WO2019007294A1 - 基于功率检测反馈的射频功率放大器、芯片及通信终端 - Google Patents

基于功率检测反馈的射频功率放大器、芯片及通信终端 Download PDF

Info

Publication number
WO2019007294A1
WO2019007294A1 PCT/CN2018/093936 CN2018093936W WO2019007294A1 WO 2019007294 A1 WO2019007294 A1 WO 2019007294A1 CN 2018093936 W CN2018093936 W CN 2018093936W WO 2019007294 A1 WO2019007294 A1 WO 2019007294A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
transistor
resistor
amplifying circuit
current
Prior art date
Application number
PCT/CN2018/093936
Other languages
English (en)
French (fr)
Inventor
赵锦鑫
白云芳
Original Assignee
唯捷创芯(天津)电子技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 唯捷创芯(天津)电子技术股份有限公司 filed Critical 唯捷创芯(天津)电子技术股份有限公司
Priority to EP18828768.4A priority Critical patent/EP3651357A4/en
Priority to US16/628,243 priority patent/US11323074B2/en
Publication of WO2019007294A1 publication Critical patent/WO2019007294A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • H03F1/0272Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A by using a signal derived from the output signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/14Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of neutralising means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/26Modifications of amplifiers to reduce influence of noise generated by amplifying elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • H03F1/302Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in bipolar transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/38Positive-feedback circuit arrangements without negative feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/213Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/68Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/135Indexing scheme relating to amplifiers there being a feedback over one or more internal stages in the global amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/447Indexing scheme relating to amplifiers the amplifier being protected to temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/462Indexing scheme relating to amplifiers the current being sensed
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/465Power sensing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/481A resistor being used as sensor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • the present invention relates to a radio frequency power amplifier, and more particularly to a radio frequency power amplifier based on power detection feedback, and also relates to a chip including the radio frequency power amplifier and a corresponding communication terminal, and belongs to the technical field of radio frequency integrated circuits.
  • the RF power amplifier is an indispensable functional module in the wireless communication terminal. Its main function is to amplify the transmission power of the communication terminal, so that it can maintain sufficient signal strength when it reaches the base station, thereby achieving the minimum signal-to-noise ratio required for communication, and completing the signal transmission and reception of the entire communication link.
  • the main DC power consumption comes from the RF power amplifier. Reducing the power consumption of the RF power amplifier can significantly increase the operating time of the system.
  • the performance of the RF power amplifier directly determines the overall performance of the RF circuit.
  • the design of RF power amplifiers usually requires a stable gain and output power value.
  • the gain and output power of the RF power amplifier often vary over a wide range.
  • changes in the input signal cause the RF power amplification to vary the output power over a larger range. Therefore, it is necessary to feedback control the static working current and output power of the RF power amplifier, thereby suppressing the change of the working state of the RF power amplifier caused by the process variation, and reducing the influence of the change of the input signal on the working state of the RF power amplifier.
  • the RF power amplifier is operated in a state where the gain and the output power are stable.
  • the primary technical problem to be solved by the present invention is to provide a radio frequency power amplifier based on power detection feedback.
  • Another technical problem to be solved by the present invention is to provide a chip including the radio frequency power amplifier and a corresponding communication terminal.
  • a radio frequency power amplifier based on power detection feedback including a multi-stage amplification circuit and at least one power detection feedback circuit, and an input end of the power detection feedback circuit and the multi-stage amplification An output end of the current-stage amplifying circuit in the circuit is connected, and an output end of the power detecting feedback circuit is connected to an input end of the current-stage amplifying circuit and at least one-stage amplifying circuit located in front of the current-stage amplifying circuit;
  • the power detection feedback circuit generates a control voltage that changes inversely with the output power according to the detected output power of the current stage amplifying circuit, so that the power detection feedback circuit output changes positively with the control voltage.
  • a current input to the input stage of the current stage amplifying circuit and at least one of the first stage amplifying circuits, so that at least the quiescent operating current of the first stage amplifying circuit changes positively with the current The RF power amplifier is guaranteed to operate in a state in which the gain and the output power are stable.
  • the radio frequency power amplifier further includes at least one current detecting feedback circuit, wherein an input end of the current detecting feedback circuit is connected to an input end of a certain stage amplifying circuit behind the current amplifying circuit through a corresponding resistor The output end of the current detecting feedback circuit is connected to an input end of at least one stage amplifying circuit in front of the stage amplifying circuit;
  • the current detecting feedback circuit generates a control voltage that changes inversely with the static working current according to the detected static working current of the stage amplifying circuit, so that the current detecting feedback circuit output changes positively with the control voltage
  • the current is input to the input end of the at least one primary amplifying circuit in front of the amplifying circuit, so that at least the quiescent operating current of the primary amplifying circuit changes positively with the current to ensure that the radio frequency power amplifier operates at a gain and The output power is stable.
  • the power detection feedback circuit includes a first detection circuit and a first feedback circuit, and an output end of the first detection circuit is connected to an input end of the first feedback circuit, and the first detection circuit is The input end is connected to the output end of the amplifier circuit of the present stage, and the output end of the first feedback circuit is connected to the input terminal of the current stage amplifying circuit and at least one stage amplifying circuit located in front of the current stage amplifying circuit.
  • the input end of the first feedback circuit is connected to the output end of the second detecting circuit, and the static working current of the detected level amplifying circuit is input to the first feedback by the second detecting circuit. Circuit.
  • the current detecting feedback circuit includes a second detecting circuit and a second feedback circuit, wherein an output end of the second detecting circuit is connected to an input end of the second feedback circuit, and the second detecting circuit is The input end is connected to the input end of the stage amplifying circuit, and the output end of the second feedback circuit is connected to the input end of at least one stage amplifying circuit in front of the stage amplifying circuit.
  • the first detecting circuit is composed of a first resistor and a first capacitor in series
  • the second detecting circuit is composed of a sixth resistor.
  • the first detecting circuit is composed of a first capacitor.
  • the first feedback circuit and the second feedback circuit each include two transistors, wherein a fourth resistor is disposed between the collector of the first transistor and the power supply voltage, and the collector and the second transistor of the first transistor A fifth resistor is disposed between the bases of the transistors, a collector of the second transistor is coupled to a power supply voltage, a base of the first transistor serves as an input of a feedback circuit, and an emitter of the second transistor serves as a feedback The output of the circuit.
  • the first bias circuit respectively provides a bias voltage for the stage amplifying circuit and the first transistor
  • a bias circuit includes a transistor, a collector of which is coupled to a bias voltage, and an emitter of the transistor is coupled to a base of the first transistor through a sixth resistor, an emitter of the transistor and the stage The input end of the amplifying circuit is connected, a resistor is disposed between the base of the transistor and the bias voltage, and two diodes are arranged in series between the base of the transistor and the ground.
  • a bias voltage is provided to the first transistor of the power detection feedback circuit by a second bias circuit
  • the second bias circuit includes a second resistor and a third resistor, and one end of the second resistor Connected to the power voltage, the other end of the second resistor is coupled to one end of the third resistor to form an output of the second bias circuit, and the other end of the third resistor is grounded.
  • the first bias circuit provides a bias voltage for the first transistor of the current detecting feedback circuit and the stage amplifying circuit.
  • each stage amplifying circuit is a common emitter amplifying circuit composed of a bipolar transistor or a CMOS transistor, and a load is arranged between each of the amplifying circuits and the power supply voltage.
  • the load is a resistor or an inductor, and a capacitor is disposed between an input end of the latter stage amplifying circuit and an output end of the previous stage amplifying circuit.
  • a chip comprising the above-described power detection feedback based radio frequency power amplifier.
  • a communication terminal comprising the above-described power detection feedback based radio frequency power amplifier.
  • the radio frequency power amplifier provided by the invention is configured to detect the output power of the amplifier circuit of the present stage by setting a power detection feedback circuit, and generate a control voltage that changes inversely with the output power according to the detected output power, so that the power detection feedback
  • the circuit outputs a current that varies positively with the control voltage.
  • the current is input to the input stage of the current stage amplifying circuit and the at least one stage amplifying circuit in front of the amplifying circuit of the present stage by the power detecting feedback circuit, and the static working of the at least one stage amplifying circuit and the at least one stage amplifying circuit in front of the amplifying circuit of the stage are controlled.
  • the current causes the RF power amplifier to operate in a state where the gain and output power are stable.
  • FIG. 1 is a circuit schematic diagram of a radio frequency power amplifier based on power detection feedback according to Embodiment 1 of the present invention
  • FIG. 2 is a circuit schematic diagram of a radio frequency power amplifier based on power detection feedback according to Embodiment 2 of the present invention
  • FIG. 3 is a circuit schematic diagram of a radio frequency power amplifier based on power detection feedback according to Embodiment 3 of the present invention
  • FIG. 4 is a circuit schematic diagram of a radio frequency power amplifier based on power detection feedback according to Embodiment 4 of the present invention.
  • FIG. 5 is a schematic circuit diagram of a radio frequency power amplifier based on power detection feedback according to Embodiment 5 of the present invention.
  • the radio frequency power amplifier provided by the invention comprises a multi-stage amplifying circuit, a first bias circuit and a detecting feedback circuit, the multi-stage amplifying circuit is connected with the first bias circuit, and the first bias circuit provides a bias voltage for the multi-stage amplifying circuit .
  • the detection feedback circuit includes at least one power detection feedback circuit, or the detection feedback circuit includes at least one power detection feedback circuit and a current detection feedback circuit, and each of the power detection feedback circuit and the current detection feedback circuit are respectively connected to the multi-stage amplification circuit. Wherein, when the output power of the amplifier circuit of the present stage increases or decreases, the output power of the RF power amplifier based on the power detection feedback is correspondingly increased or decreased.
  • the power detection feedback circuit connected to the amplification circuit of the current stage detects that the output power of the amplification circuit of the same stage increases or decreases, and generates a corresponding current according to the output power, and generates a corresponding control voltage according to the current.
  • the power detection feedback circuit reduces or increases the control voltage correspondingly, so that the current output by the power detection feedback circuit is correspondingly reduced or increased.
  • the current outputted by the power detection feedback circuit can be input to the input terminal of the current stage amplifying circuit and at least one stage amplifying circuit located in front of the amplifying circuit of the present stage, so that the amplifying circuit of the stage and the at least one stage amplifying circuit located in front of the amplifying circuit of the stage are
  • the static working current is correspondingly reduced or increased, so that the gain and the output power of the at least one primary amplifying circuit and the at least one primary amplifying circuit located in front of the amplifying circuit of the present stage are correspondingly reduced or increased, so that the output of the amplifying circuit of the present stage can be compensated
  • the increase or decrease of power causes the gain and output power of the RF power amplifier to increase or decrease, effectively suppressing changes in the operating state of the RF power amplifier caused by process variations, and reducing the variation of the input signal to the RF power.
  • the effect of the amplifier's operating state allows the RF power amplifier to operate in a state where the gain and output power are stable.
  • the gain of the RF power amplifier based on the power detecting feedback is also increased accordingly. Big or small.
  • the current detecting feedback circuit connected to a certain stage amplifying circuit detects and copies the static working current at the input end of the amplifying circuit of the certain stage to increase or decrease, and the current detecting feedback circuit is static according to the increase or decrease.
  • the control voltage generated by the operating current is correspondingly reduced or increased, and the reduced or increased control voltage causes the current outputted by the current detecting feedback circuit to become smaller or larger.
  • the current outputted by the current detecting feedback circuit is input to the input end of at least one stage of the amplifying circuit in front of the amplifying circuit of a certain stage, so that the static working current of the input end of at least one stage of the amplifying circuit in front of the certain stage amplifying circuit is correspondingly reduced or increased, thereby causing
  • the gain of at least one stage of the amplifying circuit in front of a certain level of amplifying circuit is reduced or increased, thereby compensating for the RF power amplifier based on the power detecting feedback due to the increase or decrease of the static working current of the amplifying circuit of a certain stage
  • the problem of increasing or decreasing the gain ensures that the total gain of the RF power amplifier based on the power detection feedback is constant.
  • the positional relationship between the amplification circuits of the stages in the multi-stage amplification circuit is based on the current flow direction of the multi-stage amplification circuit, that is, the plurality of points mentioned in the present invention.
  • the positional relationship between the front and the back is based on the current flow of the multistage amplifier circuit.
  • the current outputted by the power detection feedback circuit is input to the amplification circuit of the current stage and the input terminal of at least one stage of the amplification circuit in front of the amplification circuit of the current stage, wherein at least one level
  • the amplifying circuit includes any one or more stages of amplifying circuits
  • at least the one-stage amplifying circuit includes the case of the present stage amplifying circuit.
  • the current output by the current detecting feedback circuit can be input to the input end of at least one primary amplifying circuit in front of a certain level of amplifying circuit, wherein at least one of the primary amplifying circuits includes any one or more stages of amplifying circuits, but at least one stage of amplification
  • the circuit does not include a certain level of amplification circuit.
  • each stage of the amplifying circuit may be composed of a bipolar transistor or a CMOS transistor, and a resistor or an inductor may be provided as a load between each stage of the amplifying circuit and the power source voltage.
  • a two-pole amplifying circuit and a three-stage amplifying circuit composed of a bipolar transistor (hereinafter referred to as a transistor) are taken as an example, and an inductor is used as a load of each stage amplifying circuit, and the radio frequency power provided by the present invention is provided.
  • a transistor bipolar transistor
  • the radio frequency power amplifier provided in this embodiment includes a two-pole amplifying circuit, a first bias circuit, and a power detecting feedback circuit.
  • each stage of the amplifying circuit adopts a common emitter amplifying circuit, that is, the radio frequency input signal is input to the base of the transistor 101 of the first-stage amplifying circuit through the DC blocking capacitor, and the emitter of the transistor 101 is grounded.
  • the inductor 102 is connected as a load of the first stage amplifying circuit between the collector of the transistor 101 and the supply voltage.
  • the output power of the first-stage amplifying circuit enters the base of the transistor 105a, the transistor 105b, and the transistor 105c of the second-stage amplifying circuit via the collector of the transistor 101 and the capacitor 103a, the capacitor 103b, and the capacitor 103c, respectively, and the second-stage amplifying circuit
  • the emitters of the transistor 105a, the transistor 105b, and the transistor 105c are commonly grounded, and the inductor 106 serves as a load of the second-stage amplifier circuit.
  • One end of the inductor 106 is connected to the power supply voltage, and the other end of the inductor 106 is connected to the transistor 105a, the transistor 105b, and the transistor 105c, respectively.
  • the collector is connected; the output power of the second-stage amplifying circuit is transmitted through the collector of the transistor 105a, the transistor 105b, and the transistor 105c, and then transmitted to the output terminal through the DC blocking capacitor for output.
  • the first bias circuit includes a transistor 110, a resistor 107, a diode 108, and a diode 109.
  • the collector of the transistor 110 is connected to one end of the bias voltage Vbias and the resistor 107, and the other end of the resistor 107 is respectively connected to the base and the diode of the transistor 110.
  • the anode of 108 is connected, the cathode of diode 108 is connected to the anode of diode 109, the cathode of diode 109 is grounded, and the emitter of transistor 110 is corresponding to the base of transistor 105a, transistor 105b, transistor 105c through resistor 104a, resistor 104b, resistor 104c, respectively. connection.
  • the transistor 105a, the transistor 105b, and the transistor 105c of the second-stage amplifying circuit are supplied with a bias voltage by the first bias circuit.
  • the power detection feedback circuit of the radio frequency power amplifier provided in this embodiment is connected in series with the first capacitor 112 and the first capacitor 111 in the collector of the transistor 101 of the first stage amplifying circuit and the first transistor 115 of the power detecting feedback circuit. Between the bases.
  • the first resistor 112 and the first capacitor 111 are connected in series to form a first detecting circuit; the output power of the first-stage amplifying circuit is detected by the first resistor 112 and the first capacitor 111, and the power intensity leaked to the first transistor 115 can be controlled.
  • a fourth resistor 116 and a fifth resistor 117 are disposed between the collector of the first transistor 115 and the power supply voltage and the base of the second transistor 118.
  • the collector of the second transistor 118 is connected to the power supply voltage, and the second transistor 118 is connected.
  • the emitter is connected to the base of the transistor 101 of the first stage amplifying circuit via a resistor 119, and each of the above elements constitutes a first feedback circuit.
  • the second bias circuit includes a second resistor 113 and a third resistor 114, and the second resistor 113 and the third resistor 114 are connected at one end As an output terminal of the second bias circuit, the output terminal is connected to the base of the first transistor 115, the other end of the second resistor 113 is connected to the power supply voltage, the other end of the third resistor is grounded, and the second resistor 113 is connected.
  • the third resistor 114 provides a bias voltage to the first transistor 115 by a voltage dividing action.
  • the output power of the transistor 101 of the first stage amplifying circuit will leak to the base of the first transistor 115 through the first resistor 112 and the first capacitor 111, thereby changing the operation of the first transistor 115.
  • Current For example, when the output power of the first-stage amplifying circuit is increased, the power leaked to the first transistor 115 through the first resistor 112 and the first capacitor 111 is also increased correspondingly, so that the operating current of the first transistor 115 is also increased accordingly. Big.
  • the control voltage on the fourth resistor 116 connected to the collector of the first transistor 115 is increased, and the base voltage of the first transistor 115 is decreased by the fifth resistor 117, thereby controlling the flow through the first transistor 115.
  • the current is also correspondingly reduced, and the current output by the second transistor 118 is input to the base of the transistor 101 of the first-stage amplifying circuit through the resistor 119, so that the static operating current of the transistor 101 of the first-stage amplifying circuit is reduced, thereby reducing
  • the gain of the first stage amplifying circuit reduces the output power of the first stage amplifying circuit.
  • the radio frequency power amplifier provided in this embodiment includes a two-pole amplifying circuit, a first bias circuit, a power detecting feedback circuit, and a current detecting feedback circuit.
  • the first-stage amplifying circuit includes a transistor 201 and an inductor 202;
  • the second-stage amplifying circuit includes a transistor 205a, a transistor 205b, a transistor 205c, and an inductor 206;
  • the first bias circuit includes a transistor 210, a resistor 207,
  • the structure of the diode 208 and the diode 209; the first stage amplifying circuit, the second stage amplifying circuit and the first bias circuit are the same as those in the first embodiment, and are not described herein again.
  • the output power of the first-stage amplifying circuit enters the base of the transistor 205a, the transistor 205b, and the transistor 205c of the second-stage amplifying circuit via the collector of the transistor 201 and the capacitor 203a, the capacitor 203b, and the capacitor 203c, respectively.
  • the emitter of the transistor 210 of the first bias circuit is connected to the bases of the transistor 205a, the transistor 205b, and the transistor 205c through the resistor 204a, the resistor 204b, and the resistor 204c, respectively, and is realized as the transistor 205a and the transistor 205b of the second-stage amplifying circuit.
  • Transistor 205c provides a bias voltage.
  • the base of the transistor 211 (the transistor 211 is equivalent to the first transistor 115 in the first embodiment) is sequentially connected to the capacitor 218 and the resistor 217.
  • the resistor 217 is connected in series with the capacitor 218 between the collector of the transistor 201 of the first stage amplifying circuit and the base of the transistor 211.
  • the output power of the first stage amplifying circuit is detected by the resistor 217 and the capacitor 218, and the power intensity leaked to the transistor 211 can be controlled.
  • the resistor 217 is equivalent to the first resistor 112 in the first embodiment.
  • the capacitor 218 is equivalent to the first capacitor 111 in the first embodiment. That is, the resistor 217 and the capacitor 218 are connected in series to form the first detecting circuit.
  • the output power of the transistor 201 of the first stage amplifying circuit will leak to the base of the transistor 211 through the resistor 217 and the capacitor 218.
  • the output power of the first-stage amplifying circuit increases, the power leaked to the transistor 211 through the resistor 217 and the capacitor 218 also increases accordingly, so that the operating current of the transistor 211 also increases accordingly.
  • the control voltage on the resistor 213 connected to the collector of the transistor 211 (the resistor 213 is equivalent to the fourth resistor 116 in the first embodiment) is increased by the resistor 214 (the resistor 214 is equivalent to the first embodiment)
  • the fifth resistor 117 causes the base voltage of the transistor 215 to decrease, thereby controlling the current flowing through the transistor 215 to be correspondingly reduced, and the current output from the transistor 215 is input to the base of the transistor 201 of the first-stage amplifying circuit through the resistor 216.
  • the static operating current of the transistor 201 of the first-stage amplifying circuit is reduced, thereby reducing the gain of the first-stage amplifying circuit, so that the output power of the first-stage amplifying circuit is reduced.
  • the transistor 211, the transistor 215, the resistor 213, and the resistor 214 also constitute a first feedback circuit, and the connection relationship thereof is the same as that in the first embodiment.
  • the current detecting feedback circuit is formed by connecting the base of the transistor 211 of the power detecting feedback circuit of the radio frequency power amplifier provided in the embodiment to one end of the sixth resistor 212 (the sixth resistor constitutes the second detecting circuit).
  • the other end of the sixth resistor 212 is respectively connected to the emitter of the transistor 210 of the first bias circuit, the resistor 205a, the resistor 205b, and the resistor 205c, and the bias voltage is provided to the transistor 211 through the first bias circuit;
  • the resistor 204b and the resistor 204c realize that the other end of the sixth resistor 212 is connected to the bases of the transistor 205a, the transistor 205b, and the transistor 205c of the second-stage amplifier circuit, respectively.
  • the ratio of the sixth resistor 212 to the resistor 204a, the resistor 204b, and the resistor 204c is designed.
  • the ratio of the transistor 205a, the transistor 205b, and the transistor 205c is such that the transistor 211 can proportionally replicate the quiescent operating current of the transistor 205a, the transistor 205b, and the transistor 205c.
  • the gain of the RF power amplifier based on the power detection feedback is also correspondingly reduced.
  • the static operating current of the transistor 205a, the transistor 205b, and the transistor 205c replicated on the transistor 211 of the current detecting feedback circuit is also correspondingly reduced, so that the control voltage on the resistor 213 connected to the collector of the transistor 211 is reduced, and the resistor is passed through the resistor.
  • the 214 causes the control voltage of the base of the transistor 215 to increase, thereby controlling the current flowing through the transistor 215 to increase accordingly, and the current output from the transistor 215 is input to the base of the transistor 201 of the first-stage amplifying circuit through the resistor 216, so that The static operating current of the transistor 201 of the primary amplification circuit increases.
  • the static working current on the first-stage amplifying circuit is increased, so that the gain of the RF power amplifier based on the power detecting feedback is correspondingly increased, thereby compensating for the power-based detection due to the reduction of the static working current of the second-stage amplifying circuit.
  • the feedback RF power amplifier gain reduction problem ensures that the total gain of the RF power amplifier based on the power detection feedback is constant.
  • the radio frequency power amplifier provided in this embodiment can detect the output power of the first stage amplifying circuit through the power detecting feedback circuit, and control the quiescent current of the first stage amplifying circuit according to the detected output power of the first stage amplifying circuit;
  • the current detecting feedback circuit can also detect the static working current of the input end of the second-stage amplifying circuit, and control the static working current of the first-stage amplifying circuit according to the detected static working current of the second-stage amplifying circuit, thereby realizing the present RF power.
  • the amplifier operates in a state where the gain and output power are stable.
  • the radio frequency power amplifier provided in this embodiment includes a three-stage amplifying circuit, a first bias circuit, a current detecting feedback circuit, and a power detecting feedback circuit.
  • the first-stage amplifying circuit includes a transistor 301 and an inductor 302;
  • the second-stage amplifying circuit includes a transistor 304 and an inductor 305;
  • the third-stage amplifying circuit includes a transistor 308a, a transistor 308b, a transistor 308c, and an inductor 309.
  • the first bias circuit includes a transistor 313, a resistor 310, a diode 311, and a diode 312; the structure of the first-stage amplifying circuit and the second-stage amplifying circuit is the same as that of the first-stage amplifying circuit in Embodiment 1, and the third-stage amplification
  • the structure of the circuit is the same as that of the second stage amplifying circuit in Embodiment 1, and details are not described herein again.
  • the structure of the first bias circuit is the same as that of the first bias circuit in Embodiment 1, and details are not described herein again.
  • the output power of the first stage amplifying circuit enters the base of the transistor 304 of the second stage amplifying circuit via the collector and the capacitor 303 of the transistor 301, and the output power of the second stage amplifying circuit passes through the collector and the capacitor 306a of the transistor 304.
  • the capacitor 306b and the capacitor 306c respectively enter the bases of the transistor 308a, the transistor 308b, and the transistor 308c of the third-stage amplifying circuit.
  • the emitter of the transistor 313 of the first bias circuit is connected to the bases of the transistor 308a, the transistor 308b, and the transistor 308c through the resistor 307a, the resistor 307b, and the resistor 307c, respectively, and is realized as the transistor 308a and the transistor 308b of the third-stage amplifying circuit.
  • Transistor 308c provides a bias voltage.
  • the power detection feedback circuit connects the resistor 320 and the capacitor 321 in series (constituting the first detecting circuit) to the collector of the transistor 304 of the second-stage amplifying circuit and the transistor of the power detecting feedback circuit. Between the bases of 324, the output power of the second stage amplifying circuit is detected by the resistor 320 and the capacitor 321, and the power intensity leaked to the transistor 324 can be controlled.
  • the base of the transistor 324 is respectively connected to one end of the resistor 322 and the resistor 323 (which constitutes the second bias circuit), the other end of the resistor 322 is connected to the power supply voltage, and the other end of the resistor 323 is grounded; the resistor 322 and the resistor 323 pass the voltage division function.
  • Transistor 324 is provided with a bias voltage.
  • a resistor 325 and a resistor 326 are provided between the collector of the transistor 324 and the power supply voltage and the base of the transistor 327.
  • the collector of the transistor 327 is connected to the power supply voltage, and the emitter of the transistor 327 is connected to the base of the transistor 301 of the first stage amplifying circuit through the resistor 328; and the transistor 324, the transistor 327, the resistor 325, and the resistor 326 constitute the first feedback circuit.
  • the resistor 320 is equivalent to the first resistor 112 in the embodiment 1
  • the capacitor 321 is equivalent to the first capacitor 111 in the embodiment
  • the transistor 324 is equivalent to the first transistor 115 in the embodiment 1
  • the resistor 322 is equivalent to the embodiment.
  • the second resistor 113 in the first resistor 113 is equivalent to the third resistor 114 in the first embodiment.
  • the resistor 325 is equivalent to the fourth resistor 116 in the first embodiment.
  • the resistor 326 is equivalent to the fifth resistor 117 in the embodiment 1.
  • 327 is equivalent to the second transistor 118 in Embodiment 1.
  • the output power of the transistor 304 of the second stage amplifying circuit will leak to the base of the transistor 324 through the resistor 320 and the capacitor 321 to change the operating current of the transistor 324.
  • 325 generates a corresponding control voltage according to the operating current of the collector feedback of the transistor 324, controls the current flowing through the transistor 327 through the resistor 326, and inputs the current of the output terminal of the transistor 327 to the base of the transistor 301 of the first-stage amplifying circuit through the resistor 328. Therefore, the static working current of the first-stage amplifying circuit is controlled to ensure that the RF power amplifier based on the power detecting feedback operates in a state in which the gain and the output power are stable.
  • the transistor 314, the transistor 319, the resistor 315, and the resistor 317 constitute a second feedback circuit, wherein the connection relationship between the components of the second feedback circuit is the same
  • the first feedback circuit in Embodiment 1 is not described here.
  • the resistor 316 is equivalent to the sixth resistor in the second embodiment, and also constitutes the second detecting circuit.
  • the base of transistor 314 is coupled to resistor 307a, resistor 307b, and resistor 307c via resistor 316, the collector of transistor 319 is coupled to the supply voltage, and the emitter of transistor 319 is coupled to the base of transistor 304 via resistor 318.
  • the resistor 316 and the transistor 314 constitute a mirror image of the resistor 307a, the resistor 307b, the resistor 307c, and the transistor 308a, the transistor 308b, and the transistor 308c
  • the ratio of the resistor 316 to the resistor 307a, the resistor 307b, the resistor 307c, and the transistor 314 and the transistor 308a are designed.
  • the ratio of transistor 308b to transistor 308c is such that transistor 314 can replicate the quiescent operating current of transistor 308a, transistor 308b, transistor 308c.
  • the RF power amplifier can detect the static working current at the input end of the third-stage amplifying circuit through the resistor 316 (second detecting circuit), and copy the static working current through the transistor 314, and then feed back to the resistor 315 through the collector of the transistor 314.
  • the quiescent working current generates a corresponding control voltage, and the current flowing through the transistor 319 is controlled by the resistor 317.
  • the different current flowing through the transistor 319 is input to the input end of the second-stage amplifying circuit through the resistor 318, thereby realizing the control of the second-stage amplifying circuit.
  • the static working current ensures that the second-stage amplifying circuit operates in a state in which the gain is stable.
  • the radio frequency power amplifier provided in this embodiment can detect the output power of the second stage amplifying circuit through the power detecting feedback circuit, and control the quiescent current of the first stage amplifying circuit according to the detected output power of the second stage amplifying circuit;
  • the static working current of the input end of the third-stage amplifying circuit can be detected by the current detecting feedback circuit, and the static working current of the second-stage amplifying circuit is controlled according to the detected static working current of the input end of the third-stage amplifying circuit, thereby realizing the present basis.
  • the power detection feedback RF power amplifier operates in a state where the gain and output power are stable.
  • the radio frequency power amplifier provided in this embodiment includes a three-stage amplifying circuit, a first bias circuit, a current detecting feedback circuit, and a power detecting feedback circuit.
  • the first-stage amplifying circuit includes a transistor 401 and an inductor 402;
  • the second-stage amplifying circuit includes a transistor 405 and an inductor 404;
  • the third-stage amplifying circuit includes a transistor 408a, a transistor 408b, a transistor 408c, and an inductor 409.
  • the first bias circuit includes a transistor 413, a resistor 410, a diode 411, and a diode 412.
  • the structure of the first stage amplifying circuit, the second stage amplifying circuit, and the third stage amplifying circuit is the same as that of the first stage in the third embodiment.
  • the structure of the second stage amplifying circuit and the third stage amplifying circuit, the structure of the first bias circuit is the same as that of the first bias circuit in the first embodiment, and details are not described herein again.
  • the output power of the first stage amplifying circuit enters the base of the transistor 405 of the second stage amplifying circuit via the collector and the capacitor 403 of the transistor 401, and the output power of the second stage amplifying circuit passes through the collector and the capacitor 406a of the transistor 405.
  • the power detection feedback circuit connects the resistor 420 and the capacitor 421 in series (the resistor 420 and the capacitor 421 are connected in series to form a first detecting circuit).
  • the collector of the transistor 401 of the first-stage amplifying circuit Between the base of the transistor 424 of the power detection feedback circuit, the output power of the first stage amplifying circuit is detected by the resistor 420 and the capacitor 421, and the power intensity leaked to the transistor 424 can be controlled.
  • the power detection feedback circuit provides a bias voltage to the transistor 424 through the voltage division of the resistor 422 and the resistor 423 (the resistor 422 and the resistor 423 constitute a second bias circuit).
  • the output power of the transistor 401 of the first stage amplifying circuit will leak to the base of the transistor 424 through the resistor 420 and the capacitor 421, thereby changing the operating current of the transistor 424, and the resistance. 425 generates a corresponding control voltage according to the operating current of the collector feedback of the transistor 424, controls the current flowing through the transistor 427 through the resistor 426, and inputs the current of the output terminal of the transistor 427 to the base of the transistor 401 of the first-stage amplifying circuit through the resistor 428. Therefore, the static working current of the first-stage amplifying circuit is controlled to ensure that the RF power amplifier based on the power detecting feedback operates in a state in which the gain and the output power are stable.
  • the current detection feedback circuit includes a second feedback circuit composed of a transistor 414, a transistor 419, a resistor 415, and a resistor 417, and a second detection circuit composed of a resistor 416; power detection feedback
  • the circuit includes a first feedback circuit composed of a transistor 424, a transistor 427, a resistor 425, and a resistor 426, and further includes a second bias circuit composed of a resistor 422 and a resistor 423, and further includes a first detection consisting of a resistor 420 and a capacitor 421. Circuit.
  • the structure of the first feedback circuit and the second feedback circuit is the same as the structure of the first feedback circuit in the first embodiment.
  • the structure of the first detection circuit is the same as that in the first embodiment, and the structure of the second detection circuit is the same as the embodiment. 2, the structure of the second bias circuit is the same as that described in Embodiment 1, and details are not described herein again.
  • the resistor 416 and the transistor 414 form a mirror image of the resistor 407a, the resistor 407b, the resistor 407c, and the transistor 408a, the transistor 408b, and the transistor 408c
  • the ratio of the resistor 416 to the resistor 407a, the resistor 407b, the resistor 407c, and the transistor 414 and the transistor 408a are designed.
  • the ratio of transistor 408b to transistor 408c allows transistor 414 to replicate the quiescent operating current of transistor 408a, transistor 408b, transistor 408c.
  • the current detecting feedback circuit detects the static working current of the third-stage amplifying circuit through the resistor 416, and copies the static working current through the transistor 414, and then feeds back to the resistor 415 via the collector of the transistor 414, and the resistor 415 generates a corresponding control voltage according to the static working current. And controlling the current flowing through the transistor 419 through the resistor 417, the different current flowing through the transistor 419 is input to the second-stage amplifying circuit through the resistor 418, thereby realizing the static working current of the second-stage amplifying circuit to ensure the operation of the second-stage amplifying circuit. In a state where the gain is stable.
  • the radio frequency power amplifier provided in this embodiment can detect the output power of the first stage amplifying circuit through the power detecting feedback circuit, and control the quiescent current of the first stage amplifying circuit according to the detected output power of the first stage amplifying circuit;
  • the radio frequency power amplifier provided in this embodiment can also detect the static working current of the input end of the third-stage amplifying circuit through the current detecting feedback circuit, and control the static state of the second-stage amplifying circuit according to the detected static working current of the third-stage amplifying circuit.
  • the operating current is such that the RF power amplifier based on the power detection feedback operates in a state in which the gain and the output power are stable.
  • the radio frequency power amplifier provided in this embodiment includes a three-stage amplifying circuit, a first bias circuit, a current detecting feedback circuit, and a power detecting feedback circuit.
  • the first-stage amplifying circuit includes a transistor 501 and an inductor 502;
  • the second-stage amplifying circuit includes a transistor 505 and an inductor 504;
  • the third-stage amplifying circuit includes a transistor 508a, a transistor 508b, a transistor 508c, and an inductor 509.
  • the first bias circuit includes a transistor 513, a resistor 510, a diode 511, and a diode 512.
  • the structure of the first stage amplifying circuit, the second stage amplifying circuit, and the third stage amplifying circuit is the same as that of the first stage in Embodiment 3.
  • the structure of the second stage amplifying circuit and the third stage amplifying circuit, the structure of the first bias circuit is the same as that of the first bias circuit in the first embodiment, and details are not described herein again.
  • the output power of the first stage amplifying circuit enters the base of the transistor 505 of the second stage amplifying circuit via the collector and the capacitor 503 of the transistor 501, and the output power of the second stage amplifying circuit passes through the collector and the capacitor 506a of the transistor 505.
  • the capacitor 506b and the capacitor 506c respectively enter the bases of the transistor 508a, the transistor 508b, and the transistor 508c of the third-stage amplifier circuit.
  • the emitter of the transistor 513 of the first bias circuit is connected to the bases of the transistor 508a, the transistor 508b, and the transistor 508c through the resistor 507a, the resistor 507b, and the resistor 507c, respectively, and is realized as the transistor 508a and the transistor 508b of the third-stage amplifying circuit.
  • Transistor 508c provides a bias voltage.
  • the base of the transistor 517 (the transistor 517 is equivalent to the first transistor 115 in the first embodiment) is sequentially connected to the resistor 515 and the capacitor 516, and the resistor 515 and the capacitor 516 are connected in series.
  • the collector of the transistor 505 of the secondary amplifier circuit is between the base of the transistor 517 and the base of the transistor 517.
  • the output power of the second stage amplifying circuit is detected by the resistor 515 and the capacitor 516, and the power intensity leaked to the transistor 517 can be controlled.
  • the resistor 515 is equivalent to the first resistor 112 in Embodiment 1
  • the capacitor 516 is equivalent to the first capacitor 111 in Embodiment 1.
  • the output power of the transistor 505 of the second stage amplifying circuit will leak to the base of the transistor 517 through the resistor 515 and the capacitor 516, thereby changing the operating current of the transistor 517, and the resistance.
  • 518 (equivalent to the fourth resistor 116 in Embodiment 1) generates a corresponding control voltage according to the operating current fed back by the collector of the transistor 517, and controls the flow through the transistor 520 through the resistor 519 (equivalent to the fifth resistor 117 in the embodiment 1).
  • the current at the output of the transistor 520 is input to the base of the transistor 501 of the first-stage amplifying circuit and the second-stage amplifying circuit through the resistor 521 and the resistor 522, respectively.
  • the base of the transistor 505 realizes controlling the static working current of the first-stage amplifying circuit and the second-stage amplifying circuit, and ensures that the RF power amplifier based on the power detecting feedback operates in a state in which the gain and the output power are stable.
  • the RF power amplifier provided in this embodiment can detect the output power of the second-stage amplifying circuit through the power detecting feedback circuit, and respectively control the first-stage amplifying circuit and the second according to the detected output power of the second-stage amplifying circuit.
  • the quiescent current of the stage amplifying circuit; the radio frequency power amplifier provided in this embodiment can also detect the static working current of the input end of the third-stage amplifying circuit through the current detecting feedback circuit, and according to the static working current of the detected third-stage amplifying circuit respectively
  • the static working current of the first-stage amplifying circuit and the second-stage amplifying circuit is controlled, so that the RF power amplifier based on the power detecting feedback is operated in a state in which the gain and the output power are stable.
  • the current detecting feedback circuit is formed by the base connection resistance 514 of the transistor 517 of the power detecting feedback circuit provided in the present embodiment (equivalent to the sixth resistor 212 in the second embodiment).
  • the structure of the current detecting feedback circuit provided in this embodiment is different from the current detecting feedback circuit in the second embodiment in that the current detecting feedback circuit uses a resistor 521 and a resistor 522 to connect the base of the transistor 505 of the second-stage amplifying circuit.
  • the base of the transistor 501 of the first-stage amplifying circuit realizes that the current outputted by the transistor 520 is input to the first-stage amplifying circuit and the second-stage amplifying circuit, respectively, thereby realizing control of the first-stage amplifying circuit and the second-stage amplifying circuit Static working current.
  • the current detecting feedback circuit detects the static working current of the third-stage amplifying circuit through the resistor 514, and copies the static working current through the transistor 517, and then feeds back to the resistor 518 via the collector of the transistor 517, and the resistor 518 generates a corresponding response according to the static working current.
  • the static operating current of the circuit and the second stage amplifying circuit ensures that the RF power amplifier based on the power detection feedback operates in a state in which the gain is stable.
  • the power detection feedback circuit can also be connected between the output end of the amplification circuit and the input end of the power detection feedback circuit by using a capacitor instead of a capacitor in series with the resistor.
  • the capacitance detects the output power of the amplifier circuit of this stage.
  • the working principle of the power detection feedback circuit is the same as that described above, and will not be further described herein. It should be emphasized that the transistors in the first bias circuit, the power detection feedback circuit and the current detection feedback circuit of the RF power amplifier provided by the present invention are bipolar transistors.
  • the radio frequency power amplifier provided by the present invention can connect the input end of the power detecting feedback circuit to the output end of the current level amplifying circuit of the radio frequency power amplifier based on the power detecting feedback; and can also input the input end of the power detecting feedback circuit After the output end of the amplifier circuit of the power amplifier of the power detection feedback is connected, the input end of the amplifier circuit located behind the amplifier circuit connected to the power detection feedback circuit is connected to the input terminal of the current detection feedback circuit. . Achieve the following effects:
  • the power detection feedback circuit generates a control voltage that changes inversely with the output power according to the detected output power of the amplifier circuit of the present stage, so that the power detection feedback circuit outputs a current that changes in a positive direction with the control voltage.
  • the current outputted by the power detection feedback circuit is input to the input end of at least one stage of the amplifying circuit (including the amplifying circuit of the present stage) in front of the amplifying circuit of the present stage, so that the gain of at least one stage of the amplifying circuit in front of the stage amplifying circuit and The output power changes positively with the current output by the power detection feedback circuit, thereby compensating for the problem that the gain and output power of the RF power amplifier is increased or decreased due to an increase or decrease in the output power of the amplifier circuit of the present stage.
  • the current detecting feedback circuit generates a control voltage that is inversely changed from the static working current according to the detected static working current of the input end of the amplifier circuit of a certain stage, so that the current detecting feedback circuit outputs a current that changes positively with the control voltage. .
  • the current outputted by the current detecting feedback circuit is input to the input end of at least one primary amplifying circuit located in front of the amplifying circuit of a certain stage, so that the gain of at least one stage of the amplifying circuit in front of the amplifying circuit and the current output by the current detecting feedback circuit It changes in a positive direction, so that it can compensate for the problem that the gain of the present RF power amplifier increases or decreases due to the increase or decrease of the static operating current of a certain stage of the amplifying circuit.
  • the RF power amplifier can effectively suppress the change of the working state of the RF power amplifier caused by the process change, and can reduce the influence of the change of the input signal on the working state of the RF power amplifier, so that the RF power amplifier works at the gain and The output power is stable.
  • the radio frequency power amplifier provided by the present invention can be used in a radio frequency chip.
  • the specific structure of the RF power amplifier based on the power detection feedback in the RF chip will not be detailed here.
  • the above-mentioned RF power amplifier based on power detection feedback can also be used in a communication terminal as an important component of a radio frequency integrated circuit.
  • the term "communication terminal” as used herein refers to a computer device that can be used in a mobile environment and supports various communication systems such as GSM, EDGE, TD_SCDMA, TDD_LTE, and FDD_LTE, including mobile phones, notebook computers, tablet computers, and on-board computers.
  • the technical solution provided by the present invention is also applicable to other radio frequency integrated circuit applications, such as a communication base station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Amplifiers (AREA)

Abstract

本发明公开了一种基于功率检测反馈的射频功率放大器、芯片及通信终端。该射频功率放大器包括多级放大电路及至少一个功率检测反馈电路,功率检测反馈电路的输入端与本级放大电路的输出端连接,功率检测反馈电路的输出端与本级放大电路及位于本级放大电路前面的至少一级放大电路的输入端连接。通过功率检测反馈电路根据所检测的本级放大电路的输出功率,产生与输出功率成反向变化的控制电压,使得功率检测反馈电路输出与控制电压成正向变化的电流。通过该电流控制本级放大电路及位于本级放大电路前面至少一级放大电路的静态工作电流,使本射频功率放大器工作在增益及输出功率稳定的状态。

Description

基于功率检测反馈的射频功率放大器、芯片及通信终端 技术领域
本发明涉及一种射频功率放大器,尤其涉及一种基于功率检测反馈的射频功率放大器,同时也涉及包括该射频功率放大器的芯片及相应的通信终端,属于射频集成电路技术领域。
背景技术
目前,无线通信的发展极大地满足了人们对通信的需求,而且这种需求进一步带动了无线通信终端在全世界范围内的迅速增长。射频功率放大器是无线通信终端中一个必不可少的功能模块。它的主要作用是放大通信终端的发射功率,使其达到基站时仍然保持足够的信号强度,从而达到通信所需的最低信噪比,完成整个通信链路的信号收发工作。
在无线通信系统中,主要的直流功率消耗来自于射频功率放大器,降低射频功率放大器的功耗可以明显提高系统的工作时间。另一方面,射频功率放大器性能好坏直接决定了射频电路的整体性能。并且,射频功率放大器的设计通常要求其增益及输出功率值稳定。
但是,在射频功率放大器的实现中,由于工艺偏差、温度变化等因素的影响,往往导致射频功率放大器的增益以及输出功率会在很大范围内变化。同时,考虑到输入信号的幅度受工艺偏差以及温度变化的影响,则输入信号的变化会导致射频功率放大去输出功率在更大范围内变化。因此,需要对射频功率放大器的静态工作电流及输出功率进行反馈控制,从而抑制由工艺变化导致的射频功率放大器工作状态的变化,并能减小输入信号的变化对射频功率放大器工作状态的影响,使射频功率放大器工作在增益以及输出功率稳定的状态。
发明内容
本发明所要解决的首要技术问题在于提供一种基于功率检测反馈的射频功率放大器。
本发明所要解决的另一技术问题在于提供一种包括该射频功率放大器的芯片及相应的通信终端。
为了实现上述发明目的,本发明采用下述的技术方案:
根据本发明实施例的第一方面,提供一种基于功率检测反馈的射频功率放大器,包括多级放大电路及至少一个功率检测反馈电路,所述功率检测反馈电路的输入端与所述多级放大电路中的本级放大电路的输出端连接,所述功率检测反馈电路的输出端与所述本级放大电路及位于所述本级放大电路前面的至少一级放大电路的输入端连接;
所述功率检测反馈电路根据所检测的所述本级放大电路的输出功率,产生与所述输出功率成反向变化的控制电压,使得所述功率检测反馈电路输出与所述控制电压成正向变化的电流,所述电流输入到所述本级放大电路及位于所述本级放大电路前面的至少一级放大电路的输入端,使得至少一级放大电路的静态工作电流与所述电流成正向变化,保证所述射频功率放大器工作在增益以及输出功率稳定的状态。
其中较优地,所述射频功率放大器还包括至少一个电流检测反馈电路,所述电流检测反馈电路的输入端通过相应的电阻与所述本级放大电路后面的某一级放大电路的输入端连接,所述电流检测反馈电路的输出端与该级放大电路前面的至少一级放大电路的输入端连接;
所述电流检测反馈电路根据所检测的该级放大电路的静态工作电流,产生与所述静态工作电流成反向变化的控制电压,使得所述电流检测反馈电路输出与所述控制电压成正向变化的电流,所述电流输入到该级放大电路前面至少一级放大电路的输入端,使得至少一级放大电路的静态工作电流与所述电流成正向变化,保证所述射频功率放大器工作在增益以及输出功率稳定的状态。
其中较优地,所述功率检测反馈电路包括第一检测电路、第一反馈电路,所述第一检测电路的输出端与所述第一反馈电路的输入端连接,所述第一检测电路的输入端与所述本级放大电路的输出端连接,所述第一反馈电路的输出端与所述本级放大电路及位于所述本级放大电路前面的至少一级放大电路的输入端连接。
其中较优地,将所述第一反馈电路的输入端与第二检测电路的输出端连接,通过所述第二检测电路将检测的该级放大电路的静态工作电流输入到所述第一反馈电路。
其中较优地,所述电流检测反馈电路包括第二检测电路、第二反 馈电路,所述第二检测电路的输出端与所述第二反馈电路的输入端连接,所述第二检测电路的输入端与该级放大电路的输入端连接,所述第二反馈电路的输出端与该级放大电路前面的至少一级放大电路的输入端连接。
其中较优地,第一检测电路由第一电阻与第一电容串联组成,第二检测电路由第六电阻组成。
其中较优地,第一检测电路由第一电容组成。
其中较优地,第一反馈电路和第二反馈电路均包括两个晶体管,其中,第一晶体管的集电极与电源电压之间设置有第四电阻,所述第一晶体管的集电极与第二晶体管的基极之间设置有第五电阻,所述第二晶体管的集电极与电源电压连接,所述第一晶体管的基极作为反馈电路的输入端,所述第二晶体管的发射极作为反馈电路的输出端。
其中较优地,当电流检测反馈电路与所述功率检测反馈电路共用所述第一反馈电路时,通过第一偏置电路分别为该级放大电路及第一晶体管提供偏置电压,所述第一偏置电路包括一个晶体管,所述晶体管的集电极与偏置电压连接,所述晶体管的发射极通过第六电阻与所述第一晶体管的基极连接,所述晶体管的发射极与该级放大电路的输入端连接,所述晶体管的基极与所述偏置电压之间设置有电阻,所述晶体管的基极与地线之间串联设置有两个二极管。
其中较优地,通过第二偏置电路为所述功率检测反馈电路的第一晶体管提供偏置电压,所述第二偏置电路包括第二电阻与第三电阻,所述第二电阻的一端与电源电压连接,所述第二电阻的另一端与所述第三电阻的一端连接在一起组成所述第二偏置电路的输出端,所述第三电阻的另一端接地。
其中较优地,通过第一偏置电路分别为所述电流检测反馈电路的第一晶体管及该级放大电路提供偏置电压。
其中较优地,所述多级放大电路中,每一级放大电路为由双极型晶体管或CMOS晶体管组成的共发射极放大电路,所述每一级放大电路与电源电压之间设置有负载,所述负载为电阻或电感,后一级放大电路的输入端与前一级放大电路的输出端之间设置有电容。
根据本发明实施例的第二方面,提供一种芯片,其中包括上述的 基于功率检测反馈的射频功率放大器。
根据本发明实施例的第三方面,提供一种通信终端,其中包括上述的基于功率检测反馈的射频功率放大器。
本发明所提供的射频功率放大器通过设置功率检测反馈电路,用于实现检测本级放大电路的输出功率,并根据检测的输出功率产生与该输出功率成反向变化的控制电压,使得功率检测反馈电路输出与该控制电压成正向变化的电流。通过功率检测反馈电路将该电流输入到本级放大电路及位于本级放大电路前面至少一级放大电路的输入端,控制本级放大电路及位于本级放大电路前面至少一级放大电路的静态工作电流,从而使得本射频功率放大器工作在增益及输出功率稳定的状态。
附图说明
图1为本发明实施例1所提供的基于功率检测反馈的射频功率放大器的电路原理图;
图2为本发明实施例2所提供的基于功率检测反馈的射频功率放大器的电路原理图;
图3为本发明实施例3所提供的基于功率检测反馈的射频功率放大器的电路原理图;
图4为本发明实施例4所提供的基于功率检测反馈的射频功率放大器的电路原理图;
图5为本发明实施例5所提供的基于功率检测反馈的射频功率放大器的电路原理图。
具体实施方式
下面结合附图和具体实施例对本发明的技术内容做进一步的详细说明。
本发明所提供的射频功率放大器包括多级放大电路、第一偏置电路及检测反馈电路,多级放大电路与第一偏置电路连接,第一偏置电路为多级放大电路提供偏置电压。检测反馈电路包括至少一个功率检测反馈电路,或者检测反馈电路包括至少一个功率检测反馈电路和电流检测反馈电路,每一个功率检测反馈电路、电流检测反馈电路分别与多级放大电路连接。其中,当本级放大电路的输出功率增大或减小 时,使得本基于功率检测反馈的射频功率放大器的输出功率也相应增大或减小。此时,与本级放大电路相连接的功率检测反馈电路检测本级放大电路的输出功率随之增大或减小,并根据该输出功率产生相应的电流,同时根据该电流产生相应的控制电压,功率检测反馈电路将该控制电压对应减小或增大,使得功率检测反馈电路输出的电流对应减小或增大。功率检测反馈电路输出的电流可以输入到本级放大电路及位于本级放大电路前面的至少一级放大电路的输入端,使得本级放大电路及位于本级放大电路前面的至少一级放大电路的静态工作电流对应减小或增大,致使本级放大电路及位于本级放大电路前面的至少一级放大电路的增益及输出功率对应减小或增大,从而可以补偿由于本级放大电路的输出功率增大或减小而导致本射频功率放大器增益及输出功率增大或减小的问题,有效抑制由工艺变化导致的射频功率放大器工作状态的变化,并能减小输入信号的变化对射频功率放大器工作状态的影响,使射频功率放大器工作在增益以及输出功率稳定的状态。
当位于本级放大电路后面的某一级放大电路的输入端的静态工作电流由于某种原因(例如生产工艺变化)增大或减小时,使得本基于功率检测反馈的射频功率放大器的增益也相应增大或减小。此时,与某一级放大电路相连接的电流检测反馈电路检测并复制某一级放大电路输入端的静态工作电流随之增大或减小,电流检测反馈电路根据该增大或减小的静态工作电流产生的控制电压对应减小或增大,该减小或增大的控制电压使得电流检测反馈电路输出的电流对应变小或变大。电流检测反馈电路输出的电流输入到位于某一级放大电路前面至少一级放大电路的输入端,使得某一级放大电路前面至少一级放大电路输入端的静态工作电流对应减小或增大,致使某一级放大电路前面至少一级放大电路的增益随之减小或增大,从而可以补偿由于某一级放大电路的静态工作电流增大或减小而导致本基于功率检测反馈的射频功率放大器增益增大或减小的问题,保证本基于功率检测反馈的射频功率放大器的总增益恒定。
其中,在本发明所提供的射频功率放大器中,多级放大电路中的各级放大电路的之间的位置关系以多级放大电路的电流流向为基准, 即本发明中多处所提到的前面、后面的位置关系,均是以多级放大电路的电流流向为基准。
需要强调的是,在本发明所提供的射频功率放大器中,功率检测反馈电路输出的电流输入到本级放大电路及位于本级放大电路前面至少一级放大电路的输入端,其中,至少一级放大电路包括任意一级或多级放大电路的情况,并且至少一级放大电路包括本级放大电路的情况。电流检测反馈电路输出的电流可以输入到某一级放大电路前面的至少一级放大电路的输入端,其中,至少一级放大电路包括任意一级或多级放大电路的情况,但至少一级放大电路不包括某一级放大电路。
在本发明所提供的射频功率放大器中,每一级放大电路可以由双极型晶体管或CMOS晶体管组成,并且可以在每一级放大电路与电源电压之间设置电阻或电感作为负载。下面结合图1~图5,以双极型晶体管(以下简称晶体管)组成的两极放大电路和三级放大电路为例,并以电感作为每一级放大电路的负载,对本发明所提供的射频功率放大器的结构及工作原理进行详细说明。
实施例1
如图1所示,本实施例所提供的射频功率放大器包括两极放大电路、第一偏置电路及功率检测反馈电路。其中,在两级放大电路中,每一级放大电路采用共发射极放大电路,即射频输入信号通过隔直电容输入到第一级放大电路的晶体管101的基极,晶体管101的发射极接地,电感102作为第一级放大电路的负载连接在晶体管101的集电极与电源电压之间。第一级放大电路的输出功率经晶体管101的集电极及电容103a、电容103b、电容103c分别进入到第二级放大电路的晶体管105a、晶体管105b、晶体管105c的基极,第二级放大电路的晶体管105a、晶体管105b、晶体管105c的发射极共同接地,电感106作为第二级放大电路的负载,电感106的一端与电源电压连接,电感106的另一端分别与晶体管105a、晶体管105b、晶体管105c的集电极连接;第二级放大电路的输出功率经晶体管105a、晶体管105b、晶体管105c的集电极后,通过隔直电容传输到输出端进行输出。
第一偏置电路包括晶体管110、电阻107、二极管108、二极管109,晶体管110的集电极分别与偏置电压Vbias及电阻107的一端连接, 电阻107的另一端分别与晶体管110的基极、二极管108的阳极连接,二极管108的阴极与二极管109的阳极连接,二极管109的阴极接地,晶体管110的发射极分别通过电阻104a、电阻104b、电阻104c对应与晶体管105a、晶体管105b、晶体管105c的基极连接。通过第一偏置电路实现为第二级放大电路的晶体管105a、晶体管105b、晶体管105c提供偏置电压。
本实施例所提供的射频功率放大器的功率检测反馈电路通过将第一电阻112与第一电容111串联连接在第一级放大电路的晶体管101的集电极与功率检测反馈电路的第一晶体管115的基极之间。其中,第一电阻112与第一电容111串联组成第一检测电路;通过第一电阻112与第一电容111检测第一级放大电路的输出功率,并可以控制泄漏到第一晶体管115的功率强度。第一晶体管115的集电极与电源电压、第二晶体管118的基极之间对应设置有第四电阻116、第五电阻117,第二晶体管118的集电极与电源电压连接,第二晶体管118的发射极通过电阻119与第一级放大电路的晶体管101的基极连接,上述各元件组成了第一反馈电路。通过第二偏置电路为第一晶体管115的基极提供偏置电压;具体地,第二偏置电路包括第二电阻113和第三电阻114,第二电阻113和第三电阻114的一端连在一起作为第二偏置电路的输出端,该输出端与第一晶体管115的基极连接,第二电阻113的另一端与电源电压连接,第三电阻的另一端接地,第二电阻113与第三电阻114通过分压作用为第一晶体管115提供偏置电压。
当本射频功率放大器有输入功率时,第一级放大电路的晶体管101的输出功率将通过第一电阻112与第一电容111泄漏到第一晶体管115的基极,从而改变第一晶体管115的工作电流。例如,当第一级放大电路的输出功率增大时,通过第一电阻112与第一电容111泄漏到第一晶体管115的功率也相应增大,使得第一晶体管115的工作电流也会相应增大。此时,与第一晶体管115集电极相连接的第四电阻116上的控制电压会增大,通过第五电阻117使得第一晶体管115的基极电压减小,从而控制流过第一晶体管115的电流也相应减小,通过电阻119将第二晶体管118输出的电流输入到第一级放大电路的晶体管101基极,实现使第一级放大电路的晶体管101静态工作电流 减小,从而减小第一级放大电路的增益,使得第一级放大电路的输出功率减小。
实施例2
如图2所示,本实施例所提供的射频功率放大器包括两极放大电路、第一偏置电路、功率检测反馈电路及电流检测反馈电路。其中,两级放大电路中,第一级放大电路包括晶体管201与电感202;第二级放大电路包括晶体管205a、晶体管205b、晶体管205c及电感206;第一偏置电路包括晶体管210、电阻207、二极管208及二极管209;第一级放大电路、第二级放大电路及第一偏置电路的结构同实施例1中所述,在此不再赘述。同样,第一级放大电路的输出功率经晶体管201的集电极及电容203a、电容203b、电容203c分别进入到第二级放大电路的晶体管205a、晶体管205b、晶体管205c的基极。第一偏置电路的晶体管210的发射极分别通过电阻204a、电阻204b、电阻204c对应与晶体管205a、晶体管205b、晶体管205c的基极连接,实现为第二级放大电路的晶体管205a、晶体管205b、晶体管205c提供偏置电压。
在本实施例所提供的功率检测反馈电路中,晶体管211(晶体管211等同于实施例1中的第一晶体管115)的基极依次连接电容218与电阻217。电阻217与电容218串联连接在第一级放大电路的晶体管201的集电极与晶体管211的基极之间。通过电阻217与电容218检测第一级放大电路的输出功率,并可以控制泄漏到晶体管211的功率强度。其中,电阻217等同于实施例1中的第一电阻112,电容218等同于实施例1中的第一电容111,即电阻217与电容218串联在一起也组成了第一检测电路。当本基于功率检测反馈的射频功率放大器有输入功率时,第一级放大电路的晶体管201的输出功率将通过电阻217与电容218泄漏到晶体管211的基极。例如,当第一级放大电路的输出功率增大时,通过电阻217与电容218泄漏到晶体管211的功率也相应增大,使得晶体管211的工作电流也会相应增大。此时,与晶体管211集电极相连接的电阻213(电阻213等同于实施例1中的第四电阻116)上的控制电压会增大,通过电阻214(电阻214等同于实施例1中的第五电阻117)使得晶体管215的基极电压减小,从而 控制流过晶体管215的电流也相应减小,通过电阻216将晶体管215输出的电流输入到第一级放大电路的晶体管201基极,实现使第一级放大电路的晶体管201静态工作电流减小,从而减小第一级放大电路的增益,使得第一级放大电路的输出功率减小。需要强调的是,晶体管211、晶体管215、电阻213、电阻214也组成了第一反馈电路,其连接关系同实施例1所述。
通过将本实施例所提供的射频功率放大器的功率检测反馈电路的晶体管211的基极与第六电阻212(第六电阻组成了第二检测电路)的一端连接,形成电流检测反馈电路。第六电阻212的另一端分别与第一偏置电路的晶体管210的发射极、电阻205a、电阻205b、电阻205c连接,通过第一偏置电路实现为晶体管211提供偏置电压;通过电阻204a、电阻204b、电阻204c实现使第六电阻212的另一端分别与第二级放大电路的晶体管205a、晶体管205b、晶体管205c的基极连接。由于第六电阻212以及晶体管211构成电阻204a、电阻204b、电阻204c与晶体管205a、晶体管205b、晶体管205c的镜像,通过设计第六电阻212与电阻204a、电阻204b、电阻204c的比例及晶体管211与晶体管205a、晶体管205b、晶体管205c的比例,使得晶体管211可以成比例的复制晶体管205a、晶体管205b、晶体管205c的静态工作电流。当晶体管205a、晶体管205b、晶体管205c的静态工作电流由于某种原因(例如生产工艺变化)减小时,使得本基于功率检测反馈的射频功率放大器的增益也相应减小。此时,电流检测反馈电路的晶体管211上复制的晶体管205a、晶体管205b、晶体管205c的静态工作电流也相应减小,致使与晶体管211集电极相连接的电阻213上的控制电压减小,通过电阻214使得晶体管215基极的控制电压增大,从而控制流过晶体管215的电流也相应增大,通过电阻216将晶体管215输出的电流输入到第一级放大电路的晶体管201的基极,使得第一级放大电路的晶体管201静态工作电流增大。第一级放大电路上的静态工作电流增大,使得本基于功率检测反馈的射频功率放大器的增益相应增大,从而可以补偿由于第二级放大电路的静态工作电流减小而导致本基于功率检测反馈的射频功率放大器增益减小的问题,保证本基于功率检测反馈的射频功率放大器的总增益恒定。
因此,本实施例所提供的射频功率放大器可以通过功率检测反馈电路检测第一级放大电路的输出功率,并根据所检测的第一级放大电路的输出功率控制第一级放大电路的静态电流;还可以通过电流检测反馈电路检测第二级放大电路输入端的静态工作电流,并根据所检测的第二级放大电路的静态工作电流控制第一级放大电路的静态工作电流,从而实现使本射频功率放大器工作在增益及输出功率稳定的状态。
实施例3
如图3所示,本实施例所提供的射频功率放大器包括三级放大电路、第一偏置电路、电流检测反馈电路及功率检测反馈电路。其中,在三级放大电路中,第一级放大电路包括晶体管301、电感302;第二级放大电路包括晶体管304、电感305;第三级放大电路包括晶体管308a、晶体管308b、晶体管308c、电感309;第一偏置电路包括晶体管313、电阻310、二极管311及二极管312;第一级放大电路与第二级放大电路的结构同实施例1中的第一级放大电路的结构,第三级放大电路的结构同实施例1中的第二级放大电路的结构,在此不再赘述。第一偏置电路的结构同实施例1中的第一偏置电路的结构,在此不再赘述。同样,第一级放大电路的输出功率经晶体管301的集电极及电容303进入到第二级放大电路的晶体管304的基极,第二级放大电路的输出功率经晶体管304的集电极及电容306a、电容306b、电容306c分别进入到第三级放大电路的晶体管308a、晶体管308b、晶体管308c的基极。第一偏置电路的晶体管313的发射极分别通过电阻307a、电阻307b、电阻307c对应与晶体管308a、晶体管308b、晶体管308c的基极连接,实现为第三级放大电路的晶体管308a、晶体管308b、晶体管308c提供偏置电压。
本实施例所提供的射频功率放大器中,功率检测反馈电路通过将电阻320与电容321串联连接(组成第一检测电路)在第二级放大电路的晶体管304的集电极与功率检测反馈电路的晶体管324的基极之间,通过电阻320与电容321检测第二级放大电路的输出功率,并可以控制泄漏到晶体管324的功率强度。晶体管324的基极分别与电阻322和电阻323(组成第二偏置电路)的一端连接,电阻322的另一端与电源电压连接,电阻323的另一端接地;电阻322与电阻323通过 分压作用为晶体管324提供偏置电压。晶体管324的集电极与电源电压、晶体管327的基极之间对应设置有电阻325、电阻326。晶体管327的集电极与电源电压连接,晶体管327的发射极通过电阻328与第一级放大电路的晶体管301的基极连接;并且晶体管324、晶体管327、电阻325、电阻326组成了第一反馈电路。其中,电阻320等同于实施例1中的第一电阻112,电容321等同于实施例1中的第一电容111,晶体管324等同于实施例1中的第一晶体管115,电阻322等同于实施例1中的第二电阻113,电阻323等同于实施例1中的第三电阻114,电阻325等同于实施例1中第四电阻116,电阻326等同于实施例1中的第五电阻117,晶体管327等同于实施例1中的第二晶体管118。当本基于功率检测反馈的射频功率放大器有输入功率时,第二级放大电路的晶体管304的输出功率将通过电阻320与电容321泄漏到晶体管324的基极,从而改变晶体管324的工作电流,电阻325根据晶体管324集电极反馈的工作电流产生相应的控制电压,通过电阻326控制流过晶体管327的电流,并通过电阻328将晶体管327输出端的电流输入到第一级放大电路的晶体管301的基极,从而实现控制第一级放大电路的静态工作电流,保证本基于功率检测反馈的射频功率放大器工作在增益及输出功率稳定的状态。
在本实施例所提供的射频功率放大器的电流检测反馈电路中,晶体管314、晶体管319、电阻315、电阻317组成了第二反馈电路,其中,第二反馈电路各个元器件之间的连接关系同实施例1中的第一反馈电路,在此不再赘述。电阻316等同于实施例2中的第六电阻,同样构成了第二检测电路。晶体管314的基极通过电阻316分别与电阻307a、电阻307b、电阻307c连接,晶体管319的集电极与电源电压连接,晶体管319的发射极通过电阻318与晶体管304的基极连接。同样,由于电阻316以及晶体管314构成电阻307a、电阻307b、电阻307c与晶体管308a、晶体管308b、晶体管308c的镜像,通过设计电阻316与电阻307a、电阻307b、电阻307c的比例及晶体管314与晶体管308a、晶体管308b、晶体管308c的比例,使得晶体管314可以成比例的复制晶体管308a、晶体管308b、晶体管308c的静态工作电流。本射频功率放大器可以通过电阻316(第二检测电路)检测第三 级放大电路输入端的静态工作电流,并通过晶体管314复制该静态工作电流后经晶体管314的集电极反馈给电阻315,电阻315根据静态工作电流产生相应的控制电压,并通过电阻317控制流过晶体管319的电流,流过晶体管319的不同电流通过电阻318输入到第二级放大电路的输入端,实现控制第二级放大电路的静态工作电流,保证第二级放大电路工作在增益稳定的状态。
因此,本实施例所提供的射频功率放大器可以通过功率检测反馈电路检测第二级放大电路的输出功率,并根据所检测的第二级放大电路的输出功率控制第一级放大电路的静态电流;还可以通过电流检测反馈电路检测第三级放大电路输入端的静态工作电流,并根据所检测的第三级放大电路输入端的静态工作电流控制第二级放大电路的静态工作电流,从而使实现本基于功率检测反馈的射频功率放大器工作在增益及输出功率稳定的状态。
实施例4
如图4所示,本实施例所提供的射频功率放大器包括三级放大电路、第一偏置电路、电流检测反馈电路及功率检测反馈电路。其中,在三级放大电路中,第一级放大电路包括晶体管401、电感402;第二级放大电路包括晶体管405、电感404;第三级放大电路包括晶体管408a、晶体管408b、晶体管408c、电感409;第一偏置电路包括晶体管413、电阻410、二极管411及二极管412;第一级放大电路、第二级放大电路、第三级放大电路的结构同实施例3中的第一级放大电、第二级放大电路、第三级放大电路的结构,第一偏置电路的结构同实施例1中的第一偏置电路的结构,在此不再赘述。同样,第一级放大电路的输出功率经晶体管401的集电极及电容403进入到第二级放大电路的晶体管405的基极,第二级放大电路的输出功率经晶体管405的集电极及电容406a、电容406b、电容406c分别进入到第三级放大电路的晶体管408a、晶体管408b、晶体管408c的基极。第一偏置电路的晶体管413的发射极分别通过电阻407a、电阻407b、电阻407c对应与晶体管408a、晶体管408b、晶体管408c的基极连接,实现为第三级放大电路的晶体管408a、晶体管408b、晶体管408c提供偏置电压。
本实施例所提供的射频功率放大器中,功率检测反馈电路将电阻420与电容421串联连接(电阻420与电容421串联连接组成了第一检测电路)在第一级放大电路的晶体管401的集电极与功率检测反馈电路的晶体管424的基极之间,通过电阻420与电容421检测第一级放大电路的输出功率,并可以控制泄漏到晶体管424的功率强度。功率检测反馈电路通过电阻422与电阻423(电阻422与电阻423组成了第二偏置电路)的分压作用为晶体管424提供偏置电压。当本基于功率检测反馈的射频功率放大器有输入功率时,第一级放大电路的晶体管401的输出功率将通过电阻420与电容421泄漏到晶体管424的基极,从而改变晶体管424的工作电流,电阻425根据晶体管424集电极反馈的工作电流产生相应的控制电压,通过电阻426控制流过晶体管427的电流,并通过电阻428将晶体管427输出端的电流输入到第一级放大电路的晶体管401的基极,从而实现控制第一级放大电路的静态工作电流,保证本基于功率检测反馈的射频功率放大器工作在增益及输出功率稳定的状态。
本实施例所提供的射频功率放大器中,电流检测反馈电路包括由晶体管414、晶体管419、电阻415、电阻417组成的第二反馈电路,还包括由电阻416组成的第二检测电路;功率检测反馈电路包括由晶体管424、晶体管427、电阻425、电阻426组成的第一反馈电路,还包括由电阻422、电阻423组成的第二偏置电路,还包括由电阻420、电容421组成的第一检测电路。其中,第一反馈电路与第二反馈电路的结构同实施例1中的第一反馈电路的结构所述,第一检测电路的结构同实施例1所述,第二检测电路的结构同实施例2所述,第二偏置电路的结构同实施例1所述,在此不再赘述。
同样,由于电阻416以及晶体管414构成电阻407a、电阻407b、电阻407c与晶体管408a、晶体管408b、晶体管408c的镜像,通过设计电阻416与电阻407a、电阻407b、电阻407c的比例及晶体管414与晶体管408a、晶体管408b、晶体管408c的比例,使得晶体管414可以成比例的复制晶体管408a、晶体管408b、晶体管408c的静态工作电流。电流检测反馈电路通过电阻416检测第三级放大电路的静态工作电流,并通过晶体管414复制该静态工作电流后经晶体管414的 集电极反馈给电阻415,电阻415根据静态工作电流产生相应的控制电压,并通过电阻417控制流过晶体管419的电流,流过晶体管419的不同电流通过电阻418输入到第二级放大电路,实现控制第二级放大电路的静态工作电流,保证第二级放大电路工作在增益稳定的状态。
因此,本实施例所提供的射频功率放大器可以通过功率检测反馈电路检测第一级放大电路的输出功率,并根据所检测的第一级放大电路的输出功率控制第一级放大电路的静态电流;本实施例所提供的射频功率放大器还可以通过电流检测反馈电路检测第三级放大电路输入端的静态工作电流,并根据所检测的第三级放大电路的静态工作电流控制第二级放大电路的静态工作电流,从而实现本基于功率检测反馈的射频功率放大器工作在增益及输出功率稳定的状态。
实施例5
如图5所示,本实施例所提供的射频功率放大器包括三级放大电路、第一偏置电路、电流检测反馈电路及功率检测反馈电路。其中,在三级放大电路中,第一级放大电路包括晶体管501、电感502;第二级放大电路包括晶体管505、电感504;第三级放大电路包括晶体管508a、晶体管508b、晶体管508c、电感509;第一偏置电路包括晶体管513、电阻510、二极管511及二极管512;第一级放大电路、第二级放大电路、第三级放大电路的结构同实施例3中的第一级放大电、第二级放大电路、第三级放大电路的结构,第一偏置电路的结构同实施例1中的第一偏置电路的结构,在此不再赘述。同样,第一级放大电路的输出功率经晶体管501的集电极及电容503进入到第二级放大电路的晶体管505的基极,第二级放大电路的输出功率经晶体管505的集电极及电容506a、电容506b、电容506c分别进入到第三级放大电路的晶体管508a、晶体管508b、晶体管508c的基极。第一偏置电路的晶体管513的发射极分别通过电阻507a、电阻507b、电阻507c对应与晶体管508a、晶体管508b、晶体管508c的基极连接,实现为第三级放大电路的晶体管508a、晶体管508b、晶体管508c提供偏置电压。
在本实施例所提供的功率检测反馈电路中,晶体管517的基极(晶体管517等同于实施例1中的第一晶体管115)依次连接电阻515与 电容516,电阻515与电容516串联连接在第二级放大电路的晶体管505的集电极与晶体管517的基极之间。通过电阻515与电容516检测第二级放大电路的输出功率,并可以控制泄漏到晶体管517的功率强度。其中,电阻515等同于实施例1中的第一电阻112,电容516等同于实施例1中的第一电容111。当本基于功率检测反馈的射频功率放大器有输入功率时,第二级放大电路的晶体管505的输出功率将通过电阻515与电容516泄漏到晶体管517的基极,从而改变晶体管517的工作电流,电阻518(等同于实施例1中的第四电阻116)根据晶体管517集电极反馈的工作电流产生相应的控制电压,通过电阻519(等同于实施例1中的第五电阻117)控制流过晶体管520(等同于实施例1中的第二晶体管118)的电流,并通过电阻521、电阻522将晶体管520输出端的电流分别输入到第一级放大电路的晶体管501的基极、第二级放大电路的晶体管505的基极,从而实现控制第一级放大电路与第二级放大电路的静态工作电流,保证本基于功率检测反馈的射频功率放大器工作在增益及输出功率稳定的状态。
因此,本实施例所提供的射频功率放大器可以通过功率检测反馈电路检测第二级放大电路的输出功率,并根据所检测的第二级放大电路的输出功率分别控制第一级放大电路、第二级放大电路的静态电流;本实施例所提供的射频功率放大器还可以通过电流检测反馈电路检测第三级放大电路输入端的静态工作电流,并根据所检测的第三级放大电路的静态工作电流分别控制第一级放大电路、第二级放大电路的静态工作电流,从而实现使本基于功率检测反馈的射频功率放大器工作在增益及输出功率稳定的状态。
通过在本实施例所提供的功率检测反馈电路的晶体管517的基极连接电阻514(等同于实施例2中的第六电阻212),形成电流检测反馈电路。本实施例所提供的电流检测反馈电路的结构与实施例2中的电流检测反馈电路的不同之处在于:电流检测反馈电路采用电阻521、电阻522对应连接第二级放大电路的晶体管505的基极、第一级放大电路的晶体管501的基极,实现将晶体管520输出的电流分别输入到第一级放大电路和第二级放大电路,从而实现控制第一级放大电路与第二级放大电路的静态工作电流。具体地,电流检测反馈电路通过电 阻514检测第三级放大电路的静态工作电流,并通过晶体管517复制该静态工作电流后经晶体管517的集电极反馈给电阻518,电阻518根据静态工作电流产生相应的控制电压,并通过电阻519控制流过晶体管520的电流,流过晶体管520的不同电流通过电阻521、电阻522分别输入到第一级放大电路和第二级放大电路,实现控制第一级放大电路与第二级放大电路的静态工作电流,保证本基于功率检测反馈的射频功率放大器工作在增益稳定的状态。
本发明所提供的射频功率放大器中,功率检测反馈电路还可以采用电容代替电容与电阻串联的结构连接在放大电路的本级放大电路的输出端与功率检测反馈电路的输入端之间,实现通过电容检测本级放大电路的输出功率。该功率检测反馈电路的工作原理同上所述,在此不再一一赘述。需要强调的是,本发明所提供的射频功率放大器的第一偏置电路、功率检测反馈电路及电流检测反馈电路中的晶体管为双极型晶体管。
本发明所提供的射频功率放大器可以将功率检测反馈电路的输入端与本基于功率检测反馈的射频功率放大器的本级放大电路的输出端连接;还可以将功率检测反馈电路的输入端与本基于功率检测反馈的射频功率放大器的本级放大电路的输出端连接后,将位于与功率检测反馈电路连接的本级放大电路后面的某一级放大电路的输入端和电流检测反馈电路的输入端连接。实现以下效果:
1.功率检测反馈电路根据所检测的本级放大电路的输出功率,产生与该输出功率成反向变化的控制电压,使得功率检测反馈电路输出与该控制电压成正向变化的电流。
2.功率检测反馈电路输出的电流输入到本级放大电路前面的至少一级放大电路(包括本级放大电路在内)的输入端,使本级放大电路前面的至少一级放大电路的增益及输出功率与功率检测反馈电路输出的电流成正向变化,从而可以补偿由于本级放大电路的输出功率增大或减小而导致本射频功率放大器增益及输出功率增大或减小的问题。
3.电流检测反馈电路根据所检测的某一级放大电路输入端的静态工作电流,产生与该静态工作电流成反向变化的控制电压,使得电 流检测反馈电路输出与该控制电压成正向变化的电流。
4.电流检测反馈电路输出的电流输入到位于某一级放大电路前面的至少一级放大电路的输入端,使某一级放大电路前面至少一级放大电路的增益与电流检测反馈电路输出的电流成正向变化,从而可以补偿由于某一级放大电路的静态工作电流增大或减小而导致本射频功率放大器增益增大或减小的问题。
综上所述,本射频功率放大器能有效抑制由工艺变化导致的射频功率放大器工作状态的变化,并能减小输入信号的变化对射频功率放大器工作状态的影响,使射频功率放大器工作在增益以及输出功率稳定的状态。
本发明所提供的射频功率放大器可以被用在射频芯片中。对于该射频芯片中的基于功率检测反馈的射频功率放大器的具体结构,在此就不再一一详述了。
另外,上述基于功率检测反馈的射频功率放大器还可以被用在通信终端中,作为射频集成电路的重要组成部分。这里所说的通信终端是指可以在移动环境中使用,支持GSM、EDGE、TD_SCDMA、TDD_LTE、FDD_LTE等多种通信制式的计算机设备,包括移动电话、笔记本电脑、平板电脑、车载电脑等。此外,本发明所提供的技术方案也适用于其他射频集成电路应用的场合,例如通信基站等。
以上对本发明所提供的射频功率放大器、芯片及通信终端进行了详细的说明。对本领域的一般技术人员而言,在不背离本发明实质精神的前提下对它所做的任何显而易见的改动,都将属于本发明专利权的保护范围。

Claims (14)

  1. 一种基于功率检测反馈的射频功率放大器,其特征在于包括多级放大电路及至少一个功率检测反馈电路,所述功率检测反馈电路的输入端与所述多级放大电路中的本级放大电路的输出端连接,所述功率检测反馈电路的输出端与所述本级放大电路及位于所述本级放大电路前面的至少一级放大电路的输入端连接;
    所述功率检测反馈电路根据所检测的所述本级放大电路的输出功率,产生与所述输出功率成反向变化的控制电压,使得所述功率检测反馈电路输出与所述控制电压成正向变化的电流,所述电流输入到所述本级放大电路及位于所述本级放大电路前面的至少一级放大电路的输入端,使得至少一级放大电路的静态工作电流与所述电流成正向变化,保证所述射频功率放大器工作在增益以及输出功率稳定的状态。
  2. 如权利要求1所述的基于功率检测反馈的射频功率放大器,其特征在于:
    所述射频功率放大器还包括至少一个电流检测反馈电路,所述电流检测反馈电路的输入端通过相应的电阻与所述本级放大电路后面的某一级放大电路的输入端连接,所述电流检测反馈电路的输出端与该级放大电路前面的至少一级放大电路的输入端连接;
    所述电流检测反馈电路根据所检测的该级放大电路的静态工作电流,产生与所述静态工作电流成反向变化的控制电压,使得所述电流检测反馈电路输出与所述控制电压成正向变化的电流,所述电流输入到该级放大电路前面至少一级放大电路的输入端,使得至少一级放大电路的静态工作电流与所述电流成正向变化,保证所述射频功率放大器工作在增益以及输出功率稳定的状态。
  3. 如权利要求1或2所述的基于功率检测反馈的射频功率放大器,其特征在于:
    所述功率检测反馈电路包括第一检测电路、第一反馈电路,所述第一检测电路的输出端与所述第一反馈电路的输入端连接,所述第一检测电路的输入端与所述本级放大电路的输出端连接,所述第一反馈电路的输出端与所述本级放大电路及位于所述本级放大电路前面的至 少一级放大电路的输入端连接。
  4. 如权利要求3所述的基于功率检测反馈的射频功率放大器,其特征在于:
    将所述第一反馈电路的输入端与第二检测电路的输出端连接,通过所述第二检测电路将检测的该级放大电路的静态工作电流输入到所述第一反馈电路。
  5. 如权利要求2所述的基于功率检测反馈的射频功率放大器,其特征在于:
    所述电流检测反馈电路包括第二检测电路、第二反馈电路,所述第二检测电路的输出端与所述第二反馈电路的输入端连接,所述第二检测电路的输入端与该级放大电路的输入端连接,所述第二反馈电路的输出端与该级放大电路前面的至少一级放大电路的输入端连接。
  6. 如权利要求4或5所述的基于功率检测反馈的射频功率放大器,其特征在于:
    第一检测电路由第一电阻与第一电容串联组成,第二检测电路由第六电阻组成。
  7. 如权利要求4或5所述的基于功率检测反馈的射频功率放大器,其特征在于:
    第一检测电路由第一电容组成。
  8. 如权利要求4或5所述的基于功率检测反馈的射频功率放大器,其特征在于:
    第一反馈电路和第二反馈电路均包括两个晶体管,其中,第一晶体管的集电极与电源电压之间设置有第四电阻,所述第一晶体管的集电极与第二晶体管的基极之间设置有第五电阻,所述第二晶体管的集电极与电源电压连接,所述第一晶体管的基极作为反馈电路的输入端,所述第二晶体管的发射极作为反馈电路的输出端。
  9. 如权利要求4所述的基于功率检测反馈的射频功率放大器,其特征在于:
    当电流检测反馈电路与所述功率检测反馈电路共用所述第一反馈电路时,通过第一偏置电路分别为该级放大电路及第一晶体管提供偏置电压,所述第一偏置电路包括一个晶体管,所述晶体管的集电极与 偏置电压连接,所述晶体管的发射极通过第六电阻与所述第一晶体管的基极连接,所述晶体管的发射极与该级放大电路的输入端连接,所述晶体管的基极与所述偏置电压之间设置有电阻,所述晶体管的基极与地线之间串联设置有两个二极管。
  10. 如权利要求3所述的基于功率检测反馈的射频功率放大器,其特征在于:
    通过第二偏置电路为所述功率检测反馈电路的第一晶体管提供偏置电压,所述第二偏置电路包括第二电阻与第三电阻,所述第二电阻的一端与电源电压连接,所述第二电阻的另一端与所述第三电阻的一端连接在一起组成所述第二偏置电路的输出端,所述第三电阻的另一端接地。
  11. 如权利要求5所述的基于功率检测反馈的射频功率放大器,其特征在于:
    通过第一偏置电路分别为所述电流检测反馈电路的第一晶体管及该级放大电路提供偏置电压。
  12. 如权利要求1所述的基于功率检测反馈的射频功率放大器,其特征在于:
    所述多级放大电路中,每一级放大电路为由双极型晶体管或CMOS晶体管组成的共发射极放大电路,所述每一级放大电路与电源电压之间设置有负载,所述负载为电阻或电感,后一级放大电路的输入端与前一级放大电路的输出端之间设置有电容。
  13. 一种芯片,其特征在于所述芯片中包括权利要求1~12中任意一项所述的基于功率检测反馈的射频功率放大器。
  14. 一种通信终端,其特征在于所述通信终端中包括权利要求1~12中任意一项所述的基于功率检测反馈的射频功率放大器。
PCT/CN2018/093936 2017-07-05 2018-06-30 基于功率检测反馈的射频功率放大器、芯片及通信终端 WO2019007294A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18828768.4A EP3651357A4 (en) 2017-07-05 2018-06-30 HIGH FREQUENCY POWER AMPLIFIER ON THE BASIS OF POWER DETECTION FEEDBACK, CHIP AND COMMUNICATION TERMINAL DEVICE
US16/628,243 US11323074B2 (en) 2017-07-05 2018-06-30 Radio frequency power amplifier based on power detection feedback, chip and communication terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710543153.4A CN107395144B (zh) 2017-07-05 2017-07-05 基于功率检测反馈的射频功率放大器、芯片及通信终端
CN201710543153.4 2017-07-05

Publications (1)

Publication Number Publication Date
WO2019007294A1 true WO2019007294A1 (zh) 2019-01-10

Family

ID=60335184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093936 WO2019007294A1 (zh) 2017-07-05 2018-06-30 基于功率检测反馈的射频功率放大器、芯片及通信终端

Country Status (4)

Country Link
US (1) US11323074B2 (zh)
EP (1) EP3651357A4 (zh)
CN (1) CN107395144B (zh)
WO (1) WO2019007294A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107395144B (zh) * 2017-07-05 2020-01-10 唯捷创芯(天津)电子技术股份有限公司 基于功率检测反馈的射频功率放大器、芯片及通信终端
JP2022159093A (ja) * 2021-03-31 2022-10-17 スカイワークス ソリューションズ,インコーポレイテッド 利得変動が低減される電力増幅
US20230096011A1 (en) * 2021-09-29 2023-03-30 Qorvo Us, Inc. Power amplifier with protection loops
CN114268333B (zh) * 2021-12-24 2023-11-17 维沃移动通信有限公司 射频装置、放大器工作模式的控制方法及装置
CN114089803B (zh) * 2022-01-19 2022-05-03 唯捷创芯(天津)电子技术股份有限公司 一种带有温度补偿功能的功率检测电路及其射频前端模块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101656511A (zh) * 2009-09-04 2010-02-24 惠州市正源微电子有限公司 射频功率放大器温度补偿电路
CN103457550A (zh) * 2012-05-30 2013-12-18 上海无线通信研究中心 射频功率放大器及其移动终端
CN106100590A (zh) * 2015-04-30 2016-11-09 株式会社村田制作所 功率放大模块
US9595926B2 (en) * 2014-07-29 2017-03-14 Skyworks Solutions, Inc. Apparatus and methods for overdrive protection of radio frequency amplifiers
CN106788285A (zh) * 2015-11-20 2017-05-31 厦门宇臻集成电路科技有限公司 一种功率放大器电流反馈偏置电路
CN107395144A (zh) * 2017-07-05 2017-11-24 唯捷创芯(天津)电子技术股份有限公司 基于功率检测反馈的射频功率放大器、芯片及通信终端

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132111A (en) 1979-03-31 1980-10-14 Toshiba Corp Power amplifying circuit
US20040072554A1 (en) * 2002-10-15 2004-04-15 Triquint Semiconductor, Inc. Automatic-bias amplifier circuit
DE60305505T2 (de) * 2003-10-23 2007-04-26 Sony Ericsson Mobile Communications Ab Leistungssteuerungsschaltkreis für eine mobile Endgeräteanwendung
US6998918B2 (en) * 2004-04-08 2006-02-14 Sige Semiconductor (U.S.), Corp. Automatic current reduction biasing technique for RF amplifier
DE102005061572B4 (de) * 2005-06-28 2008-05-29 Infineon Technologies Ag Leistungsverstärkeranordnung, insbesondere für den Mobilfunk, und Verfahren zum Ermitteln eines Performanceparameters
JP2008271517A (ja) 2007-03-23 2008-11-06 Matsushita Electric Ind Co Ltd 高周波電力増幅器、半導体装置、および高周波電力増幅方法
US8963643B2 (en) * 2010-03-25 2015-02-24 Emhiser Research Limited Method and system for providing automatic gate bias and bias sequencing for field effect transistors
CN102624344A (zh) * 2012-03-22 2012-08-01 无锡士康通讯技术有限公司 一种功率放大装置
WO2014110187A1 (en) * 2013-01-08 2014-07-17 Aviat Networks, Inc. Systems and methods for biasing amplifiers with adaptive closed loop control
US9742359B2 (en) * 2013-03-15 2017-08-22 Qorvo International Pte. Ltd. Power amplifier with wide dynamic range am feedback linearization scheme
WO2014160807A1 (en) 2013-03-26 2014-10-02 Aviat Networks, Inc. Systems and methods for biasing amplifiers using adaptive closed-loop control and adaptive predistortion
CN203261299U (zh) * 2013-05-22 2013-10-30 贵州中科汉天下电子有限公司 一种射频功率放大器的增益调节电路
WO2015002294A1 (ja) * 2013-07-05 2015-01-08 株式会社村田製作所 電力増幅モジュール
US10439558B2 (en) * 2017-04-28 2019-10-08 Skyworks Solutions, Inc. Apparatus and methods for power amplifiers with positive envelope feedback

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101656511A (zh) * 2009-09-04 2010-02-24 惠州市正源微电子有限公司 射频功率放大器温度补偿电路
CN103457550A (zh) * 2012-05-30 2013-12-18 上海无线通信研究中心 射频功率放大器及其移动终端
US9595926B2 (en) * 2014-07-29 2017-03-14 Skyworks Solutions, Inc. Apparatus and methods for overdrive protection of radio frequency amplifiers
CN106100590A (zh) * 2015-04-30 2016-11-09 株式会社村田制作所 功率放大模块
CN106788285A (zh) * 2015-11-20 2017-05-31 厦门宇臻集成电路科技有限公司 一种功率放大器电流反馈偏置电路
CN107395144A (zh) * 2017-07-05 2017-11-24 唯捷创芯(天津)电子技术股份有限公司 基于功率检测反馈的射频功率放大器、芯片及通信终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3651357A4 *

Also Published As

Publication number Publication date
US20200220504A1 (en) 2020-07-09
EP3651357A1 (en) 2020-05-13
US11323074B2 (en) 2022-05-03
EP3651357A4 (en) 2021-04-07
CN107395144A (zh) 2017-11-24
CN107395144B (zh) 2020-01-10

Similar Documents

Publication Publication Date Title
WO2019007294A1 (zh) 基于功率检测反馈的射频功率放大器、芯片及通信终端
WO2019007295A1 (zh) 基于电流检测反馈的射频功率放大器、芯片及通信终端
US6690237B2 (en) High frequency power amplifier, and communication apparatus
WO2018001380A1 (zh) 多增益模式功率放大器、芯片及通信终端
CN111711423B (zh) 射频功率放大器、射频前端模块及通信终端
WO2016127752A1 (zh) 一种用于功率放大器的有源偏置电路及移动终端
CN110855254B (zh) 一种射频功率放大器、芯片及通信终端
JP2006303744A (ja) 高周波電力増幅装置
JP2020072468A (ja) 電力増幅モジュール
CN111106805B (zh) 功率放大模块
US10236828B2 (en) Power amplifier
US10680558B2 (en) Power amplifier circuit
US9306515B2 (en) Hybrid class operation power amplifier
US6998918B2 (en) Automatic current reduction biasing technique for RF amplifier
JP2020178333A (ja) 温度補償機能を有するバイアス回路及び増幅装置
WO2018113109A1 (zh) 一种射频功率放大器及其增益控制电路
US11190151B2 (en) Power amplifier
JP2019110475A (ja) 電力増幅回路
JP2016116022A (ja) 高出力増幅器
KR100654644B1 (ko) 최적화된 전력 효율을 갖는 전력 증폭기
US11146218B2 (en) Amplification circuit
US11152899B2 (en) Multi-stage amplifier including a pre-driver stage
US11469727B2 (en) Pre-driver stage with adjustable biasing
JP2006339837A (ja) 集積回路化高周波増幅器
JP2022122807A (ja) 電力増幅回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018828768

Country of ref document: EP

Effective date: 20200205