WO2019008671A1 - 電力伝送システム、送信装置及び受信装置 - Google Patents

電力伝送システム、送信装置及び受信装置 Download PDF

Info

Publication number
WO2019008671A1
WO2019008671A1 PCT/JP2017/024497 JP2017024497W WO2019008671A1 WO 2019008671 A1 WO2019008671 A1 WO 2019008671A1 JP 2017024497 W JP2017024497 W JP 2017024497W WO 2019008671 A1 WO2019008671 A1 WO 2019008671A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary winding
pulse
voltage
primary winding
pulse transformer
Prior art date
Application number
PCT/JP2017/024497
Other languages
English (en)
French (fr)
Inventor
雄将 鈴木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201780092763.5A priority Critical patent/CN110832763A/zh
Priority to PCT/JP2017/024497 priority patent/WO2019008671A1/ja
Priority to DE112017007608.0T priority patent/DE112017007608T5/de
Priority to JP2019528233A priority patent/JP6625276B2/ja
Priority to US16/609,856 priority patent/US20200127863A1/en
Publication of WO2019008671A1 publication Critical patent/WO2019008671A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/06Two-wire systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00007Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission
    • H02J13/00009Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission using pulsed signals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/407Bus networks with decentralised control
    • H04L12/413Bus networks with decentralised control with random access, e.g. carrier-sense multiple-access with collision detection [CSMA-CD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0045Converters combining the concepts of switch-mode regulation and linear regulation, e.g. linear pre-regulator to switching converter, linear and switching converter in parallel, same converter or same transistor operating either in linear or switching mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/123Suppression of common mode voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33561Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having more than one ouput with independent control

Definitions

  • the present invention relates to a power transmission system, a transmitter and a receiver for transmitting power using a communication line.
  • a technology for transmitting power to a remote device using a communication line is known, for example, a technology for transmitting power using a Power Over Ethernet (registered trademark) cable.
  • a Power Over Ethernet (registered trademark) cable See, for example, Patent Document 1.
  • DC power is transmitted from the transmitting device to the device via the two twisted pair wires of the Ethernet cable and the receiving device.
  • a VoIP telephone, a WLAN transmitter or a security camera etc. are mentioned, for example.
  • communication signals that are differential signals can be transmitted through the Ethernet cable.
  • the standard for PoE is defined in IEEE 802.3.
  • the transmission device in a power transmission system using an Ethernet cable, is provided with a pulse transformer for electrically insulating the inside of the transmission device from the Ethernet cable in transmission of a communication signal. Therefore, in the power transmission system, it is also necessary to insulate the transmitter from the inside of the transmitter and the Ethernet cable in the power transmission as well.
  • the receiving device in the conventional power transmission system, the transmitting device is provided with an isolated DC / DC converter and a PSE (Power Sourcing Equipment) controller, and the receiving device is provided with a PD (Powered Device) controller and an isolated DC / DC converter. Then, the PSE controller performs complex control such as detection of PD controller, classification of PD controller, and management of power supply to PD controller.
  • PSE Power Sourcing Equipment
  • the present invention has been made to solve the problems as described above, and it is an object of the present invention to provide a power transmission system capable of power transmission using a communication line without using a PSE controller and a PD controller. There is.
  • a power transmission system includes a transmitter and a receiver, and the transmitter includes a first communication unit that outputs a communication signal, and a first primary winding connected to the first communication unit.
  • a first pulse transformer having a first secondary winding to which one end of the first communication line is connected, a second primary winding connected to the first communication unit, and a second communication line
  • a second pulse transformer having a second secondary winding to which one end is connected, and one connected to the middle point of the first secondary winding and the other connected to the middle point of the second secondary winding
  • an isolated first converter that converts a DC voltage into a pulse voltage and outputs the converted pulse voltage
  • the receiving apparatus further includes a third one to which the other end of the first communication line is connected.
  • a third pulse transformer having a winding and a third secondary winding is connected to the other end of the second communication line
  • the fourth pulse transformer having the fourth primary winding to be connected and the fourth secondary winding, the third secondary winding and the fourth secondary winding are connected, and the communication signal is input And a pair of input terminals, one being connected to the middle point of the third primary winding and the other being connected to the middle point of the fourth primary winding, And an isolated second converter for converting the pulse voltage into a DC voltage.
  • FIG. 1 is a schematic circuit diagram showing a configuration example of a power transfer system according to a first embodiment of the present invention.
  • the power transmission system transmits power using an Ethernet cable (communication cable) 3.
  • the Ethernet cable 3 has a plurality of twisted pair wires (communication lines) 31.
  • the Ethernet cable 3 shown in FIG. 1 has four twisted pair wires 31a to 31d.
  • a standard CAT-5 cable can be used as the Ethernet cable 3.
  • the power transmission system includes a transmitter 1 and a receiver 2 as shown in FIG.
  • the transmitter 1 transmits power using the Ethernet cable 3.
  • the transmitter 1 includes a DC power supply 11, an isolated DC / AC converter (first converter) 12, a PHY (first communication unit) 13, a plurality of pulse transformers 14, and a connector 15. .
  • the transmitter 1 shown in FIG. 1 four pulse transformers 14a to 14d are used.
  • the direct current power supply 11 outputs a direct current voltage (DC voltage).
  • the DC voltage Vin output by the DC power supply 11 is, for example, a value within the range of 44V to 57V.
  • the DC power supply 11 has a positive terminal connected to the input terminal 121 of the isolated DC / AC converter 12 and a negative terminal connected to GND and an input terminal 122 of the isolated DC / AC converter 12.
  • the isolated DC / AC converter 12 is an isolated converter that converts the input DC voltage into a pulse voltage (AC voltage) and outputs it.
  • AC voltage is generally classified variously according to the form of waveform, such as voltage of a sine waveform (sine waveform), triangular waveform or square waveform (pulse waveform), here, AC voltage is a square waveform It refers to the voltage of (pulse waveform).
  • the isolated DC / AC converter 12 has a pair of input terminals 121 and 122, a pulse transformer 123, a switching transistor 124, and a pair of output terminals 125 and 126.
  • the pulse transformer 123 has a primary winding and a secondary winding.
  • the pulse transformer 123 electrically isolates the input side which is the primary winding side and the output side which is the secondary winding side.
  • One end of the primary winding is connected to the input terminal 121, and the other end is connected to the input terminal 122.
  • One end of the secondary winding is connected to the output terminal (Vo +) 125, and the other end is connected to the output terminal (Vo ⁇ ) 126.
  • the switching transistor 124 performs switching operation in response to the pulse signal input to the gate terminal.
  • the switching transistor 124 has an emitter terminal connected to the other end of the primary winding of the pulse transformer 123, and a collector terminal connected to GND.
  • the switching transistor 124 converts the DC voltage output from the DC power supply 11 into a pulse voltage.
  • the PHY 13 is a communication interface that outputs a communication signal.
  • the communication signal is a differential signal.
  • the pulse transformer (second pulse transformer) 14 a has a primary winding (second primary winding) connected to the PHY 13 and a secondary winding (second secondary winding) connected to the connector 15. And.
  • the pulse transformer 14a electrically isolates the input side which is the primary winding side and the output side which is the secondary winding side.
  • the pulse transformer 14a is connected to the output terminal 126 of the isolated DC / AC converter 12 at the middle point (Vi-) of the secondary winding.
  • the pulse transformer (first pulse transformer) 14 b has a primary winding (first primary winding) connected to the PHY 13 and a secondary winding (first secondary winding) connected to the connector 15. And.
  • the pulse transformer 14b electrically isolates the input side which is the primary winding side and the output side which is the secondary winding side.
  • the pulse transformer 14 b is connected to the output terminal 125 of the isolated DC / AC converter 12 at the middle point (Vi +) of the secondary winding.
  • the pulse transformer 14 c has a primary winding connected to the PHY 13 and a secondary winding connected to the connector 15.
  • the pulse transformer 14 c electrically isolates the input side, which is the primary winding side, from the output side, which is the secondary winding side.
  • the pulse transformer 14 d has a primary winding connected to the PHY 13 and a secondary winding connected to the connector 15.
  • the pulse transformer 14d electrically isolates the input side, which is the primary winding side, from the output side, which is the secondary winding side.
  • the connector 15 has a plurality of output pins, and connects the Ethernet cable 3 connected to the output pins to the pulse transformer 14.
  • the connector 15 shown in FIG. 1 has eight output pins.
  • the connector 15 connects the pulse transformer 14a to one end of the twisted pair wire (second communication line) 31a, and connects the pulse transformer 14b to one end of the twisted pair wire (first communication line) 31b.
  • 14c and one end of the twisted pair wire 31c are connected, and a pulse transformer 14d and one end of the twisted pair wire 31d are connected.
  • an RJ45 connector can be used as the connector 15, for example.
  • the receiver 2 receives power using the Ethernet cable 3.
  • the receiving device 2 includes a connector 21, a plurality of pulse transformers 22, a PHY (second communication unit) 23, an isolated AC / DC converter 24 (rectifier circuit, second converter), and a series regulator 25. ing.
  • the receiving device 2 shown in FIG. 1 four pulse transformers 22a to 22d are used.
  • the connector 21 has a plurality of input pins, and connects the Ethernet cable 3 connected to the input pins to the pulse transformer 22.
  • the connector 21 shown in FIG. 1 has eight input pins.
  • the connector 21 connects the pulse transformer 22a to the other end of the twist pair wire 31a, connects the pulse transformer 22b to the other end of the twist pair wire 31b, and connects the pulse transformer 22c to the other end of the twist pair wire 31c.
  • the pulse transformer 22d is connected to the other end of the twisted pair wire 31d.
  • an RJ45 connector can be used as the connector 21.
  • the pulse transformer (fourth pulse transformer) 22 a has a primary winding (fourth primary winding) connected to the connector 21 and a secondary winding (fourth secondary winding) connected to the PHY 23. And.
  • the pulse transformer 22a electrically isolates the input side which is the primary winding side and the output side which is the secondary winding side. Further, in the pulse transformer 22a, the input terminal 242 of the isolated AC / DC converter 24 is connected to the middle point (Vo ⁇ ) of the primary winding.
  • the pulse transformer (third pulse transformer) 22 b has a primary winding (third primary winding) connected to the connector 21 and a secondary winding (third secondary winding) connected to the PHY 23. And.
  • the pulse transformer 22b electrically isolates the input side which is the primary winding side and the output side which is the secondary winding side.
  • the pulse transformer 22b is connected to an input terminal 241 of the isolated AC / DC converter 24 at the middle point (Vo +) of the primary winding.
  • the pulse transformer 22 c has a primary winding connected to the connector 21 and a secondary winding connected to the PHY 23.
  • the pulse transformer 22c electrically isolates the input side, which is the primary winding side, from the output side, which is the secondary winding side.
  • the pulse transformer 22 d has a primary winding connected to the connector 21 and a secondary winding connected to the PHY 23.
  • the pulse transformer 22d electrically isolates the input side, which is the primary winding side, from the output side, which is the secondary winding side.
  • the PHY 23 is a communication interface to which communication signals are input.
  • the isolated AC / DC converter 24 is an isolated converter that converts the input pulse voltage into a DC voltage and outputs the DC voltage.
  • the isolated AC / DC converter 24 has a pair of input terminals 241 and 242, a flyback transformer 243, a rectifying diode 244, an output capacitor 245, and a pair of output terminals 246 and 247.
  • Flyback transformer 243 has a primary winding and a secondary winding.
  • the flyback transformer 243 electrically isolates the input side, which is the primary winding side, from the output side, which is the secondary winding side.
  • One end of the primary winding is connected to the input terminal 241, and the other end is connected to the input terminal 242.
  • One end of the secondary winding is connected to the anode of the rectifying diode 244, and the other end is connected to the output terminal 247.
  • the cathode of the rectifier diode 244 is connected to the output terminal 246.
  • One end of the output capacitor 245 is connected to the cathode of the rectifying diode 244, and the other end is connected to the other end of the secondary winding.
  • the rectifier diode 244 and the output capacitor 245 convert the pulse voltage output by the pulse transformers 22a and 22b into a DC voltage.
  • the series regulator 25 is connected to the pair of output terminals 246 and 247 of the isolated AC / DC converter 24 and steps down the input pulse voltage.
  • the series regulator 25 stabilizes the pulse voltage output by the isolated AC / DC converter 24.
  • the series regulator 25 is not an essential component, and may be removed from the power transmission system when the voltage accuracy is not required.
  • the isolated DC / AC converter 12 generates and outputs a pulse voltage based on the DC voltage output from the DC power supply 11. Further, among the pair of output terminals 125 and 126 of the isolated DC / AC converter 12, the output terminal 125 is connected to the middle point of the secondary winding of the pulse transformer 14b, and the output terminal 126 is 2 of the pulse transformer 14a. It is connected to the middle point of the winding. As a result, a pulse potential difference is generated between the middle point potentials of the two twisted pair wires 31a and 31b, and power transmission using the Ethernet cable 3 is realized.
  • the isolated AC / DC converter 24 receives the pulse voltage transmitted by the twisted pair wires 31a and 31b through the pulse transformers 22a and 22b, and converts the pulse voltage into a DC voltage. Thereafter, the DC voltage is stabilized by the series regulator 25 and then supplied to the circuit in the subsequent stage.
  • the communication signal output by the PHY 13 is also transmitted to the PHY 23 through the pulse transformers 14 and 22 and the Ethernet cable 3.
  • the communication signal is a differential signal, and in the case of the differential signal, even if the midpoint potential fluctuates, the fluctuation is canceled in principle. Thus, the transmission of the pulse voltage does not affect the quality of the communication signal.
  • the insulation DC / AC converter 12 prevents the frequency bandwidth of the pulse voltage from overlapping with the frequency bandwidth of the communication signal by lengthening the rise time and fall time of the pulse voltage to some extent. This can be realized by adjusting the rise time and the fall time of the switching transistor 124. As an example, by adding a capacitance component to the switching transistor 124, the rise time and the fall time can be delayed.
  • the value of the DC voltage output from the receiving device 2 is determined by the frequency of the pulse voltage (the switching frequency of the switching transistor 124) and the duty ratio.
  • the value of the DC voltage output from the receiver 2 can not be fed back to the transmitter 1 to control the switching transistor 124.
  • the DC voltage with high accuracy can be generated by using the series regulator 25.
  • the transmitter 1 includes the PHY 13 that outputs the communication signal, and the primary winding connected to the PHY 13, and at the same time, one end of the twisted pair wire 31 b is connected 2
  • It has a pair of output terminals 125 and 126 connected to the middle point of the secondary winding and the other connected to the middle point of the secondary winding of the pulse transformer 14a, and converts DC voltage into pulse voltage for output
  • the receiving device 2 has a primary winding to which the other end of the twisted pair wire 31b is connected, and a secondary
  • an isolated AC / DC converter 24 having a pair of input terminals 241 and 242 connected to a point and converting the input pulse voltage into a DC voltage. Therefore, communication lines are used without complex control such as detection of PD controller by PSE controller, classification of PD controller, and management of power supply to PD controller, that is, without using PSE controller and PD controller. Power transfer is possible. Therefore, the power transmission system can be configured with a simple circuit configuration as compared with the conventional configuration, and cost reduction can be realized.
  • the present invention is not limited to this, and a general cable or coaxial cable may be used as the communication cable, and the same effect as described above can be obtained.
  • FIG. 2 is a schematic circuit diagram showing a configuration example of a power transfer system according to a second embodiment of the present invention.
  • the series regulator 25 is removed from the power transfer system according to the first embodiment shown in FIG. 1, and the switching transistor 124 is changed to a converter circuit 127.
  • the flyback transformer 243 is changed to a flyback transformer 243b, and a plurality of systems of rectification diodes 244, output capacitors 245 and output terminals 246 and 247 are provided, and a pulse transformer 128, a pair of input terminals 129 and 130 and a pair of output terminals 248 and 249 Has been added.
  • FIG. 2 is the same as that of the power transfer system according to the first embodiment shown in FIG. 1, and the same reference numerals are given and only different parts will be described. .
  • FIG. 2 two rectification diodes 244, an output capacitor 245, and output terminals 246 and 247 are shown, and suffixes (-1, -2) corresponding to each system are shown.
  • the converter circuit 127 has a function of controlling the frequency (switching frequency) and the duty ratio of the pulse voltage to be generated based on the input reference voltage, in addition to the function of the switching transistor 124.
  • a commercially available product can be used as this converter circuit 127.
  • the pulse transformer 128 has a primary winding and a secondary winding.
  • the pulse transformer 128 electrically isolates the input side, which is the primary winding side, from the output side, which is the secondary winding side.
  • One end of the primary winding is connected to the middle point of the secondary winding of the pulse transformer 14d via the input terminal 129, and the other end is connected to the middle of the secondary winding of the pulse transformer 14c via the input terminal 130. Connected to the point. Further, one end of the secondary winding is connected to the converter circuit 127, and the other end is connected to GND.
  • Flyback transformer 243 b has a primary winding, a plurality of secondary windings, and a tertiary winding.
  • the flyback transformer 243b electrically isolates the input side which is the primary winding side, the output side which is the secondary winding, and the output side which is the tertiary winding side.
  • the flyback transformer 243b shown in FIG. 2 has two secondary windings. One end of the primary winding is connected to the input terminal 241, and the other end is connected to the input terminal 242. One end of the secondary winding is connected to the anode of the rectifier diode 244 of the corresponding system, and the other end is connected to the output terminal 247 of the corresponding system.
  • One end of the tertiary winding is connected to the middle point of the primary winding of the pulse transformer 22d via the output terminal 248, and the other end is connected to the middle point of the primary winding of the pulse transformer 22c via the output terminal 249. It is connected.
  • the rectification diode 244 and the output capacitor 245 of each system convert the pulse voltages output from the pulse transformers 22a and 22b into different DC voltages.
  • the isolated DC / AC converter 12 generates and outputs a pulse voltage based on the DC voltage output from the DC power supply 11. Further, among the pair of output terminals 125 and 126 of the isolated DC / AC converter 12, the output terminal 125 is connected to the middle point of the secondary winding of the pulse transformer 14b, and the output terminal 126 is 2 of the pulse transformer 14a. It is connected to the middle point of the winding. As a result, a pulse potential difference is generated between the middle point potentials of the two twisted pair wires 31a and 31b, and power transmission using the Ethernet cable 3 is realized.
  • the isolated AC / DC converter 24 receives the pulse voltage transmitted by the twisted pair wires 31a and 31b through the pulse transformers 22a and 22b, and converts the pulse voltage into a DC voltage.
  • the secondary winding of the flyback transformer 243 b is a plurality of windings, and in FIG. 2, two types of pulse voltages are generated by the two secondary windings. These two types of pulse voltages are respectively converted into different DC voltages, and are supplied to circuits in the subsequent stage. Further, by adding the secondary winding, it is possible to increase the types of DC voltage that can be output by the receiving device 2.
  • the flyback transformer 243 b also has a tertiary winding. One end of the tertiary winding is connected to the middle point of the primary winding of the pulse transformer 22d, and the other end is connected to the middle point of the primary winding of the pulse transformer 22c.
  • a reference potential difference for monitoring the value of the pulse voltage applied to the flyback transformer 243b is generated between the midpoint potentials of the two twisted pair wires 31c and 31d, and transmitted by the twisted pair wires 31c and 31d.
  • the reference voltage is fed back to the converter circuit 127 via the pulse transformer 128.
  • the value of the DC voltage output by the isolated AC / DC converter 24 is controlled by the converter circuit 127 by adjusting the frequency and duty ratio of the pulse voltage based on the reference voltage. As a result, the isolated AC / DC converter 24 can output a DC voltage with high accuracy.
  • the isolated DC / AC converter 12 controls the frequency and duty ratio of the output pulse voltage based on the pulse voltage input to the isolated AC / DC converter 24.
  • a DC voltage with high accuracy can be output without using the series regulator 25.
  • the secondary winding of the flyback transformer 243b may be single.
  • the present invention allows free combination of each embodiment, or modification of any component of each embodiment, or omission of any component in each embodiment. .
  • the power transmission system according to the present invention enables power transmission using a communication line without using a PSE controller and a PD controller, and is suitable for use in a power transmission system or the like that transmits power using a communication line. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Dc Digital Transmission (AREA)
  • Power Sources (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Dc-Dc Converters (AREA)

Abstract

送信装置(1)が、PHY(13)に接続された1次巻線及びツイストペアワイヤ(31a)の一端が接続される2次巻線を有するパルストランス(14a)と、PHY(13)に接続された1次巻線及びツイストペアワイヤ(31b)の一端が接続される2次巻線を有するパルストランス(14b)と、一方がパルストランス(14a)が有する2次巻線の中点に接続され、他方がパルストランス(14b)が有する2次巻線の中点に接続された一対の出力端子(125,126)を有し、直流電圧をパルス電圧に変換して出力する絶縁DC/ACコンバータ(12)とを備え、受信装置(2)が、ツイストペアワイヤ(31a)の他端が接続される1次巻線及びPHY(23)に接続された2次巻線を有するパルストランス(22a)と、ツイストペアワイヤ(31b)の他端が接続される1次巻線及びPHY(23)に接続された2次巻線を有するパルストランス(22b)と、一方がパルストランス(22a)が有する1次巻線の中点に接続され、他方がパルストランス(22b)が有する1次巻線の中点に接続された一対の入力端子(241,242)を有し、入力されたパルス電圧を直流電圧に変換する絶縁AC/DCコンバータ(24)とを備えた。

Description

電力伝送システム、送信装置及び受信装置
 この発明は、通信線を用いて電力を伝送する電力伝送システム、送信装置及び受信装置に関する。
 通信線を用いて遠隔の機器に電力を伝送する技術は公知であり、例えばPoE(Power Over Ethernet(登録商標):イーサネット(登録商標;以下記載を省略する)ケーブルを用いて電力を伝送する技術)が挙げられる(例えば特許文献1参照)。PoEでは、直流電力が、送信装置からイーサネットケーブルが有する2本のツイストペアワイヤ及び受信装置を介して機器に伝送される。機器としては、例えば、VoIP電話、WLANトランスミッタ又はセキュリティカメラ等が挙げられる。また、イーサネットケーブルでは、差動信号である通信信号が伝送され得る。PoEに対する規格はIEEE802.3に定められている。
 一方、イーサネットケーブルを用いた電力伝送システムでは、送信装置に、通信信号の伝送において、送信装置の内部とイーサネットケーブルとを電気的に絶縁するためのパルストランスが設けられている。そのため、電力伝送システムでは、電力伝送についても同様に、送信装置に、送信装置の内部とイーサネットケーブルとの絶縁を行う必要がある。受信装置についても上記と同様である。そこで、従来の電力伝送システムでは、送信装置に絶縁DC/DCコンバータ及びPSE(Power Sourcing Equipment)コントローラが設けられ、受信装置にPD(Powered Device)コントローラ及び絶縁DC/DCコンバータが設けられている。そして、PSEコントローラは、PDコントローラの検出、PDコントローラの分類、及びPDコントローラへの電力供給の管理といった複雑な制御を行っている。
特開2015-180046号公報
 上述したように、従来の電力伝送システムでは、PSEコントローラ及びPDコントローラを用いる必要があるという課題があった。
 この発明は、上記のような課題を解決するためになされたもので、PSEコントローラ及びPDコントローラを用いずに、通信線を用いた電力伝送を可能とする電力伝送システムを提供することを目的としている。
 この発明に係る電力伝送システムは、送信装置及び受信装置を備え、送信装置は、通信信号を出力する第1通信部と、第1通信部に接続された第1の1次巻線を有するとともに、第1通信線の一端が接続される第1の2次巻線を有する第1パルストランスと、第1通信部に接続された第2の1次巻線を有するとともに、第2通信線の一端が接続される第2の2次巻線を有する第2パルストランスと、一方が第1の2次巻線の中点に接続され、他方が第2の2次巻線の中点に接続された一対の出力端子を有し、直流電圧をパルス電圧に変換して出力する絶縁型の第1コンバータとを備え、受信装置は、第1通信線の他端が接続される第3の1次巻線を有するとともに、第3の2次巻線を有する第3パルストランスと、第2通信線の他端が接続される第4の1次巻線を有するとともに、第4の2次巻線を有する第4パルストランスと、第3の2次巻線及び第4の2次巻線が接続され、通信信号が入力される第2通信部と、一方が第3の1次巻線の中点に接続され、他方が第4の1次巻線の中点に接続された一対の入力端子を有し、入力されたパルス電圧を直流電圧に変換する絶縁型の第2コンバータとを備えたことを特徴とする。
 この発明によれば、上記のように構成したので、PSEコントローラ及びPDコントローラを用いずに、通信線を用いた電力伝送が可能となる。
この発明の実施の形態1に係る電力伝送システムの構成例を示す模式的な回路図である。 この発明の実施の形態2に係る電力伝送システムの構成例を示す模式的な回路図である。
 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係る電力伝送システムの構成例を示す模式的な回路図である。以下では、電力伝送システムが、PoEにより電力伝送を行う場合を示す。
 電力伝送システムは、イーサネットケーブル(通信ケーブル)3を用いて電力を伝送する。イーサネットケーブル3は、複数のツイストペアワイヤ(通信線)31を有している。図1に示すイーサネットケーブル3は、4本のツイストペアワイヤ31a~31dを有している。このイーサネットケーブル3としては、例えば標準CAT-5ケーブルを用いることができる。電力伝送システムは、図1に示すように、送信装置1及び受信装置2を備えている。
 送信装置1は、イーサネットケーブル3を用いて電力を送信する。送信装置1は、図1に示すように、直流電源11、絶縁DC/ACコンバータ(第1コンバータ)12、PHY(第1通信部)13、複数のパルストランス14、及びコネクタ15を備えている。図1に示す送信装置1では、4つのパルストランス14a~14dが用いられている。
 直流電源11は、直流電圧(DC電圧)を出力する。直流電源11により出力される直流電圧Vinは、例えば44V~57Vの範囲内の値である。直流電源11は、プラス端子が絶縁DC/ACコンバータ12が有する入力端子121に接続され、マイナス端子がGND及び絶縁DC/ACコンバータ12が有する入力端子122に接続されている。
 絶縁DC/ACコンバータ12は、入力された直流電圧をパルス電圧(AC電圧)に変換して出力する絶縁型のコンバータである。なお、AC電圧は、一般的には、正弦波形(サイン波形)、三角波形又は方形波形(パルス波形)の電圧等、波形の形により様々に分類されるが、ここでは、AC電圧は方形波形(パルス波形)の電圧を指すものとする。絶縁DC/ACコンバータ12は、例えば図1に示すように、一対の入力端子121,122、パルストランス123、スイッチングトランジスタ124及び一対の出力端子125,126を有している。
 パルストランス123は、1次巻線及び2次巻線を有する。パルストランス123は、1次巻線側である入力側と2次巻線側である出力側とを電気的に絶縁する。1次巻線は、一端が入力端子121に接続され、他端が入力端子122に接続されている。2次巻線は、一端が出力端子(Vo+)125に接続され、他端が出力端子(Vo-)126に接続されている。
 スイッチングトランジスタ124は、ゲート端子に入力されるパルス信号に応じ、スイッチング動作を行う。スイッチングトランジスタ124は、エミッタ端子がパルストランス123が有する1次巻線の他端に接続され、コレクタ端子がGNDに接続されている。このスイッチングトランジスタ124により、直流電源11により出力された直流電圧がパルス電圧に変換される。
 PHY13は、通信信号を出力する通信インタフェースである。なお、通信信号は差動信号である。
 パルストランス(第2パルストランス)14aは、PHY13に接続された1次巻線(第2の1次巻線)と、コネクタ15に接続された2次巻線(第2の2次巻線)とを有する。パルストランス14aは、1次巻線側である入力側と2次巻線側である出力側とを電気的に絶縁する。また、パルストランス14aは、2次巻線の中点(Vi-)に絶縁DC/ACコンバータ12が有する出力端子126が接続されている。
 パルストランス(第1パルストランス)14bは、PHY13に接続された1次巻線(第1の1次巻線)と、コネクタ15に接続された2次巻線(第1の2次巻線)とを有する。パルストランス14bは、1次巻線側である入力側と2次巻線側である出力側とを電気的に絶縁する。また、パルストランス14bは、2次巻線の中点(Vi+)に絶縁DC/ACコンバータ12が有する出力端子125が接続されている。
 パルストランス14cは、PHY13に接続された1次巻線と、コネクタ15に接続された2次巻線とを有する。パルストランス14cは、1次巻線側である入力側と2次巻線側である出力側とを電気的に絶縁する。
 パルストランス14dは、PHY13に接続された1次巻線と、コネクタ15に接続された2次巻線とを有する。パルストランス14dは、1次巻線側である入力側と2次巻線側である出力側とを電気的に絶縁する。
 コネクタ15は、複数の出力ピンを有し、当該出力ピンに接続されたイーサネットケーブル3をパルストランス14に接続する。図1に示すコネクタ15は、8つの出力ピンを有している。図1では、コネクタ15は、パルストランス14aとツイストペアワイヤ(第2通信線)31aの一端とを接続し、パルストランス14bとツイストペアワイヤ(第1通信線)31bの一端とを接続し、パルストランス14cとツイストペアワイヤ31cの一端とを接続し、パルストランス14dとツイストペアワイヤ31dの一端とを接続している。コネクタ15としては、例えばRJ45コネクタを用いることができる。
 受信装置2は、イーサネットケーブル3を用いて電力を受信する。受信装置2は、図1に示すように、コネクタ21、複数のパルストランス22、PHY(第2通信部)23、絶縁AC/DCコンバータ24(整流回路、第2コンバータ)及びシリーズレギュレータ25を備えている。図1に示す受信装置2では、4つのパルストランス22a~22dが用いられている。
 コネクタ21は、複数の入力ピンを有し、当該入力ピンに接続されたイーサネットケーブル3をパルストランス22に接続する。図1に示すコネクタ21では、8つの入力ピンを有している。図1では、コネクタ21は、パルストランス22aとツイストペアワイヤ31aの他端とを接続し、パルストランス22bとツイストペアワイヤ31bの他端とを接続し、パルストランス22cとツイストペアワイヤ31cの他端とを接続し、パルストランス22dとツイストペアワイヤ31dの他端とを接続している。コネクタ21としては、例えばRJ45コネクタを用いることができる。
 パルストランス(第4パルストランス)22aは、コネクタ21に接続された1次巻線(第4の1次巻線)と、PHY23に接続された2次巻線(第4の2次巻線)とを有する。パルストランス22aは、1次巻線側である入力側と2次巻線側である出力側とを電気的に絶縁する。また、パルストランス22aは、1次巻線の中点(Vo-)に絶縁AC/DCコンバータ24が有する入力端子242が接続されている。
 パルストランス(第3パルストランス)22bは、コネクタ21に接続された1次巻線(第3の1次巻線)と、PHY23に接続された2次巻線(第3の2次巻線)とを有する。パルストランス22bは、1次巻線側である入力側と2次巻線側である出力側とを電気的に絶縁する。また、パルストランス22bは、1次巻線の中点(Vo+)に絶縁AC/DCコンバータ24が有する入力端子241が接続されている。
 パルストランス22cは、コネクタ21に接続された1次巻線と、PHY23に接続された2次巻線とを有する。パルストランス22cは、1次巻線側である入力側と2次巻線側である出力側とを電気的に絶縁する。
 パルストランス22dは、コネクタ21に接続された1次巻線と、PHY23に接続された2次巻線とを有する。パルストランス22dは、1次巻線側である入力側と2次巻線側である出力側とを電気的に絶縁する。
 PHY23は、通信信号が入力される通信インタフェースである。
 絶縁AC/DCコンバータ24は、入力されたパルス電圧を直流電圧に変換して出力する絶縁型のコンバータである。絶縁AC/DCコンバータ24は、例えば図1に示すように、一対の入力端子241,242、フライバックトランス243、整流ダイオード244、出力コンデンサ245及び一対の出力端子246,247を有している。
 フライバックトランス243は、1次巻線及び2次巻線を有する。フライバックトランス243は、1次巻線側である入力側と2次巻線側である出力側とを電気的に絶縁する。1次巻線は、一端が入力端子241に接続され、他端が入力端子242に接続されている。2次巻線は、一端が整流ダイオード244のアノードに接続され、他端が出力端子247に接続されている。
 整流ダイオード244は、カソードが出力端子246に接続されている。
 出力コンデンサ245は、一端が整流ダイオード244のカソードに接続され、他端が当該2次巻線の他端に接続されている。
 この整流ダイオード244及び出力コンデンサ245により、パルストランス22a,22bにより出力されたパルス電圧が直流電圧に変換される。
 シリーズレギュレータ25は、絶縁AC/DCコンバータ24の一対の出力端子246,247に接続され、入力されたパルス電圧を降圧する。このシリーズレギュレータ25により、絶縁AC/DCコンバータ24により出力されたパルス電圧が安定化される。なお、シリーズレギュレータ25は、必須の構成ではなく、電圧精度が求められない場合には電力伝送システムから取除いてもよい。
 次に、この発明の実施の形態1に係る電力伝送システムの動作例について説明する。
 送信装置1では、絶縁DC/ACコンバータ12が、直流電源11により出力された直流電圧を元にパルス電圧を生成して出力する。また、絶縁DC/ACコンバータ12が有する一対の出力端子125,126のうち、出力端子125はパルストランス14bが有する2次巻線の中点に接続され、出力端子126はパルストランス14aが有する2次巻線の中点に接続されている。これにより、2本のツイストペアワイヤ31a,31bの中点電位間にパルス電位差が発生し、イーサネットケーブル3を用いた電力伝送が実現される。
 また、受信装置2では、絶縁AC/DCコンバータ24が、ツイストペアワイヤ31a,31bにより伝送されたパルス電圧をパルストランス22a,22bを介して受信し、直流電圧に変換する。その後、この直流電圧は、シリーズレギュレータ25により安定化された後、後段の回路へ供給される。
 一方、PHY13により出力された通信信号も、パルストランス14,22及びイーサネットケーブル3を介してPHY23に伝送される。ここで、通信信号は差動信号であり、差動信号では、中点電位が変動しても原理上その変動がキャンセルされる。よって、パルス電圧の伝送は、通信信号の品質には影響しない。
 なお、パルス電圧及び通信信号が伝送される線路間に配線長差があると、パルス電圧の伝送による中点電位の変動がコモンモードノイズに変換され、通信信号の品質に悪影響を与え得る。
 そのため、絶縁DC/ACコンバータ12により出力されるパルス電圧の周波数帯域幅は、通信信号の周波数帯域幅と重ならないようにする必要がある。パルス電圧の周波数帯域幅をFwとし、パルス電圧の立上がり時間をTrとし、立下がり時間をTfとすると、Tr≦Tfの場合にはFw=0.35/Trとなり、Tr>Tfの場合にはFw=0.35/Tfとなる。よって、絶縁DC/ACコンバータ12が、パルス電圧の立上がり時間及び立下がり時間をある程度長くすることで、パルス電圧の周波数帯域幅が通信信号の周波数帯域幅と重複することを避けられる。これは、スイッチングトランジスタ124の上昇時間及び下降時間を調整することで実現できる。一例として、スイッチングトランジスタ124に容量成分を付加することで上昇時間及び下降時間を遅くできる。
 なお、受信装置2から出力される直流電圧の値は、パルス電圧の周波数(スイッチングトランジスタ124におけるスイッチング周波数)及びデューティ比により決まる。実施の形態1に係る電力伝送システムでは、受信装置2から出力される直流電圧の値を送信装置1にフィードバックしてスイッチングトランジスタ124を制御することはできない。一方、電圧精度が求められる場合には、シリーズレギュレータ25を用いることで、精度の高い直流電圧を生成できる。
 以上のように、この実施の形態1によれば、送信装置1が、通信信号を出力するPHY13と、PHY13に接続された1次巻線を有するとともに、ツイストペアワイヤ31bの一端が接続される2次巻線を有するパルストランス14bと、PHY13に接続された1次巻線を有するとともに、ツイストペアワイヤ31aの一端が接続される2次巻線を有するパルストランス14aと、一方がパルストランス14bが有する2次巻線の中点に接続され、他方がパルストランス14aが有する2次巻線の中点に接続された一対の出力端子125,126を有し、直流電圧をパルス電圧に変換して出力する絶縁DC/ACコンバータ12とを備え、受信装置2が、ツイストペアワイヤ31bの他端が接続される1次巻線を有するとともに、2次巻線を有するパルストランス22bと、ツイストペアワイヤ31aの他端が接続される1次巻線を有するとともに、2次巻線を有するパルストランス22aと、パルストランス22bが有する2次巻線及びパルストランス22aが有する2次巻線が接続され、通信信号が入力されるPHY23と、一方がパルストランス22bが有する1次巻線の中点に接続され、他方がパルストランス22aが有する1次巻線の中点に接続された一対の入力端子241,242を有し、入力されたパルス電圧を直流電圧に変換する絶縁AC/DCコンバータ24とを備えた。したがって、PSEコントローラによるPDコントローラの検出、PDコントローラの分類、及びPDコントローラへの電力供給の管理といった複雑な制御を行うことなく、すなわち、PSEコントローラ及びPDコントローラを用いずに、通信線を用いた電力伝送が可能となる。よって、従来構成に対し、簡易的な回路構成で電力伝送システムを構成でき、低コスト化が実現できる。
 なお上記では、通信ケーブルとして従来のPoEで使用されているイーサネットケーブル3を用いて電力伝送を行う場合を示した。しかしながら、これに限らず、通信ケーブルとして、汎用的なケーブル又は同軸ケーブル等を用いてもよく、上記と同様の効果が得られる。
実施の形態2.
 図2はこの発明の実施の形態2に係る電力伝送システムの構成例を示す模式的な回路図である。この図2に示す実施の形態2に係る電力伝送システムでは、図1に示す実施の形態1に係る電力伝送システムに対し、シリーズレギュレータ25を取除き、スイッチングトランジスタ124をコンバータ回路127に変更し、フライバックトランス243をフライバックトランス243bに変更し、整流ダイオード244、出力コンデンサ245及び出力端子246,247を複数系統設け、パルストランス128、一対の入力端子129,130及び一対の出力端子248,249を追加している。図2に示す実施の形態2に係る電力伝送システムにおけるその他の構成は図1に示す実施の形態1に係る電力伝送システムと同様であり、同一の符号を付して異なる部分についてのみ説明を行う。図2では、2系統の整流ダイオード244、出力コンデンサ245及び出力端子246,247を示し、系統毎に対応した接尾記号(-1,-2)を付加して示している。
 コンバータ回路127は、スイッチングトランジスタ124が有する機能に加え、入力された参照電圧に基づいて、生成するパルス電圧の周波数(スイッチング周波数)及びデューティ比を制御する機能を有する。このコンバータ回路127としては市販品を用いることができる。
 パルストランス128は、1次巻線及び2次巻線を有する。パルストランス128は、1次巻線側である入力側と2次巻線側である出力側とを電気的に絶縁する。1次巻線は、一端が入力端子129を介してパルストランス14dが有する2次巻線の中点に接続され、他端が入力端子130を介してパルストランス14cが有する2次巻線の中点に接続されている。また、2次巻線は、一端がコンバータ回路127に接続され、他端がGNDに接続されている。
 フライバックトランス243bは、1次巻線、複数系統の2次巻線、及び3次巻線を有する。フライバックトランス243bは、1次巻線側である入力側と2次巻線である出力側と3次巻線側である出力側とを電気的に絶縁する。図2に示すフライバックトランス243bでは、2系統の2次巻線を有している。1次巻線は、一端が入力端子241に接続され、他端が入力端子242に接続されている。2次巻線は、一端が対応する系統の整流ダイオード244のアノードに接続され、他端が対応する系統の出力端子247に接続されている。3次巻線は、一端が出力端子248を介してパルストランス22dの1次巻線の中点に接続され、他端が出力端子249を介してパルストランス22cの1次巻線の中点に接続されている。
 なお、各系統の整流ダイオード244及び出力コンデンサ245は、パルストランス22a,22bにより出力されたパルス電圧を互いに異なる直流電圧に変換する。
 次に、この発明の実施の形態2に係る電力伝送システムの動作について説明する。
 送信装置1では、絶縁DC/ACコンバータ12が、直流電源11により出力された直流電圧を元にパルス電圧を生成して出力する。また、絶縁DC/ACコンバータ12が有する一対の出力端子125,126のうち、出力端子125はパルストランス14bが有する2次巻線の中点に接続され、出力端子126はパルストランス14aが有する2次巻線の中点に接続されている。これにより、2本のツイストペアワイヤ31a,31bの中点電位間にパルス電位差が発生し、イーサネットケーブル3を用いた電力伝送が実現される。
 また、受信装置2では、絶縁AC/DCコンバータ24が、ツイストペアワイヤ31a,31bにより伝送されたパルス電圧をパルストランス22a,22bを介して受信し、直流電圧に変換する。
 ここで、フライバックトランス243bの2次巻線は複数巻線となっており、図2では2系統の2次巻線により2種類のパルス電圧が発生する。この2種類のパルス電圧はそれぞれ異なる直流電圧に変換され、後段の回路へ供給される。また、2次巻線の巻線を追加することで、受信装置2で出力できる直流電圧の種類を増やすことができる。
 また、フライバックトランス243bは3次巻線を有している。この3次巻線は、一端がパルストランス22dが有する1次巻線の中点に接続され、他端がパルストランス22cが有する1次巻線の中点に接続されている。これにより、2本のツイストペアワイヤ31c,31dの中点電位間に、フライバックトランス243bに印加されたパルス電圧の値をモニタするための参照電位差が発生し、ツイストペアワイヤ31c,31dにより伝送された参照電圧がパルストランス128を介してコンバータ回路127にフィードバックされる。
 絶縁AC/DCコンバータ24により出力される直流電圧の値は、コンバータ回路127によって参照電圧に基づきパルス電圧の周波数及びデューティ比が調整されることで制御される。これにより、絶縁AC/DCコンバータ24から精度の高い直流電圧を出力できる。
 以上のように、この実施の形態2によれば、絶縁DC/ACコンバータ12は、絶縁AC/DCコンバータ24に入力されたパルス電圧に基づいて、出力するパルス電圧の周波数及びデューティ比を制御するように構成されているので、実施の形態1における効果に加え、シリーズレギュレータ25を用いずに、精度の高い直流電圧を出力できる。
 なお上記では、フライバックトランス243bの2次巻線を複数系統設け、絶縁AC/DCコンバータ24が、入力されたパルス電圧を複数の直流電圧に変換する場合を示した。しかしながら、これに限らず、フライバックトランス243bの2次巻線は単一としてもよい。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明に係る電力伝送システムは、PSEコントローラ及びPDコントローラを用いずに、通信線を用いた電力伝送が可能となり、通信線を用いて電力を伝送する電力伝送システム等に用いるのに適している。
 1 送信装置、2 受信装置、3 イーサネットケーブル、11 直流電源、12 絶縁DC/ACコンバータ(第1コンバータ)、13 PHY(第1通信部)、14 パルストランス、15 コネクタ、21 コネクタ、22 パルストランス、23 PHY(第2通信部)、24 絶縁AC/DCコンバータ(整流回路、第1コンバータ)、25 シリーズレギュレータ、31 ツイストペアワイヤ(通信線)、121,122 入力端子、123 パルストランス、124 スイッチングトランジスタ、125,126 出力端子、127 コンバータ回路、128 パルストランス、241,242 入力端子、243,243b フライバックトランス、244 整流ダイオード、245 出力コンデンサ、246,247 出力端子。

Claims (6)

  1.  送信装置及び受信装置を備え、
     前記送信装置は、
     通信信号を出力する第1通信部と、
     前記第1通信部に接続された第1の1次巻線を有するとともに、第1通信線の一端が接続される第1の2次巻線を有する第1パルストランスと、
     前記第1通信部に接続された第2の1次巻線を有するとともに、第2通信線の一端が接続される第2の2次巻線を有する第2パルストランスと、
     一方が前記第1の2次巻線の中点に接続され、他方が前記第2の2次巻線の中点に接続された一対の出力端子を有し、直流電圧をパルス電圧に変換して出力する絶縁型の第1コンバータとを備え、
     前記受信装置は、
     前記第1通信線の他端が接続される第3の1次巻線を有するとともに、第3の2次巻線を有する第3パルストランスと、
     前記第2通信線の他端が接続される第4の1次巻線を有するとともに、第4の2次巻線を有する第4パルストランスと、
     前記第3の2次巻線及び前記第4の2次巻線が接続され、通信信号が入力される第2通信部と、
     一方が前記第3の1次巻線の中点に接続され、他方が前記第4の1次巻線の中点に接続された一対の入力端子を有し、入力されたパルス電圧を直流電圧に変換する絶縁型の第2コンバータとを備えた
     ことを特徴とする電力伝送システム。
  2.  前記第1コンバータは、出力するパルス電圧の周波数帯域幅が前記第1通信部により出力される通信信号の周波数帯域幅と重ならないように、当該パルス電圧の立上がり時間及び立下がり時間が調整された
     ことを特徴とする請求項1記載の電力伝送システム。
  3.  前記第1コンバータは、前記第2コンバータに入力されたパルス電圧に基づいて、出力するパルス電圧の周波数及びデューティ比を制御する
     ことを特徴とする請求項1記載の電力伝送システム。
  4.  前記第2コンバータは、入力されたパルス電圧を複数の直流電圧に変換する
     ことを特徴とする請求項1記載の電力伝送システム。
  5.  通信信号を出力する第1通信部と、
     前記第1通信部に接続された第1の1次巻線を有するとともに、第1通信線の一端が接続される第1の2次巻線を有する第1パルストランスと、
     前記第1通信部に接続された第2の1次巻線を有するとともに、第2通信線の一端が接続される第2の2次巻線を有する第2パルストランスと、
     一方が前記第1の2次巻線の中点に接続され、他方が前記第2の2次巻線の中点に接続された一対の出力端子を有し、直流電圧をパルス電圧に変換して出力する絶縁型の第1コンバータと
     を備えた送信装置。
  6.  第1通信線の他端が接続される第3の1次巻線を有するとともに、第3の2次巻線を有する第3パルストランスと、
     第2通信線の他端が接続される第4の1次巻線を有するとともに、第4の2次巻線を有する第4パルストランスと、
     前記第3の2次巻線及び前記第4の2次巻線が接続され、通信信号が入力される第2通信部と、
     一方が前記第3の1次巻線の中点に接続され、他方が前記第4の1次巻線の中点に接続された一対の入力端子を有し、入力されたパルス電圧を直流電圧に変換する絶縁型の第2コンバータと
     を備えた受信装置。
PCT/JP2017/024497 2017-07-04 2017-07-04 電力伝送システム、送信装置及び受信装置 WO2019008671A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780092763.5A CN110832763A (zh) 2017-07-04 2017-07-04 电力传输系统、发送装置及接收装置
PCT/JP2017/024497 WO2019008671A1 (ja) 2017-07-04 2017-07-04 電力伝送システム、送信装置及び受信装置
DE112017007608.0T DE112017007608T5 (de) 2017-07-04 2017-07-04 Stromübertragungssystem, Übertragungsvorrichtung und Empfangsvorrichtung
JP2019528233A JP6625276B2 (ja) 2017-07-04 2017-07-04 電力伝送システム、送信装置及び受信装置
US16/609,856 US20200127863A1 (en) 2017-07-04 2017-07-04 Power transmission system, transmission device, and reception device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/024497 WO2019008671A1 (ja) 2017-07-04 2017-07-04 電力伝送システム、送信装置及び受信装置

Publications (1)

Publication Number Publication Date
WO2019008671A1 true WO2019008671A1 (ja) 2019-01-10

Family

ID=64949818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024497 WO2019008671A1 (ja) 2017-07-04 2017-07-04 電力伝送システム、送信装置及び受信装置

Country Status (5)

Country Link
US (1) US20200127863A1 (ja)
JP (1) JP6625276B2 (ja)
CN (1) CN110832763A (ja)
DE (1) DE112017007608T5 (ja)
WO (1) WO2019008671A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009118184A (ja) * 2007-11-06 2009-05-28 Canon Inc 通信装置、通信システム、及び通信方法
WO2012026300A1 (ja) * 2010-08-23 2012-03-01 日本電気株式会社 給電システム及び方法
JP2015126582A (ja) * 2013-12-26 2015-07-06 Necプラットフォームズ株式会社 給受電システムおよび給電機器、受電機器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8736102B1 (en) * 2010-10-07 2014-05-27 The Boeing Company Multifunctional power converter
CN202009229U (zh) * 2011-04-08 2011-10-12 瑞斯康达科技发展股份有限公司 以太网馈电端口组、防浪涌保护电路以及以太网馈电设备
FR2985586B1 (fr) * 2012-01-09 2014-03-07 Sagem Defense Securite Dispositif de connexion via une liaison ethernet de deux equipements et station d'accueil d'un de ces equipements
US9634844B2 (en) * 2014-01-30 2017-04-25 Linear Technology Corporation Detection scheme for four wire pair Power Over Ethernet system
US10389539B2 (en) * 2015-08-07 2019-08-20 Texas Instruments Incorporated Turn on method without power interruption redundant power over Ethernet systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009118184A (ja) * 2007-11-06 2009-05-28 Canon Inc 通信装置、通信システム、及び通信方法
WO2012026300A1 (ja) * 2010-08-23 2012-03-01 日本電気株式会社 給電システム及び方法
JP2015126582A (ja) * 2013-12-26 2015-07-06 Necプラットフォームズ株式会社 給受電システムおよび給電機器、受電機器

Also Published As

Publication number Publication date
CN110832763A (zh) 2020-02-21
US20200127863A1 (en) 2020-04-23
JP6625276B2 (ja) 2019-12-25
DE112017007608T5 (de) 2020-02-20
JPWO2019008671A1 (ja) 2020-02-06

Similar Documents

Publication Publication Date Title
US8004863B2 (en) Circuit device and method of providing feedback across an isolation barrier
US10431940B1 (en) Power receptacle with wireless control
US8232666B2 (en) External AC-DC coupling for communication interfaces
JP5725895B2 (ja) 給電システム
CN108476141B (zh) 以太网供电仪器、系统和方法
TW201513547A (zh) 電壓傳輸損耗補償電路、補償方法、控制晶片及開關電源
TWI590574B (zh) 電源供應裝置
US20070110026A1 (en) Systems and methods for dual power and data over a single cable
TWI693779B (zh) 使用霍爾效應感測器的開關模式功率轉換器及其方法
US8195965B2 (en) Compensation for high powered midspan power sourcing equipment
US7468567B1 (en) Power switching apparatus and network equipment
WO2021196677A1 (zh) 一种光网络单元及poe供电系统
CN114553011B (zh) 反激电源和充电器
AU2013265061B2 (en) An electrical system adapted to transfer data and power between devices on a network
JP6625276B2 (ja) 電力伝送システム、送信装置及び受信装置
TW202021249A (zh) 同步整流裝置
US5109391A (en) Unbalanced transmitter and receiver
KR102646067B1 (ko) 전자 장치, 그 제어 방법 및 디스플레이 장치
EP1647116A1 (de) Schaltungsanordnung mit zwei elektronischen drosseln je datenleitungspaar eines lokalen netzes
CN113872423A (zh) 保护电路、电源适配器及保护电路的控制方法
TWI547119B (zh) 電源轉換系統
CN115276413A (zh) 控制电路、电源模块和电子设备
JP2010172055A (ja) ガス検知器
KR100818734B1 (ko) 전력 변환기 일체형 통신 커넥터 및 전력전송 방법
CN114513114A (zh) 保护电路、电源适配器及保护控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916491

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019528233

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17916491

Country of ref document: EP

Kind code of ref document: A1