WO2021196677A1 - 一种光网络单元及poe供电系统 - Google Patents

一种光网络单元及poe供电系统 Download PDF

Info

Publication number
WO2021196677A1
WO2021196677A1 PCT/CN2020/132706 CN2020132706W WO2021196677A1 WO 2021196677 A1 WO2021196677 A1 WO 2021196677A1 CN 2020132706 W CN2020132706 W CN 2020132706W WO 2021196677 A1 WO2021196677 A1 WO 2021196677A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
poe
module
power supply
network unit
Prior art date
Application number
PCT/CN2020/132706
Other languages
English (en)
French (fr)
Inventor
李进波
王泽林
曾小飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20929598.9A priority Critical patent/EP4099629A4/en
Publication of WO2021196677A1 publication Critical patent/WO2021196677A1/zh
Priority to US17/937,038 priority patent/US20230024989A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/806Arrangements for feeding power
    • H04B10/808Electrical power feeding of an optical transmission system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1301Optical transmission, optical switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1308Power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13389LAN, internet

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to an optical network unit and a POE power supply system.
  • the embodiments of the present application provide an optical network unit and a POE power supply system, which can provide remote power supply to a POE terminal device.
  • the first aspect of the embodiments of the present application provides an optical network unit, including: a conductive connection terminal, a switch module, a network transformer, a first voltage conversion module, and a network port connector.
  • the conductive connection terminal is used to connect the PoE power supply device with Power over Ethernet. Specifically, the conductive connection terminal can be connected to the POE power supply device through a cable.
  • the conductive connection terminal is connected with the network transformer, and the network transformer is connected with the network port connector.
  • the network port connector is used to connect the POE terminal device. Specifically, the network port connector can be connected to the POE terminal device through a network cable.
  • the conductive connection terminal is also connected to the first voltage conversion module through the switch module, where the switch module may be a switch tube, and the first voltage conversion module may have various structures.
  • the switch module Before the handshake between the POE power supply device and the POE terminal device is completed, the switch module is in a disconnected state; after the POE power supply device and the POE terminal device have completed the handshake, the switch module is in a closed state.
  • the conductive connection terminal is connected to the POE power supply device and the POE terminal device, so as to realize the remote power supply of the POE power supply device to the POE terminal device; at the same time, the conductive connection terminal is also connected to the first voltage conversion module to provide light Other components inside the network unit supply power.
  • the embodiments of the present application provide the first implementation manner of the first aspect.
  • the switch module includes a first resistor, a second resistor, and a switch tube, where the switch tube may be a MOS tube.
  • the conductive connection terminal includes a positive terminal and a negative terminal.
  • the first terminal of the first resistor is connected to the positive terminal
  • the second terminal of the first resistor is connected to the first terminal of the second resistor
  • the second terminal of the second resistor is connected to the negative terminal
  • the first pole of the switch tube is connected with the negative terminal of the conductive connection terminal
  • the second pole of the switch tube is connected with the first terminal of the first voltage conversion module
  • the control pole of the switch tube is connected with the second end of the first resistor.
  • the second terminal of the first voltage conversion module is connected to the positive terminal.
  • the resistance of the first resistor and the second resistor so that the voltage of the control electrode of the switch tube is less than the threshold voltage before the handshake between the POE power supply device and the POE terminal device is completed.
  • the switch tube is turned off and the first voltage conversion module is turned off. Power; after the handshake between the POE power supply device and the POE terminal device is completed, the voltage of the control electrode of the switch tube is greater than or equal to the threshold voltage.
  • the switch tube is turned on, and the first voltage conversion module is energized to work.
  • the embodiment of the present application provides a feasible solution for the switch module.
  • the voltage of the control electrode of the switch tube is controlled by controlling the ratio of the resistance of the first resistor to the resistance of the second resistor.
  • an embodiment of the present application provides a second implementation manner of the first aspect.
  • the network transformer includes a first coil and a second coil.
  • the positive terminal of the conductive connection terminal may be connected to the center tap of the primary winding of the first coil, and the negative terminal of the conductive connection terminal may be connected to the center tap of the primary winding of the second coil.
  • the center tap of the secondary winding of the first coil is connected with the first end of the network port connector, and the center taps of the secondary winding of the second coil are all connected with the second end of the network port connector.
  • the embodiment of the present application provides a feasible solution for a network transformer.
  • an embodiment of the present application provides a third implementation manner of the first aspect.
  • the optical network unit further includes a control Module.
  • the first end of the control module is connected to the third end of the first voltage conversion module, that is, the control module is powered by the first voltage conversion module.
  • the second end of the control module is connected to the control electrode of the switch tube, and is used to control the voltage of the control electrode of the switch tube to be less than the threshold voltage when the POE terminal device is powered off.
  • the control module controls the voltage of the control electrode of the switch tube to be less than the threshold voltage, so that the switch tube is turned off, so as to avoid affecting the POE power supply device to detect the power failure of the POE terminal device.
  • the optical network unit further includes a first isolation module, where the first isolation module can have multiple structures, for example, Including optocoupler.
  • One end of the first isolation module is connected with the second end of the control module, and the other end is connected with the control pole of the switch tube.
  • the switch module and the control module are electrically isolated by the first isolation module.
  • the optical network unit further includes sampling The module and the second voltage conversion module, wherein the structure of the sampling module and the structure of the second voltage conversion module can be multiple.
  • the first terminal of the second voltage conversion module is connected to the second terminal of the switch tube, the second terminal of the second voltage conversion module is connected to the positive terminal, and the third terminal of the second voltage conversion module is connected to the first terminal of the sampling module;
  • the second end of the sampling module is connected to the positive end of the conductive connection terminal or the negative end of the conductive connection terminal, and the third end of the sampling module is connected to the network transformer;
  • the third end of the control module is connected to the fourth end of the sampling module for determining that the POE terminal device is powered down according to the signal from the fourth end of the sampling module.
  • the signal at the fourth end of the sampling module may include a current signal or a power signal. .
  • the embodiment of the application provides a feasible solution for determining the power failure of the POE terminal device, that is, the circuit signal between the conductive connection terminal and the network transformer is acquired through the sampling module, and the control module determines the power failure of the POE terminal device according to the circuit signal.
  • the optical network unit further includes a second isolation module, and the second isolation module can have multiple structures, such as It can also include optocouplers.
  • One end of the second isolation module is connected to the fourth end of the sampling module, and the other end of the second isolation module is connected to the third end of the control module.
  • sampling module and the control module are electrically isolated by the second isolation module.
  • an embodiment of the present application provides a seventh implementation manner of the first aspect.
  • the sampling module includes a sampling resistor and The sampling sub-module, wherein the structure of the sampling sub-module may be multiple, which is not limited in the embodiment of the present application.
  • the first end of the sampling resistor is connected to the positive end of the conductive connection terminal or the negative end of the conductive connection terminal, and the second end of the sampling resistor is connected to the network transformer.
  • the first end of the sampling sub-module is connected to the first end of the sampling resistor, and the second end of the sampling sub-module is connected to the second end of the sampling resistor, and is used for collecting circuit signals related to the sampling resistor.
  • the third end of the sampling submodule is connected to the third end of the second voltage conversion module, that is, the sampling submodule is powered by the second voltage conversion module.
  • the control module is used to determine that the POE terminal device is powered off according to the signal from the fourth end of the sampling submodule.
  • the embodiment of the present application provides a feasible solution for the sampling module.
  • the optical network unit further includes an energy storage module, and the energy storage module may be a capacitor.
  • the first end of the energy storage module is connected to the second end of the control module, and the second end of the energy storage module is grounded.
  • the photoelectric conversion module is used to connect with the optical line terminal, and is used to convert the optical signal from the optical line terminal into an electrical signal.
  • the photoelectric conversion module is connected with the control module, and the control module is connected with the network transformer.
  • the first voltage conversion module is connected to the control module.
  • control module processes the electrical signal, and sends the processed electrical signal to the network port connector through the network transformer, so as to transmit the electrical signal to the POE terminal device.
  • the second aspect of the embodiments of the present application provides a POE power supply system, including a POE power supply device and an optical network unit as in any of the foregoing embodiments.
  • the POE terminal device supplies power to the POE terminal device through the optical network unit.
  • the embodiments of the present application provide the first implementation manner of the second aspect.
  • the POE power supply system further includes an optical line terminal;
  • the optical line terminal can be connected to the photoelectric conversion module in the optical network unit through an optical fiber.
  • the optical line terminal transmits a signal to the POE terminal device through the optical network unit.
  • the embodiments of the present application provide the first implementation manner of the second aspect.
  • the optical line terminal is connected to the input end of the POE power supply device through an optical fiber.
  • the output end of the POE power supply device is connected to the optical network unit through a photoelectric hybrid cable.
  • the optical fiber in the photoelectric hybrid cable is connected with the photoelectric conversion module of the optical network unit.
  • the cable in the photoelectric hybrid cable is connected to the conductive connection terminal of the optical network unit.
  • the optical line terminal is connected to the POE power supply device through an optical fiber
  • the POE power supply device is connected to the optical network unit through a photoelectric hybrid cable, so that the POE power supply device transmits signals to the POE terminal device and supplies power to the POE terminal device.
  • the conductive connection terminal is used to connect the PoE power supply device of Power over Ethernet, the conductive connection terminal is connected to the network transformer, the network transformer is connected to the network port connector, and the network port connector is used to connect the POE terminal device, so that the POE power supply device can be connected to the POE terminal device.
  • the conductive connection terminal is also connected to the first voltage conversion module through the switch module, which can realize the power supply of the POE power supply device to the optical network unit; the switch module is in the disconnected state before the POE power supply device and the POE terminal device have completed the handshake , So as to prevent the optical network unit from affecting the handshake process between the POE power supply device and the POE terminal device; after the POE power supply device and the POE terminal device have completed the handshake, the switch module is in the closed state, so that the power supply to the POE terminal device can be realized; therefore, ,
  • the optical network unit can realize power supply to the POE terminal equipment, and because the optical network unit is also powered by the POE power supply device, no local power is required, that is, the distance between the optical network unit and the POE power supply device is not limited, so The optical network unit can be installed closer to the POE terminal device to achieve remote power supply to the POE terminal device.
  • FIG. 1 is a schematic diagram of the architecture of a communication system in an embodiment of the application
  • FIG. 2 is a schematic structural diagram of a first embodiment of an optical network unit in an embodiment of the application
  • FIG. 3 is a schematic structural diagram of a second embodiment of an optical network unit in an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of a third embodiment of an optical network unit in an embodiment of this application.
  • Fig. 6 is a schematic structural diagram of a first embodiment of a POE power supply system in an embodiment of the application
  • Fig. 7 is a schematic structural diagram of a first embodiment of a POE power supply system in an embodiment of the application.
  • the embodiments of the present application provide an optical network unit and a POE power supply system, which can provide remote power supply to a POE terminal device.
  • the POE terminal device includes a network port connector and a powered device (PD) chip.
  • the network port connector is connected to the PD chip.
  • the network port connector can be connected to the PD chip through a network transformer.
  • the first end of the relay device is connected to the optical fiber, and the second end of the relay device is connected to the network port connector of the POE terminal device through a network cable; the relay device transmits signals to the POE terminal device through the network cable and supplies power to the POE terminal device. Since the longer the network cable, the greater the loss and the greater the signal interference. Therefore, in order to ensure a higher signal transmission rate, the length of the network cable between the relay device and the POE terminal device should not be too long, that is, the extended distance is limited. Based on this, if the relay device obtains power locally, the remote power supply to the POE terminal device cannot be realized.
  • the embodiments of the present application provide an optical network unit as a relay device.
  • One end of the optical network unit is connected to a POE power supply device through a cable, and the other end is connected to a POE terminal device through a network cable to realize power supply to the POE terminal device; and, The optical network unit is also powered by the POE power supply device. Based on the unlimited distance between the optical network unit and the POE power supply device, the optical network unit can be installed closer to the POE terminal device to realize the Remote power supply.
  • the POE terminal equipment may include a variety of terminal equipment such as wireless access points (Access Point, AP), cameras, traffic lights, and remote radio units (pRRU).
  • AP wireless access points
  • PRRRU remote radio units
  • FIG. 2 is a schematic structural diagram of an embodiment of an optical network unit in an embodiment of the present application.
  • the embodiment of the present application provides an embodiment of an optical network unit, including: a conductive connection terminal 10, a switch module 40, a network transformer 20, a first voltage conversion module 50 and a network port connector 30.
  • the conductive connection terminal 10 is used to connect to a power-over-Ethernet POE power supply device, where the POE power supply device refers to a power supply device based on the POE protocol.
  • the conductive connection terminal 10 can be connected to a POE power supply device through a cable; for example, the conductive connection terminal 10 can include a positive terminal 11 and a negative terminal 12. It is understood that the positive terminal 11 of the conductive connection terminal 10 can pass through the positive terminal in the cable.
  • the power cord is connected to the positive terminal of the POE power supply device, and the negative terminal 12 of the conductive connection terminal 10 can be connected to the negative terminal of the POE power supply device through the negative power cord in the cable.
  • the conductive connection terminal 10 is connected to the network transformer 20.
  • the network transformer 20 There may be multiple structures of the network transformer 20, and correspondingly, there may also be multiple ways of connecting the conductive connecting terminal 10 and the network transformer 20, which will be described in detail below.
  • the network transformer 20 includes a first coil 21 and a second coil 22; wherein the first coil 21 and the second coil 22 can be integrated into one module, or they can be separately deployed in two modules .
  • the first coil 21 may surround a magnetic ring or a magnetic column.
  • the second coil 22 can be installed in multiple ways, which are not specifically limited in the embodiment of the present application; for example, the second coil 22 can be wrapped around a magnetic ring or a magnetic column.
  • the positive terminal 11 of the conductive connection terminal 10 can be connected to the center tap of the primary winding of the first coil 21, and the negative terminal 12 of the conductive connection terminal 10 can be connected to the center tap of the primary winding of the second coil 22.
  • the network transformer 20 is connected to the network port connector 30.
  • the center tap of the secondary winding of the first coil 21 is connected to the first end of the network port connector 30, and the second coil 22 The center taps of the secondary windings are all connected to the second end of the network port connector 30.
  • the network port connector 30 is used to connect a POE terminal device, where the POE terminal device refers to a power receiving device powered by the POE protocol.
  • the network port connector 30 of the optical network unit can be connected to the POE terminal device through a network cable.
  • the power supply process of the POE power supply device to the POE terminal device may include a power-on process and a power-off process. Let's first introduce the power-on process.
  • the power-on process may include: the POE power supply device first detects a POE terminal device with PD characteristics, and then shakes hands with the POE terminal device based on the POE protocol.
  • the handshake process can be regarded as a process in which the POE power supply device gradually increases the power supply voltage, so that the voltage of the POE terminal device starts from 0, undergoes one or more changes, and finally rises to the preset voltage V1. It should be noted that the embodiment of the present application does not specifically limit the number of changes in the voltage of the POE terminal device and the amplitude of each change, and can be adjusted according to actual needs.
  • curve 1 represents the change process of the voltage of the POE terminal device during the handshake process. Based on curve 1, it can be seen that the voltage of the POE terminal device first rises from 0 to 8V and then to 18V. After the handshake is completed, the voltage of the POE terminal device stabilizes to 48V.
  • the conductive connection terminal 10 is also connected to the first voltage conversion module 50 through the switch module 40.
  • the structure of the switch module 40 can be various, which is not limited in the embodiment of the present application. 3 The structure of the switch module 40 is specifically introduced.
  • the first voltage conversion module 50 is used to convert the supply voltage into an internal voltage to supply power to the components inside the optical network unit; wherein, the first voltage conversion module 50 may include one or more output terminals, when the first voltage conversion module 50 When multiple output terminals are included, the first voltage conversion module 50 can output multiple voltages.
  • the POE protocol itself determines the detection process of the POE power supply device to the POE terminal device, and the handshake process between the POE power supply device and the POE terminal device is one-to-one, that is, a POE power supply device can only detect one
  • the POE terminal device can only perform handshake with one POE terminal device; in the embodiment of this application, since the POE power supply device supplies power to the optical network unit in addition to powering the POE terminal device, in order to avoid affecting the POE power supply device’s ability to POE
  • the detection process of the terminal device and the handshake process between the POE power supply device and the POE terminal device are examples of the POE power supply device.
  • the switch module 40 is in the off state, and the first voltage conversion module 50 is in the power off state , So that the detection process of the POE power supply device to the POE terminal device, and the handshake process between the POE power supply device and the POE terminal device can be performed normally.
  • the switch module 40 is in the closed state, and the first voltage conversion module 50 is in the power-on state, so that the POE power supply device supplies power to the POE terminal device and at the same time provides the internal components of the optical network unit. powered by.
  • the curve 2 in Fig. 4 represents the change process of the input voltage of the first voltage conversion module 50; based on the curve 2, it can be seen that before the POE power supply device and the POE terminal device have completed the handshake, the first voltage conversion module The voltage at the input terminal 50 is 0; after the handshake between the POE power supply device and the POE terminal device is completed, the voltage at the input terminal of the first voltage conversion module 50 is V2.
  • the switch module 40 before the handshake between the POE power supply device and the POE terminal device is completed, the switch module 40 is in a disconnected state, so that the handshake process between the POE power supply device and the POE terminal device can proceed normally; After the terminal device handshake is completed, the POE power supply device can supply power to the POE terminal device, and the switch module 40 is in the closed state, and the POE power supply device can also supply power to the optical network unit.
  • the POE power supply device can supply power to the optical network unit through the cable, the distance between the optical network unit and the POE power supply device is not limited, and the optical network unit can be installed closer to the POE terminal device, thereby realizing Remote power supply for POE terminal equipment.
  • the switch module 40 includes a first resistor R1, a second resistor R2, and a switch tube, where the switch tube may be a MOS tube; the conductive connection terminal 10 includes a positive terminal and a negative terminal.
  • the first terminal A of the first resistor R1 is connected to the positive terminal 11 of the conductive connection terminal 10
  • the second terminal B of the first resistor R1 is connected to the first terminal C of the second resistor R2
  • the second terminal D of the second resistor R2 It is connected to the negative terminal 12 of the conductive connection terminal 10.
  • the first pole E of the switch tube is connected to the negative terminal 12 of the conductive connection terminal 10
  • the second pole F of the switch tube is connected to the first terminal 51 of the first voltage conversion module 50
  • the control pole G of the switch tube is connected to the first resistor R1.
  • the second terminal B of the switch is connected; where, if the switch is MOS off, the first pole E of the switch can be the source, and the second pole F of the switch can be the drain.
  • the second terminal 52 of the first voltage conversion module 50 is connected to the positive terminal 11 of the conductive connection terminal 10.
  • the voltage across the first resistor R1 and the second resistor R2 is equal to the voltage between the positive terminal 11 of the conductive connection terminal 10 and the negative terminal 12 of the conductive connection terminal 10, and the control electrode G of the switch tube It is connected to the second terminal B of the first resistor R1, so the voltage of the control electrode G of the switch tube during the handshake process can be controlled by controlling the ratio of the first resistor R1 and the second resistor R2.
  • the voltage of the control electrode G of the switch tube is less than the threshold voltage, so that the switch tube is turned off; at this time, the first voltage conversion module 50 is in the power-off state, so the POE power supply device cannot To supply power to other components in the optical network unit, the handshake between the POE power supply device and the POE terminal device can proceed normally.
  • the voltage of the control electrode G of the switch tube is greater than or equal to the threshold voltage, so that the switch tube is turned on.
  • the first voltage conversion module 50 is in a power-on state, and the POE power supply device may be an optical network The components in the unit are powered.
  • the voltage of the control electrode G of the switch tube is less than the threshold voltage before the POE power supply device and the POE terminal device are shaken, thereby ensuring the POE
  • the handshake between the power supply equipment and the POE terminal equipment can be carried out normally; after the handshake between the POE power supply equipment and the POE terminal equipment is completed, the voltage of the control electrode G of the switch tube is greater than or equal to the threshold voltage to realize the POE power supply equipment to supply power to the POE terminal equipment At the same time, it also supplies power to the optical network unit.
  • the power-off process may include: the POE power supply device first detects the power failure of the POE terminal device, and then gradually reduces the power supply voltage to zero.
  • the power failure of the POE terminal device can have many situations, for example, the network cable between the optical network unit and the POE terminal device is disconnected.
  • the process of the POE power supply device detecting the power failure of the POE terminal device also needs to be one-to-one, so in the case of a power failure of the POE terminal device, the switch module in the optical network unit needs to be controlled 40 is disconnected to ensure that the POE power supply device can detect the power failure of the POE terminal device.
  • the optical network unit further includes a control module 60, which is used to control the switch module 40 to switch off the POE terminal device.
  • the switch module 40 is controlled to be turned off.
  • the first terminal 61 of the control module 60 is connected to the third terminal 53 of the first voltage conversion module 50, that is, the first voltage conversion module 50 connects the positive terminal 11 of the conductive connection terminal 10 with the negative terminal 12 of the conductive connection terminal 10 The voltage therebetween is converted into the required voltage of the control module 60 to supply power to the control module 60.
  • the second end 62 of the control module 60 is connected to the control electrode G of the switch tube, and is used to control the voltage of the control electrode G of the switch tube to be less than the threshold voltage when the POE terminal device is powered off, so that the switch tube is turned off.
  • the first voltage conversion module 50 is powered off. It can be seen from the curve 2 in FIG. 4 that the voltage of the first voltage conversion module 50 drops to 0 after the POE terminal device is powered off; at this time, the POE power supply device stops contacting the optical network unit
  • the POE power supply device can perform one-to-one detection on the POE terminal device to determine the power failure of the POE terminal device.
  • the control module 60 needs to control the switch module 40 to turn off when the POE terminal device is powered off, so the control module 60 needs to first determine that the POE terminal device is powered off. There are many methods for the control module 60 to determine that the POE terminal device is powered off. For example, if there is signal transmission between the control module 60 and the POE terminal device, when the signal transmission is interrupted, the control module 60 can determine that the POE terminal device is powered off.
  • the sampling module 70 can sample the circuit between the conductive connection terminal 10 and the network transformer 20, and then control the module 60 According to the sampling result, it is determined that the POE terminal equipment is powered off.
  • the optical network unit further includes a sampling module 70 and a second voltage conversion module 80.
  • the first terminal 81 of the second voltage conversion module 80 is connected to the second pole F of the switch tube, the second terminal 82 of the second voltage conversion module 80 is connected to the positive terminal 11 of the wire connection terminal, and the first terminal of the second voltage conversion module 80 is connected to the positive terminal 11 of the wire connecting terminal.
  • the three ends 83 are connected to the first end 71 of the sampling module 70.
  • the second voltage conversion module 80 is connected in parallel with the first voltage conversion module 50, and the second voltage conversion module 80 is used to convert the voltage between the positive terminal 11 of the wire connection terminal and the negative terminal 12 of the wire connection terminal into The input voltage of the sampling module 70 is used to supply power to the sampling module 70.
  • the second terminal 72 of the sampling module 70 is connected to the positive terminal 11 of the conductive connection terminal 10 or the negative terminal 12 of the conductive connection terminal 10, and the third terminal 73 of the sampling module 70 is connected to the network transformer 20.
  • the second end 72 of the sampling module 70 is connected to the positive terminal 11 of the conductive connection terminal 10
  • the sampling module 70 is connected to the center tap of the primary winding of the first coil 21 in the network transformer 20.
  • the third terminal 63 of the control module 60 is connected to the fourth terminal 74 of the sampling module 70, and is used to determine that the POE terminal device is powered off according to the signal from the fourth terminal 74 of the sampling module 70.
  • the second end 72 of the sampling module 70 and the third end 73 of the sampling module 70 are used as two input terminals, which are respectively connected to the conductive connection terminal 10 and the network transformer 20 to collect the conductive connection terminal 10 and the network transformer.
  • the fourth terminal 74 of the sampling module 70 is used as an output terminal, and the circuit signal (ie sampling signal) between the conductive connection terminal 10 and the network transformer 20 is output to the control module 60, so that the control module 60 will The signal confirms that the POE terminal device is powered off.
  • sampling module 70 there may be multiple structures of the sampling module 70, which are not specifically limited in the embodiment of the present application.
  • the signal (ie, the sampling signal) at the fourth terminal 74 of the sampling module 70 may be a sampling current or a sampling power.
  • the control module 60 can determine that the POE terminal device is powered off according to the sampling signal. For example, assuming that the sampling signal is a sampling current, and based on the sampling current being lower than the preset current, the control module 60 can determine that the POE terminal device is powered off; suppose The sampling signal is the sampling power. Based on the sampling power being lower than the preset current, the control module 60 can determine that the POE terminal device is powered off.
  • the optical network unit in the embodiment of the present application may further include a second isolation module, and the second isolation module is provided at the fourth end 74 of the sampling module 70 and The third ends 63 of the control module 60 are used for electrical isolation; the second isolation module may also have multiple structures, which are not specifically limited in the embodiment of the present application, and may include, for example, an optocoupler.
  • the sampling module 70 can have various structures.
  • the sampling module 70 will be described in detail below with reference to FIG. 5.
  • the sampling module 70 includes a sampling resistor R3 and a sampling sub-module.
  • the first terminal 705 of the sampling resistor R3 is connected to the positive terminal 11 of the conductive connection terminal 10 or the negative terminal 12 of the conductive connection terminal 10, and the second terminal 706 of the sampling resistor R3 is connected to the network transformer 20.
  • the first end 705 of the sampling resistor R3 is connected to the positive terminal 11 of the conductive connection terminal 10
  • the second end 706 of the sampling resistor R3 is connected to the center tap of the primary winding of the first coil 21 in the network transformer 20.
  • the first end 701 of the sampling sub-module is connected to the first end 705 of the sampling resistor R3, and the second end 702 of the sampling sub-module is connected to the second end 706 of the sampling resistor R3.
  • the first end 701 of the module and the second end 702 of the sampling sub-module) are connected in parallel on both sides of the sampling resistor R3, so the sampling sub-module can obtain the voltage across the sampling resistor R3 according to the voltage across the sampling resistor R3 and the resistance of the sampling resistor R3. The value can determine the current flowing through the sampling resistor R3.
  • the third end 703 of the sampling sub-module is connected to the third end 83 of the second voltage conversion module 80, that is, the second voltage conversion module 80 is powered.
  • the fourth terminal 704 of the sampling submodule is used as an output terminal and is connected to the third terminal 63 of the control module 60; among them, based on the above description, the fourth terminal 704 of the sampling submodule can be connected to the third terminal 63 of the control module 60.
  • a second isolation module is provided, and the second isolation module may be an optocoupler.
  • the control module 60 is configured to determine that the POE terminal device is powered off according to the signal from the fourth terminal 704 of the sampling submodule.
  • the signal of the fourth terminal 704 of the sampling sub-module may be the current flowing through the sampling resistor R3 (ie, the sampling current), or the power of the sampling resistor R3 (ie, the sampling power).
  • the method for the control module 60 to determine the power failure of the POE terminal device according to the signal of the fourth terminal 704 of the sampling submodule is similar to the method for the control module 60 to determine the power failure of the POE terminal device according to the signal of the fourth terminal of the sample module.
  • the control module 60 to determine the power failure of the POE terminal device according to the signal of the fourth terminal of the sample module is similar to the method for the control module 60 to determine the power failure of the POE terminal device according to the signal of the fourth terminal of the sample module.
  • the control module 60 controls the voltage of the control electrode G of the switching tube to be less than the threshold voltage, so that the switching tube is turned off; if the switching tube is turned off, the first voltage conversion module 50 When the power is off, the control module 60 is also powered off, so the control module 60 cannot maintain the voltage of the control electrode G of the switch tube within a range less than the threshold voltage.
  • the power supply voltage of the POE power supply device remains unchanged before the end of the process of the POE power supply device detecting the power failure of the POE terminal device; so in the control module 60 After the control switch tube is turned off, under the action of the power supply voltage, the voltage of the control electrode G of the switch tube will be greater than or equal to the threshold voltage, that is, the switch tube will be turned on again, which will affect the one-to-one detection of the POE power supply equipment The POE terminal device is powered off.
  • the optical network unit further includes an energy storage module 90.
  • the first end 91 of the energy storage module 90 is connected to the second end 62 of the control module 60, and the second end 92 of the energy storage module 90 is grounded.
  • the energy storage module 90 can have a variety of options, such as a capacitor.
  • the control module 60 controls the voltage of the control electrode G of the switch tube to be less than the threshold voltage, so that the switch tube is turned off, and the control module 60 is powered off; the control module 60 is powered off Then, the energy storage module 90 is used to maintain the voltage of the control electrode G of the switch tube within the range of less than the threshold voltage, so that the switch tube is always in the off state, so as to ensure that the POE power supply device has enough time to detect the POE terminal device Power down.
  • the structure related to power supply in the optical network unit is introduced above, and the structure related to signal transmission in the optical network unit is introduced below.
  • the optical network unit further includes a control module 60 and a photoelectric conversion module 100;
  • the photoelectric conversion module 100 is connected to the control module 60, and is used for processing electrical signals from the photoelectric conversion module 100;
  • the control module 60 is also connected to the network transformer 20, and the control module 60 sends the processed electrical signal to the network transformer 20, and finally sends it to the POE terminal device through the network port connector 30.
  • control module 60 can be connected to both ends of the primary winding of the first coil 21, and both ends of the primary winding of the second coil 22 connect.
  • the photoelectric conversion module 100 converts the optical signal in the optical fiber into an electrical signal.
  • the control module 60 sends the electrical signal to the POE terminal device through the network transformer 20 and the network port connector 30 , So as to realize the optical fiber communication of POE terminal equipment.
  • optical network unit is introduced above, and the POE power supply system including the optical network unit is introduced below.
  • an embodiment of the present application provides an embodiment of a POE power supply system, including a POE power supply device 2 and the optical network unit 1 in any of the foregoing embodiments.
  • the POE power supply device 2 is connected to the conductive connection terminal 10 in the optical network unit 1; for example, the POE power supply device 2 may be connected to the conductive connection terminal 10 in the optical network unit 1 through a cable.
  • the POE power supply system further includes an optical line terminal 2.
  • the optical line terminal 2 is connected to the photoelectric conversion module 100 in the optical network unit 1; for example, the optical line terminal 2 may be connected to the photoelectric conversion module 100 in the optical network unit 1 through an optical fiber.
  • optical network unit 1 is connected to cables and optical fibers, both the conductive connection terminal 10 and the photoelectric conversion module 100 need to be arranged outside the optical network unit 1; in addition, the optical network unit 1 can be provided with one for An interface for connecting the photoelectric hybrid cable, which can introduce the optical fibers and cables in the photoelectric hybrid cable into the optical network unit 1 and respectively connect with the photoelectric conversion module 100 and the conductive connection terminal 10 in the optical network unit 1.
  • the optical line terminal 2 is connected to the input end of the POE power supply device 2 through an optical fiber;
  • the optical fiber in the photoelectric hybrid cable is connected to the photoelectric conversion module 100 of the optical network unit 1; the cable in the photoelectric hybrid cable is connected to the conductive connection terminal 10 of the optical network unit 1.
  • the optical line terminal 2 is not directly connected to the optical network unit 1 through an optical fiber, but is connected to the input end of the POE power supply device 2 through an optical fiber; the output end of the POE power supply device 2 is then connected to the optical
  • the network unit 1 is connected to realize the transmission and power supply of optical signals through the optical-electric hybrid cable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例公开了一种光网络单元及POE供电系统,用于对POE终端设备进行拉远供电。本申请实施例的光网络单元包括:导电连接端子、开关模块、网络变压器、第一电压转换模块和网口连接器;导电连接端子用于连接以太网供电POE供电设备;导电连接端子与网络变压器连接;网络变压器与网口连接器连接;网口连接器用于连接POE终端设备;导电连接端子还通过开关模块与第一电压转换模块连接;在POE供电设备与POE终端设备握手完成前,开关模块处于断开状态;在POE供电设备与POE终端设备握手完成后,开关模块处于闭合状态,为POE终端设备供电,同时为光网络单元供电。

Description

一种光网络单元及POE供电系统
本申请要求于2020年4月3日提交中国国家知识产权局、申请号为202010262558.2、发明名称为“一种光网络单元及POE供电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种光网络单元及POE供电系统。
背景技术
随着第五代通信技术及下一代固定网络的发展,光纤通信已成为主流。然而,目前很多以太网供电POE终端设备上仅设置有网口连接器,不设置有通信接口,因此不能直接与光纤连接。
为了实现POE终端设备的光纤通信,往往需要添加中继设备,该中继设备与光纤连接,并通过网口与POE终端设备连接。
然而,现有的中继设备往往是本地取电,所以无法实现POE终端设备的拉远供电。
发明内容
本申请实施例提供了一种光网络单元及POE供电系统,能够对POE终端设备进行拉远供电。
本申请实施例第一方面提供了一种光网络单元,包括:导电连接端子、开关模块、网络变压器、第一电压转换模块和网口连接器。
导电连接端子用于连接以太网供电POE供电设备,具体地,导电连接端子可以通过电缆与POE供电设备。
导电连接端子与网络变压器连接,网络变压器与网口连接器连接。
网口连接器用于连接POE终端设备,具体地,网口连接器可以通过网线与POE终端设备连接。
导电连接端子还通过开关模块与第一电压转换模块连接,其中开关模块可以为开关管,第一电压转换模块的结构可以有多种。
在POE供电设备与POE终端设备握手完成前,开关模块处于断开状态;在POE供电设备与POE终端设备握手完成后,开关模块处于闭合状态。
在本申请实施例中,导电连接端子连接POE供电设备和POE终端设备,从而实现POE供电设备对POE终端设备的拉远供电;同时,导电连接端子还与第一电压转换模块连接,以对光网络单元内部的其他元器件进行供电。
基于第一方面,本申请实施例提供了第一方面的第一种实施方式,在该实施方式中,开关模块包括第一电阻、第二电阻和开关管,其中开关管可以为MOS管。
导电连接端子包括正极端和负极端。
第一电阻的第一端与正极端连接,第一电阻的第二端与第二电阻的第一端连接,第二电阻的第二端与负极端连接。
开关管的第一极与导电连接端子的负极端连接,开关管的第二极与第一电压转换模块 的第一端连接,开关管的控制极与第一电阻的第二端连接。
第一电压转换模块的第二端与正极端连接。
合理选择第一电阻和第二电阻的阻值,使得POE供电设备与POE终端设备握手完成前,开关管的控制极的电压小于阈值电压,此时,开关管关断,第一电压转换模块断电;POE供电设备与POE终端设备握手完成后,开关管的控制极的电压大于或等于阈值电压,此时,开关管导通,第一电压转换模块通电工作。
本申请实施例提供了开关模块的一种可行方案,在该方案中,通过控制第一电阻的阻值与第二电阻的阻值的比例,来控制开关管的控制极的电压。
基于第一方面的第一种实施方式,本申请实施例提供了第一方面的第二种实施方式,在该实施方式中,网络变压器包括第一线圈和第二线圈。
导电连接端子的正极端可以与第一线圈的一次侧绕组的中心抽头连接,导电连接端子的负极端可以与第二线圈的一次侧绕组的中心抽头连接。
第一线圈的二次侧绕组的中心抽头与网口连接器的第一端连接,第二线圈的二次侧绕组的中心抽头均与网口连接器的第二端连接。
本申请实施例提供了网络变压器的一种可行方案。
基于第一方面的第一种实施方式,或第一方面的第二种实施方式,本申请实施例提供了第一方面的第三种实施方式,在该实施方式中,光网络单元还包括控制模块。
控制模块的第一端与第一电压转换模块的第三端连接,即控制模块由第一电压转换模块供电。
控制模块的第二端与开关管的控制极连接,用于在POE终端设备掉电的情况下控制开关管的控制极的电压小于阈值电压。
在POE终端设备掉电的情况下,控制模块控制开关管的控制极的电压小于阈值电压,使得开关管关断,从而避免影响POE供电设备检测POE终端设备掉电。
基于第一方面的第三种实施方式,本申请实施例提供了第一方面的第四种实施方式,光网络单元还包括第一隔离模块,其中第一隔离模块可以有多种结构,例如可以包括光耦。
第一隔离模块一端与控制模块的第二端连接,另一端与开关管的控制极连接。
在该实施方式中,通过第一隔离模块对开关模块与控制模块进行电气隔离。
基于第一方面的第三种实施方式,或第一方面的第四种实施方式,本申请实施例提供了第一方面的第五种实施方式,在该实施方式中,光网络单元还包括采样模块和第二电压转换模块,其中采样模块的结构和第二电压转换模块的结构均可以有多种。
第二电压转换模块的第一端与开关管的第二极连接,第二电压转换模块的第二端与正极端连接,第二电压转换模块的第三端与采样模块的第一端连接;
采样模块的第二端与导电连接端子的正极端或导电连接端子的负极端连接,采样模块的第三端与网络变压器连接;
控制模块的第三端与采样模块的第四端连接,用于根据采样模块的第四端的信号确定POE终端设备掉电,其中采样模块的第四端的信号可以包括电流信号,也可以包括功率信 号。
本申请实施例提供了一种确定POE终端设备掉电的可行方案,即通过采样模块获取导电连接端子与网络变压器之间的电路信号,控制模块根据该电路信号确定POE终端设备掉电。
基于第一方面的第五种实施方式,本申请实施例提供了第一方面的第六种实施方式,光网络单元还包括第二隔离模块,其中第二隔离模块的结构可以有多种,例如也可以包括光耦。
第二隔离模块的一端与采样模块的第四端连接,第二隔离模块的另一端与控制模块的第三端连接。
在该实施方式中,通过第二隔离模块对采样模块与控制模块进行电气隔离。
基于第一方面的第五种实施方式,或第一方面的第六种实施方式,本申请实施例提供了第一方面的第七种实施方式,在该实施方式中,采样模块包括采样电阻和采样子模块,其中,采样子模块的结构可以有多种,本申请实施例对此不做限定。
采样电阻的第一端与导电连接端子的正极端或导电连接端子的负极端连接,采样电阻的第二端与网络变压器连接。
采样子模块的第一端与采样电阻的第一端连接,采样子模块的第二端与采样电阻的第二端连接,用于采集与采样电阻相关的电路信号。
采样子模块的第三端与第二电压转换模块的第三端连接,即采样子模块通过第二电压转换模块供电。
采样子模块的第四端与控制模块的第三端连接,用于将采样信号传输给控制模块。
控制模块用于根据采样子模块的第四端的信号确定POE终端设备掉电。
本申请实施例提供了采样模块的一种可行方案。
基于第一方面的第三种实施方式,或第一方面的第四种实施方式,或第一方面的第五种实施方式,或第一方面的第六种实施方式,或第一方面的第七种实施方式,本申请实施例提供了第一方面的第八种实施方式,在该实施方式中,光网络单元还包括储能模块,该储能模块可以为电容。
储能模块的第一端与控制模块的第二端连接,储能模块的第二端接地。
在该实施方式中,储能模块用于在POE终端设备掉电的情况下,将开关管的控制极的电压维持在小于阈值电压的范围内,从而保证POE供电设备有足够的时间检测出POE终端设备掉电。
基于第一方面,或第一方面的第一种实施方式,或第一方面的第二种实施方式,或第一方面的第三种实施方式,或第一方面的第四种实施方式,或第一方面的第五种实施方式,或第一方面的第六种实施方式,或第一方面的第七种实施方式,或第一方面的第八种实施方式,本申请实施例提供了第一方面的第九种实施方式,在该实施方式中,光网络单元还包括控制模块和光电转换模块。
光电转换模块用于与光线路终端连接,用于将来自光线路终端的光信号转换为电信号。
光电转换模块与控制模块连接,控制模块与网络变压器连接。
第一电压转换模块与控制模块连接。
在该实施方式中,控制模块对电信号进行处理,并将处理后的电信号通过网络变压器发送给网口连接器,以将电信号传输给POE终端设备。
本申请实施例第二方面提供了一种POE供电系统,包括POE供电设备和如前述任一实施方式中的光网络单元。
POE供电设备与光网络单元中的导电连接端子连接。
在本申请实施例中,POE终端设备通过光网络单元为POE终端设备供电。
基于第二方面,本申请实施例提供了第二方面的第一种实施方式,在该实施方式中,POE供电系统还包括光线路终端;
光线路终端可以通过光纤与光网络单元中的光电转换模块连接。
在本申请实施例中,光线路终端通过光网络单元向POE终端设备传输信号。
基于第二方面,本申请实施例提供了第二方面的第一种实施方式,在该实施方式中,光线路终端通过光纤与POE供电设备的输入端连接。
POE供电设备的输出端通过光电混合缆与光网络单元连接。
光电混合缆中的光纤与光网络单元的光电转换模块连接。
光电混合缆中的电缆与光网络单元的导电连接端子连接。
在本申请实施例中,光线路终端通过光纤与POE供电设备连接,POE供电设备通过光电混合缆与光网络单元连接,从而通过POE供电设备向POE终端设备传输信号以及为POE终端设备供电。
从以上技术方案可以看出,本申请实施例具有以下优点:
导电连接端子用于连接以太网供电POE供电设备,导电连接端子与网络变压器连接,网络变压器与网口连接器连接,网口连接器用于连接POE终端设备,从而可以实现POE供电设备对POE终端设备的供电;导电连接端子还通过开关模块与第一电压转换模块连接,从而可以实现POE供电设备对光网络单元内部的供电;在POE供电设备与POE终端设备握手完成前,开关模块处于断开状态,从而可以避免光网络单元影响POE供电设备与POE终端设备之间的握手过程;在POE供电设备与POE终端设备握手完成后,开关模块处于闭合状态,从而可以实现对POE终端设备的供电;因此,该光网络单元能够实现对POE终端设备的供电,并且,由于光网络单元也由POE供电设备供电,不需要本地取电,即光网络单元与POE供电设备之间的距离不受限制,所以光网络单元可以安装在距离POE终端设备较近的位置,以实现对POE终端设备的拉远供电。
附图说明
图1为本申请实施例中通信系统的架构示意图;
图2为本申请实施例中光网络单元的第一实施例的结构示意图;
图3为本申请实施例中光网络单元的第二实施例的结构示意图;
图4为本申请实施例中的电压变化示意图;
图5为本申请实施例中光网络单元的第三实施例的结构示意图;
图6为本申请实施例中POE供电系统的第一实施例的结构示意图;
图7为本申请实施例中POE供电系统的第一实施例的结构示意图。
具体实施方式
本申请实施例提供了一种光网络单元及POE供电系统,能够对POE终端设备进行拉远供电。
本申请实施例可以应用于图1所示的通信系统中。该系统包括中继设备和以太网供电POE终端设备。
POE终端设备包括网口连接器和受电设备(Powered device,PD)芯片,其中网口连接器与PD芯片连接,示例性地,网口连接器可以通过网络变压器与PD芯片连接。
中继设备的第一端与光纤连接,中继设备的第二端通过网线与POE终端设备的网口连接器连接;中继设备通过网线与POE终端设备传输信号,并为POE终端设备供电。由于网线越长,损耗越大,信号的干扰也越大,所以为了保证较高的信号传输速率,中继设备与POE终端设备之间的网线长度不宜过长,即拉远距离受限。基于此,若中继设备通过本地取电,则无法实现对POE终端设备的拉远供电。
因此,本申请实施例提供一种光网络单元作为中继设备,光网络单元一端通过电缆与POE供电设备连接,另一端通过网线与POE终端设备连接,以实现对POE终端设备的供电;并且,该光网络单元也由POE供电设备供电,基于光网络单元与POE供电设备之间的距离不受限制,所以光网络单元可以安装在距离POE终端设备较近的位置,以实现对POE终端设备的拉远供电。
在图1所示的通信系统中,POE终端设备可以包括无线接入点(Access Point,AP)、摄像头、交通信号灯、射频拉远单元(pRRU)等多种终端设备。
下面对光网络单元的结构进行具体介绍。请参阅图2,本申请实施例中光网络单元的一个实施例的结构示意图。如图2所示,本申请实施例提供了光网络单元的一个实施例,包括:导电连接端子10、开关模块40、网络变压器20、第一电压转换模块50和网口连接器30。
导电连接端子10用于连接以太网供电POE供电设备,其中POE供电设备是指基于POE协议的供电设备。
导电连接端子10可以通过电缆与POE供电设备连接;示例性地,导电连接端子10可以包括正极端11和负极端12,可以理解的是,导电连接端子10的正极端11可以通过电缆中的正极电源线与POE供电设备的正极端连接,导电连接端子10的负极端12可以通过电缆中的负极电源线与POE供电设备的负极端连接。
导电连接端子10与网络变压器20连接。网络变压器20的结构可以有多种,相应地,导电连接端子10与网络变压器20的连接方式也可以有多种,下面对此进行具体说明。
示例性地,如图3所示,网络变压器20包括第一线圈21和第二线圈22;其中,第一线圈21与第二线圈22可以集成为一个模块,也可以分别部署在两个模块中。
第一线圈21的安装方式可以有多种,本申请实施例对此不做具体限定;例如,第一线圈21可以环绕在磁环上,也可以环绕在磁柱上。
同样地,第二线圈22的安装方式也可以有多种,本申请实施例对此不做具体限定;例如,第二线圈22可以环绕在磁环上,也可以环绕在磁柱上。
导电连接端子10的正极端11可以与第一线圈21的一次侧绕组的中心抽头连接,导电连接端子10的负极端12可以与第二线圈22的一次侧绕组的中心抽头连接。
网络变压器20与网口连接器30连接。
示例性地,以包括第一线圈21和第二线圈22的网络变压器20为例,第一线圈21的二次侧绕组的中心抽头与网口连接器30的第一端连接,第二线圈22的二次侧绕组的中心抽头均与网口连接器30的第二端连接。
网口连接器30用于连接POE终端设备,其中POE终端设备是指基于POE协议供电的受电设备。
光网络单元的网口连接器30可以通过网线与POE终端设备连接。
基于前述说明可知,在本申请实施例中,POE供电设备、导电连接端子10、网络变压器20、网口连接器30以及POE终端设备依次连接,从而能够实现POE供电设备对POE终端设备的供电。
POE供电设备对POE终端设备的供电过程可以包括上电过程和下电过程。下面先介绍上电过程。
具体地,上电过程可以包括:POE供电设备先检测到具备PD特征的POE终端设备,然后基于POE协议与POE终端设备握手。其中,握手的过程可以看成POE供电设备逐渐升高供电电压,使得POE终端设备的电压从0开始,经过一次或多次变化,最终升高至预设电压V1的过程。需要说明的是,本申请实施例对POE终端设备的电压的变化次数以及每次变化的幅度不做具体限定,可以根据实际需要进行调整。
以图4为例,在图4中,曲线1表示握手过程中POE终端设备的电压的变化过程。基于曲线1可以看出,POE终端设备的电压从0开始先升高至8V,然后升高至18V,当握手完成后,POE终端设备的电压稳定为48V。
导电连接端子10除了与网络变压器20连接外,还通过开关模块40与第一电压转换模块50连接,其中开关模块40的结构可以有多种,本申请实施例对此不做限定,此后结合图3对开关模块40的结构进行具体介绍。
第一电压转换模块50用于将供电电压转换为内部电压,以为光网络单元内部的元器件供电;其中,第一电压转换模块50可以包括一个或多个输出端,当第一电压转换模块50包括多个输出端时,第一电压转换模块50可以输出多种电压。
需要说明的是,POE协议本身决定了POE供电设备对POE终端设备的检测过程,以及POE供电设备与POE终端设备之间的握手过程都是一对一的,即一个POE供电设备只能检测一个POE终端设备,也只能与一个POE终端设备进行握手;在本申请实施例中,由于POE供电设备除了为POE终端设备供电外,还为光网络单元供电,所以为了避免影响POE供电设备对POE终端设备的检测过程,以及POE供电设备与POE终端设备之间的握手过程,在 POE供电设备与POE终端设备握手完成前,开关模块40处于断开状态,第一电压转换模块50处于断电状态,使得POE供电设备对POE终端设备的检测过程,以及POE供电设备与POE终端设备之间的握手过程可以正常进行。
在POE供电设备与POE终端设备握手完成后,开关模块40处于闭合状态,第一电压转换模块50处于通电状态,使得POE供电设备为POE终端设备供电的同时,也为光网络单元内部的元器件供电。
如图4所示,图4中的曲线2表示第一电压转换模块50的输入电压的变化过程;基于曲线2可以看出,在POE供电设备与POE终端设备握手完成前,第一电压转换模块50输入端的电压为0;在POE供电设备与POE终端设备握手完成后,第一电压转换模块50输入端的电压为V2。
在本申请实施例中,在POE供电设备与POE终端设备握手完成前,开关模块40处于断开状态,使得POE供电设备与POE终端设备之间的握手过程可以正常进行;在POE供电设备与POE终端设备握手完成后,可以实现POE供电设备对POE终端设备的供电,并且开关模块40处于闭合状态,还可以实现POE供电设备对光网络单元的供电。
又由于POE供电设备可以通过电缆为光网络单元供电,所以光网络单元与POE供电设备之间的距离不受限制,光网络单元便可以安装在距离POE终端设备较近的位置,从而可以实现对POE终端设备的拉远供电。
下面结合图3对开关模块40的结构进行介绍。如图3所示,开关模块40包括第一电阻R1、第二电阻R2和开关管,其中开关管可以为MOS管;导电连接端子10包括正极端和负极端。
第一电阻R1的第一端A与导电连接端子10的正极端11连接,第一电阻R1的第二端B与第二电阻R2的第一端C连接,第二电阻R2的第二端D与导电连接端子10的负极端12连接。
开关管的第一极E与导电连接端子10的负极端12连接,开关管的第二极F与第一电压转换模块50的第一端51连接,开关管的控制极G与第一电阻R1的第二端B连接;其中,若开关管为MOS关,则开关管的第一极E可以为源极,开关管的第二极F可以为漏极。
第一电压转换模块50的第二端52与导电连接端子10的正极端11连接。
基于上述连接关系可以看出,第一电阻R1和第二电阻R2两端的电压等于导电连接端子10的正极端11与导电连接端子10的负极端12之间的电压,而开关管的控制极G与第一电阻R1的第二端B连接,所以可以通过控制第一电阻R1和第二电阻R2的比例,来控制握手过程中开关管的控制极G的电压。
具体地,POE供电设备与POE终端设备握手完成前,开关管的控制极G的电压小于阈值电压,使得开关管关断;此时第一电压转换模块50处于断电状态,所以POE供电设备无法为光网络单元中的其他元器件供电,POE供电设备与POE终端设备之间的握手可以正常进行。
POE供电设备与POE终端设备握手完成后,开关管的控制极G的电压大于或等于阈值 电压,使得开关管导通,此时第一电压转换模块50处于通电状态,POE供电设备可以为光网络单元中的元器件供电。
在本申请实施例中,通过选择合适阻值的第一电阻R1和第二电阻R2,使得POE供电设备与POE终端设备握手完成前,开关管的控制极G的电压小于阈值电压,从而保证POE供电设备与POE终端设备之间的握手可以正常进行;POE供电设备与POE终端设备握手完成后,开关管的控制极G的电压大于或等于阈值电压,以实现POE供电设备为POE终端设备供电的同时,也为光网络单元供电。
与上电过程相反,下电过程可以包括:POE供电设备先检测POE终端设备掉电,然后将供电电压逐渐降为0。其中POE终端设备掉电可以有多种情况,例如光网络单元与POE终端设备之间的网线断开。
基于前面对POE协议的相关说明可知,POE供电设备检测POE终端设备掉电的过程也需要是一对一的,所以在POE终端设备掉电的情况下,需要控制光网络单元中的开关模块40断开,以保证POE供电设备能够检测出POE终端设备掉电。
为此,如图4所示,在本申请实施例提供的光网络单元的另一个实施例中,光网络单元还包括控制模块60,该控制模块60用于控制开关模块40在POE终端设备掉电的情况下控制开关模块40断开。
具体得,控制模块60的第一端61与第一电压转换模块50的第三端53连接,即第一电压转换模块50将导电连接端子10的正极端11和导电连接端子10的负极端12之间的电压转换为控制模块60的所需的电压,以为控制模块60供电。
控制模块60的第二端62与开关管的控制极G连接,用于在POE终端设备掉电的情况下控制开关管的控制极G的电压小于阈值电压,使得开关管关断,此时,第一电压转换模块50断电,从图4中的曲线2可以看出,第一电压转换模块50的电压在POE终端设备掉电后降为0;此时,POE供电设备停止对光网络单元的供电,POE供电设备可以对POE终端设备进行一对一检测,以确定POE终端设备掉电。
需要说明的是,由于开关模块40直接与导电连接端子10连接,而控制模块60通过第一电压转换模块50与导电连接端子10连接,所以控制模块60与开关模块40的电压等级不同。为此,本申请实施例中的光网络单元还可以包括第一隔离模块,第一隔离模块设置在控制模块60的第二端62与开关管的控制极G之间,第一隔离模块用于电气隔离。其中,第一隔离模块的结构可以有多种,本申请实施例对此不做具体限定,例如可以包括光耦。
基于上述说明可知,控制模块60需要在POE终端设备掉电的情况下控制开关模块40断开,所以控制模块60需要先确定POE终端设备掉电。其中,控制模块60确定POE终端设备掉电的方法有多种,例如,若控制模块60与POE终端设备之间存在信号传输,当信号传输中断时,控制模块60可以确定POE终端设备掉电。
再例如,由于导电连接端子10和网络变压器20之间的电性连接是为POE终端设备供电,所以可以通过采样模块70对导电连接端子10和网络变压器20之间的电路进行采样,然后控制模块60根据采样结果确定POE终端设备掉电。
具体地,如图3所示,在本申请实施例提供的光网络单元的另一个实施例中,光网络单元还包括采样模块70和第二电压转换模块80。
第二电压转换模块80的第一端81与开关管的第二极F连接,第二电压转换模块80的第二端82与导线连接端子的正极端11连接,第二电压转换模块80的第三端83与采样模块70的第一端71连接。
可以理解的是,第二电压转换模块80与第一电压转换模块50并联,第二电压转换模块80用于将导线连接端子的正极端11与导线连接端子的负极端12之间的电压转换为采样模块70的输入电压,以为采样模块70供电。
第二电压转换模块80的结构可以有多种,本申请实施例对此不做限定。
采样模块70的第二端72与导电连接端子10的正极端11或导电连接端子10的负极端12连接,采样模块70的第三端73与网络变压器20连接。其中,在图3中,采样模块70的第二端72与导电连接端子10的正极端11连接,采样模块70与网络变压器20中的第一线圈21一次侧绕组的中心抽头连接。
控制模块60的第三端63与采样模块70的第四端74连接,用于根据采样模块70的第四端74的信号确定POE终端设备掉电。
基于上述连接关系可知,采样模块70的第二端72和采样模块70的第三端73作为两个输入端,分别与导电连接端子10和网络变压器20连接,以采集导电连接端子10和网络变压器20之间的电路信号,采样模块70的第四端74作为输出端,将导电连接端子10和网络变压器20之间的电路信号(即采样信号)输出给控制模块60,使得控制模块60根据采样信号确定POE终端设备掉电。
需要说明的是,采样模块70的结构可以有多种,本申请实施例对此不做具体限定。
采样模块70的第四端74的信号(即采样信号)可以为采样电流,也可以为采样功率。
控制模块60根据该采样信号确定POE终端设备掉电的方法有多种,例如,假设采样信号为采样电流,基于采样电流低于预设电流,则控制模块60可以确定POE终端设备掉电;假设采样信号为采样功率,基于采样功率低于预设电流,则控制模块60可以确定POE终端设备掉电。
同样地,由于采样模块70也直接与导电连接端子10连接,所以本申请实施例中的光网路单元还可以包括第二隔离模块,第二隔离模块设置在采样模块70的第四端74与控制模块60的第三端63之间,用于电气隔离;其中,第二隔离模块的结构也可以有多种,本申请实施例对此不做具体限定,例如可以包括光耦。
基于上述说明可知,采样模块70的结构可以有多种,下面结合图5对采样模块70进行具体介绍。如图5所示,采样模块70包括采样电阻R3和采样子模块。
采样电阻R3的第一端705与导电连接端子10的正极端11或导电连接端子10的负极端12连接,采样电阻R3的第二端706与网络变压器20连接。在图5中,采样电阻R3的第一端705与导电连接端子10的正极端11连接,采样电阻R3的第二端706与网络变压器20中的第一线圈21一次侧绕组的中心抽头连接。
采样子模块的第一端701与采样电阻R3的第一端705连接,采样子模块的第二端702 与采样电阻R3的第二端706连接,即采样子模块的两个输入端(采样子模块的第一端701和采样子模块的第二端702)并联在采样电阻R3两侧,因此采样子模块可以获取采样电阻R3两端的电压,根据采样电阻R3两端的电压和采样电阻R3的阻值则可以确定流经采样电阻R3的电流。
采样子模块的第三端703与第二电压转换模块80的第三端83连接,即由第二电压转换模块80供电。
采样子模块的第四端704作为输出端,与控制模块60的第三端63连接;其中,基于上述说明可知,采样子模块的第四端704与控制模块60的第三端63之间可以设置有第二隔离模块,第二隔离模块可以为光耦。
控制模块60用于根据采样子模块的第四端704的信号确定POE终端设备掉电。
需要说明的的是,采样子模块的第四端704的信号可以是流经采样电阻R3的电流(即采样电流),也可以是采样电阻R3的功率(即采样功率)。
控制模块60根据采样子模块的第四端704的信号确定POE终端设备掉电的方法与控制模块60根据样模块的第四端的信号确定POE终端设备掉电的方法类似,具体可参阅前述实施例的相关描述进行理解。
基于前述说明可知,在POE终端设备掉电的情况下,控制模块60控制开关管的控制极G的电压小于阈值电压,使得开关管关断;若开关管关断,则第一电压转换模块50断电,因此控制模块60也断电,所以控制模块60不能将开关管的控制极G的电压维持在小于阈值电压的范围内。
由于POE供电设备检测POE终端设备掉电的过程需要一定的时间,所以在POE供电设备检测POE终端设备掉电这一过程结束前,POE供电设备的供电电压是保持不变的;所以在控制模块60控制开关管关断后,在供电电压的作用下,开关管的控制极G的电压又将大于或等于阈值电压,即开关管将重新导通,从而会影响POE供电设备一对一地检测POE终端设备掉电。
为此,在本申请实施例提供的光网络单元的另一个实施例中,光网络单元还包括储能模块90。
储能模块90的第一端91与控制模块60的第二端62连接,储能模块90的第二端92接地;其中,储能模块90可以有多种选择,例如可以包括电容。
在本申请实施例中,在POE终端设备掉电的情况下,控制模块60控制开关管的控制极G的电压小于阈值电压,使得开关管关断,控制模块60断电;控制模块60断电后,储能模块90用于将开关管的控制极G的电压维持在小于阈值电压的范围内,使得开关管始终处于关断的状态,以保证POE供电设备有足够的时间检测出POE终端设备掉电。
上面对光网络单元中与供电相关的结构进行了介绍,下面对光网络单元中与信号传输相关的结构进行介绍。
基于前述各个实施例,在本申请实施例提供的光网络单元的另一个实施例中,光网络单元还包括控制模块60和光电转换模块100;
光电转换模块100用于与光线路终端连接,具体地,光电转换模块100可以通过光纤 与光线路终端连接;其中,光电转换模块100用于将光信号转换为电信号。
光电转换模块100与控制模块60连接,用于对来自光电转换模块100的电信号进行处理;
控制模块60还与网络变压器20连接,控制模块60将处理后的电信号发送给网络变压器20,最终通过网口连接器30向POE终端设备发送。
示例性地,若网络变压器20包括第一线圈21和第二线圈22,则控制模块60可以与第一线圈21的一次侧绕组的两端连接,并且第二线圈22的一次侧绕组的两端连接。
第一电压转换模块50与控制模块60连接,由于前述实施例已对第一电压转换模块50与控制模块60间的连接关系进行了说明,故在此不做赘述。
需要说明的是,导电连接端子10和光电转换模块100可以设置在光网络单元外侧,分别用于连接电缆和光纤;导电连接端子10和光电转换模块100也可以设置在光网络单元内部,具体地,光网络单元还包括一个用于连接光电混合缆的接口,该接口可以将光电混合缆中的光纤和电缆引入到光网络单元内部,分别与光网络单元内部的光电转换模块100和导电连接端子10连接。
在本申请实施例中,光电转换模块100将光纤中的光信号转换成电信号,控制模块60对该电信号处理后,将电信号通过网络变压器20和网口连接器30发送至POE终端设备,从而实现POE终端设备的光纤通信。
上面对光网络单元进行了介绍,下面对包含光网络单元的POE供电系统进行介绍。
如图6所示,本申请实施例提供了一种POE供电系统的一个实施例,包括POE供电设备2和前述任一实施例中的光网络单元1。
POE供电设备2与光网络单元1中的导电连接端子10连接;示例性地,POE供电设备2可以通过电缆与光网络单元1中的导电连接端子10连接。
基于上述实施例,在本申请实施例提供的一种POE供电系统的另一个实施例中,POE供电系统还包括光线路终端2。
光线路终端2与光网络单元1中的光电转换模块100连接;示例性地,光线路终端2可以通过光纤与光网络单元1中的光电转换模块100连接。
需要说明的是,若光网络单元1分别连接电缆和光纤,则导电连接端子10和光电转换模块100均需设置在光网络单元1外侧;除此之外,光网络单元1可以设置一个用于连接光电混合缆的接口,该接口可以将光电混合缆中的光纤和电缆引入到光网络单元1内部,分别与光网络单元1内部的光电转换模块100和导电连接端子10连接。
具体地,如图7所示,基于上述实施例,在本申请实施例提供的一种POE供电系统的另一个实施例中,光线路终端2通过光纤与POE供电设备2的输入端连接;
POE供电设备2的输出端通过光电混合缆与光网络单元1连接,具体地,光网络单元1上设置有一接口,该接口可以连接光电混合缆,并将光纤混合缆中的光纤和电缆引入光网络单元1的内部。
在光网络单元1内部,光电混合缆中的光纤与光网络单元1的光电转换模块100连接;光电混合缆中的电缆与光网络单元1的导电连接端子10连接。
在本申请实施例中,光线路终端2不通过光纤直接与光网络单元1连接,而是通过光纤与POE供电设备2的输入端连接;POE供电设备2的输出端再通过光电混合缆与光网络单元1连接,从而通过光电混合缆实现光信号的传输和供电。
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)并不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”或“具有”及其任何变形,意图在于覆盖不排他的方案,例如,包括了一系列步骤或模块的过程、方法、装置、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、装置、产品或设备固有的其它步骤或模块。

Claims (10)

  1. 一种光网络单元,其特征在于,包括:导电连接端子、开关模块、网络变压器、第一电压转换模块和网口连接器;
    所述导电连接端子用于连接以太网供电POE供电设备;
    所述导电连接端子与所述网络变压器连接;
    所述网络变压器与所述网口连接器连接;
    所述网口连接器用于连接POE终端设备;
    所述导电连接端子还通过所述开关模块与所述第一电压转换模块连接;
    在所述POE供电设备与所述POE终端设备握手完成前,所述开关模块处于断开状态;
    在所述POE供电设备与所述POE终端设备握手完成后,所述开关模块处于闭合状态。
  2. 根据权利要求1所述的光网络单元,其特征在于,所述开关模块包括第一电阻、第二电阻和开关管;
    所述导电连接端子包括正极端和负极端;
    所述第一电阻的第一端与所述正极端连接,所述第一电阻的第二端与所述第二电阻的第一端连接,所述第二电阻的第二端与所述负极端连接;
    所述开关管的第一极与所述导电连接端子的负极端连接,所述开关管的第二极与所述第一电压转换模块的第一端连接,所述开关管的控制极与所述第一电阻的第二端连接;
    所述第一电压转换模块的第二端与所述正极端连接;
    所述POE供电设备与所述POE终端设备握手完成前,所述开关管的控制极的电压小于阈值电压;
    所述POE供电设备与所述POE终端设备握手完成后,所述开关管的控制极的电压大于或等于阈值电压。
  3. 根据权利要求2所述的光网络单元,其特征在于,所述光网络单元还包括控制模块;
    所述控制模块的第一端与所述第一电压转换模块的第三端连接;
    所述控制模块的第二端与所述开关管的控制极连接,用于在所述POE终端设备掉电的情况下控制所述开关管的控制极的电压小于阈值电压。
  4. 根据权利要求3所述的光网络单元,其特征在于,所述光网络单元还包括采样模块和第二电压转换模块;
    所述第二电压转换模块的第一端与所述开关管的第二极连接,所述第二电压转换模块的第二端与所述正极端连接,所述第二电压转换模块的第三端与所述采样模块的第一端连接;
    所述采样模块的第二端与所述导电连接端子的正极端或所述导电连接端子的负极端连接,所述采样模块的第三端与所述网络变压器连接;
    所述控制模块的第三端与所述采样模块的第四端连接,用于根据所述采样模块的第四端的信号确定所述POE终端设备掉电。
  5. 根据权利要求4所述的光网络单元,其特征在于,所述采样模块包括采样电阻和采样子模块;
    所述采样电阻的第一端与所述导电连接端子的正极端或所述导电连接端子的负极端连接,所述采样电阻的第二端与所述网络变压器连接;
    所述采样子模块的第一端与所述采样电阻的第一端连接,所述采样子模块的第二端与所述采样电阻的第二端连接;
    所述采样子模块的第三端与所述第二电压转换模块的第三端连接;
    所述采样子模块的第四端与所述控制模块的第三端连接;
    所述控制模块用于根据所述采样子模块的第四端的信号确定所述POE终端设备掉电。
  6. 根据权利要求3至5中任意一项所述的光网络单元,其特征在于,所述光网络单元还包括储能模块;
    所述储能模块的第一端与所述控制模块的第二端连接,所述储能模块的第二端接地。
  7. 根据权利要求1至6中任意一项所述的光网络单元,其特征在于,所述光网络单元还包括控制模块和光电转换模块;
    所述光电转换模块用于与光线路终端连接;
    所述光电转换模块与所述控制模块连接;
    所述控制模块与所述网络变压器连接;
    所述第一电压转换模块与所述控制模块连接。
  8. 一种POE供电系统,其特征在于,包括POE供电设备和如权利要求1至7中任意一项所述的光网络单元;
    所述POE供电设备与所述光网络单元中的导电连接端子连接。
  9. 根据权利要求8所述的POE供电系统,其特征在于,所述POE供电系统还包括光线路终端;
    所述光线路终端与所述光网络单元中的光电转换模块连接。
  10. 根据权利要求9所述的POE供电系统,其特征在于,所述光线路终端通过光纤与所述POE供电设备的输入端连接;
    所述POE供电设备的输出端通过光电混合缆与所述光网络单元连接;
    所述光电混合缆中的光纤与所述光网络单元的光电转换模块连接;
    所述光电混合缆中的电缆与所述光网络单元的导电连接端子连接。
PCT/CN2020/132706 2020-04-03 2020-11-30 一种光网络单元及poe供电系统 WO2021196677A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20929598.9A EP4099629A4 (en) 2020-04-03 2020-11-30 OPTICAL NETWORK UNIT AND POE POWER SYSTEM
US17/937,038 US20230024989A1 (en) 2020-04-03 2022-09-30 Optical Network Unit and POE Power Supply System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010262558.2 2020-04-03
CN202010262558.2A CN113497713B (zh) 2020-04-03 2020-04-03 一种光网络单元及poe供电系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/937,038 Continuation US20230024989A1 (en) 2020-04-03 2022-09-30 Optical Network Unit and POE Power Supply System

Publications (1)

Publication Number Publication Date
WO2021196677A1 true WO2021196677A1 (zh) 2021-10-07

Family

ID=77927536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132706 WO2021196677A1 (zh) 2020-04-03 2020-11-30 一种光网络单元及poe供电系统

Country Status (4)

Country Link
US (1) US20230024989A1 (zh)
EP (1) EP4099629A4 (zh)
CN (2) CN115766301A (zh)
WO (1) WO2021196677A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024041153A1 (zh) * 2022-08-24 2024-02-29 中兴通讯股份有限公司 光电混合分路器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115361067B (zh) * 2022-10-19 2023-03-03 北京翼辉信息技术有限公司 一种智能网络终端及其服务系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104579700A (zh) * 2014-12-12 2015-04-29 博为科技有限公司 一种智能光网络终端及光网络系统
CN105048439A (zh) * 2015-08-10 2015-11-11 福建星网锐捷网络有限公司 一种供电控制方法和装置
US20200067605A1 (en) * 2017-03-15 2020-02-27 Methode Electronics, Inc. Distribution point unit for high speed communications node

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10855381B2 (en) * 2013-09-19 2020-12-01 Radius Universal Llc Fiber optic communications and power network
US10277330B2 (en) * 2013-09-19 2019-04-30 Radius Universal Llc Fiber optic communications and power network
EP3723266A4 (en) * 2017-12-06 2021-01-06 Hangzhou Hikvision System Technology Co., Ltd. POWER SUPPLY CIRCUIT, RELAY DEVICE AND POWER OVER ETHERNET SYSTEM
CN109194492B (zh) * 2018-06-27 2020-09-18 华为技术有限公司 一种受电设备pd以及以太网供电poe系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104579700A (zh) * 2014-12-12 2015-04-29 博为科技有限公司 一种智能光网络终端及光网络系统
CN105048439A (zh) * 2015-08-10 2015-11-11 福建星网锐捷网络有限公司 一种供电控制方法和装置
US20200067605A1 (en) * 2017-03-15 2020-02-27 Methode Electronics, Inc. Distribution point unit for high speed communications node

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4099629A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024041153A1 (zh) * 2022-08-24 2024-02-29 中兴通讯股份有限公司 光电混合分路器

Also Published As

Publication number Publication date
CN113497713B (zh) 2022-11-18
EP4099629A1 (en) 2022-12-07
CN115766301A (zh) 2023-03-07
CN113497713A (zh) 2021-10-12
EP4099629A4 (en) 2023-07-19
US20230024989A1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
CN109150551B (zh) 用于网口的非标准poe供电电路、供电设备及供电方法
CN101124772B (zh) 具有用于确定通信电缆电阻的机构的通过通信电缆供电的系统
US8693497B2 (en) Long-reach ethernet system and relay
WO2021196677A1 (zh) 一种光网络单元及poe供电系统
US9184922B2 (en) Power-over-ethernet relay system, power injector and access bridge device
CN100471219C (zh) 适于由本地供电及通过链路接收远程馈电的终端
US11232922B2 (en) Power supply circuit, relay device and power over ethernet system
US20140129853A1 (en) Advertising power over ethernet (POE) capabilities among nodes in a POE system using type-length-value (TLV) structures
CN102648459B (zh) 用于连接自动化设备与计算机的通信转换器以及用于控制该通信转换器的方法
US20110254366A1 (en) Data transmission device
CN110289972B (zh) 一种基于以太网的网络设备及网络系统
CN112202571B (zh) 一种poe电源传输装置、poe交换机及poe系统
CN104793544A (zh) 一种以太网poe中双向供电系统
CN100508461C (zh) 两线制电缆供电装置、受电装置、系统和方法
KR20140123854A (ko) 직렬 연결된 전력선 통신 장치 및 방법
WO2021000460A1 (zh) 一种智能网关和智能家居系统
CN214376427U (zh) 总线阻抗匹配电路及总线系统
CN212255470U (zh) 断路器的电流分档采样电路、断路器、设备及物联网系统
CN107196770A (zh) 通过信号线进行供电的系统
CN220234702U (zh) 基于G.hn协议的供受电装置
CN114401161B (zh) 基于二总线的通讯优化设备、方法和通讯系统
CN208721750U (zh) 一种测试装置及以太网供电功能测试系统
CN220730800U (zh) 一种接口适配电路和装置
CN208820779U (zh) 一种船用总线隔离收发电路
WO2021212767A1 (zh) 一种通信方法、通信电路及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020929598

Country of ref document: EP

Effective date: 20220831

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 522440718

Country of ref document: SA