However, a 5.0 mmol/L hydrochloric acid aqueous solution (pH 2.3) was used as the solvent mixed with the heat-treated product for preparing the test solution. Table 12 shows the analysis result of the obtained heat-treated product.

〔実施例F−33〕
リン含有化合物として三リン酸五カリウム(K10)1.25質量部を水40質量部に溶解させた水溶液を石炭灰A100質量部に添加して混合物を得た。この混合物を焼成炉中900℃で1時間加熱処理した。得られた粉体状の加熱処理物について上記の方法で検液を得て、この検液中の有害微量元素の濃度を上記方法で測定した。ただし、検液作成のために加熱処理物と混合する溶媒として、3.85mmol/L消石灰水溶液(pH=11.9)を用いた。得られた加熱処理物の分析結果を表12に示す。
[Example F-33]
An aqueous solution prepared by dissolving 1.25 parts by mass of pentapotassium triphosphate (K 5 P 3 O 10 ) as a phosphorus-containing compound in 40 parts by mass of water was added to 100 parts by mass of coal ash A to obtain a mixture. This mixture was heat-treated in a firing furnace at 900° C. for 1 hour. A test solution was obtained from the obtained powdery heat-treated product by the above method, and the concentration of harmful trace elements in the test solution was measured by the above method. However, a 3.85 mmol/L slaked lime aqueous solution (pH=11.9) was used as a solvent mixed with the heat-treated product for preparing the test solution. Table 12 shows the analysis result of the obtained heat-treated product.

〔比較例37〕
実施例F−32で用いた石炭灰Aそのものについて上記方法で検液を得て、この検液中の各有害微量元素の濃度を上記方法にて測定した。ただし、検液作成のために石炭灰Aと混合する溶媒として、5.0mmol/L塩酸水溶液(pH2.3)を用いた。分析結果を表12に示す。
[Comparative Example 37]
A test solution was obtained from the coal ash A itself used in Example F-32 by the above method, and the concentration of each harmful trace element in this test solution was measured by the above method. However, a 5.0 mmol/L hydrochloric acid aqueous solution (pH 2.3) was used as a solvent mixed with coal ash A for preparing the test solution. The analysis results are shown in Table 12.

〔比較例38〕
実施例F−32で用いた石炭灰Aそのものについて上記方法にて検液を得て、当該検液について、上記方法にて各有害微量元素の濃度測定を行った。ただし、検液作成のために石炭灰Aと混合する溶媒として、3.85mmol/L消石灰水溶液(pH=11.9)を用いた。分析結果を表12に示す。
[Comparative Example 38]
With respect to the coal ash A itself used in Example F-32, a test solution was obtained by the above method, and the test solution was subjected to concentration measurement of each harmful trace element by the above method. However, a 3.85 mmol/L slaked lime aqueous solution (pH=11.9) was used as a solvent mixed with the coal ash A for preparing the test solution. The analysis results are shown in Table 12.

Figure 2019009303
Figure 2019009303

〔実施例F−34及びF−35〕
リン含有化合物としてリン酸(HPO)8質量部又は16質量部をゴミ焼却灰100質量部に添加して混合物を得た。この混合物を焼成炉中700℃で1時間加熱処理した。得られた粉体状の加熱処理物から上記方法にて検液を得て、この検液中の有害微量元素の濃度を上記方法で測定した。得られた加熱処理物の分析結果を表13に示す。
[Examples F-34 and F-35]
As a phosphorus-containing compound, 8 parts by mass or 16 parts by mass of phosphoric acid (H 3 PO 4 ) was added to 100 parts by mass of refuse incineration ash to obtain a mixture. This mixture was heat-treated in a firing furnace at 700° C. for 1 hour. A test solution was obtained from the obtained powdery heat-treated product by the above method, and the concentration of harmful trace elements in this test solution was measured by the above method. Table 13 shows the analysis results of the obtained heat-treated product.

Figure 2019009303
Figure 2019009303

以上のとおり、本発明の処理方法は、焼却灰の物性や組成に影響されることなく適用可能であり、焼却灰からの有害微量元素の溶出量を低減できることが判る。 As described above, it is understood that the treatment method of the present invention can be applied without being affected by the physical properties and composition of incinerated ash, and can reduce the elution amount of harmful trace elements from the incinerated ash.

本発明の処理方法により、様々な有害微量元素を含有する焼却灰からの有害微量元素の溶出を、多種多様の薬剤を使用することなく、生産性が高く、経済的で効率的に、且つ工業的に簡便に抑制することができる。また、本発明の処理方法によれば、酸性雨を想定した酸性条件下や、コンクリート構造物から遊離する塩基性化合物の存在に起因する塩基性条件下においても、有害微量元素の溶出量における屋内外のpH環境による影響を効果的に低減することができる。本発明の処理方法は、石炭灰やゴミ焼却灰等の様々な物性や組成の焼却灰に適用可能である。このため本実施形態の処理方法は、建築事業や土木事業等での焼却灰の再利用や、廃棄物処分場に投棄していた廃棄物扱いの灰の埋立利用、土壌改良剤など、環境汚染防止に配慮した焼却灰の有効利用に寄与する。 By the treatment method of the present invention, the elution of harmful trace elements from incineration ash containing various harmful trace elements is highly productive, economical and efficient, and industrial without using a wide variety of chemicals. Can be easily suppressed. Further, according to the treatment method of the present invention, even under acidic conditions assuming acidic rain or under basic conditions due to the presence of basic compounds liberated from the concrete structure, the amount of harmful trace elements dissolved in It is possible to effectively reduce the influence of the pH environment inside and outside. The treatment method of the present invention can be applied to incineration ash having various physical properties and compositions such as coal ash and refuse incineration ash. Therefore, the treatment method of the present embodiment is to recycle the incinerated ash in the construction business, the civil engineering business, etc., the landfill use of the ash treated as waste discarded at the waste disposal site, the soil improver, etc. Contribute to the effective use of incineration ash in consideration of prevention.

Claims (29)

焼却灰とリン源とを混合して600℃以上1200℃以下で加熱する工程を有する固体廃棄物の処理方法。 A method for treating solid waste, comprising the step of mixing incinerated ash and a phosphorus source and heating at 600°C or higher and 1200°C or lower. 前記リン源として、リン含有廃棄物を用いる、請求項1に記載の固体廃棄物の処理方法。 The method for treating solid waste according to claim 1, wherein phosphorus-containing waste is used as the phosphorus source. 前記リン源として、リン含有化合物を用いる、請求項1に記載の固体廃棄物の処理方法。 The method for treating solid waste according to claim 1, wherein a phosphorus-containing compound is used as the phosphorus source. 前記焼却灰中の砒素、クロム及びホウ素の合計量に対して、前記焼却灰と前記リン源との混合物中のリンの量が、10質量倍以上である、請求項1〜3の何れか1項に記載の固体廃棄物の処理方法。 The amount of phosphorus in the mixture of the incineration ash and the phosphorus source is 10 mass times or more with respect to the total amount of arsenic, chromium and boron in the incineration ash. The method for treating solid waste according to the item. 前記焼却灰中の砒素、クロム及びホウ素の合計量に対して、前記焼却灰と前記リン源との混合物中のカルシウムの量が、30質量倍以上である、請求項1〜4の何れか1項に記載の固体廃棄物の処理方法。 The amount of calcium in the mixture of the incineration ash and the phosphorus source is 30 mass times or more with respect to the total amount of arsenic, chromium and boron in the incineration ash, any one of claims 1 to 4. The method for treating solid waste according to the item. 前記焼却灰中の砒素、クロム及びホウ素の合計量に対して、前記焼却灰と前記リン源との混合物中のカルシウムの量が、75質量倍以上である、請求項5に記載の固体廃棄物の処理方法。 The solid waste according to claim 5, wherein the amount of calcium in the mixture of the incinerated ash and the phosphorus source is 75 mass times or more with respect to the total amount of arsenic, chromium and boron in the incinerated ash. Processing method. 前記リン含有廃棄物が下水汚泥系リン含有廃棄物、農水産系リン含有廃棄物、工業系リン含有廃棄物及び食品系リン含有廃棄物からなる群から選択される少なくとも1種である、請求項2に記載の固体廃棄物の処理方法。 The phosphorus-containing waste is at least one selected from the group consisting of sewage sludge-based phosphorus-containing waste, agricultural and marine product-based phosphorus-containing waste, industrial phosphorus-containing waste, and food-based phosphorus-containing waste. 2. The method for treating solid waste according to 2. 前記リン含有廃棄物が肉骨粉を含む、請求項2又は7に記載の固体廃棄物の処理方法。 The method for treating solid waste according to claim 2 or 7, wherein the phosphorus-containing waste contains meat-and-bone meal. 前記リン含有廃棄物として、一般下水汚泥又は工業下水汚泥と肉骨粉との組み合わせを用いる、請求項2、7又は8に記載の固体廃棄物の処理方法。 The method for treating solid waste according to claim 2, 7 or 8, wherein a combination of general sewage sludge or industrial sewage sludge and meat-and-bone meal is used as the phosphorus-containing waste. 前記焼却灰中の砒素、クロム及びホウ素の合計量に対して、前記焼却灰と前記リン源との混合物中のカルシウムの量が、1000質量倍以下である、請求項1〜9の何れか1項に記載の固体廃棄物の処理方法。 The amount of calcium in the mixture of the incineration ash and the phosphorus source is 1000 times or less by mass with respect to the total amount of arsenic, chromium and boron in the incineration ash. The method for treating solid waste according to the item. 前記焼却灰中の砒素、クロム及びホウ素の合計量に対して、前記焼却灰と前記リン源との混合物中のカルシウムの量が、450質量倍以下である、請求項10に記載の固体廃棄物の処理方法。 The solid waste according to claim 10, wherein the amount of calcium in the mixture of the incinerated ash and the phosphorus source is 450 mass times or less with respect to the total amount of arsenic, chromium and boron in the incinerated ash. Processing method. 焼却灰が石炭灰であって加熱処理の温度が750℃以上であるか、焼却灰がごみ焼却灰であって加熱処理の温度が780℃以下である、請求項1〜11の何れか1項に記載の固体廃棄物の処理方法。 12. The incineration ash is coal ash and the heat treatment temperature is 750° C. or higher, or the incineration ash is a refuse incineration ash and the heat treatment temperature is 780° C. or lower. 5. The method for treating solid waste according to. 前記焼却灰と前記リン源との混合物中のリンの量が、0.1質量%以上10質量%以下である、請求項1〜12の何れか1項に記載の固体廃棄物の処理方法。 The method for treating solid waste according to any one of claims 1 to 12, wherein the amount of phosphorus in the mixture of the incinerated ash and the phosphorus source is 0.1% by mass or more and 10% by mass or less. 前記焼却灰と前記リン源との混合物中のカルシウムの量が、0.1質量%以上50質量%以下である、請求項1〜13の何れか1項に記載の固体廃棄物の処理方法。 The method for treating solid waste according to any one of claims 1 to 13, wherein the amount of calcium in the mixture of the incinerated ash and the phosphorus source is 0.1% by mass or more and 50% by mass or less. 前記リン源中のリン濃度が、900℃で3時間焼成した状態で測定した蛍光X線分析におけるP換算での値において、5質量%以上60質量%以下である、請求項1〜14に記載の固体廃棄物の処理方法。The phosphorus concentration in the phosphorus source is 5% by mass or more and 60% by mass or less in terms of P 2 O 5 conversion in a fluorescent X-ray analysis measured in a state of being baked at 900° C. for 3 hours. 15. The method for treating solid waste according to 14. 前記リン源の使用量が、焼却灰100質量部に対してリン元素換算で、0.1質量部以上60質量部以下である、請求項1〜15の何れか1項に記載の固体廃棄物の処理方法。 The solid waste according to any one of claims 1 to 15, wherein the amount of the phosphorus source used is 0.1 part by mass or more and 60 parts by mass or less in terms of phosphorus element with respect to 100 parts by mass of incinerated ash. Processing method. 焼却灰とリン源との混合物を80℃以上300℃以下で加熱し、次いで、600℃以上1200℃以下で加熱する、請求項1〜16の何れか1項に記載の固体廃棄物の処理方法。 The method for treating solid waste according to claim 1, wherein a mixture of incinerated ash and a phosphorus source is heated at 80° C. or higher and 300° C. or lower, and then heated at 600° C. or higher and 1200° C. or lower. .. 前記焼却灰が、石炭単独又は石炭とバイオマスとの混合物を燃焼させて発生する石炭灰である請求項1〜17の何れか1項に記載の固体廃棄物の処理方法。 The solid waste treatment method according to any one of claims 1 to 17, wherein the incinerated ash is coal ash generated by burning coal alone or a mixture of coal and biomass. 前記焼却灰に対して、前記リン源に加えて、ペーパースラッジ灰を添加した後に、600℃以上1200℃以下で加熱する、請求項1〜18の何れか1項に記載の固体廃棄物の処理方法。 The solid waste treatment according to any one of claims 1 to 18, wherein paper sludge ash is added to the incinerated ash in addition to the phosphorus source, and then heated at 600°C or higher and 1200°C or lower. Method. 前記焼却灰に対して、前記リン源に加えて、ナトリウム成分を添加した後に、600℃以上1200℃以下で加熱する、請求項1〜19の何れか1項に記載の固体廃棄物の処理方法。 The solid waste treatment method according to claim 1, wherein the incineration ash is heated at 600° C. or higher and 1200° C. or lower after adding a sodium component in addition to the phosphorus source. .. 前記ナトリウム成分がリン酸ナトリウム、水酸化ナトリウム及び塩化ナトリウムから選ばれる少なくとも一種である、請求項20に記載の固体廃棄物の処理方法。 The method for treating solid waste according to claim 20, wherein the sodium component is at least one selected from sodium phosphate, sodium hydroxide and sodium chloride. 前記ナトリウム成分が塩化ナトリウムである、請求項21に記載の固体廃棄物の処理方法。 22. The method for treating solid waste according to claim 21, wherein the sodium component is sodium chloride. 前記焼却灰がごみ焼却灰であり、前記リン源が下水汚泥系リン含有廃棄物を含む、ごみ焼却灰におけるホウ素、砒素及び6価クロムの溶出量の低減方法である請求項19〜22の何れか1項に記載の固体廃棄物の処理方法。 The method for reducing the elution amount of boron, arsenic, and hexavalent chromium in waste incineration ash, wherein the incineration ash is waste incineration ash, and the phosphorus source includes sewage sludge-based phosphorus-containing waste. Item 1. The method for treating solid waste according to Item 1. 前記リン含有化合物が、縮合リン酸、リン酸、亜リン酸、次亜リン酸、ホスホン酸及びホスフィン酸並びにこれらの塩及びこれらの水和物からなる群から選択される少なくとも1種である請求項3に記載の固体廃棄物の処理方法。 The phosphorus-containing compound is at least one selected from the group consisting of condensed phosphoric acid, phosphoric acid, phosphorous acid, hypophosphorous acid, phosphonic acid and phosphinic acid, salts thereof and hydrates thereof. Item 4. The method for treating solid waste according to Item 3. 前記リン含有化合物が、三リン酸五カリウム、縮合リン酸、縮合リン酸塩及び次亜リン酸塩からなる群から選択される少なくとも1種である請求項3又は24に記載の固体廃棄物の処理方法。 25. The solid waste according to claim 3 or 24, wherein the phosphorus-containing compound is at least one selected from the group consisting of pentapotassium triphosphate, condensed phosphoric acid, condensed phosphate and hypophosphite. Processing method. 前記焼却灰又はリン源に含まれるホウ素、砒素、セレン、フッ素、6価クロム、鉛、水銀及びカドミウムからなる群の少なくとも1種の溶出量を低減させる請求項1〜25の何れか1項に記載の固体廃棄物の処理方法。 The elution amount of at least one selected from the group consisting of boron, arsenic, selenium, fluorine, hexavalent chromium, lead, mercury and cadmium contained in the incinerated ash or phosphorus source is reduced. The method for treating solid waste described. 前記焼却灰又はリン源に含まれるホウ素、砒素、6価クロムからなる群の少なくとも1種の溶出量を低減させる請求項26に記載の固体廃棄物の処理方法。 27. The method for treating solid waste according to claim 26, wherein the amount of at least one of the group consisting of boron, arsenic, and hexavalent chromium contained in the incinerated ash or phosphorus source is reduced. 焼却灰とリン源とを混合して600℃以上1200℃以下で加熱する工程を有する、焼却灰又はリン源に含まれるホウ素、砒素、セレン、フッ素、6価クロム、鉛、水銀及びカドミウムからなる群の少なくとも1種の溶出抑制方法。 It consists of boron, arsenic, selenium, fluorine, hexavalent chromium, lead, mercury and cadmium contained in incineration ash or phosphorus source, which has a step of mixing incineration ash and phosphorus source and heating at 600°C or more and 1200°C or less. At least one elution suppressing method of a group. ホウ素、砒素及び6価クロムからなる群から選ばれる少なくとも1種の溶出を抑制する、請求項28に記載の溶出抑制方法。
29. The elution suppressing method according to claim 28, wherein elution of at least one selected from the group consisting of boron, arsenic and hexavalent chromium is suppressed.
JP2019527728A 2017-07-04 2018-07-03 Solid waste treatment method Pending JPWO2019009303A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017131532 2017-07-04
JP2017131532 2017-07-04
PCT/JP2018/025263 WO2019009303A1 (en) 2017-07-04 2018-07-03 Solid waste treatment method

Publications (1)

Publication Number Publication Date
JPWO2019009303A1 true JPWO2019009303A1 (en) 2020-07-02

Family

ID=64950995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019527728A Pending JPWO2019009303A1 (en) 2017-07-04 2018-07-03 Solid waste treatment method

Country Status (2)

Country Link
JP (1) JPWO2019009303A1 (en)
WO (1) WO2019009303A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7055943B2 (en) * 2018-09-14 2022-04-19 株式会社神戸製鋼所 Detoxification method of coal ash
JP7478053B2 (en) 2020-07-27 2024-05-02 Ube三菱セメント株式会社 Sewage sludge fermentation raw material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212260A (en) * 1986-03-14 1987-09-18 明星工業株式会社 Method of converting waste matter to ceramics
JPH0461978A (en) * 1990-06-28 1992-02-27 Sanai Fujita Preparation of solidifying material
JPH1111992A (en) * 1997-06-23 1999-01-19 Techno Japan:Kk Cement based material to be solidified or hydraulic material of incineration ash in which harmful heavy metal is insolubilized
JP2000334416A (en) * 1999-05-28 2000-12-05 Bogenpfeil:Kk Low temperature melt-solidifying aggregate for ash dust such as incineration ash and incineration fly ash and low temperature melt-solidifying method of ash dust such as incineration ash and incineration fly ash
JP2003185119A (en) * 2001-12-14 2003-07-03 Nippon Steel Corp Processing method for meat and bone meal
JP2004526555A (en) * 2000-12-13 2004-09-02 ソルヴェイ Method for inactivating ash, artificial pozzolan obtained by the method
JP2007015874A (en) * 2005-07-05 2007-01-25 Ehime Univ Method for producing hydroxyapatite-containing body, hydroxyapatite-zeolite complex, hydroxyapatite, hydroxyapatite-titanium oxide complex and hydroxyapatite-zeolite-titanium oxide complex, and functional fiber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009279481A (en) * 2008-05-20 2009-12-03 Jikco Ltd Method of treating heavy metal in solid waste

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62212260A (en) * 1986-03-14 1987-09-18 明星工業株式会社 Method of converting waste matter to ceramics
JPH0461978A (en) * 1990-06-28 1992-02-27 Sanai Fujita Preparation of solidifying material
JPH1111992A (en) * 1997-06-23 1999-01-19 Techno Japan:Kk Cement based material to be solidified or hydraulic material of incineration ash in which harmful heavy metal is insolubilized
JP2000334416A (en) * 1999-05-28 2000-12-05 Bogenpfeil:Kk Low temperature melt-solidifying aggregate for ash dust such as incineration ash and incineration fly ash and low temperature melt-solidifying method of ash dust such as incineration ash and incineration fly ash
JP2004526555A (en) * 2000-12-13 2004-09-02 ソルヴェイ Method for inactivating ash, artificial pozzolan obtained by the method
JP2003185119A (en) * 2001-12-14 2003-07-03 Nippon Steel Corp Processing method for meat and bone meal
JP2007015874A (en) * 2005-07-05 2007-01-25 Ehime Univ Method for producing hydroxyapatite-containing body, hydroxyapatite-zeolite complex, hydroxyapatite, hydroxyapatite-titanium oxide complex and hydroxyapatite-zeolite-titanium oxide complex, and functional fiber

Also Published As

Publication number Publication date
WO2019009303A1 (en) 2019-01-10

Similar Documents

Publication Publication Date Title
Kim et al. A simultaneous stabilization and solidification of the top five most toxic heavy metals (Hg, Pb, As, Cr, and Cd)
Mao et al. Inhibition of Cr (III) oxidation during thermal treatment of simulated tannery sludge: The role of phosphate
CN101279825B (en) Method for cooperative reclaiming flyash and sludge in refuse incineration
JP5807349B2 (en) Detoxification method for solid waste containing heavy metals
DK2411339T3 (en) A method for eliminating pollutants from the sewage sludge and the process for the preparation of phosphates and phosphate-containing compounds
WO2014162623A1 (en) Insolubilizing material for hazardous substances, and treatment method using same
JPWO2019009303A1 (en) Solid waste treatment method
JP6267922B2 (en) Hazardous substance treatment chemical
KR101789701B1 (en) Manufacturing method of potassium chloride using cement bypass dust
JP5306524B1 (en) Hazardous material insolubilizing material and treatment method using the same
JP5842423B2 (en) Detoxification method for solid waste containing heavy metals
JP2008255171A (en) Fixing agent for inorganic harmful component
KR102510079B1 (en) Method for producing carbonate composite using combustion ashes
JP2018135237A (en) Method of producing phosphorous silicate fertilizer
JP6248739B2 (en) Combustion ash treatment method and use thereof
JP6656912B2 (en) Sorting method of insolubilizing material
JP2008273749A (en) Artificial aggregate and its manufacturing method
JP6874577B2 (en) Solid waste treatment method
JP3675766B2 (en) Environmental improvement cement composition
TWI657066B (en) Method for processing lime by-product
JP2017136557A (en) Method of manufacturing civil engineering material
Kepys et al. Assessment of Ecotoxicity of Incinerated Sewage Sludge Ash (ISSA). Minerals 2021, 11, 849
JP5077777B2 (en) Elution reduction material and elution reduction treatment method
CN102009061B (en) Method for stabilizing fly ash of municipal solid waste incinerator by using artificial sea water
JP2009233646A (en) Method for treating toxic component by solidifying waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221213