RU2707218C1 - Устройство для регулирования высоты автоматической врубовой машины на основе определения сейсмических колебаний врубовой машины и способ такого регулирования - Google Patents

Устройство для регулирования высоты автоматической врубовой машины на основе определения сейсмических колебаний врубовой машины и способ такого регулирования Download PDF

Info

Publication number
RU2707218C1
RU2707218C1 RU2019113923A RU2019113923A RU2707218C1 RU 2707218 C1 RU2707218 C1 RU 2707218C1 RU 2019113923 A RU2019113923 A RU 2019113923A RU 2019113923 A RU2019113923 A RU 2019113923A RU 2707218 C1 RU2707218 C1 RU 2707218C1
Authority
RU
Russia
Prior art keywords
combine
face
seismic
height
coordinate system
Prior art date
Application number
RU2019113923A
Other languages
English (en)
Inventor
Сунъюн ЛЮ
Чжэньцай ЧЖУНЬ
Гунбо Чжоу
Вэй Ли
Синься ЦУЙ
Хунсян ЦЗЯН
Синь ЧЖАН
Чэн Чэн
Хунзхуан У
Цичжи СЕ
Original Assignee
Китайский Университет Горного Дела И Технологии
Сюйчжоу Чжижунь Майнинг Эквипмент Сайнз Энд Технолоджи Кo., Лтд
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Китайский Университет Горного Дела И Технологии, Сюйчжоу Чжижунь Майнинг Эквипмент Сайнз Энд Технолоджи Кo., Лтд filed Critical Китайский Университет Горного Дела И Технологии
Application granted granted Critical
Publication of RU2707218C1 publication Critical patent/RU2707218C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C27/00Machines which completely free the mineral from the seam
    • E21C27/20Mineral freed by means not involving slitting
    • E21C27/32Mineral freed by means not involving slitting by adjustable or non-adjustable planing means with or without loading arrangements
    • E21C27/34Machine propelled along the working face by cable or chain
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C31/00Driving means incorporated in machines for slitting or completely freeing the mineral from the seam
    • E21C31/08Driving means incorporated in machines for slitting or completely freeing the mineral from the seam for adjusting parts of the machines
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/08Guiding the machine
    • E21C35/10Guiding the machine by feelers contacting the working face
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/24Remote control specially adapted for machines for slitting or completely freeing the mineral
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C25/00Cutting machines, i.e. for making slits approximately parallel or perpendicular to the seam
    • E21C25/06Machines slitting solely by one or more cutting rods or cutting drums which rotate, move through the seam, and may or may not reciprocate

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

Группа изобретений относится к устройству для регулирования высоты автоматической врубовой машины на основе определения сейсмических колебаний врубовой машины и способу такого регулирования. Устройство состоит из прибора для сбора сигналов со стороны комбайна, прибора для сбора сигналов со стороны очистного забоя и модуля регулировки высоты. Прибор для сбора сигналов со стороны комбайна получает от комбайна сигналы о сейсмических колебаниях и рассчитывает абсолютные параметры позиционирования комбайна в системе координат шахты и географические координаты центральных точек верхних и нижних роликов комбайна. Прибор для сбора сигналов со стороны очистного забоя получает сигнал о сейсмических колебаниях, посылаемый комбайном, и рассчитывает абсолютные параметры позиционирования корпуса в системе координат шахты. Модуль регулировки высоты включает в себя бортовую систему, которая связана с другой бортовой системой, а также с бесплатформенным инерциальным навигационным модулем. Бортовая система сохраняет и обрабатывает сигналы сейсмических колебаний комбайна, абсолютные параметры позиционирования комбайна в системе координат шахты и абсолютные параметры позиционирования корпуса в системе координат шахты, строит модель скорости волны в поперечном и продольном разрезах и трехмерное сейсмическое сечение на коротком расстоянии от очистного забоя и постоянно обновляет трехмерную геологическую модель рабочего забоя для следующего цикла вырубки для автоматической регулировки высоты верхних и нижних роликов комбайна. Технический результат заключается в повышении надежности и точности регулирования высоты автоматической врубовой машины. 2 н. и 2 з.п. ф-лы, 3 ил.

Description

ОБЛАСТЬ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
[0001] Настоящее изобретение относится к области устройств для регулирования высоты автоматической врубовой машины на основе определения сейсмических колебаний и способу такого регулирования, а в общем смысле - к области автоматизации горнодобывающего оборудования.
СУЩЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
[0002] В Китае огромные масштабы добычи и потребления угля. Основным инструментом добычи угля является выемочный комбайн. Работы в забое обычно ведутся вручную и характеризуются высокой трудоемкостью, низкой эффективностью, крайне неблагоприятными и опасными условиями труда. Следовательно, актуальность представляет автоматизация горнодобывающего оборудования. Для автоматизации работы забоя важно решить проблему автоматического регулирования высоты комбайна. В настоящее время для автоматического регулирования высоты комбайна в основном используются способы на основе сопротивления силе вырубки, по естественным гамма-лучам, по радару, по температуре и по изображению. Наиболее распространенные способы - по сопротивлению силе вырубки и по естественным гамма-лучам. Остальные способы еще на стадии исследования. Способ на основе сопротивления силе вырубки предполагает, что у угольной породы должна быть разная шкала твердости по Протодиаконову. Способ на основе естественных гамма-лучей требует, чтобы верхняя пластина обладала достаточно большой радиоактивностью. Поэтому область применения этих способов ограничена. Существующая технология автоматической регулировки высоты комбайнов основана на определении фронта породы, ограничена по диапазону применения и имеет достаточно большую погрешность, поэтому недостаточно отвечает требованиям современной разработки.
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Техническая задача
[0003] Задачей настоящего изобретения является сгладить недостатки существующего уровня техники и предложить устройство для регулирования высоты автоматической врубовой машины на основе определения сейсмических колебаний врубовой машины и способ такого регулирования, что позволит отказаться от способа на основе идентификации фронта породы и прогнозировать параметры работы с очистным забоем. Устройство и способ надежны и экономичны и могут применяться для обустройства автоматизированного забоя.
Техническое решение
[0004] Для решения поставленной задачи в настоящем изобретении применяются следующие технические решения:
[0005] Устройство для регулирования высоты автоматической врубовой машины на основе определения сейсмических колебаний врубовой машины, выполняющее автоматическое регулирование высоты комбайна в составе трехкомпонентного горнодобывающего комплекса, состоящего из комбайна, скрепера и гидравлической крепи, при этом устройство состоит из прибора для сбора сигналов со стороны комбайна, прибора для сбора сигналов со стороны очистного забоя и модуля регулировки высоты;
[0006] Прибор для сбора сигналов со стороны комбайна включает в себя бесплатформенный инерциальный навигационный модуль II, кодировщик, датчик сейсмических колебаний и бортовую систему II; бесплатформенный инерциальный навигационный модуль II установлен на корпусе комбайна и определяет абсолютные параметры позиционирования комбайна в системе координат шахты; кодировщик установлен на колыбельном механизме для сбора данных об угле крена колыбельного механизма; датчик сейсмических колебаний закреплен на корпусе комбайна и считывает сигналы сейсмических колебаний от комбайна; бортовая система II установлена на корпусе комбайна для расчета и сохранения географических координат центральных точек верхних и нижних роликов комбайна в соответствии с абсолютными параметрами позиционирования комбайна в системе координат шахты и данными об угле крена колыбельного механизма;
[0007] Прибор для сбора сигналов со стороны очистного забоя включает в себя корпус, механизм регулировки, бесплатформенный инерциальный навигационный модуль I, трехкомпонентный сейсмограф и датчик давления; при этом корпус крепится на скрепере на тормозной башмак, трехкомпонентный сейсмограф и датчик давления крепятся на корпусе на механизм регулировки, а факт соприкосновения трехкомпонентного сейсмографа с пластом очистного забоя определяется датчиком давления; бесплатформенный инерциальный навигационный модуль I установлен на корпусе и определяет абсолютные параметры позиционирования корпуса в системе координат шахты; трехкомпонентный сейсмограф определяет сигнал сейсмических колебаний, исходящий от комбайна и отраженный волновым импедансом фронта;
[0008] модуль регулировки высоты включает в себя бортовую систему III; бортовая система III проходит взрывозащитную обработку, а затем устанавливается на комбайн; бортовая система III связана как с бортовой системой II, так и с бесплатформенным инерциальным навигационным модулем I; бортовая система III сохраняет и обрабатывает сигналы сейсмических колебаний комбайна, а также сигналы сейсмических колебаний, издаваемые комбайном и отраженные волновым импедансом фронта, абсолютные параметры позиционирования комбайна в системе координат шахты и абсолютные параметры позиционирования корпуса в системе координат шахты, строит модель скорости волны в поперечном и продольном разрезах и трехмерное сейсмическое сечение на коротком расстоянии от очистного забоя и постоянно обновляет трехмерную геологическую модель рабочего забоя для следующего цикла вырубки для автоматической регулировки высоты верхних и нижних роликов комбайна.
[0009] В частности, механизм регулировки в составе прибора для сбора сигналов со стороны очистного забоя включает в себя цилиндр вращения, опорную пластину и движущий цилиндр; трехкомпонентный сейсмограф и датчик давления крепятся к опорной пластине; один конец движущего цилиндра шарнирно соединен с корпусом, другой конец крепится к опорной пластине; один конец цилиндра вращения шарнирно соединен с корпусом, а другой конец шарнирно соединен с боковой поверхностью движущего цилиндра; линейное движение опорной пластины контролируется за счет удлинения и сжатия движущего цилиндра, а угол вращения опорной пластины контролируется за счет цилиндра вращения.
[0010] В частности, две группы цилиндров вращения и движущих цилиндров совместно приводят в движение опорную пластину; бортовая система I управляет удлинением и сжатием движущего цилиндра и цилиндра вращения так, что трехкомпонентный сейсмограф постоянно соприкасается с пластом очистного забоя, а регулировка отклика выполняется датчиком давления.
[0011] Способ регулирования высоты автоматической врубовой машины на основе определения сейсмических колебаний врубовой машины, состоящий из следующих этапов:
[0012] (a) прибор для сбора сигналов со стороны очистного забоя устанавливается в хвостовую часть скрепера и не влияет на работу комбайна в обычном режиме;
[0013] (b) перед началом разработки в автоматическом режиме первый цикл вырубки выполняется вручную;
[0014] (c) в процессе работы датчик сейсмических колебаний улавливает сейсмические колебания от комбайна, бесплатформенный инерциальный навигационный модуль II и кодировщик работают в режиме реального времени и рассчитывают абсолютные параметры позиционирования комбайна в системе координат шахты и данные угла крена колыбельного механизма, а бортовая система II рассчитывает географические координаты центральных точек верхних и нижних роликов комбайна, при этом географическая координата центральной точки верхнего ролика комбайна обозначается (xT, yT, zT), а географическая координата центральной точки нижнего ролика комбайна обозначается (xt, yt, zt);
[0015] (d) прибор для сбора сигналов со стороны очистного забоя двигается по скреперу до заданной точки и прекращает движение;
[0016] (e) угол между опорной пластиной и забоем регулируется при помощи цилиндра вращения, а расстояние между опорной пластиной и забоем - при помощи движущего цилиндра, так чтобы можно было быстро разместить трехкомпонентный сейсмограф на забое; бесплатформенный инерциальный навигационный модуль I в режиме реального времени рассчитывает абсолютные параметры позиционирования корпуса в системе координат шахты;
[0017] (f) трехкомпонентный сейсмограф, соприкасающийся с пластом очистного забоя, улавливает сигнал сейсмических колебаний, отправленный комбайном и отраженный волновым импедансом фронта; бортовая система III выполняет обработку сигнала сейсмической волны, т.е. убирает шум, выполняет нормализацию, продольное и поперечное разделение волны, анализ скорости или смещения глубины сигнала сейсмических колебаний от комбайна и сигнала сейсмических колебаний, отправленного комбайном и отраженного волновым импедансом фронта, и строит модель скорости волны в поперечном и продольном разрезах и трехмерное сейсмическое сечение на коротком расстоянии от очистного забоя, заранее определяет распределение породы на глубине выемки для следующего цикла вырубки и постоянно обновляет трехмерную геологическую модель рабочего забоя для следующего цикла вырубки для автоматической регулировки высоты верхних и нижних роликов комбайна исходя из абсолютных параметров позиционирования комбайна в системе координат шахты и абсолютных параметров позиционирования корпуса в системе координат шахты;
[0018] (g) движущий цилиндр и цилиндр вращения регулируются таким образом, чтобы оторвать трехкомпонентный сейсмограф от забоя, а опорная пластина возвращается в исходное положение; прибор для сбора сигналов со стороны очистного забоя двигается на заданное расстояние в направлении движения комбайна и останавливается; этапы (e)-(f) повторяются до тех пор, пока не будет построена трехмерная геологическая модель очистного забоя для следующего цикла вырубки; прибор для сбора сигналов со стороны очистного забоя двигается обратно к хвостовой части скрепера и останавливается;
[0019] (h) после того, как комбайн закончит вырубку, вперед выдвигается гидравлическая крепь и выполняется новый цикл вырубки; модуль регулировки высоты берет кривую верхней пластины и кривую нижней пластины из трехмерной геологической модели для следующего рабочего забоя и выполняет пробное моделирование через равные промежутки, в результате получается последовательность значений подъема верхней и нижней пластины (ZD1, ZD2, ZD3, …, ZDn) и (Zd1, Zd2, Zd3, …, Zdn), затем модуль сравнивает значения подъема с соответствующими значениями подъема ZT и Zt для центральных точек верхних и нижних роликов комбайна, определяет и изменяет высоту верхних и нижних роликов комбайна и задает порог δ; если ZDi-ZT≤δ, то верхний ролик опускается, для всех остальных значений верхний ролик поднимается; если Zdi-Zt≤δ, нижний ролик поднимается, для всех остальных значений нижний ролик опускается;
[0020] (i) этапы (c)-(h) повторяются в рамках завершения автоматического цикла разработки забоя.
Полезный эффект
[0021] Согласно описанию устройства для регулирования высоты автоматической врубовой машины на основе определения сейсмических колебаний врубовой машины и способа такого регулирования, строится модель скорости волны в поперечном и продольном разрезах и трехмерное сейсмическое сечение на коротком расстоянии от очистного забоя, по которой автоматически регулируется высота, поэтому этот способ отличается высокой надежностью и точностью, а от регулировки высоты исходя из идентификации породы можно отказаться. В качестве сигнала сейсмических колебаний используется сигнал от комбайна, поэтому способ не требует дополнительного активного источника сейсмических колебаний (полученного путем взрыва или ударного воздействия) и является экономически эффективным. Настоящее изобретение может применяться вместе со способом регулировки высоты на основе идентификации породы, что позволит увеличить точность и надежность и вести работу в режиме реального времени.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0022] Фигура 1 - схематическое представление забоя, где работает устройство для автоматической регулировки высоты врубовой машины согласно настоящему изобретению;
[0023] Фигура 2 - схематическое представление прибор для сбора сигналов со стороны очистного забоя согласно настоящему изобретению;
[0024] Фигура 3 - конструктивная и функциональная блок-схема устройства согласно настоящему изобретению.
[0025] На чертежах: 1, комбайн; 2, прибор для сбора сигналов со стороны очистного забоя; 2-1, корпус; 2-2, тормозной башмак; 2-3, цилиндр вращения; 2-4, опорная пластина; 2-5, трехкомпонентный сейсмограф; 2-6, датчик давления; 2-7, движущий цилиндр; 3, скрепел, 4, гидравлическая крепь.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
[0026] Ниже приводится описание изобретения со ссылкой на прилагаемые чертежи.
[0027] Фигура 1 - схематическое представление забоя, где работает устройство для автоматической регулировки высоты врубовой машины согласно настоящему изобретению. Устройство для регулирования высоты врубовой машины на основе определения сейсмических колебаний врубовой машины выполняет автоматическое регулирование высоты комбайна 1 в составе трехкомпонентного горнодобывающего комплекса, состоящего из комбайна 1, скрепера 3 и гидравлической крепи 4, при этом устройство состоит из прибора для сбора сигналов со стороны комбайна, прибора для сбора сигналов со стороны очистного забоя 2 и модуля регулировки высоты.
[0028] Прибор для сбора сигналов со стороны комбайна включает в себя бесплатформенный инерциальный навигационный модуль II, кодировщик, датчик сейсмических колебаний и бортовую систему II; бесплатформенный инерциальный навигационный модуль II установлен на корпусе комбайна 1 и определяет абсолютные параметры позиционирования комбайна 1 в системе координат шахты; кодировщик установлен на колыбельном механизме для сбора данных об угле крена колыбельного механизма; датчик сейсмических колебаний закреплен на корпусе комбайна 1 и считывает сигналы сейсмических колебаний от комбайна; бортовая система II установлена на корпусе комбайна 1 для расчета и сохранения географических координат центральных точек верхних и нижних роликов комбайна в соответствии с абсолютными параметрами позиционирования комбайна в системе координат шахты и данными об угле крена колыбельного механизма.
[0029] Прибор для сбора сигналов со стороны очистного забоя 2, как показано на Фигуре 2, включает в себя корпус 2-1, механизм регулировки, бесплатформенный инерциальный навигационный модуль I, трехкомпонентный сейсмограф 2-5 и датчик давления 2-6; при этом корпус 2-1 крепится на скрепере 3 на тормозной башмак 2-2, трехкомпонентный сейсмограф 2-5 и датчик давления 2-6 крепятся на корпусе 2-1 на механизм регулировки, а факт соприкосновения трехкомпонентного сейсмографа 2-5 с пластом очистного забоя определяется датчиком давления 2-6; бесплатформенный инерциальный навигационный модуль I установлен на корпусе 2-1 и определяет абсолютные параметры позиционирования корпуса 2-1 в системе координат шахты; трехкомпонентный сейсмограф 2-5 определяет сигнал сейсмических колебаний, исходящий от комбайна 1 и отраженный волновым импедансом фронта, механизм регулировки в составе прибора для сбора сигналов со стороны очистного забоя 2 включает в себя цилиндр вращения 2-3, опорную пластину 2-4 и движущий цилиндр 2-7; трехкомпонентный сейсмограф 2-5 и датчик давления 2-6 крепятся к опорной пластине 2-4; один конец движущего цилиндра 2-7 шарнирно соединен с корпусом 2-1, другой конец крепится к опорной пластине 2-4; один конец цилиндра вращения 2-3 шарнирно соединен с корпусом 2-1, а другой конец шарнирно соединен с боковой поверхностью движущего цилиндра 2-7; линейное движение опорной пластины 2-4 контролируется за счет удлинения и сжатия движущего цилиндра 2-7, а угол вращения опорной пластины 2-4 контролируется за счет цилиндра вращения 2-3. Две группы цилиндров вращения 2-3 и движущих цилиндров 2-7 совместно приводят в движение опорную пластину 2-3; бортовая система I управляет удлинением и сжатием движущего цилиндра 2-7 и цилиндра вращения 2-3 так, что трехкомпонентный сейсмограф 2-5 постоянно соприкасается с пластом очистного забоя, а регулировка отклика выполняется датчиком давления 2-6.
[0030] модуль регулировки высоты включает в себя бортовую систему III; бортовая система III проходит взрывозащитную обработку, а затем устанавливается на комбайн 1; бортовая система III связана как с бортовой системой II, так и с бесплатформенным инерциальным навигационным модулем I; бортовая система III сохраняет и обрабатывает сигналы сейсмических колебаний комбайна 1, а также сигналы сейсмических колебаний, издаваемые комбайном 1 и отраженные волновым импедансом фронта, абсолютные параметры позиционирования комбайна 1 в системе координат шахты и абсолютные параметры позиционирования корпуса 2-1 в системе координат шахты, строит модель скорости волны в поперечном и продольном разрезах и трехмерное сейсмическое сечение на коротком расстоянии от очистного забоя и постоянно обновляет трехмерную геологическую модель рабочего забоя для следующего цикла вырубки для автоматической регулировки высоты верхних и нижних роликов комбайна.
[0031] Способ регулирования высоты автоматической врубовой машины на основе определения сейсмических колебаний врубовой машины, как показано на Фигуре 3, состоит из следующих этапов:
[0032] (a) прибор для сбора сигналов со стороны очистного забоя 2 устанавливается в хвостовую часть скрепера 3 и не влияет на работу комбайна 1 в обычном режиме;
[0033] (b) перед началом разработки в автоматическом режиме первый цикл вырубки выполняется вручную;
[0034] (c) в процессе работы датчик сейсмических колебаний улавливает сейсмические колебания от комбайна 1, бесплатформенный инерциальный навигационный модуль II и кодировщик работают в режиме реального времени и рассчитывают абсолютные параметры позиционирования комбайна 1 в системе координат шахты и данные угла крена колыбельного механизма, а бортовая система II рассчитывает географические координаты центральных точек верхних и нижних роликов комбайна, при этом географическая координата центральной точки верхнего ролика комбайна обозначается (xT, yT, zT), а географическая координата центральной точки нижнего ролика комбайна обозначается (xt, yt, zt);
[0035] (d) прибор для сбора сигналов со стороны очистного забоя 2 двигается по скреперу 3 до заданной точки и прекращает движение;
[0036] (e) угол между опорной пластиной 2-4 и забоем регулируется при помощи цилиндра вращения 2-3, а расстояние между опорной пластиной 2-4 и забоем - при помощи движущего цилиндра 2-7, так чтобы можно было быстро разместить трехкомпонентный сейсмограф 2-5 на забое; бесплатформенный инерциальный навигационный модуль I в режиме реального времени рассчитывает абсолютные параметры позиционирования корпуса 2-1 в системе координат шахты;
[0037] (f) трехкомпонентный сейсмограф 2-5, соприкасающийся с пластом очистного забоя, улавливает сигнал сейсмических колебаний, отправленный комбайном 1 и отраженный волновым импедансом фронта; бортовая система III выполняет обработку сигнала сейсмической волны, т.е. убирает шум, выполняет нормализацию, продольное и поперечное разделение волны, анализ скорости или смещения глубины сигнала сейсмических колебаний от комбайна 1 и сигнала сейсмических колебаний, отправленного комбайном 1 и отраженного волновым импедансом фронта, и строит модель скорости волны в поперечном и продольном разрезах и трехмерное сейсмическое сечение на коротком расстоянии от очистного забоя, заранее определяет распределение породы на глубине выемки для следующего цикла вырубки и постоянно обновляет трехмерную геологическую модель рабочего забоя для следующего цикла вырубки для автоматической регулировки высоты верхних и нижних роликов комбайна исходя из абсолютных параметров позиционирования комбайна 1 в системе координат шахты и абсолютных параметров позиционирования корпуса 2-1 в системе координат шахты;
[0038] (g) движущий цилиндр 2-7 и цилиндр вращения 2-3 регулируются таким образом, чтобы оторвать трехкомпонентный сейсмограф 2-5 от забоя, а опорная пластина 2-4 возвращается в исходное положение; прибор для сбора сигналов со стороны очистного забоя 2 двигается на заданное расстояние в направлении движения комбайна 1 и останавливается; этапы (e)-(f) повторяются до тех пор, пока не будет построена трехмерная геологическая модель очистного забоя для следующего цикла вырубки; прибор для сбора сигналов со стороны очистного забоя 2 двигается обратно к хвостовой части скрепера 3 и останавливается;
[0039] (h) после того, как комбайн 1 закончит вырубку, вперед выдвигается гидравлическая крепь 4 и выполняется новый цикл вырубки; модуль регулировки высоты берет кривую верхней пластины и кривую нижней пластины из трехмерной геологической модели для следующего рабочего забоя и выполняет пробное моделирование через равные промежутки, в результате получается последовательность значений подъема верхней и нижней пластины (ZD1, ZD2, ZD3, …, ZDn) и (Zd1, Zd2, Zd3, …, Zdn), затем модуль сравнивает значения подъема с соответствующими значениями подъема ZT и Zt для центральных точек верхних и нижних роликов комбайна, определяет и изменяет высоту верхних и нижних роликов комбайна и задает порог δ; если ZDi-ZT≤δ, то верхний ролик опускается, для всех остальных значений верхний ролик поднимается; если Zdi-Zt≤δ, нижний ролик поднимается, для всех остальных значений нижний ролик опускается;
[0040] (i) этапы (c)-(h) повторяются в рамках завершения автоматического цикла разработки забоя.
[0041] Выше приводится предпочтительный вариант осуществления изобретения. В варианты осуществления настоящего изобретения специалисты могут вносить различные изменения и улучшения, а любые представленные здесь описания не могут считаться ограничивающими смысл настоящего изобретения.

Claims (16)

1. Устройство для регулирования высоты автоматической врубовой машины на основе определения сейсмических колебаний врубовой машины, выполняющее автоматическое регулирование высоты комбайна (1) в составе трехкомпонентного горнодобывающего комплекса, состоящего из комбайна (1), скрепера (3) и гидравлической крепи (4), при этом устройство состоит из прибора для сбора сигналов со стороны комбайна, прибора для сбора сигналов со стороны очистного забоя (2) и модуля регулировки высоты;
прибор для сбора сигналов со стороны комбайна включает в себя бесплатформенный инерциальный навигационный модуль II, кодировщик, датчик сейсмических колебаний и бортовую систему II; бесплатформенный инерциальный навигационный модуль II установлен на корпусе комбайна (1) и определяет абсолютные параметры позиционирования комбайна (1) в системе координат шахты; кодировщик установлен на колыбельном механизме для сбора данных об угле крена колыбельного механизма; датчик сейсмических колебаний закреплен на корпусе комбайна (1) и считывает сигналы сейсмических колебаний от комбайна; бортовая система II установлена на корпусе комбайна (1) для расчета и сохранения географических координат центральных точек верхних и нижних роликов комбайна в соответствии с абсолютными параметрами позиционирования комбайна в системе координат шахты и данными об угле крена колыбельного механизма;
прибор для сбора сигналов со стороны очистного забоя (2) включает в себя корпус (2-1), механизм регулировки, бесплатформенный инерциальный навигационный модуль I, трехкомпонентный сейсмограф (2-5) и датчик давления (2-6); при этом корпус (2-1) крепится на скрепере (3) на тормозной башмак (2-2), трехкомпонентный сейсмограф (2-5) и датчик давления (2-6) крепятся на корпусе (2-1) на механизм регулировки, а факт соприкосновения трехкомпонентного сейсмографа (2-5) с пластом очистного забоя определяется датчиком давления (2-6); бесплатформенный инерциальный навигационный модуль I установлен на корпусе (2-1) и определяет абсолютные параметры позиционирования корпуса (2-1) в системе координат шахты; трехкомпонентный сейсмограф (2-5) определяет сигнал сейсмических колебаний, исходящий от комбайна (1) и отраженный волновым импедансом фронта;
модуль регулировки высоты включает в себя бортовую систему III; бортовая система III проходит взрывозащитную обработку, а затем устанавливается на комбайн (1); бортовая система III связана как с бортовой системой II, так и с бесплатформенным инерциальным навигационным модулем I; бортовая система III сохраняет и обрабатывает сигналы сейсмических колебаний комбайна (1), а также сигналы сейсмических колебаний, издаваемые комбайном (1) и отраженные волновым импедансом фронта, абсолютные параметры позиционирования комбайна (1) в системе координат шахты и абсолютные параметры позиционирования корпуса (2-1) в системе координат шахты, строит модель скорости волны в поперечном и продольном разрезах и трехмерное сейсмическое сечение на коротком расстоянии от очистного забоя и постоянно обновляет трехмерную геологическую модель рабочего забоя для следующего цикла вырубки для автоматической регулировки высоты верхних и нижних роликов комбайна.
2. Устройство для регулирования высоты автоматической врубовой машины на основе определения сейсмических колебаний врубовой машины согласно п. 1, отличающееся тем, что механизм регулировки в составе прибора для сбора сигналов со стороны очистного забоя (2) включает в себя цилиндр вращения (2-3), опорную пластину (2-4) и движущий цилиндр (2-7); трехкомпонентный сейсмограф (2-5) и датчик давления (2-6) крепятся к опорной пластине (2-4); один конец движущего цилиндра (2-7) шарнирно соединен с корпусом (2-1), другой конец крепится к опорной пластине (2-4); один конец цилиндра вращения (2-3) шарнирно соединен с корпусом (2-1), а другой конец шарнирно соединен с боковой поверхностью движущего цилиндра (2-7); линейное движение опорной пластины (2-4) контролируется за счет удлинения и сжатия движущего цилиндра (2-7), а угол вращения опорной пластины (2-4) контролируется за счет цилиндра вращения (2-3).
3. Устройство для регулирования высоты автоматической врубовой машины на основе определения сейсмических колебаний врубовой машины согласно п. 2, отличающееся тем, что две группы цилиндров вращения (2-3) и движущих цилиндров (2-7) совместно приводят в движение опорную пластину (2-3); бортовая система I управляет удлинением и сжатием движущего цилиндра (2-7) и цилиндра вращения (2-3) так, что трехкомпонентный сейсмограф (2-5) постоянно соприкасается с пластом очистного забоя, а регулировка отклика выполняется датчиком давления (2-6).
4. Способ регулирования высоты автоматической врубовой машины на основе определения сейсмических колебаний врубовой машины, характеризующийся тем, что он состоит из следующих этапов:
(a) прибор для сбора сигналов со стороны очистного забоя (2) устанавливается в хвостовую часть скрепера (3) и не влияет на работу комбайна (1) в обычном режиме;
(b) перед началом разработки в автоматическом режиме первый цикл вырубки выполняется вручную;
(c) в процессе работы датчик сейсмических колебаний улавливает сейсмические колебания от комбайна (1), бесплатформенный инерциальный навигационный модуль II и кодировщик работают в режиме реального времени и рассчитывают абсолютные параметры позиционирования комбайна (1) в системе координат шахты и данные угла крена колыбельного механизма, а бортовая система II рассчитывает географические координаты центральных точек верхних и нижних роликов комбайна, при этом географическая координата центральной точки верхнего ролика комбайна обозначается (xT, yT, zT), а географическая координата центральной точки нижнего ролика комбайна обозначается (xt, yt, zt);
(d) прибор для сбора сигналов со стороны очистного забоя (2) двигается по скреперу (3) до заданной точки и прекращает движение;
(e) угол между опорной пластиной (2-4) и забоем регулируется при помощи цилиндра вращения (2-3), а расстояние между опорной пластиной (2-4) и забоем - при помощи движущего цилиндра (2-7), так чтобы можно было быстро разместить трехкомпонентный сейсмограф (2-5) на забое; бесплатформенный инерциальный навигационный модуль I в режиме реального времени рассчитывает абсолютные параметры позиционирования корпуса (2-1) в системе координат шахты;
(f) трехкомпонентный сейсмограф (2-5), соприкасающийся с пластом очистного забоя, улавливает сигнал сейсмических колебаний, отправленный комбайном (1) и отраженный волновым импедансом фронта; бортовая система III выполняет обработку сигнала сейсмической волны, т.е. убирает шум, выполняет нормализацию, продольное и поперечное разделение волны, анализ скорости или смещения глубины сигнала сейсмических колебаний от комбайна (1) и сигнала сейсмических колебаний, отправленного комбайном (1) и отраженного волновым импедансом фронта, и строит модель скорости волны в поперечном и продольном разрезах и трехмерное сейсмическое сечение на коротком расстоянии от очистного забоя, заранее определяет распределение породы на глубине выемки для следующего цикла вырубки и постоянно обновляет трехмерную геологическую модель рабочего забоя для следующего цикла вырубки для автоматической регулировки высоты верхних и нижних роликов комбайна исходя из абсолютных параметров позиционирования комбайна (1) в системе координат шахты и абсолютных параметров позиционирования корпуса (2-1) в системе координат шахты;
(g) движущий цилиндр (2-7) и цилиндр вращения (2-3) регулируются таким образом, чтобы оторвать трехкомпонентный сейсмограф (2-5) от забоя, а опорная пластина (2-4) возвращается в исходное положение; прибор для сбора сигналов со стороны очистного забоя (2) двигается на заданное расстояние в направлении движения комбайна (1) и останавливается; этапы (e)-(f) повторяются до тех пор, пока не будет построена трехмерная геологическая модель очистного забоя для следующего цикла вырубки; прибор для сбора сигналов со стороны очистного забоя (2) двигается обратно к хвостовой части скрепера (3) и останавливается;
(h) после того как комбайн (1) закончит вырубку, вперед выдвигается гидравлическая крепь (4) и выполняется новый цикл вырубки; модуль регулировки высоты берет кривую верхней пластины и кривую нижней пластины из трехмерной геологической модели для следующего рабочего забоя и выполняет пробное моделирование через равные промежутки, в результате получается последовательность значений подъема верхней и нижней пластины (ZD1, ZD2, ZD3, …, ZDn) и (Zd1, Zd2, Zd3, …, Zdn), затем модуль сравнивает значения подъема с соответствующими значениями подъема ZT и Zt для центральных точек верхних и нижних роликов комбайна, определяет и изменяет высоту верхних и нижних роликов комбайна и задает порог δ; если ZDi-ZT≤δ, то верхний ролик опускается, для всех остальных значений верхний ролик поднимается; если Zdi-Zt≤δ, нижний ролик поднимается, для всех остальных значений нижний ролик опускается;
(i) этапы (c)-(h) повторяются в рамках завершения автоматического цикла разработки забоя.
RU2019113923A 2017-07-04 2018-07-20 Устройство для регулирования высоты автоматической врубовой машины на основе определения сейсмических колебаний врубовой машины и способ такого регулирования RU2707218C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201710536370.0A CN107091089B (zh) 2017-07-04 2017-07-04 基于采煤机震源超前探测的采煤机自动调高装置及方法
CN201710536370.0 2017-07-04
PCT/CN2018/096519 WO2019007439A1 (zh) 2017-07-04 2018-07-20 基于采煤机震源超前探测的采煤机自动调高装置及方法

Publications (1)

Publication Number Publication Date
RU2707218C1 true RU2707218C1 (ru) 2019-11-25

Family

ID=59641143

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019113923A RU2707218C1 (ru) 2017-07-04 2018-07-20 Устройство для регулирования высоты автоматической врубовой машины на основе определения сейсмических колебаний врубовой машины и способ такого регулирования

Country Status (5)

Country Link
CN (1) CN107091089B (ru)
AU (1) AU2018296041B2 (ru)
GB (1) GB2569739B (ru)
RU (1) RU2707218C1 (ru)
WO (2) WO2019007147A1 (ru)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107091089B (zh) * 2017-07-04 2019-01-11 中国矿业大学 基于采煤机震源超前探测的采煤机自动调高装置及方法
CN108180904B (zh) * 2017-12-19 2021-01-08 中国矿业大学 一种采煤机多惯导定位装置及方法
CN109854242B (zh) * 2019-01-08 2020-09-11 浙江大学 一种基于混沌理论的采煤机滚筒自动预测系统
CN109630110B (zh) * 2019-01-18 2020-02-18 天地科技股份有限公司 一种综采工作面煤层厚度自适应截割控制方法及电子设备
CN109888997B (zh) * 2019-04-19 2024-05-28 黑龙江齐四机床有限公司 一种大、中型高压电机转子铜条嵌紧滚压机
CN110531425B (zh) * 2019-08-29 2021-08-13 武汉理工大学 一种用于隧道与地下工程的超前探水装置
CN111241722A (zh) * 2019-12-04 2020-06-05 神华神东煤炭集团有限责任公司 超大采高采煤机设计参数的确定方法及超大采高采煤机
CN112096378B (zh) * 2020-08-31 2022-11-15 中国煤炭科工集团太原研究院有限公司 连续采煤机输送机尾的摆动控制方法、装置及连续采煤机
CN112001982B (zh) * 2020-09-04 2024-03-19 陕西陕煤黄陵矿业有限公司 基于煤层数字化模型ct剖切的采煤机智能截割方法及系统
CN112329206A (zh) * 2020-10-15 2021-02-05 中铁二局第二工程有限公司 一种隧道施工非爆破区判定方法
CN112832761B (zh) * 2020-11-12 2022-02-18 临沂矿业集团菏泽煤电有限公司 一种煤矿综采工作面采煤机与地质模型的耦合系统
CN114662259B (zh) * 2020-12-07 2024-06-18 北斗天地股份有限公司 一种基于高精度惯导的采煤机三维定位方法及系统
CN112902906B (zh) * 2021-03-31 2022-07-08 南昌大学第一附属医院 一种测量手术床角度带磁性高精度数显仪
CN113803069B (zh) * 2021-09-26 2023-01-17 中国矿业大学 智能化综放工作面采煤机无示教记忆截割系统及方法
CN113818880B (zh) * 2021-10-13 2023-08-08 郑州恒达智控科技股份有限公司 采煤工作面自动调斜装置及方法
CN113944463B (zh) * 2021-10-14 2024-02-27 西安煤矿机械有限公司 一种采煤机辅助支撑装置及其使用方法
CN114970073B (zh) * 2021-12-10 2024-04-02 太原理工大学 一种基于激光雷达的采煤机虚实融合定位系统
CN114109386B (zh) * 2021-12-10 2023-09-19 国家能源投资集团有限责任公司 地下煤炭开采工作面调控方法
CN114412459B (zh) * 2021-12-22 2023-03-17 中国矿业大学 一种智能化综采工作面采煤机少传感无示教自动截割方法
CN114352274B (zh) * 2022-01-12 2022-12-02 中国矿业大学 一种基于采煤机滚筒震源的煤岩界面识别方法
CN114476578B (zh) * 2022-01-18 2024-02-06 宁夏天地奔牛实业集团有限公司 基于负载跟随控制的刮板机链条自动张紧控制方法
CN117569805B (zh) * 2024-01-17 2024-03-19 山西启创达矿山设备制造有限责任公司 一种调节式采煤机摇臂及其使用方法
CN117967307B (zh) * 2024-04-01 2024-06-07 枣庄矿业集团新安煤业有限公司 一种用于远程控制采煤机旋转调采的数据处理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6219301B1 (en) * 1997-11-18 2001-04-17 Schlumberger Technology Corporation Pressure pulse generator for measurement-while-drilling systems which produces high signal strength and exhibits high resistance to jamming
RU2505677C2 (ru) * 2009-08-20 2014-01-27 Раг Акциенгезельшафт Способ получения призабойного пространства с применением систем автоматизации
CN103883326A (zh) * 2014-01-28 2014-06-25 中国矿业大学 基于煤层震波探测和地学信息的采煤机滚筒调高方法
RU2537449C2 (ru) * 2009-04-30 2015-01-10 Джой ММ Делавэр, Инк. Врубовая установка и способ ее работы
CN104481534A (zh) * 2014-11-06 2015-04-01 中国矿业大学 一种采煤机滚筒自动调高系统
RU2556541C2 (ru) * 2009-11-16 2015-07-10 Джой ММ Делавэр, Инк. Способ управления задним барабаном очистного комбайна двустороннего действия (варианты)
RU2604532C2 (ru) * 2014-10-30 2016-12-10 Инстытут Техник Инновацыйных Эмаг Способ для измерения относительных изменений концентрации напряжений впереди фронта очистной лавы

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3333489A1 (de) * 1983-09-16 1985-04-04 Ruhrkohle Ag, 4300 Essen Hydraulikbock fuer strebfoerderer- und hobelantrieb
US4678236A (en) * 1985-02-11 1987-07-07 Reinhard Wirtgen Apparatus for working deposits by the open-cast working process
CN102788995A (zh) * 2012-08-02 2012-11-21 中煤科工集团西安研究院 以切割震动为地震信号的煤矿工作面探测方法
CN102852521B (zh) * 2012-09-21 2014-12-10 中国矿业大学(北京) 一种基于图像识别的采煤机滚筒自动调高方法
US20160090839A1 (en) * 2014-11-26 2016-03-31 Larry G. Stolarczyk Method of protecting the health and well-being of coal mine machine operators
US9471060B2 (en) * 2014-12-09 2016-10-18 General Electric Company Vehicular traffic guidance and coordination system and method
CN104678428B (zh) * 2015-03-11 2015-11-25 山东大学 隧道掘进机破岩震源和主动源三维地震联合超前探测系统
CN106089202B (zh) * 2016-08-22 2018-03-16 西安科技大学 基于电流监测的综采工作面采煤机自动调高控制方法
CN107091089B (zh) * 2017-07-04 2019-01-11 中国矿业大学 基于采煤机震源超前探测的采煤机自动调高装置及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6219301B1 (en) * 1997-11-18 2001-04-17 Schlumberger Technology Corporation Pressure pulse generator for measurement-while-drilling systems which produces high signal strength and exhibits high resistance to jamming
RU2537449C2 (ru) * 2009-04-30 2015-01-10 Джой ММ Делавэр, Инк. Врубовая установка и способ ее работы
RU2505677C2 (ru) * 2009-08-20 2014-01-27 Раг Акциенгезельшафт Способ получения призабойного пространства с применением систем автоматизации
RU2556541C2 (ru) * 2009-11-16 2015-07-10 Джой ММ Делавэр, Инк. Способ управления задним барабаном очистного комбайна двустороннего действия (варианты)
CN103883326A (zh) * 2014-01-28 2014-06-25 中国矿业大学 基于煤层震波探测和地学信息的采煤机滚筒调高方法
RU2604532C2 (ru) * 2014-10-30 2016-12-10 Инстытут Техник Инновацыйных Эмаг Способ для измерения относительных изменений концентрации напряжений впереди фронта очистной лавы
CN104481534A (zh) * 2014-11-06 2015-04-01 中国矿业大学 一种采煤机滚筒自动调高系统

Also Published As

Publication number Publication date
WO2019007147A1 (zh) 2019-01-10
GB2569739B (en) 2020-02-12
WO2019007439A1 (zh) 2019-01-10
AU2018296041A1 (en) 2019-05-16
GB201905658D0 (en) 2019-06-05
GB2569739A (en) 2019-06-26
CN107091089A (zh) 2017-08-25
CN107091089B (zh) 2019-01-11
AU2018296041B2 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
RU2707218C1 (ru) Устройство для регулирования высоты автоматической врубовой машины на основе определения сейсмических колебаний врубовой машины и способ такого регулирования
CN109386291B (zh) 掘进机截割路径规划方法、装置及掘进机截割控制系统
US10066367B1 (en) System for determining autonomous adjustments to an implement position and angle
CN203546576U (zh) 建筑机械
CN113379909B (zh) 一种透明工作面智能开采大数据分析决策方法和系统
CN108957405A (zh) 一种采煤工作面刮板输送机直线度的检测方法
AU2009351410B2 (en) Method for producing a face opening using automation systems
CN106194181B (zh) 基于地质数据的智能化工作面煤岩界面识别方法
CN110080766B (zh) 综采工作面煤岩界面识别装置及方法
CN111337883B (zh) 一种矿井煤岩界面智能探测识别系统及方法
CN110703266A (zh) 一种掘进机精准定位及导航系统
CN103835719B (zh) 一种基于虚拟轨迹控制的采煤机自适应截割方法
CN107270901B (zh) 融合采煤工艺与采煤机运动模型的采煤机惯性定位精度提升方法
CN102720496A (zh) 采煤机煤岩界面自动识别、滚筒自动调高方法和系统
CN109018851A (zh) 刮板输送机三维空间运行姿态位置的实时监测方法
CN112668109B (zh) 一种综采工作面截割路线模型建立方法
CN103362507A (zh) 一种提高采煤机记忆截割执行精度的方法
CN110658528A (zh) 基于激光雷达的综采工作面成套设备偏移监测方法
CN115875033A (zh) 长壁优化控制
CN108952704A (zh) 一种智能化薄煤层自适应采煤机及采煤截割方法
CN106012950B (zh) 一种搭载实时动态监测系统的伺服造波装置及方法
CN106256991A (zh) 一种采煤机记忆截割与记忆定位联合学习方法
CN209523764U (zh) 一种掘支锚联合机组锚杆钻机自动定位系统
CN201535166U (zh) 自动截割的掘进机
CN113944494B (zh) 一种基于超声无线测距的液压支架自动调直方法及系统