WO2019007094A1 - 透明显示装置及其制备方法 - Google Patents

透明显示装置及其制备方法 Download PDF

Info

Publication number
WO2019007094A1
WO2019007094A1 PCT/CN2018/078290 CN2018078290W WO2019007094A1 WO 2019007094 A1 WO2019007094 A1 WO 2019007094A1 CN 2018078290 W CN2018078290 W CN 2018078290W WO 2019007094 A1 WO2019007094 A1 WO 2019007094A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
cylinder
transparent display
substrate
photonic crystal
Prior art date
Application number
PCT/CN2018/078290
Other languages
English (en)
French (fr)
Inventor
王巧妮
陈惠�
罗时建
张新宇
林雅宾
Original Assignee
京东方科技集团股份有限公司
福州京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 福州京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to JP2018558321A priority Critical patent/JP7073273B2/ja
Priority to US16/098,336 priority patent/US20210231841A1/en
Priority to EP18789312.8A priority patent/EP3650896B1/en
Publication of WO2019007094A1 publication Critical patent/WO2019007094A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0043Inhomogeneous or irregular arrays, e.g. varying shape, size, height
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • G02B1/005Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of photonic crystals or photonic band gap materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0025Diffusing sheet or layer; Prismatic sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements

Definitions

  • Embodiments of the present disclosure relate to a transparent display device and a method of fabricating the same.
  • the display panel of the transparent display device has a certain light transmissivity, can display the background image behind the panel, and can also actively display the setting screen.
  • Transparent display devices are often used in window exhibition halls, architectural windows, automotive glass, human-computer interaction, etc., and can be integrated with display functions in actual scenes, showing beautiful and realistic, and has broad application prospects.
  • At least one embodiment of the present disclosure provides a transparent display device having a total internal reflection type photonic crystal back plate capable of changing a direction of propagation of incident light, and converting light incident on a display panel into vertical incidence in different directions.
  • the light and the incident light are uniformly dispersed, so that the transparent display device exhibits uniform brightness and higher display quality.
  • At least one embodiment of the present disclosure provides a transparent display device including a display panel and a total internal reflection type photonic crystal backplane, the display panel having a display side and a light incident side opposite to the display side, the total internal reflection a photonic crystal backplane is located on a light incident side of the display panel; the total internal reflection type photonic crystal backplane includes a substrate and a plurality of columnar structures periodically arranged inside the substrate, the columnar structure and the substrate The refractive index of light is different.
  • At least one embodiment of the present disclosure provides a transparent display device, wherein the columnar structure includes a cylindrical structure.
  • At least one embodiment of the present disclosure provides a transparent display device in which the cylindrical structure has a plurality of different diameters.
  • At least one embodiment of the present disclosure provides a transparent display device in which a refractive index of a cylindrical structure having a largest diameter is greater than a refractive index of a light of the substrate.
  • At least one embodiment of the present disclosure provides a transparent display device, wherein the cylindrical structure includes a first cylinder and a second cylinder, and the first cylinder and the second cylinder each have a plurality, and the diameter of the first cylinder is larger than The diameter of the second cylinder, the refractive index of the first cylinder being greater than the refractive index of the substrate.
  • At least one embodiment of the present disclosure provides a transparent display device in which the second cylinder is disposed around the first cylinder.
  • At least one embodiment of the present disclosure provides a transparent display device in which the diameters of the first cylinder and the second cylinder are both no more than 5 micrometers.
  • At least one embodiment of the present disclosure provides a transparent display device in which the diameter of the second cylinder is d, and the axial distance between the first cylinder and the second cylinder is A, then d: A ⁇ 0.2.
  • At least one embodiment of the present disclosure provides a transparent display device in which the ratio of the number of the first cylinder to the second cylinder is not more than 1:20.
  • At least one embodiment of the present disclosure provides a transparent display device in which the ratio of the number of the first cylinder to the second cylinder is 1: (30-40).
  • At least one embodiment of the present disclosure provides a transparent display device, wherein the columnar structure includes a polygonal prism.
  • At least one embodiment of the present disclosure provides a transparent display device in which the polygonal prisms have different sizes.
  • At least one embodiment of the present disclosure provides a transparent display device in which a refractive index of a polygonal prism having a largest size is greater than a refractive index of a light of the substrate.
  • At least one embodiment of the present disclosure provides a transparent display device, wherein the polygonal prism includes a first prism and a second prism, and each of the first prism and the second prism has a plurality of sizes, and the size of the first prism is larger than The size of the second prism, the refractive index of the first prism is greater than the refractive index of the substrate.
  • At least one embodiment of the present disclosure provides a transparent display device in which the second prism is disposed around the first prism.
  • At least one embodiment of the present disclosure provides a transparent display device in which the substrate is made of glass or a transparent resin.
  • At least one embodiment of the present disclosure provides a transparent display device in which the columnar structure is made of glass, transparent resin or air.
  • At least one embodiment of the present disclosure provides a transparent display device in which an optical axis of the total internal reflection type photonic crystal backplane is perpendicular to the display panel.
  • At least one embodiment of the present disclosure provides a transparent display device in which the total internal reflection type photonic crystal back sheet is connected to the display panel by glue or mechanical structure.
  • At least one embodiment of the present disclosure provides a method for fabricating a transparent display device, including: providing a display panel and a total internal reflection type photonic crystal backplane, the display panel having a display side and a light incident side opposite to the display side, Connecting the total internal reflection type photonic crystal backplane to a light incident side of the display panel; the total internal reflection type photonic crystal backplane includes a substrate and a plurality of columnar structures periodically arranged inside the substrate, The columnar structure is different from the refractive index of the substrate.
  • FIG. 1 is a schematic diagram of a transparent display device according to an embodiment of the present disclosure
  • 2A and 2B are a plan view and a side view, respectively, of a total internal reflection type photonic crystal backplane according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a transparent display device according to an embodiment of the present disclosure.
  • FIG. 4 is a plan view of another total internal reflection type photonic crystal backplane according to an embodiment of the present disclosure.
  • 5A and 5B are a plan view and a side view, respectively, of a total internal reflection type photonic crystal back sheet according to another embodiment of the present disclosure
  • 6A and 6B are a plan view and a side view, respectively, of a total internal reflection type photonic crystal backplane according to still another embodiment of the present disclosure
  • FIG. 7 is a flow chart of preparing a transparent display device according to an embodiment of the present disclosure.
  • the existing transparent display device often uses ambient light as a light source for illumination, or uses an external backlight to perform auxiliary illumination to enhance the display effect.
  • the light source is separated from the display panel, so the incident light incident on the display panel tends to be combined with the display panel. There is a certain angle instead of normal incidence, so that the display panel may be unevenly received and the brightness is low, thereby reducing the display quality of the transparent display device.
  • Photonic crystal is a dielectric structure in which the refractive index changes periodically in space. The period of change and the wavelength of light are of the same order of magnitude. It is divided into total internal reflection type photonic crystal material and photonic band gap material (Photonic Band Gap). .
  • the total internal reflection type photonic crystal material has no cut-off transmission characteristics. When d/A ⁇ 0.2 is satisfied, the light energy in the near ultraviolet to infrared range is restricted to propagate in a certain direction in the photonic crystal, so the photonic crystal can perform incident light. Receive and modulation.
  • the photonic band gap material is an artificial periodic dielectric structure with a photonic band gap, and electromagnetic waves whose frequencies fall within the photonic band gap are prohibited from propagating.
  • Photonic crystals can be obtained, for example, by dielectric rod packing, precision mechanical drilling, colloidal particle self-structural growth, colloidal solution self-organizing growth, or semiconductor processes. These methods can produce various photonic crystals by artificially controlling the ratio of the dielectric constant between the photonic crystal dielectric materials and the microperiod structure of the photonic crystal.
  • At least one embodiment of the present disclosure provides a transparent display device including a display panel and a total internal reflection type photonic crystal back plate, the display panel having a display side and a light incident side opposite to the display side, and a total internal reflection type photonic crystal back plate Located on the light incident side of the display panel; the total internal reflection type photonic crystal backplane includes a substrate and a plurality of columnar structures periodically arranged inside the substrate, wherein the columnar structure and the substrate have different refractive indices.
  • At least one embodiment of the present disclosure provides a method for fabricating a transparent display device, comprising: providing a display panel and a total internal reflection type photonic crystal backplane, the display panel having a display side and a light incident side opposite to the display side, and the total internal reflection
  • the photonic crystal backplane is connected to the light incident side of the display panel;
  • the total internal reflection type photonic crystal backplane includes a substrate and a plurality of columnar structures periodically arranged inside the substrate, and the columnar structure and the substrate have different refractive indices.
  • FIG. 1 is a schematic diagram of a transparent display device according to the embodiment.
  • the transparent display device includes a display panel 100 and a total internal reflection type photonic crystal back plate. 200.
  • the display panel 100 has a display side and a light incident side opposite to the display side.
  • the total internal reflection type photonic crystal backplane 200 is located on the light incident side of the display panel 100.
  • the total internal reflection type photonic crystal backplane 200 includes the substrate 201 and A plurality of columnar structures are periodically arranged inside the substrate 201, and the refractive index of the columnar structure is different from the refractive index of the substrate.
  • the refractive index of the columnar structure is higher or lower than the refractive index of the substrate 201.
  • the columnar structure may include a cylindrical structure, a polygonal prism or a combination of a columnar structure and a polygonal structure, and the like.
  • the equivalent refractive index of the region where the columnar structure is located is higher than the equivalent refractive index of the surrounding region (the equivalent refractive index is the average refractive index of one region) Therefore, the region where the columnar structure is located can achieve total internal reflection of light.
  • the equivalent refractive index of the surrounding region of the columnar structure is higher than the equivalent refractive index of the region where the columnar structure is located, so that the surrounding area of the columnar structure can be realized. Total internal reflection of light.
  • FIGS. 2A and 2B are a plan view and a side view, respectively, of a total internal reflection type photonic crystal back sheet provided by the present embodiment.
  • the columnar structure adopts a cylindrical structure
  • the cylindrical structure may have a plurality of different diameters, and the refractive index of the cylindrical structure having the largest diameter is greater than the refractive index of the substrate 201, thereby The equivalent refractive index of the region of the cylindrical structure having the largest diameter is higher than the equivalent refractive index with the surrounding region, and total internal reflection of light can be achieved.
  • the cylindrical structure has two different diameters, that is, the cylindrical structure includes a first cylinder 202 and a second cylinder 203, wherein the diameter of the first cylinder 202 is larger than the diameter of the second cylinder 203, and the first The refractive index of the cylinder 202 is greater than the refractive index of the substrate 201; the first cylinder 202 and the second cylinder 203 each have a plurality of, and the first cylinder 202 and the second cylinder 203 are each arranged in a periodic manner.
  • the first cylinder 202 and the second cylinder 203 are spaced apart. For example, in the exemplary arrangement shown in FIG.
  • a plurality of second cylinders 203 are arranged around a first cylinder 202, for example, a total internal reflection type.
  • the first row of the cylindrical structure of the photonic crystal back plate 200 is all set as the second cylinder 203
  • the second row adopts the manner in which the first cylinder 202 and the second cylinder 203 are alternately arranged
  • the third row is all set as the second cylinder 203.
  • the fourth row adopts a manner in which the first cylinder 202 and the second cylinder 203 are alternately arranged.
  • the periodic arrangement is such that the total internal reflection type photonic crystal backplane 200 is formed.
  • embodiments of the present disclosure are not limited to the above arrangement, for example, a plurality of first cylinders 202 may be disposed around one second cylinder 203.
  • the diameters of the first cylinder 202 and the second cylinder 203 may each be no more than 5 ⁇ m.
  • the diameter D of the first cylinder 202 can be selected to be about 4 ⁇ m
  • the diameter d of the second cylinder 203 can be selected to be about 2 ⁇ m; in this embodiment, the axial distances of adjacent cylindrical structures are about the same. , set to A, that is, the axial distance between the first cylinder 202 / the second cylinder 203 and the second cylinder 203 is A, then d: A ⁇ 0.2.
  • the axial distance A can be selected to be about 8 ⁇ m.
  • the diameter D of the first cylinder 202 may be selected to be about 3 ⁇ m
  • the diameter d of the second cylinder 203 may be selected to be about 1 ⁇ m
  • the axial center distance A may be selected to be about 6 ⁇ m
  • the diameter D of the first cylinder 202 may be selected to be about 5 ⁇ m
  • the diameter d of the second cylinder 203 may be selected to be about 2 ⁇ m
  • the axial center distance A may be selected to be about 12 ⁇ m... by such a size setting
  • the total internal reflection type photonic crystal backplate 200 is better adjusted for the propagation direction of light (for example, visible light) and achieves uniform dispersion of light.
  • the number ratio of the first cylinder 202 and the second cylinder 203 may be no more than 1:20, that is, the plurality of second cylinders 203 may be separated between the adjacent two first cylinders 202, and thus the plurality of second cylinders 203 surrounds the first cylinder 202.
  • the number of second cylinders 203 surrounding one first cylinder 202 may be more, for example, the first cylinder 202 and
  • the number ratio of the second cylinders 203 is 1: (30-40), for example, the ratio of the number of the first cylinder 202 to the second cylinder 203 is 1:35.
  • the total internal reflection type photonic crystal backing plate 200 can further adjust the propagation direction of light (e.g., visible light) and achieve uniform dispersion of light.
  • the columnar structure in the embodiment of the present disclosure may have more different diameters and is not limited to two types, for example, three, and perform similar cycle arrangement, for example, alternating. Arrangement, this embodiment will not be described again.
  • the material of the substrate 201 of the total internal reflection type photonic crystal back sheet 200 may be glass, transparent resin or other suitable materials.
  • the substrate 201 may be made of a material such as silica glass or acrylic transparent resin.
  • the thickness of the substrate 201 may be a thinned design, for example, not more than 5 cm, for example, 0.5 to 30 mm, and for example, a thinned thickness of about 1.5 mm, about 2.5 mm, or about 15 mm may be employed.
  • the material of the columnar structure of the total internal reflection type photonic crystal backplate 200 may be glass, transparent resin, air or other suitable material.
  • the columnar structure when the material of the columnar structure is air, the columnar structure may be an air column that is opened in the substrate 100; when the material of the columnar structure is glass, transparent resin or other materials, the columnar structure may open the air in the substrate 100.
  • the columnar structure obtained by filling the air column with glass, transparent resin or other materials; in this embodiment, the material of the columnar structure can be selected according to requirements.
  • the refractive index of the first cylinder 202 is greater than the refractive index of the substrate 201, so the refractive index of the selected material of the first cylinder 202 should be greater than the refractive index of the material of the substrate 201, in this embodiment.
  • the refractive index of the second cylinder 203 is not limited, so that the refractive index of the material selected may be greater than or equal to the refractive index of the material of the substrate 201.
  • the refractive index of the second cylinder 203 may be smaller than the refractive index of the substrate 201, and the refractive index of the first cylinder 202 may be greater than or equal to the refractive index of the substrate 201.
  • the material of the second cylinder 203 may be air, and the material of the substrate 201 may be glass.
  • the refractive index of the material of the first cylinder 202 may be greater than or equal to the refractive index of the glass.
  • the first cylinder 202 may be made of the same material as the substrate 201, that is, glass.
  • the first cylinder 202 may be integrated with the substrate 201, thereby omitting the step of forming the first cylinder 202, which simplifies the preparation process.
  • the equivalent refractive index of the region where the second cylinder 203 is located is smaller than the equivalent refractive index at the position where the original first cylinder 202 is located, so that total internal reflection of light can still be achieved at the position of the original first cylinder 202.
  • the optical axis of the total internal reflection type photonic crystal backplane 200 may be perpendicular to the display panel 100, that is, the central axis of the columnar structure of the total internal reflection type photonic crystal backplate 200 is perpendicular to the display panel 100; therefore,
  • the internal reflection type photonic crystal backplate 200 is capable of injecting light incident on the display panel 100 in different directions, for example, visible light beams are enclosed in the columnar structure, and converted into vertically incident light, and due to optical coupling between different cylinders, the whole is internal.
  • the reflective photonic crystal backplate 200 can uniformly disperse incident light to make the brightness of the display panel 100 uniform.
  • the total internal reflection type photonic crystal back sheet 200 may be connected to the display panel 100 by glue or mechanical structure.
  • the total internal reflection type photonic crystal backplate 200 may be bonded to the display panel 100 by Optically Clear Adhesive (OCA), which is colorless and transparent, and has a light transmittance of 90. More than %, so that the seamless connection of the total internal reflection type photonic crystal backplate 200 and the display panel 100 can be realized, and the transparent display device can achieve the technical effect of the borderless transparent display.
  • OCA Optically Clear Adhesive
  • the total internal reflection type photonic crystal backplane 200 can also be connected to the display panel 100 through a mechanical structure such as a frame or a buckle. The specific form is not limited herein.
  • the display panel 100 of the transparent display device may be a liquid crystal display panel, an organic light emitting diode display panel, an electronic paper display panel, or the like.
  • the type of the display panel 100 is not limited herein.
  • the transparent display device may further include a backlight 300.
  • the backlight 300 may be disposed on the light incident side of the display panel 100, for example, and the light emitted by the backlight 300 may pass through the total internal reflection type photon.
  • the total internal reflection type photonic crystal back plate 200 converts light incident on the display panel 100 in different directions into light that is normally incident, and uniformly distributes the incident light, so that the display panel The brightness of 100 is uniform.
  • the backlight may be of various types, such as side-illuminated or direct-lit, etc., and may include a light guide plate, an optical film (eg, a diffusion film) to convert a point source or a line source into a surface source.
  • the transparent display device includes a display panel 100 and a total internal reflection type photonic crystal back plate 200.
  • the display panel 100 has a display side and a display side opposite to the display side.
  • the total internal reflection type photonic crystal back plate 200 is located on the light incident side of the display panel 100;
  • the total internal reflection type photonic crystal back plate 200 includes a substrate 211 and a plurality of columnar structures periodically arranged inside the substrate 211, and the columnar structure and The refractive index of the substrate is different.
  • the columnar structure adopts a polygonal prism structure, for example, a square prism structure, which can have various sizes and has a light refractive index of a square prism structure having the largest size.
  • the refractive index of the light larger than the substrate 211.
  • FIGS. 5A and 5B are a plan view and a side view of a total internal reflection type photonic crystal back sheet provided in the embodiment.
  • the square prism structure has two different sizes, that is, the square prism structure includes a first square prism 212 and a second square prism 213, wherein the side length of the first square prism 212 is greater than a side length of the second square prism 213, the light refractive index of the first square prism 212 is greater than the light refractive index of the substrate 211; the first square prism 212 and the second square prism 213 each have a plurality, the first square prism 212 and the second The square prisms 213 are arranged in a periodic manner.
  • the second square prism 213 can be disposed around the first square prism 212.
  • the specific manners of the specific arrangement and the periodic arrangement are substantially the same as those of the foregoing embodiment, and therefore will not be further described in this embodiment.
  • the polygonal prism structure is not limited to the square prism, and other polygonal prisms, such as a hexagonal prism, an octagonal prism, and the like, may be used in this embodiment, which is not limited in this embodiment.
  • the columnar structure in the embodiment of the present disclosure for example, the polygonal prism structure in this embodiment may have more different sizes and is not limited to two types, and similar arrangements are performed according to actual conditions, which will not be described in this embodiment. .
  • the transparent display device includes a display panel 100 and a total internal reflection type photonic crystal back plate 200.
  • the display panel 100 has a display side and a display side opposite to the display side.
  • the total internal reflection type photonic crystal back plate 200 is located on the light incident side of the display panel 100; the total internal reflection type photonic crystal back plate 200 includes a substrate 221 and a plurality of columnar structures periodically arranged inside the substrate 221, and the columnar structure and The refractive index of the substrate is different.
  • the columnar structure adopts a cylindrical structure and a polygonal prism structure, for example, a cylindrical structure and a square prism structure are used in combination, and a cylindrical structure having the largest size has a light refractive index greater than that of the substrate 221 .
  • Light refractive index is a measure of the refractive index of the substrate 221 .
  • FIG. 6A and FIG. 6B are a plan view and a side view of a total internal reflection type photonic crystal backplane provided by the embodiment.
  • the total internal reflection type photonic crystal backplane 200 includes a cylinder.
  • the structure and a square prism structure include a third cylinder 222 and a fourth square prism 223, wherein the diameter of the third cylinder 222 is greater than the side length of the fourth square prism 223, and the refractive index of the third cylinder 222 is greater than that of the substrate
  • the light refractive index of 221; the third cylinder 222 and the fourth square prism 223 each have a plurality of, the third cylinder 222 and the fourth square prism 223 adopt a periodic arrangement, and the specific arrangement and the specific manner of the periodic arrangement and the above
  • the embodiments are basically the same, so the embodiment will not be described again.
  • the polygonal prism structure is not limited to the square prism, and other polygonal prisms, such as hexagonal prisms, octagonal prisms, and the like, are not limited in this embodiment.
  • the columnar structure in the embodiment of the present disclosure for example, the cylindrical structure and the polygonal prism structure in this embodiment may have more different sizes and are not limited to one, and similar arrangement is performed according to actual conditions. The examples will not be described again.
  • At least one embodiment of the present disclosure provides a method for fabricating a transparent display device. As shown in FIG. 7, the method includes:
  • S101 providing a display panel and a total internal reflection type photonic crystal backplane
  • the display panel may be a liquid crystal display panel, an organic light emitting diode display panel, an electronic paper display panel, etc.
  • the type of the display panel is not limited herein, and the preparation method thereof may adopt a conventional method, and thus will not be described again.
  • the total internal reflection type photonic crystal backplane includes a substrate and a plurality of columnar structures periodically arranged inside the substrate, and the columnar structure and the substrate have different refractive indices.
  • the material of the substrate of the total internal reflection type photonic crystal back plate may be glass, transparent resin or other suitable materials.
  • the substrate may be made of a material such as silica glass or acrylic transparent resin.
  • the thickness of the substrate of the photonic crystal back sheet may be a thinned design, for example, not more than 5 cm, for example, 0.5 to 30 mm, and for example, a thinned thickness of 1.5 mm, 2.5 mm, or 15 mm may be employed.
  • the material of the columnar structure of the total internal reflection type photonic crystal back plate may be glass, transparent resin, air or other suitable material.
  • the preparation method of the columnar structure may include opening an air column in the substrate to form a hollow columnar structure; when the columnar structure is made of glass, transparent resin or other materials, the columnar structure is The preparation method may include: after the air column is opened in the substrate, the glass column is filled with glass, transparent resin or other materials to obtain a columnar structure; at this time, the light refractive index of the material selected by selecting the columnar structure is larger or smaller than the photon according to requirements. The refractive index of the material selected for the substrate of the crystal backsheet.
  • the columnar structure of the total internal reflection type photonic crystal back plate may be formed in the substrate of the total internal reflection type photonic crystal back plate with its central axis perpendicular to the substrate, and therefore, when the total internal reflection type photonic crystal back After the board is combined with the display substrate, the optical axis of the total internal reflection type photonic crystal back plate can be perpendicular to the display panel, so the total internal reflection type photonic crystal back plate can convert light incident on the display panel in different directions, such as visible light into vertical incidence. Light and evenly distribute the incident light to make the brightness of the display panel uniform.
  • the total internal reflection type photonic crystal backplane can be connected to the display panel by glue or mechanical structure.
  • the total internal reflection type photonic crystal back plate can be bonded to the display panel through the light transparent adhesive, and the optical adhesive is colorless and transparent, and the light transmittance is above 90%, so that total internal reflection can be realized.
  • the seamless connection of the photonic crystal backplane and the display panel enables the transparent display device to achieve the technical effect of the borderless transparent display.
  • the total internal reflection type photonic crystal backplane can also be connected to the display panel by a mechanical connection such as a frame or a buckle, and the specific connection form is not limited herein.
  • the transparent display device may further include a backlight. Therefore, the method for preparing the transparent display device provided in this embodiment may further include: connecting the backlight to the display substrate.
  • the backlight 300 can be connected, for example, to the light incident side of the display panel 100 and connected to the outer surface of the total internal reflection type photonic crystal backplane 200.
  • the backlight 300 is connected to the total internal reflection type photonic crystal backplane.
  • the total internal reflection type photonic crystal backplane 200 can be incident in different directions.
  • the light of the display panel 100 is converted into light that is normally incident, and the incident light is uniformly dispersed, so that the brightness of the display panel 100 is uniform.
  • the transparent display device includes a total internal reflection type photonic crystal back plate, which can change the propagation direction of incident light, and can make different The light that is incident on the display panel is converted into light that is normally incident, and the incident light is uniformly dispersed, so that the transparent display device displays uniform brightness and has higher display quality.
  • the total internal reflection type photonic crystal back plate of the transparent display device has a wide source of materials, is inexpensive, and is similar to the material of the display panel, and thus can be combined with the display panel. It has better fusion and is beneficial to the thinning of the display device and the transparent display without borders.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

一种透明显示装置及其制备方法,该透明显示装置包括显示面板(100)和全内反射型光子晶体背板(200),显示面板(100)具有显示侧和与显示侧相对的入光侧,全内反射型光子晶体背板(200)位于显示面板(100)的入光侧;全内反射型光子晶体背板(200)包括基板(201)和在基板(201)内部周期排列地多个柱状结构,柱状结构与基板(201)的光折射率不同。该全内反射型光子晶体背板能使不同方向入射显示面板的光转化为垂直入射的光。

Description

透明显示装置及其制备方法
本申请要求于2017年7月7日递交的中国专利申请第201710552654.9号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种透明显示装置及其制备方法。
背景技术
透明显示装置的显示面板具有一定透光性,能够显示面板后面的背景图像,同时也能主动显示设定画面。透明显示装置常用于橱窗展厅、建筑窗户、汽车玻璃、人机交互等领域,可以在实际场景中融合显示功能,显示美观逼真,具有广泛的应用前景。
发明内容
本公开至少一实施例提供一种透明显示装置,该透明显示装置所具有的全内反射型光子晶体背板能够改变入射光的传播方向,能使不同方向入射显示面板的光转化为垂直入射的光,并将入射光均匀分散,因此该透明显示装置显示亮度均匀,具有更高的显示质量。
本公开至少一实施例提供一种透明显示装置,包括显示面板和全内反射型光子晶体背板,所述显示面板具有显示侧和与所述显示侧相对的入光侧,所述全内反射型光子晶体背板位于所述显示面板的入光侧;所述全内反射型光子晶体背板包括基板和在所述基板内部周期排列地多个柱状结构,所述柱状结构与所述基板的光折射率不同。
本公开至少一实施例提供一种透明显示装置中,所述柱状结构包括圆柱结构。
本公开至少一实施例提供一种透明显示装置中,所述圆柱结构具有多种不同直径。
本公开至少一实施例提供一种透明显示装置中,具有最大直径的圆柱结 构的光折射率大于所述基板的光折射率。
本公开至少一实施例提供一种透明显示装置中,所述圆柱结构包括第一圆柱和第二圆柱,所述第一圆柱和第二圆柱均具有多个,所述第一圆柱的直径大于所述第二圆柱的直径,所述第一圆柱的光折射率大于所述基板的光折射率。
本公开至少一实施例提供一种透明显示装置中,所述第二圆柱围绕所述第一圆柱布置。
本公开至少一实施例提供一种透明显示装置中,所述第一圆柱与所述第二圆柱的直径均不大于5微米。
本公开至少一实施例提供一种透明显示装置中,所述第二圆柱的直径为d,所述第一圆柱和所述第二圆柱的轴心距为A,则d:A<0.2。
本公开至少一实施例提供一种透明显示装置中,所述第一圆柱与所述第二圆柱的数量比不大于1:20。
本公开至少一实施例提供一种透明显示装置中,所述第一圆柱与所述第二圆柱的数量比为1:(30-40)。
本公开至少一实施例提供一种透明显示装置中,所述柱状结构包括多边形棱柱。
本公开至少一实施例提供一种透明显示装置中,所述多边形棱柱具有不同尺寸。
本公开至少一实施例提供一种透明显示装置中,具有最大尺寸的多边形棱柱的光折射率大于所述基板的光折射率。
本公开至少一实施例提供一种透明显示装置中,所述多边形棱柱包括第一棱柱和第二棱柱,所述第一棱柱和第二棱柱均具有多个,所述第一棱柱的尺寸大于所述第二棱柱的尺寸,所述第一棱柱的光折射率大于所述基板的光折射率。
本公开至少一实施例提供一种透明显示装置中,所述第二棱柱围绕所述第一棱柱布置。
本公开至少一实施例提供一种透明显示装置中,所述基板的材质为玻璃或透明树脂。
本公开至少一实施例提供一种透明显示装置中,所述柱状结构的材质为玻璃、透明树脂或空气。
本公开至少一实施例提供一种透明显示装置中,所述全内反射型光子晶体背板的光轴垂直于所述显示面板。
本公开至少一实施例提供一种透明显示装置中,所述全内反射型光子晶体背板通过胶水或机械结构与所述显示面板连接。
本公开至少一实施例提供一种透明显示装置的制备方法,包括:提供显示面板和全内反射型光子晶体背板,所述显示面板具有显示侧和与所述显示侧相对的入光侧,将所述全内反射型光子晶体背板连接于所述显示面板的入光侧;所述全内反射型光子晶体背板包括基板和在所述基板内部周期排列地多个柱状结构,所述柱状结构与所述基板的光折射率不同。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开一实施例提供的透明显示装置的示意图;
图2A和图2B分别为本公开一实施例提供的全内反射型光子晶体背板的平面图和侧视图;
图3为本公开一实施例提供的透明显示装置的示意图;
图4为本公开一实施例提供的另一全内反射型光子晶体背板的平面图;
图5A和图5B分别为本公开另一实施例提供的全内反射型光子晶体背板的平面图和侧视图;
图6A和图6B分别为本公开再一实施例提供的全内反射型光子晶体背板的平面图和侧视图;
图7为本公开一实施例提供的透明显示装置的制备流程图。
附图标记:
100-显示面板;200-全内反射型光子晶体背板;201-基板;202-第一圆柱;203-第二圆柱;211-基板;212-第一正方形棱柱;213-第二正方形棱柱;221-基板;222-第三圆柱;223-第四正方形棱柱;300-背光源。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公 开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
现有的透明显示装置往往利用环境光作为光源进行照明,或者利用外加背光源进行辅助照明以增强显示效果,此时,光源与显示面板分离,因此射入显示面板的入射光往往会与显示面板存在一定角度而非垂直入射,从而显示面板可能受光不均、亮度较低,进而降低了透明显示装置的显示质量。
光子晶体(Photonic Crystal)是一种折射率在空间周期性变化的介电结构,其变化周期和光波长为同一数量级,分全内反射型光子晶体材料和光子带隙材料(Photonic Band Gap)两种。全内反射型光子晶体材料具有无截止传输特性,当满足d/A<0.2时,近紫外至红外波段的光能被限制在光子晶体中沿一定方向进行传播,因此光子晶体可对入射光进行接收与调制。光子带隙材料为具有光子带隙的人造周期性电介质结构,频率落在光子带隙内的电磁波禁止传播。例如可以通过介质棒堆积、精密机械钻孔、胶体颗粒自组织生长、胶体溶液自组织生长或半导体工艺等方法获得光子晶体。这些方法通过人工地控制光子晶体中介电材料之间介电常数的配比和光子晶体的微周期性结构,可以制备出带有各种光子晶体。
本公开至少一实施例提供一种透明显示装置,其包括显示面板和全内反射型光子晶体背板,显示面板具有显示侧和与显示侧相对的入光侧,全内反射型光子晶体背板位于显示面板的入光侧;全内反射型光子晶体背板包括基板和在基板内部周期排列地多个柱状结构,其中,柱状结构与基板的光折射 率不同。
本公开至少一实施例提供一种透明显示装置的制备方法,包括:提供显示面板和全内反射型光子晶体背板,显示面板具有显示侧和与显示侧相对的入光侧,将全内反射型光子晶体背板连接于显示面板的入光侧;全内反射型光子晶体背板包括基板和在基板内部周期排列地多个柱状结构,柱状结构与基板的光折射率不同。
下面通过几个具体的实施例对本公开的概念进行说明。
本公开至少一实施例提供一种透明显示装置,图1为本实施例提供的透明显示装置的示意图,如图1所示,该透明显示装置包括显示面板100和全内反射型光子晶体背板200,显示面板100具有显示侧和与显示侧相对的入光侧,全内反射型光子晶体背板200位于显示面板100的入光侧;全内反射型光子晶体背板200包括基板201和在基板201内部周期排列地多个柱状结构,柱状结构的光折射率与基板的光折射率不同。例如,柱状结构的光折射率高于或低于基板201的光折射率。例如,该柱状结构可以包括圆柱结构、多边形棱柱或者柱状结构和多边形结构的组合等。
例如,当柱状结构的光折射率高于基板的光折射率时,该柱状结构所在区域的等效折射率高于其周围区域的等效折射率(等效折射率为一个区域的平均折射率),从而该柱状结构所在区域可以实现对光的全内反射。例如,当柱状结构的光折射率低于基板的光折射率时,柱状结构的周围区域的等效折射率高于该柱状结构所在区域的等效折射率,从而该柱状结构的周围区域可以实现对光的全内反射。
例如,图2A和2B分别为本实施例提供的一种全内反射型光子晶体背板的平面图和侧视图。如图2A和2B所示,本实施例中,该柱状结构采用圆柱结构,该圆柱结构可以具有多种不同直径,并且具有最大直径的圆柱结构的光折射率大于基板201的光折射率,从而具有最大直径的圆柱结构所在区域的等效折射率高于与周围区域的等效折射率,可以实现对光的全内反射。
例如,本实施例中,该圆柱结构具有两种不同直径,即该圆柱结构包括第一圆柱202和第二圆柱203,其中,第一圆柱202的直径大于第二圆柱203的直径,并且第一圆柱202的光折射率大于基板201的光折射率;第一圆柱202和第二圆柱203均具有多个,并且第一圆柱202和第二圆柱203均采取 周期性的排列方式。本实施例中,第一圆柱202和第二圆柱203间隔设置,例如,如图2A所示的示范性布置中,多个第二圆柱203围绕一个第一圆柱202布置,例如,全内反射型光子晶体背板200所具有的圆柱结构的第一排全部设置为第二圆柱203,第二排采取第一圆柱202和第二圆柱203交替设置的方式,第三排全部设置为第二圆柱203,第四排采取第一圆柱202和第二圆柱203交替设置的方式…如此周期排列形成全内反射型光子晶体背板200。当然,本公开的实施例不限于上述布置方式,例如,可以多个第一圆柱202围绕一个第二圆柱203布置。
本实施例中,第一圆柱202与第二圆柱203的直径可以均不大于5μm。例如,本实施例中,第一圆柱202的直径D可以选定为大约4μm,第二圆柱203的直径d可以选定为大约2μm;本实施例中,相邻圆柱结构的轴心距大约相同,设为A,即第一圆柱202/第二圆柱203与第二圆柱203的轴心距为A,则d:A<0.2。例如,本实施例中,在第一圆柱202的直径D选定为大约4μm,第二圆柱203的直径d选定为大约1μm时,轴心距A可以选定为大约8μm。在本公开的其他实施例中,第一圆柱202的直径D可以选定为大约3μm,第二圆柱203的直径d可以选定为大约1μm,轴心距为A可以选定为大约6μm;又或者第一圆柱202的直径D可以选定为大约5μm,第二圆柱203的直径d可以选定为大约2μm,轴心距为A可以选定为大约12μm……通过这样的尺寸设定,可以使全内反射型光子晶体背板200更好地实现对光(例如可见光)的传播方向的调节并实现光线的均匀分散。
需要说明的是,本公开中无论是否使用"大约"或"约"等字眼,所有在此公开了的数字均为近似值。每一个数字的数值有可能会出现1%、2%、5%、7%、8%、10%、15%或20%等差异。
本实施例中,第一圆柱202与第二圆柱203的数量比可以不大于1:20,即相邻两个第一圆柱202之间可以相隔多个第二圆柱203,因此多个第二圆柱203围绕第一圆柱202。例如,如图4所示,图中示意性给出相邻两个第一圆柱202之间相隔三个第二圆柱203的情况,因此相对于图2A的全内反射型光子晶体背板,本实施例中具有更多个第二圆柱203围绕第一圆柱202,在本公开的其他实施例中,围绕一个第一圆柱202的第二圆柱203的数量可以为更多,例如第一圆柱202与第二圆柱203的数量比为1:(30-40),例如采用第一圆柱202与第二圆柱203的数量比为1:35。通过这样的柱状结构的 排列方式,可以使全内反射型光子晶体背板200进一步实现对光(例如可见光)的传播方向的调节并实现光线的均匀分散。
需要说明的是,本公开实施例中的柱状结构,例如本实施例中的圆柱结构可以具有更多种不同直径而不局限于两种,例如三种,并进行类似的周期排布,例如交替排布,本实施例不再赘述。
本实施例中,全内反射型光子晶体背板200的基板201的材质可以为玻璃、透明树脂或其他合适的材料,例如,基板201可以采用二氧化硅玻璃或亚克力透明树脂等材料。基板201的厚度可以采用薄型化设计,例如不大于5cm,例如0.5~30mm,又例如可以采用大约1.5mm、大约2.5mm或大约15mm等薄型化厚度。
本实施例中,全内反射型光子晶体背板200的柱状结构的材质可以为玻璃、透明树脂、空气或其他合适的材料。例如,当柱状结构的材质为空气时,柱状结构可以为在基板100中打通的空气柱;当柱状结构的材质为玻璃、透明树脂或其他材料时,柱状结构可以为在基板100中打通了空气柱后,在空气柱中填充玻璃、透明树脂或其他材料得到的柱状结构;本实施例中,柱状结构的材料可以根据需求进行选择。
例如,在本实施例中,第一圆柱202的光折射率大于基板201的光折射率,因此第一圆柱202的选用的材料的折射率应大于基板201的材料的折射率,本实施例中第二圆柱203的光折射率不做限定,因此其所选用的材料的折射率可以大于也可以小于基板201的材料的光折射率。
例如,在其他实施例中,第二圆柱203的光折射率可以小于基板201的的光折射率,此时第一圆柱202的光折射率可以大于或等于基板201的光折射率。例如在图2A所示的示例中,第二圆柱203的材质可以为空气,基板201的材质可以为玻璃,此时第一圆柱202采用的材质的光折射率可以大于或等于玻璃的折射率,例如,第一圆柱202可以采用与基板201相同的材质,即玻璃,此时第一圆柱202可以与基板201可以为一体结构,从而省略形成第一圆柱202的步骤,简化了制备工艺。在此示例中,第二圆柱203所在区域的等效折射率小于原第一圆柱202所在位置处的等效折射率,从而原第一圆柱202所在位置处仍可以实现对光的全内反射。
本实施例中,全内反射型光子晶体背板200的光轴例如可以垂直于显示面板100,即全内反射型光子晶体背板200的柱状结构的中心轴垂直于显示 面板100;因此,全内反射型光子晶体背板200能够将不同方向入射显示面板100的光,例如可见光束缚在柱状结构内,并将其转化为垂直入射的光,又由于不同圆柱之间的光耦合作用,全内反射型光子晶体背板200可以将入射光均匀分散,使显示面板100的亮度均匀。
本实施例中,全内反射型光子晶体背板200可以通过胶水或机械结构与显示面板100连接。例如,本实施例中,全内反射型光子晶体背板200可以通过光透明胶(Optically Clear Adhesive,OCA)与显示面板100粘结在一起,该光学胶无色透明、光透过率在90%以上,因此可以实现全内反射型光子晶体背板200与显示面板100的无痕连接,使透明显示装置达到无边框透明显示的技术效果。当然,全内反射型光子晶体背板200也可以通过边框、卡扣等机械结构与显示面板100连接,其具体形式在此不做限定。
本实施例中,透明显示装置的显示面板100可以为液晶显示面板或有机发光二极管显示面板、电子纸显示面板等,显示面板100的种类在此不做限定。
本实施例中,如图3所示,透明显示装置还可以包括背光源300,背光源300例如可以设置于显示面板100的入光侧,进而背光源300发出的光可以通过全内反射型光子晶体背板200的调试后再射入显示基板100,因此全内反射型光子晶体背板200将不同方向入射显示面板100的光转化为垂直入射的光,并将入射光均匀分散,使得显示面板100的亮度均匀。该背光源可以为各种类型,例如侧面照射式或直下式等,可以包括导光板、光学膜(例如扩散膜)以便将点光源或线光源转换为面光源。
本公开至少一实施例提供一种透明显示装置,如图1所示,该透明显示装置包括显示面板100和全内反射型光子晶体背板200,显示面板100具有显示侧和与显示侧相对的入光侧,全内反射型光子晶体背板200位于显示面板100的入光侧;全内反射型光子晶体背板200包括基板211和在基板211内部周期排列地多个柱状结构,柱状结构与基板的光折射率不同。
与上述实施例不同的是,本实施例中,该柱状结构采用多边形棱柱结构,例如为正方形棱柱结构,该正方形棱柱结构可以具有多种不同尺寸,并且具有最大尺寸的正方形棱柱结构的光折射率大于基板211的光折射率。
例如,图5A和5B为本实施例提供的全内反射型光子晶体背板的平面图和侧视图。如图5A所示,本实施例中,该正方形棱柱结构具有两种不同 尺寸,即该正方形棱柱结构包括第一正方形棱柱212和第二正方形棱柱213,其中,第一正方形棱柱212的边长大于第二正方形棱柱213的边长,第一正方形棱柱212的光折射率大于基板211的光折射率;第一正方形棱柱212和第二正方形棱柱213均具有多个,第一正方形棱柱212和第二正方形棱柱213采取周期性的排列方式。例如,第二正方形棱柱213可以围绕第一正方形棱柱212布置。其具体设置与周期性排列的具体方式与上述实施例基本相同,因此本实施例不再赘述。
需要说明的是,本实施例中,多边形棱柱结构并不局限于正方形棱柱,还可以其他多边形棱柱,例如六边形棱柱、八边形棱柱等等,本实施例对此不做限定。另外,本公开实施例中的柱状结构,例如本实施例中的多边形棱柱结构可以具有更多种不同尺寸而不局限于两种,并根据实际情况进行类似的排布,本实施例不再赘述。
本公开至少一实施例提供一种透明显示装置,如图1所示,该透明显示装置包括显示面板100和全内反射型光子晶体背板200,显示面板100具有显示侧和与显示侧相对的入光侧,全内反射型光子晶体背板200位于显示面板100的入光侧;全内反射型光子晶体背板200包括基板221和在基板221内部周期排列地多个柱状结构,柱状结构与基板的光折射率不同。
与以上实施例不同的是,本实施例中,该柱状结构采用圆柱结构和多边形棱柱结构,例如将圆柱结构和正方形棱柱结构结合使用,并且具有最大尺寸的圆柱结构的光折射率大于基板221的光折射率。
例如,图6A和6B为本实施例提供的全内反射型光子晶体背板的平面图和侧视图,如图6A所示,本实施例中,全内反射型光子晶体背板200包括一种圆柱结构和一种正方形棱柱结构,例如包括第三圆柱222和第四正方形棱柱223,其中,第三圆柱222的直径大于第四正方形棱柱223的边长,并且第三圆柱222的光折射率大于基板221的光折射率;第三圆柱222和第四正方形棱柱223均具有多个,第三圆柱222和第四正方形棱柱223采取周期性的排列方式,其具体设置与周期性排列的具体方式与以上实施例基本相同,因此本实施例不再赘述。
同样的,本实施例中,多边形棱柱结构并不局限于正方形棱柱,还可以其他多边形棱柱,例如六边形棱柱、八边形棱柱等等,本实施例对此不做限定。另外,本公开实施例中的柱状结构,例如本实施例中的圆柱结构和多边 形棱柱结构也可以具有更多种不同尺寸而不局限于一种,并根据实际情况进行类似的排布,本实施例不再赘述。
本公开至少一实施例提供一种透明显示装置的制备方法,如图7所示,该方法包括:
S101:提供显示面板和全内反射型光子晶体背板;
本实施例中,显示面板可以是液晶显示面板、有机发光二极管显示面板、电子纸显示面板等,显示面板的种类在此不做限定,其制备方法可以采用常规方法,因此不再赘述。
本实施例中,全内反射型光子晶体背板包括基板和在基板内部周期排列地多个柱状结构,柱状结构与基板的光折射率不同。
本实施例中,全内反射型光子晶体背板的基板的材质可以为玻璃、透明树脂或其他合适的材料,例如,基板可以采用二氧化硅玻璃或亚克力透明树脂等材料。光子晶体背板的基板的厚度可以采用薄型化设计,例如不大于5cm,例如0.5~30mm,又例如可以采用1.5mm、2.5mm或15mm等薄型化厚度。
本实施例中,全内反射型光子晶体背板的柱状结构的材质可以为玻璃、透明树脂、空气或其他合适的材料。
例如,当柱状结构的材质为空气时,柱状结构的制备方法可以包括在基板中打通空气柱,从而形成镂空的柱状结构;当柱状结构的材质为玻璃、透明树脂或其他材料时,柱状结构的制备方法可以包括在基板中打通了空气柱后,在空气柱中填充玻璃、透明树脂或其他材料从而得到柱状结构;此时,根据需求选择柱状结构所选取的材料的光折射率大于或者小于光子晶体背板的基板所选用的材料的光折射率。
本实施例中,全内反射型光子晶体背板的柱状结构可以以其中心轴垂直于基板的方向形成于全内反射型光子晶体背板的基板中,因此,当全内反射型光子晶体背板与显示基板结合后,全内反射型光子晶体背板的光轴可以垂直于显示面板,因此全内反射型光子晶体背板能够将不同方向入射显示面板的光,例如可见光转化为垂直入射的光,并将入射光均匀分散,使显示面板的亮度均匀。
S102:将全内反射型光子晶体背板连接于显示面板的入光侧;
本实施例中,全内反射型光子晶体背板可以通过胶水或机械结构与显示 面板连接。例如,本实施例中,全内反射型光子晶体背板可以通过光透明胶与显示面板粘结在一起,该光学胶无色透明、光透过率在90%以上,因此可以实现全内反射型光子晶体背板与显示面板的无痕连接,使透明显示装置达到无边框透明显示的技术效果。另外,全内反射型光子晶体背板也可以通过边框、卡扣等机械连接方式与显示面板连接,其具体连接形式在此不做限定。
本实施例中,透明显示装置还可以包括背光源,因此本实施例提供的透明显示装置的制备方法还可以包括:将背光源连接于显示基板。
如图3所示,背光源300例如可以连接于显示面板100的入光侧并连接于全内反射型光子晶体背板200的外表面,例如背光源300连接于全内反射型光子晶体背板200外表面的边缘处,进而背光源300发出的光可以通过全内反射型光子晶体背板200的调试后再射入显示基板100,因此全内反射型光子晶体背板200可以将不同方向入射显示面板100的光转化为垂直入射的光,并将入射光均匀分散,使得显示面板100的亮度均匀。
本公开至少一实施例提供的透明显示装置具有以下至少一项有益效果:
(1)本公开的实施例提供的一种透明显示装置,该透明显示装置包括全内反射型光子晶体背板,该全内反射型光子晶体背板能够改变入射光的传播方向,能使不同方向入射显示面板的光转化为垂直入射的光,并将入射光均匀分散,因此该透明显示装置显示亮度均匀,具有更高的显示质量。
(2)本公开的实施例提供的一种透明显示装置,该透明显示装置的全内反射型光子晶体背板的原料来源广泛、价格低廉,并且与显示面板的材料相近,因此可以与显示面板具有更好的融合性,有利于显示装置的薄型化与无边框透明显示。
有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种透明显示装置,包括:
    显示面板,所述显示面板具有显示侧和与所述显示侧相对的入光侧;
    全内反射型光子晶体背板,所述全内反射型光子晶体背板位于所述显示面板的入光侧,所述全内反射型光子晶体背板包括基板和在所述基板内部周期排列地多个柱状结构,所述柱状结构的光折射率与所述基板的光折射率不同。
  2. 根据权利要求1所述的透明显示装置,其中,所述柱状结构包括圆柱结构。
  3. 根据权利要求2所述的透明显示装置,其中,所述圆柱结构具有多种不同直径。
  4. 根据权利要求3所述的透明显示装置,其中,具有最大直径的圆柱结构的光折射率大于所述基板的光折射率。
  5. 根据权利要求4所述的透明显示装置,其中,所述圆柱结构包括多个第一圆柱和多个第二圆柱,所述第一圆柱的直径大于所述第二圆柱的直径,所述第一圆柱的光折射率大于所述基板的光折射率。
  6. 根据权利要求5所述的透明显示装置,其中,所述第二圆柱围绕所述第一圆柱布置。
  7. 根据权利要求5或6所述的透明显示装置,其中,所述第一圆柱与所述第二圆柱的直径均不大于5微米。
  8. 根据权利要求7所述的透明显示装置,其中,所述第二圆柱的直径为d,所述第一圆柱和所述第二圆柱的轴心距为A,则d:A<0.2。
  9. 根据权利要求5-8任一所述的透明显示装置,其中,所述第一圆柱与所述第二圆柱的数量比不大于1:20。
  10. 根据权利要求9所述的透明显示装置,其中,所述第一圆柱与所述第二圆柱的数量比为1:(30-40)。
  11. 根据权利要求1所述的透明显示装置,其中,所述柱状结构包括多边形棱柱。
  12. 根据权利要求11所述的透明显示装置,其中,所述多边形棱柱具有不同尺寸。
  13. 根据权利要求12所述的透明显示装置,其中,具有最大尺寸的多边形棱柱的光折射率大于所述基板的光折射率。
  14. 根据权利要求13所述的透明显示装置,其中,所述多边形棱柱包括多个第一棱柱和多个第二棱柱,所述第一棱柱的尺寸大于所述第二棱柱的尺寸,所述第一棱柱的光折射率大于所述基板的光折射率。
  15. 根据权利要求14所述的透明显示装置,其中,所述第二棱柱围绕所述第一棱柱布置。
  16. 根据权利要求1-15任一所述的透明显示装置,其中,所述基板的材质为玻璃或透明树脂。
  17. 根据权利要求1-16任一所述的透明显示装置,其中,所述柱状结构的材质为玻璃、透明树脂或空气。
  18. 根据权利要求1-17任一所述的透明显示装置,其中,所述全内反射型光子晶体背板的光轴垂直于所述显示面板。
  19. 根据权利要求1-18任一所述的透明显示装置,其中,所述全内反射型光子晶体背板通过胶水或机械结构与所述显示面板连接。
  20. 一种透明显示装置的制备方法,包括:
    提供显示面板和全内反射型光子晶体背板,所述显示面板具有显示侧和与所述显示侧相对的入光侧,将所述光子晶体背板连接于所述显示面板的入光侧;
    其中,所述全内反射型光子晶体背板包括基板和在所述基板内部周期排列地多个柱状结构,所述柱状结构与所述基板的光折射率不同。
PCT/CN2018/078290 2017-07-07 2018-03-07 透明显示装置及其制备方法 WO2019007094A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018558321A JP7073273B2 (ja) 2017-07-07 2018-03-07 透明表示装置及びその製造方法
US16/098,336 US20210231841A1 (en) 2017-07-07 2018-03-07 Transparent display device and manufacturing method thereof
EP18789312.8A EP3650896B1 (en) 2017-07-07 2018-03-07 Transparent display apparatus and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710552654.9 2017-07-07
CN201710552654.9A CN109212665B (zh) 2017-07-07 2017-07-07 透明显示装置

Publications (1)

Publication Number Publication Date
WO2019007094A1 true WO2019007094A1 (zh) 2019-01-10

Family

ID=64950567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078290 WO2019007094A1 (zh) 2017-07-07 2018-03-07 透明显示装置及其制备方法

Country Status (5)

Country Link
US (1) US20210231841A1 (zh)
EP (1) EP3650896B1 (zh)
JP (1) JP7073273B2 (zh)
CN (1) CN109212665B (zh)
WO (1) WO2019007094A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343671A (ja) * 2005-06-10 2006-12-21 Tokyo Institute Of Technology 周期構造体およびその製造方法
CN103529513A (zh) * 2013-09-24 2014-01-22 浙江工业大学 一种光子晶体微腔共振波长的调节方法
CN104101940A (zh) * 2014-07-04 2014-10-15 京东方科技集团股份有限公司 导光板、背光源及显示装置
CN106575034A (zh) * 2014-08-03 2017-04-19 威福光学有限公司 出射光瞳扩展的衍射光学波导装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7005079B2 (en) 2003-04-07 2006-02-28 Chungwha Picture Tubes, Ltd. Manufacturing method of light-guiding apparatus for using in backlight of liquid crystal display
JP2005174594A (ja) 2003-12-08 2005-06-30 Toyota Industries Corp 電界発光素子を用いたカラーディスプレイ
JP2011017923A (ja) * 2009-07-09 2011-01-27 Sumitomo Electric Ind Ltd 導光板、バックライト、ディスプレイ装置、照明装置および導光板の製造方法
KR20130028578A (ko) * 2011-09-09 2013-03-19 삼성전자주식회사 광결정 구조체, 이의 제조방법, 광결정 구조체를 채용한 반사형 컬러필터 및 디스플레이 장치.
WO2013069740A1 (ja) * 2011-11-08 2013-05-16 シャープ株式会社 太陽電池、フォトニック結晶基板、太陽電池パネルおよび太陽電池を備えた装置
CN103472516A (zh) * 2013-09-17 2013-12-25 京东方科技集团股份有限公司 反射式滤光片及其制备方法、显示装置
CN104409646A (zh) * 2014-11-13 2015-03-11 合肥鑫晟光电科技有限公司 一种发光器件及其制备方法、显示装置
CN105629378B (zh) * 2016-01-04 2018-03-16 京东方科技集团股份有限公司 显示基板以及显示装置
CN105425471B (zh) * 2016-01-26 2018-10-23 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343671A (ja) * 2005-06-10 2006-12-21 Tokyo Institute Of Technology 周期構造体およびその製造方法
CN103529513A (zh) * 2013-09-24 2014-01-22 浙江工业大学 一种光子晶体微腔共振波长的调节方法
CN104101940A (zh) * 2014-07-04 2014-10-15 京东方科技集团股份有限公司 导光板、背光源及显示装置
CN106575034A (zh) * 2014-08-03 2017-04-19 威福光学有限公司 出射光瞳扩展的衍射光学波导装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3650896A4 *

Also Published As

Publication number Publication date
EP3650896B1 (en) 2023-01-25
EP3650896A4 (en) 2021-03-24
JP2020527244A (ja) 2020-09-03
CN109212665A (zh) 2019-01-15
US20210231841A1 (en) 2021-07-29
CN109212665B (zh) 2019-09-17
JP7073273B2 (ja) 2022-05-23
EP3650896A1 (en) 2020-05-13

Similar Documents

Publication Publication Date Title
WO2018161650A1 (zh) 显示面板和显示装置
WO2018120504A1 (zh) 液晶显示面板及其应用的液晶显示装置
WO2018153069A1 (zh) 光学膜材和彩膜基板及其制作方法、显示装置
JP2023524022A (ja) タイル状構成要素を有する表示デバイス
TWI567703B (zh) 顯示裝置
CN102866536B (zh) 液晶显示器
CN103150062B (zh) 触控显示装置
WO2018161488A1 (zh) 显示面板及其制造方法
US10466401B2 (en) Backlight module, methods of manufacturing the same, and display device
US9606283B2 (en) Surface light source, backlight module and display device
WO2018161489A1 (zh) 显示装置
WO2021174617A1 (zh) 显示装置
TWI723531B (zh) 顯示用背光裝置
US11644707B1 (en) Viewing angle expansion film comprising a plurality of first and second projections arrayed on a flat layer, method for preparing the same, and display device
EP3851906A1 (en) Backlight module, display screen and mobile terminal
EP3125022B1 (en) Display device and manufacturing method thereof
WO2018120507A1 (zh) 液晶显示面板及其制造方法
WO2020187105A1 (zh) 反射式液晶显示装置及其制备方法
CN104848092A (zh) 背光模组和液晶显示器
CN106054469B (zh) 超薄型液晶显示器
CN109856861A (zh) 一种显示面板、显示装置,以及显示面板的驱动方法
CN109407403A (zh) 背光模组及显示装置
WO2019007094A1 (zh) 透明显示装置及其制备方法
CN216210335U (zh) 显示装置
CN106773321A (zh) 一种轻薄型液晶显示装置及其背光模组与制作方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018558321

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018789312

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018789312

Country of ref document: EP

Effective date: 20181108

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18789312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE