WO2019007439A1 - 基于采煤机震源超前探测的采煤机自动调高装置及方法 - Google Patents

基于采煤机震源超前探测的采煤机自动调高装置及方法 Download PDF

Info

Publication number
WO2019007439A1
WO2019007439A1 PCT/CN2018/096519 CN2018096519W WO2019007439A1 WO 2019007439 A1 WO2019007439 A1 WO 2019007439A1 CN 2018096519 W CN2018096519 W CN 2018096519W WO 2019007439 A1 WO2019007439 A1 WO 2019007439A1
Authority
WO
WIPO (PCT)
Prior art keywords
shearer
fuselage
cylinder
coordinate system
source
Prior art date
Application number
PCT/CN2018/096519
Other languages
English (en)
French (fr)
Inventor
刘送永
朱真才
周公博
李伟
崔新霞
江红祥
张新
程诚
吴洪状
谢奇志
Original Assignee
中国矿业大学
徐州秩润矿山设备科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学, 徐州秩润矿山设备科技有限公司 filed Critical 中国矿业大学
Priority to AU2018296041A priority Critical patent/AU2018296041B2/en
Priority to RU2019113923A priority patent/RU2707218C1/ru
Priority to GB1905658.9A priority patent/GB2569739B/en
Publication of WO2019007439A1 publication Critical patent/WO2019007439A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C31/00Driving means incorporated in machines for slitting or completely freeing the mineral from the seam
    • E21C31/08Driving means incorporated in machines for slitting or completely freeing the mineral from the seam for adjusting parts of the machines
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C27/00Machines which completely free the mineral from the seam
    • E21C27/20Mineral freed by means not involving slitting
    • E21C27/32Mineral freed by means not involving slitting by adjustable or non-adjustable planing means with or without loading arrangements
    • E21C27/34Machine propelled along the working face by cable or chain
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/08Guiding the machine
    • E21C35/10Guiding the machine by feelers contacting the working face
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/24Remote control specially adapted for machines for slitting or completely freeing the mineral
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C25/00Cutting machines, i.e. for making slits approximately parallel or perpendicular to the seam
    • E21C25/06Machines slitting solely by one or more cutting rods or cutting drums which rotate, move through the seam, and may or may not reciprocate

Definitions

  • the invention relates to a coal mining machine automatic height adjusting device and method based on the advanced detection of a shearer source, belonging to an automatic mining equipment technology.
  • the traditional mining face is mainly operated manually. It is not only labor-intensive, low-efficiency, but also has a very poor working environment and a high degree of danger. Therefore, it is an irresistible trend to develop automated and intelligent mining equipment, in which automatic adjustment of the shearer is realized.
  • the high problem is the key to realizing the intelligence of the mining face.
  • the automatic height adjustment methods of shearers mainly include dozens of methods such as cutting force response, natural gamma ray, radar, temperature, and image. Among them, the methods based on cutting force response and natural gamma ray-based methods are widely used.
  • the methods are all in the research stage, but the method based on the cutting force response requires that the coal rock has different Platts coefficients.
  • the method based on natural gamma ray requires the top plate to have strong radioactivity, so the use is limited.
  • the existing automatic height adjustment technology of shearer is mainly based on the identification of coal-rock interface. The application range is limited and the error is large. The overall situation cannot fully meet the requirements of actual production.
  • the present invention provides an automatic height adjusting device and method for a coal mining machine based on the detection of a shearer source, which can cancel the automatic adjustment of the coal mining interface by the shearer
  • the dependence can realize the prediction of the front working face, high reliability and good economy, and can provide conditions for the construction of unmanned mining face.
  • An automatic height adjusting device for a coal mining machine based on the advanced detection of a shearer source, when the working face is recovered, the shearer in the three-machine supporting mining equipment mainly composed of a shearer, a scraper and a hydraulic support is used.
  • Automatic height adjustment characterized by: including a coal mining machine side signal acquisition device, a working surface side signal acquisition device and a height adjustment control module;
  • the shearer side signal collecting device comprises a strapdown inertial navigation module II, a shaft encoder, a source sensor and an embedded system II;
  • the strapdown inertial navigation module II is installed on the shearer fuselage, and the shearer is detected in the mine Absolute pose parameter in the coordinate system;
  • the shaft encoder is mounted on the rocker arm to collect the swing angle data of the rocker arm;
  • the source sensor is fixed on the shearer body to detect the source signal of the shearer;
  • the embedded system II is installed On the shearer fuselage, according to the absolute pose parameters of the shearer in the mine coordinate system and the swing angle data of the rocker arm, calculate and store the geographical coordinates of the center point of the upper and lower drums of the shearer, and store the shearer at Absolute pose parameters in the mine coordinate system;
  • the working surface side signal collecting device comprises a fuselage, an adjusting mechanism, a strapdown inertial navigation module I, a three-component detector and a pressure sensor, the fuselage is mounted on the scraper by a sliding shoe, and the three-component detector and the pressure sensor are adjusted
  • the mechanism is installed on the fuselage, and the pressure sensor detects whether the three-component detector is in close contact with the coal wall of the working face;
  • the strapdown inertial navigation module I is installed on the fuselage to detect the absolute pose parameter of the fuselage in the mine coordinate system;
  • the three-component detector detects the source signal of the shearer after being reflected by the wave impedance interface;
  • the height control module includes an embedded system III, and the embedded system III is installed on the shearer by flameproofing.
  • the embedded system III is simultaneously connected with the embedded system II and the strapdown inertial module I, and the embedded system III Store and process the source signal of the shearer, the source signal of the shearer after the wave impedance interface reflection, the absolute pose parameter of the shearer in the mine coordinate system, and the absolute pose parameter of the fuselage in the mine coordinate system
  • the transverse longitudinal wave velocity model and the 3D seismic profile in the close range of the front working face are constructed, and the 3D geological model of the next cutting cycle working face is continuously updated, and the upper and lower drums of the shearer are controlled to be automatically adjusted.
  • the adjustment mechanism in the working surface side signal collecting device comprises a swing angle cylinder, a support plate and a shifting cylinder, the three-component detector and the pressure sensor are fixed on the support plate; one end of the shifting cylinder is hinged to the fuselage, and the other end is Fixed to the support plate; one end of the swing angle cylinder is hinged to the fuselage, and the other end is hinged to the side of the shift cylinder; the linear movement of the support plate is controlled by the telescopic expansion of the cylinder, and the angle of the support plate is controlled by the swing angle cylinder.
  • the swing angle cylinder and the shift cylinder are provided with two groups to jointly drive the support plate; the embedded system I controls the expansion and expansion of the swing cylinder and the shift cylinder to make the three-component detector closely close to the coal wall of the working face. Contact and feedback adjustment via pressure sensor.
  • a method for automatically detecting a coal mining machine based on advanced detection of a shearer source comprises the following steps:
  • the working surface side signal collecting device is statically placed at the tail of the scraper machine and does not affect the normal operation of the shearer;
  • the source sensor detects the source signal of the shearer
  • the Strapdown Inertial Navigation Module II and the shaft encoder work in real time to solve the absolute pose parameters and shake of the shearer in the mine coordinate system.
  • the swing angle data of the arm, the geographic coordinates of the center point of the upper and lower drums of the shearer are solved by the embedded system II, and the geographical position of the center point of the upper drum of the shearer is marked as (x T , y T , z T ), the shearer
  • the geographical position of the lower roller center point is marked as (x t , y t , z t );
  • the three-component detector in close contact with the coal wall of the working face detects the source signal of the shearer after the reflection of the impedance of the wave impedance, and the source signal of the embedded system III to the shearer and the reflection after the wave impedance interface
  • the seismic signal of the coal machine is subjected to conventional seismic wave processing including signal denoising, equivalent normalization and longitudinal and transverse wave separation, velocity analysis and depth migration, the transverse longitudinal wave velocity model and three-dimensional in the close range of the front working surface are constructed.
  • the seismic section identifies the distribution of coal and rock in the depth of the next cutting cycle drum in advance, and combines the absolute pose parameters of the shearer in the mine coordinate system with the absolute pose parameters of the fuselage in the mine coordinate system. a three-dimensional geological model of the next cutting cycle face;
  • the hydraulic support pushes the slide frame to carry out the next cutting cycle; the height control module extracts the top curve and the bottom plate curve of the 3D geological model at the next working interface, and is equally spaced.
  • the center point elevation z T and z t of the drum are compared, the height of the upper and lower drums of the shearer is determined and controlled, and the threshold ⁇ is set: when z Di -z T ⁇ ⁇ , the upper drum is lowered, otherwise the upper drum is up; when z di When -z t ⁇ ⁇ , the lower roller is adjusted upward, otherwise the lower roller is lowered;
  • the utility model provides the automatic height adjusting device and method of the coal mining machine based on the advanced detection of the shearer source, and the method for constructing the horizontal and vertical waves in the close range of the working face of the shearer based on the method of detecting the source of the coal mining machine
  • the model and the 3D geological model are automatically adjusted according to the geological model, with high reliability and high detection accuracy.
  • the traditional automatic height adjustment technology is relied on the coal rock identification technology, and the signal emitted by the shearer itself is used as the source signal.
  • the active source is obtained by blasting, tapping, etc., and the economy is good; the invention can also be combined with the height adjustment method based on the coal rock identification method to further improve the detection accuracy, real-time and reliability.
  • FIG. 1 is a schematic view showing a working face of a coal mining machine automatic height adjusting device according to the present invention
  • FIG. 2 is a schematic diagram of a working surface side signal collecting device of the present invention
  • Figure 3 is a block diagram showing the structure and function of the system of the present invention.
  • FIG. 1 is a schematic view showing the working face of the automatic shearing device of the coal mining machine of the present invention, and the automatic height adjusting device of the coal mining machine based on the advanced detection of the shearer source of the present invention is mainly used for mining the working face.
  • the coal mining machine 1 in the three-machine supporting mining equipment composed of the coal machine 1, the scraper 3 and the hydraulic support 4 is automatically adjusted; the characteristic is that the signal collecting device of the shearer side and the signal collecting device of the working surface side are included 2 And increase the control module.
  • the shearer side signal collecting device comprises a strapdown inertial navigation module II, a shaft encoder, a source sensor and an embedded system II;
  • the strapdown inertial navigation module II is installed on the shearer fuselage, and the shearer 1 is detected Absolute pose parameter in the mine coordinate system;
  • the shaft encoder is mounted on the rocker arm to collect the swing angle data of the rocker arm;
  • the source sensor is fixed on the shearer body to detect the source signal of the shearer 1;
  • the embedded system II is installed on the shearer fuselage, according to the absolute pose parameter of the shearer 1 in the mine coordinate system and the swing angle data of the rocker arm, calculate and store the geographical coordinates of the center point of the upper and lower drum of the shearer, and store the mining The absolute pose parameter of coal machine 1 in the mine coordinate system.
  • the working surface side signal collecting device 2 is as shown in FIG. 2, and includes a body 2-1, an adjusting mechanism, a strapdown inertial navigation module I, a three-component detector 2-5, and a pressure sensor 2-6, and the body 2 1 is mounted on the scraper 3 via the shoe 2-2, the three-component detector 2-5 and the pressure sensor 2-6 are mounted on the fuselage by an adjustment mechanism, and the three-component detector 2 is detected by the pressure sensor 2-6 5 is in close contact with the coal wall of the working face; the strapdown inertial navigation module I is installed on the fuselage 2-1 to detect the absolute pose parameter of the fuselage 2-1 in the mine coordinate system; the three-component detector 2-5 detects The source signal of the shearer 1 after being reflected by the wave impedance interface.
  • the adjustment mechanism includes a swing angle cylinder 2-3, a support plate 2-4 and a shift cylinder 2-7, and the three-component detector 2-5 and the pressure sensor 2-6 are fixed on the support plate 2-4; the shift cylinder 2 - One end of the hinge 7 is hinged to the body 2-1, and the other end is fixed to the support plate 2-4; one end of the swing angle cylinder 2-3 is hinged to the body 2-1, and the other end is hinged to the side of the shift cylinder 2-7; The linear movement of the telescopic control support plate 2-4 of the shift cylinder 2-7 controls the angular rotation of the support plate 2-4 through the swing cylinder 2-3.
  • the swing angle cylinder 2-3 and the shift cylinder 2-7 are provided with two groups to jointly drive the support plate 2-4; the embedded system I controls the expansion and contraction of the swing cylinder 2-3 and the shift cylinder 2-7
  • the three-component detector 2-5 is brought into close contact with the coal wall of the working face and is feedback-adjusted by the pressure sensor 2-6.
  • the height control module includes an embedded system III, and the embedded system III is installed on the shearer 1 by flameproofing, and the embedded system III is simultaneously connected with the embedded system II and the strapdown inertial module I, embedded System III stores and processes the source signal of the shearer 1, the source signal of the shearer 1 after the wave impedance interface reflection, the absolute pose parameter of the shearer 1 in the mine coordinate system, and the fuselage 2-1 in the mine.
  • the absolute pose parameters in the coordinate system are used to construct the transverse longitudinal wave velocity model and the 3D seismic profile in the close range of the front working face, and continuously update the 3D geological model of the next cutting cycle working face, and control the upper and lower drums of the shearer. Automatically increase.
  • a method for automatically adjusting a coal mining machine based on advanced detection of a shearer source comprising the following steps:
  • the working surface side signal collecting device 2 is statically placed at the tail of the scraper machine 3, and does not affect the normal operation of the shearer 1;
  • the source sensor detects the source signal of the shearer 1, and the strapdown inertial navigation module II and the shaft encoder work in real time to calculate the absolute pose parameters of the shearer 1 in the mine coordinate system.
  • the swing angle data of the rocker arm the geographic coordinates of the center point of the upper and lower drums of the shearer are solved by the embedded system II, and the geographical coordinates of the center point of the upper drum of the shearer are marked as (x T , y T , z T ).
  • the geographical position of the center point of the lower drum of the coal machine is marked as (x t , y t , z t );
  • the three-component detector 2-5 in close contact with the coal wall of the working face detects the source signal of the shearer 1 reflected by the wave impedance interface, and the source signal and the wave impedance of the shearer 1 of the embedded system III
  • the source signal of the shearer 1 after the interface reflection is subjected to conventional seismic wave processing including signal denoising, equivalent normalization and longitudinal and transverse wave separation, velocity analysis and depth migration, and the front working surface is constructed within a short range.
  • the transverse longitudinal wave velocity model and the 3D seismic profile identify the distribution of coal and rock in the depth of the next cutting cycle drum, combined with the absolute pose parameters of the shearer 1 in the mine coordinate system and the fuselage 2-1 in the mine coordinates. Absolute pose parameters under the system, continuously updating the 3D geological model of the next cutting cycle working face;

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

一种基于采煤机震源超前探测的采煤机自动调高装置及方法,装置包括采煤机侧信号采集装置、工作面侧信号采集装置(2)和调高控制模块,采煤机侧信号采集装置采集采煤机(1)的震源信号,解算采煤机(1)在矿山坐标系下的绝对位姿参数和采煤机(1)上、下滚筒中心点的地理坐标,工作面侧信号采集装置(2)采集经波阻抗界面反射后的采煤机(1)的震源信号,解算机身(2-1)在矿山绝对坐标系下的绝对位姿参数,调高控制模块根据接收信号对采煤机(1)上下滚筒进行自动调高。

Description

基于采煤机震源超前探测的采煤机自动调高装置及方法 技术领域
本发明涉及一种基于从采煤机震源超前探测的采煤机自动调高装置及方法,属于自动化开采装备技术。
背景技术
我国是煤矿的开采与消费大国,采煤机是煤矿开采的主要装备。传统的回采工作面主要是以人工操作,不仅劳动强度大、效率低,而且工作环境极差、危险程度极高,故发展自动化、智能化的开采装备是大势所趋,其中实现采煤机的自动调高问题是实现回采工作面智能化的关键。目前采煤机自动调高方法主要有截割力响应、自然伽玛射线、雷达、温度、图像等数十种方法,其中基于截割力响应和基于自然伽玛射线的方法应用较为广泛,其他方法均处于研究阶段,但基于截割力响应的方法要求煤岩具有不同的普氏系数,基于自然伽玛射线的方法要求顶板具有较强放射性,故使用受到均限制。现有的采煤机自动调高技术主要为以煤岩界面识别为基础的技术,应用范围有限、误差较大,总体无法完全满足实际生产的要求。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供一种基于采煤机震源超前探测的采煤机自动调高装置及方法,能够解除采煤机自动调高对煤岩界面识别技术的依赖,能够实现对前方工作面的预测,可靠性高、经济性好,能够为无人化的回采工作面建设提供条件。
技术方案:为实现上述目的,本发明采用的技术方案为:
一种基于采煤机震源超前探测的采煤机自动调高装置,在回采工作面时,对主要由采煤机、刮板机和液压支架构成的三机配套开采装备中的采煤机进行自动调高;其特征在于:包括采煤机侧信号采集装置、工作面侧信号采集装置和调高控制模块;
所述采煤机侧信号采集装置包括捷联惯导模块II、轴编码器、震源传感器和嵌入式系统II;捷联惯导模块II安装在采煤机机身上,检测采煤机在矿山坐标系下的绝对位姿参数;轴编码器安装在摇臂上,采集摇臂的摆角数据;震源传感器固定在采煤机机身上,检测采煤机的震源信号;嵌入式系统II安装在采煤机机身上,根据采煤机在矿山坐标系下的绝对位姿参数和摇臂的摆角数据,计算并存储采煤机上、下滚筒中心点的地理坐标,存储采煤机在矿山坐标系下的绝对位姿参数;
所述工作面侧信号采集装置包括机身、调节机构、捷联惯导模块I、三分量检波器和压力传感器,机身通过滑靴安装在刮板机上,三分量检波器和压力传感器通过调节机构安装在机身上,通过压力传感器检测三分量检波器与工作面煤壁是否紧密接触;捷联惯导模块I安装在机身上,检测机身在矿山坐标系下的绝对位姿参数;三分量检波器检测经波阻抗界面反射后的采煤机的震源信号;
所述调高控制模块包括嵌入式系统III,嵌入式系统III经隔爆处理安装在采煤机 上,嵌入式系统III同时与嵌入式系统II和捷联惯导模块I通信连接,嵌入式系统III存储并处理采煤机的震源信号、经波阻抗界面反射后的采煤机的震源信号、采煤机在矿山坐标系下的绝对位姿参数、机身在矿山坐标系下的绝对位姿参数,构建前方工作面近距离范围内的横纵波速度模型和三维地震剖面,并不断更新下一截割循环工作面的三维地质模型,控制采煤机上、下滚筒进行自动调高。
具体的,所述工作面侧信号采集装置中的调节机构包括摆角油缸、支撑板和推移油缸,三分量检波器和压力传感器固定在支撑板上;推移油缸的一端与机身铰接,另一端与支撑板固定;摆角油缸的一端与机身铰接,另一端与推移油缸的侧面铰接;通过推移油缸的伸缩控制支撑板的直线移动,通过摆角油缸控制支撑板的角度转动。
具体的,所述摆角油缸和推移油缸设置有两组,共同完成对支撑板的驱动;嵌入式系统I通过控制摆角油缸和推移油缸的伸缩,使三分量检波器与工作面煤壁紧密接触,并通过压力传感器进行反馈调节。
一种基于采煤机震源超前探测的采煤机自动调高装置的方法,包括如下步骤:
(a)工作面侧信号采集装置静置于刮板机机尾处,且不影响采煤机正常工作;
(b)在采煤机自动截割之前,采用人工操作方式进行第一个截割循环;
(c)采煤机工作时,震源传感器检测采煤机的震源信号,捷联惯导模块II和轴编码器实时工作,分别解算采煤机在矿山坐标系下的绝对位姿参数和摇臂的摆角数据,由嵌入式系统II解算采煤机上、下滚筒中心点的地理坐标,采煤机上滚筒中心点的地理坐标记为(x T,y T,z T),采煤机下滚筒中心点的地理坐标记为(x t,y t,z t);
(d)工作面侧信号采集装置在刮板机上行走至设定位置并停止;
(e)通过摆角油缸调节支撑板与回采工作面角度,通过推移油缸调节支撑板与回采工作面距离,实现三分量检波器在回采工作面上的快速布置;捷联惯导模块I实时工作,解算机身在矿山坐标系下的绝对位姿参数;
(f)与工作面煤壁紧密接触的三分量检波器检测经波阻抗界面反射后的采煤机的震源信号,嵌入式系统III对采煤机的震源信号和经波阻抗界面反射后的采煤机的震源信号进行包括信号去噪、等效归一化和纵横波分离、速度分析、深度偏移在内的常规地震波处理后,构建前方工作面近距离范围内的横纵波速度模型和三维地震剖面,提前识别下一截割循环滚筒截深内的煤岩分布情况,结合采煤机在矿山坐标系下的绝对位姿参数和机身在矿山坐标系下的绝对位姿参数,不断更新下一截割循环工作面的三维地质模型;
(g)调节推移油缸和摆角油缸,使三分量检波器脱离回采工作面,支撑板回到初始位置;驱动工作面侧信号采集装置沿采煤机行走方向行走设定距离后停止,重复步骤(e)~(f),直至下一截割循环工作面的三维地质模型构建完成;驱动工作面侧信号采集装置移回至刮板机机尾处停止;
(h)采煤机完成一刀截割后,液压支架推溜移架,进行下一截割循环;调高控制模块抽取三维地质模型在该下一工作界面的顶板曲线和底板曲线,等间隔采样得到一系列顶板和底板高程值(z D1,z D2,z D3,…,z Dn)和(z d1,z d2,z d3,…,z dn),将其分别与对应的采煤机上下滚筒中心点高程z T、z t进行比较,决策并控制采煤机上、下滚筒高度,设定阈值δ:当z Di-z T≤δ时,上滚筒下调,否则上滚筒上调;当z di-z t≤δ时,下滚筒上调,否则下滚筒下调;
(i)重复步骤(c)~(h),完成回采工作面的自动截割。
有益效果:本发明提供的基于从采煤机震源超前探测的采煤机自动调高装置及方法,基于采煤机震源超前探测的方法构建采煤机前方工作面近距离范围内的横纵波速度模型和三维地质模型,根据地质模型进行自动调高,可靠性高,检测精度高,解除了传统自动调高技术对煤岩识别技术的依赖,利用采煤机自身发出的信号作为震源信号,不需要通过爆破、敲击等方法得到主动震源,经济性好;本发明还可以结合基于煤岩识别方法的调高方法使用,进一步提高检测精度,实时性和可靠性。
附图说明
图1为本发明采煤机自动调高装置的回采工作面示意图;
图2为本发明工作面侧信号采集装置示意图;
图3为本发明系统结构与功能框图;
图中:1、采煤机,2、工作面侧信号采集装置,2-1、机身,2-2、滑靴,2-3、摆角油缸,2-4、支撑板,2-5、三分量检波器,2-6、压力传感器,2-7、推移油缸,3、刮板机,4、液压支架。
具体实施方式
下面结合附图对本发明作更进一步的说明。
如图1所示为本发明采煤机自动调高装置的回采工作面示意图,本发明的基于采煤机震源超前探测的采煤机自动调高装置,在回采工作面时,对主要由采煤机1、刮板机3和液压支架4构成的三机配套开采装备中的采煤机1进行自动调高;其特征在于:包括采煤机侧信号采集装置、工作面侧信号采集装置2和调高控制模块。
所述采煤机侧信号采集装置包括捷联惯导模块II、轴编码器、震源传感器和嵌入式系统II;捷联惯导模块II安装在采煤机机身上,检测采煤机1在矿山坐标系下的绝对位姿参数;轴编码器安装在摇臂上,采集摇臂的摆角数据;震源传感器固定在采煤机机身上,检测采煤机1的震源信号;嵌入式系统II安装在采煤机机身上,根据采煤机1在矿山坐标系下的绝对位姿参数和摇臂的摆角数据,计算并存储采煤机上、下滚筒中心点的地理坐标,存储采煤机1在矿山坐标系下的绝对位姿参数。
所述工作面侧信号采集装置2如图2所示,包括机身2-1、调节机构、捷联惯导模块I、三分量检波器2-5和压力传感器2-6,机身2-1通过滑靴2-2安装在刮板机3上,三分量检波器2-5和压力传感器2-6通过调节机构安装在机身上,通过压力传感器2-6检测三分量检波器2-5与工作面煤壁是否紧密接触;捷联惯导模块I安装在机身2-1上,检测机身2-1在矿山坐标系下的绝对位姿参数;三分量检波器2-5检测经波阻抗界面反射后的采煤机1的震源信号。所述调节机构包括摆角油缸2-3、支撑板2-4和推移油缸2-7,三分量检波器2-5和压力传感器2-6固定在支撑板2-4上;推移油缸2-7的一端与机身2-1铰接,另一端与支撑板2-4固定;摆角油缸2-3的一端与机身2-1铰接,另一端与推移油缸2-7的侧面铰接;通过推移油缸2-7的伸缩控制支撑板2-4的直线移动,通过摆角油缸2-3控制支撑板2-4的角度转动。所述摆角油缸2-3和推移油缸2-7设置有两组,共同完成对支撑板2-4的驱动;嵌入式系统I通过控制摆角油缸2-3和推移油缸2-7的伸缩,使三分量检波器2-5与工作面煤壁紧密接触,并通过压力传感器2-6进行反馈调节。
所述调高控制模块包括嵌入式系统III,嵌入式系统III经隔爆处理安装在采煤机1 上,嵌入式系统III同时与嵌入式系统II和捷联惯导模块I通信连接,嵌入式系统III存储并处理采煤机1的震源信号、经波阻抗界面反射后的采煤机1的震源信号、采煤机1在矿山坐标系下的绝对位姿参数、机身2-1在矿山坐标系下的绝对位姿参数,构建前方工作面近距离范围内的横纵波速度模型和三维地震剖面,并不断更新下一截割循环工作面的三维地质模型,控制采煤机上、下滚筒进行自动调高。
一种基于采煤机震源超前探测的采煤机自动调高装置的方法,如图3所示,包括如下步骤:
(a)工作面侧信号采集装置2静置于刮板机3机尾处,且不影响采煤机1正常工作;
(b)在采煤机1自动截割之前,采用人工操作方式进行第一个截割循环;
(c)采煤机工作时,震源传感器检测采煤机1的震源信号,捷联惯导模块II和轴编码器实时工作,分别解算采煤机1在矿山坐标系下的绝对位姿参数和摇臂的摆角数据,由嵌入式系统II解算采煤机上、下滚筒中心点的地理坐标,采煤机上滚筒中心点的地理坐标记为(x T,y T,z T),采煤机下滚筒中心点的地理坐标记为(x t,y t,z t);
(d)工作面侧信号采集装置2在刮板机3上行走至设定位置并停止;
(e)通过摆角油缸2-3调节支撑板2-4与回采工作面角度,通过推移油缸2-7调节支撑板(2-4)与回采工作面距离,实现三分量检波器2-5在回采工作面上的快速布置;捷联惯导模块I实时工作,解算机身2-1在矿山坐标系下的绝对位姿参数;
(f)与工作面煤壁紧密接触的三分量检波器2-5检测经波阻抗界面反射后的采煤机1的震源信号,嵌入式系统III对采煤机1的震源信号和经波阻抗界面反射后的采煤机1的震源信号进行包括信号去噪、等效归一化和纵横波分离、速度分析、深度偏移在内的常规地震波处理后,构建前方工作面近距离范围内的横纵波速度模型和三维地震剖面,提前识别下一截割循环滚筒截深内的煤岩分布情况,结合采煤机1在矿山坐标系下的绝对位姿参数和机身2-1在矿山坐标系下的绝对位姿参数,不断更新下一截割循环工作面的三维地质模型;
(g)调节推移油缸2-7和摆角油缸2-3,使三分量检波器2-5脱离回采工作面,支撑板2-4回到初始位置;驱动工作面侧信号采集装置2沿采煤机1行走方向行走设定距离后停止,重复步骤(e)~(f),直至下一截割循环工作面的三维地质模型构建完成;驱动工作面侧信号采集装置(2)移回至刮板机(3)机尾处停止;
(h)采煤机1完成一刀截割后,液压支架4推溜移架,进行下一截割循环;调高控制模块抽取三维地质模型在该下一工作界面的顶板曲线和底板曲线,等间隔采样得到一系列顶板和底板高程值(z D1,z D2,z D3,…,z Dn)和(z d1,z d2,z d3,…,z dn),将其分别与对应的采煤机上下滚筒中心点高程z T、z t进行比较,决策并控制采煤机上、下滚筒高度,设定阈值δ:当z Di-z T≤δ时,上滚筒下调,否则上滚筒上调;当z di-z t≤δ时,下滚筒上调,否则下滚筒下调;
(i)重复步骤(c)~(h),完成回采工作面的自动截割。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (4)

  1. 一种基于采煤机震源超前探测的采煤机自动调高装置,在回采工作面时,对主要由采煤机(1)、刮板机(3)和液压支架(4)构成的三机配套开采装备中的采煤机(1)进行自动调高;其特征在于:包括采煤机侧信号采集装置、工作面侧信号采集装置(2)和调高控制模块;
    所述采煤机侧信号采集装置包括捷联惯导模块II、轴编码器、震源传感器和嵌入式系统II;捷联惯导模块II安装在采煤机机身上,检测采煤机(1)在矿山坐标系下的绝对位姿参数;轴编码器安装在摇臂上,采集摇臂的摆角数据;震源传感器固定在采煤机机身上,检测采煤机(1)的震源信号;嵌入式系统II安装在采煤机机身上,根据采煤机(1)在矿山坐标系下的绝对位姿参数和摇臂的摆角数据,计算并存储采煤机上、下滚筒中心点的地理坐标,存储采煤机(1)在矿山坐标系下的绝对位姿参数;
    所述工作面侧信号采集装置(2)包括机身(2-1)、调节机构、捷联惯导模块I、三分量检波器(2-5)和压力传感器(2-6),机身(2-1)通过滑靴(2-2)安装在刮板机(3)上,三分量检波器(2-5)和压力传感器(2-6)通过调节机构安装在机身上,通过压力传感器(2-6)检测三分量检波器(2-5)与工作面煤壁是否紧密接触;捷联惯导模块I安装在机身(2-1)上,检测机身(2-1)在矿山坐标系下的绝对位姿参数;三分量检波器(2-5)检测经波阻抗界面反射后的采煤机(1)的震源信号;
    所述调高控制模块包括嵌入式系统III,嵌入式系统III经隔爆处理安装在采煤机(1)上,嵌入式系统III同时与嵌入式系统II和捷联惯导模块I通信连接,嵌入式系统III存储并处理采煤机(1)的震源信号、经波阻抗界面反射后的采煤机(1)的震源信号、采煤机(1)在矿山坐标系下的绝对位姿参数、机身(2-1)在矿山坐标系下的绝对位姿参数,构建前方工作面近距离范围内的横纵波速度模型和三维地震剖面,并不断更新下一截割循环工作面的三维地质模型,控制采煤机上、下滚筒进行自动调高。
  2. 根据权利要求1所述的基于采煤机震源超前探测的采煤机自动调高装置,其特征在于:所述工作面侧信号采集装置(2)中的调节机构包括摆角油缸(2-3)、支撑板(2-4)和推移油缸(2-7),三分量检波器(2-5)和压力传感器(2-6)固定在支撑板(2-4)上;推移油缸(2-7)的一端与机身(2-1)铰接,另一端与支撑板(2-4)固定;摆角油缸(2-3)的一端与机身(2-1)铰接,另一端与推移油缸(2-7)的侧面铰接;通过推移油缸(2-7)的伸缩控制支撑板(2-4)的直线移动,通过摆角油缸(2-3)控制支撑板(2-4)的角度转动。
  3. 根据权利要求2所述的基于采煤机震源超前探测的采煤机自动调高装置,其特征在于:所述摆角油缸(2-3)和推移油缸(2-7)设置有两组,共同完成对支撑板(2-4)的驱动;嵌入式系统I通过控制摆角油缸(2-3)和推移油缸(2-7)的伸缩,使三分量检波器(2-5)与工作面煤壁紧密接触,并通过压力传感器(2-6)进行反馈调节。
  4. 一种基于采煤机震源超前探测的采煤机自动调高装置的方法,其特征在于:包括如下步骤:
    (a)工作面侧信号采集装置(2)静置于刮板机(3)机尾处,且不影响采煤机(1)正常工作;
    (b)在采煤机(1)自动截割之前,采用人工操作方式进行第一个截割循环;
    (c)采煤机工作时,震源传感器检测采煤机(1)的震源信号,捷联惯导模块II和轴编码器实时工作,分别解算采煤机(1)在矿山坐标系下的绝对位姿参数和摇臂的摆角数据,由嵌入式系统II解算采煤机上、下滚筒中心点的地理坐标,采煤机上滚筒中心点的地理坐标记 为(x T,y T,z T),采煤机下滚筒中心点的地理坐标记为(x t,y t,z t);
    (d)工作面侧信号采集装置(2)在刮板机(3)上行走至设定位置并停止;
    (e)通过摆角油缸(2-3)调节支撑板(2-4)与回采工作面角度,通过推移油缸(2-7)调节支撑板(2-4)与回采工作面距离,实现三分量检波器(2-5)在回采工作面上的快速布置;捷联惯导模块I实时工作,解算机身(2-1)在矿山坐标系下的绝对位姿参数;
    (f)与工作面煤壁紧密接触的三分量检波器(2-5)检测经波阻抗界面反射后的采煤机(1)的震源信号,嵌入式系统III对采煤机(1)的震源信号和经波阻抗界面反射后的采煤机(1)的震源信号进行包括信号去噪、等效归一化和纵横波分离、速度分析、深度偏移在内的常规地震波处理后,构建前方工作面近距离范围内的横纵波速度模型和三维地震剖面,提前识别下一截割循环滚筒截深内的煤岩分布情况,结合采煤机(1)在矿山坐标系下的绝对位姿参数和机身(2-1)在矿山坐标系下的绝对位姿参数,不断更新下一截割循环工作面的三维地质模型;
    (g)调节推移油缸(2-7)和摆角油缸(2-3),使三分量检波器(2-5)脱离回采工作面,支撑板(2-4)回到初始位置;驱动工作面侧信号采集装置(2)沿采煤机(1)行走方向行走设定距离后停止,重复步骤(e)~(f),直至下一截割循环工作面的三维地质模型构建完成;驱动工作面侧信号采集装置(2)移回至刮板机(3)机尾处停止;
    (h)采煤机(1)完成一刀截割后,液压支架(4)推溜移架,进行下一截割循环;调高控制模块抽取三维地质模型在该下一工作界面的顶板曲线和底板曲线,等间隔采样得到一系列顶板和底板高程值(z D1,z D2,z D3,…,z Dn)和(z d1,z d2,z d3,…,z dn),将其分别与对应的采煤机上下滚筒中心点高程z T、z t进行比较,决策并控制采煤机上、下滚筒高度,设定阈值δ:当z Di-z T≤δ时,上滚筒下调,否则上滚筒上调;当z di-z t≤δ时,下滚筒上调,否则下滚筒下调;
    (i)重复步骤(c)~(h),完成回采工作面的自动截割。
PCT/CN2018/096519 2017-07-04 2018-07-20 基于采煤机震源超前探测的采煤机自动调高装置及方法 WO2019007439A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2018296041A AU2018296041B2 (en) 2017-07-04 2018-07-20 Automatic shearer height adjustment apparatus based on advanced detection of shearer seismic source and method therefor
RU2019113923A RU2707218C1 (ru) 2017-07-04 2018-07-20 Устройство для регулирования высоты автоматической врубовой машины на основе определения сейсмических колебаний врубовой машины и способ такого регулирования
GB1905658.9A GB2569739B (en) 2017-07-04 2018-07-20 Automatic shearer height adjusting apparatus based on advanced detection of shearer seismic source and method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710536370.0A CN107091089B (zh) 2017-07-04 2017-07-04 基于采煤机震源超前探测的采煤机自动调高装置及方法
CN201710536370.0 2017-07-04

Publications (1)

Publication Number Publication Date
WO2019007439A1 true WO2019007439A1 (zh) 2019-01-10

Family

ID=59641143

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/086134 WO2019007147A1 (zh) 2017-07-04 2018-05-09 基于采煤机震源超前探测的采煤机自动调高装置及方法
PCT/CN2018/096519 WO2019007439A1 (zh) 2017-07-04 2018-07-20 基于采煤机震源超前探测的采煤机自动调高装置及方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086134 WO2019007147A1 (zh) 2017-07-04 2018-05-09 基于采煤机震源超前探测的采煤机自动调高装置及方法

Country Status (5)

Country Link
CN (1) CN107091089B (zh)
AU (1) AU2018296041B2 (zh)
GB (1) GB2569739B (zh)
RU (1) RU2707218C1 (zh)
WO (2) WO2019007147A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888997A (zh) * 2019-04-19 2019-06-14 黑龙江齐四机床有限公司 一种大、中型高压电机转子铜条嵌紧滚压机
CN111241722A (zh) * 2019-12-04 2020-06-05 神华神东煤炭集团有限责任公司 超大采高采煤机设计参数的确定方法及超大采高采煤机
CN112001982A (zh) * 2020-09-04 2020-11-27 陕西陕煤黄陵矿业有限公司 基于煤层数字化模型ct剖切的采煤机智能截割方法及系统
CN112096378A (zh) * 2020-08-31 2020-12-18 中国煤炭科工集团太原研究院有限公司 连续采煤机输送机尾的摆动控制方法、装置及连续采煤机
CN112329206A (zh) * 2020-10-15 2021-02-05 中铁二局第二工程有限公司 一种隧道施工非爆破区判定方法
CN113803069A (zh) * 2021-09-26 2021-12-17 中国矿业大学 智能化综放工作面采煤机无示教记忆截割系统及方法
CN113818880A (zh) * 2021-10-13 2021-12-21 郑州煤机液压电控有限公司 采煤工作面自动调斜装置及方法
CN113944463A (zh) * 2021-10-14 2022-01-18 西安煤矿机械有限公司 一种采煤机辅助支撑装置及其使用方法
CN114109386A (zh) * 2021-12-10 2022-03-01 国家能源投资集团有限责任公司 地下煤炭开采工作面调控方法
CN114476578A (zh) * 2022-01-18 2022-05-13 宁夏天地奔牛实业集团有限公司 基于负载跟随控制的刮板机链条自动张紧控制方法
CN114662259A (zh) * 2020-12-07 2022-06-24 北斗天地股份有限公司 一种基于高精度惯导的采煤机三维定位方法及系统
CN114970073A (zh) * 2021-12-10 2022-08-30 太原理工大学 一种基于激光雷达的采煤机虚实融合定位系统
WO2023116103A1 (zh) * 2021-12-22 2023-06-29 中国矿业大学 一种智能化综采工作面采煤机少传感无示教自动截割方法
CN117569805A (zh) * 2024-01-17 2024-02-20 山西启创达矿山设备制造有限责任公司 一种调节式采煤机摇臂及其使用方法
CN117967307B (zh) * 2024-04-01 2024-06-07 枣庄矿业集团新安煤业有限公司 一种用于远程控制采煤机旋转调采的数据处理方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107091089B (zh) * 2017-07-04 2019-01-11 中国矿业大学 基于采煤机震源超前探测的采煤机自动调高装置及方法
CN108180904B (zh) * 2017-12-19 2021-01-08 中国矿业大学 一种采煤机多惯导定位装置及方法
CN109854242B (zh) * 2019-01-08 2020-09-11 浙江大学 一种基于混沌理论的采煤机滚筒自动预测系统
CN109630110B (zh) * 2019-01-18 2020-02-18 天地科技股份有限公司 一种综采工作面煤层厚度自适应截割控制方法及电子设备
CN110531425B (zh) * 2019-08-29 2021-08-13 武汉理工大学 一种用于隧道与地下工程的超前探水装置
CN112832761B (zh) * 2020-11-12 2022-02-18 临沂矿业集团菏泽煤电有限公司 一种煤矿综采工作面采煤机与地质模型的耦合系统
CN112902906B (zh) * 2021-03-31 2022-07-08 南昌大学第一附属医院 一种测量手术床角度带磁性高精度数显仪
CN114352274B (zh) * 2022-01-12 2022-12-02 中国矿业大学 一种基于采煤机滚筒震源的煤岩界面识别方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103883326A (zh) * 2014-01-28 2014-06-25 中国矿业大学 基于煤层震波探测和地学信息的采煤机滚筒调高方法
CN104481534A (zh) * 2014-11-06 2015-04-01 中国矿业大学 一种采煤机滚筒自动调高系统
CN104678428A (zh) * 2015-03-11 2015-06-03 山东大学 隧道掘进机破岩震源和主动源三维地震联合超前探测系统
US20160090839A1 (en) * 2014-11-26 2016-03-31 Larry G. Stolarczyk Method of protecting the health and well-being of coal mine machine operators
US20170025020A1 (en) * 2014-12-09 2017-01-26 General Electric Company Vehicular traffic guidance and coordination system and method
CN107091089A (zh) * 2017-07-04 2017-08-25 中国矿业大学 基于采煤机震源超前探测的采煤机自动调高装置及方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3333489A1 (de) * 1983-09-16 1985-04-04 Ruhrkohle Ag, 4300 Essen Hydraulikbock fuer strebfoerderer- und hobelantrieb
US4678236A (en) * 1985-02-11 1987-07-07 Reinhard Wirtgen Apparatus for working deposits by the open-cast working process
US6219301B1 (en) * 1997-11-18 2001-04-17 Schlumberger Technology Corporation Pressure pulse generator for measurement-while-drilling systems which produces high signal strength and exhibits high resistance to jamming
US8157330B2 (en) * 2009-04-30 2012-04-17 Joy Mm Delaware, Inc. Method and apparatus for maintaining longwall face alignment
WO2011020484A1 (de) * 2009-08-20 2011-02-24 Rag Aktiengesellschaft Verfahren zur herstellung einer streböffnung unter einsatz von automatisierungssystemen
US8157331B2 (en) * 2009-11-16 2012-04-17 Joy Mm Delaware, Inc. Method for steering a mining machine cutter
CN102788995A (zh) * 2012-08-02 2012-11-21 中煤科工集团西安研究院 以切割震动为地震信号的煤矿工作面探测方法
CN102852521B (zh) * 2012-09-21 2014-12-10 中国矿业大学(北京) 一种基于图像识别的采煤机滚筒自动调高方法
PL230218B1 (pl) * 2014-10-30 2018-10-31 Inst Technik Innowacyjnych Emag Sposób i układ do pomiaru względnych zmian koncentracji naprężeń przed frontem ściany wydobywczej
CN106089202B (zh) * 2016-08-22 2018-03-16 西安科技大学 基于电流监测的综采工作面采煤机自动调高控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103883326A (zh) * 2014-01-28 2014-06-25 中国矿业大学 基于煤层震波探测和地学信息的采煤机滚筒调高方法
CN104481534A (zh) * 2014-11-06 2015-04-01 中国矿业大学 一种采煤机滚筒自动调高系统
US20160090839A1 (en) * 2014-11-26 2016-03-31 Larry G. Stolarczyk Method of protecting the health and well-being of coal mine machine operators
US20170025020A1 (en) * 2014-12-09 2017-01-26 General Electric Company Vehicular traffic guidance and coordination system and method
CN104678428A (zh) * 2015-03-11 2015-06-03 山东大学 隧道掘进机破岩震源和主动源三维地震联合超前探测系统
CN107091089A (zh) * 2017-07-04 2017-08-25 中国矿业大学 基于采煤机震源超前探测的采煤机自动调高装置及方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888997A (zh) * 2019-04-19 2019-06-14 黑龙江齐四机床有限公司 一种大、中型高压电机转子铜条嵌紧滚压机
CN109888997B (zh) * 2019-04-19 2024-05-28 黑龙江齐四机床有限公司 一种大、中型高压电机转子铜条嵌紧滚压机
CN111241722A (zh) * 2019-12-04 2020-06-05 神华神东煤炭集团有限责任公司 超大采高采煤机设计参数的确定方法及超大采高采煤机
CN112096378A (zh) * 2020-08-31 2020-12-18 中国煤炭科工集团太原研究院有限公司 连续采煤机输送机尾的摆动控制方法、装置及连续采煤机
CN112001982A (zh) * 2020-09-04 2020-11-27 陕西陕煤黄陵矿业有限公司 基于煤层数字化模型ct剖切的采煤机智能截割方法及系统
CN112001982B (zh) * 2020-09-04 2024-03-19 陕西陕煤黄陵矿业有限公司 基于煤层数字化模型ct剖切的采煤机智能截割方法及系统
CN112329206A (zh) * 2020-10-15 2021-02-05 中铁二局第二工程有限公司 一种隧道施工非爆破区判定方法
CN114662259A (zh) * 2020-12-07 2022-06-24 北斗天地股份有限公司 一种基于高精度惯导的采煤机三维定位方法及系统
CN113803069A (zh) * 2021-09-26 2021-12-17 中国矿业大学 智能化综放工作面采煤机无示教记忆截割系统及方法
CN113818880B (zh) * 2021-10-13 2023-08-08 郑州恒达智控科技股份有限公司 采煤工作面自动调斜装置及方法
CN113818880A (zh) * 2021-10-13 2021-12-21 郑州煤机液压电控有限公司 采煤工作面自动调斜装置及方法
CN113944463A (zh) * 2021-10-14 2022-01-18 西安煤矿机械有限公司 一种采煤机辅助支撑装置及其使用方法
CN113944463B (zh) * 2021-10-14 2024-02-27 西安煤矿机械有限公司 一种采煤机辅助支撑装置及其使用方法
CN114109386A (zh) * 2021-12-10 2022-03-01 国家能源投资集团有限责任公司 地下煤炭开采工作面调控方法
CN114970073A (zh) * 2021-12-10 2022-08-30 太原理工大学 一种基于激光雷达的采煤机虚实融合定位系统
CN114109386B (zh) * 2021-12-10 2023-09-19 国家能源投资集团有限责任公司 地下煤炭开采工作面调控方法
CN114970073B (zh) * 2021-12-10 2024-04-02 太原理工大学 一种基于激光雷达的采煤机虚实融合定位系统
WO2023116103A1 (zh) * 2021-12-22 2023-06-29 中国矿业大学 一种智能化综采工作面采煤机少传感无示教自动截割方法
CN114476578B (zh) * 2022-01-18 2024-02-06 宁夏天地奔牛实业集团有限公司 基于负载跟随控制的刮板机链条自动张紧控制方法
CN114476578A (zh) * 2022-01-18 2022-05-13 宁夏天地奔牛实业集团有限公司 基于负载跟随控制的刮板机链条自动张紧控制方法
CN117569805B (zh) * 2024-01-17 2024-03-19 山西启创达矿山设备制造有限责任公司 一种调节式采煤机摇臂及其使用方法
CN117569805A (zh) * 2024-01-17 2024-02-20 山西启创达矿山设备制造有限责任公司 一种调节式采煤机摇臂及其使用方法
CN117967307B (zh) * 2024-04-01 2024-06-07 枣庄矿业集团新安煤业有限公司 一种用于远程控制采煤机旋转调采的数据处理方法

Also Published As

Publication number Publication date
GB201905658D0 (en) 2019-06-05
WO2019007147A1 (zh) 2019-01-10
GB2569739A (en) 2019-06-26
GB2569739B (en) 2020-02-12
CN107091089B (zh) 2019-01-11
AU2018296041B2 (en) 2020-10-22
AU2018296041A1 (en) 2019-05-16
RU2707218C1 (ru) 2019-11-25
CN107091089A (zh) 2017-08-25

Similar Documents

Publication Publication Date Title
WO2019007439A1 (zh) 基于采煤机震源超前探测的采煤机自动调高装置及方法
CN103835719B (zh) 一种基于虚拟轨迹控制的采煤机自适应截割方法
CN109630110A (zh) 一种综采工作面煤层厚度自适应截割控制方法及电子设备
AU2009351410B2 (en) Method for producing a face opening using automation systems
RU2705665C2 (ru) Панорамное изменение наклона в длиннозабойной врубовой системе
CN106194181B (zh) 基于地质数据的智能化工作面煤岩界面识别方法
CN113379909B (zh) 一种透明工作面智能开采大数据分析决策方法和系统
CN109469484B (zh) 基于上位机规划的自动化采煤方法
WO2018094874A1 (zh) 基于煤层地理信息系统的采煤机姿态控制方法
CN102797462A (zh) 一种采煤机自动截割控制系统及自动截割控制方法
CN110080766A (zh) 综采工作面煤岩识别装置及方法
CN106296817B (zh) 一种基于地质数据的工作面煤层三维建模方法
CN103293974A (zh) 基于gnss的平地铲智能控制系统和方法及平地铲设备
CN106194177B (zh) 用于控制开采机的系统和方法、开采设备、存储介质
CN110107295A (zh) 一种基于工作面高精度导航模型的无人采煤路径规划方法
CN110691889B (zh) 长壁采掘系统中的自适应俯仰控制
CN105913445A (zh) 一种基于机器视觉的煤岩界面识别及定位方法
CN106256991B (zh) 一种采煤机记忆截割与记忆定位联合学习方法
CN112746864A (zh) 一种综采超前支护智能机器人群
CN112668109B (zh) 一种综采工作面截割路线模型建立方法
CN105806256B (zh) 一种巷道掘进示阔装置及其操作方法
WO2023116103A1 (zh) 一种智能化综采工作面采煤机少传感无示教自动截割方法
CN212614710U (zh) 一种煤岩识别系统和装置
CN114593729A (zh) 一种基于高精度惯导的采煤机导航方法
LIU et al. Transparent geological exploration technology of coal seam on the working surface of intelligent mining of thin coal seam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18827381

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201905658

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20180720

ENP Entry into the national phase

Ref document number: 2018296041

Country of ref document: AU

Date of ref document: 20180720

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18827381

Country of ref document: EP

Kind code of ref document: A1