WO2019008656A1 - タービン翼及びタービン - Google Patents

タービン翼及びタービン Download PDF

Info

Publication number
WO2019008656A1
WO2019008656A1 PCT/JP2017/024441 JP2017024441W WO2019008656A1 WO 2019008656 A1 WO2019008656 A1 WO 2019008656A1 JP 2017024441 W JP2017024441 W JP 2017024441W WO 2019008656 A1 WO2019008656 A1 WO 2019008656A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
blade
turbine blade
hole
opening
Prior art date
Application number
PCT/JP2017/024441
Other languages
English (en)
French (fr)
Inventor
寿 松田
竜朗 内田
富永 純一
慎次 谷川
麻子 猪亦
大石 勉
秀幸 前田
悟 関根
Original Assignee
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝エネルギーシステムズ株式会社 filed Critical 東芝エネルギーシステムズ株式会社
Priority to PCT/JP2017/024441 priority Critical patent/WO2019008656A1/ja
Publication of WO2019008656A1 publication Critical patent/WO2019008656A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades

Definitions

  • Embodiments of the present invention relate to turbine blades and turbines.
  • the supercritical CO 2 cycle power generation system is a system which oxyfuels fuel and drives a turbine with high temperature and high pressure supercritical CO 2 .
  • This system has the feature of being able to recover high purity high pressure CO 2 without CCS (carbon dioxide capture and storage technology) while having the same power generation efficiency as the existing gas turbine combined cycle power generation system.
  • this system uses oxygen instead of air, it is a clean thermal power generation system without generation of nitrogen oxides.
  • fuel in addition to natural gas mainly composed of methane (CH 4 ), coal gasification gas can be applied.
  • the exhaust gases from the turbine (CO 2 and steam H 2 O) are cooled via a heat exchanger, separated by water and compressed by a high pressure pump.
  • Most of the CO 2 is circulated to the combustor, but the CO 2 generated by combustion can be recovered as it is under high pressure and high purity, and it can be transported by pipelines and stored underground, etc. (Enhanced Oil Recovery) can be injected into aging oil fields and used as CO 2 for petroleum production.
  • the turbine inlet pressure is about 20 times that of a conventional gas turbine, and the turbine inlet temperature is about 1000 ° C.
  • the heat transfer coefficient on the blade surface of the turbine blade is about 10 times that of the conventional gas turbine.
  • the decrease in efficiency due to the increase of the cooling medium is about 1.5 to 2.0 times larger than that of the existing combined cycle. Therefore, for the plant efficiency is to reduce consumption of the cooling CO 2 is essential.
  • Patent No. 4567206 gazette
  • a pore-type cooling passage is employed as the cooling passage in order to enhance the convective cooling effect.
  • the pore type cooling passage has a large pressure loss, and if the necessary refrigerant flow rate can not be secured, the blade surface temperature of the cooling blade rises to a certain temperature or more, resulting in a loss of the blade. Therefore, there is a need for a technology for providing a turbine blade and a turbine that secures a necessary coolant flow rate, effectively cools the turbine blade, and realizes a safe and highly efficient power generation system.
  • An object of the present invention is to provide a turbine blade and a turbine that can effectively cool the turbine blade and realize a safe and highly efficient power generation system.
  • the turbine blade according to the embodiment is formed inside the turbine blade, and has an inflow side opening and an outflow side opening, and a flow path formed between the inflow side opening and the outflow side opening.
  • a turbine blade including a cooling hole through which a cooling medium flows and a cavity for distributing the cooling medium into a plurality of cooling holes and flowing in the inlet side opening portion, It has an inclined part which consists of a curved surface which diameter-reduces gradually towards the channel part side, and the shape of the above-mentioned curved surface is convex in the section which met the above-mentioned cooling hole.
  • FIG. 10 is a cross-sectional view taken along line AA of FIG.
  • FIG. 10 is a cross-sectional view taken along a line BB in FIG.
  • FIG. 1 is a system diagram of a gas turbine installation 10 including a turbine provided with a turbine blade of the embodiment.
  • FIG. 1 shows the case where the present invention is applied to the gas turbine equipment 10 using a CO 2 turbine, the present invention is not limited to the CO 2 turbine, but is applied to other gas turbines and steam turbines. can do.
  • the oxygen and fuel is supplied to the combustor 20, combusted. Further, the combustor 20, carbon dioxide circulates as a working fluid is also introduced.
  • the flow rates of fuel and oxygen are adjusted, for example, to be in the stoichiometric mixing ratio (theoretical mixing ratio) in a state in which each of them is completely mixed.
  • the fuel for example, natural gas, hydrocarbons such as methane, coal gasification gas, etc. are used.
  • the combustion gas that has been subjected to expansion work in the turbine 21 passes through the heat exchanger 22 and further passes through the heat exchanger 23.
  • the water vapor condenses and becomes water. Water is discharged pipe 24 to the outside through.
  • the turbine 21, the generator 25 is connected.
  • the dry working gas (carbon dioxide) separated from the water vapor is pressurized by the compressor 26 to become a supercritical fluid.
  • the pressure of the dry working gas for example, of the order of 30 MPa.
  • a portion of the dry working gas boosted by the compressor 26 is heated in the heat exchanger 22 and supplied to the combustor 20 as a working fluid.
  • the dry working gas introduced into the combustor 20 is, for example, ejected from the upstream side of the combustor 20 to the combustion region together with the fuel and the oxidant, or after the combustor liner is cooled, the combustion region in the combustor liner from the dilution holes and the like. Is spouted downstream of the
  • a part of the dry working gas of the supercritical fluid is introduced into the turbine 21 as a cooling medium through a pipe branched from the middle of the flow path in the heat exchanger 22.
  • the temperature of the cooling medium is preferably, for example, about 350 ° C. to 550 ° C. because of the cooling effect and the thermal stress generated in the object to be cooled.
  • the remainder of the dry working gas boosted by the compressor 26 is discharged to the outside of the system.
  • the dry working gas discharged to the outside is recovered, for example, by a recovery device. Further, the dry working gas discharged to the outside can be used, for example, in EOR (Enhanced Oil Recovery) or the like used at oil mining sites.
  • EOR Enhanced Oil Recovery
  • carbon dioxide equivalent to the amount of carbon dioxide generated by burning fuel and oxygen in the combustor 20 is discharged to the outside of the system.
  • FIG. 2 is a view showing a part of a longitudinal cross section of the turbine 21.
  • a vane 31 is disposed inside the cylindrical casing 30.
  • a plurality of stator vanes 31 are arranged along the circumferential direction of the casing 30, and these stator vanes 31 constitute a stator vane cascade.
  • moving blades 34 are implanted in the circumferential direction on the rotor disk 33 of the turbine rotor 32 immediately downstream of the stationary blade cascade.
  • the moving blade cascade is arranged.
  • the stationary blade cascade and the moving blade cascade are alternately disposed along the axial direction of the turbine rotor 32.
  • One turbine stage is configured by the stationary blade cascade and the moving blade cascade directly downstream of the stationary blade cascade.
  • the outer periphery of the moving blade 34 is surrounded by, for example, a shroud segment 35.
  • the shroud segment 35 adjusts the gap with the tip of the moving blade 34 to maintain a proper gap.
  • the shroud segment 35 is supported by, for example, a vane 31 fixed to the casing 30.
  • a gap 36 is formed between the shroud segment 35 and the casing 30 in the circumferential direction.
  • annular combustion gas passage 37 having a stator blade row and a blade row is formed.
  • FIG. 3 is a perspective view schematically showing the outer shape of the moving blade 34 of the first embodiment.
  • FIG. 4 is a longitudinal sectional view of the moving blade 34 according to the embodiment.
  • the moving blade 34 has a blade effective portion 40, a snubber 41 provided on the outer peripheral side (radial direction outer side) of the blade effective portion 40, and an inner peripheral side of the blade effective portion 40 ( An inner ring side wall (platform) 42 provided on the inner side in the radial direction and an implantation portion 43 provided on the inner peripheral side of the inner ring side wall 42.
  • Effective blade portion 40 is a passage for the combustion gas passes.
  • the wing effective portion 40 is configured in a wing shape, for example, having a curved cross-sectional shape on the leading edge side (eg, the left side in FIG. 4) and a tapered cross-sectional shape on the trailing edge side (eg, the right side in FIG. ing.
  • a blade effective portion cooling hole 44 which is a flow path of a cooling medium is formed in the blade effective portion 40 along the blade height direction.
  • the cross-sectional shape of the blade effective portion cooling hole 44 is not particularly limited, it is, for example, a circular cross section.
  • the blade effective portion cooling holes 44 formed in the blade effective portion 40 include, for example, a leading edge side cooling hole 45 located on the leading edge side of the moving blade 34 and a central portion cooling hole 46 located in the central portion of the moving blade 34; It can be classified into a trailing edge cooling hole 47 located on the trailing edge side of the moving blade 34.
  • a center part of the wing effective part 40 the center of the camber line of the wing effective part 40, etc. are illustrated, for example.
  • the leading edge side refers to the leading edge side of the central portion of the wing effective portion 40
  • the trailing edge side refers to the trailing edge side of the central portion of the wing effective portion 40.
  • FIG. 4 shows an example in which a plurality of front edge side cooling holes 45, central part cooling holes 46 and rear edge side cooling holes 47 are formed.
  • a plurality of front edge side cooling holes 45, central portion cooling holes 46, and rear edge side cooling holes 47 are formed, for example, the following configuration can be made.
  • the front edge side cooling holes 45, the central portion cooling holes 46, and the rear edge side cooling holes 47 are formed at equal intervals, and the hole diameter of the front edge side cooling holes 45, the hole diameter of the central portion cooling holes 46, the rear edge side
  • the hole diameter of the cooling holes 47 is different depending on the difference in blade thickness at the portion where the cooling holes 47 are formed. That is, in this case, for example, a cooling hole with a large hole diameter is formed in the thick portion of the blade thickness, and a cooling hole with a small hole diameter is formed in the thin portion of the blade thickness.
  • three leading edge side cooling holes 45 and three central portion cooling holes 46 are formed in parallel with each other, and the hole diameter is the same.
  • Five trailing edge cooling holes 47 are formed in parallel with each other, and the hole diameter thereof is set smaller than the hole diameter of the leading edge cooling hole 45 and the central portion cooling hole 46.
  • a front edge side cavity 48 which is a flow path of the cooling medium is formed.
  • the leading edge side cooling holes 45 and the central portion cooling holes 46 are in communication with the leading edge side cavities 48, and the leading edge side cooling holes 45 and the central portion cooling holes 46 are in communication via the leading edge side cavities 48. ing.
  • the front edge side cavity 48 is a site where the cooling media flowing from the front edge side cooling holes 45 gather, and the cooling media once gathered gather into the central portion cooling holes 46 and flow in.
  • a trailing edge side cavity 49 to be a flow path of the cooling medium is formed on the inner peripheral side on the trailing edge side of the blade effective portion 40.
  • the central portion cooling holes 46 and the rear edge side cooling holes 47 are in communication with the rear edge side cavities 49, and the central portion cooling holes 46 and the rear edge side cooling holes 47 are in communication via the rear edge side cavities 49.
  • the trailing edge side cavities 49 are portions where the cooling media which flowed in from the central portion cooling holes 46 gather, and the cooling media which once gathered gather into the trailing edge side cooling holes 47 in a dispersed manner.
  • the blade effective portion flow path including the leading edge side cooling hole 45, the central portion cooling hole 46, the trailing edge side cooling hole 47, the leading edge side cavity 48, and the trailing edge side cavity 49 is formed.
  • the entire blade effective portion 40 is efficiently cooled.
  • FIG. 5 is an enlarged view of a cross section of a portion of a region A1 surrounded by a solid square in FIG.
  • the hole diameter Da of the outermost part of the inflow side opening 47a on the inflow side (lower side in FIG. 5) of the rear edge side cooling hole 47 is the inflow side opening.
  • the hole diameter is larger than the hole diameter Db in the flow passage portion 47 b which is constant on the inner side of the portion 47 a.
  • the opening area of the inflow side opening 47a is larger than the flow area of the flow path 47b, and the opening area of the inflow side opening 47a gradually decreases toward the flow path 47b.
  • the curved surface portion Sa is formed.
  • the shape of the curved surface portion Sa is convex.
  • the curvature center C of the curved surface portion Sa is not located on the flow path side, but on the inner side of the steel material forming the blade effective portion 40. Since the shape of the curved surface portion Sa is convex as described above, the flow of the cooling medium into the rear edge side cooling hole 47 can be made smoother than in the case where the shape is concave. Pressure loss can be reduced.
  • the trailing edge side has a smaller blade cross-sectional area than the leading edge side and the central portion. Therefore, the trailing edge side cooling holes 47 must have a pore size smaller than that of the leading edge side cooling holes 45 and the central portion cooling holes 46 and have a smaller cross-sectional area of the flow path.
  • the pore size may be from several millimeters to less than 1 millimeter. For this reason, in the trailing edge side cooling hole 47, the inflow rate to the cooling channel increases, and the cooling medium may be separated at the inlet of the channel, and a large pressure loss may occur. In this case, if the supply pressure of the cooling medium remains constant, the required amount of refrigerant can not be secured, and the moving blades 34 will be burned out.
  • the shape of the inflow side opening 47a of the rear edge side cooling hole 47 is formed to have the curved surface portion Sa described above so that the above-described phenomenon does not occur. As a result, it is possible to suppress the separation of the cooling medium at the inlet of the flow path and to reduce the pressure loss. As a result, the necessary refrigerant flow rate can be secured, and the moving blades 34 can be effectively cooled to realize a safe and highly efficient power generation system.
  • the shape of the inflow side opening 47a can be formed by precision casting or the like, or can be easily formed by laminated molding or the like.
  • the snubber 41 has, for example, a polygonal flat plate shape.
  • the snubber 41 suppresses the vibration generated when the moving blade 34 rotates by the contact between the snubbers 41 of the adjacent moving blades 34.
  • a snubber cooling hole 50 and a snubber cavity 51 are formed in the interior of the snubber 41 as a flow path of the cooling medium.
  • the snubber cavity 51 is formed on the trailing edge side.
  • the snubber cooling holes 50 are formed from the central portion of the moving blade 34 toward the front edge side. For example, a plurality of snubber cooling holes 50 are formed.
  • the snubber cooling hole 50 communicates with the snubber cavity 51. Further, each rear edge side cooling hole 47 is in communication with the snubber cavity 51. Therefore, each snubber cooling hole 50 is in communication with the trailing edge cooling hole 47 via the snubber cavity 51.
  • the snubber cavity 51 is a part where the cooling media flowing from the respective trailing edge side cooling holes 47 gather, and the cooling medium which once gathered gathers into the snubber cooling holes 50 in a dispersed manner.
  • the snubber 41 is integrally formed with the wing effective portion 40, for example. As described above, in the present embodiment, the snubber flow path is formed by the snubber cooling hole 50 and the snubber cavity 51, whereby the entire snubber 41 is efficiently cooled.
  • An implanted portion 43 is formed on the inner circumferential side of the inner ring side wall 42.
  • an implantation cooling hole 52 which is a flow path of the cooling medium is formed from the inner circumferential side toward the outer circumferential side.
  • an implantation cavity 53 which is a flow path of the cooling medium is formed.
  • FIG. 4 shows an example in which a plurality of implantation cooling holes 52 are formed. However, at least one implantation cooling hole 52 may be formed.
  • each implant cooling hole 52 communicates with the implant cavity 53. Further, the inner circumferential end portions of the respective front edge side cooling holes 45 communicate with the implantation cavity 53. Therefore, the respective implant cooling holes 52 and the respective front edge side cooling holes 45 are in communication via the implant cavities 53.
  • the implantation cavities 53 are sites where the cooling media flowing from the implantation cooling holes 52 gather, and the cooling media that once gathered gather into the leading edge side cooling holes 45 and flow in.
  • the inner ring side wall 42 is integrally formed with the wing effective portion 40, for example.
  • the implant 43 has a structure for accommodating the rotor disc 33, for example, a Christmas tree shape.
  • cooling medium in the moving blade 34 As described above, for example, carbon dioxide of a supercritical fluid is used as the cooling medium.
  • the cooling medium introduced around the implantation portion 43 flows into the interior of the moving blade 34 from the plurality of implantation cooling holes 52.
  • the cooling medium having flowed into the implantation cooling hole 52 flows from the inner circumferential side to the outer circumferential side in the implantation cooling hole 52 and flows into the implantation cavity 53 as shown by the arrow in FIG. 4. At this time, the implant 43 is cooled.
  • the cooling medium that has flowed into the implantation cavity 53 flows in the implantation cavity 53 toward the front edge side cooling hole 45, and at this time, the inner ring side wall 42 is cooled.
  • the cooling medium having flowed into the plurality of front edge side cooling holes 45 flows from the inner circumferential side to the outer circumferential side in the front edge side cooling holes 45 and flows into the front edge side cavity 48. At this time, the leading edge side of the wing effective portion 40 is cooled.
  • the cooling medium having flowed into the leading edge side cavity 48 flows from the leading edge side toward the central side (the central portion cooling hole 46 side) in the leading edge side cavity 48, and from this time, from the leading edge side of the outer peripheral side of the blade effective portion 40
  • the central part is cooled.
  • the cooling medium having flowed into the plurality of central portion cooling holes 46 flows from the outer peripheral side to the inner peripheral side in the central portion cooling holes 46 and flows into the rear edge side cavity 49. At this time, the central portion of the wing effective portion 40 is cooled.
  • the cooling medium having flowed into the trailing edge side cavity 49 flows from the center side toward the trailing edge side (the trailing edge side cooling hole 47 side) in the trailing edge side cavity 49, and at this time, the central portion on the inner circumferential side of the blade effective portion 40 Is cooled from the rear side.
  • the cooling medium having flowed into the plurality of trailing edge side cooling holes 47 flows from the inner circumferential side to the outer circumferential side in the trailing edge side cooling holes 47 and flows into the snubber cavity 51. At this time, the trailing edge side of the blade effective portion 40 is cooled.
  • the cooling medium having flowed into the snubber cavity 51 flows in the snubber cavity 51 toward the snubber cooling hole 50, and at this time, the trailing edge side of the snubber 41 is cooled.
  • the cooling medium that has flowed into the snubber cooling hole 50 flows toward the leading edge side in the snubber cooling hole 50 and is discharged from the leading edge side end to the outside of the moving blade 34, at this time, from the center of the snubber 41 to the front The edge is cooled.
  • the cooling medium discharged to the outside of the moving blades 34 mixes with the combustion gas flowing in the combustion gas passage 37 (see FIG. 2) and flows downstream.
  • the cooling medium that has flowed into the moving blade 34 from the plurality of implantation cooling holes 52 is the implantation cavity 53, the plurality of leading edge cooling holes 45, and the leading edge cavity 48.
  • the respective parts of the moving blade 34 are cooled through the plurality of central portion cooling holes 46, the trailing edge side cavity 49, the plurality of trailing edge side cooling holes 47, the snubber cavity 51, and the plurality of snubber cooling holes 50. Therefore, the entire moving blade 34 can be efficiently cooled while suppressing the supply amount of the cooling medium.
  • the cooling medium may be separated at the inlet portion of the trailing edge side cooling hole 47.
  • the pressure loss can be reduced. As a result, it is possible to secure the necessary refrigerant flow rate, and to effectively cool the turbine blades.
  • the heat flux from the moving blades 34 to the cooling medium can be increased, and cooling can be performed efficiently.
  • the cooling medium that has completed cooling of the moving blade 34 is configured to be released into the combustion gas passage 37 from the leading edge side, which has a higher pressure than the trailing edge side. Therefore, the diameter of the opening of the portion that discharges the cooling medium from the snubber cooling hole 50 into the combustion gas passage 37 can be set large, and the occurrence of clogging or the like of the opening can be suppressed.
  • FIG. 6 is a view showing a longitudinal cross section of the moving blade 134 of the second embodiment.
  • FIG. 7 is an enlarged view of a cross section of a region A1 and a region A2 surrounded by a solid square in FIG.
  • the hole diameters Da and Dc in the opening 47c are larger than the hole diameter Db in the flow passage portion 47b whose hole diameter is constant on the inner side of the inflow side opening 47a.
  • the opening areas of the inflow side opening 47a and the outflow side opening 47c are larger than the flow area of the flow path 47b, and the inflow side opening 47a and the outflow side opening 47c have a flow path
  • the curved surface portions Sa and Sc whose opening area gradually decreases toward the portion 47b side are formed.
  • the shape of the curved surface portions Sa and Sc is convex.
  • the curvature center C of the curved surface portions Sa and Sc is not on the flow path side, but on the inner side of the steel material forming the wing effective portion 40.
  • the inflow and outflow of the cooling medium into the rear edge side cooling holes 47 can be made smoother than in the case where the shape is concave. Pressure loss can be reduced.
  • the other parts are configured in the same manner as in the first embodiment, and therefore the corresponding parts will be assigned the same reference numerals and redundant explanations will be omitted.
  • the flow path is expanded smoothly not only at the inflow side opening 47a of the trailing edge side cooling hole 47 but also at the outflow side opening 47c, not only the inflow pressure loss can be reduced but also the outflow pressure loss is small. can do.
  • the necessary refrigerant flow rate can be secured, and the moving blades 134 can be effectively cooled, and a safe and highly efficient power generation system can be realized.
  • the shapes of the inflow side opening 47a and the outflow side opening 47c can be formed by precision casting or the like, and can be easily formed by laminated molding or the like.
  • FIG. 8 is an enlarged view of a portion corresponding to the area A1 in the first embodiment shown in FIG. 4 of the moving blade 234 of the third embodiment.
  • the hole diameter Da at the inflow side opening 47a on the inflow side (the lower side in FIG. 8) of the rear edge side cooling hole 47 is the hole diameter at the flow path 47b having a constant hole diameter inside the inflow side opening 47a. It is larger than Db.
  • the opening area of the inflow side opening 47a is larger than the flow area of the flow path 47b, and the opening area of the inflow side opening 47a gradually decreases toward the flow path 47b. Curved surface portions Sa1 and Sa2 are formed.
  • the shape of the curved surface portions Sa1 and Sa2 is convex.
  • the curvature center C of the curved surface portions Sa1 and Sa2 has a shape located on the inner side of the steel material constituting the blade effective portion 40, not on the flow path side.
  • the curvatures of the curved surface portions Sa1 and Sa2 of the inflow side opening 47a are different between the upstream side and the downstream side of the flow of the cooling medium.
  • the cooling medium flows from the central portion of the moving blade 234 to the rear edge side, so the curved surface portion on the upstream side (left side in FIG. 8) in the inflow side opening 47a.
  • the curvature of Sa1 is small (the radius of curvature is large), and the curvature of the curved surface portion Sa2 on the downstream side is larger than this (the radius of curvature is small).
  • the inflow of the cooling medium into the trailing edge side cooling holes 47 can be made smoother, and the inflow pressure loss can be reduced.
  • a sufficient flow rate of the cooling medium can be secured, the turbine blades can be effectively cooled, and a safe and highly efficient power generation system can be realized.
  • the shape of the inflow side opening 47a as described above may be applied to the outflow side opening 47c.
  • FIG. 9 is a view showing a longitudinal cross section of the stationary blade 31
  • FIG. 10 is a view showing an AA cross section of FIG. 9
  • FIG. 11 is a view showing a BB cross section of FIG.
  • the vane 31 includes a vane effective portion 140, a stator vane outer ring side partition 150 provided on the outer peripheral side (radial direction outer side) of the vane effective portion 140, and an inner peripheral side of the vane effective portion 140 (
  • a stationary vane inner ring side partition 160 is provided on the inner side in the radial direction).
  • the wing effective portion 140 is a passage portion through which the combustion gas passes.
  • the wing effective portion 140 is, for example, a wing type having a curved cross-sectional shape on the leading edge side (eg, left side in FIGS. 10 and 11) and a tapered cross-sectional shape on the trailing edge side (eg, right side in FIGS. 10 and 11). It is configured in shape.
  • the front edge side of the wing effective portion 140 is formed of a hollow portion 141 open at both ends.
  • the cross-sectional shape of the hollow portion 141 is not particularly limited, for example, as shown in FIGS. 10 and 11, it can be a shape corresponding to the outer shape of the wing effective portion 140 on the leading edge side.
  • Through holes 142 and 143 penetrating in the wing height direction are formed on the center and the rear edge side of the wing effective portion 140.
  • the cross-sectional shape of the through holes 142 and 143 is not particularly limited.
  • a semi-elliptical shape is illustrated as the through hole 142
  • a circular shape is illustrated as the through hole 143.
  • the leading edge side refers to the leading edge side of the center of the wing effective portion 140
  • the trailing edge side refers to the trailing edge side of the center of the wing effective portion 140.
  • At least one through hole 143 formed on the rear edge side is formed, and here, an example in which a plurality of through holes are formed is shown.
  • the through holes 143 are formed at equal intervals, for example, and the hole diameter of the through hole 143 is gradually reduced toward the rear edge side as the blade thickness decreases. can do.
  • the insert member 170 includes a plate-like portion 171 and a cylindrical portion 175.
  • the plate-like portion 171 covers the opening 151 a of the stationary blade outer ring side partition 150 described later and the opening 151 b of the stationary blade outer ring side partition 150 described later communicated with the hollow portion 141 and the central through hole 142 described later. It is provided as.
  • the plate-like portion 171 is formed with an opening 172 communicating with the opening 151 a and an opening 173 communicating with the opening 151 b. For example, a part of the outer peripheral edge of the plate-like portion 171 is fixed to a predetermined position of the bottom of the opening groove 151 in the stator outer ring side partition 150 described later.
  • the cylindrical body portion 175 is a cylindrical body whose one end is fixed to the plate-like portion 171 and whose other end is closed.
  • the cylindrical portion 175 is configured to be insertable into the hollow portion 141 with a predetermined gap from the inner wall 141 a of the hollow portion 141.
  • a plurality of jet holes 176 are formed in a portion of the cylindrical portion 175 facing the inner wall 141 a of the hollow portion 141.
  • the distance between the outer side surface 175 a of the cylindrical portion 175 and the inner wall 141 a of the hollow portion 141 is preferably set to be, for example, substantially constant.
  • the working gas (carbon dioxide) of a supercritical fluid is used, for example.
  • the vane outer ring side partition 150 has, for example, a polygonal flat plate shape.
  • an opening groove 151 for introducing a cooling medium is formed in the vane outer ring side partition 150.
  • An opening 151 a communicating with the hollow portion 141 and an opening 151 b communicating with the central through hole 142 are formed at the bottom of the opening groove 151.
  • the opening 151 a is formed in the same opening shape as the hollow portion 141, and the opening 151 b is formed in the same opening shape as the through hole 142.
  • the through hole 143 on the rear edge side an opening communicating with the through hole 143 is formed, but a predetermined gap is opened radially outward (outer peripheral side) from the through hole 143 on the rear edge side.
  • the opening is closed by a flat plate 152.
  • a cavity (cavity) 153 communicating with the rear edge side through hole 143 is formed.
  • the vane outer ring side partition 150 is formed integrally with the blade effective portion 140, for example.
  • a cooling hole 155 communicating the opening 151 a with the outside of the stator outer ring side partition 150 is formed on the inner peripheral side of the stator outer ring side partition 150 located on the front edge side. That is, the cooling hole 155 discharges the cooling medium to the outside of the wing while cooling the vane outer ring side partition 150 by the cooling medium jetted toward the inner wall 141 a of the hollow portion 141 from the jet hole 176 of the cylindrical portion 175. Hole. Note that part of the cooling medium ejected from the ejection holes 176 flows between the inner wall 141 a and the cylindrical portion 175 toward the opening 151 a. For example, as shown in FIG. 10, a plurality of cooling holes 155 are formed. The cooling holes 155 function as leading edge side cooling holes. The space between the cylindrical portion 175 and the hollow portion 141 acts as a cavity for allowing the cooling medium to flow into the cooling hole 155.
  • a cooling hole 156 communicating the air gap 153 with the outside of the stator outer ring side partition 150 is formed. That is, the cooling holes 156 are holes for discharging the cooling medium to the outside of the wing while cooling the stationary blade outer ring side partition 150 by the cooling medium flowing into the void portion 153. For example, as shown in FIG. 10, a plurality of cooling holes 156 are formed. Therefore, the cooling medium that has flowed into the void portion 153 disperses and flows into the respective cooling holes 156.
  • the cooling hole 156 functions as a rear edge side outer ring cooling hole.
  • an engagement protrusion 157 for engaging with the engagement groove of the casing 30 is formed.
  • the engagement protrusion 157 protrudes, for example, in the axial direction of the turbine rotor.
  • the stator vanes 31 can be circumferentially arranged and supported (fixed) along the engagement portion grooves 80 of the casing 30 formed in the circumferential direction (see FIG. 2). ).
  • the opening groove 151 is, for example, covered from the outer peripheral side by the casing 30 and is in a closed state (see FIG. 2).
  • the opening groove 151 is in communication with the cooling medium supply passage provided in the casing 30. Then, the cooling medium is introduced into the opening groove 151 from the supply passage.
  • the vane inner ring side partition 160 has a polygonal flat plate shape, for example, as with the vane outer ring side partition 150.
  • the vane inner ring-side partition 160 has a cavity 161 communicating with the hollow portion 141 and a cavity communicating with the through hole 142 at the center and the through hole 143 at the rear edge.
  • the void portion 161 functions as a front edge side void portion
  • the void portion 162 functions as a rear edge side void portion.
  • the void portion 161 is formed, for example, by a concave portion formed on the inner surface of the vane inner ring side partition 160 and having the same cross-sectional shape as the opening cross-sectional shape of the hollow portion 141.
  • the air gap portion 162 is provided, for example, with a flat plate 163 for closing the opening communicating with the through hole 142 and the through hole 143 with a predetermined gap inward in the radial direction (inner peripheral side) from the through hole 142 and the through hole 143
  • the vane inner ring side partition 160 is integrally formed with the blade effective portion 140, for example.
  • a cooling hole 165 for communicating the air gap 161 with the outside of the stationary blade inner ring side partition 160 is formed. That is, the cooling hole 165 discharges the cooling medium to the outside of the wing while cooling the stator inner ring side partition 160 by the cooling medium jetted toward the inner wall 141 a of the hollow portion 141 from the jet hole 176 of the cylindrical portion 175. Hole. A part of the cooling medium ejected from the ejection holes 176 flows toward the air gap 161 between the inner wall 141 a and the cylindrical portion 175. For example, as shown in FIG. 11, a plurality of cooling holes 165 are formed. The cooling holes 165 function as leading edge side cooling holes.
  • a cooling hole 166 for communicating the gap portion 162 with the outside of the stationary blade inner ring side partition 160 is formed. That is, the cooling hole 166 is a hole for discharging the cooling medium to the outside of the wing while cooling the stationary blade inner ring side partition 160 by a part of the cooling medium which has flowed into the void portion 162. For example, as shown in FIG. 11, a plurality of cooling holes 166 are formed.
  • the cooling hole 166 functions as a rear edge side inner ring cooling hole.
  • the vanes 31 are arranged in the circumferential direction, there is a slight gap between the vane inner ring side partitions 160 of the adjacent vanes 31, so the cooling medium is discharged from the cooling holes 165 and 166 to the outside of the vanes. can do. Further, the other end side of the stationary blade inner ring side partition 160 is a closed end.
  • FIG. 12 is an enlarged view of a longitudinal cross section of a portion of the area A3 shown in FIG. 9 and FIG.
  • the hole diameter Da at the inlet side opening 165a of the inlet side of the cooling hole 165 of the stator inner ring side partition 160 is smaller than the hole diameter at the inlet side 165a.
  • the opening area of the inflow side opening 165a is larger than the flow area of the flow path 165b, and the opening area of the inflow side opening 165a gradually decreases toward the flow path 165b.
  • Curved surface portions Sa1 and Sa2 are formed.
  • the shape of the curved surface portions Sa1 and Sa2 is convex.
  • the curvature center C of the curved surface portions Sa1 and Sa2 has a shape located not on the flow path side but on the inner side of the steel material that constitutes the stationary blade inner ring side partition 160.
  • the curvatures of the curved surface portions Sa1 and Sa2 of the inflow side opening 165a are different between the upstream side and the downstream side of the flow of the cooling medium.
  • the cooling medium flows from the outer peripheral side of the vane 31 to the inner peripheral side as indicated by the arrow in the figure, so the curved surface on the upstream side (upper side in FIG. 12) in the inflow side opening 165a.
  • the curvature of the portion Sa1 is small (the radius of curvature is large), and the curvature of the curved surface portion Sa2 on the downstream side is larger than this (the radius of curvature is small).
  • the inflow of the cooling medium into the cooling holes 165 can be made smoother, and the inflow pressure loss can be reduced. As a result, a sufficient flow rate of the cooling medium can be secured, the turbine blades can be effectively cooled, and a safe and highly efficient power generation system can be realized.
  • the cooling holes 165 provided in the stationary blade inner ring side partition 160 have a pore structure to enhance convective cooling. However, since the cross-sectional area is small, the refrigerant flow from the blade effective portion causes a large pressure loss due to the rapid reduction of the flow passage cross-sectional area. If the supply pressure remains constant, the necessary amount of refrigerant can not be secured, and the stator inner ring side partition 160 may be burned out.
  • the inlet side opening 165a of the cooling hole 165 has the above-described shape so that the above-described phenomenon does not occur.
  • the pressure loss can be reduced, and the necessary refrigerant flow rate can be secured.
  • the stator vanes 31 can be effectively cooled, and a safe and highly efficient power generation system can be realized.
  • the entire pore having the above-mentioned shape can be formed by precision casting or the like, or only the inside of the wing is precisely cast to the above-mentioned shape, and then the EDM is conducted toward that to connect the pores. It is also possible.
  • the entire pore structure including the inflow side opening 165a can be formed by lamination molding or the like.
  • the vane 31 having the above-described configuration can be applied to any turbine stage.
  • it is suitable for high temperature and pressure, for example, the first stage of the turbine stage.
  • the cooling medium introduced into the opening groove 151 from the supply passage (not shown) of the cooling medium in the casing 30 has the opening 172 of the plate-like portion 171, the opening 151a (in the cylindrical portion 175) as shown in FIG. It flows into the cylindrical portion 175 through the plate-like portion 171), or flows into the through hole 142 through the opening 173 and the opening 151b of the plate-like portion 171.
  • the cooling medium that has flowed into the cylindrical portion 175 is jetted from the jet holes 176 toward the inner wall 141 a of the hollow portion 141 and collides with the inner wall 141 a.
  • the cooling medium By causing the cooling medium to collide with the inner wall 141 a, heat transfer between the inner wall 141 a and the cooling medium is promoted, and the blade effective portion 140 is efficiently cooled.
  • a part of the cooling medium that has collided with the inner wall 141 a flows between the inner wall 141 a and the cylindrical portion 175 toward the opening 151 a and flows into the cooling hole 155.
  • the remaining portion of the cooling medium that has collided with the inner wall 141 a flows between the inner wall 141 a and the cylindrical portion 175 toward the air gap 161 and flows into the cooling hole 165.
  • the cooling medium flowing through the cooling holes 155 is discharged to the outside while cooling the stator outer ring side partition 150.
  • the cooling medium flowing through the cooling holes 165 is discharged to the outside while cooling the stationary blade inner ring side partition 160.
  • the cooling medium discharged to the outside from the cooling holes 155 or the cooling holes 165 mixes with the combustion gas flowing through the combustion gas passage 37 (see FIG. 2) and flows downstream.
  • the opening 151a, the inside of the cylindrical portion 175 (hollow portion 141), the jet holes 176, the gap between the inner wall 141a and the cylindrical portion 175 (hollow portion 141), and the air gap portion 161 constitute a front edge side cooling passage.
  • the leading edge side cooling passage functions as a part of the blade effective portion cooling passage.
  • the cooling holes 155 and the cooling holes 165 function as a front edge side cooling hole and also as a part of the side wall cooling passage.
  • the cooling medium having flowed into the through hole 142 flows radially inward (inner peripheral side) while cooling the wall surface constituting the through hole 142, and flows into the void portion 162.
  • a part of the cooling medium that has flowed into the void portion 162 flows into each through hole 143.
  • the cooling medium having flowed into the through hole 143 flows radially outward (outer peripheral side) while cooling the wall surface constituting the through hole 143 and flows into the void portion 153.
  • the blade effective portion 140 is cooled by the cooling medium flowing through the through holes 142 and the plurality of through holes 143. Then, the cooling medium that has flowed into the void portion 153 flows into the cooling holes 156, and is discharged to the outside while cooling the stationary blade outer ring side partition 150.
  • the remaining portion of the cooling medium that has flowed into the void portion 162 flows into the cooling holes 166 and is discharged to the outside while cooling the stationary blade inner ring side partition 160.
  • the cooling medium discharged to the outside from the cooling holes 156 or the cooling holes 166 mixes with the combustion gas flowing through the combustion gas passage 37 (see FIG. 2) and flows downstream.
  • the opening 151b, the through hole 142, the void portion 162, the through hole 143, and the void portion 153 constitute a rear edge side cooling passage.
  • the trailing edge side cooling passage functions as a part of the blade effective portion cooling passage.
  • the cooling holes 156 functioning as the rear edge side outer ring cooling holes and the cooling holes 166 functioning as the rear edge side inner ring cooling holes function as a part of the side wall cooling passage.
  • the vane outer ring side partition 150 and the vane inner ring side partition 160 can be cooled in addition to the blade effective portion 140. Further, by using the cooling medium obtained by cooling the blade effective portion 140 for cooling the vane outer ring side partition 150 and the vane inner ring side partition 160, the cooling capacity of the cooling medium can be maximized while suppressing the flow rate of the cooling medium. It can be used to Furthermore, by making the shape of the inflow side opening 165a of the cooling hole 165 the shape described above, the pressure loss can be reduced, and the necessary refrigerant flow rate can be secured. By this, the stator vanes 31 can be cooled efficiently.
  • FIG. 13 is an enlarged view of a longitudinal cross section of the area A4 shown in FIGS. 9 and 10.
  • the hole diameter Da at the inflow side opening 155a on the inflow side of the cooling holes 155 of the stator outer ring side partition 150 is smaller than the hole diameter Db at the flow path 155b having a constant diameter inside the inflow side opening 155a. It is getting bigger.
  • the opening area of the inflow side opening 155a is larger than the flow area of the flow path 155b, and the opening area of the inflow side opening 155a gradually decreases toward the flow path 155b. Curved surface portions Sa1 and Sa2 are formed. Further, in the cross section along the cooling holes 155 shown in FIG.
  • the shapes of the curved surface portions Sa1 and Sa2 are convex.
  • the curvature center C of the curved surface portions Sa1 and Sa2 is not positioned on the flow path side, but on the inner side of the steel material constituting the stationary blade outer ring side partition 150.
  • the curvatures of the curved surface portions Sa1 and Sa2 of the inflow side opening 155a are different between the upstream side and the downstream side of the flow of the cooling medium.
  • the cooling medium flows from the inner peripheral side to the outer peripheral side of the vane 31 as shown by the arrows in the figure, so the upstream side (lower side in FIG. 13) of the inflow side opening 155a.
  • the curvature of the curved surface portion Sa1 is small (the curvature radius is large), and the curvature of the downstream curved surface portion Sa2 is larger (the curvature radius is smaller).
  • the cooling holes 155 provided in the stator outer ring side partition 150 have a pore structure to enhance convective cooling. However, since the cross-sectional area is small, the refrigerant flow from the blade effective portion causes a large pressure loss due to the rapid reduction of the flow passage cross-sectional area. If the supply pressure remains constant, the necessary amount of refrigerant can not be secured, and the stator outer ring side partition 150 may be burnt out.
  • the shape of the inflow side opening portion 155 a of the cooling hole 155 is set to the above-described shape so that the above-described phenomenon does not occur.
  • the pressure loss can be reduced, and the necessary refrigerant flow rate can be secured.
  • the stator vanes 31 can be effectively cooled, and a safe and highly efficient power generation system can be realized.
  • the entire pore having the above-mentioned shape can be formed by precision casting or the like, or only the inside of the wing is precisely cast to the above-mentioned shape, and then the EDM is conducted toward that to connect the pores. It is also possible.
  • the entire pore structure including the inflow side opening 155a can be formed by a lamination molding process or the like.
  • Turbine rotor 33 Rotor disk, 34, 134, 234: Moving blade, 35: Shroud segment, 36: Air gap, 37: Combustion gas passage, 40: Blade effective portion, 41: Snubber, 42: Inner ring side wall, 43: Implant , 44: wing effective part cooling hole, 45: leading edge side cooling hole, 46: central part cooling hole, 47: trailing edge side cooling hole, 47a: inlet side opening, 47b: flow path, 47c: outlet side opening, 48: front edge side cavity, 49: rear edge side cavity, 50: snubber cooling hole, 51: snubber cavity, 52: implantation cooling hole, 53: implantation cavity, 80: engagement portion groove, 140: wing effective portion, 14 a: inner wall, 142, 143: through hole, 150: stator vane outer ring side partition, 151: opening groove, 151a, 151b: opening, 152: flat plate, 153: air gap, 155: cooling hole, 155a: inlet side opening , 155

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

タービン翼(34)の内部に形成され、流入側開口部(47a)と流出側開口部と、前記流入側開口部(47a)と前記流出側開口部との間に形成された流路部(47b)とを有し、内部を冷却媒体が流通する冷却孔(47)と、前記冷却媒体を、複数の前記冷却孔(47)に分散させて流入させるキャビティ(49)と、を備えたタービン翼(34)であって、前記流入側開口部(47a)が、前記流路部(47b)側に向けて徐々に開口面積が減少する曲面部(Sa)を有し、前記曲面部(Sa)の形状が、前記冷却孔(47)に沿った断面において凸状である。

Description

タービン翼及びタービン
 本発明の実施形態は、タービン翼及びタービンに関する。
 パリ協定の採択を受け、地球温暖化対策(CO排出削減)の重要性が増している。再生可能エネルギーの大幅導入が課題となるが、風力発電や太陽光発電は単機あたりの出力が小さい他、出力変動が大きい等の課題を抱えている。化石燃料の消費を極力抑えCO発生量を削減するためには、火力発電システムの更なる効率向上を重ね続ける必要がある。こうした背景の中、革新的なCO排出削減対策技術として超臨界COサイクル発電システムが提案されている。
 超臨界COサイクル発電システムは、燃料を酸素燃焼し、高温高圧の超臨界COでタービンを駆動するシステムである。このシステムは、既存のガスタービンコンバインドサイクル発電システムと同等の発電効率を有しつつ、CCS(二酸化炭素回収貯留技術)無しに高純度の高圧COを回収できる特長を持つ。
 このシステムは、空気の代わりに酸素を用いるため、窒素酸化物の生成もないクリーンな火力発電システムである。燃料はメタン(CH)を主成分とする天然ガスの他に、石炭ガス化ガスなどが適用できる。タービンからの排ガス(COと水蒸気HO)は熱交換器を経て冷却され、水分が分離除去された後、高圧ポンプで圧縮される。大部分のCOは燃焼器へ循環されるが、燃焼により発生した分のCOを高圧かつ高純度状態でそのまま回収可能であり、そのままパイプラインで輸送し地中等に貯留することも、EOR(Enhanced Oil Recovery)など老朽化した油田に注入して石油増産用COとして利用することもできる。
 このような超臨界COを作動流体とするシステムを考えた場合、プラント効率を確保するには、タービン入口圧力を従来のガスタービンに比べて20倍程度、タービンの入口温度を1000℃程度にする必要がある。また物性値の違いにより、超臨界COを作動流体とする場合、従来のガスタービンに比べて、タービン翼の翼面における熱伝達率は、10倍程度となる。一方、冷却媒体の増加による効率低下が既存コンバインドサイクルと比較して1.5~2.0倍程度大きくなる。このため、プラント効率向上のためには、冷却COの消費量削減が必須となる。なお、冷却空気によりガスタービン翼を冷却する技術では、冷却空気が流れる流路を丸い形状として流路抵抗を小さくすることが提案されている。
平成25年度火力原子力発電大会論文集, pp.107-110.
特許第4567206号公報
 上記したように、超臨界COを作動流体とする発電プラントにおいては翼面における熱伝達率が増加する。このため少ない冷媒量でタービン翼全体を効果的に冷却するよう翼内輪側壁、翼有効部、翼外輪側壁を一括して冷却する冷却構造が取られている。
 この冷却構造では、対流冷却効果を高めるために、冷却通路には細孔型の冷却通路が採用されている。しかし、細孔型の冷却通路は、圧力損失が大きく、必要な冷媒流量を確保できないと冷却翼の翼面温度が一定温度以上に上昇して翼の損失を招いてしまう。従って必要な冷媒流量を確保してタービン翼を効果的に冷却し、安全で高効率の発電システムを実現するタービン翼及びタービンを提供する技術が求められている。
 本発明の目的は、タービン翼を効果的に冷却し、安全で高効率の発電システムを実現することのできるタービン翼及びタービンを提供することにある。
 実施形態のタービン翼は、タービン翼の内部に形成され、流入側開口部と流出側開口部と、前記流入側開口部と前記流出側開口部との間に形成された流路部とを有し、内部を冷却媒体が流通する冷却孔と、前記冷却媒体を、複数の前記冷却孔に分散させて流入させるキャビティと、を備えたタービン翼であって、前記流入側開口部が、前記流路部側に向けて徐々に縮径する曲面からなる傾斜部を有し、前記曲面の形状が、前記冷却孔に沿った断面において凸状である。
実施形態のタービンを備えるガスタービン設備の系統図。 実施形態のタービンの縦断面の一部を示した図。 実施形態の動翼の外形を模式的に示す図。 実施形態の動翼の縦断面を示す図。 領域A1の断面を拡大して示す図。 実施形態の動翼の縦断面を示す図。 領域A1,A2の断面を拡大して示す図。 領域A1の断面を拡大して示す図。 実施形態の静翼の縦断面を示す図。 図9のA-A断面を示す図。 図9のB-B断面を示す図。 領域A3の断面を拡大して示す図。 領域A4の断面を拡大して示す図。
 以下、本発明の実施形態について図面を参照して説明する。
 図1は、実施形態のタービン翼が設けられたタービンを備えるガスタービン設備10の系統図である。なお、図1では本発明を、COタービンを用いたガスタービン設備10に適用した場合について示してあるが、本発明は、COタービンに限らず、他のガスタービンや蒸気タービンについても適用することができる。
 図1に示すように、酸素および燃料は、燃焼器20に供給され、燃焼する。また、燃焼器20には、作動流体として循環する二酸化炭素も導入される。燃料および酸素の流量は、例えば、それぞれが完全に混合した状態において量論混合比(理論混合比)となるように調整されている。燃料としては、例えば、天然ガス、メタンなどの炭化水素や、石炭ガス化ガスなどが使用される。
 燃焼器20から排出された、燃焼によって生成した二酸化炭素、水蒸気、および作動流体の二酸化炭素からなる燃焼ガスは、タービン21に導入される。タービン21において膨張仕事をした燃焼ガスは、熱交換器22を通り、さらに熱交換器23を通る。熱交換器23を通る際、水蒸気が凝縮して水となる。水は、配管24を通り外部に排出される。なお、タービン21には、発電機25が連結されている。
 水蒸気と分離されたドライ作動ガス(二酸化炭素)は、圧縮機26で昇圧され、超臨界流体となる。圧縮機26の出口において、ドライ作動ガスの圧力は、例えば、30MPa程度となる。
 圧縮機26で昇圧されたドライ作動ガスの一部は、熱交換器22において加熱され、燃焼器20に作動流体として供給される。燃焼器20に導入されたドライ作動ガスは、例えば、燃焼器20の上流側から燃料や酸化剤とともに燃焼領域に噴出されたり、燃焼器ライナの冷却後に希釈孔などから燃焼器ライナ内の燃焼領域の下流側に噴出される。
 また、熱交換器22内の流路の途中から分岐された配管を介して超臨界流体のドライ作動ガスの一部が、冷却媒体としてタービン21に導入される。この冷却媒体の温度は、冷却効果と冷却対象物に生ずる熱応力の理由から、例えば、350℃~550℃程度であることが好ましい。
 圧縮機26で昇圧されたドライ作動ガスの残りは、系統の外部に排出される。外部に排出されたドライ作動ガスは、例えば、回収装置により回収される。また、外部に排出されたドライ作動ガスは、例えば、石油採掘現場で用いられているEOR(Enhanced Oil Recovery)等に利用することができる。上記した系統において、例えば、燃焼器20において燃料と酸素を燃焼させることで生成した二酸化炭素の生成量に相当する分の二酸化炭素が系統の外部に排出される。
 次に、実施形態のタービン21の構成について説明する。
 図2は、タービン21の縦断面の一部を示した図である。図2に示すように、円筒形状のケーシング30の内側には、静翼31が配設されている。静翼31は、ケーシング30の周方向に沿って複数配置されており、これらの静翼31により、静翼翼列を構成している。
 また、静翼翼列の直下流側には、タービンロータ32のロータディスク33に周方向に複数(図2には1つのみ示す。)の動翼34(タービン動翼)を植設して構成された動翼翼列が配置されている。静翼翼列と動翼翼列は、タービンロータ32の軸方向に沿って交互に配設されている。静翼翼列と、この静翼翼列の直下流の動翼翼列とで一つのタービン段落を構成している。
 動翼34の外周は、例えば、シュラウドセグメント35で包囲されている。このシュラウドセグメント35は、動翼34の先端との隙間を調整し、適正な隙間を維持するためのものである。シュラウドセグメント35は、例えば、ケーシング30に固定された静翼31によって支持されている。この場合、シュラウドセグメント35と、ケーシング30との間に周方向に空隙部36が形成される。
 このように、ケーシング30の内側には、静翼翼列および動翼翼列を有する円環状の燃焼ガス通路37が形成されている。
 次に、第1実施形態の動翼34の構成について説明する。図3は第1実施形態の動翼34の外形を模式的に示す斜視図である。図4は実施形態の動翼34の縦断面を示す図である。
 図3、図4に示すように、動翼34は、翼有効部40と、翼有効部40の外周側(半径方向外側)に設けられたスナッバ41と、翼有効部40の内周側(半径方向内側)に設けられた内輪側壁(プラットフォーム)42と、内輪側壁42の内周側に設けられた植込み部43を備える。
 翼有効部40は、燃焼ガスが通過する通路部である。この翼有効部40は、例えば、前縁側(例えば、図4の左側)が湾曲断面形状を有し、後縁側(例えば、図4の右側)が先細断面形状を有する、翼型形状に構成されている。
 図4に示すように、翼有効部40の内部には、翼高さ方向に沿って、冷却媒体の流路となる翼有効部冷却孔44が形成されている。翼有効部冷却孔44の断面形状は、特に限定されないが、例えば、円形断面である。
 翼有効部40に形成される翼有効部冷却孔44は、例えば、動翼34の前縁側に位置する前縁側冷却孔45と、動翼34の中央部に位置する中央部冷却孔46と、動翼34の後縁側に位置する後縁側冷却孔47とに分類できる。なお、翼有効部40の中央部としては、例えば翼有効部40のキャンバーラインの中央などが例示される。また、前縁側としては翼有効部40の中央部よりも前縁側をいい、後縁側とは、翼有効部40の中央部よりも後縁側をいう。
 図4は、前縁側冷却孔45、中央部冷却孔46、後縁側冷却孔47を、夫々複数形成した例を示している。前縁側冷却孔45、中央部冷却孔46、後縁側冷却孔47を、それぞれ複数形成した場合、例えば、次のような構成とすることができる。
 その一つの構成は、前縁側冷却孔45、中央部冷却孔46、後縁側冷却孔47を、それぞれ等間隔に形成し、前縁側冷却孔45の孔径、中央部冷却孔46の孔径、後縁側冷却孔47の孔径を、これらが形成された部位の翼厚さの違いによって、異ならせた構成である。すなわちこの場合、例えば、翼厚さの厚い部分には、孔径の大きな冷却孔を形成し、翼厚さの薄い部分には、孔径の小さな冷却孔を形成する。
 図4に示す例では、前縁側冷却孔45と中央部冷却孔46は、夫々平行するように、3つ形成され、その孔径は同一とされている。後縁側冷却孔47は、夫々平行するように、5つ形成され、その孔径は、前縁側冷却孔45及び中央部冷却孔46の孔径より小さく設定されている。
 翼有効部40の前縁側の外周側には、冷却媒体の流路となる前縁側キャビティ48が形成されている。この前縁側キャビティ48には、各前縁側冷却孔45及び中央部冷却孔46が連通されており、前縁側キャビティ48を介して、前縁側冷却孔45と、中央部冷却孔46とが連通されている。前縁側キャビティ48は、各前縁側冷却孔45から流入した冷却媒体が集合する部位であり、かつ、一旦集合した冷却媒体が、各中央部冷却孔46に分散して流入する部位である。
 また、翼有効部40の後縁側の内周側には、冷却媒体の流路となる後縁側キャビティ49が形成されている。この後縁側キャビティ49には、各中央部冷却孔46及び後縁側冷却孔47が連通されており、後縁側キャビティ49を介して、中央部冷却孔46と後縁側冷却孔47とが連通されている。後縁側キャビティ49は、各中央部冷却孔46から流入した冷却媒体が集合する部位であり、かつ、一旦集合した冷却媒体が、各後縁側冷却孔47に分散して流入する部位である。上記のように本実施形態では、前縁側冷却孔45と中央部冷却孔46と、後縁側冷却孔47と、前縁側キャビティ48と、後縁側キャビティ49とからなる翼有効部流路が形成されており、これによって、翼有効部40の全体が効率良く冷却されるようになっている。
 図5は、図4に実線の四角形で囲った領域A1の部分の断面を拡大して示す図である。第1実施形態では、図5に拡大して示すように、後縁側冷却孔47の流入側(図5において下側)の流入側開口部47aにおける最も外側の部位の孔径Daが、流入側開口部47aより内側で孔径が一定の流路部47bにおける孔径Dbより大きくなっている。これによって、流入側開口部47aの開口面積が、流路部47bの流路面積よりも大きくなっており、流入側開口部47aには、流路部47b側に向けて徐々に開口面積が減少する曲面部Saが形成されている。また、図5に示す後縁側冷却孔47に沿った断面において、曲面部Saの形状が凸状となっている。換言すれば、曲面部Saの曲率中心Cが流路側ではなく、翼有効部40を構成する鋼材の内部側に位置する形状となっている。このように曲面部Saの形状が凸状となっていることによって、この形状が凹状となっている場合に比べてより冷却媒体の後縁側冷却孔47への流入をスムーズにすることができ、圧力損失を低減することができる。
 動翼34の翼有効部40において、後縁側は、前縁側及び中央部に比べて翼断面積が小さくなる。したがって、後縁側冷却孔47は、前縁側冷却孔45及び中央部冷却孔46に比べて、より孔径が小さく流路の断面積が小さい細孔構造としなければならない。孔径は、数ミリから1ミリ未満となる場合もある。このため、後縁側冷却孔47では、冷却流路への流入速度が増大して、流路の入口部で冷却媒体が剥離を起こし、大きな圧損を生じてしまう可能性がある。この場合、冷却媒体の供給圧力が一定のままだと必要な冷媒量を確保することができず、動翼34が焼損してしまうことになる。
 第1実施形態では、上記のような事象が起こらないように、後縁側冷却孔47の流入側開口部47aの形状を上述した曲面部Saを有する形状としている。これによって、流路の入口部で冷却媒体が剥離を起こすことを抑制し、圧力損失を低減することができる。これにより、必要な冷媒流量を確保することができ、動翼34を効果的に冷却して、安全で高効率の発電システムを実現することができる。なお、流入側開口部47aの形状は精密鋳造などで形成することもできるし、積層造型などによっても容易に成形が可能である。
 次に、動翼34のスナッバ41の部分の構成について説明する。図3に示すようにスナッバ41は、例えば、多角形状の平板形状を有している。スナッバ41は、動翼34が回転した際に発生する振動を、隣接する動翼34のスナッバ41同士が接触することによって抑制する。図4に示すように、スナッバ41の内部には、冷却媒体の流路となるスナッバ冷却孔50と、スナッバキャビティ51が形成されている。スナッバキャビティ51は、後縁側に形成されている。スナッバ冷却孔50は、動翼34の中央部から前縁側に向かうように形成されている。スナッバ冷却孔50は、例えば複数形成されている。
 スナッバ冷却孔50は、スナッバキャビティ51に連通している。また、スナッバキャビティ51には、各後縁側冷却孔47が連通している。したがって、各スナッバ冷却孔50は、スナッバキャビティ51を介して、後縁側冷却孔47と連通されている。スナッバキャビティ51は、各後縁側冷却孔47から流入した冷却媒体が集合する部位であり、かつ、一旦集合した冷却媒体が、スナッバ冷却孔50に分散して流入する部位である。なお、スナッバ41は、例えば、翼有効部40と一体的に形成される。上記のように本実施形態では、スナッバ冷却孔50と、スナッバキャビティ51とによって、スナッバ流路が形成されており、これによって、スナッバ41の全体が効率良く冷却されるようになっている。
 次に、実施形態の動翼34の内輪側壁(プラットフォーム)42及び植込み部43の構成について説明する。
 内輪側壁42の内周側には、植込み部43が形成されている。植込み部43の内部には、内周側から外周側に向かうように冷却媒体の流路となる植込み冷却孔52が形成されている。また、内輪側壁42の内部には、冷却媒体の流路となる植込みキャビティ53が形成されている。図4には、植込み冷却孔52が複数形成された例を示してある。しかし、植込み冷却孔52は、少なくとも1つ形成されていればよい。
 各植込み冷却孔52の外周側端部は、植込みキャビティ53に連通している。また、植込みキャビティ53には、各前縁側冷却孔45の内周側端部が連通している。したがって、各植込み冷却孔52と、各前縁側冷却孔45とは、植込みキャビティ53を介して連通されている。植込みキャビティ53は、各植込み冷却孔52から流入した冷却媒体が集合する部位であり、かつ、一旦集合した冷却媒体が、各前縁側冷却孔45に分散して流入する部位である。
 内輪側壁42は、例えば、翼有効部40と一体的に形成される。植込み部43はロータディスク33に取り合うための構造、例えばクリスマスツリー型形状を有している。
 次に、実施形態に係る動翼34における冷却媒体の流れについて説明する。なお、前述したとおり、冷却媒体としては、例えば、超臨界流体の二酸化炭素を使用する。
 植込み部43の周りに導入された冷却媒体は、複数の植込み冷却孔52から動翼34の内部に流入する。植込み冷却孔52に流入した冷却媒体は、図4に矢印で示すように、植込み冷却孔52内を内周側から外周側に向かって流れ、植込みキャビティ53内に流入する。この時、植込み部43が冷却される。
 植込みキャビティ53に流入した冷却媒体は、植込みキャビティ53内を前縁側冷却孔45へ向かって流れ、この時、内輪側壁42が冷却される。複数の前縁側冷却孔45に流入した冷却媒体は、前縁側冷却孔45内を内周側から外周側に向かって流れ、前縁側キャビティ48へ流入する。この時、翼有効部40の前縁側が冷却される。
 前縁側キャビティ48内に流入した冷却媒体は、前縁側キャビティ48内を前縁側から中央側(中央部冷却孔46側)に向かって流れ、この時、翼有効部40の外周側の前縁側から中央部が冷却される。複数の中央部冷却孔46に流入した冷却媒体は、中央部冷却孔46内を外周側から内周側に向かって流れ、後縁側キャビティ49に流入する。この時、翼有効部40の中央部が冷却される。
 後縁側キャビティ49内に流入した冷却媒体は、後縁側キャビティ49内を中央側から後縁側(後縁側冷却孔47側)に向かって流れ、この時、翼有効部40の内周側の中央部から後縁側が冷却される。複数の後縁側冷却孔47内に流入した冷却媒体は、後縁側冷却孔47内を内周側から外周側に向かって流れ、スナッバキャビティ51内に流入する。この時、翼有効部40の後縁側が冷却される。
 スナッバキャビティ51内に流入した冷却媒体は、スナッバキャビティ51内を、スナッバ冷却孔50側に向かって流れ、この時、スナッバ41の後縁側が冷却される。スナッバ冷却孔50内に流入した冷却媒体は、スナッバ冷却孔50内を前縁側に向かって流れ、前縁側端部から動翼34の外部に排出される、この時、スナッバ41の中央部から前縁側が冷却される。動翼34の外部に排出された冷却媒体は、燃焼ガス通路37(図2参照)を流れる燃焼ガスに混ざり、下流側へ流れる。
 以上のように、第1実施形態の動翼34では、複数の植込み冷却孔52から動翼34の内部に流入した冷却媒体が、植込みキャビティ53、複数の前縁側冷却孔45、前縁側キャビティ48、複数の中央部冷却孔46、後縁側キャビティ49、複数の後縁側冷却孔47、スナッバキャビティ51、複数のスナッバ冷却孔50を通って動翼34の各部を冷却する。したがって、冷却媒体の供給量を抑えつつ、動翼34の全体を効率良く冷却することができる。また、第1実施形態の動翼34では、後縁側冷却孔47の流入側開口部47aの形状を前述した形状としているので、後縁側冷却孔47の入口部で冷却媒体が剥離を起こすことを抑制し、圧力損失を低減することができる。これにより、必要な冷媒流量を確保することができ、タービン翼を効果的に冷却することができる。
 また、冷却媒体として、例えば、高圧とされた超臨界流体の二酸化炭素を使用することにより、動翼34から冷却媒体への熱流束を多くすることができ、効率良く冷却を行うことができる。さらに、本実施形態の動翼34では、動翼34の冷却を終えた冷却媒体を、後縁側に比べて圧力の高い前縁側から燃焼ガス通路37内に放出する構成となっている。したがって、スナッバ冷却孔50から燃焼ガス通路37内に冷却媒体を放出する部分の開口部の口径を、大きく設定することができ、この開口部の詰まり等の発生を抑制することができる。
 次に第2実施形態について説明する。図6は第2実施形態の動翼134の縦断面を示す図である。図7は、図6に実線の四角形で囲った領域A1及び領域A2の部分の断面を拡大して示す図である。
 第2実施形態では、図7に拡大して示すように、後縁側冷却孔47の流入側(図7において下側)の流入側開口部47a、及び流出側(図7において上側)の流出側開口部47cにおける孔径Da,Dcが、流入側開口部47aより内側で孔径が一定の流路部47bにおける孔径Dbより大きくなっている。これによって、流入側開口部47a及び流出側開口部47cの開口面積が、流路部47bの流路面積よりも大きくなっており、流入側開口部47a及び流出側開口部47cには、流路部47b側に向けて徐々に開口面積が減少する曲面部Sa,Scが形成されている。また、図7に示す後縁側冷却孔47に沿った断面において、曲面部Sa,Scの形状が凸状となっている。換言すれば、曲面部Sa,Scの曲率中心Cが流路側ではなく、翼有効部40を構成する鋼材の内部側に位置する形状となっている。このように曲面部Sa,Scの形状が凸状となっていることによって、この形状が凹状となっている場合に比べてより冷却媒体の後縁側冷却孔47への流入、流出をスムーズにすることができ、圧力損失を低減することができる。その他の部分については、第1実施形態と同様に構成されているため、対応する部分には、同一の符号を付して重複した説明は省略する。
 このように、後縁側冷却孔47の流入側開口部47aだけでなく、流出側開口部47cにおいても滑らかに流路を広げる構成としたので、流入圧損を小さくできるばかりでなく、流出圧損も小さくすることができる。これによって、必要な冷媒流量を確保することができ、動翼134を効果的に冷却し、安全で高効率の発電システムを実現できる。なお、流入側開口部47a及び流出側開口部47cの形状は精密鋳造などで形成することができ、積層造型などによっても容易に成形が可能である。
 次に、第3実施形態について説明する。図8は、第3実施形態の動翼234の、図4に示した第1実施形態における領域A1に相当する部分を拡大して示すものである。第3実施形態では、後縁側冷却孔47の流入側(図8において下側)の流入側開口部47aにおける孔径Daが、流入側開口部47aより内側で孔径が一定の流路部47bにおける孔径Dbより大きくなっている。これによって、流入側開口部47aの開口面積が、流路部47bの流路面積よりも大きくなっており、流入側開口部47aには、流路部47b側に向けて徐々に開口面積が減少する曲面部Sa1,Sa2が形成されている。また、図8に示す後縁側冷却孔47に沿った断面において、曲面部Sa1,Sa2の形状が凸状となっている。換言すれば、曲面部Sa1,Sa2の曲率中心Cが流路側ではなく、翼有効部40を構成する鋼材の内部側に位置する形状となっている。
 さらに、上記した流入側開口部47aの曲面部Sa1,Sa2の曲率が、冷却媒体の流れの上流側と下流側では異なる構成となっている。図8に示す例では、図中矢印で示すように、冷却媒体が動翼234の中央部分から後縁側に流れてくるので、流入側開口部47aにおける上流側(図8中左側)の曲面部Sa1の曲率を小さく(曲率半径を大きく)、下流側の曲面部Sa2の曲率をこれより大きく(曲率半径を小さく)している。このような構成とすることで、冷却媒体の後縁側冷却孔47への流入をよりスムーズにすることができ、流入圧損を小さくすることができる。これによって、十分な冷却媒体の流量を確保することができ、タービン翼を効果的に冷却し、安全で高効率の発電システムを実現することができる。なお、上記のような流入側開口部47aの形状を、流出側開口部47cに適用しても良いことはもちろんである。
 次に、第4実施形態について説明する。先ず、図9乃至図11を参照して、静翼31の構成について説明する。図9は静翼31の縦断面を示す図、図10は、図9のA-A断面を示す図、図11は図9のB-B断面を示す図である。図9に示すように、静翼31は、翼有効部140、翼有効部140の外周側(半径方向外側)に設けられた静翼外輪側隔壁150、および翼有効部140の内周側(半径方向内側)に設けられた静翼内輪側隔壁160を備える。
 翼有効部140は、燃焼ガスが通過する通路部である。この翼有効部140は、例えば、前縁側(例えば、図10,11の左側)が湾曲断面形状を有し、後縁側(例えば、図10,11の右側)が先細断面形状を有する、翼型形状に構成されている。翼有効部140の前縁側は、両端が開口した中空部141で構成されている。中空部141の横断面形状は、特に限定されるものではないが、例えば、図10,11に示すように、前縁側の翼有効部140の外形形状に対応する形状とすることができる。
 翼有効部140の中央および後縁側には、翼高さ方向(図9では上下方向)に貫通する貫通孔142、143が形成されている。貫通孔142、143の断面形状は、特に限定されない。ここでは、例えば、図11に示すように、貫通孔142として半楕円形状、貫通孔143として円形形状を例示している。
 なお、翼有効部140の中央としては、例えば、翼有効部140のキャンバーラインの中央などが例示される。また、前縁側とは、翼有効部140の中央よりも前縁側をいい、後縁側とは、翼有効部140の中央よりも後縁側をいう。
 後縁側に形成される貫通孔143は、少なくとも1つ形成され、ここでは複数形成された一例を示している。貫通孔143が複数形成された場合、貫通孔143は、例えば、等間隔に形成され、翼厚さの減少に伴って、貫通孔143の孔径が後縁側に向かって徐々に小さくなるように構成することができる。
 翼有効部140の中空部141には、図9に示すように、インサート部材170が配置されている。このインサート部材170は、板状部171および筒体部175を備える。
 板状部171は、中空部141に連通する、後述する静翼外輪側隔壁150の開口151aおよび中央の貫通孔142に連通する、後述する静翼外輪側隔壁150の開口151bを外周側から覆うように設けられている。板状部171には、開口151aに連通する開口172および開口151bに連通する開口173が形成されている。板状部171は、例えば、外周縁の一部を、後述する静翼外輪側隔壁150における開口溝151の底部の所定の位置に固定される。
 筒体部175は、一端が板状部171に固定され、他端が閉塞した筒体である。筒体部175は、中空部141の内壁141aと所定の空隙をあけて中空部141に挿入可能な形状に構成されている。筒体部175の、中空部141の内壁141aと面する箇所には、複数の噴出孔176が形成されている。
 筒体部175の外側面175aと中空部141の内壁141aとの距離は、例えば、ほぼ一定となるように設定されることが好ましい。これによって、例えば、噴出孔176から噴出した冷却媒体を内壁141aに衝突させて翼有効部140を冷却する際、翼有効部140全体に亘って一様に冷却することができる。なお、冷却媒体としては、例えば、超臨界流体の作動ガス(二酸化炭素)が使用される。
 静翼外輪側隔壁150は、例えば、多角形状の平板形状を有している。この静翼外輪側隔壁150には、冷却媒体を導入するための開口溝151が形成されている。そして、開口溝151の底部には、中空部141に連通する開口151aおよび中央の貫通孔142に連通する開口151bが形成されている。そして、開口151aは、中空部141と同一開口形状に形成され、開口151bは、貫通孔142と同一開口形状に形成されている。
 ここで、後縁側の貫通孔143を形成する際、貫通孔143に連通する開口が形成されるが、後縁側の貫通孔143から半径方向外側(外周側)に所定の間隙をあけて、その開口は、平板152によって塞がれている。これによって、後縁側の貫通孔143に連通する空隙部(キャビティ)153が形成される。なお、静翼外輪側隔壁150は、例えば、翼有効部140と一体的に形成される。
 前縁側に位置する静翼外輪側隔壁150の内周側には、開口151aと、静翼外輪側隔壁150の外部とを連通させる冷却孔155が形成されている。すなわち、この冷却孔155は、筒体部175の噴出孔176から中空部141の内壁141aに向かって噴出された冷却媒体によって静翼外輪側隔壁150を冷却しつつ、冷却媒体を翼外部に排出する孔である。なお、噴出孔176から噴出された冷却媒体の一部は、内壁141aと筒体部175との間を開口151aに向かって流れる。冷却孔155は、例えば、図10に示すように、複数形成される。なお、冷却孔155は、前縁側冷却孔として機能する。この冷却孔155に対しては、筒体部175と中空部141との間が、冷却媒体を冷却孔155に流入させるためのキャビティとして作用する。
 また、後縁側に位置する静翼外輪側隔壁150の内周側には、空隙部153と、静翼外輪側隔壁150の外部とを連通させる冷却孔156が形成されている。すなわち、この冷却孔156は、空隙部153に流入した冷却媒体によって静翼外輪側隔壁150を冷却しつつ、冷却媒体を翼外部に排出する孔である。この冷却孔156は、例えば、図10に示すように、複数形成される。したがって、空隙部153に流入した冷却媒体が、各冷却孔156に分散して流入する。なお、冷却孔156は、後縁側外輪冷却孔として機能する。
 ここで、静翼31を周方向に配置した際、隣接する静翼31の静翼外輪側隔壁150間には、若干の隙間があるため、冷却孔155、156から翼外部に冷却媒体を排出することができる。
 静翼外輪側隔壁150の他方の端部には、ケーシング30の係合部溝に係合するための、係合突出部157が形成されている。この係合突出部157は、例えば、タービンロータ軸方向に突出している。この係合突出部157を備えることで、周方向に形成されたケーシング30の係合部溝80に沿って静翼31を周方向に配置して支持(固定)することができる(図2参照)。
 そして、開口溝151は、例えば、ケーシング30によって外周側から覆われ、閉じられた状態となる(図2参照)。この開口溝151は、図示しないが、ケーシング30内に設けられた冷却媒体の供給通路と連通している。そして、この供給通路から開口溝151内に冷却媒体が導入される。
 静翼内輪側隔壁160は、図11に示すように、静翼外輪側隔壁150と同様に、例えば、多角形状の平板形状を有している。この静翼内輪側隔壁160は、図9に示すように、中空部141に連通する空隙部(キャビティ)161、および中央の貫通孔142および後縁側の貫通孔143に連通する空隙部(キャビティ)162を備える。なお、空隙部161は、前縁側空隙部として、空隙部162は、後縁側空隙部として機能する。
 ここで、空隙部161は、例えば、静翼内輪側隔壁160の内面に形成された、中空部141の開口断面形状と同一の断面形状を有する凹部によって構成される。空隙部162は、例えば、貫通孔142および貫通孔143から半径方向内側(内周側)に所定の間隙をあけて、貫通孔142および貫通孔143に連通する開口部分を塞ぐ平板163を設けることで構成される。なお、静翼内輪側隔壁160は、例えば、翼有効部140と一体的に形成される。
 前縁側に位置する静翼内輪側隔壁160の外周側には、空隙部161と、静翼内輪側隔壁160の外部とを連通させる冷却孔165が形成されている。すなわち、この冷却孔165は、筒体部175の噴出孔176から中空部141の内壁141aに向かって噴出された冷却媒体によって静翼内輪側隔壁160を冷却しつつ、冷却媒体を翼外部に排出する孔である。なお、噴出孔176から噴出された冷却媒体の一部は、内壁141aと筒体部175との間を空隙部161に向かって流れる。冷却孔165は、例えば、図11に示すように、複数形成される。なお、冷却孔165は、前縁側冷却孔として機能する。
 また、後縁側に位置する静翼内輪側隔壁160の外周側には、空隙部162と、静翼内輪側隔壁160の外部とを連通させる冷却孔166が形成されている。すなわち、この冷却孔166は、空隙部162に流入した冷却媒体の一部によって静翼内輪側隔壁160を冷却しつつ、その冷却媒体を翼外部に排出する孔である。冷却孔166は、例えば、図11に示すように、複数形成される。なお、冷却孔166は、後縁側内輪冷却孔として機能する。
 ここで、静翼31を周方向に配置した際、隣接する静翼31の静翼内輪側隔壁160間には、若干の隙間があるため、冷却孔165、166から翼外部に冷却媒体を排出することができる。また、静翼内輪側隔壁160の他方の端部側は、閉じられた端部となっている。
 図12は、図9、図11に示す領域A3の部分の縦断面を拡大して示す図である。第4実施形態の静翼31では、図12に示すように、静翼内輪側隔壁160の冷却孔165の流入側の流入側開口部165aにおける孔径Daが、流入側開口部165aより内側で孔径が一定の流路部165bにおける孔径Dbより大きくなっている。これによって、流入側開口部165aの開口面積が、流路部165bの流路面積よりも大きくなっており、流入側開口部165aには、流路部165b側に向けて徐々に開口面積が減少する曲面部Sa1,Sa2が形成されている。また、図12に示す冷却孔165に沿った断面において、曲面部Sa1,Sa2の形状が凸状となっている。換言すれば、曲面部Sa1,Sa2の曲率中心Cが流路側ではなく、静翼内輪側隔壁160を構成する鋼材の内部側に位置する形状となっている。
 さらに、上記した流入側開口部165aの曲面部Sa1,Sa2の曲率が、冷却媒体の流れの上流側と下流側では異なる構成となっている。図12に示す例では、図中矢印で示すように、冷却媒体が静翼31の外周側から内周側に流れてくるので、流入側開口部165aにおける上流側(図12中上側)の曲面部Sa1の曲率を小さく(曲率半径を大きく)、下流側の曲面部Sa2の曲率をこれより大きく(曲率半径を小さく)している。このような構成とすることで、冷却媒体の冷却孔165への流入をよりスムーズにすることができ、流入圧損を小さくすることができる。これによって、十分な冷却媒体の流量を確保することができ、タービン翼を効果的に冷却し、安全で高効率の発電システムを実現することができる。
 静翼内輪側隔壁160に設けられた冷却孔165は、細孔構造として対流冷却を強化する構造としている。しかし、断面積が小さいことから、翼有効部からの冷媒流れが、流路断面積が急縮小することによって大きな圧損を招いてしまう。供給圧力が一定のままだと必要な冷媒量を確保することができず、静翼内輪側隔壁160が焼損してしまう可能性がある。
 上記のような事象が生じないように、静翼31では、冷却孔165の流入側開口部165aの形状を上述した形状にしている。これによって、圧力損失を低減することができ、必要な冷媒流量を確保することができる。これにより、静翼31を効果的に冷却し、安全で高効率の発電システムを実現することができる。この場合、上記形状を有した細孔全体を精密鋳造などで形成することもできるし、翼内側だけを上記形状に精密鋳造して、その後、そこに向かって放電加工して細孔を連通させることも可能である。また積層造型などによって流入側開口部165aを含め細孔構造全体を成形できる。
 上記した構成を備える静翼31は、いずれのタービン段落においても適用することができる。特に、温度および圧力が高い、例えば、タービン段落の初段の静翼に好適である。
 次に、第4実施形態の静翼31における冷却媒体の流動について説明する。
 ケーシング30内の冷却媒体の供給通路(図示しない)から開口溝151内に導入された冷却媒体は、図9に示すように、板状部171の開口172、開口151a(筒体部175内の板状部171側)を介して筒体部175内に流入、または板状部171の開口173、開口151bを介して貫通孔142に流入する。
 筒体部175内に流入した冷却媒体は、噴出孔176から中空部141の内壁141aに向けて噴出され、内壁141aに衝突する。冷却媒体を内壁141aに衝突させることで、内壁141aと冷却媒体との間の熱伝達が促進され、翼有効部140が効率よく冷却される。
 内壁141aに衝突した冷却媒体の一部は、内壁141aと筒体部175との間を開口151aに向かって流れ、冷却孔155に流入する。内壁141aに衝突した冷却媒体の残部は、内壁141aと筒体部175との間を空隙部161に向かって流れ、冷却孔165に流入する。
 冷却孔155を流れる冷却媒体は、静翼外輪側隔壁150を冷却しつつ、外部に排出される。冷却孔165を流れる冷却媒体は、静翼内輪側隔壁160を冷却しつつ、外部に排出される。冷却孔155または冷却孔165から外部に排出された冷却媒体は、燃焼ガス通路37(図2参照)を流れる燃焼ガスに混ざり、下流側へ流れる。
 ここで、開口151a、筒体部175の内部(中空部141)、噴出孔176、内壁141aと筒体部175との間隙(中空部141)、空隙部161は、前縁側冷却通路を構成する。この前縁側冷却通路は、翼有効部冷却通路の一部として機能している。また、冷却孔155および冷却孔165は、前縁側冷却孔として機能するとともに、側壁冷却通路の一部として機能している。
 一方、貫通孔142に流入した冷却媒体は、貫通孔142を構成する壁面を冷却しつつ、半径方向内側(内周側)へ流れ、空隙部162に流入する。空隙部162に流入した冷却媒体の一部は、各貫通孔143に流入する。貫通孔143に流入した冷却媒体は、貫通孔143を構成する壁面を冷却しつつ、半径方向外側(外周側)へ流れ、空隙部153に流入する。貫通孔142および複数の貫通孔143を流れる冷却媒体によって、翼有効部140が冷却される。そして、空隙部153に流入した冷却媒体は、冷却孔156に流入し、静翼外輪側隔壁150を冷却しつつ、外部に排出される。
 空隙部162に流入した冷却媒体の残部は、冷却孔166に流入し、静翼内輪側隔壁160を冷却しつつ、外部に排出される。冷却孔156または冷却孔166から外部に排出された冷却媒体は、燃焼ガス通路37(図2参照)を流れる燃焼ガスに混ざり、下流側へ流れる。
 ここで、開口151b、貫通孔142、空隙部162、貫通孔143、空隙部153は、後縁側冷却通路を構成する。この後縁側冷却通路は、翼有効部冷却通路の一部として機能している。また、後縁側外輪冷却孔として機能する冷却孔156および後縁側内輪冷却孔として機能する冷却孔166は、側壁冷却通路の一部として機能している。
 上記のように、静翼31では、翼有効部140以外にも、静翼外輪側隔壁150および静翼内輪側隔壁160を冷却することができる。また、翼有効部140を冷却した冷却媒体を静翼外輪側隔壁150および静翼内輪側隔壁160の冷却に使用することで、冷却媒体の流量を抑制しつつ、冷却媒体の冷却能力を最大限に利用することができる。さらに、冷却孔165の流入側開口部165aの形状を前記した形状にすることよって、圧力損失を低減することができ、必要な冷媒流量を確保することができる。これによって、静翼31を効率よく冷却することができる。
 以上では、静翼内輪側隔壁160の冷却孔165の流入側開口部165aの形状を曲面部Sa1,Sa2を有する形状とした場合について説明したが、以下では、静翼外輪側隔壁150の冷却孔155について適用した場合について説明する。
 図13は、図9、図10に示す領域A4の部分の縦断面を拡大して示す図である。図13に示すように、静翼外輪側隔壁150の冷却孔155の流入側の流入側開口部155aにおける孔径Daが、流入側開口部155aより内側で孔径が一定の流路部155bにおける孔径Dbより大きくなっている。これによって、流入側開口部155aの開口面積が、流路部155bの流路面積よりも大きくなっており、流入側開口部155aには、流路部155b側に向けて徐々に開口面積が減少する曲面部Sa1,Sa2が形成されている。また、図13に示す冷却孔155に沿った断面において、曲面部Sa1,Sa2の形状が凸状となっている。換言すれば、曲面部Sa1,Sa2の曲率中心Cが流路側ではなく、静翼外輪側隔壁150を構成する鋼材の内部側に位置する形状となっている。
 さらに、上記した流入側開口部155aの曲面部Sa1,Sa2の曲率が、冷却媒体の流れの上流側と下流側では異なる構成となっている。図13に示す例では、図中矢印で示すように、冷却媒体が静翼31の内周側から外周側に流れてくるので、流入側開口部155aにおける上流側(図13中下側)の曲面部Sa1の曲率を小さく(曲率半径を大きく)、下流側の曲面部Sa2の曲率をこれより大きく(曲率半径を小さく)している。このような構成とすることで、冷却媒体の冷却孔155への流入をよりスムーズにすることができ、流入圧損を小さくすることができる。これによって、十分な冷却媒体の流量を確保することができ、タービン翼を効果的に冷却し、安全で高効率の発電システムを実現することができる。
 静翼外輪側隔壁150に設けられた冷却孔155は、細孔構造として対流冷却を強化する構造としている。しかし、断面積が小さいことから、翼有効部からの冷媒流れが、流路断面積が急縮小することによって大きな圧損を招いてしまう。供給圧力が一定のままだと必要な冷媒量を確保することができず、静翼外輪側隔壁150が焼損してしまう可能性がある。
 上記のような事象が生じないように、静翼31では、冷却孔155の流入側開口部155aの形状を上述した形状にしている。これによって、圧力損失を低減することができ、必要な冷媒流量を確保することができる。これにより、静翼31を効果的に冷却し、安全で高効率の発電システムを実現することができる。この場合、上記形状を有した細孔全体を精密鋳造などで形成することもできるし、翼内側だけを上記形状に精密鋳造して、その後、そこに向かって放電加工して細孔を連通させることも可能である。また積層造型などによって流入側開口部155aを含め細孔構造全体を成形できる。
 以上の実施形態では、超臨界COタービン翼に本発明を適用した例について説明したが、超臨界COタービン翼に限られるものでないことはもちろんであり、細孔冷却構造を有する他のタービン翼にも同様にして適用することができる。
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 10…ガスタービン設備、20…燃焼器、21…タービン、22、23…熱交換器、24…配管、25…発電機、26…圧縮機、30…ケーシング、31…静翼、32…タービンロータ、33…ロータディスク、34,134,234…動翼、35…シュラウドセグメント、36…空隙部、37…燃焼ガス通路、40…翼有効部、41…スナッバ、42…内輪側壁、43…植込み部、44…翼有効部冷却孔、45…前縁側冷却孔、46…中央部冷却孔、47…後縁側冷却孔、47a…流入側開口部、47b…流路部、47c…流出側開口部、48…前縁側キャビティ、49…後縁側キャビティ、50…スナッバ冷却孔、51…スナッバキャビティ、52…植込み冷却孔、53…植込みキャビティ、80…係合部溝、140…翼有効部、141a…内壁、142,143…貫通孔、150…静翼外輪側隔壁、151…開口溝、151a,151b…開口、152…平板、153…空隙部、155…冷却孔、155a…流入側開口部、155b…流路部、156…冷却孔、157…係合突出部、160…静翼内輪側隔壁、161,162…空隙部、163…平板、165…冷却孔、165a…流入側開口部、165b…流路部、166…冷却孔、170…インサート部材、171…板状部、172,173…開口、175…筒体部、175a…外側面、176…噴出孔。

Claims (9)

  1.  タービン翼の内部に形成され、流入側開口部と流出側開口部と、前記流入側開口部と前記流出側開口部との間に形成された流路部とを有し、内部を冷却媒体が流通する冷却孔と、
     前記冷却媒体を、複数の前記冷却孔に分散させて流入させるキャビティと、
    を備えたタービン翼であって、
     前記流入側開口部が、前記流路部側に向けて徐々に開口面積が減少する曲面部を有し、
     前記曲面部の形状が、前記冷却孔に沿った断面において凸状であるタービン翼。
  2.  請求項1記載のタービン翼であって、
     前記流入側開口部の前記曲面部が、前記キャビティ内の前記冷却媒体の流れの方向における上流側に位置する上流側曲面部の曲率と、下流側に位置する下流側曲面部の曲率とが異なるタービン翼。
  3.  請求項2記載のタービン翼であって、
     前記上流側曲面部の曲率が、前記下流側曲面部の曲率より小さいタービン翼。
  4.  請求項1~3いずれか1項記載のタービン翼であって、
     前記流出側開口部が、前記流路部側に向けて徐々に開口面積が減少する曲面部を有し、
     前記曲面部の形状が、前記冷却孔に沿った断面において凸状であるタービン翼。
  5.  請求項1~4いずれか1項記載のタービン翼であって、
     前記冷却孔を、翼有効部に備えたタービン翼。
  6.  請求項1~3いずれか1項記載のタービン翼であって、
     前記冷却孔を、翼内輪側隔壁に備えたタービン翼。
  7.  請求項1~3,6いずれか1項記載のタービン翼であって、
     前記冷却孔を、翼外輪側隔壁に備えたタービン翼。
  8.  請求項1乃至5いずれか1項記載のタービン翼からなる動翼を具備したタービン。
  9.  請求項1~3,6,7いずれか1項記載のタービン翼からなる静翼を具備したタービン。
PCT/JP2017/024441 2017-07-04 2017-07-04 タービン翼及びタービン WO2019008656A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/024441 WO2019008656A1 (ja) 2017-07-04 2017-07-04 タービン翼及びタービン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/024441 WO2019008656A1 (ja) 2017-07-04 2017-07-04 タービン翼及びタービン

Publications (1)

Publication Number Publication Date
WO2019008656A1 true WO2019008656A1 (ja) 2019-01-10

Family

ID=64950664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024441 WO2019008656A1 (ja) 2017-07-04 2017-07-04 タービン翼及びタービン

Country Status (1)

Country Link
WO (1) WO2019008656A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114134300A (zh) * 2021-12-13 2022-03-04 中船重工龙江广瀚燃气轮机有限公司 一种叶片进排气边喷丸保护装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132403U (ja) * 1991-05-30 1992-12-08 三菱重工業株式会社 ガスタービン
JPH1193602A (ja) * 1997-07-28 1999-04-06 Asea Brown Boveri Ag 流体機械用のロータ
JP2002540347A (ja) * 1999-03-29 2002-11-26 シーメンス アクチエンゲゼルシヤフト 冷却材の貫流する鋳造ガスタービン翼並びにガスタービン翼の分配室の製造装置及び方法
JP2005337251A (ja) * 2004-05-27 2005-12-08 United Technol Corp <Utc> ロータブレード
JP2006266112A (ja) * 2005-03-22 2006-10-05 Mitsubishi Heavy Ind Ltd タービン動翼
JP2010053749A (ja) * 2008-08-27 2010-03-11 Mitsubishi Heavy Ind Ltd タービン用翼
JP2015059486A (ja) * 2013-09-18 2015-03-30 株式会社東芝 タービン静翼

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132403U (ja) * 1991-05-30 1992-12-08 三菱重工業株式会社 ガスタービン
JPH1193602A (ja) * 1997-07-28 1999-04-06 Asea Brown Boveri Ag 流体機械用のロータ
JP2002540347A (ja) * 1999-03-29 2002-11-26 シーメンス アクチエンゲゼルシヤフト 冷却材の貫流する鋳造ガスタービン翼並びにガスタービン翼の分配室の製造装置及び方法
JP2005337251A (ja) * 2004-05-27 2005-12-08 United Technol Corp <Utc> ロータブレード
JP2006266112A (ja) * 2005-03-22 2006-10-05 Mitsubishi Heavy Ind Ltd タービン動翼
JP2010053749A (ja) * 2008-08-27 2010-03-11 Mitsubishi Heavy Ind Ltd タービン用翼
JP2015059486A (ja) * 2013-09-18 2015-03-30 株式会社東芝 タービン静翼

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114134300A (zh) * 2021-12-13 2022-03-04 中船重工龙江广瀚燃气轮机有限公司 一种叶片进排气边喷丸保护装置
CN114134300B (zh) * 2021-12-13 2023-12-05 中船重工龙江广瀚燃气轮机有限公司 一种叶片进排气边喷丸保护装置

Similar Documents

Publication Publication Date Title
US8807945B2 (en) Cooling system for turbine airfoil including ice-cream-cone-shaped pedestals
JP2017198205A (ja) タービンエンジン用のエーロフォイル
US20170138211A1 (en) Ring segment cooling structure and gas turbine having the same
JP2015230005A (ja) ストラット冷却通路による排出フレーム冷却システム
JP2015059486A (ja) タービン静翼
US20170234142A1 (en) Rotor Blade Trailing Edge Cooling
JP6010295B2 (ja) タービンロータブレードのプラットフォーム領域を冷却するための装置及び方法
US10830082B2 (en) Systems including rotor blade tips and circumferentially grooved shrouds
EP3203024B1 (en) Rotor blade and corresponding gas turbine
JP2021050688A (ja) タービン翼
US20200102836A1 (en) Turbine blade having cooling hole in winglet and gas turbine including the same
KR101839656B1 (ko) 가스터빈 블레이드
US10563529B2 (en) Turbine and turbine stator blade
JP2016211546A (ja) タービン翼形部のタービュレータ構成
KR102113682B1 (ko) 터빈 블레이드
RU2706210C2 (ru) Тепловой экран статора для газовой турбины, газовая турбина с таким тепловым экраном статора и способ охлаждения теплового экрана статора
JP6813669B2 (ja) タービン静翼列及びタービン
WO2019008656A1 (ja) タービン翼及びタービン
US10247009B2 (en) Cooling passage for gas turbine system rotor blade
KR20190037473A (ko) 가스 터빈
US11174745B2 (en) Turbine stator blade
US20140178191A1 (en) Diffuser Assemblies Having at Least One Adjustable Flow Deflecting Member
US11098600B2 (en) Transition piece
KR101937588B1 (ko) 터빈의 냉각 블레이드 및 이를 포함하는 터빈 및 가스터빈
JP6526787B2 (ja) タービン動翼及びタービン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17917211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP