WO2019007399A1 - 室内机及其控制方法 - Google Patents

室内机及其控制方法 Download PDF

Info

Publication number
WO2019007399A1
WO2019007399A1 PCT/CN2018/094674 CN2018094674W WO2019007399A1 WO 2019007399 A1 WO2019007399 A1 WO 2019007399A1 CN 2018094674 W CN2018094674 W CN 2018094674W WO 2019007399 A1 WO2019007399 A1 WO 2019007399A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
duct
air outlet
indoor unit
temperature
Prior art date
Application number
PCT/CN2018/094674
Other languages
English (en)
French (fr)
Inventor
刘超超
曾福祥
王彦生
董积菊
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2019007399A1 publication Critical patent/WO2019007399A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F2013/221Means for preventing condensation or evacuating condensate to avoid the formation of condensate, e.g. dew

Definitions

  • the present invention relates to an air conditioning apparatus, and more particularly to an indoor unit of a cabinet type air conditioner.
  • a further object of the present invention is to simplify the manufacturing process of an indoor unit and reduce its manufacturing cost.
  • Another further object of the present invention is to provide a control method for controlling the formation of an isolated gas stream.
  • the present invention provides an indoor unit of a cabinet type air conditioner, comprising:
  • a casing having an air inlet and an air outlet
  • a fan disposed inside the casing and located inside the air inlet to accelerate the flow of air entering the casing from the air inlet toward the air outlet;
  • a heat exchanger disposed inside the casing and located in a flow path of the fan to the air outlet for heat exchange with air flowing therethrough;
  • the air duct assembly is configured to direct a portion of the air blown from the fan to the heat exchanger to exchange heat with the heat exchanger to form a temperature-changed heat exchange gas stream, and direct the heat exchange gas stream via a first air outlet position of the air outlet exiting the casing;
  • the second air outlet position is configured to separate the first air outlet position from the cabinet.
  • the air duct assembly includes an inner air duct and an air guiding ring plate each configured in a tubular shape;
  • the air guiding ring plate is located below the inner air duct, is disposed between the inner air duct and the fan, and has a cross-sectional area that gradually increases from bottom to top, and is configured to be close to one end of the inner air duct.
  • the peripheral side edges of the air guiding outlets are all located at a lower portion of the outer side of the inner air duct to guide at least a portion of the air flow to the outside of the inner air duct to form the isolated air flow.
  • the inner air duct and a part of the casing together form an annular isolation cavity, and the annular isolation cavity is located on an outer peripheral side of the heat exchange cavity to guide the isolated airflow toward the second out The wind position flows.
  • the inner air passage has a vertical section and a lateral section
  • the vertical section is configured to extend vertically upward from a horizontal plane of the lower end of the heat exchanger to a horizontal plane of the lower edge of the air outlet, the lateral section being configured from an upper end of the vertical section The bend extends forward to the air outlet.
  • the lateral section has an acceleration section adjacent to the air outlet and a uniform section away from the air outlet on a rear side of the acceleration section, and the air passage section of the acceleration section is larger than the a section of the air passage of the constant speed section such that a portion of the annular isolation chamber located outside the acceleration section has a cross-sectional area smaller than a cross-sectional area of a portion of the annular isolation chamber located outside the uniform section; And causing the isolated airflow guided by the annular isolation chamber to accelerate out of the air outlet.
  • the duct plate of the vertical section includes a duct front plate on a front side of the vertical section, a duct backboard on a rear side thereof, and a first duct side on the left and right sides thereof
  • the distance between the board and the inner surface of the front panel, the inner surface of the rear wall and the inner surface of the left and right side walls of the casing are respectively not less than 10 mm.
  • the lateral section includes a duct bottom plate extending forward from the top end of the duct front panel and inclined upward in the extending direction, and a duct extending vertically upward from a top end of the duct backing plate
  • air duct bottom plate and the horizontal plane form an acute angle of any value between 3° and 15°.
  • a plurality of vertically extending first baffles are disposed on the outer side surface of the air channel plate of the vertical section to guide the downward flow of condensed water thereon to be disposed on the air channel At least one drain pan below the plate.
  • the present invention also provides a method of controlling an indoor unit, the indoor unit being the indoor unit according to any one of the above, the indoor unit further comprising: for guiding the heat exchange airflow to the first air outlet a first air path of the position and a second air path for guiding the isolated air flow to the second air outlet position, a humidity sensor for detecting ambient air humidity, for detecting the first air outlet position a temperature sensing device for the difference between the temperature of the air outlet and the temperature of the ambient air, and a damper that can be controlled to open or close to connect or block the second air passage; wherein the control method comprises:
  • the damper is opened when the difference in indoor ambient temperature is greater than the second temperature threshold.
  • the indoor unit of the present invention avoids the temperature of a part of the airflow in contact with the casing and the ambient temperature of the indoor unit by stratifying the airflow blown back into the room and forming the air which is cold or hot outside. A temperature difference is generated between the inner and outer surfaces of the casing to prevent condensation.
  • the isolation wind layer of the invention makes the temperature of the airflow contacted by the casing relatively mild, and prevents the casing from being in a state of thermal expansion or cold compression for a long time, and does not need to use special materials or processes to enhance its resistance to cold or heat.
  • the stability of the material of the housing, especially the position of the air outlet, is ensured, thereby reducing the manufacturing cost, simplifying the manufacturing process, and making the selection of the casing material more flexible in the manufacturing process.
  • control method of the present invention controls the generation of the isolated airflow according to the ambient humidity and the temperature difference between the inside and outside of the air outlet, so that the air conditioner generates double-layer airflow only when necessary, and all the air outlets are discharged when the casing is less prone to condensed water.
  • the air is a heat exchange airflow, which improves the heat exchange efficiency of the air conditioner.
  • FIG. 1 is a schematic side cross-sectional view of an indoor unit of a cabinet type air conditioner according to an embodiment of the present invention
  • Figure 2 is a schematic side view of an inner duct in accordance with one embodiment of the present invention.
  • Figure 3 is a schematic side view of an inner duct in accordance with another embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a duct plate having a first deflector in accordance with one embodiment of the present invention
  • FIG. 5 is a schematic flowchart of a control method according to an embodiment of the present invention.
  • Figure 6 is a schematic side cross-sectional view of an indoor unit of a cabinet type air conditioner in accordance with another embodiment of the present invention.
  • the indoor unit 1 is a schematic side cross-sectional view of an indoor unit 1 of a cabinet type air conditioner according to an embodiment of the present invention.
  • the indoor unit 1 generally includes a cabinet 100 and a fan 103, a heat exchanger 104, and a duct assembly disposed therein.
  • the cabinet 100 may have an air inlet 102 at a lower portion thereof and an air outlet 101 at an upper portion thereof.
  • the air inlet 102 and the air outlet 101 may both be one and located at a lower portion and an upper portion of the front panel of the cabinet 100.
  • the air inlet 102 and the air outlet 101 may also be multiple.
  • the plurality of air outlets 101 may also be located at the back and/or the side of the casing 100.
  • the plurality of air inlets 102 may also be located at the front and side walls of the casing. Lower part.
  • the fan 103 may be disposed inside the casing 100 and located inside the air inlet 102 (rear side or left/right side) to accelerate the air flowing from the casing 100 entering the air inlet 102 upward to the air outlet 101.
  • the heat exchanger 104 may be disposed inside the casing 100 and located in the flow path of the fan 103 to the air outlet 101, for example, may be located above the fan 103 to exchange heat with air flowing therethrough.
  • the air duct assembly of the air conditioning room may be configured to direct a portion of the air blown from the fan 103 to the heat exchanger 104 for heat exchange with the heat exchanger 104 to form a temperature-changing heat exchange gas stream, and to direct the heat exchange gas stream via
  • the first air outlet position A of the air outlet 101 flows out of the casing 100, and another portion of the air blown from the fan 103 is isolated from the heat exchanger 104 to form a constant temperature independent airflow that is not heat exchanged with the heat exchanger 104.
  • the second air outlet position B located on the circumferential side of the first air outlet position A.
  • the second air outlet position B is configured to separate the first air outlet position A from the cabinet 100.
  • the air duct assembly divides the airflow into two layers, inner and outer, the inner layer is a cooling air or a heating air formed by the heat exchanger 104, and the outer side is an ambient temperature isolation that does not flow through the heat exchanger 104. airflow.
  • the indoor unit 1 of the present invention stratifies the airflow blown back into the room and forms air which is cold or hot outside the room temperature, so that the temperature of the partial airflow in contact with the casing 100 is substantially equal to the ambient temperature of the indoor unit 1. Thereby, a temperature difference is generated between the inner and outer surfaces of the partial casing 100, and the occurrence of condensation is prevented.
  • the temperature of the airflow contacted by the casing 100 is relatively mild (here is mild, it is not too low or too high relative to the room temperature), and the casing is prevented from being heated or compressed for a long time, and special use is not required.
  • the material or process enhances its resistance to cold or heat to ensure the stability of the material of the casing, especially the position of the air outlet 101, thereby reducing the manufacturing cost, simplifying the manufacturing process, and making the selection of the material of the casing 100 in the manufacturing process. More flexible.
  • the texture and the pattern or pattern for decoration or marking on the casing 100 are not changed by the original state due to a large temperature change, so that the aesthetics of the indoor unit 1 can be maintained.
  • the air duct assembly may include an inner air duct 105 and an air guiding ring plate 106 each configured in a tubular shape.
  • a heat exchange chamber 201 is formed inside the inner duct 105 for setting the heat exchanger 104 to form heat exchange and direct it to flow to the first air outlet position A.
  • the air guiding ring 106 is located below the inner air duct 105, is disposed between the inner air duct 105 and the fan 103, and has a cross-sectional area that gradually increases from bottom to top, and is disposed to be adjacent to the air guiding outlet 1060 at one end of the inner air duct 105.
  • the peripheral side edges are all located at the lower portion of the outer side of the inner duct 105 to direct at least a portion of the air flow to the outside of the inner duct 105 to form an isolated airflow.
  • the inner duct 105 and the partial casing 100 may together form an annular isolation chamber 202 on the outer peripheral side of the heat exchange chamber 201 to guide the flow of the isolated airflow and guide it to continue to flow to the second air outlet position B.
  • the heat exchange chamber 201 formed inside the inner air passage 105 can be regarded as a first air passage for blowing air to the first air outlet position A, and the annular air passage 105 and the partial casing 100 form an annular isolation chamber.
  • 202 can be regarded as a second air path for supplying air to the second air outlet position B.
  • FIG. 2 is a schematic side view of an inner duct 105 in accordance with one embodiment of the present invention.
  • the inner duct 105 has a vertical section 301 and a lateral section 302.
  • the vertical section 301 is configured to extend vertically upward from a horizontal plane of the lower end of the heat exchanger 104 to a horizontal plane in which the lower edge of the air outlet 101 is located, and the lateral section 302 is configured to be bent forward from the upper end of the vertical section 301 To the air outlet 101.
  • the connection position of the lateral section 302 and the vertical section 301 may be configured as an excessively arc-shaped transition section, thereby guiding the airflow on the inner and outer sides of the inner duct 105 to flow toward the air outlet 101 smoothly and without deceleration.
  • the airflow blown from the bottom up and the upward direction of the fan 103 is directly impacted on the top of the casing 100 and gathered, which causes problems such as poor airflow in the indoor unit 1 of the cabinet type air conditioner.
  • FIG 3 is a schematic side view of an inner duct 105 in accordance with another embodiment of the present invention.
  • the lateral section 302 has an acceleration section 302a adjacent to the air outlet 101 and a constant velocity section 302b located away from the air outlet 101 on the rear side of the acceleration section 302a, the acceleration section 302a
  • the air passage section is larger than the air passage section of the constant speed section 302b such that the cross-sectional area of the partial annular isolation chamber 202 located outside the acceleration section 302a is smaller than the cross-sectional area of the partial annular isolation chamber 202 located outside the uniform section 302b.
  • the venting cross-sectional area of the partial cavity of the isolation cavity 202 inside the casing 100 (that is, the air guiding duct outside the inner air duct 105) is substantially the same, and the portion of the isolation cavity 202 located near the air outlet 101
  • the cavity has a smaller ventilation cross-sectional area with respect to the inner side of the casing 100, so that the isolated airflow flowing out of the air outlet 101 through the isolation cavity 202 has a high air flow rate while having a sufficient air flow rate, thereby ensuring the air outlet 101.
  • the cabinet 100 at the edge can continue to be in a state of being wrapped by a "normal temperature" airflow, avoiding the effects of cooling or heating airflow blown by the inner air duct 105.
  • the air passage section of the vertical section 301 may be square to match the shape of the indoor unit 1 housing 100. In other embodiments of the invention, the air passage section of the vertical section 301 may also be rounded square, circular, elliptical or other shaped.
  • the duct plate of the vertical section 301 includes a duct front panel 401 on the front side of the vertical section 301, a duct backplane 402 on the rear side thereof, and a first duct side panel 403 on the left and right sides thereof, respectively.
  • the distance from the inner surface of the front panel of the cabinet 100, the inner surface of the rear wall, and the inner surface of the left and right side walls is not less than 10 mm. Specifically, it may be any value between 10 mm and 30 mm. For example, it may be 10 mm, 15 mm, 20 mm, 25 mm, 30 mm, or the like.
  • the distance may preferably be 10 mm to ensure that the airflow of the isolated airflow is sufficient to isolate the heat exchange airflow, and to avoid generating excessive ambient temperature isolation airflow to affect the heat exchange efficiency and the indoor unit 1 Thermal effect.
  • the lateral section 302 includes a duct floor 404 that extends forwardly from the top end of the duct front panel 401 and that slopes upwardly in the direction of extension, up from the top end of the duct backplane 402.
  • the extended air duct extension plate 405 is bent from the top end of the air duct extension plate 405 and extends upwardly and obliquely upward in the extending direction.
  • the air duct top plate 406 and the first air duct side plate 403 from the left and right sides are respectively bent upward and bent.
  • a second air duct side panel 407 that extends forward. That is, the lateral section 302 has a certain inclination angle such that it is closer to the end of the air outlet 101 than its end located inside the casing 100.
  • the duct plate flows downward and falls into at least one of the water receiving trays 503.
  • the water receiving tray 503 may be one and disposed in an annular shape below the bottom end of the air duct plate of the vertical section 301.
  • the air passage bottom plate 404 and the horizontal plane form an acute angle of not more than 15°.
  • the angle may be any value between 3° and 15°.
  • it may be 3°, 5°, 7°, 9°, 11°, 13°, and 15°.
  • the specific selection of the angle may be set according to the specific length of the lateral section 302, so that the condensed water generated on the air duct wall of the lateral section 302 can be timely flowed to the vertical section 301, and the air duct floor 404 thereof The dip does not adversely affect the amount of air.
  • FIG. 4 is a schematic cross-sectional view of a duct plate having a first baffle 501, in accordance with one embodiment of the present invention.
  • a plurality of vertically extending first baffles 501 are disposed on an outer side surface of the air channel plate of the vertical section 301 of the inner air duct 105.
  • the condensed water guided therethrough flows downward into the water receiving tray 503 disposed below the inner duct 105.
  • the outer surface of the second air duct side plate 407 may be provided with a second baffle 502 extending downward from the front to the rear to guide the condensed water flowing thereon to the plurality of first baffles 501 And under the guidance of the first baffle 501, it flows into the water receiving tray 503 and is discharged to the outside through the pipeline. That is, the baffle is disposed on the outer surface of the air duct wall of the inner air duct 105, so that the condensed water formed by the temperature difference between the heat exchange chamber 201 and the isolation chamber 202 can be quickly diverted to the water receiving water.
  • the tray 503 is discharged to avoid bacteria in the air passage and affect the user's use.
  • the indoor unit further includes a humidity sensor disposed at the air inlet for detecting the humidity of the ambient air, a temperature sensing device disposed at the first air outlet position A, and the controllable opening or closing To connect or block the damper 170 of the second air passage.
  • the temperature sensing device can separately detect the temperature of the air outlet at the first air outlet position A and the temperature of the ambient air and calculate the difference between the two. Further, the opening and closing of the damper 170 can be controlled according to the ambient air humidity and the temperature difference between the first air outlet position A and the indoor environment.
  • the damper 170 can be disposed below the inner air duct and above the air guiding ring plate.
  • the damper 170 when the damper 170 is closed, all the airflow blown from the fan flows into the inner air duct, and no isolated airflow is generated, thereby improving the efficiency of the air conditioner to generate heating air or cooling air, thereby improving the heat exchange efficiency of the air conditioner to the indoor environment.
  • the damper 170 may be disposed outside the water receiving tray 530.
  • FIG. 5 is a schematic flow chart of a control method according to an embodiment of the present invention. Referring to Figure 5, the control method includes:
  • step S100 ambient air humidity is obtained.
  • step S101 it is determined whether the ambient air humidity is greater than the humidity threshold; if yes, step S108 is performed, and if no, step S104 is performed.
  • step S104 the air outlet temperature and the indoor ambient temperature of the first air outlet position A are obtained.
  • step S108 the damper is opened to connect the second air passage.
  • Step S106 determining whether the indoor ambient temperature is higher than the outlet temperature reaches the first temperature threshold or whether the outlet temperature is higher than the indoor ambient temperature reaches the second temperature threshold; if yes, step S108 is performed, and if no, step S110 is performed.
  • step S110 the damper is closed to block the second air passage.
  • control method of the present invention causes the air conditioner to open the damper to communicate the second air passage when the humidity sensor detects that the ambient air humidity is greater than a preset humidity threshold.
  • the air temperature detecting device in the cooling mode detects that the difference between the air outlet temperature at the first air outlet position A and the indoor ambient temperature is greater than or equal to the first temperature threshold or when the air outlet is in the heating mode.
  • the damper is opened.
  • the ambient air humidity in step S100 refers to the relative humidity of the air.
  • the humidity threshold can be set to any value between 60% and 70%. Preferably, the humidity threshold can be set to 65%.
  • Step S106 includes two triggering conditions for opening the damper. One is the trigger condition when the air conditioner is in the cooling mode: the wind blown through the first air outlet position A in the cooling mode is the cooling air, and the temperature thereof is lower than the indoor temperature in the room. At this time, it is detected whether the temperature difference between the two is greater than or equal to the first temperature threshold.
  • the other trigger condition is applicable when the air conditioner is in the heating mode: in the heating mode, only the wind blown by the first air outlet position A is the heating air, and the temperature thereof is higher than the indoor temperature of the room. At this time, it is detected whether the temperature difference between the two is greater than or equal to the second temperature threshold.
  • the first temperature threshold may be any temperature value between 3 ° C and 7 ° C, and may be, for example, 3 ° C, 4 ° C, 5 ° C, 6 ° C, 7 ° C, and the like.
  • the first temperature threshold can be set to 5 ° C to avoid premature opening of the air duct while ensuring that the casing does not condense at the air outlet.
  • the second temperature threshold may be any temperature value between 13 ° C and 17 ° C, such as 13 ° C, 14 ° C, 15 ° C, 16 ° C, and 17 ° C.
  • the second temperature threshold may be set to 15 ° C to open the damper in time when the indoor temperature is low or the temperature of the first air outlet is high, to connect the second air duct, thereby preventing condensation on the casing at the air outlet or Deformed by heat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

一种柜式空调器的室内机,包括:机壳(100),其上开设有进风口(102)和出风口(101);风机(103),设置在机壳(100)内部,位于进风口(102)的内侧,以促进自进风口(102)进入机壳(100)的空气加速朝向出风口(101)流动;换热器(104),设置在机壳(100)内部,位于风机(103)至出风口(101)的流动路径上,以与流经其的空气进行热交换;风道组件,设置于机壳(100)内部;其中风道组件配置成将自风机(103)吹出的部分空气引导至换热器(104),以与换热器(104)进行热交换形成温度改变的换热气流,并引导换热气流经由出风口(101)的第一出风位置A流出机壳(100);将自风机(103)吹出的另一部分空气与换热器(104)隔离,以形成未与换热器(104)进行热交换的隔离气流,并引导隔离气流经由第一出风位置A周侧的第二出风位置B流出机壳(100);第二出风位置B将第一出风位置A和机壳(100)隔开。

Description

室内机及其控制方法 技术领域
本发明涉及空气调节装置,特别是涉及一种柜式空调的室内机。
背景技术
空调在大湿度的使用环境中,出风口外表面会出现凝露,影响用户使用体验。现有防止凝露的方案主要通过绝热材料绝热,生产工艺复杂,且成本高,且防凝露效果有限。
发明内容
本发明的一个目的是要提供一种能够防凝露产生的柜式空调器室内机。
本发明的一个进一步的目的是要简化室内机的制造工艺并降低其制造成本。
本发明的另一个进一步的目的是要提供一种控制隔离气流形成的控制方法。
特别地,本发明提供了一种柜式空调器的室内机,包括:
机壳,其上开设有进风口和出风口;
风机,设置在所述机壳内部,且位于所述进风口的内侧,以促使自所述进风口进入所述机壳的空气加速朝向所述出风口流动;
换热器,设置在所述机壳内部,且位于所述风机至所述出风口的流动路径上,以与流经其的空气进行热交换;和
风道组件,设置于所述机壳内部;其中
所述风道组件配置成将自所述风机吹出的部分空气引导至所述换热器,以与所述换热器进行热交换形成温度改变的换热气流,并引导所述换热气流经由所述出风口的第一出风位置流出所述机壳;以及
将自所述风机吹出的另一部分空气与所述换热器隔离,以形成未与所述换热器进行热交换的隔离气流,并引导所述隔离气流经由位于所述第一出风位置周侧的第二出风位置流出所述机壳;且
所述第二出风位置配置成将所述第一出风位置和所述机壳隔开。
进一步地,所述风道组件包括均配置成管状的内风道和导风环板;
所述内风道内部形成有换热腔用于设置所述换热器,以形成所述换热气流并引导其流动至所述第一出风位置;
所述导风环板位于所述内风道下方,设置于所述内风道和所述风机之间,且其截面积自下至上逐渐增大,并配置成其靠近所述内风道一端的导风出口的周侧边缘均位于所述内风道的外侧的下部,以引导至少部分空气流向所述内风道的外侧,形成所述隔离气流。
进一步地,所述内风道和部分所述机壳共同形成环状隔离腔,且所述环状隔离腔位于所述换热腔的外周侧,以引导所述隔离气流朝向所述第二出风位置流动。
进一步地,所述内风道具有竖向区段和横向区段;
所述竖向区段配置成自所述换热器的下端所在水平平面竖直向上延伸至所述出风口下缘所在水平平面,所述横向区段配置成自所述竖向区段的上端弯折向前延伸至所述出风口。
进一步地,所述横向区段具有靠近所述出风口的加速区段和位于所述加速区段后侧的远离所述出风口的匀速区段,所述加速区段的风道截面大于所述匀速区段的风道截面,以使位于所述加速区段外侧的部分所述环状隔离腔的横截面积小于位于所述匀速区段外侧的部分所述环状隔离腔的横截面积,并促使由所述环状隔离腔引导的所述隔离气流加速流出所述出风口。
进一步地,所述竖向区段的风道板包括位于所述竖向区段前侧的风道前板、位于其后侧的风道背板和位于其左右两侧的第一风道侧板分别与所述机壳的前面板内表面、后壁内表面和左右侧壁内表面的距离均不小于10mm。
进一步地,所述横向区段包括自所述风道前板的顶端弯折向前延伸且沿延伸方向倾斜向上的风道底板、自所述风道背板的顶端竖直向上延伸的风道延伸板、自所述风道延伸板顶端弯折向前延伸且沿延伸方向倾斜向上的风道顶板和分别自左右两侧的所述第一风道侧板向上并弯折向前延伸的第二风道侧板。
进一步地,所述风道底板和水平面所成锐角为3°至15°之间的任意值。
进一步地,所述竖向区段的所述风道板的外侧表面上均设置有多个竖向延伸的第一导流板,以引导其上的冷凝水向下流入设置于所述风道板下方的至少一个接水盘内。
本发明还提供一种室内机的控制方法,所述室内机为根据上述任一项所 述的室内机,所述室内机还包括用于将所述换热气流引导至所述第一出风位置的第一风路和用于将所述隔离气流引导至所述第二出风位置的第二风路,用于检测环境空气湿度的湿度传感器,用于检测所述第一出风位置处的出风口温度和环境空气的温度的差值的温度传感装置,以及可受控打开或关闭以连通或阻断所述第二风路的风门;其中所述控制方法包括:
当所述湿度传感器检测到所述环境空气湿度大于预设的湿度阈值时,打开所述风门以连通所述第二风路;以及
当制冷模式下所述温度检测装置检测到所述第一出风位置处的出风口温度与室内环境温度的差值大于第一温度阈值时或当制热模式下所述出风口温度与所述室内环境温度的差值大于第二温度阈值时,打开所述风门。
本发明的室内机通过将吹送回室内的气流分层并形成内部较冷或较热外侧为常温的空气,使得与机壳接触的部分气流的温度和室内机所在环境温度大致相等,从而避免了该部分机壳的内外表面产生温差,防止了凝露的产生。
进一步地,本发明的隔离风层使得机壳所接触的气流温度比较温和,避免壳体长期处于受热膨胀或受冷压缩的状态,不需要使用特殊材料或工艺增强其耐冷或耐热能力即可保证壳体尤其是出风口位置的材料的稳定性,从而降低了制造成本、简化了制作工艺,且使得制造工程中对机壳材料的选取更灵活。
进一步地,本发明的控制方法根据环境湿度及出风口内外温差控制隔离气流的产生,使得空调仅在必要的时候产生双层气流,在机壳不易产生凝结水的情况下使所有自出风口流出的空气均为换热气流,提高了空调的换热效率。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的柜式空调器的室内机的示意性侧向剖视 图;
图2是根据本发明一个实施例的内风道的示意性侧视图;
图3是根据本发明另一个实施例的内风道的示意性侧视图;
图4是根据本发明一个实施例的一个具有第一导流板的风道板的示意性剖视图;
图5是根据本发明一个实施例的控制方法的示意性流程图;
图6是根据本发明另一个实施例的柜式空调器的室内机的示意性侧向剖视图。
具体实施方式
图1是根据本发明一个实施例的柜式空调器的室内机1的示意性侧向剖视图。室内机1一般性地可包括机壳100和设置于其内部的风机103、换热器104和风道组件。机壳100可具有位于其下部的进风口102和位于其上部的出风口101。进风口102和出风口101可均为一个,并位于机壳100的前面板的下部和上部。进风口102和出风口101也可以均为多个,多个出风口101还可位于机壳100的背部和/或侧部,多个进风口102还可位于机壳的前面板和侧壁的下部。
风机103可设置在机壳100内部,且位于进风口102内侧(后侧或左/右侧),以促使自进风口102进入的机壳100的空气加速向上流动至出风口101。换热器104可设置在机壳100内部,且位于风机103至出风口101的流动路径上,例如,可以位于风机103的上方,以与流经其的空气进行热交换。特别地,空调室的风道组件可配置成将自风机103吹出的部分空气引导至换热器104,以与换热器104进行热交换形成温度改变的换热气流,并引导换热气流经由出风口101的第一出风位置A流出机壳100,以及将自风机103吹出的另一部分空气与换热器104隔离,以形成未与换热器104进行热交换的温度不变的隔离气流,并引导隔离气流经由位于第一出风位置A周侧的第二出风位置B流出机壳100。特别地,第二出风位置B配置成将第一出风位置A和机壳100隔开。
也即是,风道组件将出风气流分为内外两层,内层为流经换热器104形成的制冷风或制热风,外侧为不流经换热器104的仍具有环境温度的隔离气流。由此,可使得出风口101的边缘仅与“风层”外侧的常温隔离气流接触, 避免其出风口101处的部分机壳100的内外表面出现温差。
本发明的室内机1通过将吹送回室内的气流分层并形成内部较冷或较热外侧为常温的空气,使得与机壳100接触的部分气流的温度和室内机1所在环境温度大致相等,从而避免了该部分机壳100的内外表面产生温差,防止了凝露的产生。
进一步地,由于机壳100所接触的气流温度比较温和(此处温和是指相对于室温不会过低或过高),避免壳体长期处于受热膨胀或受冷压缩的状态,不需要使用特殊材料或工艺增强其耐冷或耐热能力即可保证壳体尤其是出风口101位置的材料的稳定性,从而降低了制造成本、简化了制作工艺,且使得制造工程中对机壳100材料的选取更灵活。
再进一步地,机壳100上的纹理和装饰或标识用的花纹或图案等也不会因受到温度大幅度变化而导致其原始状态改变,从而可以保持室内机1的美观性。
在本发明的一些实施例中,风道组件可包括均配置成管状的内风道105和导风环板106。具体地,内风道105内部形成有换热腔201以用于设置换热器104,以形成换热并引导其流动至第一出风位置A。导风环板106位于内风道105下方,设置于内风道105和风机103之间,且其截面积自下至上逐渐增大,并配置成其靠近内风道105一端的导风出口1060的周侧边缘均位于内风道105的外侧的下部,以引导至少部分空气流向内风道105的外侧,形成隔离气流。具体地,内风道105和部分机壳100可共同形成环状隔离腔202,位于换热腔201的外周侧,以引导隔离气流流动,并引导其继续流动至第二出风位置B。进一步地,内风道105内部形成的换热腔201可以视为用于向第一出风位置A送风的第一风路,内风道105与部分机壳100共同形成的环状隔离腔202可以视为用于向第二出风位置B送风的第二风路。
图2是根据本发明一个实施例的内风道105的示意性侧视图。
在本发明的一些实施例中,参见图2,内风道105具有竖向区段301和横向区段302。竖向区段301配置成自换热器104的下端所在水平平面竖直向上延伸至出风口101下缘所在水平平面,横向区段302配置成自竖向区段301的上端弯折向前延伸至出风口101。具体地,横向区段302和竖向区段301的连接位置可配置成大致呈圆弧状的过度段,由此引导内风道105内外两侧的气流顺利、不减速地朝向出风口101流动,避免了风机103自下向上 吹送出的气流直接冲击至机壳100顶部并聚集,导致柜式空调器室内机1出现出风不畅等问题。
图3是根据本发明另一个实施例的内风道105的示意性侧视图。
在本发明的一些实施例中,参见图3横向区段302具有靠近出风口101的加速区段302a和位于加速区段302a后侧的远离出风口101的匀速区段302b,加速区段302a的风道截面大于匀速区段302b的风道截面,以使位于加速区段302a外侧的部分环状隔离腔202的横截面积小于位于匀速区段302b外侧的部分环状隔离腔202的横截面积,以促使由隔离腔202引导的隔离气流加速流出出风口101。也即是,隔离腔202的位于机壳100内部的部分腔体(也即是内风道105外侧的导风风道)的通风截面积大致相同,隔离腔202的位于靠近出风口101的部分腔体相对于机壳100内侧具有更小的通风截面积,以使经由隔离腔202流出出风口101的隔离气流在具有的足够的出风量的同时还具有较高的流速,从而保证出风口101边缘处的机壳100能够持续处于被“常温”气流包裹的状态,避免受到由内风道105引导吹出的制冷或制热气流的影响。
在本发明的一些实施例中,竖向区段301的风道截面可以为方形,以和室内机1机壳100的形状相配合。在本发明的另一些实施例中,竖向区段301的风道截面也可以为圆角方形、圆形、椭圆形或其他异形。
竖向区段301的风道板包括位于竖向区段301前侧的风道前板401、位于其后侧的风道背板402和位于其左右两侧的第一风道侧板403分别与机壳100的前面板内表面、后壁内表面和左右侧壁内表面的距离不小于10mm。具体地,可以为10mm至30mm之间的任意值。例如,可以为10mm、15mm、20mm、25mm和30mm等。在本发明的一些实施例中,该距离可以优选为10mm,以保证隔离气流的风量充足以隔离开换热气流,且避免产生过多常温的隔离气流以影响室内机1的换热效率和换热效果。
在本发明的一些实施例中,横向区段302包括自风道前板401的顶端弯折向前延伸且沿延伸方向倾斜向上的风道底板404、自风道背板402的顶端竖直向上延伸的风道延伸板405、自风道延伸板405顶端弯折向前延伸且沿延伸方向倾斜向上的风道顶板406和分别自左右两侧的第一风道侧板403向上并弯折向前延伸的第二风道侧板407。也即是,横向区段302具有一定倾斜角度,以使其靠近出风口101一端略高于其位于机壳100内部的一端。由 此,横向区段302的风道底板404和风道顶板406上由于换热腔201和隔离腔202的温差而产生的冷凝水可流动至竖向区段301上,并沿竖向区段301的风道板向下流动并落入至少一个接水盘503中。接水盘503可以为一个,并设置成环状位于竖向区段301的风道板底端的下方。接水盘503也可为多个,并分别设置在竖向区段301的风道前板401、风道背板402和第一风道侧板403的底端的下方。
进一步地,风道底板404和水平面所成锐角不大于15°。具体地,该角度可以为3°至15°之间的任意值。例如,可以为3°、5°、7°、9°、11°、13°和15°等。该角度的具体选取可根据横向区段302的具体长度设置,从而可以保证横向区段302的风道壁上产生的冷凝水可以及时地流动至竖向区段301,且其风道底板404的倾角不会对出风量产生不利影响。
图4是根据本发明一个实施例的一个具有第一导流板501的风道板的示意性剖视图。在本发明的一些实施例中,参见图2至图4,内风道105的竖向区段301的风道板的外侧表面上均设置有多个竖向延伸的第一导流板501,以引导其上的冷凝水向下流入设置于内风道105下方的接水盘503内。进一步地,第二风道侧板407的至少部分外表面上可设置有自前向后倾斜向下延伸的第二导流板502,以引导其上的冷凝水流向多个第一导流板501,并在第一导流板501的引导下流入接水盘503并通过管路排出至室外。也即是,通过在内风道105风道壁的外表面上设置导流板,使其上由于换热腔201和隔离腔202的温差而形成的冷凝水能够被迅速地导流至接水盘503并排出,以避免风道内滋生细菌,影响用户使用。
在本发明的一些实施例中,室内机还包括设置在进风口处用于检测环境空气湿度的湿度传感器、设置在第一出风位置A处的温度传感装置,以及可受控打开或关闭以连通或阻断第二风路的风门170。温度传感装置可单独检测第一出风位置A处的出风口温度和环境空气的温度并计算二者的差值。进一步地,风门170的开闭可根据环境空气湿度以及第一出风位置A与室内环境的温差进行控制。风门170可以设置在内风道下方,导风环板上方。由此当风门170关闭时,所有自风机吹出的气流均流入内风道内部,不产生隔离气流,从而使空调产生制热风或制冷风的效率提升,进而提高了空调对室内环境的换热效率。参见图5,在本发明的一些实施例中,风门170可设置于接水盘530外侧。
图5是根据本发明一个实施例的控制方法的示意性流程图。参见图5,控制方法包括:
步骤S100,获取环境空气湿度。
步骤S101,判断环境空气湿度是否大于湿度阈值;若是,则执行步骤S108,若否,则执行步骤S104。
步骤S104,获取第一出风位置A的出风口温度和室内环境温度。
步骤S108,打开风门,使第二风路连通。
步骤S106,判断室内环境温度是否高出出风口温度达第一温度阈值或出风口温度是否高出室内环境温度达第二温度阈值;若是,则执行步骤S108,若否,则执行步骤S110。
步骤S110,关闭风门,使第二风路阻断。
也即是,本发明的控制方法使空调在湿度传感器检测到环境空气湿度大于预设的湿度阈值时,打开风门以连通第二风路。除此之外,还使空调在制冷模式下温度检测装置检测到第一出风位置A处的出风口温度与室内环境温度的差值大于等于第一温度阈值时或当制热模式下出风口温度与室内环境温度的差值大于等于第二温度阈值时,打开风门。
其中,步骤S100中的环境空气湿度是指空气的相对湿度。湿度阈值可设置成60%至70%之间的任意值。优选地,该湿度阈值可设置为65%。步骤S106包括两个打开风门的触发条件。其一是当空调处于制冷模式时的触发条件:制冷模式下的经由第一出风位置A吹出的风为制冷风,其温度低于室内的环境温度。此时,检测二者的温度差是否大于等于第一温度阈值。另一条触发条件适用于当空调处于制热模式:制热模式下仅有第一出风位置A吹出的风为制热风,其温度高于室内的环境温度。此时,检测二者的温度差是否大于等于第二温度阈值。
进一步地,第一温度阈值可以为3℃至7℃之间的任意温度值,例如可以为3℃、4℃、5℃、6℃和7℃等。优选地,第一温度阈值可以设置为5℃,以在保证出风口处机壳无凝露的同时避免风道过早打开。第二温度阈值可以为13℃至17℃之间的任意温度值,例如可以为13℃、14℃、15℃、16℃和17℃等。优选地,第二温度阈值可设置为15℃,以在室内温度较低或第一出风口位置温度较高时及时打开风门,连通第二风道,从而避免出风口处机壳产生凝露或受热变形。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种柜式空调器的室内机,包括:
    机壳,其上开设有进风口和出风口;
    风机,设置在所述机壳内部,且位于所述进风口的内侧,以促使自所述进风口进入所述机壳的空气加速朝向所述出风口流动;
    换热器,设置在所述机壳内部,且位于所述风机至所述出风口的流动路径上,以与流经其的空气进行热交换;和
    风道组件,设置于所述机壳内部;其中
    所述风道组件配置成将自所述风机吹出的部分空气引导至所述换热器,以与所述换热器进行热交换形成温度改变的换热气流,并引导所述换热气流经由所述出风口的第一出风位置流出所述机壳;以及
    将自所述风机吹出的另一部分空气与所述换热器隔离,以形成未与所述换热器进行热交换的隔离气流,并引导所述隔离气流经由位于所述第一出风位置周侧的第二出风位置流出所述机壳;且
    所述第二出风位置配置成将所述第一出风位置和所述机壳隔开。
  2. 根据权利要求1所述的室内机,其中,
    所述风道组件包括均配置成管状的内风道和导风环板;
    所述内风道内部形成有换热腔用于设置所述换热器,以形成所述换热气流并引导其流动至所述第一出风位置;
    所述导风环板位于所述内风道下方,设置于所述内风道和所述风机之间,且其截面积自下至上逐渐增大,并配置成其靠近所述内风道一端的导风出口的周侧边缘均位于所述内风道的外侧的下部,以引导至少部分空气流向所述内风道的外侧,形成所述隔离气流。
  3. 根据权利要求2所述的室内机,其中,
    所述内风道和部分所述机壳共同形成环状隔离腔,且所述环状隔离腔位于所述换热腔的外周侧,以引导所述隔离气流朝向所述第二出风位置流动。
  4. 根据权利要求3所述的室内机,其中,
    所述内风道具有竖向区段和横向区段;
    所述竖向区段配置成自所述换热器的下端所在水平平面竖直向上延伸至所述出风口下缘所在水平平面,所述横向区段配置成自所述竖向区段的上端弯折向前延伸至所述出风口。
  5. 根据权利要求4所述的室内机,其中,
    所述横向区段具有靠近所述出风口的加速区段和位于所述加速区段后侧的远离所述出风口的匀速区段,所述加速区段的风道截面大于所述匀速区段的风道截面,以使位于所述加速区段外侧的部分所述环状隔离腔的横截面积小于位于所述匀速区段外侧的部分所述环状隔离腔的横截面积,并促使由所述环状隔离腔引导的所述隔离气流加速流出所述出风口。
  6. 根据权利要求4所述的室内机,其中,
    所述竖向区段的风道板包括位于所述竖向区段前侧的风道前板、位于其后侧的风道背板和位于其左右两侧的第一风道侧板分别与所述机壳的前面板内表面、后壁内表面和左右侧壁内表面的距离均不小于10mm。
  7. 根据权利要求6所述的室内机,其中:
    所述横向区段包括自所述风道前板的顶端弯折向前延伸且沿延伸方向倾斜向上的风道底板、自所述风道背板的顶端竖直向上延伸的风道延伸板、自所述风道延伸板顶端弯折向前延伸且沿延伸方向倾斜向上的风道顶板和分别自左右两侧的所述第一风道侧板向上并弯折向前延伸的第二风道侧板。
  8. 根据权利要求7所述的室内机,其中,
    所述风道底板和水平面所成锐角为3°至15°之间的任意值。
  9. 根据权利要求7所述的室内机,其中,
    所述竖向区段的所述风道板的外侧表面上均设置有多个竖向延伸的第一导流板,以引导其上的冷凝水向下流入设置于所述风道板下方的至少一个接水盘内。
  10. 一种室内机的控制方法,所述室内机为根据权利要求1所述的室内机,所述室内机还包括用于将所述换热气流引导至所述第一出风位置的第一风路和用于将所述隔离气流引导至所述第二出风位置的第二风路,用于检测环境空气湿度的湿度传感器,用于检测所述第一出风位置处的出风口温度和环境空气的温度的差值的温度传感装置,以及可受控打开或关闭以连通或阻断所述第二风路的风门;其中所述控制方法包括:
    当所述湿度传感器检测到所述环境空气湿度大于预设的湿度阈值时,打开所述风门以连通所述第二风路;以及
    当制冷模式下所述温度检测装置检测到所述第一出风位置处的出风口温度与室内环境温度的差值大于第一温度阈值时或当制热模式下所述出风 口温度与所述室内环境温度的差值大于第二温度阈值时,打开所述风门。
PCT/CN2018/094674 2017-07-06 2018-07-05 室内机及其控制方法 WO2019007399A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710548061.5A CN107388355B (zh) 2017-07-06 2017-07-06 室内机及其控制方法
CN201710548061.5 2017-07-06

Publications (1)

Publication Number Publication Date
WO2019007399A1 true WO2019007399A1 (zh) 2019-01-10

Family

ID=60335607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094674 WO2019007399A1 (zh) 2017-07-06 2018-07-05 室内机及其控制方法

Country Status (2)

Country Link
CN (1) CN107388355B (zh)
WO (1) WO2019007399A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107388355B (zh) * 2017-07-06 2019-12-06 青岛海尔空调器有限总公司 室内机及其控制方法
CN108534333A (zh) * 2018-03-16 2018-09-14 青岛海尔空调器有限总公司 用于双向进出风管的热交换芯
CN109297094A (zh) * 2018-09-30 2019-02-01 珠海格力电器股份有限公司 空调室内机
CN109539389B (zh) * 2018-12-27 2024-04-30 Tcl空调器(中山)有限公司 一种立式空调器及其控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5482448U (zh) * 1977-11-22 1979-06-11
JPS57134514U (zh) * 1981-02-17 1982-08-21
CN204141747U (zh) * 2014-09-30 2015-02-04 青岛海高设计制造有限公司 环境调节装置
CN204629736U (zh) * 2015-04-07 2015-09-09 青岛海高设计制造有限公司 一种壁挂式空调
EP3006856A2 (en) * 2014-09-08 2016-04-13 Mitsubishi Heavy Industries, Ltd. Indoor unit and air conditioner
CN106482230A (zh) * 2015-08-27 2017-03-08 青岛海尔智能技术研发有限公司 一种混流空调
CN106482213A (zh) * 2015-08-27 2017-03-08 青岛海尔智能技术研发有限公司 一种混流空调
CN107388355A (zh) * 2017-07-06 2017-11-24 青岛海尔空调器有限总公司 室内机及其控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5482448U (zh) * 1977-11-22 1979-06-11
JPS57134514U (zh) * 1981-02-17 1982-08-21
EP3006856A2 (en) * 2014-09-08 2016-04-13 Mitsubishi Heavy Industries, Ltd. Indoor unit and air conditioner
CN204141747U (zh) * 2014-09-30 2015-02-04 青岛海高设计制造有限公司 环境调节装置
CN204629736U (zh) * 2015-04-07 2015-09-09 青岛海高设计制造有限公司 一种壁挂式空调
CN106482230A (zh) * 2015-08-27 2017-03-08 青岛海尔智能技术研发有限公司 一种混流空调
CN106482213A (zh) * 2015-08-27 2017-03-08 青岛海尔智能技术研发有限公司 一种混流空调
CN107388355A (zh) * 2017-07-06 2017-11-24 青岛海尔空调器有限总公司 室内机及其控制方法

Also Published As

Publication number Publication date
CN107388355B (zh) 2019-12-06
CN107388355A (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
WO2019007399A1 (zh) 室内机及其控制方法
CN105258307B (zh) 空调室内机及空调室内出风控制方法
CN105180267B (zh) 空调室内机及空调室内出风控制方法
CN105180268B (zh) 空调室内机及空调室内出风控制方法
CN105180270B (zh) 空调室内机及空调室内出风控制方法
CN107076430B (zh) 空气调节机
WO2019024818A1 (zh) 空调装置的控制方法
CN106482213A (zh) 一种混流空调
CN107559954A (zh) 壁挂式空调室内机及其导风板安装位置的选择方法
CN106765540A (zh) 空调室内机
CN107084428A (zh) 空调室内壁挂机及其控制方法
JP2007333356A (ja) 天井埋込型室内機ユニットの吹出構造
CN206145929U (zh) 一种顶出风立式空调器
CN205048557U (zh) 立式空调器
CN106642624A (zh) 一种立式空调器室内机及其控制方法
CN206626698U (zh) 壁挂式空调一体机
CN107062572A (zh) 挂吊式空调内机
CN207501284U (zh) 风道系统、空调室内机及空调器
CN108375108B (zh) 壁挂式空调室内机
JP4729874B2 (ja) 空気調和機
CN105890101A (zh) 一种室内空调器
CN105180271B (zh) 空调室内机及空调室内出风控制方法
CN106322469A (zh) 油烟机及其调温送风系统
CN116045476B (zh) 壁挂式空调室内机及其控制方法
JP2511985B2 (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18827653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18827653

Country of ref document: EP

Kind code of ref document: A1