WO2023116103A1 - 一种智能化综采工作面采煤机少传感无示教自动截割方法 - Google Patents

一种智能化综采工作面采煤机少传感无示教自动截割方法 Download PDF

Info

Publication number
WO2023116103A1
WO2023116103A1 PCT/CN2022/121658 CN2022121658W WO2023116103A1 WO 2023116103 A1 WO2023116103 A1 WO 2023116103A1 CN 2022121658 W CN2022121658 W CN 2022121658W WO 2023116103 A1 WO2023116103 A1 WO 2023116103A1
Authority
WO
WIPO (PCT)
Prior art keywords
shearer
data
automatic cutting
cutting
knife
Prior art date
Application number
PCT/CN2022/121658
Other languages
English (en)
French (fr)
Inventor
司垒
王忠宾
安晓飞
谭超
梁斌
闫海峰
魏东
刘新华
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2023116103A1 publication Critical patent/WO2023116103A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C25/00Cutting machines, i.e. for making slits approximately parallel or perpendicular to the seam
    • E21C25/06Machines slitting solely by one or more cutting rods or cutting drums which rotate, move through the seam, and may or may not reciprocate
    • E21C25/10Rods; Drums
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C35/00Details of, or accessories for, machines for slitting or completely freeing the mineral from the seam, not provided for in groups E21C25/00 - E21C33/00, E21C37/00 or E21C39/00
    • E21C35/24Remote control specially adapted for machines for slitting or completely freeing the mineral
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C39/00Devices for testing in situ the hardness or other properties of minerals, e.g. for giving information as to the selection of suitable mining tools
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the invention relates to the technical field of intelligent mining of fully-mechanized mining working faces in coal mines, in particular to an automatic cutting method with less sensing and no teaching for shearers in intelligent fully-mechanized mining working faces.
  • the automatic cutting technology of the shearer on the fully mechanized mining face of the coal mine is basically manual teaching, which requires manual intervention. After the shearer retreated during the teaching process, the manual teaching data could not be used as the data basis for the automatic cutting of the shearer, which hindered the generation efficiency of the automatic cutting of the shearer.
  • the automatic cutting will fail, which will not only increase the maintenance cost, but also increase the production cycle, which is very important for the intelligentization of fully mechanized mining The work surface is a small loss.
  • the current lack of management and regulation of the shearer data on the fully mechanized mining face hinders the more effective management of big data in smart mines.
  • the present invention provides an intelligent fully mechanized mining face shearer automatic cutting method with less sensing and no teaching.
  • the position, direction, speed, height of the cutting drum and other data of the cutting drum can be cleaned to remove the redundant data in the one-cut cutting process, realizing the automatic cutting control of the fully mechanized coal mining face without teaching, and improving the cutting speed of the drum. Coal machine intelligent operation effect.
  • the present invention adopts the following technical solutions:
  • the embodiment of the present invention proposes an automatic cutting method for an intelligent fully mechanized coal mining face with less sensing and no teaching.
  • the automatic cutting method includes the following steps:
  • S5 collect the fuselage attitude data, fuselage position parameters and the curve data of the roof and floor of the drum shearer, and automatically clean the data of the memory module of the drum shearer when the power is off or shut down on the fully mechanized mining face ; Preserve all (m+1) n groups of array data information of the m+1th knife to the memory module of the shearer;
  • step S5 the process of collecting the fuselage attitude data, the fuselage position parameters and the roof and floor curve data of the drum shearer includes the following sub-steps:
  • step S51 judging whether the inertial navigation system of the drum shearer can communicate normally, if normal, directly adopt the inertial navigation system to obtain the fuselage attitude data of the drum shearer, and proceed to step S53, otherwise, proceed to step S52;
  • step S53 judging whether the lift cylinder displacement sensor of the drum shearer can communicate normally, if normal, directly use the lift cylinder displacement sensor to obtain the body position parameter of the drum shearer, and proceed to step S55, otherwise, proceed to step S54;
  • step S55 judge whether the encoder of the drum shearer can communicate normally, if normal, directly use the encoder to obtain the body position parameters of the drum shearer, and end the process, otherwise, go to step S56;
  • each set of array parameters of each knife cutting data corresponds to the traveling distance of 0.5 meters of the roller shearer.
  • each set of array parameters of cutting data of each knife includes the position, direction, speed of the roller coal mining machine, the height of the left and right cutting rollers, the mining height, the undercover amount, the current and frequency of the front scraper conveyor. or all.
  • each array in the automatic cutting parameter configuration data table is displayed and edited using a spreadsheet, and all arrays of each knife are displayed and edited in real time using a parameter graph.
  • the array in the automatic cutting parameter configuration data table is edited by dragging, and the corresponding spreadsheet array and parameter graph are edited in a two-way linkage manner.
  • step S8 when the cutting data of the mth knife in the parameter configuration table is dragged to the position of the cutting data of the m+1th knife in the parameter configuration table, two-way linkage adjustment is automatically performed on the corresponding spreadsheet array and parameter graph .
  • the embodiment of the present invention proposes an automatic cutting system for intelligent fully mechanized coal mining face with less sensing and no teaching, characterized in that the automatic cutting system includes:
  • the 3D modeling module is used to construct the 3D modeling data of the coal seam in the intelligent fully mechanized mining face;
  • the data table initialization module is used to initialize the automatic cutting parameter configuration data table according to the 3D modeling data of the coal seam in the intelligent fully mechanized mining face.
  • the automatic cutting parameter configuration data table stores M cutting data, wherein the mth cutting Cutting data includes m n groups of array parameters;
  • the data table management module is used to manage the cutting data in the parameter configuration table according to the external control instruction
  • the automatic cutting processing module is configured to execute the automatic cutting process corresponding to the automatic cutting parameter configuration data table by using the automatic cutting method as described above.
  • the intelligent fully mechanized mining face coal mining machine proposed by the present invention has less sensing and no teaching automatic cutting method.
  • the automatic cutting does not require manual teaching, but the cutting generated by parameter configuration data table and extraction
  • the two-way linkage adjustment of the parameter curve reduces the operating cost of manual intervention.
  • the intelligent fully mechanized mining face coal mining machine automatic cutting method with few sensors and no teaching provided by the present invention can continue to carry out automatic cutting without teaching after the sensor of the key part of the coal mining machine is damaged, which greatly reduces the mining cost.
  • the automatic cutting of coal machine depends on the operating conditions, which reduces the operating time cost of shutdown maintenance.
  • the intelligent fully mechanized mining face coal mining machine proposed by the present invention has less sensing and no teaching automatic cutting method, and the drum shearer is an array with a distance of 0.5 meters, which can further improve the intelligence of the fully mechanized mining face
  • the big data system is convenient for managing the data of the coal mining machine, so as to provide big data management and analysis for intelligent mine mining and smart mine.
  • Fig. 1 is a flowchart of an automatic cutting method for an intelligent fully mechanized coal mining face with less sensing and no teaching according to an embodiment of the present invention.
  • Fig. 2 is a schematic diagram of an automatic cutting parameter configuration data table according to an embodiment of the present invention.
  • Fig. 1 is a flowchart of an automatic cutting method for an intelligent fully mechanized coal mining face with less sensing and no teaching according to an embodiment of the present invention.
  • the automatic cutting method comprises the following steps:
  • S5 collect the fuselage attitude data, fuselage position parameters and the curve data of the roof and floor of the drum shearer, and automatically clean the data of the memory module of the drum shearer when the power is off or shut down on the fully mechanized mining face ; Save all (m+1) n groups of array data information of the m+1th knife to the memory module of the shearer.
  • Fig. 2 is a schematic diagram of an automatic cutting parameter configuration data table according to an embodiment of the present invention.
  • the coal mine fully mechanized mining face is mainly divided into the middle cutting area and the left and right end areas, and the drum shearer starts from the right to the left in the middle cutting area.
  • the drum shearer on the fully mechanized mining face will make a data set every time it walks 0.5 meters forward, including the position, direction, speed of the drum shearer, the height of the left and right cutting drums, the mining height, and the amount of undercover , front scraper conveyor current and frequency and other parameters.
  • the "m-n array” in the parameter table indicates the array of "the number of cuts and the number of 0.5 meters" of the drum shearer, the passing time of the drum shearer and the distance cut forward, and the automatic cutting of the drum shearer without teaching.
  • the cutting memory module reads the parameter configuration data table and automatically cuts the fully mechanized mining face without teaching.
  • Each array in this parameter configuration data table can be displayed and edited with a spreadsheet, and all arrays of each knife can be displayed and edited in real time with a graph, and the arrays in the parameter configuration table can be dragged and edited.
  • the spreadsheet array and curve When the graph is edited, two-way linkage can be carried out so that the data can be adjusted in time.
  • the automatic cutting method includes the following steps:
  • Step 1 The drum shearer is powered on and started, and waits for the insulation detection of the shearer.
  • Step 2 According to the 3D modeling data of the coal seam of the intelligent fully mechanized mining face, the initialization parameter configuration data table of the automatic cutting with less sensing and no teaching for the drum machine.
  • Step 5 Determine whether the sensors at key parts of the shearer can communicate normally.
  • Step 6 If it is normal, the memory module of the roller shearer automatically cleans the data during the period of power failure or shutdown on the fully mechanized mining face
  • Step 7 If the communication fails, it is necessary to judge whether the key parts of the shearer: attitude, roof and floor curve, and position-related sensors are normal. If the attitude information cannot obtain data, the inertial navigation system is abnormal. The body inclination sensor is not easy to damage and can be used to check the change of the inclination angle of the body. Through the action analysis and learning estimation method of the shearer, the memory module of the shearer obtains the attitude data, and then executes step 6.
  • Step 8 If it is normal, then judge whether the curve of the top and bottom plates of the roller shearer is normal. If it is not normal, it can be determined that the lifting cylinder is abnormal.
  • the top and bottom plates are dynamically calculated based on the off state and duration of the solenoid valve of the lifting cylinder and the theoretical curve of the rocker arm movement track. The curve changes, and then the roof and floor curve data are obtained through the fusion of theoretical calculation and dynamic learning, and then step 6 is performed.
  • Step 9 If the roof and floor curves are normal, the body position parameters are abnormal, and it can be determined that the encoder of the drum shearer is damaged, and the infrared signal is received through the hydraulic support to determine the approximate position of the body in the fully mechanized mining face, and then by judging the mining machine The motion state of the coal machine is fused with the frequency converter parameters to obtain the position parameters of the coal machine body, and then step 6 is performed.
  • Step 10 The memory module of the roller shearer saves the array data information of the m+1th knife and the nth 0.5m.
  • Step 11 Determine whether the shearer completes all arrays of the m-th knife.
  • Step 12 If not, run the mth n+1th 0.5m array data, and then go to step 6.
  • Step 13 If the array data of the mth knife is completed, professional staff need to randomly check whether the array parameters of the m+1th knife are abnormal.
  • Step 14 If there is no abnormality, go to step 16 directly.
  • Step 15 If there is an exception, you need to drag the m-n array data in the parameter configuration table to the position of the m+1–n array in the parameter configuration table, and the corresponding spreadsheet data and curves will be automatically adjusted.
  • Step 16 The memory module of the roller shearer will be saved in the table m+1 of the parameter configuration table.
  • Step 17 Judging whether the automatic cutting of the intelligent fully mechanized mining face is completed with less sensing and no teaching.
  • Step 18 If not, the shearer memory module runs all the array data tables of the m+1th knife.
  • Step 19 If the fully mechanized mining face has less sensors and no teaching, the automatic cutting is completed, then end the mining of this working face.
  • the shearer automatically extracts data such as the position, direction, speed, and height of the cutting drum during the coal cutting process of the fully mechanized mining face, and clears useless data in the process of cutting with one knife, so as to solve the problem of comprehensive coal mining.
  • the shearer does not need to teach the automatic cutting technology, and further realizes the intelligent operation of the drum shearer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种智能化综采工作面采煤机少传感无示教自动截割方法,包括:根据智能化综采工作面煤矿煤层三维建模数据,初始化自动截割参数配置数据表;在根据自动截割参数配置数据表执行自动截割的过程中,通过综采工作面采煤机自动抽取割煤过程中采煤机的位置、方向、速度、截割滚筒高度等数据,清洗掉一刀截割过程中的冗余数据。该方法实现了综采工作面采煤机无需示教前提下的自动截割技术,提升了滚筒采煤机智能化运行效果。还包括智能化综采工作面采煤机少传感无示教自动截割系统。

Description

一种智能化综采工作面采煤机少传感无示教自动截割方法 技术领域
本发明涉及煤矿井下综采工作面智能化开采技术领域,具体而言涉及一种智能化综采工作面采煤机少传感无示教自动截割方法。
背景技术
对于高瓦斯以及冲击地压严重的煤矿综采工作面,工作人员处于高瓦斯以及冲击地压严重的综采工作面容易造成生命危险,而且也对提高采煤工作效率受到很大影响。因此,煤矿井下综采工作面智能化在煤矿中已经开始推广应用。智能采矿中采煤机自动截割是实现综采智能化开采的一个关键要素,采煤机自动截割能够提升采煤机的智能化水平、增强其操控性能、减轻工作人员劳动强度以及提高生产效率。
但是,现在的煤矿综采工作面上的采煤机自动截割技术基本上都是进行人工示教,需要进行人工干预,整个示教过程中需要一整刀截割,采煤机在人工示教过程中出现采煤机回退情况之后,此次人工示教数据不能作为采煤机进行自动截割数据依据,阻碍了采煤机自动截割的生成效率。复杂多变的综采工作面生产环境中,一旦采煤机机身上关键部位的传感器损坏,自动截割失效,不仅仅增大维修成本,也加大了生产周期,这对于综采智能化工作面是一笔不小的损失。另外,目前对综采工作面上采煤机数据缺乏管理和规整,阻碍了智慧矿山大数据的更加有效的管理。
发明内容
本发明针对现有技术中的不足,提供一种智能化综采工作面采煤机少传感无示教自动截割方法,通过综采工作面采煤机自动抽取割煤过程中采煤机的位置、方向、速度、截割滚筒高度等数据,清洗掉一刀截割过程中的冗余数据,实现了综采工作面采煤机无需示教前提下的自动截割控制,提升了滚筒采煤机智能化运行效果。
为实现上述目的,本发明采用以下技术方案:
第一方面,本发明实施例提出了一种智能化综采工作面采煤机少传感无示教自动截割方法,所述自动截割方法包括以下步骤:
S1,滚筒采煤机上电启动,对采煤机进行绝缘检测;
S2,根据智能化综采工作面煤矿煤层三维建模数据,初始化自动截割参数配置数据表,自动截割参数配置数据表中存储有M刀截割数据,其中第m刀截割数据包括m n组数组参数;令m=1;
S3,读取自动截割参数配置数据表中第m刀对应的全部m n组数组参数下达刀控制系统;令j=1;
S4,执行第m刀第j组数据截割;
S5,采集得到滚筒采煤机的机身姿态数据、机身位置参数和滚筒采煤机顶底板曲线数据,自动清洗滚筒采煤机记忆模块在综采工作面上断电或者停机时间段的数据;将第m+1刀的全 部(m+1) n组数组数据信息保存至滚筒采煤机记忆模块;
S6,判断j是否等于m n,若不是,令j=j+1,转入步骤S4,否则,转入步骤S7;
S7,随机检查第m+1刀的数组参数是否异常,如果没有异常,将第m+1刀的全部数组参数下达刀控制系统,将m+1赋值给m,转入步骤S3,直至m=M+1,完成自动截割,结束流程;否则,转入步骤S8;
S8,将参数配置表第m刀截割数据拖动到参数配置表第m+1刀截割数据的位置,对参数配置表重新排序;返回步骤S5。
进一步地,步骤S5中,采集得到滚筒采煤机的机身姿态数据、机身位置参数和滚筒采煤机顶底板曲线数据的过程包括以下子步骤:
S51,判断滚筒采煤机的惯性导航系统是否能够正常通讯,如果正常,直接采用惯性导航系统获取滚筒采煤机的机身姿态数据,转入步骤S53,否则,转入步骤S52;
S52,采用机身倾角传感器校核机身倾角变化,再通过滚筒采煤机的动作解析和学习估计方法,得到滚筒采煤机的机身姿态数据;
S53,判断滚筒采煤机的升降油缸位移传感器是否能够正常通讯,如果正常,直接采用升降油缸位移传感器获取滚筒采煤机的身位置参数,转入步骤S55,否则,转入步骤S54;
S54,通过升降油缸电磁阀开断状态与持续时间,以及摇臂运动轨道理论曲线动态计算出顶底板曲线变化,再通过理论计算与动态学习进行融合获取到顶底板曲线数据;
S55,判断滚筒采煤机的编码器是否能够正常通讯,如果正常,直接采用编码器获取滚筒采煤机的机身位置参数,结束流程,否则,转入步骤S56;
S56,通过液压支架接收红外信号,确定机身在综采工作面的大致位置,再通过判断出采煤机运动状态和变频器参数进行融合,获取到采煤机机身位置参数。
进一步地,每刀截割数据的每组数组参数对应滚筒采煤机0.5米的行进距离。
进一步地,每刀截割数据的每组数组参数包括滚筒采煤机的位置、方向、速度、左右截割滚筒的高度、采高、卧底量、前部刮板运输机电流和频率中的多个或者全部。
进一步地,所述自动截割参数配置数据表中的每一个数组均采用电子表格进行显示和编辑,每一刀的全部数组采用参数曲线图进行实时显示和编辑。
进一步地,所述自动截割参数配置数据表中的数组通过拖动以编辑,相应的电子表格数组和参数曲线图采用双向联动的方式进行编辑.
进一步地,步骤S8中,当参数配置表第m刀截割数据拖动到参数配置表第m+1刀截割数据的位置时,对相应的电子表格数组和参数曲线图自动进行双向联动调整。
第二方面,本发明实施例提出了一种智能化综采工作面采煤机少传感无示教自动截割系统,其特征在于,所述自动截割系统包括:
三维建模模块,用于构建智能化综采工作面煤矿煤层三维建模数据;
数据表初始化模块,用于根据智能化综采工作面煤矿煤层三维建模数据,初始化自动截割参数配置数据表,自动截割参数配置数据表中存储有M刀截割数据,其中第m刀截割数据包括m n组数组参数;
数据表管理模块,用于根据外部控制指令管理参数配置表中的截割数据;
自动截割处理模块,用于采用如前所述的自动截割方法执行自动截割参数配置数据表对应的自动截割流程。
本发明的有益效果是:
第一,本发明提出的智能化综采工作面采煤机少传感无示教自动截割方法,自动截割均不需要人工示教,而是通过参数配置数据表与抽取生成的截割参数曲线图进行双向联动调整,减少人工干预的操作成本。
第二,本发明提出的智能化综采工作面采煤机少传感无示教自动截割方法,采煤机出现关键部分传感器损坏之后可以继续进行无示教自动截割,大幅降低了采煤机自动截割的运行条件依赖,降低了停机检修的运营时间成本。
第三,本发明提出的智能化综采工作面采煤机少传感无示教自动截割方法,将滚筒采煤机以0.5米路程为一个数组,可以更加的完善综采工作面智能化大数据系统,便于管理采煤机的数据,以便为智能化矿山开采、智慧矿山大数据管理分析。
附图说明
图1是本发明实施例的智能化综采工作面采煤机少传感无示教自动截割方法流程图。
图2为本发明实施例的自动截割参数配置数据表示意图。
具体实施方式
现在结合附图对本发明作进一步详细的说明。
需要注意的是,发明中所引用的如“上”、“下”、“左”、“右”、“前”、“后”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
图1是本发明实施例的智能化综采工作面采煤机少传感无示教自动截割方法流程图。该自动截割方法包括以下步骤:
S1,滚筒采煤机上电启动,对采煤机进行绝缘检测。
S2,根据智能化综采工作面煤矿煤层三维建模数据,初始化自动截割参数配置数据表,自动截割参数配置数据表中存储有M刀截割数据,其中第m刀截割数据包括m n组数组参数;令m=1。
S3,读取自动截割参数配置数据表中第m刀对应的全部m n组数组参数下达刀控制系统;令j=1。
S4,执行第m刀第j组数据截割。
S5,采集得到滚筒采煤机的机身姿态数据、机身位置参数和滚筒采煤机顶底板曲线数据,自动清洗滚筒采煤机记忆模块在综采工作面上断电或者停机时间段的数据;将第m+1刀的全部(m+1) n组数组数据信息保存至滚筒采煤机记忆模块。
S6,判断j是否等于m n,若不是,令j=j+1,转入步骤S4,否则,转入步骤S7。
S7,随机检查第m+1刀的数组参数是否异常,如果没有异常,将第m+1刀的全部数组 参数下达刀控制系统,将m+1赋值给m,转入步骤S3,直至m=M+1,完成自动截割,结束流程;否则,转入步骤S8。
S8,将参数配置表第m刀截割数据拖动到参数配置表第m+1刀截割数据的位置,对参数配置表重新排序;返回步骤S5。
图2为本发明实施例的自动截割参数配置数据表示意图。煤矿综采工作面主要分为中间截割区域和左右端头区域,把滚筒采煤机在中间截割区域从右向左为起点。本实施例将综采工作面上滚筒采煤机每向前行走0.5米做出一个数据组,其中包括滚筒采煤机的位置、方向、速度、左右截割滚筒的高度、采高、卧底量、前部刮板运输机电流和频率等参数。参数表中的“m-n数组”表示滚筒采煤机“第几刀第几个0.5米”数组,滚筒采煤机通过时间和所向前截割的路程,滚筒采煤机通过无示教自动截割的记忆模块读取此参数配置数据表并并进行无示教自动截割综采工作面。此参数配置数据表中的每一个数组可以用电子表格进行显示和编辑,每一刀的全部数组可用曲线图进行实时显示和编辑,参数配置表中的数组可进行拖动编辑,电子表格数组和曲线图进行编辑时可以进行双向联动使及时能规整数据。
在如图2所示的自动截割参数配置数据表的基础上,示例性地,参见图1,该自动截割方法包括以下步骤:
步骤1:滚筒采煤机上电启动,等待采煤机绝缘检测。
步骤2:根据此智能化综采工作面煤矿煤层三维建模数据对滚筒机少传感无示教自动截割初始化参数配置数据表。
步骤3:滚筒采煤机读取参数配置表中第m(m=1.2.3…)刀全部数组参数下达刀控制系统。
步骤4:滚筒采煤机以第m(m=1.2.3…)刀第1个数组数据信息开始截割智能化综采工作面。
步骤5:判断滚筒采煤机关键部位传感器是否能正常进行通讯。
步骤6:如果正常,滚筒采煤机记忆模块自动清洗在综采工作面上断电或者停机时间段的数据
步骤7:如果通讯失效,则需要判断滚筒采煤机关键部位:姿态,顶底板曲线,位置相关的传感器是否正常,如果姿态信息不能获取到数据,则惯性导航系统异常,滚筒采煤机的机身倾角传感器不容易损坏,可以用来校核机身倾角变化,通过滚筒采煤机的动作解析和学习估计方法,滚筒采煤机记忆模块获取到姿态数据,再执行步骤6。
步骤8:如果正常再判断滚筒采煤机顶底板曲线是否正常,如果不正常可以确定升降油缸异常,通过升降油缸电磁阀开断状态与持续时间,以及摇臂运动轨道理论曲线动态计算出顶底板曲线变化,再通过理论计算与动态学习进行融合获取到顶底板曲线数据,再执行步骤6。
步骤9:如果顶底板曲线正常,则机身位置参数异常,可以确定滚筒采煤机编码器损坏,通过液压支架接收红外信号,确定机身在综采工作面的大致位置,再通过判断出采煤机运动状态和变频器参数进行融合,获取到采煤机机身位置参数,再执行步骤6。
步骤10:滚筒采煤机记忆模块保存第m+1刀第n个0.5米的数组数据信息。
步骤11:判断滚筒采煤机是否完成第m刀的全部数组。
步骤12:如果没则有运行第m刀第n+1个0.5米数组数据,再执行步骤6.
步骤13:如果完成了第m刀数组数据,专业工作人员需要随机检查第m+1刀的数组参数是否异常。
步骤14:如果没有异常,直接执行步骤16。
步骤15:如果有异常,需要将将参数配置表中m-n数组数据拖动到参数配置表m+1–n数组的位置,相应的电子表格数据和曲线自动规整。
步骤16:滚筒采煤机记忆模块将保存到参数配置表第m+1刀表格中。
步骤17:判断智能化综采工作面是否少传感无示教自动截割结束。
步骤18:如果没有,滚筒采煤机记忆模块运行第m+1刀的全部数组数据表。
步骤19:如果综采工作面少传感无示教自动截割完毕,则结束此工作面的开采。
本实施例通过综采工作面采煤机自动抽取割煤过程中采煤机的位置、方向、速度、截割滚筒高度等数据,清除掉一刀截割过程中的无用数据,解决综采工作面采煤机无需示教自动截割技术,进而进一步实现滚筒采煤机智能化运行。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。

Claims (8)

  1. 一种智能化综采工作面采煤机少传感无示教自动截割方法,其特征在于,所述自动截割方法包括以下步骤:
    S1,滚筒采煤机上电启动,对采煤机进行绝缘检测;
    S2,根据智能化综采工作面煤矿煤层三维建模数据,初始化自动截割参数配置数据表,自动截割参数配置数据表中存储有M刀截割数据,其中第m刀截割数据包括m n组数组参数;令m=1;
    S3,读取自动截割参数配置数据表中第m刀对应的全部m n组数组参数下达刀控制系统;令j=1;
    S4,执行第m刀第j组数据截割;
    S5,采集得到滚筒采煤机的机身姿态数据、机身位置参数和滚筒采煤机顶底板曲线数据,自动清洗滚筒采煤机记忆模块在综采工作面上断电或者停机时间段的数据;将第m+1刀的全部(m+1) n组数组数据信息保存至滚筒采煤机记忆模块;
    S6,判断j是否等于m n,若不是,令j=j+1,转入步骤S4,否则,转入步骤S7;
    S7,随机检查第m+1刀的数组参数是否异常,如果没有异常,将第m+1刀的全部数组参数下达刀控制系统,将m+1赋值给m,转入步骤S3,直至m=M+1,完成自动截割,结束流程;否则,转入步骤S8;
    S8,将参数配置表第m刀截割数据拖动到参数配置表第m+1刀截割数据的位置,对参数配置表重新排序;返回步骤S5。
  2. 根据权利要求1所述的智能化综采工作面采煤机少传感无示教自动截割方法,其特征在于,步骤S5中,采集得到滚筒采煤机的机身姿态数据、机身位置参数和滚筒采煤机顶底板曲线数据的过程包括以下子步骤:
    S51,判断滚筒采煤机的惯性导航系统是否能够正常通讯,如果正常,直接采用惯性导航系统获取滚筒采煤机的机身姿态数据,转入步骤S53,否则,转入步骤S52;
    S52,采用机身倾角传感器校核机身倾角变化,再通过滚筒采煤机的动作解析和学习估计方法,得到滚筒采煤机的机身姿态数据;
    S53,判断滚筒采煤机的升降油缸位移传感器是否能够正常通讯,如果正常,直接采用升降油缸位移传感器获取滚筒采煤机的身位置参数,转入步骤S55,否则,转入步骤S54;
    S54,通过升降油缸电磁阀开断状态与持续时间,以及摇臂运动轨道理论曲线动态计算出顶底板曲线变化,再通过理论计算与动态学习进行融合获取到顶底板曲线数据;
    S55,判断滚筒采煤机的编码器是否能够正常通讯,如果正常,直接采用编码器获取滚筒采煤机的机身位置参数,结束流程,否则,转入步骤S56;
    S56,通过液压支架接收红外信号,确定机身在综采工作面的大致位置,再通过判断出采煤机运动状态和变频器参数进行融合,获取到采煤机机身位置参数。
  3. 根据权利要求1所述的智能化综采工作面采煤机少传感无示教自动截割方法,其特征在于,每刀截割数据的每组数组参数对应滚筒采煤机0.5米的行进距离。
  4. 根据权利要求1所述的智能化综采工作面采煤机少传感无示教自动截割方法,其特征 在于,每刀截割数据的每组数组参数包括滚筒采煤机的位置、方向、速度、左右截割滚筒的高度、采高、卧底量、前部刮板运输机电流和频率中的多个或者全部。
  5. 根据权利要求1所述的智能化综采工作面采煤机少传感无示教自动截割方法,其特征在于,所述自动截割参数配置数据表中的每一个数组均采用电子表格进行显示和编辑,每一刀的全部数组采用参数曲线图进行实时显示和编辑。
  6. 根据权利要求5所述的智能化综采工作面采煤机少传感无示教自动截割方法,其特征在于,所述自动截割参数配置数据表中的数组通过拖动以编辑,相应的电子表格数组和参数曲线图采用双向联动的方式进行编辑.
  7. 根据权利要求5所述的智能化综采工作面采煤机少传感无示教自动截割方法,其特征在于,步骤S8中,当参数配置表第m刀截割数据拖动到参数配置表第m+1刀截割数据的位置时,对相应的电子表格数组和参数曲线图自动进行双向联动调整。
  8. 一种智能化综采工作面采煤机少传感无示教自动截割系统,其特征在于,所述自动截割系统包括:
    三维建模模块,用于构建智能化综采工作面煤矿煤层三维建模数据;
    数据表初始化模块,用于根据智能化综采工作面煤矿煤层三维建模数据,初始化自动截割参数配置数据表,自动截割参数配置数据表中存储有M刀截割数据,其中第m刀截割数据包括m n组数组参数;
    数据表管理模块,用于根据外部控制指令管理参数配置表中的截割数据;
    自动截割处理模块,用于采用如权利要求1-7任一项中所述的自动截割方法执行自动截割参数配置数据表对应的自动截割流程。
PCT/CN2022/121658 2021-12-22 2022-09-27 一种智能化综采工作面采煤机少传感无示教自动截割方法 WO2023116103A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111585568.0 2021-12-22
CN202111585568.0A CN114412459B (zh) 2021-12-22 2021-12-22 一种智能化综采工作面采煤机少传感无示教自动截割方法

Publications (1)

Publication Number Publication Date
WO2023116103A1 true WO2023116103A1 (zh) 2023-06-29

Family

ID=81267012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121658 WO2023116103A1 (zh) 2021-12-22 2022-09-27 一种智能化综采工作面采煤机少传感无示教自动截割方法

Country Status (2)

Country Link
CN (1) CN114412459B (zh)
WO (1) WO2023116103A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114412459B (zh) * 2021-12-22 2023-03-17 中国矿业大学 一种智能化综采工作面采煤机少传感无示教自动截割方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103147756A (zh) * 2013-03-20 2013-06-12 中国矿业大学(北京) 一种掘进机记忆截割控制系统及其方法
CN104712333A (zh) * 2014-12-31 2015-06-17 闫振东 大宽度一次成巷煤巷快速掘进工艺
AU2016200782B1 (en) * 2015-05-28 2016-05-05 Commonwealth Scientific And Industrial Research Organisation Improved mining machine and method
CN107237632A (zh) * 2017-06-18 2017-10-10 山西新元煤炭有限责任公司 高瓦斯矿井综采工作面记忆截割三角煤自动化系统及方法
CN107976192A (zh) * 2017-11-16 2018-05-01 太原理工大学 一种综采工作面采运装备的姿态求解与预测方法
WO2018094874A1 (zh) * 2016-11-28 2018-05-31 中国矿业大学 基于煤层地理信息系统的采煤机姿态控制方法
WO2019007439A1 (zh) * 2017-07-04 2019-01-10 中国矿业大学 基于采煤机震源超前探测的采煤机自动调高装置及方法
CN111535810A (zh) * 2020-05-06 2020-08-14 三一重型装备有限公司 姿态检测设备和掘进机
CN112727550A (zh) * 2019-10-29 2021-04-30 北京天地玛珂电液控制系统有限公司 一种基于声音拾取的综采工作面工况识别系统及方法
CN112943241A (zh) * 2021-01-25 2021-06-11 三一重型装备有限公司 采煤机自动截割控制方法、装置、系统及存储介质
CN113803069A (zh) * 2021-09-26 2021-12-17 中国矿业大学 智能化综放工作面采煤机无示教记忆截割系统及方法
CN114412459A (zh) * 2021-12-22 2022-04-29 中国矿业大学 一种智能化综采工作面采煤机少传感无示教自动截割方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU610454B1 (en) * 1990-03-02 1991-05-16 Mistui Miike Machinery Co., Ltd. Three-drum shearer having a working height controller
CN101169038B (zh) * 2006-10-27 2010-09-08 三一重型装备有限公司 全自动掘进机
CN103776418B (zh) * 2014-01-17 2015-04-29 中国矿业大学 一种采煤机记忆截割过程中的姿态定位方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103147756A (zh) * 2013-03-20 2013-06-12 中国矿业大学(北京) 一种掘进机记忆截割控制系统及其方法
CN104712333A (zh) * 2014-12-31 2015-06-17 闫振东 大宽度一次成巷煤巷快速掘进工艺
AU2016200782B1 (en) * 2015-05-28 2016-05-05 Commonwealth Scientific And Industrial Research Organisation Improved mining machine and method
WO2018094874A1 (zh) * 2016-11-28 2018-05-31 中国矿业大学 基于煤层地理信息系统的采煤机姿态控制方法
CN107237632A (zh) * 2017-06-18 2017-10-10 山西新元煤炭有限责任公司 高瓦斯矿井综采工作面记忆截割三角煤自动化系统及方法
WO2019007439A1 (zh) * 2017-07-04 2019-01-10 中国矿业大学 基于采煤机震源超前探测的采煤机自动调高装置及方法
CN107976192A (zh) * 2017-11-16 2018-05-01 太原理工大学 一种综采工作面采运装备的姿态求解与预测方法
CN112727550A (zh) * 2019-10-29 2021-04-30 北京天地玛珂电液控制系统有限公司 一种基于声音拾取的综采工作面工况识别系统及方法
CN111535810A (zh) * 2020-05-06 2020-08-14 三一重型装备有限公司 姿态检测设备和掘进机
CN112943241A (zh) * 2021-01-25 2021-06-11 三一重型装备有限公司 采煤机自动截割控制方法、装置、系统及存储介质
CN113803069A (zh) * 2021-09-26 2021-12-17 中国矿业大学 智能化综放工作面采煤机无示教记忆截割系统及方法
CN114412459A (zh) * 2021-12-22 2022-04-29 中国矿业大学 一种智能化综采工作面采煤机少传感无示教自动截割方法

Also Published As

Publication number Publication date
CN114412459A (zh) 2022-04-29
CN114412459B (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
WO2019007147A1 (zh) 基于采煤机震源超前探测的采煤机自动调高装置及方法
WO2021184614A1 (zh) 一种用于复杂条件工作面的综采装备智能决策控制方法及系统
CN106089201B (zh) 一种用于无人化采煤工作面的截割路径规划方法
WO2023116103A1 (zh) 一种智能化综采工作面采煤机少传感无示教自动截割方法
Wang et al. The recent technological development of intelligent mining in China
CN103147756B (zh) 一种掘进机记忆截割控制系统及其方法
CN103835719B (zh) 一种基于虚拟轨迹控制的采煤机自适应截割方法
WO2018094874A1 (zh) 基于煤层地理信息系统的采煤机姿态控制方法
CN107091107A (zh) 智能放顶煤控制系统及方法
CN109469484A (zh) 基于上位机规划的自动化采煤方法
RU2733633C2 (ru) Оптимальное управление разработкой длинными забоями
CN110107295A (zh) 一种基于工作面高精度导航模型的无人采煤路径规划方法
WO2021017451A1 (zh) 一种tbm搭载式全自动取样装置及方法
CN112901195B (zh) 一种悬臂纵轴式掘进机自动断面成形控制系统及方法
CN106256991A (zh) 一种采煤机记忆截割与记忆定位联合学习方法
CN106761738A (zh) 基于机器视觉可自动规划截割路径的悬臂式掘进机及方法
CN114183137A (zh) 采煤综采工作面的煤机截割路径规划控制系统和方法
CN105201507A (zh) 急倾斜特厚煤层短壁工作面的开采系统及开采方法
CN109783962A (zh) 基于虚拟现实物理引擎的综采装备协同推进仿真方法
CN105507361B (zh) 基于图像的挖掘机直线行走控制方法及系统
CN204984462U (zh) 急倾斜特厚煤层短壁放顶煤工作面的放煤控制系统
CN204530811U (zh) 装载机工作装置可任意角度自动放平的控制系统
CN201535166U (zh) 自动截割的掘进机
CN217206447U (zh) 采煤综采工作面的煤机截割路径规划控制系统
CN209959250U (zh) 一种缓倾斜薄煤层不留煤柱的无人化采煤成套设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909421

Country of ref document: EP

Kind code of ref document: A1